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1. Introduction 
This work aims at modelling a novel method to carry out contingent valuations. The method is 

based on a type of simulation technique by the name of “agent-based modelling”. It essentially 

consists in deconstructing a complex system into smaller entities, called ‘agents’, and letting 

these entities act according to one or more algorithms. The purpose of this methodology is to 

simulate the emergence of complex patterns starting from simpler rules, and therefore provide 

“historically genetic explanations” (Stegmüller 1983). 

The first chapter introduces agent-based models giving an operative definition and outlining 

the history of their developments, from the origins to future applications. A summary of the 

main characteristics of agent-based modelling, together with their advantages and 

disadvantages is provided. 

In the second chapter, a brief dissertation on different approaches to valuation is provided 

together with a synthesis of the main implicit theoretical underpinnings that are relevant to 

understand the rationale of the model presented herein. In particular, the chapter succinctly 

outlines the differences between the substantialist and subjectivist approach to the theory of 

value. Moreover, a famous theoretical framework to classify goods is described, that is helpful 

in introducing the type of good on which this model is based: the public good.  

Next, the third chapter introduces the model, formulated and formalised in a more rigorous 

way. Short and simple mathematical considerations are provided to frame what to expect from 

the simulation from a probabilistic point of view. 

Finally, the code is presented, and its results are stored, analysed and discussed. Surprisingly, 

the simulations show that the model is promising, in that it is robust and consistent. But, along 

the positive aspects, also its limitations are explained, and suggestions for further 

improvements are proposed. 
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2. Agent-based models 
In this chapter, the notion of agent-based model (thereafter ‘ABM’) is presented through a 

summarized history of its developments. In particular, the second section aims at framing the 

context for ABMs starting from their origins, to presenting well-known results, and by fostering 

what is still to come in the field. Some examples are presented in more detail in order to help 

the reader understand the subtle differences within the different simulation and modelling 

approaches, as well as to show some useful applications, especially in policymaking. 

2.1  WHAT ABMS ARE 

Agent-based modelling is a theoretical and computational framework that allows researchers 

to run simulations and tests of problems that are usually difficult to solve by using a purely 

mathematical approach with paper and pencil. The ‘agents’ in question are a collection of 

autonomous entities that are capable of interacting or making decisions following a strategy 

that is dictated by an equation or a rule.  

It is possible to summarize the main characteristics of an ABM as follows: 

• There is a finite set of agents. 

• An environment in which they can interact. 

• Agent can perform a set of actions according to their decision rules. 

• The interaction between an agent and its environment (other agents or external inputs) 

generates changes in some features over time. 

Some authors (see Klein D., Marx J., and Fischbach K., 2018) also identifies the spatial 

dimension as a key characteristic of ABMs, although they include in the definition of ‘space’ 

also abstract measures of closeness such as the degree to which opinions diverge (as in 

Scheller 2018, Baumgaertner 2018).  

The common features of these techniques, as well as a detailed account of their pros and cons 

will be given after having shed a light over the history and the surrounding context in which 

ABMs developed. 
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2.2  HISTORY OF AGENT-BASED MODELLING  

2.2.1 The origins 
Some scholars trace back the origins of agent-based computational modelling in the pioneering 

work of J.S. Coleman in the 1960s, although ABMs became to be known among scholars only 

after the publication of the first two volumes of The Journal of Mathematical Sociology in 1971 

(Bianchi and Squazzoni 2015, 284). In particular, Schelling’s segregation model became 

famous for its results on the emergence of spontaneous spatial segregation among agents with 

group preferences. Schelling’s model essentially shows that segregation does not necessarily 

result from a discriminatory behaviour held by a segregating group towards a segregated one, 

but it rather emerges from the preference of each agent to be neighbour of an agent of the 

same group. 

Among the other popular advances in agent-based modelling, albeit with a different name, 

there is the famous Conway’s Game of Life, published in 1970, which has contributed towards 

the creation of an entirely new field of academic research called “cellular automata”, at the 

edge of computer science, mathematics, and biology. Conway’s Game of Life is an algorithm 

that generates unpredictable patterns of clustering ‘cells’ (gluing pixels on a grid) that evolve 

according to simple rules. It is worth noting that defining Conway’s Game of Life as an ABM is 

legitimate if one identifies each cell as an agent. But given the deterministic nature of the Game, 

together with the fact that rules are the same for each cell, scholars conventionally assign 

Conway’s Game of Life to a slightly different research line. It is can certainly be said that it is 

part of the numerous works that inspired the creation of agent-based simulations at the 

beginning of ABMs.  

2.2.2 ABMs’ growing popularity 
With the growing popularity of personal computers in the 1980s, scholars took the opportunity 

to exploit the new technological trends to apply computer-based simulations on an increasing 

variety of topics. At the same time, almost every field of research had open problems that were 

considered intractable due to the large amount of computation required.  

In Growing Artificial Societies (1996), the very pioneers of agent-based modelling, J. Epstein 

and R. Axtell, presented the famous Sugarscape model, a simulated environment where agents 

could exchange their wealth. The agents in the Sugarscape model were living on a 51x51 units’ 



6 
 

grid, and they were capable of doing many types of actions such as collecting sugar (a resource 

on the grid), trade, die, pollute, inherit and so on. Although it was difficult to replicate, the 

Sugarscape model is regarded as a milestone in ABM because it was one of the first times in 

history that a social simulation was not seen just as a thought experiment, but it was used to 

convey stylised facts about the aggregate from simple agent-level decision rules. In particular, 

it was evident that the agents on the grid formed clusters depending on the distribution of the 

sugar. Not only demand and supply curves at which agents would trade their goods were an 

accurate reflection of what the theory on microeconomic equilibriums predicted, but the 

simulation also showed the endogenous formation of shifts from equilibrium, resulting in 

continuous redefinitions of the curves. The Sugarscape model begun well-known, among the 

other things thus far discussed, because it also succeeded in simulating the right-skewness of 

the distribution of wealth, by setting simple exchange rules for the agents at the beginning of 

the simulation. 

Later on, different disciplines started to adopt the same approach to search for emergence 

patterns. In epidemiology – to name a few – following the seminal work of Epstein and Axtell, 

who provided an important agent-based model for epidemics transmission in 1996, many 

scholars worked on ameliorating the predictive capacity of epidemic transmission simulations 

and developed one of the most applied techniques for the estimate of epidemiological 

parameters during the Covid-19 pandemic (see OpenABM-Covid19). In Nagel and Rasmussen 

(1994) the authors developed an ABMs for traffic congestion, and similarly ABMs have been 

applied to a large array of topics, including: stock market price series (Arthur et al., 1999), 

trade patterns (Tesfatsion, 1995), believes dynamics and the role of influencing opinions 

(Hegselmann and Krause, 2002), dynamics of scientific discoveries (Weisberg and Muldoon, 

2009), dynamics of political parties (Schmitt and Franzmann, 2018), learning dynamics in the 

context of reliable information sharing (Boero et al., 2010). 

Undoubtedly, one on the major repercussions of agent-based modelling literature can be seen 

in macroeconomics and policymaking. In the 1990s, a generalised sense of dissatisfaction 

towards the traditional macroeconomic tools, that always come short in predicting new crises, 

together with a need to reconcile the different contrasting theories of economics within a 

unique comprehensive framework, became the perfect occasion for ABMs to step in. Indeed, 

ABMs could possibly foster the search for micro-foundations so highly coveted by macro 



7 
 

theorists. That is why different attempts were made to bring ABMs into policymaking, the most 

ambitious of them being EURACE. 

2.2.3 ABM in policymaking: the EURACE 
In 2006 the EURACE project was launched, a massive macroeconomic agent-based simulator 

with the ambition of depicting the whole European economy. The set up and the subsequent 

implementations took up to 10 years. It comprehends three types of learning agents: 

households (around 107), firms (around 105) and banks (around 102). Five types of market are 

modelled, namely: consumption goods, investment goods, labour, credit and financial assets. 

Governments, central bank, and Rest-of-the-world actions are changed to see the effects on the 

systems and help policymakers understand the impacts of their decisions. Each agent is 

equipped with a double-entry balance sheet, and agents can interact with each other by 

removing and adding entries in the balance sheet, consistently with the simulated market value 

of their assets.  

The EURACE project was completed in 2016, requiring huge efforts both in financial terms and 

in human capital, since even the 2001 Nobel laureate J. Stiglitz was included in the pool of 

experts that worked at implementing the model. The EURACE infrastructure can count on a 

parallelized modelling environment, called FLAME (Flexible Large-scale Agent Modelling 

Environment), developed at University of Sheffield (see www.flame.ac.uk for further details) 

that enables the ABM to run in parallel in long series of supercomputers in order to speed up 

the computational work.  

