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1 Abstract

Parametric yield curve models are popular among researchers and practitioners as a means of terms
structure estimation. There are numerous research papers showing that the estimation procedure of
such models is highly sensitive towards the choice of a numerical method. Most of the widely-used
numerical methods are initiated by some starting values, but in the framework of this problem the
choice of the starting values has not yet been thoroughly investigated. The choice of starting values
also has a significant impact on the solution, so in this research we propose specific starting values
for several popular numerical methods based on our own criteria. We also demonstrate what the
cost of an improper choice of starting values can be in terms of the variation of yields. Finally,
for the purpose of on less liquid, developing markets, in our research we use the data set of the

government debt of Russia.

2 Introduction

Yield curve or term structure is a graphic representation of bonds’ yields with maturities ranging
from short-term to long-term. The yield corresponding to a certain maturity on the yield curve is
the total return on a bond, if it is held to maturity. The yield curve is one of the most important
concepts in economics and finance.

In macroeconomics yield curve is one of the major indicators of economic activity. For ex-
ample, there is a wide array of research literature based on the predictive power of yield curve in
economic recessions. Yield curve control is also an important monetary policy instrument utilized
by the Federal Reserve. The European bond spreads between the government bonds of the EU
member states and Germany is also a major benchmark related to yield curve.

In finance the yield curve is used to price fixed income securities, it is also a major component
in the pricing of derivatives such as futures. When it comes to options, government bond yields are
utilized in Black-Scholes formula and in the calculation of implied volatility and greeks. In risk
management yield curve is also widely used because the interest rate risk is one of the major risks
in for fixed income instruments. Overall, any field in which a notion of a risk-free rate is necessary
has to use yield curve as a reference.

The term structure, however, is unobservable in most cases. Countries do not usually issue
the amount of zero-coupon denominated debt that covers the whole range of maturities and even
then the curve would require some method of smoothing. The solution to this problem lies in the
estimation of term structure based on coupon bearing bonds. Though such a method presents a
number of numerical difficulties?, it still remains one of the most widely-used methods of term
structure estimation.

The approach requires an assumption about the functional form of the yield curve and one of the

1See Dueker [1997, Estrella and Trubin 2006
2See Gilli, GroBe, and Schumann 2010



most popular models in this field is the Nelson-Siegel (NS) model. While giving a clear advantage
in specification of the curve and of the interpretation of the factors, the parameters of the model
are difficult to estimate. The loss function in the problem also has multiple local minima, so when
combined with the sparse data of developing markets, the vulnerabilities of particular numerical
methods and the choice of starting values, the task gets even more complicated.

So far the research literature has been mostly focused on comparing numerical methods in the
framework of this problem. Ahi, Akgiray, and Sener 2018 compared the performance of gradient
methods BFGS and Gauss-Newton, direct search algorithms Powell and Nelder-Mead and global
optimization algorithms simulated annealing (SA) and several modification of Particle Swarm Op-
timization (PSO). The global optimization algorithms outperformed their counterparts in terms of
accuracy and robustness, while single-point methods tended to find local minima rather than global
and also failed to converge in a 30 —50% of cases. The choice of the starting values for single-point
methods was given by the coefficients of linear regression of three-factor Nelson-Siegel model on
the yields generated by bootstrapping. The method was originally proposed in Diebold and Li 2006
and according to Ahi, Akgiray, and Sener 2018 produces a starting point in the general region of
the global minimum. It is important in case of the single-point numerical methods because they
are sensitive and they are also the default methods for many statistical packages, so they are more
likely to be used for fitting the term structure with the NS model and its modification. The final
conclusion referring the single point methods is that unless the starting values are carefully chosen,
the results are likely to be less reliable.

Manousopoulos and Michalopoulos 2009 compares a similar set of algorithms and comes to a
conclusion that direct search and global optimization algorithms are expected to achieve a smaller
error than gradient based counterparts. Though being highly reliant on the choice of starting values,
gradient based algorithms should not be rejected because the interpretation of the factors allows
for a good initial guess. Which algorithm performs better does not have a certain answer though.
However, given that the direct search and global optimization algorithms do not use any information
about the gradient, authors suggest to use a gradient based method to refine the solution from other
more accurate numerical methods in a two-stage optimization process.

