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Introduction

What does Monte Carlo and convergences have to do with finance? Asset pricing

theory under certain circumstances says that the price of a derivative security can

be usefully represented as an expected value [15]. A Monte Carlo method is a

computational method that utilizes a huge quantity of random numbers; this method

can be successfully implemented to get to a good estimate of these expectations.

The first chapter will introduce the basic notions useful for the development

of the Monte Carlo Method and then it will present some important methods to

generate pseudo uniform random numbers and random samples from basically any

distribution. Once we can sample from different distributions, we will be able to

generate random sample paths useful to simulate different stochastic processes.

In chapter two we will focus on options which give the buyer the right to buy

(call) or sell (put) an underlying stock (S) at a certain strike price (K) at a fixed

future date (T) called ”maturity”. If we are in discrete time (t ∈ N), we will see St

as a discrete time stochastic process, a sequence of realizations of random variables.

If we are in continuous time (t ∈ R), we will see it as a continuous time stochastic

process, with a ”stochastic differential equation” describing its dynamics over time.

Once we have comprehensively introduced and explained the most important market

models for option pricing, we will evaluate the price of a European option with an

Asian payoff through a Monte Carlo method; in order to do so, we will have to

introduce a discretization method to simulate a huge number of trajectories for the

underlying price process. Finally we will study its convergence to the mean by

increasing the number of simulations.

At the beginning of chapter three we will implement two variance reduction

technique (antithetic and control variates) which will be useful to accelerate the

convergence of the Monte-Carlo method without further increasing the number of

simulated trajectories. The model of B & S illustrated in chapter two has been

superseded in practice, since the issuers opted for more realistic models which will

allow us to catch the ”true” volatility surface of the market, which is not flat as

reflected in the B & S model. The model chosen to calibrate the volatility surface was

the stochastic volatility SABR model of Hagan, Kumar, Lesniewski and Woodward

([17]), since it is generally able to provide a very good fit to the implied volatility

smile quoted in the market and its parameters have a direct and clear influence on

the shape of the calibrated volatility surface.
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Chapter 1

A Toolbox for Stochastic

Simulation: Fundamentals of

Monte Carlo

This chapter will present initially the basic theorems useful to develop the notion

of Monte Carlo method and Monte Carlo simulation, which will be the topic of

the second section. In order to price options in the next two chapters with Monte

Carlo, it is fundamental to be able to generate random samples from the Gaussian

distribution. The generators implemented into common programming languages

are often based on the very algorithms and methods introduced in this chapter.

So, in the third section we will introduce some important methods to generate

uniform random numbers. Lastly we will implement those numbers in some famous

algorithms to get random sample from basically any distribution.

1.1 Probability framework

Glasserman provides a useful introduction to the Monte Carlo by saying that ”Monte

Carlo methods are based on the analogy between probability and volume” [15]. A

general notion of probability associates an event with a set of outcomes and defines

the probability of an event as its volume or measure relatively to that of a set of

possible outcomes. ”Monte Carlo uses this identity in reverse, calculating the volume

of a set by interpreting the volume as a probability” [15]. In practice, taking the

simplest case like a coin toss, this procedure consists in sampling randomly from a

universe of possible outcomes and then in considering the fraction of random draws

that fall in a given set as an estimate of the set’s volume. The law of large numbers

ensures that this estimate converges to the correct value when the number of draws

increases and it guarantees a kind of aggregate predictability when we deal with

many typical random variables. The central limit theorem provides information

about the likely magnitude of the error in the estimate after a finite number of

draws. In this section we will present these two main theorems.

5



Monte Carlo Methods and Stochastic Processes in Option Pricing

1.1.1 The Laws of Large Numbers

In probability theory a ”weak law” is a theorem that tells us how a sequence of prob-

abilities converges. In the example of independent fair coin tosses, the convergence

in probability of the arithmetic mean of the sample to the theoretical mean of the

population, means that the binomial probability of the sample mean over the first

n tosses of a coin differing “much” from the theoretical mean should be small. In

1713, Jacob Bernoulli first proved the Weak Law of Large Numbers for the special

case when the Xi are binomial random variables, known as ”Bernoulli’s Theorem.

A ”strong law” tells how the sequence of random variables as a sample path behaves

in the limit. That is, among the infinitely many sequences (or paths) of coin tosses

we select one “at random” and then evaluate the sequence of means along that

path. The Strong Law of Large Numbers says that with probability 1 that sequence

of means along that path will converge to the theoretical mean. A Strong Law is

an experiment-by-experiment statement: it says that “almost every” sample mean

approaches the population mean as the sample size increases.

Weak law of large numbers (WLLN)

Let (Xn)n∈N be a sequence of i.i.d. random variables Xi ∈ Rd ∀ i = 1, ..., n, defined

in the probability space (Ω,F ,P) which lives in L2(Ω,P), with expected value µ :=

E[Xi] and variance σ2 := V ar(Xi).

Let’s define the arithmetic mean of the sequence as: Mn = 1
n

∑n
i=1 Xn.

Then we have that:

E[(Mn − µ)2] =
σ2

n
(1.1)

If this is true, since :

lim
n→+∞

E[|Xn − µ|2] = lim
n→+∞

σ2

n
= 0 (1.2)

we have that Mn converges in L2(Ω,P) norm to the costant r.v. µ :

Mn
L2

−→ µ

Combining (1.1) with the ”Markov’s inequality” (A.3.6), with X = Mn−µ, we have

that:

lim
n→∞

P(|Mn − µ| > ε) ≤ lim
n→∞

E[(Mn − µ)2]

ε2
= lim

n→∞

σ2

nε2
= 0 (1.3)

So, by the definition of the convergence in probability (A.2.3):

Mn
p−→ µ

Chapter1 6
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Lastly, from Theorem (A.2.5 - v), Xn converges to µ in distribution:

Mn
d−→ µ (1.4)

Proof If we prove the statement (1.1), then all the other observations follow. By

the definition of expected value, of arithmetic mean and by the property of linearity

(A.3), we have that:

E[Mn] = E[
1

n

n∑
i=1

Xi] =
1

n

n∑
i=1

E[Xi] =
1

n
(E[X1] + ...+ E[Xn]) =

nµ

n
= µ (1.5)

Since (Xn)n∈N ∈ R are independent we observe that:

E[(Mn − µ)2] = V ar[Mn] = V ar[
1

n

n∑
i=1

Xi] = (1.6)

1

n2

n∑
i=1

V ar[Xi] =
1

n2

n∑
i=1

V ar[X1] + ...+ V ar[Xn] =
nσ2

n2
=
σ2

n

�

From Thm. (A.2.5 - iv), if: Mn
p−→ µ ⇒ ∃ a sub-sequence (Mnk)k∈N |Mnk

a.s.−−→ µ.

In the next paragraph we will see that it is possible to prove that: Mn
a.s.−−→ µ

Strong Law of Large numbers (SLLN)

Let (Xn)n∈N be a sequence of i.i.d. random variables Xi ∈ Rd, ∀ i = 1, ..., n,

defined in the probability space (Ω,F ,P) which lives in L2(Ω,P), with expected

value µ := E[Xi] and variance σ2 := V ar(Xi). Let’s define the arithmetic mean of

the sequence as: Mn = 1
n

∑n
i=1Xi. The Strong Law of Large Numbers says that:

P ( lim
n→∞

Mn = µ) = 1 (1.7)

or:

Mn
a.s.−−→ µ

Proof A detailed proof can be found in [32]

Kolmogorov’s Strong law of large numbers

The Russian mathematician Andrey Kolmogorov proved the Strong Law with weaker

assumptions: Let (Xn)n∈N be a sequence of i.i.d. random variables Xi ∈ Rd, ∀ i =

1, ..., n, defined in the probability space (Ω,F ,P) which lives in L1(Ω,P), with

expected value µ := E[Xi].Let’s define the arithmetic mean of the sequence as:

Mn = 1
n

∑n
i=1Xi. The Kolmogorov’s Strong Law of Large Numbers says that:

P ( lim
n→∞

Mn = µ) = 1 (1.8)
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or:

Mn
a.s.−−→ µ

Proof A detailed proof can be found in [22]

1.1.2 Central Limit Theorem

Let (Xn)n∈N be a sequence of i.i.d. random variables Xi ∈ Rd, ∀ i = 1, ..., n, defined

in the probability space (Ω,F ,P) which lives in L2(Ω,P).

If we define with:

µ := E[Xi] and σ2 := V ar(Xi)

respectively the finite mean and the variance of the population and with: Sn =∑n
i=1Xi, Mn = Sn

n
respectively the sum and the arithmetic mean of the n r.v. Xi,

then from 1.5 and 1.6, we have that:

E[Mn] = µ and V ar(Mn) =
σ2

n

. Lastly, from the ”Strong Law of Large Numbers” we have that Mn
a.s.−−→ µ

Let’s consider a normalized arithmetic mean M̃n, defined as:

M̃n :=
Mn − E[Mn]√
V ar(Mn)

=
Mn − µ√

σ2√
n

=
Mn − µ

σ√
n

Then by multiplying by n
n
, we have that:

M̃n := (
n

n
)

Sn
n
− µ
σ√
n

=
Sn − nµ√

nσ
=

1√
n

n∑
i=1

(
Xi − nµ

σ
) (1.9)

The Central limit theorem states that, for every possible distribution of Xn, the

sequence of the normalized arithmetic means, converge weakly or in distribution to

a Gaussian standard normal random variable Z ∈ Rd:

M̃n
d−→ Z ∼ N (0, 1) (1.10)

Then, since Mn = µ+ M̃n
σ√
n

for n large enough:

Mn w µ+ Z
σ√
n

d−→ N (µ,
σ2

n
) for n >> 1 (1.11)

and

Sn = Mn ∗ n w nµ+
√
nZσ

d−→ N (nµ, nσ2) for n >> 1 (1.12)

The key observation is that absolutely nothing (except a finite variance) is assumed

Chapter1 8
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about the distribution of the random variables (Xn)n∈N. Therefore, if we define a

random variable as the sum of many i.i.d. random variables with finite variances,

then one can infer that the random variable’s distribution is approximately Gaussian.

So we can use empirical data to estimate µ and σ2 of the asymptotic distribution

of Xn. One of the numerical methods to do inference on these parameters is the

Monte-Carlo method that we will treat in the next section.

9 Chapter1



Monte Carlo Methods and Stochastic Processes in Option Pricing

1.2 Monte Carlo Method and Simulation

1.2.1 Definition and Principles

A Monte Carlo (MC) method is a computational method that utilizes random num-

bers. There is no consensus on how Monte Carlo should be defined. For example,

Sawilowsky [33] distinguishes between a Monte Carlo method, and a Monte Carlo

simulation: a Monte Carlo method is a technique that can be used to solve a math-

ematical or statistical problem (ex. Determine the behaviour of repeated coin tosses

by tossing a large number of times a coin and computing the ratio of heads vs tails);

a Monte Carlo simulation uses repeated sampling to obtain the statistical properties

of some phenomenon (or behaviour).

One of the first example of random simulation made for numerical computation

is described by the experiment of the Buffon needle proposed by the count with the

same name in 1733. Later results are from Von Neumann, Fermi and other great

minds of the XX th century (more on the history of Monte Carlo methods can be

found in [16]).

Monte Carlo methods vary, but tend to follow a particular pattern:

1. Define a domain of possible inputs;

2. Generate inputs randomly from a probability distribution over the domain;

3. Perform a deterministic computation on the inputs;

4. Aggregate the results.

The typical problem which can be solved by a Monte Carlo method is the nu-

merical integration. Let’s consider the following integral:

F (X) =

∫
[a,b]d

f(x)dx (1.13)

where f : [a, b]d → R is an integrable function and x is a d×1 vector of components:

[
x1 x2 ... xd

]
If the integral is in Rd, it is always possible to make, as a preliminary step, a change

of variable such that the domain of integration becomes [a, b]d:

F (X) =

∫ b

a

∫ b

a

...

∫ b

a

f(x1, x2...xd)dx1dx2...dxd

Crude Monte Carlo

We now illustrate a first approach to the Monte Carlo method to solve a problem

of numerical integration using uniform random numbers.

Monte Carlo simulation is the evaluation of the definite integral (1.13) by iden-

tifying a random variable Y and a density p with support in [a, b]d, and a function

Chapter1 10
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g such that the expected value of g(Y) is F(X):

E[g(Y )] =

∫
[a,b]d

g(y)p(y)dy =

∫
[a,b]d

f(y)dy = F (X) (1.14)

If, for instance, we take Y = Uj ∼ U(0, 1)d, and g(Y ) = (b−a)df(Y ), then we notice

that the integral F (X) is equal to the expected value E[g(Y )] = E[g(Uj)] := µf ,

since:

µf =

∫
[a,b]d

g(uj)p(uj)duj =

∫ b

a

...

∫ b

a

g(uj,1) ∗ ... ∗ g(uj,d) (
1

b− a
)d duj,1duj,2...dxj,d =

= (
1

b− a
)d
∫

[a,b]d
g(uj)duj = (

b− a
b− a

)d
∫

[a,b]d
f(uj)duj = F (X)

In this case we have that: F (X) = E[g(Uj)] = (b− a)dE[f(Uj)]

The evaluation of F(X) by Monte-Carlo method is typically based on generating

’n’ i.i.d. random vectors (samples) of d components (U1, . . . , Uj, . . . , Un) each one

uniformly distributed on [0, 1]d, where Uj is a d-dimensional uniform random vector

Uj ∼ U(0, 1)d.

Of course, the simulation of the d-components of each Uj can be made via the

generation of ’d’ i.i.d. random variables uniformly distributed on [0, 1]; in this way,

we can construct the n×d matrix U which has as j-th row entries ’n’ uniform random

vectors of dimension ’d’: 
u1,1 u1,2 ... u1,d

... ... ... ...

uj,1 uj,2 ... uj,d

... ... ... ...

un,1 un,2 ... un,d

 =


U1

. . .

Uj

. . .

Un


So, in general, the Monte-Carlo estimator of F(X), sampled from a multivariate

uniform distribution is:

ˆF (X) = M [g(Ui)] = (b− a)dM [f(Ui)] = (b− a)dM f
n := (b− a)d

1

n

n∑
i=1

f(Ui) (1.15)

In our case with X ∼ U(0, 1)d, we have that the Monte-Carlo estimator can be

written as the arithmetic mean of the sample of Ui ∀i = 1, ..., n:

ˆF (X) = M f
n :=

1

n

n∑
i=1

f(ui) (1.16)

In every case, (1.8) assures that, if µf is finite, then M f
n is a good estimator of

µf (then of our F(x) in our special case) because:

P ( lim
n→+∞

M f
n = µf ) = 1⇒M f

n
a.s.−−→ µf (1.17)

11 Chapter1
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Moreover, if we suppose that f is square integrable (
∫

[0,1]d
f 2(x)dx < +∞) ; then by

the central limit theorem (1.1.2), we have that:

√
n(M f

n − µf )
n→+∞−−−−→ N (0, σ2) (1.18)

with σ2 = V ar(f(Uj)) ∀i = 1...n. We notice how the convergence rate (in distribu-

tion) does not depend on the dimension d, but on
√
n , which becomes especially

interesting in problems where d is large (or even infinite). We will go deeper in

the question of the convergence rate, accuracy and estimation of the error of the

estimates in the following sections.

Monte Carlo with known density p

Suppose that the integral we want to estimate is the Expected value of a certain

g(x):

F (X) =

∫
[a,b]d

f(x)dx =

∫
[a,b]d

g(x)p(x)dy = E[g(x)] (1.19)

It may require some scaling to get the density to be over the support (a, b)d [14].

Moreover, suppose that we know the probability density p over the support, and

that we can generate n random variates Yi from the distribution with density p;

then our Monte Carlo estimate of F(X) is:

ˆF (X) = M f
n :=

1

n

n∑
i=1

g(yi) (1.20)

1.2.2 Confidence Intervals and Error Analysis

Non Asymptotic Error Estimates

Concerning the computational complexity, we can give a first estimate of the error of

the Monte Carlo method directly by the Markov inequality: Given the assumptions

and definitions presented in the first section for the WLLN (1.1), we define as the

arithmetic mean M f
n := 1

n

∑n
i=1 f(xi) and µf = E[f(X)] = F [X] the i.i.d R.V.

Xi ∼ U(0, 1) ∀i = 1, ..., n, then by Markov’s inequality and the independence of

the X (1.6), for every ε > 0, we have that:

P(|M f
n − µf | ≥ ε) ≤ E[(M f

n − µf )2]

ε2
=

σ2

nε2
(1.21)

The 1.21 gives us an ”explicit estimate of the speed of convergence” [31], which can

be seen clearly if we rewrite the inequality as:

P(|M f
n − µf | ≤ ε) ≥ p := 1− σ2

nε2
(1.22)

Chapter1 12
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Then for a fixed probability p ∈]0, 1[ and a number of simulations n, the maximum

approximation error is:

ε =
σ√

n(1− p)
(1.23)

So we have that:

P(|M f
n − µf | ≤

σ√
n(1− p)

) ≥ p

=⇒ P( (µf −

ε︷ ︸︸ ︷
σ√

n(1− p)
) ≤M f

n ≤ (µf +

ε︷ ︸︸ ︷
σ√

n(1− p)
) ) ≥

1− σ2

nε2︷︸︸︷
p (1.24)

First of all we note that, being the technique based on the generation of random

numbers, the result and the error of the Monte Carlo method are random variables.

Formula 1.22 gives an estimate of the error in terms of three parameters:

i) n, the number of samples, i.e. how many random numbers we have generated;

ii) ε, the maximum approximation error;

iii) p, the minimum probability that the approximated value Mn belongs to the

confidence interval [µf − ε, µf + ε], with ε defined as in the (1.23) and p defined as

in (1.22).

Let’s reconsider the example of the computation of the integral (1.13) with the

Monte Carlo Method; we have that σ =
√
V ar[f(Uj)] ∀j = 1, ..., n with U ∼

U [0, 1]d. In this case the maximum error of the method can be estimated by:

εM =

√
V ar(f(Uj)

n(1− p)
(1.25)

We note that the error εm is of the order of
√

1
n

regardless of the dimension of the

problem and is proportional to σ. So, from a computational point of view σ is a

crucial parameter which influences significantly the efficiency of the approximation:

σ2 = V ar(f(Uj)) = E[(f(Uj))
2]− E[f(Uj)]

2,∀j = 1...n

Typically σ is not known; nevertheless it can be written as a difference between

expectations, so that we can evaluate this using the same random numbers used to

evaluate the expected value µf :

σn
2 =

1

n− 1
(

n∑
i=1

[(f(Ui))
2]−

n(Mf
n )2︷ ︸︸ ︷

n∑
i=1

f(Ui)
2 ), ∀i = 1...n (1.26)

So, we know that the standard error of the mean is: SEM =
√
V ar(Mn) = σMn =

σ√
n
≈ σn√

n
but we know that this can be only a good approximation (we have as-

sumptions on indipendence and on boundedness of the first moment), even though

in generality is sufficiently accurate to estimate the error of the MC mean with
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respect to the true population mean satisfactorily.