Nonetheless, it is important to stress that, albeit the huge resources invested in such projects, 

EURACE is still not able to compete in terms of explanatory power with traditional 

econometrical tools (see Deissenberg C., van der Hoog S., Dawid H., 2008).  The EURACE is then 

mainly used as a secondary investigation tool to have more insights on the repercussions of 

particular non-canonical manoeuvres.  

http://www.flame.ac.uk/
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Figure 1: Official EURACE model diagram retrieved at www.eurace.org 

2.2.4 Modern and future developments 
Moreover, a growing body of literature in ABMs may nowadays also involve neural networks to 

simulate complex situations. Even though neural networks are not a necessary feature of 

ABMs, we stress how this new field will be probably addressed as the natural continuation of 

ABMs, since neural networks can help in creating agents that are more adaptive in their virtual 

environment. For example, in P. Dütting, Z. Feng et al. 2020, the authors make use of ABMs and 

neural network to confirm some important theoretical results from the field of auction theory, 

where agents learn how to optimally bid in a multi-item English auction. The study confirms 

that it is possible to achieve the same theoretical results already known for actions, such as 

optimal bidding price, but it is also possible to manipulate the rationality and the heterogeneity 

of the agents in order to get more insights on the multiple strategies that they can employ. 
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2.3  CHARACTERISTICS ,  ADVANTAGES,  AND DISADVANTAGES  

2.3.1 Distinctive traits 
Thus far, key characteristics of ABMs have been discussed, alongside their history. So now one 

might wonder: why should a modeller choose AB modelling over traditional analytical and 

statistical techniques? The answer is that ABMs make less assumptions regarding the 

representative agent, an equation that shows the behaviour of the agents at the aggregate level. 

But instead, they very much rely on flexible assumptions. In this way, it is possible to twist the 

features of each agent so that some necessary assumptions on the representative agent can be 

relaxed. In particular, in an ABM: 

• Agents’ rationality can be bounded 

• Agents’ information can be limited 

• Agents can be heterogenous and they can follow different decision rules 

All of this of course comes at the expense of robustness and generality: some ABMs may lead to 

very different results even if initial conditions are just slightly different. 

 

2.3.2 Advantages over traditional modelling techniques 
It is possible to argue that ABMs are useful especially for four reasons: 

i. They can capture emergent systemic phenomena. 

ii. They are more directly related to the observable entities. 

iii. They are flexible in that they avoid making many assumptions on the nature of the 

phenomenon. 

iv. They can be easily parallelized so that the time required to carry out the computation 

can be greatly reduced. 

The first three are also argued by E. Bonabeau (see E. Bonabeau, 2002). These four 

characteristics make ABMs particularly useful in social sciences. In particular, the first one 

helps researchers to rethink about the underlying causal relationships of a social phenomenon. 

To know what causes a phenomenon, researchers must plug into their equations a quantity to 

describe a variable, but many times this epistemological tool does not work properly, because 

there is often an interdependence between endogenous and exogenous variables. Thanks to 

ABMs, scholars have realised that many patterns, that were previously described through 
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convoluted differential equations, could be more easily posed and understood if allowed to 

evolve by themselves on a carefully chosen set of rules. 

The second important consideration made by Bonabeau is especially true for models that aims 

at simulating complex interactions that would have been otherwise treated as set of equations 

describing the evolution of indirect quantities, such as the population density to describe 

pedestrian flows on a bridge. In this sense, it would be better to directly refer to the single 

agent’s movements and then join each contribution, rather than deriving an abstract quantity 

that could describe the state of the whole system. The third consideration is also similar. 

Following the same example of a pedestrian flow on a bridge, if one was to describe the 

phenomenon on the aggregate, he would assume homogeneous mixing, but reality can easily 

deviate from this assumption. In his TEDxUMV talk in 2011, Axtell explained the advantages of 

ABMs using a table similar to the following, that can easily summarize the points discussed 

earlier: 

Simple models Complex models 

Global information Local information 

Perfect rationality Bounded rationality 

Single decision-maker Multi-agent institutions 

Homogeneous mix Heterogeneity, heavy-tails, infinite variance 

Equilibrium, fixed points, static solutions Perpetual adaptation and co-evolution 

Markets: law of one price Personal prices 

Table 1: Axtell's simple/complex dichotomy 

The fourth consideration instead is a practical advantage that comes natural with ABMs. Since 

agents can be easily represented in a program, and they need to operate independently, it is 

also easy to parallelize computations. This comes particularly helpful when hundred million of 

agents are included in the model, but it is also a feature that common computer architectures 

can achieve by multithreading. 

2.3.3 Disadvantages of ABMs 

It is important to stress also what kind of drawbacks the aforementioned advantages hide. 

Surely the most significant disadvantages can be summarized in the following points: 

• Lack of robustness. 

• Difficulty in accurately representing all the agents and their decision rules. 
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•  It is not always possible to derive simple solutions. 

The lack of robustness is essentially omnipresent in ABMs. It is indeed difficult to interpret the 

results of an ABM because a tiny change in initial conditions usually means a huge change in 

the output of the simulation. This becomes even more problematic once we add the second 

issue of ABMs: the difficulty in representing real agents. Because, if real agents are accurately 

depicted in the model, then the simulation may potentially yield extremely accurate results. 

Otherwise, results will be perfectly precise as perfectly wrong. 

The third disadvantage, instead, is more of an epistemological issue. To what degree, if any, can 

ABMs prove something? What ABMs are indeed addressing are not really the causes of a 

problem, but rather how the problem get generated as a product of a convoluted set of 

mutually reinforcing variables. So, this change in perspective also implies that most ABMs 

cannot really tell what can be done to solve the issue in the first place. The explanations 

provided by ABMs, therefore, fall in another category of explanations for which Stegmüller 

coined the term “historically genetic explanations” (Stegmüller, 1983). In other words, many 

times the lack of generalization makes a model less interpretable and it loses explanatory 

power. 

  

3. Valuations 
This chapter deals with valuations, introducing the concept of value and the underlying 

principles of different valuation techniques, as well as the dichotomy between a substantialist 

approach to value versus a subjectivist approach. Also, a summary of a well-known conceptual 

framework for classifying goods according to the two dimensions of excludability and rivalry is 

provided. The fourth section deals with the problem of the free-rider, arising from public 

goods, and presents a famous theoretical solution to it, the Lindahl equilibrium, which is briefly 

described to introduce the more practical alternative of contingent valuation.  Outlining its 

problems, the fifth section prepares the ground for the novel model presented in the next 

chapter.  
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3.1 UNDERLYING PRINCIPLES  

One of the central problems that almost all the fields of economic research must deal with, at 

least to some degree, is valuation. In contrast with the difficulties in carrying out a proper 

valuation, the underlying assumptions are rather simple: for each resource there is a value, 

whether it be relative to each person or to an aggregate, and a set of techniques that aim to 

predict it in the most accurate way.  

This problem is so central in economics, that a whole branch of economic theory developed 

after it. Different and often contrasting theories of value, that aim to answer the questions: is 

there a correct way to price a good? If there is, what can be done to measure it? And if there 

isn’t, how can one practically assess how convenient are day-to-day exchanges or how much 

should be paid for a public deed, an environmental tax or a university fee? 

3.2 A BRIEF HISTORY OF DIFFERENT THEORIES OF VALUE  

3.2.1 Value and price 
Since it is difficult to convey on what should be the right price of an item, many modern 

economists gave up in defining what value is. Boltanski et al. 2015 arrived to say “Value talk 

only happens in situations in which there is a problem with the price... So, what is the function 

of “value”? It is the justification of the price, plain and simple”. But the problem of value, even 

in its simplest form of a justification of price, is indeed still relevant, especially when dealing 

with public goods, where a sense of fairness is a real and constant concern of the legislator. 

This question created also the first debate in economic theory, that is, whether or not a good 

has an intrinsic value. 

3.2.2 Substantialism in the form of labour theory of value 
The well-known Labour Theory of Value (LTV) was one of the most discussed approaches to 

the concept of value. Indeed, many thinkers in history understood that the value is dependent 

to some degree on the labour needed to produce the good. In Wealth of Nations, Adam Smith 

was supposing that in a primitive society the hours of labour needed to produce a good were 

the most rudimental way of defining the value of a good. Later on, Ricardo tried to give more 

grounding to the idea that labour is the main determinant of relative prices, and Marx built his 
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theory of value in a critique to Ricardo’s one. For the purposes of our analysis, it would be 

inappropriate to present a complete summary of the development of LTV, it suffices to know 

that this approach was addressed to be a ‘substantialist’ approach: the value of a good is 

determined by some feature of the good itself (specifically the hours of labour required to 

produce it). 

3.2.3 Subjectivism in the form of marginalism 
The idea that goods have value per-se, however, has been at the centre of many debates 

throughout history. The very concept of subjectivism, with regards to the different theories of 

value, has been left somewhat ill-defined since scholars of different schools of thought have all 

defined subjective value in their own way or criticised other definitions (see Mises 1933, 

Menger 1871, Hayek 1995). Nonetheless, it is possible to say that a subjectivist approach to 

value is one that recognizes that value is defined by an agent rather than a rule. The classic 

paradox often cited to criticise a substantialist approach is the diamond-water paradox, 

commonly attributed to Adam Smith (although earlier thinkers already discussed the same 

issue in other forms). This thought-experiment is based on the common perception that a 

diamond is worth more than water, yet for a man starving in the desert surely a bottle of water 

would be much more valuable than a diamond and he may be willing to pay even more than 

the price of a diamond if his life was in danger. This is to say that, whatever objective ground 

value may have, it will always be contingent to specific circumstances and personal 

evaluations.  

The paradox seemed to be solved by introducing the notion of marginal utility, which will be 

thereafter seen as one of the main pillars of the marginalist theory of value proposed by W.S. 

Jevons, L. Walras, and C. Menger. The assumptions of marginalism are those of subjectivism (in 

the sense stated above) plus the idea that there exists an ordinal or cardinal scale of 

preferences for each individual, and the idea that consumption should be decomposed into 

units of consumption. To these hypotheses, most neo-classical thinkers also add the law of 

diminishing returns, which states that the more units of a good one consumes, the less per-unit 

utility the agent receives.  