Some researchers Gilli, Grof3e, and Schumann 2010 argue that standards statistical methods are
not appropriate for fitting a yield curve. The primary reason for that is that the optimization problem
is not convex and it has multiple local extrema what makes a single-point optimization unreliable.
The authors make a sample fit using numerical method Nelder-Mead with 500 randomly generated
points and come to a conclusion that multiple restarts are imperative, while it might not still be
accurate enough, for example, for the purpose of modelling the evolution of parameters over time.
Another challenge is that in case of the NS and Nelson-Siegel-Svensson (NSS) models the problem
is “badly conditioned’ due to the factors being highly correlated for certain value of the time scale
parameter 7. As aresult, many different sets of parameters can produce good fits, but not all of them
could have economic interpretation. Therefore, it is important to constrain parameters in certain

bounds to achieve identification. Finally, the authors fit the NSS model using a numerical method



called differential evolution and argue that it produces more reliable results than its gradient based
counterparts.

Paper De Pooter 2007 also underlines the problem of multicollinearity of factor loadings. The
author examines different modifications of NS model and comes to a conclusion that more flexi-
ble functional forms result in better in-sample fit of the term structure. Out-of-sample fit for such
models improves as well. While examining the models the author also explains how the multi-
collinearity problem arises and that it makes the estimation procedure more complicated.

Estimation issues were also touched in Diebold and Li 2006. The paper focuses on forecasting
the yield curve using a two-stage approach. The first stage is the estimation of parameters of the
NS model using a linear regression. With the estimates obtained, on the second stage the authors
run univariate and multivariate autoregressions on the factors of the NS model. Their models are
consistent with the stylized facts and build a forecast which has a higher accuracy on long term

horizon relatively to the counterparts.

3 Yield curve fitting

Yield curve fitting is a method of obtaining a yield curve from the prices of coupon bearing bonds.
Firstly, the method requires an assumption about the parametric functional form of the yield curve.
Given that the bonds are priced as the sum of future discounted cash flows, this parametric (i.e.
depended on a number of parameters) yield curve function could be used to obtain the prices of the
bonds. Ideally the parameters should be such that the sum of discounted cash flows of the bonds
would be equal to the bonds’ market prices. It could be measured by a loss function: the higher the
errors of the price estimates are, the higher the loss. Finally, with the loss function depended only
on the parameters of the yield curve, an optimization with a numerical method is run to obtain the
estimates.

First we will start by looking into the model of the parametric functional form of the yield curve

that we use in our research.

3.1 Nelson-Siegel model

The methods of parametric yield curve fitting can be classified into two groups: spline-based meth-
ods and function-based methods. In spline-based methods term structure is approximated by a
piecewise polynomial function. In order to achieve a smooth shape, the polynomials, usually cubic
ones, are linked at various points throughout the curve. As a result such a method can construct
a term structure of virtually any shape. Function-based methods, on the other hand, assume that
the yield curve has specific financially interpretable features. Furthermore, the shape of the yield
curve is fully given by the parameters which also have interpretation. The choice between these
groups of methods is in fact a trade-off between precision and interpretability.

One of the most widely used models among function based methods a is Nelson-Siegel model



Nelson and Siegel [1987. The model is used in a variety of forms. There numerous models which are
modifications of the NS model and a particular example is the more flexible NSS model Svensson
1995. Different variations of NS model are used by central banks, stock exchanges, investment
banks and etc. In Russia, for example, a modification of Nelson-Siegel model is utilized by the
central bank and Moscow Stock Exchange.

In our research we also use the Nelson-Siegel model. The model ([Il) provides a functional form
of the yield curve, where the yield r(¢|©) corresponding to time to maturity ¢ can be calculated
based on the vector of parameters ©. The vector of parameters in the model is [T, 5y, 51, F2]. The
yield curve is represented as the sum of a constant 3, and factor loadings (£)) and (B)) weighted by
the corresponding factors /3; and 3. The loading on the slope component (B) corresponds to the
short term level of interest rates. It is a monotonically decreasing function: its maximum value is
1 att = 0 and it approaches 0 at t — co. The loading on the hump component (f) corresponds
to peaks or throughs in medium term. It monotonically increases until it reaches a peak, then it
approaches 0 when ¢ — co. The remaining component is the level given by coefficient 5, which

reflects the long term level of interest rates. The whole yield curve approaches 3, when ¢ — oo.

r(t[©) = Bo + Brg(t[T) + Bah(t|T) (1)
1 —exp(—t/7)
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Figure [l| shows how the shape of the factor loadings change with 7. In case of the loading on
the hump component 7 determines the location of the peak: the higher its value is, the further away
is the peak. In the loading of the slope component, 7 determines the rate at which the component

decreases. Higher value of 7 makes the component decrease at a slower rate.
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Figure 1: Nelson-Siegel model components

In the equation of the yield curve ([l]) the factor loadings are scaled by the corresponding factors
B and (5 and are summed up with 3y. Thus, the shape of the yield curve is fully determined by the

5



values of 3y, 31, B2 and 7. These parameters of the curve could be chosen in a way to fit different
data and describe a term structure of a variety of shapes.