In absence of better approximations the Monte Carlo method allows us to con-

struct an approximation of E[f(X)] and a completely explicit error estimation, in

terms of confidence intervals (as described before). Usually, in order to improve

the effectiveness and reduce the error of estimation, variance-reduction methods are

used. These techniques employ the specific features of the problem to reduce the

value of σn and consequently increase the speed of convergence: for the description

of such techniques, we refer to section 3.1.

Asymptotic Error Analysis

Now we show that the central limit theorem provides an estimate of the speed of

convergence and of the error of distribution as n→∞.

Let (Yn)n∈ N be a sequence of i.i.d. r.v. with finite expectation and variance such

that Yi = f(Xi), where Xi ∼ U(0, 1) ∀i = 1, ..., n (Monte Carlo estimation of F(x)

in the one dimensional case).

Indeed, by CLT - 1.1.2 we have that the standardized arithmetic mean of the Monte

Carlo is:
˜
M f

n =
√
n(
M f

n − µf

σ
)
d−→ Z ∼ N (0, 1) (1.27)

and so, asymptotically for n→∞, for every y = f(x) ∈ R, we have:

√
n(
M f

n − µf

σ
≤ y) ≈ Φ(y) (1.28)

where Φ is the standard normal distribution. Consequently, for every y > 0, we

have that:

P( (µf −

ε︷︸︸︷
σy√
n

) ≤M f
n ≤ (µf +

ε︷︸︸︷
σy√
n

) ) ≈
2Φ(y)−1︷︸︸︷
p (1.29)

Therefore, for a fixed p ∈]0, 1[, the distance between the exact value and the

approximated one is with probability p less than:

σ√
n

Φ−1(
p+ 1

2
) (1.30)

For example, for p ≈ 95% , Φ−1(p+1
2

) ≈ 1, 96. In practice these estimates give a

more accurate and practical estimate than the non-asymptotic ones.

This fact can be justified rigorously by the Berry-Essen Theorem: it gives the

speed of convergence in the central limit theorem, thus allowing us to obtain rigorous

estimates for the confidence intervals.

In the next statement we assume, for the sake of simplicity, that E[Yj] = 0 (we

can always make this assumption satisfied by substituting Y with Y − E[Yj]).
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Berry Essen Theorem

Let (Yn)n∈ N be a sequence of i.i.d. r.v. such that E[Yj] = 0 and σ2 = var(Yj), SKW =

E[|y|3] are finite.

If Φn is the distribution function of
√
nMf

n

σ
then, for every y ∈ R:

|Φn(y)− Φ(y)| ≤ SKW

σ3
√
n

(1.31)

For the proof we refer to [10].

Of course, in order to come back to our Monte Carlo Estimation framework, we

can impose that Yi = f(Xi), where Xi ∼ U(0, 1) ∀i = 1, ..., n.

1.2.3 Efficiency of Monte Carlo Estimators

Part of this thesis is devoted to ways of improving Monte Carlo estimators. To dis-

cuss improvements, we first need to explain some criteria for comparing alternative

estimators. Two considerations are particularly important regarding the efficiency

in terms of optimization of the computing time and the possible bias .

Heuristic Efficiency Criterion

First, we introduce a heuristic criterion elaborated by Stéphane Crépey in [9] to

compare the efficiency of various simulation schemes, with or without variance re-

duction. This criterion takes into account not only the accuracy (variance), but also

the computation time required by the simulation for each scheme. The efficiency of

a method M̃ with respect to a method M is defined here as:

E = lim
n,ñ→+∞

σMn

σ̃M̃n

√
tn

t̃ñ
(1.32)

where σn and tn are the standard error and the computation times of method

M based on n simulation runs (respectively σ̃ñ and t̃ñ are the standard error and

the computation times of the method M̃ based on ñ simulation runs). Method M̃

is considered to be more efficient than method M if E ≥ 1. For instance, E = 4

means that for a given computation time method M̃ is 4 times more accurate than

method M , or that for a given accuracy method M̃ is 42 times faster than method

M.

Since by the strong WLLN (1.6), we know that:

σMn = SE =
σ√
n

and σ̃M̃n
= S̃E =

σ̃√
ñ

and assuming computation times proportional to the sample sizes (so that tn = kn,

where k is a factor which expresses the complexity of the algorithm for method M ,

and likewise t̃ñ = k̃ñ for method M̃), we have that efficiency in the sense of the
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criterion E is asymptotyically independent to the sample size (since both tend to

infinity and disappear from the formula):

E ∼n,ñ→+∞
σ

σ̃

√
k

k̃
(1.33)

Since:

E = lim
n,ñ→+∞

σMn

σ̃M̃n

√
kn

k̃ñ
= lim

n,ñ→+∞

σ
√
ñ

σ̃
√
n

√
kn

k̃ñ

Bias

The efficiency discussed above rely on the fact the estimators compared are averages

of unbiased replicators. Once we know the estimations are unbiased, then variability

of the estimation and the computational effort are the most important factors to be

considered. Reducing these two in order to converge to an incorrect value would be

pointless. Given the definition that we gave before of arithmetic mean, we define an

unbiased estimator of the average as:

E[M f
n ] = µf (1.34)

Nonetheless, a simulation estimator can be biased for all finite sample sizes but

it can converge asymptotically to the mean with probability one as the number of

replications increases (an example is the price of a standard call option). In this

case we say that the estimator is not biased, but it is consistent, which means that

it converges in probability to the true estimator: Mn
P−→ X.

The sequence of R.V. we want to estimate with Monte Carlo comply with the

conditions necessary to follow the LLN, then in the (1.5) we proved the unbiasedeness

of the Monte Carlo estimator and in the (1.2) the convergence in L2 which proved

in a sense the consistency of it.
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1.3 Generation of Uniform Pseudo Random Num-

bers

As we said, Monte Carlo methods require a large amounts of random numbers, and

it was their use that spurred the development of pseudo-random number generators,

a series of apparently random numbers used to derive every simulation, which were

far quicker to use than the tables of random numbers that had been previously used

for statistical sampling. Usually, a random number generator, produces a finite

sequence of numbers in the unit interval.

We define as a “Generator of genuinely random numbers” [15] a mechanism that

produces a sequence of random variables U1, U2, . . . , Un with these properties:

(i) each Ui is Uniformly distributed between 0 and 1 (Ui ∼ U(0, 1));

(ii) Every Ui are mutually independent with the others.

An effective generator should produce values consistently with these two properties.

If the generator is good then even for small segments of sequence generated, it

is difficult to distinguish it from a realization of independent uniform variables.

Operationally, we can construct a generic random number generator defining:

- A finite set X, called ”State Space”.

- An element x0 ∈ X, called the ”seed”.

- A function T : X → X, called the transition function.

- A function G : X → (0, ...,m− 1).

Fixed a seed x0, the pseudo random numbers are computed as Ui := G(xi), given

that xi = T (xj−1).

We can define the following criteria for ”goodness of a random number genera-

tor”:

1. Statistical uniformity (randomness): the sequence of random numbers U1, U2,

. . . , Un obtained using the random number generator are hardly discernible from a

truly random sample. For most applications, one can use one of the many generators

(ex. Mersenne Twister generator [28]) that comply with rigid theoretical properties

and have survived over time to rigorous statistical tests.

2. Speed: in many applications a huge quantity of random numbers is needed. The

generation of random numbers should not reduce the speed of the simulation.

3. Period length: since the sequence of random numbers is periodic and since in

many applications we need a lot of random numbers, the period length should be

sufficiently large.

4. Reproducibility: it is the capacity to rerun a simulation using exactly the same

inputs used previously. Reproducibility is very useful for debugging codes, for in-

stance. We should be always able to generate the same random sequence starting

from the same seed x0.

5. Portability and jumping ahead: the generator and the sequence of random num-

bers generated should be portable to different computers ans must guarantee the

possibility to get xl+n given xl for n large, without generate all the states in between.
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1.3.1 Linear Congruential Generator

A linear congruential generator produces a stream of numbers that appear to be

independent realizations of a uniform process and takes the form:

xi+1 = f(xi) mod m (1.35)

ui+1 = g(xi+1)

in which each single number determines its successor by means of a simple linear

function f followed by a modular reduction and each single random number ui+1 is

determined by a deterministic function g of xi+1.

The operation y mod m returns the remainder of y after the division by m:

y mod m = y − b y
m
cm (1.36)

where the floor function b.c is the greatest integer less than or equal to the argument.

The general Linear Congruential Generator, sometimes called ”Lehmer Sequence”

(since it was proposed by Lehmer [25] in 1951), has a recurrence of the following

form:

xi+1 = (axi + c) mod m (1.37)

ux+i = xi+1/m

with: 0 ≤ xi < m− 1

where a is called the “multiplier”, c is called the “increment”, and m is called the

“modulus” of the generator (all integers).

For c 6= 0, the generator is sometimes called a “mixed congruential generator”.

The seed for this generator is just a single integer x0. Each xi is scaled into the unit

interval (0,1) dividing it by m: ui = xi
m

. Since the result of the mod m operation is

always an integer ∈ [0,m−1], the output (re-scaled) values ui are ∈ [0, m−1
m

]→ [0, 1).

Since xi is determined by m−1 possible different values of the xi−1, the maximum

period or cycle length of the linear congruential generator is m − 1. For a random

number generator to be useful in most practical simple applications, the period

(modulus) must be of the order of 109 to 1015 [14]. Even if the period of such

generators remains too short relatively to the computational effort required, it is

often used as a basic element in other, more adequate generators and it is possible

to set the fundamental properties used also for better generators. Anyway, in order

to have full period (i.e. the number of distinct values generated by the seed is m-1)

in the case c 6= 0, some conditions illustrated by Knuth in ([21]) must be satisfied:

(i) c and m are relatively prime;

(ii) every prime number that divides m divides a-1;

(iii) a - 1 is divisible by 4 if m is divisible by 4 too.

As a consequence of this, it can be observed that if m is a power of 2 , the
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generator has full period if is odd and a = 4n+ 1 ∀ n ∈ N.

Often, c is taken to be 0, and, in this case, the generator is called a “multiplicative

congruential generator”:

xi+1 = (axi) mod m (1.38)

In order to have full period in these types of generators, when m is prime, we

need ∀ x0 6= 0:

(i) am−1 − 1 to be a multiple of m;

(ii)aj − 1 to not be a multiple of m for j = 1, ... , m-2.

In the table below we present some examples of combinations of moduli and

multpliers recommended; in each case the modulus m is a large prime equal to

231 − 1 (which is the largest integer that can be represented in a 32-bit word).

modulus m multiplier a reference
231 − 1 16807 Lewis, Goodman and Miller [26]
231 − 1 39373 L’Ecuyer [23]
231 − 1 742938285 Fishman and Moore [13]

Table 1.1: Parameters for linear congruential generators

In the simple example below we present the algorithm for the computation of the

Linear Congruential Generator which is full period = 210− 1 (follows the conditions

set by Knuth in ([21]) and has seed which varies with the time displayed by the

clock of the PC:

Algorithm 1: Simple Linear Congruential Generator (MATLAB)

a = 5;
c = 7;
m = 28;
O = clock;
x0 = floor(10 ∗O(6));
xm1 = zeros(floor m,1);

for k = 1 : m
x0 = mod((a ∗ x0 + c),m)
xm(k) = x0;

end
disp (’The Random Numbers are’);
um1 = xm1/m

The random numbers of the full period linear congruential constructed with the

algorithm (1) are represented in the upper plot of figure 1.1 (c = 7). If you do

not satisfy one of the conditions set by Knuth [21] listed before, then a recursive

structure appears directly in the sequence of random numbers. Using the same

algorithm, the lower plot of figure 1.1 shows us what happens if we do not satisfy

the first conditions of Knuth [21] (in this case we set c = 8 and m = 28 so that they

are no more relatively prime): an equal sub-sequences of pseudo random numbers
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Figure 1.1: Linear Congruential Generator: full period vs recursive structure

repeats herself every m/c = 32 outputs. If a and m are properly chosen, the uis will

“look like” they are randomly and uniformly distributed between 0 and 1. One way

to evaluate a random number generator is to form points in [0, 1]d from consecutive

output values and measure how uniformly they fill the space.

Let’s take for instance the pairs of consecutive (ui−1, ui): even if we employ

the best possible linear congruential generators (ex. using the parameters used by

L’Ecuyer seen in table (1.1) (see Glasserman [15] pag. 47-49), their lattice structure

(integer combination of a set of ”basis vectors”) over the unit square will reveal their

regular pattern and will help us distinguish them from genuinely random numbers.

Figure 1.2: Lattice structure of the full period Linear Congruential Generator of
Algorithm 1

.

An illustration of this regular pattern is revealed from the figure (1.2): The 28

distinct consecutive pairs generated by the full period algorithm (1.1), lie on just 5

parallel lines through the unit square.
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1.3.2 Combined Generators and Other Methods

A first solution to the problems regarding the properties of the linear congruential

generators is provided by methods that combine them with elementary operations.

They seem to preserve the attractive computational features of these generators

while extending their period and, attenuating their lattice structure.

Here we briefly illustrate the basic ”Multiple Recursive Generator” Structure,

which utilizes a higher order recursion of the form:

xi = (axi−1 + axi−2 + ...+ axi−k + c) mod m (1.39)

ui = xi+1/m

A seed for this generator consists of a stream of initial values xk−1+xk−2+...+x0.

The longest possible period becomes mk−1, since the vector xi−1+xi−2+...+xi−k can

take up to mk values (the period is shorter is the sequence reaches (0, ... 0)). Knuth

[21] gives us the conditions in order to reach the maximal period for these sequences

and L’Ecuyer [24] shows that a combined version of the MRG (first summing and

then dividing them) produces a larger modulus and a less evident lattice structure

while implementing smaller values and involving smaller computational effort.

Many methods have been proposed in literature to combine linear congruential

generators:

- L’Ecuyer [24] and the combined version of the MRG,

- Eichenaucher-Herrman, Herrman, and Wegenkittl [11] for the ”Inversive Con-

gruential Generators”;

- Tausworthe [34] for the ”Feedback Shift Register”.

- Matsumoto and Nishimura [28] and The Marsenne Twister generator (a re-

fined version of the Feedback Shift with Period 219937 − 1 and optimal uniformity

properties.

These and others advanced generators have been implement largely in the al-

gorithms provided by the most used softwares like R, Matlab, Python and allow

us to obtain pseudo uniform random numbers which are statistically tested and

have superior uniformity, longer periods, higher computational speed. In the next

section we will see how to generate large random samples from a given probability

distribution.
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1.4 General Sampling Methods

We are assuming the availability of a sequence of (Un)n∈N independent and uniformly

distributed on (0, 1) random variables each one satisfying:

P (Ui ≤ u) =


0, for u > 0

u for 0 ≤ u ≤ 1

1 for u > 1

(1.40)

Since most simulations involves random variables and vectors from distributions

different form the uniform, we need to implement some algorithms that allow us

to transform these uniforms into essentially any other distribution. We will see

two classic methods to do it. Once we can sample from different distributions (in

particular the Gaussian one) we will be able to generate random sample paths useful

to simulate different stochastic processes.

1.4.1 Inversion Method

The goal of this method is to sample from a CDF F (continuous from the right,

non-decreasing and ∈ (0, 1)) by generating a random variable X with the property:

P (X ≤ x) = F (x) ∀x

The method sets U ∼ U [0, 1]; then for strictly increasing F, the inverse of F is well

defined and we can write:

X = F−1(U)

For a non-decreasing CDF, we can set:

X = F−1(u) = inf{x | F (x) ≥ u} (1.41)

such that the inverse of F is well defined even if there are flat sections of the

cumulative (in the flat section in which F(x) = u).

Proof We prove the assertion 1.4.1. By definition of F−1 we know that:

F−1(u) ≤ x⇐⇒ F (x) ≥ u

Then we have that:

P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x)
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Exponential distribution Consider the exponential distribution with R.V. X ∼
E (λ), with λ > 0. We have:

F (x) = 1− e−λx

This function is invertible:

e−λx = 1− F (x) =⇒ −λX = log(1− F (x)) =⇒ F−1(u) =
1

λ
log(1− u)

where the last equation follows by substituting the result obtained in the previous

section 1.4.1). Since if U is normally distibuted then 1 - U is uniformly distributed

too, we can generate samples from the exponential distribution by:

F−1(u) = X = −1

λ
log(U) (1.42)

In the following algorithm (2) we present a simple example of inverse method

applied to obtain samples from an exponential distribution using the (1.42). Once

we can generate a sample from a R.V. X ∼ E (λ) we can easily check that its

arithmetic mean Mx ≈ 1
λ

for n→∞ and that it has the correct density and CDF:

Algorithm 2: Exponential random Variable with Inverse Method (MAT-
LAB)

λ = 0.7;
U = rand(107, 1);
X = −( 1

λ
∗ log(U);

Mx = mean(X);
fx = λ ∗ (exp(−λ ∗X);
Fx = 1− exp(−lambda ∗X));

—————————————————
figure
plot ( (sort (U)), (sort (X,’descendent’) )
plot ( (sort (X)), (sort (fx,’descendent) )
plot ( (sort (X)), (sort (Fx) )

Figure 1.3: Inversion Method: Exponential Random variable
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1.4.2 Acceptance rejection method

Finding an inverse CDF is not always possible. Moreover there are methods for

generating a random variable distributed as F that are more efficient than the inverse

transform method. One of these methods is the ”acceptance-rejection method”

introduced in 1951 by Von Neumann [36]. We start by assuming that the F has

a probability density function f(x) (continuous case). The basic idea is to find an

alternative CDF G, with density function g(x) such that it is close to f(x) and for

which we already have an efficient algorithm to generate random samples from it

(for instance the inverse transform method or others).

In particular, we assume that the ratio f(x)/g(x) is bounded by a constant c >

0 ⇒ supx
f(x)
g(x)
≤ c. (Our goal is to have c as close to 1 as possible.) Here it

is presented the procedure for generating X distributed as f with the Acceptance-

Rejection method:

1 - Generate a r.v. Y distributed as G.

2 - Generate U (independent from Y ).

3 - If U ≤ f(Y )
cg(Y )

, then set X = Y (“accept”) ; otherwise go back to 1 (“reject”).

We notice that:

• f(Y ), g(Y ) , the ratio f(Y )
cg(Y )

are r.v. independent from U;

• The ratio is bounded between 0 and 1 =⇒ 0 < f(Y )
cg(Y )

≤ 1;

• The number of times N that steps 1 and 2 need to be called (e.g., the number of

iterations needed to successfully generate X ) is itself a r.v. and it has a geometric

distribution with “success” probability p = P (U ≤ f(Y )
cg(Y )

); P (N = n) = (1 −
p)n−1p; n ≥ 1. and average E(N) = 1/p.

• In the end we obtain our X as having the conditional distribution of a Y given

that the event U ≤ f(Y )
cg(Y )

occurs.