3.2.4 Some valuations techniques implicitly relying on marginalism 
The most iconic example in this regard is the ideal market of goods and services. In this case, 

one may define the equilibrium price (that is, the intersection of the demand with the supply 
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curve of the good or service that is being traded) as one of the possible measures of the true 

value of that good. Here, the goodness of the fit could be measured by different indicators, such 

as liquidity, bid-ask spreads as well as the degree to which the price reflects other measures of 

value. Moreover, price in a free market is created in a way that is intrinsically subjective to the 

market participants, it already accounts for many exogenous factors, and the valuation 

technique in this case just consists in solving for the intersection of the demand and supply 

curve. 

But there are many other more interesting valuation techniques. Auctions, for examples, are 

especially suitable in pricing goods that are unique. In fact, the illiquidity of the asset prevents 

to compare the prices of multiple items of the same kind. In the case of auctions, the true value 

of the item is determined following the rules of the type of auction, but the principle is to 

maximize the price at which the item is sold. Price that in the English auction is indeed the 

highest bid for the item.  

In other words, valuation can differ widely depending on the assumptions not only about the 

‘true’ value of the good, but also about other characteristics of the good.  

 

3.3 DIFFERENT VALUATIONS FOR DIFFERENT TYPES OF GOODS  

3.3.1 The dimensions of excludability and rivalry 
Following a well-known conceptual framework, it is possible to define different categories of 

goods based on two dimensions: excludability and rivalry. 

Excludability is the degree to which the consumption of a good can be restricted to include only 

a specific set of individuals. Rivalry, instead, is the degree to which the consumption of a good 

by an agent impairs the consumption of the same good by another agent. In this sense, our 

analysis will be concerned with public goods, which are goods that are nonexcludable and non-

rivalrous. Nonexcludable therefore means that it is not possible to exclude other agents from 

using it, even if they do not have paid for it, and non-rivalrous means that a good can be used 

by more agents simultaneously without lowering the private utility of any agent.  
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Figure 2: Excludability and rivalry 

3.4 THE FREE-RIDER PROBLEM AND POSSIBLE SOLUTIONS  

3.4.1 Definition and naïve approaches 
These two characteristics lead to a notorious issue with public goods, the free-rider problem, 

where an agent that does not contribute for the good can still benefit from it like the ones who 

pay.  

The solution to this problem is not straightforward. In fact, forcing everyone to pay the same 

amount easily leads to inefficient estimations. The provider of the good may indeed purposely 

overvalue the individual cost to seek profit, or it could underestimate how important the 

quality of the good is for the citizens, therefore lowering the individual contribution under the 

price that the agent is willing to pay. So, what can be done to improve the efficiency of this 

mechanism in the allocation of costs and resources? 

3.4.2 Lindahl equilibrium is difficult to achieve 
An important attempt to solve the issue of the free-rider problem was given by Lindahl, when 

presenting the so-called Lindahl equilibrium, a framework that assumes three important facts: 

1. Each agent decides how much of a public good should be provided. 

2. Each agent pays a Lindahl tax based on his consumption. 
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3. The sum of these contributions is enough to pay the cost of providing the public good. 

In this way, everyone pays for what he benefits from. Although it is technically the best 

solution to the free-rider problem, Lindhal equilibrium seems difficult to achieve, and it should 

be considered more as a theoretical benchmark rather than a practical valuation technique. 

One of the major problems of this framework, following the reasoning applied in section 3.2, is 

that it implicitly assumes that it is possible to precisely marginalised the consumption of a 

public good. There are many examples in which such consumption is difficult to quantify. For 

example, a public green area at the centre of a city can be assumed to be a public good since it 

is both non-rivalrous (assuming it is big enough to host a seemingly infinite number of people) 

and non-excludable (the park is open to everyone). The benefits of having a green area in a city 

is underestimated if one only considers the value of the hours spent in the park as a measure 

for private consumption of the good. How about the fresh air, or the benefit in terms of reduced 

carbon emissions, or the placid view from the neighbouring buildings? All these factors cannot 

be reduced to only one measure of consumption, and this also implies that deriving demand 

curves for a public good is essentially infeasible. 

It is therefore crucial to develop a valuation mechanism that takes into consideration the 

following facts: 

• Values are relative to each citizen and the units of consumption are difficult to quantify. 

• A public good is non-excludable and non-rival, therefore one should try to fix the arising 

free-rider problem . 

3.5 CONTINGENT VALUATIONS  

3.5.1 What CVs are 
To overcome these problems with a more flexible approach, in 1947 S.V. Ciriacy-Wantrup 

proposed a simple mechanism to value a non-marketable public good, a survey that could help 

inform about the stated preferences of the citizens and from there make a better estimate of 

the overall valuation for that good. This process took the name of “contingent valuation” (CV), 

and it has been widely used to estimate the value of environmental goods and in order to give 

grounding to environmental taxation. 

In its simplest form, contingent valuation consists of these steps: 
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1. Design a survey in which respondents have to express a stated preferences on how 

much they would pay for a particular resource. 

2. Explain the intricacies of the choice to the respondents: what resource/good/land the 

question is about. 

3. Collect several answers and from them infer the value of the resource and the 

willingness-to-pay (WTP) of the participants. 

It is essential to note that contingent valuation has been applied in a wide array of cases, 

especially in dealing with environmental goods, healthcare and real estate (see M. Sagoff. 1998, 

K.G.Willis and G.D.Garrod 1993, Sung-Yoon Huh et al. 2015).  

3.5.2 Issues to be solved in CVs 
It is easy to imagine some drawbacks in implementing this technique. One of the problems of 

contingent valuation is that results heavily depend on how the question is asked and on the 

way in which information is presented. Sometimes, even if the information is correct, the 

respondent may submit his answer based on other factors, since he may not be incentivized to 

express his honest opinion. Moreover, setting up and carrying out a survey may be very 

expensive if compared to all other valuation techniques such as auctions, or market valuations. 

Naturally, some of these issues have been partially fixed by the adoption of stricter protocols in 

the way CVs are carried out. For example, some authors (Arrow et al. 1993) concluded that 

discrete-choice CV format is to be preferred to the open-ended format. In a famous article, R.T. 

Carson (Contingent Valuation: a User’s Guide, 2000) outlined numerous rules-of-thumb to 

carry out a contingent valuation that can be meaningful to the maximum possible extent, from 

the type of information to be attached to the questions, to the statistical tools to be used in 

analysing the sample of respondents. But the need to systematize CVs and make them more 

reliable is still present, and the dissatisfaction with the approach is evident in literature.  

3.5.3 ABM for contingent valuation 
Given these drawbacks, it is possible to slightly change the way in which contingent valuation 

is carried out by introducing an ABM to predict its efficacy and simulate a discrete-choice CV to 

estimate the willingness-to-pay of each agent. In other words, it is better to introduce a type of 

contingent valuation which does not require extensive previous information and whose survey 

is made up of only closed questions, such as asking whether or not the agent is willing to pay a 

precise amount for a given tax.  
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Now, apart from the assumptions presented in chapter 4, there are also some implicit ideas on 

the nature of the valuation that is required for this type of problem. A brief summary of these 

ideas is presented below. 

3.5.4 Some marginalist assumptions relaxed 
One can certainly note that the investigation presented in this work will be relying on the 

assumptions of subjectivism, that is the assumption that the value of a good is subjective to the 

agent that benefits from it. It would be erroneous to assume that agents consume a portion of a 

public good, since the good is assumed to be non-rivalrous so the supply of the good left to the 

other individuals is not affected by previous consumption. This explains why this marginalist 

assumption is not essential for our model. This also implies that the model will not have to rely 

on the law of diminishing returns, since there is no need to introduce a unit of consumption. In 

short, the marginalist approach seeks to determine which are the demand curves for each 

individual, while in the model there is no need to actually derive these curves, but only the 

WTP of each individual, which is a single point, entirely contingent to the specific good. The 

properties of how these points behave in the aggregate for certain type of public goods for 

which it is possible to meaningfully determine a unit of consumption is an ex-post assessment 

that is not included in the main purposes of this valuation. 

What the model will be assuming, instead, is another fundamental fact: the total value of the 

good shared among these agents will be defined to be the sum of all the individual private 

utilities, as if all the negatives or the drawbacks of sharing a good have been already accounted 

in the private utility by the agents themselves. There is no need though to consider agents as 

omniscient entities, because even with heterogenous information the result is still a 

meaningful estimate of the perceived value of a good. And, given our subjectivist framework, 

we believe that this simplification is therefore useful in many applications, where a great 

number of agents is involved. In fact, the focus of our investigation is exactly that of presenting 

a method to discover a measure of the perceived value of a public good and assessing the 

goodness of this fit by virtually simulating the method under other simplifying assumptions, as 

it will be shown in chapter 4. 
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4. The model 
In this chapter, an ABM for the contingent valuation of a public good is presented. After having 

outlined all the model’s assumptions, we mathematically derive some interesting properties of 

it, and we discuss specific examples to help the reader understand the generality of its 

formulation. Then, the work introduces the next chapter, where the Python code will be 

presented, and some important results discussed.  

4.1  REPRESENTATION OF THE MODEL  

Assume there are 𝑁0 agents, a non-excludable and non-rivalrous good and a discrete time 

setting. Each of the agents has a private value vi (that will not be revealed nor changed), which 

can be thought of as the private utility of the good according to agent i. Each private value is 

drawn independently from a distribution 𝒱 and it is assigned at time 0. Then, starting from t=1 

until the model stops, a cost 𝑐𝑖
𝑡 will be drawn independently from a distribution 𝒞 and 

proposed to agent 𝑖 at time t. At time t=1, the agents will check whether the cost is less than or 

equal to their value, and they will independently vote “Yes” or “No” based on this comparison. 