Finally, the specification of the model also implies several restrictions on the vector of param-
eters ©. The long-term level of interest rates, which means that 3, should not be negative (4). The
interest rate for ¢ = 0 should not be negative either. So, knowing that the slope and the hump
components are equal to 1 and 0 respectively at ¢ = 0, we can derive the restriction (§). The last

one is that 7 should lie in the range of 0 to 30 so that the humps would also be in this range ().

Bo >0 4)
Bo+p1 >0 (5
0<7<30 (6)

By trial and error we found out that the inclusion of restrictions does matter for several opti-
mization methods. In particular, for some optimization methods we will also impose lower and

upper bounds on betas B,

0<pB <1 (7)
-1<p <1 (8)
-1<6 <1 )

3.2 Loss function

In our research we fit the NS model to prices of coupon bearing government bonds. The obtained
term structure should give the estimates of the bonds’ prices such that they would be as close as
possible to the bonds’ market quotes. In other words, we should find a vector of parameters © of
the NS curve such that it minimizes the sum of the squares of pricing errors. In addition to that we

also divide the pricing errors by 1000 in order to avoid overflow errors when fitting the yield curve

[10).

L©) =% (on—ﬁt)(@)) (10)

=1

We assume continuous compounding and evaluate prices of bonds as a function of the yield

3We express the term structure in a way that, for example, 7% yield corresponds to the number 0.07 on a curve.
Therefore, the upper bound of 1 on jy restricts the long term level of interest rates below 100%. Though as pointed out
by Manousopoulos and Michalopoulos 2009 it is a loose restriction, it does prevent numerical methods from divergence
in some cases.



curve and its parameters. That being the case, the price of an individual bond is a sum of its cash

flows discounted by the corresponding rates obtained from the NS curve ([L1)).

P(©) =Y CF;exp(—r(t;, O)t;) (11)
=1

Another loss function that can be used for this type of problem is a weighted sum of squares of
bonds’ pricing errors ([L2) Ahi, Akgiray, and Sener 2018, Hu, Pan, and Wang 2013. The underlying
idea is to give lower weights to the bonds with higher Macaulay duration because otherwise such

bonds contribute more to the total error while being less frequently observed. The weight w; in that
1

case could be defined as % o) s

i j=1 ﬁ]

Lp(©) =D wi(Pi— P(©))? (12)

We also used this function at first, but we did not see a significant improvement in accuracy
whereas the computational time increased. Moreover with such a modification the function will
still have a lot of local minima, so the problem of the proper choice of starting values is just as
important as before.

Finally, we could state the optimization problem as the minimization of the loss function ([10)
under constraints (H), (5), (B) and in some cases, which we will specify also (7), (8), (9).

3.3 Numerical methods

In our research we work with widely used numerical methods that are available in most statistical
packages. These methods are BFGS, Powell, Nelder-Mead, Trust-Region Constrained Algorithm.
We used the implementations of these methods from library scipy in Python.

In general, there are methods which perform arguably better for our problem and which are also
more robust towards the choice of starting values and to the noise in data. Amoung these methods,
for example, Differential Evolution Gilli, GroBle, and Schumann 2010, PSO Ahi, Akgiray, and
Sener 2018, Simulated Annealing Manousopoulos and Michalopoulos 2009. On the other hand,
these methods are not available in such statistical packages as EViews, Stata, SPSS or in the solver
tool in Excel. When more advanced software is used like Python, R or MATLAB, the numerical
methods which are used by default in minimization functions are also among the ones we chose¥.
There are also numerous papers which are using the same group of methods that we use B,

It is also important to mention that that some of the methods that we utilize support the native
inclusion of restrictions like lower and upper bounds or linear restrictions, whereas some do not.

Therefore, in order to implement the restriction we have to set up all the methods individually.

“In scipy, for example, BFGS is used by default.
>See Ahi, Akgiray, and Sener 201§, De Pooter 2007, Gilli, GroBe, and Schumann 2010, Ioannides 2003,
Manousopoulos and Michalopoulos 2009



3.3.1 BFGS

Broyden—Fletcher—Goldfarb—Shanno algorithm (BFGS) is a gradient-based numerical method. We
are solving a problem of constrained minimization, so we chose an implementation of BFGS with
restrictions on upper and lower bounds and limited computer memory usage which is called L-
BFGS-B.