Since U is uniform, Y has density g(y) and that f is a density function, we have

that p is equal to :

P (U ≤ f(Y )

cg(Y )
) = E[I

[U≤ f(Y )
cg(Y )

]
] = E[ E[I

[U≤ f(Y )
cg(Y )

]
| Y = y] ] = E[ P (U ≤ f(Y )

cg(Y )
| Y = y] =

= E[
f(Y )

cg(Y )
] =

∫ +∞

−∞

f(y)

cg(y)
∗ g(y) dy =

1

c

∫ +∞

−∞
f(y)dy =

1

c
(1.43)

So we have that p = 1
c

and E[N ] = c, the bounding constant, and we can now

indeed see that it is desirable to choose our alternative density g so as to minimize

this constant, that we take at its most efficient value of: c = supx
f(x)
g(x)

. Of course

the optimal function would be g(x) = f(x) which is not what we have in mind since

the whole point is to choose a different g (easy to simulate) in order to sample

from f. The expected number of iterations of the algorithm required until an X is

successfully generated is exactly the bounding constant c = supx
f(x)
g(x)

.
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Proof of the Acceptance/Rejection Method Now we need to prove that the

distribution of Y given that U ≤ f(Y )
cg(Y )

is equal to F:

P (Y ≤ y | U ≤ f(Y )

cg(Y )
) = F (y)

From the (1.43), we have that: P (U ≤ f(Y )
cg(Y )

) = p = 1
c
.

Finally, we have that:

P (U ≤ f(Y )

cg(Y )
| Y ≤ y) =

P (U ≤ f(Y )
cg(Y )

, Y ≤ y)

P (U ≤ f(Y )
cg(Y )

)
= [Setting ω = Y ]

= P (U ≤ f(ω)

cg(ω)
, ω ≤ y) ∗ c =

= c

∫ y

−∞

∫ f(ω)
cg(ω)

0

g(ω) d(u) d(ω)

= c

∫ y

−∞

f(ω)

cg(ω)
g(ω)d(ω) =

=
c

c

∫ y

−∞
f(ω)d(ω) = F (y)

1.4.3 Gaussian Random Variables and Vectors

The Gaussian distribution is fundamental in option pricing, in particular if we see

at the assumption of log-normality of the returns in the Black and Scholes model for

the pricing of European Options. Since a log normal r.v X is such that the log (X)

= Y with Y distributed as a Gaussian, we can exponentiate Y to get a log normal.

Let’s see three methods that allow us to simulate normal random variables.

Acceptance Rejection method for Gaussian

Fishman [12] illustrate how we can create half normal random variables (has the

distribution of the absolute value of a normal random variable). Glasserman [14]

present a slightly different implementation to generate normal random variables.

Here we present briefly the theory behind the method and an application with plot

and algorithm in MATLAB. We define the double Exponential density (Laplace

density) g(y) on (−∞,+∞) and the normal density f(y) as:

g(y) =
e−|y|

2
and f(y) =

1√
2π

e
−y2
2

The ratio of the two densities is:

f(y)

g(y)
=

√
2

π
e−

1
2
y2+|y| ≤

√
2e

π
≈ 1, 3155 ≡ c

A sample from the double exponential random variable can be generated with

the inverse algorithm (Algorithm 2) and then randomizing the sign.
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The rejection test u > f(y)
cg(y)

must be implemented as:

u >

√
2

π
e−

1
2
y2+|y| ∗

√
π

2
e−

1
2 = e−

1
2

(|y|−1)

Since f and g are two symmetric matrices around the y axis, we need to generate

positive samples and determine randomly the sign only if the sample is accepted

(we don’t need an absolute value in the rejection test). The algorithm 3 illustrate

the various steps of this sampling method. In Fig. 1.4 we observe that the normal

density is dominated by the scaled exponential density c*g(y).

Algorithm 3: Gaussian Acceptance Rejection

N = 106; c = 1.3155;
U1 = rand (N,1); U2 = rand (N,1); U3 = rand (N,1);
Y = - log(U1); Ys = sort (Y); gy = c ∗ (exp(−Y s))/2;
Y0 = zeros(N, 1);
for i = 1:N

Bou(i,1) = exp(-0.5*(Y(i,1)-1)2);
if U2(i,1) ≤ Bou(i, 1)

Y0(i, 1) = Y (i, 1);
end
if U3(i,1) ≤ 0.5

Y2(i, 1) = −Y0(i, 1);
else

Y2(i, 1) = Y0(i, 1);
end

end
X=Y2; Xs = sort(X); fx = exp(−(Xs.

2)/2)/sqrt((2) ∗ (π));
————————————————-
Figure
plot (Xs, fx,

′ r′,′ linewidth′, 3) holdon
plot (-Ys, gy,

′ b′,′ linewidth′, 3) holdon plot(Y s, gy,
′ b′,′ linewidth′, 3)

Figure 1.4: Acceptance Rejection Method for Gaussian Sampling
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Box-Mueller pair: Sampling from the Bivariate Standard Normal

Let (U,V) be a bivariate uniform random vector, then (Z1, Z2) = Z ∼ N (0, I2):

Z1 =
√
−2 ∗ ln(U) ∗ cos(2 ∗ π ∗ V ) ; Z2 =

√
−2 ∗ ln(U) ∗ sin(2 ∗ π ∗ V ) (1.44)

The properties which allow this sampling method are:

(i) R = Z2
1 + Z2

2 ∼ E (1
2
)

(ii) Given a radius
√
R of a circle centered in the origin, the point (Z1, Z2) is

uniformly distributed around that circle.

So the algorithm consists in creating an exponential random variable R using the

inverse method (thanks to the generation of the pseudo-uniform random variable U1),

and then by generating independently a random angle V = 2πU2 ∼ U(0, 2π) and

using the trigonometric functions in order to compute the Gaussian pair (Z1, Z2) as

represented in the Algorithm (4). For a formal proof involving test function see [9].

Algorithm 4: Box Mueller

N = 107; U1 = rand(N, 1); U2 = rand(N, 1);
for i = 1 :N

R(i) = - 2*log(U1(i));
V(i)= 2 * pi* U2(i);
Z1(i) = sqrt(R(i))*cos(V(i));
Z2(i) = sqrt(R(i))*sin(V(i));

end
———————————————
figure
subplot(2,2,[3,4]); hist3([Z1’,Z2’], ’nbins’,[50,50])
subplot(2,2,1); histfit(Z1)
subplot(2,2,2); histfit(Z2)

Figure 1.5: Standard Bivariate Density and Random Variables Generated with the
Box-Mueller
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Marsaglia-Bray Algorithm

The Marsaglia and Bray [27], illustrated in Algorithm 5, avoid the calculation of the

trigonometric functions by implementing an acceptance-rejection method to sample

points uniformly in the unit disc and then transforming these points into a couple

of standard normal variables.

Algorithm 5: Marsaglia-Bray

N = 105; r1 = rand(N, 1); r2 = rand(N, 1); I = ones(N, 1);
U1 = (2*r1)-I; U2 = (2*r2)-I;
X = U1.2 + U2.2;
X1 = zeros(N,1) ;
for i = 1:N

if X (i, 1) ¡= I(i,1)
X1(i,1) = X(i,1);
end

end
R = sqrt(- 2*log(X1));
C1 = U1./sqrt(X1);
C2 = U2 ./sqrt(X1);
RE = R(R ∼= inf);
C1 = C1(C1 ∼= −inf);
C2 = C2(C2 ∼= −inf);
C1a = C1(C1 ∼= inf);
C2a = C2(C2 ∼= inf);
Z1 = RE.*C1a; Z2 = RE. ∗ C2a;

The first passage is performed in order to get a bivariate uniformly distributed

(U1, U2) over the square [−1, 1]x[−1, 1]. In the second step, after calculating X =

U2
1 + U2

2 , we start an if cycle accepting only those pairs for which: X ≤ 1 and

producing points uniformly distributed over the disc of radius 1 centered in the

origin. Conditioning on acceptance, X is uniformly distributed between 0 and 1, so

that:

(i) −2 log(X) ∼ E (1
2
);

(ii) ( U1√
X
, U2√

X
) are uniformly distributed variables on the unit circle and indipen-

dent from (X|X = x ≤ 1) and correspond respectively to the random cosine and

the sine over it.

Once we have selected only the values of our interest (such that X ≤ 1) we

calculate the Gaussian pair of univariate standard normal (Z1, Z2) as we basically

did in the Box Mueller algorithm.

The Gaussian vector

A vector X = (X1, . . . , Xm) is Gaussian if any linear combination of its components

has the Gaussian distribution. A Gaussian vector X is characterized by its mean µ

and its covariance matrix Σ, and we write X ∼ N (µ,Σ).
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Generally, Gaussian vectors are generated by affine transforms of independent

standard Gaussian random variables Z ∼ N (0, Id):

Let m and n be two non-zero integers, let Z be a n-dimensional standard Gaussian

vector with the distribution N(0, In), and µ ∈ Rm and P be a m × n matrix. Then:

X = µ+ PZ ∼ N (µ , Σ = PP ′) is an m-dimensional Gaussian vector with mean

µ and variance-covariance matrix Σ.

So, since the covariance matrix Σ — symmetric non-negative definite matrix of

size m — can always be decomposed non uniquely in the form Σ = PP ′, if we know

P, we can simulate any Gaussian vector X using the previous algorithms to generate

a standard gaussian R.V. Z and then apply the transformation.

To calculate P, we can use the Choleski algorithm, which provides a lower trian-

gular matrix (with n = m), with a computational cost with respect to the dimension

proportional to m3.

In some cases (as illustrated by Gobet in [16]), it is possible to speed up the

Choleski algorithm. If the Σ is an m x m matrix of the form:

Σ =


1 ρ ... ρ

ρ 1 ... ρ

... ... ... ....

ρ ρ ... 1


with 0 ≤ ρ ≤ 1 it is possible to reduce the computational cost to the order m, by

choosing a m x (m+ 1) matrix P like this:

P =



√
ρ
√

1− ρ 0 ... ... 0

√
ρ 0

√
1− ρ 0 ... ...

... ... ... ... ... 0
√
ρ 0 ... ... 0

√
1− ρ


When the variables have the Gaussian distribution, it is natural to model the de-

pendence using the covariance matrix. Sometimes the modeling of the dependence

cannot be reduced to a correlation coefficient only. In these cases, the dependence

can be modeled intrinsically without taking the marginal distributions into account,

using the notion of the copula (see [16]).
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Chapter 2

Modeling Option Prices: from

Discrete Time to Continuous Time

Pricing and First Simulations

2.1 Discrete Time Option Pricing

In general, derivatives are contracts whose value depends on one or more primitive

underlying asset (stocks, utilities, currencies...). In particular we will focus on op-

tions which give the right to buy (call) or sell (put) the underlying stock (S) at a

certain ”strike price” (K) and at a fixed future date (T) called ”maturity”.

What fluctuates is the price St. If we are in discrete time (t ∈ N), we will see it

as a discrete time stochastic process, a sequence of realizations of random variables.

If we are in continuous time (t ∈ R), we will see it as a continuous time stochastic

process, with a ”stochastic differential equation” describing its dynamics over time.

Depending on whether it is only the price or also the interest rate, the volatility or

other parameters that varies over time, we can differentiate the various classes of

models (we will see in depth the classic B & S model but also the SABR model in

chapter 3).

The payoff for a European Call (Put) is: CT = (ST−K)+ (PT = (K−ST )+); this

is what is paid at maturity to the investor and represent a deterministic function of

the final price.

There are also other ”exotic options” which deviate from the classical European

ones or that add some other condition to the payoff such as:

- Asian Options: highly used for high volatile markets (Ex. utilities). The

payoff depends on different types of average calculated on the price observed at

fixed discrete time intervals of the underlying. The most common is the arithmetic

average: Xt = (At − k)+ where: At = 1
t

∫ t
0
Sµdµ, but also other averages are used

like a log-average or quadratic average (we will see an example in section 2.3).

- Options with Barrier: options whose payoff becomes null if the price of the

underlying goes over or under a certain threshold before T (we will see them in
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section 3.3).

These kind of contracts arise important problems for researchers and practition-

ers:

(i) Valuation or pricing: what is a fair price for these contracts? First of all

we need a model for S (the approach is to model S). Then, the pricing problem

can be solved through numerical methods like the Monte Carlo or finite differences

methods;

(ii) Calibration of the unknown parameters of the model. The statistical theory

(analyzing the historical market data and time series to get the rate r, the volatility

ecc...) and the ”implicit methods” (analyzing existing derivatives in the market

to derive the parameters of a model) are the most common in practice for the

estimation.

(iii) Hedging (the approach comes from Economic Principles/Rules): for exam-

ple, how can the bank invest his money in order to cover the derivative contract at

maturity? This is governed by economical laws; an hedging strategy will help us in

deriving an equation to price derivatives under some assumptions.

(iv) Early Exercise: what is the optimal moment to exercise this right? In

discrete time this doesn’t represent a big problem, but in continuous time, stochastic

optimization methods are required (we will treat this topic only in discrete time).

We will focus mainly on pricing and we will use some hedging framework to

construct our model. The main references are Pascucci [31] and Bjork [2].

2.1.1 A Discrete Time Market Model

The Market Model

We consider a market model in which transactions take place only in discrete times:

tk = T
N
k. The market consists of:

• A riskless bond B which has a deterministic dynamic of this type (rn is the

risk free rate at time n): {
B0 = 1

Bt = (1 + rt)Bt−1

• d risky assets = (S1, ..., Sd) that are stochastic processes St∈N(ω), a sequence of

random variables defined on a probability space (Ω,F , P ) which follows stochastic

dynamic of this type: {
Si0 ∈ R+

Sit = Sit−1(1 + µit), t = 1, ...., T

.

Where µi is the return from the i-th risky asset. Fixed ω ∈ Ω and letting vary t,

we observe the trajectory of the price, the single realization of the stochastic process.

We will see how to simulate these trajectories in the next sections.
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Value of Time

In this thesis we will initially use a discrete compounding law to deal with discrete

time market models. Later on, for simplicity we will use a continuously compounding

law to determine the value of the option and of the assets over time:

BT = Bte
r(T−t)

The risk free rate rt = r is assumed to be a constant (it could be also modelled

as a stochastic process itself).

Filtration

Normally the probability space is defined with a filtration Ft∈N = σ(S0, ...., St), a

family (sequence) of sigma algebras which increase its size in time since the next one

comprehend the previous one: Ft ⊇ Ft+1.. In an economic and financial context

it can represent the information flow available at time t (market data, news...).

We say that the filtration generated by the sequence of prices St∈N(ω) is F S
t∈N =

σ(S0, ...., St) = {Sk ∈ H | 0 ≤ k ≤ t,H ∈ B}, where B is a Borel set.

Martingale properties

A Martingale measure of probability on (Ω,F ) for a certain market model, with

numeraire B and a time interval [0,T] is such that:

A) Q is eqivalent to P (Q ∼ P ) such that: Q(A) = 0⇔ P (A) = 0 and Q(B) =

1⇔ P (A) = 1

B) The price (or prices) process is modelled as a Martingale in a measure Q;

St∈N is a stochastic process on a probability space (Ω,F , P,Ft∈N) such that:

• The best forecast for the price of tomorrow is the price today: St = EQ[St+1|Ft∈N]

• It is constant in mean over time: St = EQ[St+1|Ft] = EQ[EQ[St+2|Ft+1]|Ft] =

EQ[St+2|Ft]...

Investment Strategy

We define a strategy or portfolio as a stochastic process in Rd+1:

(α, β) = (α1
t , ....., α

d
n, βt)t=1,...,N

The value of the portfolio composed by d risky assets and of a risk-free asset will

be:

V α,β
t = Ct =

d∑
i=1

αitS
i
t + βtBt (2.1)

With initial value:

V α,β
0 = C0 =

d∑
i=1

αi1S
i
0 + β1B0 (2.2)
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Now, for simplicity, we assume only one risky asset in the market and a risk free

asset B. We make two hypothesis on the admissible strategies to build our model

([31]):

i) (αt, βt) must be ”predictable processes”: they must be Ft−1 = σ(S0, S1, ..., St−1)

measurable (known at an instant before). So the strategies can be expressed as a

deterministic function of the previous prices till the ”t− 1” moment.

ii) The strategy must be ”self-financing”: at time t the wealth at our disposal is:

V α,β
t = αtSt + βtBt. The strategy is self financing if we can re-balance our portfolio

in t+1 (∀t ∈ N) with a new strategy (αt+1, βt+1) in such a way that we do not modify

the overall value at time t of the portfolio:

V α,β
t = αtSt + βtBt = αt+1St + βt+1Bt ∀t ∈ N (2.3)

In time ”t + 1”, the variation in the overall value will be driven only by the

variation of the prices of the underlying and not by the fact that we have injected

or withdrawn funds:

V α,β
t+1 − V

α,β
t = αt+1(St+1 − St) + βt+1(Bt+1 −Bt) ∀t ∈ N

The total variation in the value of the option will be the sum of the single

variation in all the discrete instants of time:

V α,β
T − V α,β

0 =
T∑
j=0

αj(Sj − Sj−1) + βj(Bj −Bj−1) (2.4)

If we express with S̃t = St
Bt

, the discounted prices, we can express the variation

of the portfolio as:

Ṽ α,β
t+1 − Ṽ

α,β
t = αt+1(S̃t+1 − S̃t) + βt+1(

Bt+1

Bt+1

− Bt

Bt

) = αt+1(S̃t+1 − S̃t) ∀t ∈ N

Such that the discounted value of the self financing portfolio is:

Ṽ α,β
T = V α,β

0 +
T∑
j=0

αj(S̃j − S̃j−1) (2.5)

First fundamental Theorem of Asset Pricing: Arbitrage-Free (correct)

Market Model

For a fixed observation date t and maturity T, a market with risk-free asset B is

free from arbitrages (for a fixed time horizon) if and only if there exists at least one

probability measure Q = Qt,T such that the price at time t of any traded security

delivered at T is given by the expected payoff under Q discounted by B. Such a

measure is called ”risk neutral”.
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Second fundamental theorem of Asset Pricing: Complete Market Model

For a fixed observation date t and maturity T, an arbitrage-free market with risk

free asset B is complete if and only if there exists a unique probability measure Q

such that at time t, the value of any traded security delivered at T is given by the

expected payoff under Q discounted by B.

EQ[
XT

BT
] = Xt (2.6)

The discounted price of an option is a martingale

Remembering the definition of ”martingale”; we assume that the discounted prices

S̃t = St ∗ e−r(T−t) are martingales in a measure Q:

S̃t = EQ[S̃t+1|Ft]

If this is true, then also the Ṽt ∀(α, β) ∈ A (family of admissible strategies:

predictable and self-financing) is a martingale too.