If more than 
𝑁0

2
 agents voted ‘Yes’, the model stops, the ones who voted ‘Yes’ (that we may 

alternatively call ‘winners’) will pay the amount agreed, while the others will pay the 

arithmetic average of the costs of the other group. Otherwise, if a majority is not yet reached at 

time t, costs are redrawn from the same distribution at time t+1 and reproposed only to those 

who voted against, until a majority is reached; that is, until the total votes in favour from the 

start exceed 
𝑁0

2
. 

In general, the essential elements of the model are: 

• A set of agents {𝐴1, … , 𝐴𝑁0}. 

• A non-rivalrous and non-excludable good. 

• A discrete time schedule 𝑡0, … , 𝑡𝑠. 

• A distribution of costs 𝒞. 

• A distribution of private values 𝒱. 

• A decision rule 𝑎𝑖(π𝑖): ℝ → {0,1} for each agent, based on the individual payoff π𝑖 =

𝑣𝑖 − 𝑐̂𝑖, where 𝑐̂𝑖 is the cost or contribution that the agent pays at the end. The output of 
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the decision rule is a Boolean value representing the vote (1 corresponds to a vote in 

favour). 

Then, the Public Value of the good is defined as 𝑉 =  ∑ 𝑣𝑖
𝑁
𝑖=1 , hence the estimated Public Value 

is 𝑉̂ =  ∑ 𝑐̂𝑖
𝑁
𝑖=1 . The ideal result would be proving that it is possible to minimize the 

difference|𝑉 − 𝑉̂|, which means that the model leaves little room to private exploitation under 

the assumption that 𝑉̂ represents the value of the good. Moreover, the sum of the individual 

payoffs of the agents will be called Social Payoff. 

In this work, we will further assume that  

• Costs and values are i.i.d. according to a continuous uniform distribution 𝑈(0,1), 

denoting by 𝑓𝑋(𝑥) the pdf of the values, and by 𝑓𝑌(𝑦) the pdf of the costs. 

• The decision rule is the same for all the agents and it is  

𝑎(π𝑖) = {
 1      π𝑖 ≥ 0
0     π𝑖 < 0

 

 In other words, the agents will vote ‘Yes’ for a non-negative payoff. 

4.2  WHAT TO EXPECT:  PROBABILITY OF ONE VOTE IN FAVOUR 

Moreover, it is possible to derive the distribution of the payoffs. Let X be the r.v. associated to 

values and Y be the one associated to costs, 𝑓𝑋(𝑥) is the pdf of X, 𝑓𝑌(𝑦) is the pdf of Y. So, 𝑍 =

𝑋 − 𝑌 is the r.v. representing the payoffs. Then, the cdf of Z will be 

𝐹𝑍(𝑧) = 𝑃(𝑋 − 𝑌 ≤ 𝑧) = ∬ 𝑓𝑋𝑌(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =

𝑥−𝑦≤𝑧

 

= ∫ ∫ (𝑓𝑋(𝑥) 𝑑𝑥)𝑓𝑌(𝑦) 𝑑𝑦

𝑧+𝑦

0

1

0

= 

= ∫𝐹𝑋(𝑧 + 𝑦)𝑓𝑌(𝑦) 𝑑𝑦

1

0

 

Where we used the independence of the two r.v. to write 𝑓𝑋𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦) and the fact 

that 𝑥 ≤ 𝑧 + 𝑦 to rewrite the upper limit of the integral with respect to x. The integrals range 

from 0 to 1, since 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦) are bounded in [0,1].  
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In particular, 𝑓𝑌(𝑦) = 1 for 0 < 𝑦 < 1 and 𝑓𝑋(𝑥) = 1 for 0 < 𝑥 < 1. Note that it is possible to 

write the above equations because all the hypotheses of Fubini’s theorem are satisfied (the 

preimages of both 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦) belong to a sigma-algebra). 

Now, it is possible to apply the fundamental theorem of calculus, with pertinent convergency 

hypotheses, and get 

𝑓𝑍(𝑧) =
𝑑

𝑑𝑧
∫𝐹𝑋(𝑧 + 𝑦)𝑓𝑌(𝑦) 𝑑𝑦

1

0

 = ∫𝑓𝑋(𝑧 + 𝑦) 𝑓𝑌(𝑦) 𝑑𝑦

1

0

  

In short, we can write: 

𝑓𝑍(𝑧) = ∫𝑓𝑋(𝑧 + 𝑦)𝑓𝑌(𝑦) 𝑑𝑦

1

0

 

Since both 𝑓𝑋 and 𝑓𝑌 are continuous uniform distributions ranging from 0 to 1, the integrand 

will be 1 only when both 𝑓𝑋(𝑧 + 𝑦) = 1 and 𝑓𝑌(𝑦) = 1, that is, when also 0 < 𝑧 + 𝑦 < 1  ⟹

 −𝑧 < 𝑦 < 1 − 𝑧 . Since z ranges from −1 to 1, it is useful to split the range in two cases, as 

shown in the graph 

 

Figure 3: Plot of the integral 

For -1<z<0, the upper limit is 1, and the lower limit is −𝑧. For 0<z<1 the upper limit is 1 − 𝑧, 

and the lower limit is 0. Therefore, 
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𝑓𝑍(𝑧) =

{
 
 

 
  ∫ 𝑑𝑦

1

−𝑧

   − 1 < 𝑧 < 0

∫ 𝑑𝑦
1−𝑧

0

      0 < 𝑧 < 1

 

This leads to a triangular distribution centred in 0 with pdf: 

𝑓𝑍(𝑧) = {
 1 + 𝑧    − 1 < 𝑧 < 0
1 − 𝑧         0 < 𝑧 < 1
0               𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Therefore, the probability that one agent will be voting in favour is (not surprisingly) ½. 

𝑃(𝑍 > 0) = 𝐹𝑍(0 < 𝑧 < 1) = [𝑧 − 
𝑧2

2
]
0

1

=
1

2
 

4.3  CONVERGENCE OF THE MARKOV PROCESS 

Now that we know the probability that a single agent will or won’t be voting in favour, since all 

the costs and values are drawn independently, it is possible to express the probability that 

there will be w=k positive votes (that we may also call ‘winners’) in a turn t with N citizens 

using the binomial distribution: 

𝑃𝑡(𝑤 = 𝑘) = (
𝑁

𝑘
) 𝑝𝑘(1 − 𝑝)𝑁−𝑘 = (

𝑁

𝑘
) (
1

2
)
𝑘+𝑁−𝑘

= (
𝑁

𝑘
) (
1

2
)
𝑁

 

Note that starting from a different distribution implies having a different p, therefore the first 

part of the above formula is valid even if the starting distributions of costs and values are 

different; it is only necessary to replace 𝑝 =
1

2
 with a different probability of having positive 

payoffs.  

In this specific case, from the equation above one can see that 𝑝 = 1 − 𝑝. Moreover, the 

probability of having k winners in a turn only depends on N, thus, it is possible to express the 

number of winners in a turn as 𝑘𝑡 = 𝑁𝑡 − 𝑁𝑡+1. Given this property, the model can be 

represented as a Markov process, depending on the parameter 𝑁𝑡 . Indeed,  

𝑃𝑡(𝑘𝑡) = (
𝑁𝑡

𝑁𝑡 − 𝑁𝑡+1
) (
1

2
)
𝑁𝑡

= (
𝑁𝑡
𝑁𝑡+1

) (
1

2
)
𝑁𝑡
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Thus, we can write the corresponding transition matrix P, in which the elements 𝑝𝑖𝑗 in each 

row represent the probability of getting from the state i to the state j, that is from N=i to N=j 

agents.  

𝑃(𝑁𝑡+1 = 𝑗|𝑁𝑡 = 𝑖) = 𝑝𝑖,𝑗 = (
𝑖

𝑗
) (
1

2
)
𝑖

 

𝑇 ≝ [𝑝𝑖,𝑗]𝑖,𝑗∈[1...(𝑁0
2
+1)]

 

The first row represents the end of the simulation (state thereafter denoted by ‘A’) that comes 

when the agents that replied ‘Yes’ are more than half of the total number of agents, in other 

words, when 0 ≤ 𝑁𝑡 <
𝑁0

2
 . This implies that the first row has a 1 in the first position and 0 in all 

the other entries, and that T has dimension (
𝑁0

2
+ 2) × (

𝑁0

2
+ 2), because in the original 

(𝑁0 + 1) × (𝑁0 + 1) matrix one has to replace 
𝑁0

2
 states with 1 state, so 

(𝑁0 + 1) −
𝑁0
2
+ 1 =

𝑁0
2
+ 2 

Moreover, T is lower triangular. For example, for 𝑁0 = 10 we have: 

𝑇 =

(

 
 
 
 
 

1 0 0 0 0 0 0
𝑝5,𝐴 𝑝5,5 0 0 0 0 0

𝑝6,𝐴 𝑝6,5 𝑝6,6 0 0 0 0

𝑝7,𝐴 𝑝7,5 𝑝7,6 𝑝7,7 0 0 0

𝑝8,𝐴 𝑝8,5 𝑝8,6 𝑝8,7 𝑝8,8 0 0

𝑝9,𝐴 𝑝9,5 𝑝9,6 𝑝9,7 𝑝9,8 𝑝9,9 0
𝑝10,𝐴 𝑝10,5 𝑝10,6 𝑝10,7 𝑝10,8 𝑝10,9 𝑝10,10)

 
 
 
 
 

 

Where 𝑝𝑖,𝐴 = ∑ 𝑝𝑖,𝑗
4
𝑗=0  for the law of total probability. The state A represents an absorbing 

state, that is a state from which it is not possible to get to any other. This absorbing state is the 

state to which the process converges. To see why this is the case it is sufficient to say that: 

1. A is the only absorbing state. 

2. A is reachable from every state in a finite number of steps. 

This means that there is no probability of getting out of A once it has been reached, no other 

state that share this property, and there is always a strictly positive probability of getting to A 

from every other state. These conditions are satisfied by construction; therefore, the process 
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will be absorbed by A. In this way, one can be sure that the model do not take an infinite 

amount of time.  