Given that BGFS does not support the inclusion of linear restricitons, we had to find a proper
reparameterization of the loss function and of the restrictions. We define ug = Sy, u; = ug + S,
Uy = [, 7 = 7. Then the restriction (f]) remains unchanged while restrictions (4), (5) and the loss

function take the following form:

r(t|©) = ug + (u1 — uo)g(t|7) + ush(t|7) (15)

Furthermore, the value of vector gradient should be supplied as an input to BFGS. By default
scipy uses a finite difference scheme to approximate the gradient, but it can take as an input any
other function that calculates vector gradient. For instance, among possible options are automatic
differentiation or a function which gives a precise value of a vector gradient as an output. The
libraries in Python which perform automatic differentiation like Autograd or JAX do not support
our implementation of the loss functionf. Besides that we tried a precise vector gradientﬂ, but it did
not increase the accuracy significantly while it took almost double the time to converge. Therefore

we decided to stick to a native finite difference method.

3.3.2 Powell’s method

Powell’s method is a direct search algorithm. It supports bounds, but it does not support linear
restriction, so in order to include the linear constraint () we used the same reparameterization as
we used for BFGS. We also had to include restrictions on upper and lower bounds of the betas ({7),

(®), (9) because otherwise the method would converge out of these bounds in several cases.

3.3.3 Nelder-Mead

Like Powell’s method, Nelder-Mead is also a direct search algorithm. Our optimization problem
should, however, be set up differently for the Nelder-Mead because it does not support neither

restrictions on the bounds, nor linear restrictions. A possible solution to that is to include restrictions

®Both Autograd and JAX differentiate native python and numpy code, while our loss funciton generator also has
to use pandas and datetime libraries
"In attachments you could find the values of the partial derivatives that we used for BFGS



in the loss function, for example, like the Lagrange function does. So, let us redefine restrictions

), (B) and (6) as penalty functions ([16), (17) and ([1§) respectively.

cop = max(—[3,0) (16)
c1 = max(—(fo + B1),0) (17)
¢2 = max(7 — 30,0) + max(—7 + 0.01,0) (18)

If we include these penalties by just summing them with the sum of squares of errors, then the
resulting loss function will not be smooth. What we could do is to use the squares of these penalty
functions and to also multiply them by a constant K to increase the penalty ([19). In our case we
set K = 1000.

Lym(©) = Z (P]O—JODO(@)) +K Zc?(@) (19)

3.3.4 Trust constrained

For Trust-Region Constrained Algorithm there is a possibility of inclusion both border and linear
constraints, so no modification for the loss function was necessary. However, like in the case of
Powell, we also had to include lower and upper bounds on betas because otherwise it would not

always converge.

3.4 Starting values

In total we looked into 5 ways of starting values generation. Some of the approaches the we used

had already been employed by other researchersf, whereas the others are relatively new.

3.4.1 Randomly generated starting values

With this approach we generated random starting values between specific lower and upper bounds
using uniform distribution. For the value of 7 we simply used the range [0, 30]. For the value of
3; we used the rule given by equation (20). In this equation we use the minimum and maximum
historic values for 5; and also their historical standard deviation. The period for which we took

these statistics is from January 2014 till June 2020.

Bi ~ Ulmin(5;) — 30s,, max(5;) + 304, (20)

As a result we obtain the lower and upper bounds as in Figure f. We consider these bounds to

be loose enough to get variability, but at the same time not too wide to initiate optimization with a

8See Diebold and Li 2006, Manousopoulos and Michalopoulos 2009



priori wrong starting values. In total we generate 16 such starting values for each day in our dataset.

Ranges of B;

Bo .
B . .

B2t e , . . —
—0.2 —0.1 0.0 0.1 0.2

Figure 2: Upper and lower bounds of 3;

The main purpose of why we use the random starting values is because we intend to demonstrate
variability in the result of the optimization problem. We also use them to obtain a better solution:
after solving the problem for all 16 of them, we simply choose the result with the lowest RMSE.
Such a result we call ”Best of random”.

3.4.2 Previous day starting values

Another approach that we believe should give an accurate starting point is using the solution of the
previous day. Our idea comes from an observation that the term structure does not change its shape
significantly from one day to another. We should add here that we initiate the optimization on the
first day with the historical parameters of the NS curve from the day before. Such an approach we

will call ”Recurrent”.

3.4.3 Manousopoulos’ approach

The next method of starting values generation that we use was introduced by Manousopoulos and
Michalopoulos 2009. The idea for this approach comes mainly from the interpretation of the pa-
rameters. For example, [, is taken as the average yield of M bonds with longest maturity (21]).
We used M = 4 as is recommended by the authors. The short term level of interest rates 3, is
taken as the difference between the yield of the shortest bond y, and 3, (2). As for the remaining
parameters they are recommended to be taken as fixed (23)), (24). We will denote such starting

values by ©,,. An example of a starting value generated by this method is given by picture fJ.