Proof

Since S̃t is a martingale:

EQ[Ṽt+1 − Ṽt|Ft] = EQ[αt+1(S̃t+1 − S̃t)|Ft]

= αt+1(EQ[S̃t+1|Ft]− EQ[S̃t|Ft])

= 0

This means that also Ṽt is a martingale since:

EQ[Ṽt+1 − Ṽt|Ft] = EQ[Ṽt+1|Ft]− EQ[Ṽt|Ft]

= EQ[Ṽt+1|Ft]− Vt = 0

⇒ EQ[Ṽt+1|Ft] = Vt

Arbitrage

It is an investment which produces a profit without risk. Using the terminology

introduced before, it is an admissible strategy (α, β) (in the real measure p) such

that:

i) V α,β
0 = 0;

ii) V α,β
T ≥ 0;

iii) P (V α,β
T > 0) > 0.

If in our model with arbitrages exists a martingale measure Q, then for all

(α, β) ∈ A:

EQ[ṼT |FT ] = V0
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Since our self financing portfolio is crafted as an arbitrage portfolio by buying

and selling short S and B, we have that: V0 = 0. Then since the arbitrage should

have a positive expected value (from the (iii) condition), but an initial value which

is zero, this is clearly an absurd (in contradiction with Ṽt being a martingale).

So we should assume a model free from arbitrage.

Non arbitrage principle

In a discrete time model two admissible strategies (α, β)(α′, β′) are defined such that

their final value are P-a.s. equal: V
(α,β)
T = V

(α′,β′)
T ; if a Q measure martingale exists,

since P and Q are equivalent, then they are also Q-a.s equal.

We can express the non arbitrage principle with the fact that if the values of the

two portfolios are Q-a.s. equal at time T, then they must be Q-a.s. equal at any

previous time t < T , otherwise arbitrages would be possible (so called ”free lunch”):

VT = V ′T ⇒ Vt = V ′t , ∀t ≤ T .

We observe that if VT = V ′T Q-a.s., then also their expected values must be equal:

EQ[VT ] = EQ[V ′T ]. Since V and V’ are martingales (given a filtration Ft) or more

heuristically by the second FTAP presented before their prices at any time t < T are

calculated as expected values discount by B, under a unique measure Q, otherwise

arbitrages would be possible; so if VT = V ′T then also the discounted value of these

portfolio (which can be seen as prices of a derivative with payoff VT ) must be equal:

Ṽt = EQ[ṼT ] = EQ[Ṽ ′T ] = Ṽ ′t ∀ t < T

All options must be replicable in a correct and complete market

It can be proved that in a complete and correct market model all the derivatives’

payoffs must be replicable, which means that can be created by already existing

assets a portfolio which guarantees the same payoff: XT = V α,β
T

In an incomplete market all the derivatives become not replicable.

If the model is both correct (free from arbitrage opportunities) and complete,

for the second FTAP there will be a unique risk neutral probability measure Q and

for every derivative there will be a replicating strategy for its payoff. So for the

non-arbitrage principle there exists a risk neutral price (expected value of the dis-

counted payoff) which coincides with the initial value of a self-financing (replicating)

portfolio:

X0 = EQ[X̃T ] = EQ[Ṽ α,β
T ] = V α,β

0

Put-Call Parity

From the ”non-arbitrage principle”, we can derive also the ”Put-Call Parity”. If we

calculate the price of a call, for example with a Monte Carlo method, we can derive

the price of the put by simply applying this equation and vice versa.

If we define:
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{
Xt = St + Pt

XT = ST −Max{K − ST , 0} ⇒Max{ST , K} = XT{
Yt = Ct +Ke−r(T−t)

YT = max{ST −K, 0}+K ⇒Max{St, K} = XT

So: XT = YT ⇒ Xt = Yt ∀t ≤ T

⇒ St + Pt = Ct +Ke−r(T−t)

2.1.2 The Binomial Model

The evolution of the prices of the risky asset between t and t+1 in a binomial model

is described by the following scheme:

St+1,h+1 = u St

St

St+1,h = dSt

p

(1− p)

where:

• St+1 = (1 + µt+1)St and the return is a random variable with bernoulli distri-

bution: 1 + µt+1 ∼ pδu + (1− p)δd with 0 < d < 1 + r < u.

• ”u” is the upward change if the price goes up and ”d” is the downward change

in the price if the price drops.

• ”h” is the number of upward changes in the price till a certain time step.

The bank account evolution is Bt+1 = (1 + r)Bt.

If an EMM Q exists then St > 0 is Ft measurable and we are able to derive the

constant measure ”q” uniquely:

S̃t = EQ[S̃t+1|Ft]

St
Bt

= EQ[
St( 1 + µt+1)

Bt+1

|Ft]

St
Bt

=
St

Bt(1 + r)
EQ[( 1 + µt+1)|Ft]

1 + r = EQ[( 1 + µt+1)|Ft]

1 + r = u(qt) + d(1− qt)
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where: qt = Q(1 + µt+1 = u|Ft) is the probability in the martingale measure

conditioned to Ft .

Solving for qt, we have that:

qt =
1 + r − d
u− d

(2.7)

Since r, u, d are constants, then qt = Q(1 + µt+1 = u|Ft) = q so the probability

of an upward change in the price q:

• it doesn’t depend from t;

• it doesn’t depend from ω the event;

So, it can be proved that the returns µt+1 and Ft are independent in Q, such

that the conditioned probability q is equal to the unconditioned probability. qt =

Q(1 + µt+1 = u|Ft) = Q(1 + µt+1 = u) = q.

Under a martingale measure, the returns must be independent, even if in the

real probability are dependent. So we have uniquely identified the measure.

If this is not true a simple arbitrage could be implemented.

The price of the risky asset at time ’t’ in the risk neutral measure should be

equal to:

S̃t =
(qStu+ (1− q)Std)

1 + r
=

(qSt+1,h+1 + (1− q)St+1,h)

1 + r
(2.8)

2.1.3 European Option Pricing

Risk neutral price

So we have defined a discrete binomial model free from arbitrage (complete and

correct) on a probability space (Ω,F , P, (Ft)t∈N), in which a Q martingale measure

exists (objective for all the market participants and correspondent to the implied

probability in the prices).

The European call option is defined as the random variable ”payoff” X which

depends only on the final value of this contract: XT = (ST −K)+.

If the payoff is replicable by an admissible strategy and exists a martingale

measure Q, the risk neutral price of the derivative (expected value of the discounted

payoff under a measure Q ) will be:

EQ[
X

BT

] = EQ[Ṽ α,β
T ] = V α,β

0

Which is equal to the initial value of the strategy (α, β).

In an arbitrage free and complete market (in which every financial instrument

is replicable) the arbitrage price and the risk neutral price coincide: they are deter-

mined by the quoted price X0 observable in the market. This arbitrage price does

not depend on the subjective estimation of the probability p of the event of a rise

or fall of the underlying. So normally we can compute the price of an option with

its risk neutral price as an expected value of the payoff at T under the risk neutral
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probability q and we know that this is a rational price, since it coincides with the

initial value of a replicating portfolio/strategy (arbitrage- free price). In this model

we have already solved the hedging problem: we can find the strategy which allow

us to perfectly replicate the option payoff (no gains).

So from the second FTAP in our binomial model the price is defined as follows

(if ∃!Q mg), then the price of a EU call option will be:

V0 = EQ[
1

(1 + r)T
(ST −K)+] =

1

(1 + r)T
EQ[(ST −K)+]

=
1

(1 + r)T

T∑
h=0

(uhdT−hS0 −K)+Q(ST = uhdT−hS0)

=
1

(1 + r)T

T∑
h=0

(uhdT−hS0 −K)+

(
T

h

)
qh(1− q)T−h

With: q = 1+r−d
u−d

This price expresses the value that a risk neutral investor assigns to the risky

asset C: the future dicounted expected profit from the option.

Price of the European derivative

We have two equal methods to calculate V0 and all the prices of the binomial tree

for an option given S0, K, r, σ and maturity T. Once we are given u, d, which can

be calculated thanks to a simple first order Taylor approximation (see formulas in

the figure below), we have the risk neutral martingale measure q, from the formula

2.7. Suppose we want to calculate a Put European option in a Binomial model. The

first two steps are in common for both methods:

1) we calculate the binomial tree for the undelying price St with the following

binomial scheme described in section 2.1.2

2) we calculate the final payoff for a put option (h is the number of increasing

price steps) in the various scenarios:

VT = (K − uhdT−hS0)+ (2.9)

Martingale method

Since we are in a binomial model, the price of our option will be given by the

discounted value of the two possible states of the world which can exist one step

forward, as in formula 2.8. In our case, the price of the call option at each time step

can be calculated as follows:

Vt−1,h =
q · Vt,h+1 + (1− q) · Vt,h

Bt

dove n, h = 0, 1, 2, ... (2.10)

By using this formula iteratively, starting from t = T (in which VT is known from

step 2) to t = 0, it is possible to get easily V0, as shown in the example below
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implemented in Excel (fig. 2.1) for a put option with fixed risk free rate, K and

S0, a continously compunded regime for the bond and a maturity T=1 diveded in 5

time steps.

Figure 2.1: Simulation of 5 step binomial model to price a EU Put option

Self-financing Condition Method (Non arbitrage price)

An alternative approach is based on deriving the value of the option from the no

arbitrage condition presented before. In order to price correctly a financial instru-

ment it is sufficient to determine an investment strategy with the same final value

(payoff). We consider an investment, which consists in holding a number α of shares

of the risky assets and a number of β of bonds. The value of the portfolio composed

by one risky assets and one risk-free asset will be:

V α,β
t = Ct = αtSt + βtBt (2.11)

We can calculate the strategy (α, β) function of St−1 by solving the following

linear system for each time step and going iteratively backward:{
αt,hSt,h+1 + βt,hBt = Vt,h+1

αt,hSt,h + βt,hBt = Vt,h

for which the solution for alpha and beta is:

α̂t,h =
Vt,h+1 − Vt,h
St,h+1 − St,h

=
Vt,h+1 − Vt,h
St,h(u− d)

(2.12)

β̂t,h =
Vt,h+1 − α̃t,hSt,h+1

Bt

= Bt
Vt,hSt,h+1 − Vt,h+1St,h

St,h+1 − St,h
(2.13)

Once we have found the process (α, β) at maturity, we can use the self-financing

condition backward to get the value of the option in all the previous time steps:

Vt−1 = α̂tSt−1 + β̂tBt−1 (2.14)
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Following these steps iteratively will drive us simply to V0.

2.1.4 American Option Pricing

The American Put option payoff is defined as a stochastic process depending from

all the trajectory of the price and is equal to: Xt∈N = (K−St)+ (it depends from the

time of the exercise). In the binomial model the pricing becomes very easy since in

the single time step we are dealing with European options (this is true only because

we are in discrete time and not in continuous time); the price is given by calculating

iteratively this quantity from t= T-1 to 0 (in T, VT = XT , calculated as in 2.9):

Vt = max{Xt, Et =
EQ
t [Vt+1|Ft]

Bt

} (2.15)

where: Xt is the payoff at time t that we receive if we exercise the call and Et

is the discounted expected value of the option with ”maturity” in the next period

(t+1) (called ”continuation value”).

In case of exercise of the option, the contract is over since it is more convenient

to exercise the option than remaining with the expected value of the contract. Here

we present a simple implementation in excel with the same data as for the European

Put option example before. We can observe how the price of the American option is

always greater or equal to the one of the European one, since we have the opportunity

of early exercise (here we would already use it in some scenarios at step 4; in these

cases we should end our contract before the expiration). These higher potential

payoffs increase the value of all the previous option values till the price at time 0:

Figure 2.2: Simulation of 5 step binomial model to price an American Put option
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2.2 Continuous Time Option Pricing: Basic The-

ory and Models

It is possible to prove that most of the results valid for a discrete time model, are

valid also for a continuous time one, which better approximates the situation in

the reality. Moreover, by sending the number of N time step to infinity, the price

of a European option calculated with the binomial model will converge to the one

calculated with a continuous time model like the one of Black and Scholes.

In this section we will provide in synthesis the theoretical framework and the

main results obtained in their work by Merton [29] and Black & Scholes [3]. The

approach followed will be a more rigorous and probabilistic one, in which the absence

of arbitrage is a consequence of the self financing property and of the martingale

property, not the starting point as in other euristic approaches: if a strategy is

adapted and self financing, then it cannot reasonably generate a risk free profit

greater than the bond (i.e. there cannot be an arbitrage opportunity).

2.2.1 Basic Notions

Price of a stock as a Stochastic process in Continuous Time

A stochastic process on a probability space (ω,F , P ) is defined as:

S = St(ω) : [0, T ] x Ω⇒ R (2.16)

(t, ω)⇒ St(ω)

If we fix t: St is the price at time t and is a random variable on (ω,F , P ).

If we fix ω (event): t ⇒ St(ω) is a trajectory of the stock price (a function of

[0, T ] ⇒ R); to each ω we associate a different possible trajectory of the price in

time.

Filtration and Adapted Processes

The filtration is an increasing family of sigma algebras Ft∈[0,T ]:

Ft ⊆ Fs ⊆ FT with t ≤ s ≤ T

S is and ”adapted process” to a filtration Ft∈[0,T ] if St ∈ mFt ∀ t ∈ R.

Brownian motion

We call Real Brownian motion a stochastic process W = Wt≥0 in R defined on a

filtered probability space (ω,F , P,Ft≥0) which verifies the following properties:

i) W0 = 0;

ii) W is an adapted stochastic process to a filtration Ft≥0;
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iii) W is a continuous process ( almost every trajectory is a continuous function);

iv) The increment Wt−Ws for 0 ≤ s < t must be independent from the filtration

of s (Fs). A consequence of this is that the increments are independent from the

previous increments, since they are independent from the past information (the

filtration contains also other information so to be more precise, it is an even stronger

condition then solely independence from previous past increments).

v) Wt−Ws ∼ N (0, t−s) for 0 ≤ s < t. In particular: Wt ∼ N (0, t) (the variance

of the brownian motion increase with time: V ar(Wt) = E[W 2
t ] = t; it is the distance

squared of Wt from W0).

vi) W is a martingale which means that is constant in mean (the unconditional

mean is zero) and the best expectation for tomorrow’s value, given the information

till t (Ft∈[0,T ]), is the value at time t:

E[WT1|Ft] = E[WT |Ft] = Wt with 0 ≤ t ≤ T1 ≤ T .

Proof: By the Holder’s inequality (A.3.3) we have that W is integrable:

E[|Wt|]2 ≤ E[W 2
t ] = t

We notice that the expected value of W in a point in the future T is equal to the

last observed value:

E[WT |Ft] = E[WT −Wt +Wt|Ft]

= E[WT −Wt|Ft] + E[Wt|Ft]

= Wt + E[WT −Wt]

= Wt

Which follows from the fact that WT −Wt is independent from Ft, the expected

value of the Brownian increments is zero and that Wt is an Ft -adapted process.

2.2.2 Price Models

Bachelier

First model for the price of a stock is from Bachelier (see [1]:

St = S0(1 + µt) + σWt

In this framework, St is distributed normally ∼ N (S0(1 + µt), σ2t) and µ ∈ R.

The first part is the drift part, the second part is the noise, the diffusion part which

doesn’t change the deterministic direction of the trajectory (the drift). This model

is not desirable for our task since prices can take negative values and that is not

possible in stock markets.
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Geometric Brownian motion

The most reasonable choice has been to model stock prices with a Geometric Brow-

nian motion (St ∼ GBM(µ, σ2)):

St = S0e
(µ− 1

2
σ2)t+σWt with µ, σ ∈ R, σ > 0 (2.17)

This formula follows from the application of the Ito formula (see A.5) to the

following stochastic differential equation:

dSt = µStdt+ σStdWt with µ, σ ∈ R, σ > 0 (2.18)

In this framework, St is distributed log-normally, since St
S0
∼ LN ([µ− 1

2
σ2]t, σ2)

and µ ∈ R.

Its expected value is:

E[St] = S0e
(µ− 1

2
σ2)tE[eσWt ]

= S0e
(µ− 1

2
σ2)t

∫
R
eσxφ(t, x)dx

= S0e
(µ− 1

2
σ2)tϕWt(η)

= S0e
(µ− 1

2
σ2)tϕWt(

σ

i
)

= S0e
(µ− 1

2
σ2)te−

t(σi )
2

2

= S0e
(µ− 1

2
σ2)t+σ2

2
t

= S0e
µt

(2.19)

with φ(t, x) = 1√
2πt
e−

X2

2t , Wt ∼ N (0, t), ϕWt(η) characteristic function of Wt (see

appendix A.4) and ηi = σ.

A martingale Brownian exponential can be obtained by standardizing the ex-

pected value of the exponential of the sigma times the Brownian motion ∀σ ≥ 0; as

we have seen before E[eσWt ] = e
σ2

2
t then:

E[eσWt−σ
2

2
t] = 1

Recalling the properties of a martingale in section (2.1.1) X is a martingale if:

Xt = E[XT |Ft] with t ≤ T .

So Xt = eσWt−σ
2

2
t is a martingale since:

E[XT |Ft] = Xt

E[eσWT−σ
2

2
T |Ft] = eσWt−σ

2

2
t

E[eσ(WT−Wt)|Ft] = e
σ2

2
(T−t)

E[eσ(WT−Wt)] = e
σ2

2
(T−t)

e
σ2

2
(T−t) = e

σ2

2
(T−t)

(2.20)
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This is true since WT −Wt ∼ N (0, T − t) is independent from Ft, and that Wt

is an Ft -adapted process.

We can see that if r = µ then the discounted price of a stock is a martingale too,

since:

S̃t = e−rtSt

= e−rtS0e
(µ− 1

2
σ2)t+σWt

= S0e
−(σ

2

2
)t+σWt

= S0Xt

So µ = r, becomes the condition in order to have a martingale as a discounted

price:

S̃t = e−rtS0e
(µ− 1

2
σ2)t+σWt

= S0e
(r−σ

2

2
)t+σWt

Here the exponent is distributed as: (r − σ2

2
)t+ σWt ∼ N ((r − σ2

2
)t, σ2t).

2.2.3 Deriving BS differential equation

Assumptions

In deriving our formula for the value of an option in terms of the price of the stock,

we will assume the ”ideal conditions” in the market of Black and Scholes [3]:

a) The short-term interest rate is known and is constant through time.

b) The stock price follows a random walk in continuous time with a variance

rate proportional to the square of the stock price. Thus the distribution of possible

stock prices at the end of any finite interval is log- normal. The variance rate of the

return on the stock is constant.

c) The stock pays no dividends or other distributions.

d) The option is ”European,” that is, it can only be exercised at maturity.

e) There are no transaction costs in buying or selling the stock or the option.

f) It is possible to borrow any fraction of the price of a security to buy it or to

hold it, at the short-term interest rate.

g) There are no penalties to short selling. A seller who does not own a security

will simply accept the price of the security from a buyer, and will agree to settle

with the buyer on some future date by paying him an amount equal to the price of

the security on that date.