Given the convergency of the process, it is useful to study the expected time to absorption, that 

is, how long it takes on average for the simulation to come to an end.  

4.4  EXPECTED TIME TO ABSORPTION  

Now, to determine the expected time to absorption one needs to find the average path length 

from state 𝑁0 to the absorbing state. Denoting by τ the time to absorption, and by µ𝑖 =

𝐸[τ|𝑁𝑡 = 𝑖] the expected time to absorption starting from state i, one can write: 

µ𝑖 = 𝐸[τ|𝑁𝑡 = 𝑖] = 1 +∑ 𝑃(𝑁𝑡+1 = 𝑗|𝑁𝑡 = 𝑖)𝐸[τ|𝑁𝑡+1 = 𝑗]
𝑗

 

In fact, thanks to the total expectation theorem, it is possible to decompose the expected value 

into the conditional expected values under all possible scenarios weighted according to the 

conditional probabilities of these scenarios. Therefore, the average path length from state i to A 

is 1 plus the sum of the average path lengths to A from j (the other states reachable from i, 

which are all 
𝑁0

2
≤ 𝑗 ≤ 𝑖), weighted according to the probabilities of getting from i to j (𝑝𝑖,𝑗). 

Note that it is necessary to add 1 because for any 𝑖 ≥
𝑁0

2
  it is necessary to make at least 1 step 

to get to A, or – in other words – it is always necessary to make 1 step to get from 𝑁𝑡 to 𝑁𝑡+1 if 

one does not start in A. Consistently, if one does start in a state i, µ𝑖 = 0 for all i. Therefore, 

µ𝑖 = 1 + ∑ 𝑝𝑖,𝑗µ𝑗

𝑖

𝑗=
𝑁0
2

= 1 + ∑ (
𝑖

𝑗
) (
1

2
)
𝑖

µ𝑗

𝑖

𝑗=
𝑁0
2

= 1 + (
1

2
)
𝑖

∑ (
𝑖

𝑗
) µ𝑗

𝑖

𝑗=
𝑁0
2

 

So, by solving this linear system one can get the expected number of steps of our model, µ𝑁0 . 

Note that in the above equation j starts from 
𝑁0

2
, this means that 𝑗 ≠ 𝐴, therefore we are picking 

a submatrix of T, that we will denote by L, which is equivalent to T but without the first column 

and the first row. Thus, L has dimension (
𝑁0

2
+ 1) × (

𝑁0

2
+ 1). In the previous example where 

𝑁0 = 10, L is the following: 
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𝐿 =

(

 
 
 
 

𝑝5,5 0 0 0 0 0

𝑝6,5 𝑝6,6 0 0 0 0

𝑝7,5 𝑝7,6 𝑝7,7 0 0 0

𝑝8,5 𝑝8,6 𝑝8,7 𝑝8,8 0 0

𝑝9,5 𝑝9,6 𝑝9,7 𝑝9,8 𝑝9,9 0
𝑝10,5 𝑝10,6 𝑝10,7 𝑝10,8 𝑝10,9 𝑝10,10)

 
 
 
 

 

If we denote by m the column vector whose elements are µ𝑖  for 𝑖 ≥
𝑁0

2
 in increasing order, we 

can rewrite the above linear system in another fashion: 

𝒎 = 𝟏
(
𝑁0
2
+1)×1

+ 𝐿𝒎 

(𝑰 − 𝐿)𝒎 = 𝟏
(
𝑁0
2
+1)×1

 

𝒎 = (𝑰 − 𝐿)−𝟏𝟏
(
𝑁0
2
+1)×1

 

Where 𝟏𝑚×𝑛 denotes a matrix made of 1s with m rows and n columns, while 𝑰 is the identity 

matrix. In this way, one has to pick the last entry of the vector m to get µ𝑁0 . Note that (𝑰 − 𝐿) is 

always invertible. In fact, a triangular matrix is invertible iff all its diagonal entries (which are 

also its eigenvalues) are non-zero, which is true by construction since for all i, 𝑝𝑖𝑖 > 0. 

Given these properties, let us now dig into the code. 

5. The code 

5.1  PYTHON LIBRARIES USED AND CODE INTRODUCTION  

There exist many languages to code ABMs, but here we decided to use Python 3.7 because 

Python is used in many other applications, and it would be interesting in the future to integrate 

AB modelling with other modelling techniques such as machine learning or AI. In particular, we 

used mesa, NumPy, pandas, SciPy and SymPy libraries at their latest version.  

Mesa is a special library for agent-based models developed by researchers from George 

Mason’s University. NumPy, SciPy and SymPy are useful libraries to deal with mathematics, 

and pandas is useful to handle datasets. Documentations are presented in the bibliography. 

Mesa allows to create the agents’ class, in this case Citizen(), and model class AgentBasedCV(). 

Both these class have their own step() function. After having initialised the model, agents are 
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created, costs and values are assigned and the model starts through the 

SimultaneousActivation scheduler, which allows each citizen to make their move 

simultaneously, and then it confirms these moves through the advance() function. Each 

citizen’s vote is set to False by default. When their step() function is called, the agents change it 

to True if the payoff is non-negative. Once citizens’ choices are confirmed and collected by the 

model, it separates the positive voters from the negative voter and checks through the 

check_votes() function whether a majority has been reached. If not, the model continues by 

proposing new costs to the negative voters. When a majority is reached, the function 

get_mod_params() is called and a list of local parameters are stored in a pandas dataframe. 

The built-in batchrunner, FixedBatchRunner, allows to run the model a fixed number of times 

with a specific value of N. In the case of the results shown in Table 2, the code iterates the 

model 50 times for each value of N in RANGE. It is possible to manually set RANGE, as well as 

the “iterations” argument in the FixedBatchRunner in order to test the simulation with a 

varying number of starting agents. After each iteration, the results from get_mod_params() are 

stored in a dataframe and means are computed over all iterations. Note that both Average 

Payoff and Average Cost parameters are actually averaged twice: the first time among the 

agents of the same iteration (it is the average parameter among the agents), and the second 

time among the iterations. 

Providing a summary of the results produced: 

• Table 2 contains the results produced from the model iterated 50 times for each value of 

N. These results correspond to Python Code #1, and the RANGE used is the one specified 

therein. 

•  Figure 7 contains the results produced from the model iterated 500 times. These 

results correspond to Python Code #1 and Python Code #2. Both have been run with 

same RANGE value specified in Python Code #2. 

At the end, we store the results into an Excel table, one shown in the Appendix, the other under 

Figure 7 in section 4 of this chapter. 
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5.2  PYTHON CODE #1 

from mesa import Agent, Model 
from mesa.time import SimultaneousActivation 
from mesa.datacollection import DataCollector 
from mesa.batchrunner import FixedBatchRunner 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
 
A = 0 # Lower bound for C.U. distribution 
B = 1 # Upper bound for C.U. distribution 
RANGE = range(10, 100010+1, 1000) # Range of n, n is the starting number of citizens 
 
# Here are some useful functions 
def get_stepadvance(model): 
    """ this is a counter for steps""" 
    return model.stepadvance 
 
def pick_from_unif(a,b): 
    """ continuous uniform distribution """ 
    return ((b-a) * np.random.uniform(0,1) + a) 
 
def get_votes(model): 
    """ return a list with all the boolean votes """ 
    l = [a.vote for a in model.schedule.agents] 
    return l 
 
def print_steps(model): 
    """ collect and print model-level data in markdown """ 
    model.datacollector.collect(model) 
    d = model.datacollector.get_model_vars_dataframe() 
    print('\n' + d.to_markdown(index=False) + '\n') 
    print('Values:   ' + str(get_values(model))) 
    print('Costs:    ' + str(get_costs(model))) 
    print('Payoffs: ' + str(get_payoffs(model))) 
    print('Votes in favor: ' + str(model.votes_in_favor) + '\n') 
    print('Stepadvance: '+ str(model.stepadvance)) 
 
 
# Here we have get_params functions 
def get_sum_votes(model): 
    """ return the number of True values in votes' list """ 
    return sum(get_votes(model)) 
 
def get_costs(model): 
    """ return a list with all the costs """ 
    l = [round(a.cost, 2) for a in model.schedule.agents] 
    return l 
 
def get_values(model): 
    """ return a list with all the private values """ 
    l = [round(a.private_value, 2) for a in model.schedule.agents] 
    return l 
 
def get_payoffs(model): 
    """ return a list with all the payoffs """ 
    l = [round(a.payoff, 2) for a in model.schedule.agents] 
    return l 
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# Check votes and produce lists 
def check_votes(model): 
    """ Check if there is a majority, if so, the model stops running and parameters 
         are collected thorugh the calling of the function get_mod_params() """ 
    if model.votes_in_favor > model.num_citizens/2:  
        model.running = False 
        get_mod_params(model) 
    return 
 
def get_mod_params(model): 
    """ Get called at the end. Returns the list:  