1 M
%ZM;% 1)
Br=ys — fo (22)
fr=0 (23)
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n=1 (24)

2017-12-29
L]
L ]

0.075

0.070
T 0.065
U
b__
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0.055

Manousopoulos value
0.050 . e Yield
0 5 10 15 20 25 30
Maturity

Figure 3: A starting value generated by Manousopoulos’ method on one of the dates.

3.4.4 Diebold, Li approach

Finally, we would like to investigate the approach proposed by Dieblod, Li Diebold and Li 2006.
The method can be divided into two stages. The first stage is obtaining the bonds’ yields by the
bootstrapping algorithm otherwise known as unsmoothed Fama-Bliss yields. On the second stage
the yields are used as a dependent variable, while factor loadings of the NS model as features in a
linear regression.

First, let us look into bootstrap Fama and Bliss 1987 in details. Let us suppose that we would
like to obtain a term structure, for example, for a particular day. As inputs we have a set of bonds of
different maturities, the timetable of their future cash flows and their closing prices for the day. If
we calculate IRR for each of the bonds and plot them for the corresponding maturities, then such a
yield curve” will lack a time structure, because the yields of the bonds with shorter maturities will
not be used to determine the yields of the bonds with longer maturities. So, what was proposed by
the authors, was to do calculate the the longer yields based on the shorter yields. The first step is to
calculate the yield of the shortest zero-coupon bond or, as we did, the IRR of the shortest coupon-
bearing bond. In this method this yield corresponds to the maturity of this bond and before, i.c.
we assume that the yield curve on this interval is flat. In the next step we calculate the yield of
the second shortest bond assuming the shape of the yield curve that we already obtained from the
shortest bond. Again, assuming that the yield curve is flat on the interval between the maturities

of the shortest and the seconds shortest bond, we obtain another section of the yield curve. Then
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we just repeat it for all the remaining bonds in the order of increasing maturity until we reach the
longest bond. Once this yield is calculated, the procedure is finished. The bonds’ prices are on the
Russian market contain a lot of noise, so after applying the method we filter the yields by deleting
the ones which are more than 4 standard deviations away from the median yield. Figure } gives a

representation of the Fama-Bliss yields calculated on one of the dates in our data set.

2019-01-14
0.084 .
0.082
0.080
0.078
0.076
s ]
0.074 T Flat implied term structure
—— Diebold, Li term structure

0.072 * Intervals

« Bootstrap yields
0.070

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Figure 4: An example of Fama-Bliss yields, the implied flat term structure and NS curve based on
Diebold, Li factors

The next step is running a linear regression based on equation ([[J). We follow the approach by
Diebold and Li 2006 in fixing the value of 7. When picking the value of 7 they refer to the loading
on the hump component. As we have already noted above, 7 is the parameter that determines
where the loading achieves the maximum. The loading is also a medium term component, while
the maturities that are often referred to as medium term are 2 to 3 years. We, just liked the authors,
picked the average which is 2.5 years. With this average we calculated the value of 7 at which
the loading achieves maximum. Using Wolfram AlphaE we arrived at the value of 7 equal to 1.4.
Our result is consistent with other researchers. For example, Gilli, Grofle, and Schumann 2010
arrived at the same value of 7 when working with maturity in years. They also mention that this
result translates to the same value obtained by Diebold and Li 2006 who worked with maturity in
months. The value, according to Gilli, GroB3e, and Schumann 2010 is also well-chosen because it
implies low correlation between the factor loadings.

Now that we have the values of 7, we could obtain the features for the regression by substituting
the corresponding maturities into the factor loadings. The remaining part is just to estimate the
factors by OLS regression with the bootstrap yields as the dependent variable and the loadings as

features. An example of such an estimation is given by Figure § and the whole time series of the

9See the Wolfram Alpha resul
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factors is represented by Figure 3.
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Figure 5: Time series of NSS factors obtained by the Diebold, Li method
4 Data set

Our data set comprises the data of the secondary market for the rouble denominated government
debt of Russia for the period starting from year 2014 till mid 2020. The source of the data set
is the data platform for investors cbonds.ru. From there we obtained daily prices, interest and
amortisation schedules. The original source of the prices is the Moscow Stock Exchange.

Given that our numerical problem is quite sensitive towards outliers in bonds’ prices, we re-
moved all the illiquid bonds. We also removed all the bonds with the maturity of less than 1 month,
because prices of such bonds tend to be distorted in such short periods, while NS model is partic-
ularly sensitive in short-term maturities.

We should note, however, that the data set required a lot of thorough inspection, because there
was a substantial number of outliers in bonds’ prices. There were particular dates on which some
bonds experienced sudden price movements of, for example, 10% in IRR while returning to their
normal price right next day. On the other hand, relative to the size of the data set, the number of
such observations was minuscule, but we still removed them. In the end, we calculated the dirty
prices of the bonds which we used later to sustitute into the loss function.