The model

The model is composed by one risky asset S and by one risk-free asset r:
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{
dSt = µStdt+ σStdWt with: µ, σ ∈ R, σ > 0, S(0) = S0

dBt = rBtdt with: B(0) = B0

Where µ is the risky return and σ is the volatility parameter of the risky asset.

We know that the solutions of these two differential equations are:{
St = S0e

(µ−σ
2

2
)t+σWt with: µ, σ ∈ R, σ > 0, S(0) = S0

Bt = B0e
rt with: B(0) = B0

Where the first one follows from the Ito’s Lemma application (see A.5.2) and the

second is the solution to a first order homogeneous differential equation.

Admissible and Markovian strategies

An investment strategy is composed by two stochastic processes (αt, βt) on the

probability space (Ω,F ,P, (Ft)t≥0) on which also a Brownian motion is defined. αt

is the number of risky assets, βt is the number of non assets.

The value of the strategy will be:

Vt = αtSt + βtBt

In general we assume ”admissible strategies” (see also 2.1.1):

1) αt and βt are ”adapted processes” or Ft measurable, which means that de-

pends on everything has happened till time t.

2) The strategy must be ”self-financing”:

It is the continuous time version of the condition in discrete time:

Vt − Vt−1 = αt(St − St−1) + βt(Bt −Bt−1)

The strategy is self-financing if the stochastic differential of Vt depends only on

the differential of St and Bt (not on dα, dβt):

dVt = αtdSt + βtdBt

A strategy is ”Markovian” if we can express αt and βt (stochastic processes) as

functions (regular functions, such that we can use ITO) of t and St: αt = α(t, St)

βt = β(t, St)

For a Markovian strategy, its value can be written as:

Vt = α(t, St)St + β(t, St)Bt = F (t, St)

Where Vt is the stochastic process and F (t, St) is the value function, which can

be seen as a deterministic function, since V is function only of t and St (Markovian).

The self financing condition and the B & S differential equation

Let’s rewrite the value function:

F (t, St) = α(t, St)St + β(t, ST )B0e
rt with t ≥ 0, x ∈ R.

For a Markovian strategy, the self-financing condition can be written as:

dVt = α(t, St)dSt + β(t, St)dBt

If the Markovian strategy is self-financing we have two implications:

a) F solves the differential equation of Black and Scholes:
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∂tF (t, St) + ∂SF (t, St)St + 1
2
∂SSF (t, St)σ

2S2
t = F (t, St)r With t > 0, X > 0

b) α(t, St) = ∂SF (t, St) With t > 0, X > 0

We prove these two statements below.

If we calculate the stochastic differential of Vt = F (t, St) with Ito (A.5), we

calculate the effect of a variation of St on the value of the portfolio F, remembering

that dSt = µStdt+ σStdWt we get:

dVt = dF (t, St)
ITO
= ∂tF (t, St)dt+ ∂SF (t, St)dSt +

1

2
∂SSF (t, St)d〈St〉

= ∂tF (t, St)dt+ ∂SF (t, St)(µStdt+ σStdWt) +
1

2
∂SSF (t, St)σ

2S2
t dt

= [∂tF (t, St) + ∂SF (t, St)µSt +
1

2
∂SSF (t, St)σ

2S2
t ]dt+ ∂SF (t, St)σStdWt

Let’s rewrite the self-financing condition by substituting the differential equations

of the B & S model:

dVt = dF (t, St) = α(t, St)dSt + β(t, St)dBt

= α(t, St)(µStdt+ σStdWt) + β(t, St)(rBtdt)

= [α(t, St)µSt + β(t, St)rBt]dt+ α(t, St)σStdWt

So we impose that the differential equation of F developed with Ito and the

differential equation derived from the self-financing condition coincide in the B & S

model coincide (the drift and the diffusive part must be equal):


∂tF (t, St) + ∂SF (t, St)µSt + 1

2
∂SSF (t, St)σ

2S2
t = α(t, St)µSt + β(t, St)rBtdt , (µ, σ ∈ R, σ > 0)

σSt(∂SF )(t, St) = α(t, St)σSt

F (t, St) = α(t, St)St + β(t, St)Bt


∂tF (t, St) + ∂SF (t, St)µSt + 1

2
∂SSF (t, St)σ

2S2
t = ∂SF (t, St)µSt + β(t, St)rBtdt , (µ, σ ∈ R, σ > 0)

∂SF (t, St) = α(t, St)

F (t, St)− ∂SF (t, St)St = β(t, St)Bt


∂tF (t, St) + 1

2
(∂SSF )(t, St)σ

2S2
t = [F (t, St)− ∂SF (t, St)St]r ( µ, σ ∈ R, σ > 0)

α(t, St) = ∂SF (t, St)

F (t, St)− ∂SF (t, St)St = β(t, St)Bt


F (t, St)r = ∂tF (t, St) + ∂SF (t, St)St + 1

2
(∂SSF )(t, St)σ

2S2
t ( µ, σ ∈ R, σ > 0)

α(t, St) = ∂SF (t, St)

β(t, St)Bt = F (t, St)− ∂SF (t, St)St

The first equation obtained is the stochastic partial differential equation of B &
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S: if the strategy is self-financing, then its value function satisfies this equation. It

has not a unique solution, unless we associate a final condition to it.

Black And Scholes: Replication condition of the final payoff

Given a European call option of the form (with payoff) XT = ϕ(ST ) = (ST −K)+

In a complete and correct market X is replicable, so there is an admissible Marko-

vian strategy (α(t, St), β(t, St)) such that the final value of this strategy is equal to

the value of the payoff at time T: VT = XT .

Admissibility of the strategy and replicability of the final payoff finally brought

us to this system of equations:


LBS = ∂tF (t, St) + ∂SF (t, St)St + 1

2
(∂SSF )(t, St)− rF (t, St) = 0

with: µ, σ ∈ R, σ > 0, St > 0, 0 ≤ t < T

F (T, ST ) = ϕ(ST ) with: ST > 0

Where the function F is the function value Vt = F (t, St) of an admissible strategy

which replicates the derivative in time T. By the non-arbitrage principle we know

that VT = XT → V0 = X0 so the value of the self financing strategy will be exactly

the value of the call option in 0:

V0 = F (0, S0)

The function F can be calculated solving a Cauchy problem in the variable S:

we can lead back our equation to the heat equation through a change of variables

St = ey, whose solution has been found in the XIX century by Fourier. Indeed

by solving the Cauchy problem of the Black-Scholes partial differential equation

together with the boundary condition (final payoff) we can derive the well known

Black-Scholes formulas for the pricing of a European derivative (see [3], [29]).

Sometimes, when the option is not European or has a more complicated payoff,

these kind of problems don’t have an analytical solution; however an approximated

solution can be found by implementing numerical methods like finite differences

methods (Ex. Euler backward scheme), where the final payoff will represent the

terminal boundary condition.

We don’t go into further details discussing the solution of the B & S equation.

Anyway we notice that the LBS equation doesn’t depends on µ, so the price of

the derivative will not depend on any rate of return of the risky asset, but only on

the risk free return, which is what we expected from the option value in order to be

a martingale.

2.2.4 The Girsanov’s Theorem

It explains the relation between changing the drift of an Ito process and changing

the measure of probability. A detailed proof can be found in Bjork [2].

Let W be a Brownian motion on a probability space (Ω,F ,P, (Ft)t≥0).
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Consider the process W̃t obtained by adding a drift to the process Wt:

W̃t = Wt +
∫ t

0
λsds

where λ ∈ L2 is an adapted process.

In differential notation is:

dW̃t = dWt + λdt

The theorem states that it exists a measure of probability Q on the same space

(Ω,F ) such that W̃ is a Brownian motion in (Ω,F ,Q, (Ft)t≥0). We are basically

re-balancing the probabilities of the trajectories.

So W is a BM in P iff W̃ is a BM in Q.

What is the relation between the expected values in the two measures and how

to pass from a measure to another?

Fixed T (maturity of the derivative) and X ∈ mFt. If we have the expected

value in P of a payoff X:

EQ[X] = EP[XZ]

where Z is called the Radon - Nikodym of Q with respect to Q:

Z = dQ
dP = e−

∫ T
0 λsdWs− 1

2

∫ T
0 λ2sds

This is called derivative since we need it for algebraically equate the two expected

values:

EQ[X] =
∫

Ω
XdQ =

∫
Ω
X(dQ

dP )dP =
∫

Ω
XZdP

2.2.5 Martingale Approach, Risk neutral pricing and Monte

Carlo

In the real measure P the B & S model is:

dSt = µStdt+ σStdWt

and S̃t is not martingale (I don’t expect that this is constant in mean), with

µ > r.

Let’s rewrite the previous equation in another way:

dSt = rStdt+ σSt(dWt + µ−r
σ
dt)

If we call dW̃t the new Brownian motion in which we added a drift λ = µ−r
σ

we

have that:

dW̃t = dWt + µ−r
σ
dt

λ is called Market price of risk (excess return on volatility).

So applying the Girsanov’s theorem, we have that it exists another measure Q
in which dW̃t is a Brownian motion.

In Q, we have that:

dSt = rStdt+ σStdW̃t

In which St is a geomeetric Brownian motion.

In this framework Q is called martingale measure or risk neutral measure. We

already proved in section 2.2.2 that the discounted value of the underlying price

S̃t = e−rtSt is a Q-Mg; now we want to prove also that the discounted value of the

self financing strategy (so by the non-arbitrage principle of the option replicated
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too) at time t Ṽt = e−rtF (t, St) is a Q-Mg. This result can be used to find the risk

neutral price of the option, which is nothing else than an expected value that can

be calculated using numerical methods like Monte Carlo.

Since the BM in Q has exactly the same properties of the BM in P, we can

simplify the notation writing simply our risk neutral dynamic imposing r = µ:

dSt = rStdt+ σStdWt

we know that its expected value for the equation 2.19 is:

E[St] = S0e
rt

If we define the discounted value of the price as S̃t = e−rtSt the expected value

becomes:

E[S̃t] = S0

By the Ito formula, the stochastic differential of S̃t is:

dS̃t = d(e−rtSt) = −re−rtStdt+ e−rtdSt

= −re−rtStdt+ e−rt(rStdt+ σStdWt)

= −rS̃tdt+ rS̃tdt+ σS̃tdWt

= σS̃tdWt

So we proved once again that S̃ is a martingale (we obtained a null drift), if and

only if we took r as the risky return.

Now we can apply the Ito formula in Q to the discounted value of a strategy

(with a certain parameter of the drift (r), such that S̃ is a martingale, and dW̃t is a

BM for girsanov):

d(e−rtF (t, St)) = e−rtLBSF (t, St)dt+ ....dW̃t

The B & S operator appears in the drift only applying Ito in the risk neutral

measure!! If F is the value function of a self financing strategy which replicates

a certain derivative, then the B & S operator must be LBS = 0 (satisfying the B

& S equation), which means that we put to zero the drift; this means that Ṽt =

e−rtF (t, St) (discounted value of the value function of the strategy) is a martingale

in Q.

So a very easy and practical way in general to determine the pricing equation of

a derivative is to apply Ito in the risk neutral measure and then, by doing so, the

Black and Scholes operator will appear in the drift part; in order to satisfy the B &

S equation and the self financing condition we put to zero the drift, getting possibly

the value function of the derivative without doing all the passages made before to

get to the B & S differential equation (section 2.2.3).

So, since V is a Q−Martingale and the replication condition says that in a

complete market exists a self financing strategy such VT = F (T, ST ) = ϕ(ST ), the

value in 0 of the strategy (which means the price of the option replicated) is equal
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to the expected value in Q of the discounted value of the payoffs we get in T:

V0 = EQ[ṼT ]

= e−rTEQ[VT ]

= e−rTEQ[ϕ(ST )]

So V0 gives us the risk neutral price of the derivative, given the payoff in T. If

an analytical solution cannot be found to solve the differential equation expressing

the dynamic of the option price, this expected value can be calculated with a Monte

Carlo simulation, knowing that also in Q, S is log normal (W̃ in geometric Brownian

motion Q) and can be simulated. EQ[ϕ(ST )] ≈ 1
M

∑M
k=1 ϕ(S

(k)
T )

We just need to calculate the arithmetic mean of the payoffs of the option sim-

ulated, discounted at time 0. In the measure Q, we need to take as drift parameter

the risk free rate ’r’, such that S and V are martingales:

dSt = rStdt+ σStdW̃t

From the point of view of the simulation, it doesn’t change anything, except

that we are taking r as drift parameter. So we need to simulate W̃ as a normal:

W̃ =
√
tZ with Z ∼ N(0, 1)

In the case of a simple Geometric Brownian Motion, an explicit solution is known:

St = S0e
σW̃t+(r−σ

2

2
)t

So we can discretize the trajectory of the underlying S explicitly from the solu-

tion of its stochastic differential equation (the calculators work only with discrete

numbers):

St+∆ = Ste
(r− 1

2
σ2)∆t+σ

√
∆tzt (2.21)

If an analytical solution is not known for the dynamic of the underlying stock

price, a Euler Method can be adopted, an iterative method which discretize directly

the stochastic differential equation:

St+∆ = St + rSt∆t + σSt∆W̃ (2.22)

where:

∆W̃ = W̃t+∆ − W̃t =
√

∆tzt+∆
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2.3 Monte Carlo Evaluation of a European Op-

tion with Asian Payoff

Let’s consider an arbitrage free market in which there are only two titles whose

dynamic in the risk neutral probability measure is:

dBt = rBtdt

dSt = rStdt+ σStdWt

- where B(t) is the bank account and it is a deterministic function of t, yielding

a constant risk free rate equal to r;

- W(t) is a standard Brownian motion, and µ = r is a constant determining the

slope of the drift term.

In such a market we want to evaluate a European option with maturity T = 1,

which has an ”Asian” payoff:

φT = (QT −K)+

where K is the pre-determined strike price and

Q2
T =

1

T

∫ T

0

S2
udu

In this section we will implement a Euler Monte Carlo Method for the evaluation of

a Call option (the procedure for a put is exactly the same), having fixed some of the

parameters and simulated the trajectories. We will also comment the convergence

of the method by changing the number of simulations.

2.3.1 Simulation of the Trajectories: Euler and Exact Solu-

tion

Fixed some standard parameters:

- S0 = 100 - K =100 - σ= 0.2 - r= 0.01

The starting point in the application of Monte Carlo simulation is the sample

path generation, given a stochastic differential equation describing the dynamics of

a stock price. The simplest discretization approach, known as Euler scheme, yields

the following discrete-time model for the stock price for a given time increment ∆t

is (we have r, since we are dealing with the risk neutral measure):

St+∆t = St + rSt∆t + σSt∆W

= St + rSt∆t + σSt
√

∆tzt
(2.23)

Where zt ∼ i.i.d.N(0, 1), ∆W ∼ N(0,∆t), S0 has to be given and St+∆|St is
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normal distributed.

Algorithm 6: Geometric Brownian motion approximation with Euler
Scheme (MATLAB)

vol = 0.2; r = 0.01; S0 = 100; T = 1; m = 20; t = 100; dt = 1/t
tt = linspace(0, T, t);
SE = zeros(m, t);
SE(:, 1) = S0

for i = 1 : t− 1
dW = sqrt(dt) ∗ randn(1,m);
SE(:, i+ 1) = SE(:, i) + SE(:, i) ∗ r ∗ (dt) + SE(:, i). ∗ vol. ∗ dW ′;

end
figure
plot (SE’)

Analogously, we can simulate the trajectories following the exact solution pro-

vided by the Ito’s Lemma (appendix A.5) (Xt = log(St)):

dXt =
∂log((St)

∂(St)
dSt +

1

2

∂2log(St)

∂S2
t

σ2S2
t dt

=
1

St
(rStdt+ σStdWt)−

1

2

1

S2
t

σ2
t dt

= (r − 1

2
σ2)dt+ σdWt

(2.24)

In discrete time we have that the log trajectory is:

∆X = (r − 1

2
σ2)∆t + σ∆W (2.25)

So the final trajectory for the price St at time t will be:

St+∆ = Ste
(r− 1

2
σ2)∆t+σ

√
∆tzt (2.26)

Where zt ∼ i.i.d.N(0, 1), ∆W ∼ N(0,∆t), S0 has to be given and St+∆|St is log

normal.

The two methods are very similar: the Euler is less precise but faster, the ”ex-

act one” is closer to the effective solution of the SDE but more computationally

demanding.

The next step is to calculate the quadratic mean of the price at each step, for

different simulations (the algorithms for both the simulations are exposed in 7.

The quadratic mean at each point in time t in discrete time will be calculated

as follows:

Qt =

√∑t
s=1 S

2
s

t
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Algorithm 7: Geometric Brownian motion approximation Ito’s Formula
and quadratic mean trajectories (MATLAB)

vol = 0.2; r = 0.01; S0 = 100; T = 1; m = 20; t = 100; dt = 1/t
S = zeros(m, t);
S(:, 1) = S0

for i = 1 : t− 1
dW = sqrt(dt) ∗ randn(1,m);
S(:, i+ 1) = S(:, i). ∗ exp((r − 0.5 ∗ vol2) ∗ (dt) + vol ∗ dW ′);
Q(:, i+ 1) = sqrt(mean(S(:, 1 : i+ 1)2, 2));

end
figure
plot (S’)
plot (Q’)

Here we present the algorithm and a plot of the trajectories of S and of their

quadratic mean Q at each point in time.

Figure 2.3: Simulation of 7 Trajectories of the Brownian motion: S Vs Q

2.3.2 Numerical Solution

The risk neutral price of the European Call and Put option is:

C = e−rTEQ[QT −K] and P = e−rTEQ[K −QT ]

So the expected value can be calculated over a sample of M simulations of the final

payoff as:

C = e−rT
∑M

i=1(QT,i −K)

M
and P =

∑M
i=1(K −QT,i)

M

Finally we repeat the procedure n times in order to have a sequence of different

results for the price to build the Monte Carlo mean price and the confidence bends.
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Here we present the algorithm which has been employed to get to the results and

the parameters used for the simulation.

Algorithm 8: European Call option pricing with Asian payoff with Monte
Carlo (MATLAB)

vol = 0.2; r = 0.01; S0 = 100; T = 1; m = 106; t = 360; dt = 1/t
S = zeros(m, t);
S(:, 1) = S0;
Q = zeros(m,nsim);
for j = 1 : nsim

for i = 1 : t− 1
dW = sqrt(dt) ∗ randn(1,m);
S(:, i+ 1) = S(:, i). ∗ exp((r − 0.5 ∗ vol2) ∗ (dt) + vol ∗ dW ′);

end
QT (:, j) = sqrt(mean(S(:, 1 : end)2, 2));
payoffC = QT −K;
C = exp(−r ∗ T ) ∗mean(max(payoffC, 0));

end
Cmean = mean(C)
Cstdev = std(C)
ErrC = C − Cmean;

The price of the call with a confidence interval of the 95% with 106 simulation

of the trajectories, over 102 number of price simulated will be:

Call = 4, 9934 +− 1, 96 ∗ 0.0069

2.3.3 Analysis of the convergence

The convergence of the price to its true mean is reached by increasing the number

of simulations by the WLLN. The asymptotic behaviour of the Monte Carlo mean

follows what we illustrated in section 1.2.2: by increasing the number of simulation

M by a factor of 100, we decrease the standard error of the Monte Carlo mean by

a factor of 10 since: σM = SE(MM) = σ√
M

. Here we present the results for the

standard error, calculated as standard deviation of 100 prices obtained through MC

simulation with 3 different number of simulated trajectories:

M = 102 M = 104 M = 106

C = 5, 1602 C = 4, 9859 C = 4, 9934

SE = 0, 7784 SE = 0, 0819 SE = 0, 0069

In section 3.1 we will present a method to decrease even more the St. error with

a rate higher with respect to the simulations added (antithetic variates technique

and control variates technique).
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Here we present a graph 2.4 in which we can appreciate the decrease in the MC

error for a different number of simulated trajectories taken into exam (102, 104, 106).