  [Social Payoff, Avg Payoff, Social Value, Avg Cost, Steps]. 
         Two temporary lists are created for costs and payoffs. First, winners' 
         payoffs and costs are appended, then the average cost of winners is 
         computed (this will be the cost paid by those who voted against in the 
         last step). Then, payoffs and costs of the other citizens are appended and 
         the five quantities are rounded and returned.""" 
    l = [] #payoffs 
    g = [] #costs 
     
    """ Append winners' payoffs and costs in list l and g respectively """ 
    for w in model.winners: 
        l.append(round(w.payoff,2)) 
        g.append(w.cost) 
    """ Get the mean cost of these winners """ 
    avg_wcost =  round(np.mean(g),2) 
    """ Append the losers' payoffs which are equal to (value - avg_wcost) """ 
    for a in model.schedule.agents: 
        l.append(round(a.private_value - avg_wcost,2)) 
        g.append(avg_wcost) 
    return [round(sum(l),2), round(np.mean(l),2), round(sum(g),2), round(np.mean(g),2), 
model.stepadvance] 
 
# This instead is the Citizen class 
 
class Citizen(Agent): 
     
    def __init__(self, unique_id, model): 
        """ Here the Citizen class is initialized. A private value and a 
             cost are generated from a continous uniform distribution 
             ranging from A to B. The vote is set to False initially. """ 
        super().__init__(unique_id, model) 
        self.private_value = pick_from_unif(A,B) 
        self.cost = pick_from_unif(A,B) 
        self.vote = False 
 
    def advance(self): 
        """ Confirms what has been done in step(), after every citizen has voted """ 
        pass 
 
    def step(self): 
        """ Each citizen check if its payoff is non-negative and vote consequently 
             If the payoff is negative, another cost is picked to be used in the step after""" 
        self.payoff = self.private_value - self.cost 
        if self.payoff >= 0: 
            self.vote = True 
        else: 
            self.cost = pick_from_unif(A, B) 
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# The model         
 
class AgentBasedCV(Model): 
     
    def __init__(self, n): 
        """ A list of winners is initialized so that it is possible to track them. 
             The schedule is the way in which the model proceeds forward in time, it 
             is set as SimultaneousActivation, which means that all the agents will perform 
             their step() simultaneously, and then they will simultaneously confirm through 
             the advance() function the changes that they have applied. 
              
             At the beginning, we get the votes in favor because it is possible that as 
             soon as the agents are instantiated, they already have positive payoffs. 
             A model reporter is also present to track of the dynamics of the model.""" 
        self.num_citizens = n 
        self.winners = [] # winners are those who vote 'yes' 
        self.schedule = SimultaneousActivation(self) 
        self.stepadvance = 0 
         
        for i in range(self.num_citizens): # create citizens 
            a = Citizen(i, self) 
            self.schedule.add(a) 
        self.votes_in_favor = get_sum_votes(self) 
        self.running = True 
        self.datacollector = DataCollector( 
            model_reporters={"Step": get_stepadvance, "Votes": get_votes}) 
     
 
 
    def step(self): 
        """ Here, a step in the schedule means that the schedule is activated and 
             runs every agent's step(). The stepsdvance tracks the step of the model 
             instead of the step of the agents. Votes in favor are collected after the 
             agents have done their steps, and variables are collected. 
             Later, votes are checked, and winners are added to the winners' list.""" 
        self.schedule.step() 
        self.stepadvance += 1 
        self.votes_in_favor += get_sum_votes(self) 
         
        """ exclude those who voted 'yes' """ 
        for a in self.schedule.agents: 
            if a.vote: 
                self.winners.append(a) 
                self.schedule.remove(a) 
        check_votes(self) 
        return 
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# Here many simulations are carried out so, while changing the initial number of agents. Data 
are collected in pandas 
# dataframes, and averages are computed. The results are stored into an .xlsx file. 
 
means_collected = [] 
 
for n in RANGE: 
    fixed_params = {"n": n} 
    batch_run = FixedBatchRunner(AgentBasedCV, fixed_parameters=fixed_params, iterations=50, 
max_steps=1000000, model_reporters={"All": get_mod_params}) 
 
    batch_run.run_all() 
 
    data_collected = batch_run.get_model_vars_dataframe() 
    data_collected = pd.DataFrame(a for a in data_collected['All']) 
    data_collected.columns = ['Social Payoff', 'Avg Payoff', 'Public Value', 'Avg 
Cost','Steps'] 
 
    mean0 = round(data_collected['Social Payoff'].mean(),3) 
    mean1 = round(data_collected['Avg Payoff'].mean(),3) 
    mean2 = round(data_collected['Public Value'].mean(),3) 
    mean3 = round(data_collected['Avg Cost'].mean(),3) 
    mean4 = round(data_collected['Steps'].mean(),3) 
     
    means_collected.append([mean0, mean1, mean2, mean3, mean4]) 
     
means_collected = pd.DataFrame(means_collected) 
means_collected.insert(0, 'N', pd.Series(RANGE)) 
means_collected.columns = ['N', 'Social Payoff', 'Avg Payoff', 'Public Value', 'Avg 
Cost','Steps'] 
writer = pd.ExcelWriter('Final_Data.xlsx') 
means_collected.to_excel(writer, index = False, header=True) 
writer.save() 
print(means_collected) 
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5.4  PYTHON CODE #2 

import numpy as np 
from sympy import * 
import scipy.special as sp 
from fractions import Fraction 
import pandas as pd 
 
        """ The table shown in Figure 7 contains the results of 
             both Python Code #1 and Python Code #2 
             run with the same RANGE shown here.""" 
 
RANGE = range(4, 20+1, 2) 
 
def entry(n, k): 
    """ This funcion computes p(i,j), the elements of the matrix L. It returns a fraction.""" 
    return Fraction(sp.comb(n, k, exact=True), 2**(n)) 
 
 
 
def evaluate_mu(N): 
    """ This is a function that solves the linear system presented in chapter 4.4. 
         The only parameter of interest will be the last entry of the vector m. 
         Here thanks to Fraction module and SymPy it is possible to compute matrices 
         with fractions, they are approximated as floats only at the end. 
         It is not advisable to run this function with N>30, given the computation required.""" 
     
    dim = int(N/2) + 1 
    L = np.full((dim, dim), 0) 
    L = L.astype('object') 
 
    for j in range(dim-1, N+1 , 1): 
        for i in range(j, N+1 , 1): 
            r = i - (dim - 1) 
            c = j - (dim - 1) 
            L[r][c] = entry(i,j) 
             
    L = Matrix(L) 
    m = ((eye(dim) - L).inv()) * ones(dim,1) 
    for cell in m: 
        cell = float(cell) 
    return float(m[-1]) 
 
 
""" Here the expected time to absorption is computed according to the linear system shown 
    in chapter 4.4.""" 
 
mu = [] 
for N in RANGE: 
    mu.append(evaluate_mu(N)) 
 
mu_data = pd.DataFrame(mu) 
mu_data.insert(0, 'N', pd.Series(RANGE)) 
mu_data.columns = ['N', 'mu'] 
writer = pd.ExcelWriter('mu_data.xlsx') 
mu_data.to_excel(writer, index = False, header=True) 
writer.save() 
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5.4 EXPLANATION OF THE RESULTS  

As expected from the linear system presented in chapter 4 section 4, Python Code #2 produces 

number of steps required to end the model follows the expected number time to absorption 

(µ𝑁0), showing more variance when citizens are few.  

 

Figure 4: Data is the output of Python Code #1 and Python Code #2. The RANGE used for both codes is the one indicated in 
Python Code #2. Avg Steps values are the average over 500 iterations for each value of N shown above. 

 

As one can see, the average number of steps do not increase with N; on the contrary, it 

decreases until reaching a stable value at 1.5 average steps. This is because at each step half of 

the agents on average will vote positively. In other words, the ratio between negative and 

positive votes will be increasingly closer to 1 as the number of agents increases. This 

essentially confirms that the model scales efficiently relative to an increase in the initial 

number of agents. 
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Figure 5: Average number of steps vs N0. Data comes from Table 2. 

 

Plus, also the individual payoff (the average difference between costs and values after all 

citizens have paid) shows the same promising robustness as plotted below, oscillating around 

0.178. Its dactylographic appearance is due to the rounding up to 3 decimal digits.  

 

Figure 6: Average Payoff vs N0. Data comes from Table 2. 
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It is therefore evident that the average payoff is a robust result with respect to the initial 

number of agents. What about costs then? Indeed, also the average cost per capita shows a 

similar robustness, converging to approximately 0.32. This robustness also implies that the 

Public Value increases linearly with N, confirming the intuitive idea that the more people make 

use of a good, the more it should be valued.  

Note also that the data used in these plots of Figures 5, 6 and 7 come from the same simulation. 

All the figures in this section have been produced in Microsoft Excel for a better readability. 

 

Figure 7: Average Cost vs N0. Data comes from Table 2. 
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5. Concluding remarks 

5.1  ROBUSTNESS OF THE RESULTS 

The model presented in this work shows robust results. It is possible to state that the average 

payoff of an agent is approximately 0.178, which is almost a half of the average cost paid by the 

individual, 0.32. This means that the model, under its assumptions, could be a good 

compromise between public and private, since it does leave room to private exploitation but at 

the same time it does represent the value of the good (defined to be the sum of all private 

values) quite accurately.  