In total there are 44 bonds in our data set. Figure [ gives an overview of the maturities of the
bonds. The average maturity in our dataset is 6 years. On each of the days we have quotes of 24

bonds on average.
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Figure 6: Bonds’ maturities in the dataset

5 Ciriteria for the choice of starting values

We will utilise a number of criteria to compare the performance of the starting values. The first
one is RMSE (23) which is an indicator of the goodness-of-fit. The lower the RMSE, the better the
fit. In addition to that, RMSE will let us understand if the methods converge to different solutions

under different starting values and also how significant that difference is.

L(©) = (P - P(©))” (25)

Another important criteria is whether a numerical method successfully converged. Our idea
is that if the resulting solution is not close to the market yields, then such a solution cannot be
a ”good” fit. We introduce our own criteria for convergence and utilise it further to separate the
subset of ”good” solutions.

As we noted above, the loss function in our numerical problem has multiple local minima, and
as a result, numerical methods tend to stop at these local minima. What we would like to do, is to
show this variation in solutions. One of the ways of doing it is by looking at the difference between
the maximum and the minimum yields on a specific maturity. The maturities that we consider are
of 1 year and 10 years.

The next criteria is the CPU time. There is a trade-off between the accuracy and the complexity
of the numerical methods, so it is also useful to understand how significant the trade-off is.

Finally, we will also look into whether the obtained solutions can possibly have an economic

interpretation.
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6 Results

6.1 Minimum RMSE

First, let’s have a look at which starting values showed the lowest RMSE. Figure [ gives an
overview of the results. The obvious observation is that for all the numerical methods the best
out of 16 random starting values showed the lowest RMSE. The recurrent starting values, on the
other hand, gave the lowest RMSE in a very small amount of cases, especially for such numerical
methods as L-BFGS-B and Powell. These methods appeared to be non-robust towards the choice

of starting values, so in a lot of cases the numerical methods did not converge.

Minimum RMSE achieved

100

Best of Random
Diebold, Li
Manousopoulos
Recurrent

88.0%

80

69.1%

60

40

Percentage of all cases

20

7.8% 7.6%

L-BFGS-B Powell Nelder-Mead Trust Constrained

Figure 7: Shares of cases in which minimum RMSE was achieved

6.2 Convergence

Now we will make an attempt to identify those cases. Obviously, such a problem requires a con-
version criteria. Our criteria is based on the following idea: if the resulting yield curve is not very
different from the unsmoothed Fama-Bliss yields, then we say that the method converged. To be
more precise, those cases in which 90% of the unsmoothed Fama-Bliss yields lie inside a margin
of 2 standard deviations from the resulting smoothed yield curve, we will consider a convergence
success. The standard deviation that we use to define the margin is the standard deviation of the
unsmoothed yields on the corresponding cross-section in our dataset. A comprehensive represen-
tation with the examples of successful and unsuccessful convergences can be seen in Figures [§ and
B.

Table [l| summarizes the results after applying the criteria. The first thing to note is that the only

starting values for which the amount of cases of divergence does not vary substantially are the Best
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Figure 9: Unsuccessful convergence

of Random and Diebold, Li. Previous day values have a lot of cases of divergence when used with
non-robust numerical methods.

The reason for that is that if in one of the days the method does not converge, then it is less
likely to converge the following day because of a bad start. The less robust methods should then
have a significantly higher percentage of failures for the previous day values which is true in case
of L-BFGS-B, Powell and Nelder-Mead.

From this table we can also conclude that the Trust Constrained is the most robust method

because the percentage of failures does not vary dramatically over different starting values.
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Method L-BFGS-B | Powell | Nelder-Mead | Trust Constrained
Best of Random | 6.3 6.54 6.67 6.3

Recurrent 99.82 87.83 | 31.8 6.85
Manousopoulos | 17.13 21.22 | 7.09 6.36

Diebold Li 9.6 7.58 6.24 6.36

Table 1: Convergence failures, percent

6.3 RMSE distribution

Now that we can exclude the cases of unsuccessful convergence we could also get a clear picture
of the RMSE distributions. Figure [0 summarizes the results.
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Figure 10: RMSE distributions

The first thing to comment on is the unusual distribution of the RMSE in case of the starting
values of the previous day in numerical methods L-BFGS-B and Powell. As we noted above, these
methods are clear outsiders when it comes to convergence. Therefore, once all the ”bad” solution
are removed, there is just not that many of them left, especially in case of L-BGFS-B. Overall,
given that we already know that previous day values are an unreliable choice in case of L-BFGS-B
and Powell, the information that we get from the distribution of RMSE in ”good” solutions doesn’t
make them any more reliable.