Figure 2.4: Prices and magnitude of the errors (differences with respect to the mean)
over a different number of simulated trajectories (100 trials)

Here we present a graph 2.5 of the evolution of the convergence of the price to

the MC mean and of the MC error Ĉ − C̄ and standard error σM = SE ≈ σ√
M

,

varying the number of simulated trajectories from 102 to 103.

Figure 2.5: Convergence evolution from 102 simulations to 103 simulations
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Chapter 3

Option Pricing with Monte Carlo:

Variance Reduction Techniques

and Stochastic Volatility Model

Application (SABR)

3.1 Variance Reduction Techniques: Improving

the Monte Carlo estimate for a European Call

Option with Asian Payoff

In 1.1.2 we saw that the confidence intervals for controlling the error in Monte-Carlo

computations have a length proportional to the standard deviation of the sampled

random variable X. The main disadvantage of the standard Monte Carlo simulation

analyzed in 1.2.1 is its convergence rate in σ√
n

.

Reducing the variance (either by modifying the simulation procedure, or trans-

forming the problem) may help to accelerate the convergence of the Monte-Carlo

method. There are several methods which can be used to improve the conver-

gence speed. Decreasing the variance by a factor 10 is equivalent, asymptotically,

to increase the number of simulations (and hence the computational time) by a

factor of 10 to achieve a given accuracy. We can improve the constant factor

σ(f ;X)2 = var(f(X) instead of trying to increase the convergence rate with more

n. The idea is basically this: we define a Random Variable Y and functions g such

that:

E[g(y)] = E[f(X)]

and of course:

V ar(g(y)) < V ar(f(X))

Once provided that the generation of samples from g(Y) is not much more expensive

that the generation of samples f(X), we can decrease the computational work, by
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simulating samples of g(Y).

3.1.1 Antithetic Variates Technique

The antithetic variates variance reduction technique derives from this two facts:

1. if U has the uniform distribution, then 1−U has still the uniform distribution;

2. if X ∼ N(0, Id) considering a d-dimensional normal distribution, then −X
has the same normal distribution.

Therefore, if X has one of these distribution, the transformation does not change

the expected value E[f(X)]. In general we can take into consideration any trans-

formed X̃ which has the same distribution of X and such that a realization of X̃

can be computed as a deterministic function of the variable X.

Given X and X̃ having the same law, we define the antithetic Monte Carlo

estimate as:

Eanti
N [f(X)] =

1

N

N∑
i=1

f(Xi) + f(X̃i)

2
(3.1)

To estimate the computing time, assume that the simulation of f(Xi)+f(X̃i)
2

takes

at most two times the computer time as the simulation of f(Xi) . Therefore, to

compute Eanti
N [f(X)] we need at most the time for computing E2N [f(X)] (since we

are simply doubling the number of simulation produced). The use of antithetic

variates is reasonable if the standard error of Eanti
N [f(X)] is smaller than the one for

E2N [f(X)], that is:

var(f(X)+f(X̃)
2

)

M
<
var(f(X))

2M

2
1
4
var(f(X)) + 1

4
var(f(X̃)) + 2

4
cov(f(Xi), f(X̃))

M
<
var(f(X))

M
var(f(X))

M
+
cov(f(Xi), f(X̃))

M
<
var(f(X))

M

So the antithetic variates technique can speed up the Monte Carlo only if the

covariance is negative: cov(f(Xi), f(X̃)) < 0 (in our example we will take exactly

X and - X normally distributed).

3.1.2 Antithetic Variates: Option pricing application

A possible application of the previous techinque can be done on the exercise seen in

section 2.3 (European option with asian payoff): in a simulation driven by indepen-

dent standard normal random variables, antithetic variates can be implemented by

pairing a sequence Z1, Z2, ... of i.i.d. N(0,1) variables with the sequence −Z1,−Z2, ...

of i.i.d. iV(0,1) variables. If the Zi are used to simulate the increments of a Brownian

path, then the −Zi simulate the increments of the reflection of the path about the

origin. It seems intuitive that running a pair of simulations using the original path
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and then its reflection combined may result in lower variance, without changing the

expected value.

Here we present the algorithm which has been employed to get to the results and

the parameters used for the simulation.

Algorithm 9: European Call option pricing with Asian payoff with Monte
Carlo and antithetic variates (MATLAB)

S0 = 100; K =100; σ= 0.2; r= 0.01; m = 106;nsim = 100; t = 360;dt =
1/t
S = zeros(m, t);
S(:, 1) = S0;
Q = zeros(m,nsim);
for j = 1 : nsim

for i = 1 : t− 1
dW = sqrt(dt) ∗ randn(1,m);
S(:, i+ 1) = S(:, i). ∗ exp((r − 0.5 ∗ vol2) ∗ (dt) + vol ∗ dW ′);
SA(:, i+ 1) = S3(:, i). ∗ exp((r − 0.5 ∗ vol2) ∗ (dt)− vol ∗ dW ′);
S = [S;SA];

end
QT (:, j) = sqrt(mean(S(:, 1 : end)2, 2));
payoffC = QT −K;
C = exp(−r ∗ T ) ∗mean(max(payoffC, 0));

end
Cmean = mean(C)
Cstdev = std(C)
ErrC = C − Cmean;

The price of the call with a confidence interval of the 95% with 106 simulation

of the trajectories, over 102 of MC simulations done will be:

Call = 4, 9934 +− 1, 96 ∗ 0.0069

The convergence of the price to its true mean is reached by increasing the number

of simulations by the WLLN and by doubling the number of simulations with the

antithetic variates technique. The asymptotic behaviour of the Monte Carlo will

improve thanks to the variance reduction technique. Here we present the results for

the standard error with different number of simulations. It seems that implementing

an antithetic variates technique results always in a lower standard error with respect

to a standard Monte Carlo with twice the number of simulated trajectories with

respect to the ones used in the antithetic variates estimate:

M = 102; 2M = 2 ∗ 102 M = 104 2M = 2 ∗ 104 M = 106 2M = 2 ∗ 104

SE(Msim) = 0, 7784 SE(Msim) = 0, 0819 SE(Msim) = 0, 0069

SE2Msim) = 0, 4994 SE(2Msim) = 0, 0590 SE(2Msim) = 0, 0053

SE antithetic(Msim) =

0, 4232

SE antithetic(Msim) =

0, 0390

SE antithetic(Msim) =

0, 0041

In fig. 3.1 we can appreciate the decrease in the variability of the price and in

the MC error between the Monte Carlo with 2 ∗ M = 104 simulated trajectories
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and Monte Carlo with antithetic variates with only 104 simulated trajectories (the

different trajectories and respective prices have been simulated 100 times). We are

in fact assuming that implementing an antithetic variates technique can take at most

twice the time and computational effort than the simple MC, so in order to have an

advantage, we should see, as we saw in the table before, a sensible improvement.

Figure 3.1: Prices and magnitude of the errors (differences with respect to the mean)
on M = 106 simulated trajectories for AV and 2 ∗M = 2 ∗ 106(100 trials)

Here we present a graph (fig. 3.2) of the evolution of the convergence of the price

to the MC mean and of the MC error Ĉ − C̄ and standard error σM = SE(MM) =
σ√
M

, varying the number of simulated trajectories from 102 to 103 in the simple MC

case and in the AV case.

Figure 3.2: Convergence evolution from 102 simulations to 103 simulations
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3.1.3 Control Variates Technique

We consider a second possible approach in order to reduce the variance. It exploits

information about the errors in estimates of known quantities to reduce the error

in an estimate of an unknown quantity [15]. Suppose that we can define a random

variable Y and a function g such that we know the exact value of E[g(Y )]. Notice

that we can choose Y = X. Therefore:

E[f(X)] = E[f(X)− β(g(Y )− E[g(Y )])] with β ∈ R

We can define the following Monte-Carlo estimator for E[f(X)]:

Econtrol
N [f(X)] :=

1

N

∑
(f(Xi)− βg(Yi)) + βE[g(Y )] (3.2)

where (Xi, Yi) are independent realizations of (X, Y). We may assume that the

simulation of Econtrol
N [f(X)] takes at most twice the time of simulation of EN [f(X)].

Since β is arbitrarily chosen, we can define it as that parameter minimizing:

var(f(X)− βg(Y ))

So we have that:

var(f(X)−βg(Y )) = var(f(X))−2βcov(f(X)−2βcov(f(X), g(Y ))+β2var(g(Y ))

can be minimized choosing:

β =
cov(f(X), g(Y ))

var(g(Y ))

The higher the correlation between f(X) and g(Y), the higher the improvement of

calculation time, where ρ is the correlation coefficient between them.

3.1.4 Control Variates: Option pricing application

One of the first implementations of the control variates technique in option pricing

estimation comes from Boyle [4], which uses it in a binomial framework. Kemna

and Vorst [20] analyze a specific case on Asian options (building a MC estimator for

an arithmetic mean Asian option, using as control variates a geometric mean Asian

option). A similar application of the one done by Kemna and Vorst can be done on

the exercise seen in section 2.3. Suppose Cs is a quadratic mean Asian option price

as we saw in the previous examples and Cg be the geometric Asian option price.

They represents two functions of the price of the same underlying St (so we don’t

have to double the simulations to be made), whose risk neutral price is represented
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by these two functions, which can be computed through a simple MC method:

Ĉs = f(St) = EQ[e−rT (

√∑T
s=1 S

2
s

T
−K)+] =

e−rT
∑M

i=1(

√∑T
s=1 S

2
s,i

T
−K)+

M

Ĉg = g(St) = EQ[e−rT ((
T∏
s=1

Ss)
1
T −K)+] ==

e−rT
∑M

i=1((
∏T

s=1 Ss,i)
1
T −K)+

M

Once we have estimated our price given a certain number of M trajectories of

St simulated, we can repeat the MC simulation n times, adjusting every time the

simple Ĉs estimator according to the difference between the known value of the

explicit solution existing for the geometric mean Asian option price Cg (the explicit

formula can be found in [20] and [19]) and the MC estimator of the Asian option

Ĉg. So we can build our MC estimator as follows:

CCV s =

∑n
i=1 Ĉs + β(Cg − Ĉg)

n
(3.3)

choosing beta, such that it minimizes the variance of the MC estimator:

β̂ =
cov(Ĉs, Ĉg))

var(Ĉg))
(3.4)

The known error Cg − Ĉg is thus used as a control in the estimation of CCV s,

adjusted for the value of the β̂ estimated.

The control variates method is efficient if the covariance between Ĉs and Ĉg is

high (for more on beta and variance estimators in the control variate method see

[35]). We implemented the technique also for a simple European call option, but

the beta was lower for the geometric mean Asian option, respectively βEU = 0, 51

βg = 1, 01. The latter seems to be more efficient in adjusting the estimates and

improving the standard error of the estimation.

Using the geometric mean option as control variate, the price of the call with

a confidence interval of the 95% with 106 simulation of the trajectories, over 102

number of price simulated is:

Call = 4, 9987 +− 1, 96 ∗ 0.0039

The convergence of the price to its true mean is reached by increasing the number

of simulations by the WLLN and by correcting the estimates employing two control

variates: the price of an European call and the price of an Asian call with geometric

mean payoff. Here we present the results for the call price and the standard error

with different number of simulated trajectories M and for n = 100 samples simulated

(SE will give us a measure of the dispersion around the true mean of the different

mean prices obtained with each Monte Carlo simulation).
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M = 102 M = 104 M = 106

C = 5, 1602 C = 4, 9859 C = 4, 9934

SE = 0, 7784 SE = 0, 0819 SE = 0, 0069

C (CV simpleuro) =

4, 9586

C (CV simpleuro) =

5, 0051

C (CV simpleuro) =

4, 9995

SE (CV simpleuro) =

0, 4077

SE (CV simpleuro) =

0, 0455

SE (CV simpleuro) =

0, 0047

C (CV geomean) =

4, 9401

C (CV geomean) =

4, 9973

C (CV geomean) =

4, 9987

SE (CV geomean) =

0.4006

SE (CV geomean) =

0, 0406

SE (CV geomean) =

0, 0039

Here we present the algorithm (10) employed to get to the results

Algorithm 10: European Call option pricing with asian payoff with Monte
Carlo and control variates (EU and geometric) (MATLAB)

S0 = 100; K =100; σ= 0.2; r= 0.01; m = 106;nsim = 100;
t = 360 ; dt = 1/t
S = zeros(m, t); S(:, 1) = S0;
for j = 1 : nsim

for i = 1 : t− 1
dW = sqrt(dt) ∗ randn(1,m);
S(:, i+ 1) = S(:, i). ∗ exp((r − 0.5 ∗ vol2) ∗ (dt) + vol ∗ dW ′);

end
QTs(:, j) = sqrt(mean(S(:, 1 : end)2, 2));
QTg(:, j) = geomean(S1(:, 1 : end)′)
QTe(:, j) = S1(:, end)
payoffCs = QTs −K;
payoffCg = QTg −K;
payoffCe = QTe −K;
Cs = exp(−r ∗ T ) ∗mean(max(payoffCs, 0));
Cg = exp(−r ∗ T ) ∗mean(max(payoffCg, 0));
Ce = exp(−r ∗ T ) ∗mean(max(payoffCe, 0));

end
Callg = asiansensbykv(RateSpec, StockSpec,′ call′, K, Settle, ExDates)
[Calle, Put] = blsprice(S0, K, r, T, vol)
MCovg = cov(Cs, Cg)
MCove = cov(Cs, Ce)
betag = MCovg(1, 2)/MCovg(2, 2)
betae = MCove(1, 2)/MCove(2, 2)
CALLCVsg = Cs + beta ∗ (Callg − Cg);
CALLCVmeansg = mean(CALLCVsg)
CALLCVerrorsg = CALLCVsg − CALLCVmeansg;
CALLCVstdevsg = std(CALLCVsg)
CALLCVse = Cs + beta ∗ (Calle − Ce)
CALLCVmeanse = mean(CALLCVse)
CALLCVerrore = CALLCVse − CALLCVmeanse;
CALLCVstdevse = std(CALLCVse)
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3.2 Beyond the Black and Scholes Model

3.2.1 Implied Volatility

Having fixed all the other parameters, the value of the option is increasing with

respect to the volatility parameter.

If we fix a σ we have a correspondent price (all the other parameters being equal)

and viceversa, having fixed a price, we can have the implied volatility to a certain

observed price.

Suppose we observe the price of a call option (empirical price) C̄(r, T,K, S0). We

can determine the implied volatility σ̄(r, T,K, S0) such that−→ CBS(r, T,K, S0, σ̄) =

C̄(r, T,K, S0), where CBS is the well known price formula of a European call option

that can be found in [3].

In the real market, the prices of the derivatives are often given in terms of implied

volatility. B & S is the language in which are expressed the prices. The implied

volatility is always related to the B & S model; we can derive it from a quoted price

using the B & S, which transforms volatility in prices and viceversa.

Why often prices are expressed in terms of implied volatility of B & S?

Because the implied volatility brings all the contracts in a unique measure

unit. For example, if we take the price of two European call options: C1
BS =

(r, S0, T1, K1;σ) and C2
BS = (r, S0, T2, K2;σ), they are not comparable, but their

implied volatilities are comparable: the higher the volatility, the more expansive is

the contract.

Implied Volatility Surface

Let’s fix r and S0.

The implied volatility surface will be the the surface which represents graphically

(with a certain approximation) the implied volatilities varying K and T. Where the

surface is higher there are more expansive derivatives.

If a bank uses the Black and Scholes model to produce those prices (quotes), all

the implied volatilities would be equal. In reality that’s not the case. The volatility

surface observed on the same asset is empirically not flat but is higher for more

extreme strikes (deeply at or out of the money options) and tends to vary its shape

for different maturities.

Normally, fixed a T and varying K, we observe a smile in the form of the volatility

curve, whose exact shape (convexity, slope...) depends on the specific market (ex.

for utilities we have strange behaviours) to which the underlying belongs.

This ”smile” shape is often explained with some intuitive arguments:

- Typically, the more liquid and traded derivatives are the ones in the neighbor-

hood of S0, so we have a lower implied volatility for a strike close to that value.

Additionally, we often observe that the implied volatilities of the out of the money

options are usually higher, since higher is the risk perceived for these derivatives.
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- The implied volatility for extreme strikes is higher since extremal events are

more likely than hypothesized by the log normality assumption of B & S. In a sense,

BS underestimates the probability of extreme events (the probability is normal,

the probability of the tales is little). The tales of the empirical distribution of the

underlying S in reality are much more thicker.

The hypothesis of BS are no longer believed or seen as too simplistic; the banks

opted for more complicated models, with non constant volatility surfaces.

We have to go beyond BS because a geometric Brownian Motion with constant

parameter cannot catch the true volatility surface of the market.

3.2.2 Models for Local and Stochastic Volatility: a Brief

Overview

These models are extensions of Black and Scholes: they are able to reproduce the

volatility surface of the market, to quote other derivatives.

BS extensions

For our purpose we need models with ”non constant volatility” or ”Volatility Mod-

els”:

• Local volatility models: we assume that the volatility parameter and/or the

drift parameter are not constant. The coefficients are no more linear, but are func-

tions. Typically they are expressions which depend on some parameters, typically t

and St: {
dBt = rBtdt

dSt = µ(t, St)dt+ σ(t, St)StdWt

The solution of the differential equation exists and is unique if µ(t, St) and σ(t, St)

are Lipschitz limited functions. S will be the solution of the stochastic differential

equation.

Using the same arguments we used for the BS model, we can sometimes derive

an analytical formula for the value of the option written on the underlying or we

can approximate the solution through a finite difference method:

a) Use Girsanov’s Theorem to get a drift equal to the risk free bond: rSt =

rStdt+ σ(t, St)StdW̃t with W̃ Brownian motion in Q. What changes is that in this

case λt = µ(t,St)−r
σ(t,St)

. In this way the discounted value of the strategy (the option

price) is a martingale.