In fact, if the assumptions of the model hold, it could be used as a quantitative alternative to the 

more traditional approaches to contingent valuation that have been used since the present 

days, especially given the promising results of the simulations. More empirical testing is 

therefore needed in order to assess how a real sample will behave when involved into the 

survey. 

5.2  LIMITATIONS AND SUGGESTIONS FOR FURTHER 

DEVELOPMENTS 

5.2.1 From theory to practice 
Although the model shows consistent and robust results, it may suffer of two structural 

limitations that could make it problematic if applied to real circumstances.  

The first of such limitations is the impossibility for the agents not to take part to the valuation. 

In fact, it is implicitly assumed that all the agents will pay a certain amount. If not, agents have 

no personal incentive in being honest, in the same way respondents to traditional open-

question contingent valuations could just make up a number if they are not interested. So, the 

assumption that agents should pay to make results more consistent poses concerns about 

when it is legitimate to impose a cost. Naturally, if the cost is to be imposed anyway (like in the 

case of taxes or social contributions) it is presumably better to let people express their 

preferences on the cost to pay. Otherwise, one has to accept the reduced reliability of the 

outcome and proceed with purely hypothetical valuations in the standard way. 
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The second limitation of the model has to do with the proportionality of the costs imposed. 

This is especially crucial in policy applications, where income inequality is an important 

ground on which social contributions should be evaluated. Indeed, this limitation is not difficult 

to overcome, as it is possible to change the upper and lower bound of the cost distribution as 

functions of personal income. But the problem then shifts to solving the question “how much 

should the individual income matter?”. The more room is left to randomness, the more 

potentially unequal is the outcome. While the more the income conditions restrict the 

boundaries of the cost distribution, the less decisional power is left to the citizen.  

In summary, this model is to be considered as a thought-experiment that still needs to be 

studied under many other aspects. 

5.2.2 Suggestions for further developments 
In particular, we encourage a further exploration in the following directions: 

• It would be interesting to set up a comparison between this method and traditional 

contingent valuations in the outcome produced, in order to see the differences in how 

these two techniques value the same public good. 

• It would be important to give more grounding to the behavioural assumptions of the 

model, that is, how far-fetched is the idea that agents reply according to their true 

private value. It is in fact plausible that the simulation over-estimates the number of 

votes in favour for each turn, maybe because in reality people could be more cost 

averse. 

• Moreover, in order to make the model useful in public policy, it should be tested with 

different assumptions on the distributions of costs. For example, one might introduce 

lower bounds or upper bounds that are proportional to individual income. Perhaps, it 

will be possible to discover that private values are influenced to some degree by a 

change in the boundaries of the cost distribution. 

In conclusion, there are always new ways to improve existing methodologies and we hope to 

have provided in this work a potential solution to a common problem. We likewise hope to 

provide in the future other potential solutions to the great number of challenges that are still 

waiting to be overcome. 
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6. Appendix 

TABLE 2.  RESULTS CORRESPONDING TO FINAL_DATA.XLSX 

N0 Social Payoff Avg Payoff Public Value Avg Cost Avg Steps 

10 1.741 0.176 3.076 0.307 2 
1010 179.971 0.177 325.716 0.323 1.4 
2010 351.161 0.174 653.293 0.325 1.4 
3010 542.123 0.179 956.54 0.318 1.6 
4010 697.417 0.174 1299.283 0.324 1.4 
5010 858.513 0.17 1651.081 0.33 1.2 
6010 1101.567 0.184 1898.746 0.316 1.7 
7010 1235.084 0.176 2274.532 0.324 1.4 
8010 1413.311 0.178 2574.611 0.321 1.5 
9010 1583.151 0.177 2905.47 0.322 1.5 

10010 1765.526 0.178 3244.652 0.324 1.4 
11010 1912.896 0.174 3595.572 0.326 1.3 
12010 2219.676 0.187 3770.719 0.313 1.9 
13010 2301.051 0.179 4194.496 0.321 1.5 
14010 2483.223 0.177 4512.102 0.322 1.5 
15010 2679.928 0.18 4816.563 0.32 1.5 
16010 2837.723 0.179 5161.976 0.322 1.5 
17010 3020.618 0.177 5496.569 0.323 1.5 
18010 3216.068 0.177 5786.094 0.321 1.6 
19010 3373.523 0.178 6121.393 0.321 1.5 
20010 3640.362 0.182 6370.459 0.318 1.7 
21010 3816.345 0.182 6697.196 0.318 1.7 
22010 3974.039 0.181 7030.629 0.319 1.7 
23010 3974.733 0.173 7540.055 0.327 1.3 
24010 4199.316 0.176 7810.31 0.325 1.3 
25010 4466.598 0.179 8054.195 0.321 1.5 
26010 4799.109 0.186 8199.168 0.314 1.8 
27010 4699.118 0.174 8805.383 0.326 1.4 
28010 4978.866 0.179 9021.481 0.321 1.5 
29010 5060.676 0.175 9447.594 0.325 1.3 
30010 5396.973 0.181 9602.001 0.319 1.6 
31010 5665.975 0.184 9836.647 0.316 1.7 
32010 5641.544 0.176 10390.456 0.324 1.4 
33010 5756.948 0.176 10738.81 0.324 1.3 
34010 5966.074 0.176 11035.841 0.324 1.4 
35010 6311.581 0.181 11192.675 0.318 1.6 
36010 6275.196 0.176 11710.616 0.324 1.3 
37010 6743.11 0.184 11759.316 0.316 1.7 
38010 6848.79 0.182 12153.022 0.318 1.6 
39010 6715.282 0.173 12801.096 0.327 1.2 
40010 7100.437 0.179 12889.887 0.321 1.5 
41010 7194.51 0.176 13296.424 0.323 1.4 
42010 7594.035 0.181 13454.442 0.319 1.6 
43010 7698.716 0.18 13785.486 0.32 1.6 
44010 8028.213 0.184 13967.417 0.316 1.7 
45010 8272.323 0.185 14208.882 0.315 1.8 
46010 8087.512 0.177 14909.149 0.323 1.4 
47010 8489.337 0.182 15004.463 0.318 1.6 
48010 8664.79 0.182 15336.382 0.318 1.6 
49010 8930.171 0.184 15547.275 0.316 1.7 
50010 8881.462 0.179 16115.477 0.321 1.5 
51010 9068.901 0.179 16435.465 0.321 1.5 
52010 8972.356 0.173 17060.331 0.327 1.2 
53010 9630.952 0.183 16872.107 0.317 1.7 
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N0 Social Payoff Avg Payoff Public Value Avg Cost Avg Steps 

54010 9627.985 0.18 17359.701 0.32 1.5 
55010 10027.058 0.184 17468.847 0.316 1.7 
56010 9777.764 0.175 18275.454 0.325 1.3 
57010 10105.923 0.178 18396.144 0.322 1.5 
58010 10025.183 0.174 18991.333 0.326 1.2 
59010 10500.642 0.179 18978.974 0.321 1.5 
60010 10816.87 0.182 19166.258 0.318 1.6 
61010 10872.306 0.179 19634.918 0.321 1.5 
62010 11190.187 0.182 19830.959 0.318 1.6 
63010 11377.911 0.182 20140.62 0.318 1.6 
64010 11371.333 0.179 20604.903 0.321 1.5 
65010 11681.013 0.181 20797.784 0.319 1.6 
66010 11700.377 0.179 21277.509 0.321 1.5 
67010 11724.699 0.176 21782.876 0.324 1.4 
68010 12111.718 0.18 21872.228 0.32 1.5 
69010 12297.012 0.179 22237.076 0.321 1.5 
70010 12648.687 0.182 22307.871 0.318 1.7 
71010 12608.333 0.178 22903.726 0.322 1.5 
72010 12709.736 0.178 23296.249 0.322 1.4 
73010 12564.152 0.173 23952.561 0.327 1.2 
74010 13173.759 0.18 23808.206 0.32 1.5 
75010 13217.087 0.178 24292.18 0.322 1.4 
76010 13518.099 0.18 24430.025 0.32 1.5 
77010 13666.353 0.179 24807.875 0.321 1.5 
78010 13998.736 0.181 25000.409 0.319 1.6 
79010 14232.146 0.182 25231.122 0.318 1.6 
80010 14068.238 0.177 25949.224 0.323 1.4 
81010 13800.131 0.171 26713.616 0.329 1.1 
82010 14774.792 0.182 26253.716 0.319 1.6 
83010 15078.11 0.183 26395.31 0.317 1.7 
84010 15324.386 0.184 26659.794 0.316 1.7 
85010 14443.234 0.171 28069.579 0.329 1.1 
86010 15163.48 0.178 27806.855 0.322 1.4 
87010 15665.558 0.182 27806.666 0.318 1.6 
88010 15509.684 0.177 28525.623 0.323 1.4 
89010 15652.374 0.177 28890.2 0.323 1.4 
90010 15862.768 0.178 29136.327 0.322 1.4 
91010 15591.792 0.172 29986.33 0.328 1.1 
92010 16184.412 0.177 29850.024 0.323 1.4 
93010 16503.801 0.179 29953.472 0.321 1.5 
94010 16393.403 0.175 30670.022 0.325 1.3 
95010 17284.413 0.184 30178.447 0.316 1.7 
96010 16970.649 0.178 31042.069 0.322 1.4 
97010 17307.735 0.18 31193.453 0.32 1.5 
98010 17293.122 0.178 31751.24 0.322 1.4 
99010 17469.323 0.178 32046.937 0.322 1.4 

100010 17790.542 0.18 32202.932 0.32 1.5 

 

Table 2: Results from model simulations with varying number of initial agents. Each of these values, except N0, is an average 
over 50 iterations. 