What is more important, is that in case of some starting values the distribution of RMSE is sig-

nificantly narrower, which is clearly an advantage. In numerical methods L-BFGS-B and Powell
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such a starting value is quite evident: it is the best of random. Given that these methods are rela-
tively sensitive towards the choice of starting values, running multiple optimizations from different
starting points produces a much more accurate solution.

The same, however, cannot be said about Nelder-Mead and especially Trust Constrained. In
case of Nelder-Mead running multiple optimization improves RMSE only by a small margin,
whereas in case of Trust Constrained there is no improvement at all. Both methods are more robust,

thus they tend to converge to a single solution even from a wide range of starting points.

6.4 Variation of the yields

The exclusion of the cases of unsuccessful convergence and look at the range of the yields. In
particular, we are interested in 1-year and 10-year yields. The way we calculated the range is by
subtracting a minimum yield from the respective maximum yield on each of the dates in our dataset.
The resulting distribution is given by the boxplots in Figure [L1.

There is a number of conclusions that we can draw from this result. Firstly, variation of the 1-
year yield is higher than the 10-year yield. The most likely reason is that the curve doesn’t fit very
accurately for shorter maturities, which consequently can be explained by the possible inaccuracies
in the dataset.

Secondly, all the methods produce a relatively high level of variation in solutions. We could
expect the variation to be in a 2% range for the 1-year yield and in around 0.4% range for the 10-
year yield. Given that the yield curve is used to price financial instruments, we could also expect
the variation in their prices in a magnitude similar or higher than such of the yields.

Thirdly, Trust Constrained consistently gives a lower degree of variation in comparison with
other numerical methods. As we noted above, the method proves to be robust towards the choice

of starting values.
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Figure 11: Yields’ box plots
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6.5 CPU time

Another important criteria is the CPU time. Figure |12 depicts the distributions of the time mea-
surements grouped by numerical methods and starting values. One important remark is that the
Best of Random starting value CPU time is given in terms of the average of 16 fits, whereas the
other methods correspond to 1 fit only.

Not surprisingly, the most accurate starting value, which is the Best of Random, requires sig-
nificantly more time in comparison with other methods. Another important observation is that
even the average CPU time of Best of Random starting values is relatively high for all the numer-
ical methods. The possible reason is that some of the random starting values give a bad starting
point of optimization, so it takes more time for them to converge rather than when we use a good

approximation from the beginning.
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Figure 12: Box plots of CPU time. Best of Random is the average of 16 fits.

6.6 Economic Interpretation

The problem with the majority of the combinations of numerical methods and starting values that
we reviewed above is that they lack economic interpretation. The term structure does not tend to
change drastically from one day to another, while what we observed in most cases is the significant
fluctuations in the values of the parameters of the NS model. While such solutions can score
high in terms of goodness-of-fit, the parameters may not represent the time evolution of the yield
curve. The only combination out of those we investigated that we believe has a time structure is
the Diebold, Li starting values used with L-BFGS-B.

Diebold, Li starting value is initially a good approximation for two reasons. Firstly, it helps

avoid the multicollinearity problem by fixing 7 at a value with which the correlation between factor
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loadings is extremely low, as we mentioned aboveld. Secondly, with such a value of 7 accurate
estimates of the factors could be obtained with a linear regression. This is also important, because,
for example, with Manousopoulos’ approach the value of 7, is chosen right, the values of 5, 3, are
also chosen quite close to what we obtained with Diebold, Li values, but the value of 3, is left at 0.
The time series with Manousopoulos’ values as starting points resembles that of the Bundesbank,
while with Diebold, Li starting values it has the gradual evolutiont2,

Another important remark is that we were unable to achieve it with a numerical method other
than L-BFGS-B. We believe that the reason is that L-BFGS-B falls into a local minimum in the area
of the starting point. While such a solution might not have the lowest RMSE, it keeps the factor
loadings relatively uncorrelated. Other numerical methods tend to jump out of the initial area thus
leaving economic interpretation behind. While the new solution might be better in terms of the
goodness-of-fit, it would have highly correlated loadings which is neither good for a regression

approach, neither for a numerical method.
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Figure 13: Factors of the NS model

Now we would like to demonstrate that the combination of L-BFGS-B with Diebold, Li starting
values can produce an economically sound solution. What we want to show is that the changes in
the factors (level, slope and curvature) can explain a substantial part of the variation in bonds’
prices.