We notice again that with the Girsanov’s theorem we change the drift but the

diffusive part remains unchanged basically (i can estimate it in one measure or the

other one, is the same).

b) Calculate the stochastic differential in Q of a discounted hedging strategy

with Ito:
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d(e−rtf(t, St)) = e−rt(Lf(t, s))BS operatordt+ σ(t, St)∂f(t, St)dW̃t

The BS operator Lf(t, s) = σ(t,s)2s2

2
∂ss + rs∂s + ∂t − r in this case is different

since it has a variable coefficient σ, so the Cauchy problem formed with the final

condition doesn’t have often an explicit solution but can be through some change

of variables transformed in the heat equation which can be solved numerically with

a finite differences method. {
Lf(t, s) = 0

f(t, s) = ϕ(s)

Anyway, we can alternatively proceed to calculate the risk neutral price of the

option as the expected value in Q of the payoff of the option, since a self-financing

strategy f(t, ST ) which can replicates the final payoff ϕ(ST ) of the option in a

complete market exists and its discounted value e−rtf(t, St) is a Q-mg (since as we

saw in section 2.2.5, it is enough that the condition Lf(t, s) = 0 of null drift can be

satisfied). We will say that the market is complete if it exists a unique martingale

measure identified with the Girsanov’s theorem. If the market is incomplete it

doesn’t mean we cannot identify a martingale measure, but it means that the Q-mg

is not unique (there are infinitely many of them). By the non-arbitrage principle,

the discounted price of the derivative X0 must be equal to:

X0 = f(0, S0) = EQ[e−rtf(T, ST )] = EQ[e−rtϕ(ST )]

In this way we can calculate the price with the Monte Carlo methods, but we

must be able to simulate St. We can simulate the trajectories iteratively with a

Euler discretization method (µ(t, St) = r is taken constant):{
Stk = Stk−1 + rStk−1(tk − tk−1) + σ(tk−1, Stk−1

)Stk−1
(W̃tk − W̃tk−1)

St0 = S0

An example of local volatility model is the CEV, which presents an inverse

relation between price of the underlying and volatility:

σ(t, St) = σ0S
−β
t with β < 0, σ0 > 0 (if β = 1

2
CIR model)).

• Stochastic volatility models: the volatility parameter is a stochastic process

which is not a function only of t and St (for example it can depends on other Brow-

nian motion or jumps; typically the volatility solves another differential equation):

dSt = µdt+ σtStdWt (3.5)

The passages to find the pricing equation or to compute a risk neutral price

estimated with Monte Carlo are similar to the local volatility models, but we need

to specify a differential equation for the volatility too, which like the SABR model

analyzed in section 3.3, will depend on another Brownian motion. So, in order to
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work with these kind of models we need to introduce some theoretical knowledge on

d-dimensional Brownian motions.

3.2.3 d-dimensional Brownian motion

A d-dimensional brownian motion W = (W 1, ...,W d) is a stochastic process with

’d’ components defined on a filtered probability space (Ω,F , P,Ft>0) which verifies

the following properties:

1) W0 = (0, ..., 0) is the vector with null components;

2) W is a continuous and adapted process

3) Wt −Ws is independent from Fs with t > s(it has independent increments)

4) Wt −Ws ∼ N (0, (t − s)Id) (it has increments distributed multi- normally);

where the multi normal distribution is a distribution on (Rd,Bd) with density:

Γ(x) = 1√
(2π)ddet(C)

e−
1
2
<C−1(x−µ),(x−µ)>

with µ ∈ Rd and C a dxd symmetric positive definite matrix (all eigenvalues

positive or quadratic form positive: 〈Cy, y〉 > 0, ∈ Rd/{0}).
The charateristic function of the multi normal is: ϕx(η) = ei<µ,η>−

1
2
<Cη,η>

Observations:

i) W i is a Brownian motion 1-dim (the components of the d-dimensional BM are

mono-dim BM).

ii) W i
t ,W

j
t are independent if i 6= j (null covariances and diagonal cov. matrix).

So a d-dimensional BM is a vector of independent mono-dimensional BM.

We can consider d as the ”degrees” of randomness and N as the number of

processes i want to consider(prices, volatility, rates..).

Correlated d-dim Brownian motions

Sometimes we can use a correlated d-dimensional Brownian motion (Bt):

Wt ∼ N (0, (t)Id)

Bt := A ∗Wt with A N x d matrix such that:

Bt ∼ N (0, (t)AA′)

In our Stochastic volatility model (SABR) we will use two Brownians (B1 and

B2 are mono dimensional BM), one for the price and one for the volatility (n=d=2),

with covariance: Cov(B1
t , B

2
t ) = ρt (ρ is the correlation).:{

B1
t =

√
1− ρ2W 1

t + ρW 2
t with− 1 ≤ ρ ≤ 1

B2
t = W 2

t

where: W = (W 1,W 2) is a bi-dimensional BM;

A =

[√
1− ρ2 ρ

0 1

]
, AA′ =

[
1 ρ

ρ 1

]
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3.3 Stochastic Volatility and Monte Carlo Meth-

ods

3.3.1 The SABR Model

We have introduced in Chapter 2 the Bachelier and BS Models. However, as pointed

out by Crispoldi [8], even if they are intuitive, simple and their parameters can be

quickly calibrated to obtain a price in agreement with the market, these simple

models cannot be calibrated to more than one volatility per expiry.

On the other hand, the downside of the local volatility models is that we cannot

use a Markovian model based on a single Brownian motion to manage the ”smile

risk” (the risk coming from the different shapes that a volatility surface can take).

Rather than making the model non-Markovian, or basing it on stochastic pro-

cesses other than the Brownian motions, Hagan, Kumar, Lesniewski and Woodward

(we will refer to them with Hagan[17]) chose to develop a two factor model. In

selecting the second factor, they notes that most markets experience both relatively

quiescent and relatively chaotic periods. This suggests a non costant volatility, which

can be described as a random function of time. Volatility tends to vary during time,

but also to persist around a certain level in close periods of time. The “volatility”

α is now itself a stochastic process.

The model they came up with is the “stochastic-α β ρ model,” which has become

known as the SABR model. The SABR model is originally described by [17] with

the following set of stochastic differential equations and initial conditions:dFt = αtFtβdB
1
t with: F (0) = f

dαt = ναtdB
2
t with: α(0) = α0

where Ft is the forward price, α is the volatility , β is the elasticity coefficient, ν

is the volatility of the volatility process and, under the forward (real) measure, the

two brownian motions are correlated in this way:

dB1
t dB

2
t = ρdt (3.6)

Where ρ is the correlation coefficient between the two Brownian motions.

The main critique against stochastic volatility models is that they are ”models for

incomplete markets”, since stochastic volatility risk cannot be completely hedged.

This critique is firmly rejected since Hagan says that it can be hedged by buying

or selling options on the asset to neutralize it, as we sell and buy the underlying

F and a risk free bond to neutralize the risk of changes in the underlying price (so

called ”Delta hedging”). For some other pitfalls regarding the forward process and

the risk neutral probability density of the SABR see [8].
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The success of the SABR model instead, can be summarized in the following

points, summed up clearly by Crispoldi in his book ”Sabr and Sabr-Libor Market

Models in Practice” [8]:

• As we outlined before, a self financing strategy which allows to hedge the

stochastic volatility risk and build a replicate portfolio of the derivative’s payoff

is feasible for the authors in the SABR model framework; in fact they came up

with an analytical formula for the price of vanilla options (such as caplets, floorets,

swaptions) under the SABR model, in terms of a ”Black-implied volatility” (whose

equation is given as well). For our purpose we will not go deeper in trying to prove

this fact (deriving the differential equation for the derivative f(t, St), set to zero the

drift...), but we will simply assume that the options can be modelled as a Q−mg

such that we can implement our Monte Carlo simulation to get a risk neutral price

for the derivatives.

• The SABR parameters have a direct and clear influence on the calibrated

implied volatility smile.

• The model is generally able to provide a very good fit to the implied volatility

smile quoted in the market. The computational simplicity allows the model to be

naturally used as a good interpolation scheme along the strike axis.

The SABR Parameters

Let’s see how the parameters impact the volatility surface under the SABR model

(we consider the explanation given originally by Hagan [17] and the excellent sum-

mary on this topic given by Crispoldi [8])):

• The α0 parameter is the value of the stochastic volatility process αt in t = 0 .

The value of α0 shifts the volatility smile up or down with almost no effect on the

shape of the smile.

• The β parameter is the ”constant elasticity of variance (CEV)” parameter and

it must be taken between -1 and 1 since the SABR model is a martingale only if

0 ≤ β < 1 or as long as ρ ≤ 0 for β = 1 (see Henry-Labordere 2008 [18]). The

main effect of β is a change in the smile slope. The slope increases as β moves from

1 to 0. The reason behind this behaviour is the fact that the model switches from

a lognormal-like to normal-like behaviour when β is lowered. Since β controls also

which distribution the forward rate Ft has, Hagan suggests that this can be chosen

a priori to reflect a market view:

If we take β = 0 the equation for the forward price reduces to dFt = αdW 1
t . If

α is taken constant too, the SABR model actually stops being a stochastic volatil-

ity model and corresponds to the normal model. This choice allows to assign a

probability mass to negative outcomes of Ft (important for interest rate modeling).

If we take 0 < β < 1 the SABR model becomes a CEV type one. If α is taken

constant and β = 0.5, the equation for the forward price reduces to a squared root

CEV model: dFt = α
√
FtdW

1
t (see Cox and Ross 1976 [7]).
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If we take β = 1 the equation for the forward price reduces to dFt = αFtdW
1
t . If

α is taken constant, the SABR model corresponds to the lognormal Black & Scholes

model (in this case the distribution of the forward price is truly lognormal). When

αt is a stochastic quantity, the actual distribution of Ft is not exactly lognormal.

However in this case Ft cannot change sign .

• The ν parameter is the ”volatility” of αt; for this reason it is also known as

”volatility of volatility”. The effect of ν on the smile is to change its curvature. A

higher value of ν makes the implied volatility increase for the options with more

extreme strikes (out of the money (OTM) and in the money (ITM) options).

• The ρ parameter is the correlation between the Brownian motion in the forward

rate process (B1) and the Brownian motion in the volatility process(B2). It can take

any value between -1 and 1. In many markets the sign of ρ is negative, which means

that the volatility αt (t) increases when the forward interest rate Ft decreases and

vice versa. The effect of ρ on the smile is similar to the one produced by beta: the

smile gets more steep as we move from 1 to -1.

3.3.2 Calibration of the Implied volatility Surface

The calibration procedure has been performed following the work of Hagan [17].

First of all we collect from the market the observed implied volatilities in a certain

option market with different strikes and maturities, such that we obtain a cloud of

different implied volatilities to use in our calibration procedure.

The implied volatility σMKT is the value of the parameter to be inserted in the

BS formula in order to obtain a certain price observed of a European derivative

CMKT (K,T ). The data we used for our calibration were the ones of a European call

option on the FTSE Mib Index observed the ”19-May-2021” from the Bloomberg

Platform. The observed implied volatilities are synthesized in the following table.

K 18Jun21 17Sep21 17Dec21 18Mar22 17Jun22 16Dec22 16Jun23 15Dec23

21000 35,06% 27,80% 26,39% 24,81% 24,00% 23,57% 22,63% 22,49%

22000 31,12% 25,98% 24,45% 23,25% 22,65% 22,19% 21,56% 21,55%

23000 27,23% 23,63% 22,65% 21,73% 21,43% 21,28% 20,51% 20,66%

24000 22,95% 21,32% 20,95% 20,47% 20,32% 20,14% 19,59% 19,91%

25000 18,81% 19,26% 19,44% 19,21% 19,32% 19,39% 18,82% 19,31%

26000 16,64% 17,57% 18,15% 18,13% 18,46% 18,69% 17,80% 18,24%

27000 17,14% 16,41% 17,21% 17,35% 17,81% 17,50% 17,70% 18,48%

28000 20,03% 16,03% 16,64% 16,79% 17,31% 18,03% 17,39% 18,16%

In order to use the original formulas of Hagan we need to work with forward

values: we collect the actual value of the index S0 = 24486, 45 and we compute the

forward values at the different maturities by capitalizing the value of the index at

a certain rate r: ft = er(T−t)St; an estimate of the implied fwd value of the index is

calculated directly by Bloomberg, which is what we took as fwd values.
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Now we need to calibrate all the parameters except for the β which, as Hagan

[17] suggested, must be fixed before the calibration: ”Selecting β from “aesthetic”

or other a priori considerations usually results in β = 1 (stochastic lognornmal),

β = 0 (stochastic normal), or β = 1
2

(stochastic CIR) models”.

As expected β = 1 results also in our empirical tests in the best result in cali-

bration since the equities are better described by a log-normal behaviour.

Now the remaining parameters of the model αt, ρt, νt are calibrated 8 times for

each maturity (T1, T2, ..., T8) through a minimization exercise which has been per-

formed by employing the Optimization Toolbox function ”lsqnonlin” in MATLAB:

given a certain maturity Ti, it generates the parameter values that minimize the

sum of the squared error for each strike between the market volatilities and the

volatilities computed by ”blackvolbysabr”:

K8∑
K=K1

σMKT
K − σBK (3.7)

Where ”blackvolbysabr” is the MATLAB function which computes σB, the Black

(log-normal) implied volatility calculated for a specific strike K and time to expiry

which is one of the main results of the work of the work of Hagan:

σB(K, f ;α0, β, ρ, ν) =
α0

(fK)
1−β
2 [1 + (1−β)2

24
log2( f

K
) + (1−β)4

1920
log4( f

K
) + ...]

∗

(
z

x(z)
) ∗ {1 + [

(1− β)2

24

α2
0

(fK)1−β +
1

4

ρβνα0

(fK)
1−β
2

+
(2− 3ρ2)ν2

24
]T + ...}

where:

• z = ν
α0

(fK)
1−β
2 log( f

K
);

• x(z) = log(
√

1−2z+z2+z−ρ
1−ρ );

• f is the current forward value of the underlying (in t=0);

• α0 is the current SABR volatility (in t=0);

• K is the strike value

• T is the option’s maturity.

Here we have all the calibrated parameters for the different maturities:

18Jun21 17Sep21 17Dec21 18Mar22 17Jun22 16Dec22 16Jun23 15Dec23

α 0,2076 0,2100 0,2125 0,2088 0,2129 0,2139 0,2150 0,2177

β 1 1 1 1 1 1 1 1

ρ -0,6567 -0,7279 -0,7019 -0,6845 -0,6703 -0,6328 -0,6543 -0,6140

ν 2,8120 1,3778 1,1268 0,9312 0,8073 0,8019 0,7516 0,7055

Once we have calibrated our model, we can easily calculate the implied volatility

through the Hagan Formula and plot it is easily for each strike and maturity as a

surface in MATLAB, alongside the observed implied volatility (blue dots in fig. 3.4).
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Figure 3.3: Implied volatilities and calibrated volatility surface

Here we present the algorithm employed to get these results:

Algorithm 11: Calibration algorithm (MATLAB)

% Import market files
S0 = 24486.45; NumMaturities = 8 ; Beta = 1
for k = 1 : NumMaturities

objFun = @(X) MarketVolatilities(:,k) - blackvolbysabr(X(1), Betas(k),
X(2), X(3), Settle, ExerciseDate(k), CurrentFwdValues(k),
MarketStrike(:,k));

X = lsqnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);
Alphas(k) = X(1);
Rhos(k) = X(2);
Nus(k) = X(3);

end
CalibratedPrameters = [Alphas Betas Rhos Nus]
for k = 1 : NumMaturities

ComputedVols(:,k) = blackvolbysabr(CalibratedPrameters(k,1), ....
CalibratedPrameters(k,4), Settle, ExerciseDate(k),
CurrentFwdValues(k), PlottingStrikes);

end

3.3.3 Monte Carlo and SABR: Pricing of a Barrier Call Op-

tion down & out

Clearly, the SABR model was developed to price derivatives on the interest rates like

swaptione, caplets, floorets... By changing the reference variable from the forward

price f to S, we can introduce a SABR model which works on spot prices instad of
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forward values, in order to price easily also equity derivatives. This approach can

be found in several academic papers like [6], [5].

In the real measure of probability P we have the following dynamic for the SABR:dαt = ναtdB
2
t

dSt = µStdt+ αtS
β
t dB

1
t

The SABR is now similar to the stochastic differential equation studied in the

chapter 2; what changes is that now we have a volatility parameter alpha which

is described itself by another differential equation, and other parameters β and ν

which will change the slope and smile of the volatility surface. The two equa-

tions are connected by Bi, which are correlated Brownian motions, with correlation

〈dB1, dB2〉 = ρdt. The SABR is a stochastic volatility model which reproduces the

CEV if α = 0, e ρ = 0.

Apply Girsanov

Let’s riformulate the SABR model in terms of two uncorrelated Brownian Motions

dW 1
t and dW 2

t with 〈dW 1
t , dW

2
t 〉 = 0, as we did in section (3.2.3).dαt = ναtdW

2
t

dSt = µStdt+ αtS
β
t (
√

1− ρ2dW 1
t + ρdW 2

t )

We impose through the Girsanov theorem (2.2.4) that the drift of the risky asset

S is r:dαt = ναtdW
2
t

dSt = rStdt+ αtS
β
t (
√

1− ρ2dW 1
t + ρdW 2

t +
(µ−r)S1−β

t

σt
dt)

We can define in this way: λ ≡ (µ−r)S1−β
t

σt
. So we obtain the following equations

between the Brownian processes respectively in the measure P and Q.

√
1− ρ2dW 1

t + ρdW 2
t + λdt =

√
1− ρ2dW̃ 1

t + ρdW̃ 2
t

In this case we have infinite ways to redefine the two BM in the measure Q as

Girsanov’s Theorem allow us to do. The model is not complete.

One of the option , used also in practice is to impose a null drift of the volatility,

mantaining dW2 as before and defining only dW1 as:
√

1− ρ2dW 1
t + λdt =

√
1− ρ2dW̃ 1

t

dW 2
t = dW̃ 2

t

Where W̃ is a Brownian motion in the martingale measure Q.

The model under the risk neutral probability Q is:dαt = ναtdW̃
2
t

dSt = rStdt+ αtS
β
t (
√

1− ρ2dW̃ 1
t + ρdW̃ 2

t )

The parameters calibrated in the previous section will give us realistic values for

our simulation even if not extremely precise since we calibrated them in the original

forward model framework. Anyway, the parameters calibrated and the brownian
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motions in the measure Q define now our martingale measure properly (see lesson

6.1). It is possible to calculate finally the price of a call option as:

C0 = e−rTEQ[(ST −K)+] (3.8)

Now in order to implement properly a Monte Carlo evaluation for the derivative,

we calculate the evolution of the stock price and of the volatility parameter alpha

with a Euler discretization method (a similar discretization can be found in [8]):∆αtk = ναtk∆W̃
2
tk

∆Stk = rStk∆tk + αtkS
β
tk

(
√

1− ρ2∆W̃ 1
tk

+ ρ∆W̃ 2
tk

)

So we can calulate iteratively:αt0 = α0

αtk+1
= αtk + ναtk∆W̃

2
tk

and:St0 = S0

Stk+1
= Stk + rStk∆tk + αtkS

β
tk

(
√

1− ρ2∆W̃ 1
tk

+ ρ∆W̃ 2
tk

)

Once we have discretized our trajectories we can calculate the price for a call/put

option for every strike and maturity presented in the previous section on the FTSE

Mib index, with settle date ”19-May-2021”. Here we present a plot of the price of a

call option for maturity ”17-Sep-2021”:

Figure 3.4: SABR simulated vs Observed EU call prices on FTSE Mib (Settle:”19-
May-2021”; Expiry: ”17-Sep-2022”)

.