  



39 
 

7. Bibliography 
 

1. Arrow K, Solow R, et al. (1993). “Report of the NOAA panel on contingent valuation”. 

https://edisciplinas.usp.br/pluginfile.php/4473366/mod_folder/intro/Arow_WTP.pdf. 

Retrieved Sep 2021. 

2. Axelrod R, Ford GR, Riolo RL, Cohen MD. (2002). “Beyond geography: cooperation with 

persistent links in the absence of clustered neighborhoods”. Pers Soc Psychol Rev, 

6:341–346. 

3. Axelrod R. (1997). “The Complexity of Cooperation: Agent-based Models of Competition 

and Collaboration”. Princeton, NJ: Princeton University Press. 

4. Axtell R. (2011). “Modeling the Economy with 150 Million Agents”. TEDxUVM. 

https://www.youtube.com/watch?v=V_sGz4FcuPA&ab_channel=TEDxTalks. Retrieved 

Sep 2021. 

5. Baumgaertner B. (2018). “Models of Opinion Dynamics and Mill-Style Arguments for 

Opinion Diversity”. Historical Social Research 43 (1): 210-33. 

6. Boero R, Bravo G, Castellani M, Squazzoni F. (2010). “Why bother with what others tell 

you? An experimental data-driven agent-based model”. J Artif Soc Soc Simul, 13(3):6. 

7. Boltanski L, Esquerre A, and Muniesa F. (2015). “Grappling with the economy of 

enrichment”. Valuation Studies, vol. 3, no. 1, 75–83. 

8. Bonabeau E. (2002). “Agent-based modeling: Methods and techniques for simulating 

human systems”. Proceedings of the National Academy of Sciences 99 (suppl 3): 7280-7. 

9. Carson R T, Mitchell R C, et al. (1992). "A Contingent Valuation Study of Lost Passive Use 

Values Resulting from the Exxon Valdez Oil Spill;" A Report for the Attorney General of 

the State of Alaska. 

10. Carson R T. (2000). “Contingent valuation: a User’s Guide”. Environmental Science & 

Technology 34 (8), 1413-1418. 

11. Ciriacy-Wantrup, S. V. (1947). “Capital Returns from Soil-Conservation Practices. 

Journal of Farm Economics”. 29(4), 1181–1196.  

12. Coleman J S. (1964). “Introduction to Mathematical Sociology”. New York: MacMillan. 

13. Coleman J S. (1964). “Mathematical models and computer simulation”. Handbook of 

Modern Sociology. Chicago IL: Rand McNally & Co. 

14. Deissenberg C, van der Hoog S, Dawid H. (2008). “EURACE: A massively parallel agent-

based model of the European economy”. Applied Mathematics and Computation. 

2008;204(2):541-552. 

15. Dütting P, Feng Z, et al. (2020). “Optimal Auctions through Deep Learning”. arXiv e-

prints: arXiv:1706.03459v5. Retrieved Sep 2021. 

16. Epstein J M, Axtell R. (1996). “Growing Artificial Societies: Social Science from the 

Bottom Up”. Washington, DC: Brookings Institution Press. 

17. Epstein J M. (2006). “Generative Social Science: Studies in Agent-Based Computational 

Modeling”. Princeton, NJ: Princeton University Press. 

18. Games, M. (1970). “The fantastic combinations of John Conway’s new solitaire game 

“life” by Martin Gardner”. Scientific American, 223, 120–123. 

https://edisciplinas.usp.br/pluginfile.php/4473366/mod_folder/intro/Arow_WTP.pdf
https://www.youtube.com/watch?v=V_sGz4FcuPA&ab_channel=TEDxTalks


40 
 

19. Halvorsen B, Sœlensminde K. (1998). “Differences between Willingness-to-Pay 

Estimates from Open-Ended and Discrete-Choice Contingent Valuation Methods: The 

Effects of Heteroscedasticity”. Land Economics, 74(2), 262–282.  

20. Hammond R A, Axelrod R. (2006). “Evolution of contingent altruism when cooperation 

is expensive”. Theor Popul Biol, 69:333–338.  

21. Hayek F A. (1945). “The Use of Knowledge in Society.” American Economic Review 35, 

no. 4: 519–530. 

22. Hegselmann R, Krause U. (2002). “Opinion dynamics and bounded confidence: models, 

analysis and simulation.”. Journal of Artificial Societies and Social Simulation vol. 5, no. 

3. https://www.jasss.org/5/3/2.html. Retrieved Sep 2021. 

23. Hinch R, Probert W J M, Nurtay A, Kendall M, et al. (2020). “OpenABM-Covid19 - an 

agent-based model for non-pharmaceutical interventions against COVID-19 including 

contact tracing”. medRxiv: 2020.09.16.20195925. 

24. Jevons W S. (ed. 1888). The Theory of Political Economy. 3rd ed., London: Macmillan. 
25. Klein D, Marx J, & Fischbach K. (2018). “Agent-Based Modeling in Social Science, History, 

and Philosophy: An Introduction”. Historical Social Research, 43(1), 7-27.  

26. Lindahl E. (ed. 1958). “Die Gerechtigkeit der Besteuering. Lund: Gleerup”. reprinted as 

“Just taxation – a positive solution”, in Classics in the Theory of Public Finance, ed. R.A. 

Musgrave and A.T. Peacock, London: Macmillan. 

27. Menger C. (ed. 1994). “Principles of Economics”. Grove City, Penn.: Libertarian Press. 

28. Mesa documentation: https://mesa.readthedocs.io/en/master/overview.html. 

Retrieved Sep 2021. 

29. Mises L. (ed. 2003). “Epistemological Problems of Economics”, 3rd ed. Ludwig von Mises 

Institute. 

30. Nagel K, Rasmussen S. (1995). “Traffic at the Edge of Chaos”. arXiv e-prints: arXiv:adap-

org/9502005v1. Retrieved Sep 2021. 

31. NumPy documentation: https://numpy.org/doc/. Retrieved Sep 2021. 

32. Palmer R G, Arthur WB, et al. (1999). “An artificial stock market”. Artificial Life Robotics. 

3:27-31. 

33. Pandas documentation: https://pandas.pydata.org/docs/. Retrieved Sep 2021. 

34. Randall A, Ives B, Eastman C. (1974). “Bidding games for valuation of aesthetic 

environmental improvements". Journal of Environmental Economics and Management. 

Elsevier. vol. 1(2), 132-149.  

35. Sagoff M. (1998). “Aggregation and deliberation in valuing environmental public goods:: 

A look beyond contingent pricing”. Ecological Economics, vol. 24. Issue 2-3: 213-230. 

Elsevier. 

36. Scheller, Simon. (2018). “When Do Groups Get It Right?”. Historical Social Research 43 

(1): 89-109. 
37. Schelling T C. (1971). “Dynamic Models of Segregation”. J Math Sociol. ch. 1. 

38. Schmitt J, Franzmann ST. (2018). “A Polarizing Dynamic by Center Cabinets? The 

Mechanism of Limited Contestation”. Historical Social Research 43 (1): 168-209. 

39. Smith, A. (2002). “The Wealth of Nations”. Oxford, England: Bibliomania.com Ltd. [Web.] 

Retrieved from the Library of Congress, https://lccn.loc.gov/2002564559, as of Sep 

2021. 

https://www.jasss.org/5/3/2.html
https://mesa.readthedocs.io/en/master/overview.html
https://numpy.org/doc/
https://pandas.pydata.org/docs/
https://lccn.loc.gov/2002564559


41 
 

40. Sraffa P. (1960). “Production of Commodities by Means of Commodities - Prelude to a 

Critic of Economic Theory”. Cambridge: Cambridge University Press. 

41. Stegmüller W. (1983). Probleme und Resultate der Wissenschaftstheorie und 

analytischen Philosophie. 1, C: Erklärung, Begründung, Kausalität: Historische, 

psychologische und rationale Erklärung. Verstehendes Erklären. Berlin, Heidelberg, 

New York: Springer. 

42. Sung-Yoon Huh, et al. (2015). “The economic value of South Korea׳s renewable energy 

policies (RPS, RFS, and RHO): A contingent valuation study”. Renewable and Sustainable 

Energy Reviews, vol. 50: 64-72. 

43. SymPy documentation: https://docs.sympy.org/latest/index.html. Retrieved Sep 2021. 

44. Tesfatsion L. (2017). “Modeling Economic Systems as Locally-Constructive Sequential 

Games”. Economics Working Paper 17022. Journal of Economic Methodology 24 (4): 

384-409. 

45. Tsoulfidis L. (1998). “Ricardo’s theory of value and Marx’s critique”. History of 

Economic Ideas, 6(2), 69–88.  

46. Walras, Léon. (ed. 1952). “Eléments d’Economie Politique Pure ou Théorie de la 

Richesse Sociale”. Paris: Librairie Générale du Droit et de Jurisprudence. 

47. Weisberg M, Muldoon R. (2009). “Epistemic Landscapes and the Division of Cognitive 

Labor”. Philosophy of Science 76:2, 225-252. 

48.  Willis K G, Garrod G D, Harvey D R. (1998). “A review of cost–benefit analysis as applied 

to the evaluation of new road proposals in the U.K.”. Transportation Research Part D: 

Transport and Environment, vol. 3. Issue 3: 141-156. 

49. Willis K G, Garrod GD. (1993).  “Valuing Landscape: a Contingent Valuation Approach”. 

Journal of Environmental Management. vol. 1 (37). Issue 1, 1-22. 