We already had the necessary time series of the factors and as our first step we switched to a

monthly data by taking the medians of the factors in each of the months in our data set. The next

10Gee Gilli, GroBe, and Schumann 2010

Tdem

12See Figure 3. On the Figure we also plot the factors published by the Moscow Stock Exchange (MOEX). We
should note that the time series are quite similar apart from the through in mid 2015 and the peak in end 2017 in the
series of the MOEX. We believe that the long term market yield behaved in these periods closer to our estimates rather
than those of the MOEX.
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step was to obtain the proxies for the increments of the factors, so we fit AR(1) processes to each
of the monthly time series and calculated the residuals. The resulting residuals did not indicate
high pairwise correlation: —0.38 between (3, and 1, 0.3 between [y and [, —0.13 between [,
and (5. The dependent variable in our analysis is the Russian Government Bond Index (RGBI)B
which is comprised of the most liquid bonds with maturity above 1 year. Factors in the NS model
correspond to different maturities, so it is important that we use a portfolio of bonds of different

maturities as well.

OLS Regression Results

Dep. Variable: y R-squared: 0.542
Model: OLS Adj. R-squared: 0.523
Method: Least Squares F-statistic: 29.14
Date: Tue, 01 Jun 2021 Prob (F-statistic): 1.51e-12
Time: 00:06:33 Log-Likelihood: 219.11
No. Observations: 78  AIC: -430.2
Df Residuals: 74  BIC: -420.8
Df Model: 3
Covariance Type: nonrobust

coef std err t P>|t] [0.025 0.975]
const 0.0080 0.002 4.747 0.000 0.005 0.011
x1 -2.3373 0.584 -4.004 0.000 -3.500 -1.174
x2 -0.0027 0.274 -0.010 0.992 -0.548 0.543
x3 -0.6722 0.101 -6.659 0.000 -0.873 -0.471
Omnibus: 16.184 Durbin-Watson: 2.242
Prob(Omnibus): 0.000 Jarque-Bera (JB): 51.421
Skew: 0.456  Prob(JB): 6.82e-12
Kurtosis: 6.872 Cond. No. 351.
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.

Figure 14: Regression of RGBI on factor proxies; variables x1, x2 and x3 are the proxies of level,
slope and curvature respectively

Figure 14 summarizes the results of the regression. The changes in the factors explain 54.2%
of variation in the return on the bond portfolio. Quite unsurprisingly, the most contributing factor
is the level with the highest negative effect. Slope is insignificant, while the curvature also has a

negative effect.

7 Conclusion

Finally, we can make a recommendation on which starting values should be used for the numerical

methods in our research.

3See https://www.moex.com/en/index/RGBI
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In case of L-BFGS-B and Powell, we would suggest to use either the Best of Random or
Diebold, Li. These numerical methods, as we noted above, are non-robust towards the choice
of starting values, so an accurate initial point is very important. The most obvious approach is run-
ning multiple optimizations from randomly selected points. Even such a small number of restarts
as 16, is already enough to achieve a much higher accuracy than with any other starting value. The
only problem with such an approach is that it inevitably produces solutions which lack economic
interpretation. In case if the interpretation is important, we would suggest to use the Diebold, Li
starting values with L-BFGS-B. The value of 7 that they suggest helps to resolve the problem of
multicollinearity between the factor loadings thus avoiding the substitution of one factor loading
for another. L-BFGS-B with such a starting value tends to converge in the proximity of the solution.

Nelder-Mead is a more robust method, so we believe that for the purpose of fitting any of the
starting values could be used if they supposedly lie in the general area of the solution. The RMSE
variation with Nelder-Mead is not very high while the number of diverged solutions doesn’t differ
dramatically except for the cases of an exceptionally ”bad” start like with the values of the previ-
ous day. Running multiple optimization with Nelder-Mead does not improve RMSE significantly,
whereas it takes significantly more time. When it comes to the economic interpretation of the solu-
tion, we believe that with Nelder-Mead it is difficult to obtain. The possible reason for that is that
instead of converging to a local minimum in the area of a solution with a low correlation between
the factor loadings like, for example, L-BFGS-B does, it finds a minimum with a lower value of
RMSE, but with highly correlated loadings.

The last numerical method, Trust Constrained, is the most robust out of the four. In fact, there
is not much difference in terms of accuracy among the starting values that we used, so for the
purpose of fitting many initial points would do, even to a larger extent than with Nelder-Mead. The
variation in RMSE is the lowest among the methods, just like the variation in the yields. Though,
it is quite effective in minimizing the RMSE, such solutions lack economics interpretation for the

same reasons as Nelder-Mead.
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8 Attachments

All the calculations were implemented in Python and can be accessed at the author’s repository.

The partial derivatives of the reparametarized loss function for BFGS:
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