Using the Monte Carlo method, it is possible to calculate the price of other

73 Chapter3



Monte Carlo Methods and Stochastic Processes in Option Pricing

exotic options, like a call option down out with barrier 21000, which has a slightly

different payoff function from the simple EU call option, in which if the price of the

underlying goes under a certain threshold (barrier), the payoff becomes zero:

C0 = e−rTEQ[(ST −K)+] ∗ I{(min St)>B, ∀ t>0} (3.9)

Here (fig. 3.5) we present an example of the trajectories of the underlying S

which go to zero till maturity if they go below the Barrier:

Figure 3.5: 50 Simulated trajectories with barrier (21000), FTSE Mib (Settle:”19-
May-2021”, expiry: ”17-Sep-22”), 400 time intervals.

Here (fig. 3.6) we present a plot of the price of the barrier call option prices with

maturity ”17-Sep-2021”:

Figure 3.6: SABR simulated call prices with barrier (21000) vs SABR simulated EU
call prices on FTSE Mib (Settle:”19-May-2021”; Expiry: ”17-Sep-2022”).
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Here we present the algorithm used for the Monte-Carlo simulation and the Euler

discretization used to price the derivatives under the SABR model:

Algorithm 12: Monte Carlo pricing of a Barrier option with SABR model
(MATLAB)

S0 = 24486.45; r= -0.05; m = 105;nsim = 100;
T = 1.0778; t = 400 ;dt = T/t; barrier = 21000;
K = [21000, 22000, 23000, 24000, 25000, 26000, 27000, 28000];
S= zeros(m,t); SB = zeros(m, t);S(:, 1) = S0;SB(:, 1) = S0;
α = zeros(m, t);α(:, 1) = 0.2129; β = 1; ρ = −0, 6703; ν = 0, 8073

for j = 1 : nsim
for i = 1 : t-1

dW1 = sqrt(dt) * randn(1,m);
dW2 = sqrt(dt) * randn(1,m);
α(:, i+ 1) = α(:, i) + ν ∗ α(:, i). ∗ dW ′

2;
S(:,i+1) = S(:,i) + r*S(:,i)*dt +
(α(:, i). ∗ (S(:, i).β). ∗ (

√
1− ρ2 ∗ dW1 + ρ ∗ dW2)′);

for p = 1 : m-1
if SB(p, i) ≤ barrier

SB(p, i+ 1) = 0;
else

SB(p, i+ 1) = SB(p, i) + r ∗ SB(p, i) ∗ dt+
(α(p, i). ∗ (SB(p, i).β). ∗ (

√
1− rho2 ∗ dW1(p) + ρ ∗ dW2(p))′);

end
end

end
for k = 1 : numel(K)

QT (:, j) = SS2(:, end);
QTB(:, j) = SS(:, end);
payoffC = QT −K(k);
payoffCB = QTB −K(k);
C = exp(-r*T)*mean(max(payoffC,0));
CB = exp(−r ∗ T ) ∗mean(max(payoffCB, 0));
Cmean(k) = mean(C)
CmeanB(k) = mean(CB)

end
end
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Conclusion

Having analyzed the probability background and the pricing theory behind the op-

tion pricing applications allowed us a more accurate and aware use of the Monte

Carlo Method and of the risk neutral pricing. For example, even if for simplicity

we used the generators already implemented in MATLAB, the sampling techniques

and the generators exposed in the first chapter allowed us to understand why these

kind of tools are available today and what is the interesting theory behind them.

We also saw that most of the results valid for a discrete time model are valid also

for a continuous time one, which better approximates the situation in the reality.

Options arise very interesting problems for researchers and practitioners: a correct

evaluation of these contracts is crucial for the latter ones and it cannot be done

properly without the theoretical notions of hedging, arbitrage and calibration. The

binomial model remains a relatively easy and quick tool to price basic options. It

is also an excellent educational starting point for understanding more advanced

theories and models.

Monte Carlo methods proved to be a useful tool to price in continuous time

European options with an Asian payoff and barrier options, which often do not

have an explicit solution for their calculation. The Monte Carlo convergence to the

mean has been reached with a number of simulation which can be quickly computed

without too many simulations needed (105-106). The variance reduction techniques

used in the thesis proved to be another very useful and easy-to-implement tool and

helped us to get a good idea of the value of the options.

If we want to apply more advanced models like the SABR in practice, we need

to implement a method for the calibration of the parameters.

The volatility surface observed on the European call options on the FTSE Mib

has been satisfactorily well approximated by the SABR model, even though this

turns out to be originally designed to price interest rate derivatives. We decided to

use SABR for equity option pricing without introducing new theory on the interest

rate derivatives; we chose to give the priority to the the task of simulating with

Monte Carlo, using anyway a well known model that provided us with a simple

dynamic for the stochastic volatility and an easy calibration procedure thanks to

the closed formula for the implied volatility. As we expected, the volatility surface

is not empirically flat but is generally higher for more extreme strikes (deeply at or

out of the money options) and tends to decrease for more distant maturities; the

choice of going beyond B & S allowed us to get closer to a real market structure.
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Appendix A

Appendices

A.1 Definitions

A.1.1 Expected value

If X is a r.v. with finite discrete distribution, the expected value of X over a proba-

bility space (Ω,F ,P) is defined by:

E[X] :=
m∑
k=1

xkP (X = xk) (A.1)

If X takes infinite non-countable values, then the expected value will be defined as

the integral of X (continuous r.v.) with respect to the measure of probability P:∫
Ω

XdP (ω) (A.2)

Properties of the integral of Random Variables in Rd :

i) Linearity: ∀X, Y ∈ L1(Ω,P) and α, β ∈ R we have that:∫
ω

(αX + βY )dP = α

∫
ω

XdP + β

∫
ω

Y dP (A.3)

ii) Monotonicity: ∀X, Y ∈ L1(Ω,P) such that X ≤ Y P-a.s.(P(X > Y ) = 0) we

have that: ∫
ω

XdP ≤
∫
ω

Y dP (A.4)

iii) σ-additivity: Let A =
⊎
n∈N where (An)n∈N disjoint sequence in F . If

X ∈ mF + or X ∈ L1(Ω,P) then we have that:

∫
ω

XdP =
∑
n∈N

∫
An

XdP (A.5)
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A.1.2 LP Spaces and norm

In general, we say that the Lp-spaces are defined as the set of measurable functions

f such that the integral
∫
|f(x)|pdx is convergent (

∑
|f(x)|pdx < +∞ for discrete

variables) .

Let (Ω,F ,P) be a probability space and p ≥ 1. The p-norm of a R.V. X i

defined as:

‖X‖p := (E[|X|p])
1
p (A.6)

we say that Lp(Ω,P) is the vectorial space of summable r.v. of order p:

Lp(Ω,P) = {X ∈ mF | ‖X‖p < +∞}

‖X‖p is defined as a semi-norm on the Lp(Ω,P) space, if it’s true that:

i) ‖X‖p = 0 iff X
a.s
= 0

ii) ‖λX‖p = |λ|‖X‖p ∀λ ∈ R and X ∈ LP ∈ (Ω,P);

iii) It is valid the Minkowski inequality (for proof see A.3.5):

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p

∀λ ∈ R and X, Y ∈ LP ∈ (Ω,P).

A.2 Convergences

A.2.1 Almost Sure Convergence: Xn
a.s.−−→ X

Let’s consider a probability space (Ω,F ,P) over which are defined a sequence of

R.V. (Xn)n∈N and a random variable X ∈ Rd.

(Xn)n∈N converges ”almost sure” to X if:

P( lim
n→+∞

Xn = X) = 1 (A.7)

where : ( lim
n→+∞

Xn = X) ≡ {ω ∈ Ω| lim
n→+∞

Xn(ω) = X(ω)} is an event.

A.2.2 Lp Convergence: Xn
Lp

−→ X

Let’s consider a probability space (Ω,F ,P) over which are defined a sequence of

R.V. (Xn)n∈N and a random variable X ∈ Rd.

Let (Xn)n∈N and X be in Lp(Ω,P) with p ≥ 1. We say that (Xn)n∈N converges

to X in LP norm if:

lim
n→+∞

E[|Xn −X|p] = 0 (A.8)

In this case we write: Xn
Lp−→ X.

ChapterA 78



Monte Carlo Methods and Stochastic Processes in Option Pricing

This is also called ”convergence in p-th mean” and tells us that the expectation

of the p-th power of the difference between Xn and X converges to zero.

The most important cases of convergence in p-th mean are:

- When Xn converges in p-th mean to X for p = 1, we say that Xn converges in

mean to X.

- When Xn converges in p-th mean to X for p = 2, we say that Xn converges in

mean square (or in quadratic mean) to X.

It is also worth noticing that if:

Xn
Lp−→ X ⇒ lim

n→∞
E[|Xn|p] = E[|X|p] < +∞ (is bounded - see definition of LP space A.1)

A.2.3 Convergence in Probability: Xn
P−→ X

Let’s consider a probability space (Ω,F ,P) over which are defined a sequence of

R.V. (Xn)n∈N and a random variable X ∈ Rd.

Xn converges in probability to X if, ∀ε > 0 , it is true that:

lim
n→∞

P (|Xn −X| ≥ ε) = 0 (A.9)

In this case we write: Xn
P−→ X.

A.2.4 Convergence in Distribution: Xn
d−→ X

Let’s consider a probability space (Ω,F ,P) over which are defined a sequence of

R.V. (Xn)n∈N and a random variable X ∈ Rd.

We say that (Xn)n∈N converges to X in law or in distribution if:

lim
n→+∞

E[f(Xn)] = E[f(X)], (∀f ∈ bC) (A.10)

where bC = bC(Rd) is the family of continuous and bounded functions from Rd → R.

In this case we write: Xn
d−→ X.

A.2.5 Relations between Convergences

Let’s consider a probability space (Ω,F ,P) over which are defined a sequence of

R.V. (Xn)n∈N and a random variable X ∈ Rd.

The following implications are true:

i) If Xn → X (pointwise) ⇒ Xn
a.s.−−→ X ;

ii) If Xn
a.s.−−→ X ⇒ Xn

p−→ X (direct consequence of A.3.6);

iii) If Xn
Lp−→ X (for some p ≥ 1) ⇒ Xn

p−→ X ;

iv) If Xn
p−→ X ⇒ ∃ a sub-sequence (Xnk)k∈N | Xnk

a.s.−−→ X ;

v) If Xn
p−→ X ⇒ Xn

d−→ X ;

vi) If Xn
p−→ X and ∃ Y ∈ Lp(Ω,P) | |Xn| ≤ Y (a.s. ∀ n ∈ N) ⇒ Xn

Lp−→ X

with Xn sequence of r.v. X ∈ Lp(Ω,P);
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vii) If Xn
d−→ X (with X ∼ δc, c ∈ Rd) ⇒ Xn

a.s.−−→ X .

A.3 Inequalities

A.3.1 Jensen’s Inequality

Extension of the triangular inequality. Let:

- −∞ ≤ a < b ≤ +∞ ;

- X : Ω→]a, b[ a r.v. over the space (Ω,F ,P);

- f :]a, b[→ R a convex function;

If X and f (X) ∈ L1(Ω,P→ ||X|| < +∞ ,then we have that:

f(E[X] ≤ E[f(X)]. (A.11)

For proof see [30]

A.3.2 p-Norms’ Inequalities

Let (Ω,F ,P) be a probability space and p ≥ 1. If 1 ≤ p1 ≤ p2 then:

‖X‖p1 ≤ ‖X‖p2

So:

Lp2(Ω,P) ⊆ Lp1(Ω,P)

Proof The proposition is a direct consequence of the Jensen’Inequality with f(x) =

xq, x ∈ [0,∞[, q = p2
p1
≥ 1; so we have that:

E[|X|p1 ]q ≤ E[|X|p1q]⇒ E[|X|p1 ]
p2
p1 ≤ E[|X|p2 ]⇒ E[|X|p1 ]

1
p1 ≤ E[|X|

1
p2

�

A.3.3 Holder’s Inequality

Let p, q > 1 be exponents conjugates ⇒ 1
p

+ 1
q

= 1.

If X ∈ Lp(Ω,P) and Y ∈ Lp(Ω,P), it is true that:

i) XY ∈ Lp(Ω,P)

ii)

||XY ||1 ≤ ||X||p||Y ||q (A.12)

For proof see [30]
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A.3.4 Cauchy Schwarz Inequality (Corollary of Holder)

Let p, q > 1 be exponents conjugates ⇒ 1
p

+ 1
q

= 1.

If X ∈ Lp(Ω,P) and Y ∈ Lp(Ω,P) and iff∃a ∈ R|X a.s
= aY it is true that:

|E[XY ]| ≥ ||X||2||Y ||2 (A.13)

For proof see [30]

A.3.5 Minkowsky’s Inequality

Let ‖X‖p be a semi-norm on the Lp(Ω,P) space, then is true that:

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p (A.14)

∀ λ ∈ R and X, Y ∈ LP ∈ (Ω,P).

For proof [30]

A.3.6 Markov’s Inequality

∀ X r.v. ∈ Rd, λ > 0 and p ∈ [0,+∞], it is true that:

P (|X| ≥ λ) ≤ E[|X|p]
λp

(A.15)

Proof If E[|X|p] = +∞, (A.3.6) is always true.

If E[|X|p] 6= +∞ then for the property of monotonicity (|X| ≥ λ ⇒
∫
ω
XdP ≥∫

ω
λdP ), we have that:

E[|X|p] ≥ E[|X|p I|X|≥λ] ≥ λpE[I|X|≥λ] = λpP(|X| ≥ λ)

�

Proof The statement follows by fixing p=2 and X = Y - E[Y]:

P(|Y − E[Y ]| ≥ λ) ≤ E[|Y − E[Y ]|2

λ2
=
var[Y ]

λ2
(A.16)

�
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A.4 Characteristic Function

Let X be a random variable, its characteristic function of a real variable η is a

function:

ϕX(η) = E[eiηX ] =

∫
R
eiηxφX(x)dx with φ probability density of X r.v.

ϕX : R⇒ C

η ⇒ E[eiηX ]

Where the integral is a Fourier transformed.

A.4.1 Characteristic Function: Normal case

In general for a normal r.v X ∼ Nµ,σ2 ⇔ ϕ(η) = E[eiηX ] = eiηµ−
σ2

2
η2

For a standard normal r. v. we have: X ∼ N0,1 ⇔ ϕ(η) = E[eiηX ] = e−
1
2
η2

The characteristic function allows for σ = 0 in which the function become the

characteristic function of a delta di Dirac: ϕ(η) = eiηµ

A.4.2 Characteristic Function: Browninan motion case

In the Brownian motion case, the characteristic function where X = Wt ∼ N (0, t)

r.v. is:

ϕWt(η) = E[eiηWt ] =

∫
R
eiηxφX(t, x)dx = φ̂(t, η) = e−

tη2

2

A.5 Ito’s Formula in the stochastic case

If F = F (t, x) ∈ (R2) then Xt = F ((t,Wt) is an Ito Process and it’s true that:

F (t,Wt) = F (0,W0)+

∫ t

0

(∂tF )(s,Ws)ds+

∫ t

0

∂xF (s,Ws)dWs+
1

2

∫ t

0

(∂xxF )(s,Ws)ds

Idea of the demonstration is related to a second order development in x with

Taylor (for the full proof see [31], [2]):

A.5.1 General Ito Formula

If X is an Ito process:

dXt = utdt+ vtdWt
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and F is: F (t, x) ∈ C2(R2) (it’s enough C1,2) then:

dF (t,Wt) = (∂tF )(t,Wt)dt+ (∂xF )(t,Wt)dXt +
1

2
(∂xxF )(t,Wt)d〈X〉t

= ∂tFdt+ ∂xFutdt+ ∂xFvtdWt +
1

2
∂xxFv

2dt

= (∂tF + ∂xFut +
1

2
∂xxFv

2)dt+ ∂xFvtdWt

Where d〈X〉t is the quadratic variation process (for more details see [31]) of Xt,

where 〈X〉t =
∫ t

0
v2
sds = v2

t dt

A.5.2 Geometric Brownian motion and Ito

Let’s try to calculate the stochastic differential of the logarithm of St:

dlog(St) =
∂log(St)

∂t
+
∂log((St)

∂(St)
dSt +

1

2

∂2log(St)

∂S2
t

d〈St〉t

= 0 +
1

St
dSt −

1

S2
t

σ2S2
t dt

=
1

St
(µStdt+ σStdWt)dSt −

1

S2
t

(σSt)
2dt

= (µ− σ2

2
)dt+ σdWt

where:

dSt = µStdt+ σStdWt with: µ, σ ∈ R, σ > 0

F (t, St) = log(St)

∂tF (t, St) = 0

∂xF (t, St) = 1
St

∂xxF (t, St) = − 1
S2
t

d〈St〉t = (σSt)
2dt

Once we obtained this stochastic differential equation, we rewrite it in the integral

form (for a time interval [0, t]) to get the final solution:

log(St)− log(S0) =

∫ t

0

(µ− σ2

2
)ds+

∫ t

0

σdWs

log(
St
S0

) = (µ− σ2

2
)t+ σWt

St = S0e
(µ−σ

2

2
)t+σWt
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3e série 17 (1900), 21–86.

[2] Bjork, T. Arbitrage Theory in Continuous Time. Oxford Finance, Evry,

France(2013).

[3] Black-Scholes. The pricing of options and corporate liabilities. Journal Of

Political Economy 81 (1973), 637–654.

[4] Boyle, P. P. Options: A monte carlo approach. Journal Of financial Eco-

nomics 4, Canada (1976), 323–338.

[5] Chen-Grzelak-Oosterlee. Calibration and monte carlo pricing of the sabr-

hull-white model for long-maturity equity derivatives. Journal of Computational

Finance 15 (2012), 79–113.

[6] Chen-Oosterlee-VanDerWeide. A low-bias simulation scheme for the sabr

stochastic volatility model. International Journal of Theoretical and Applied

Finance 15 (2012), No. 2.

[7] Cox-Ross. The valuation of options for alternative stochastic processes. Jour-

nal of Financial Economics 3 (1976), 145–166.

[8] Crispoldi-Wigger-Larkin. SABR and SABR LIBOR Market Models in

Practice: With Examples Implemented in Python. Applied Quantitative Fi-

nance, (2015).
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