


 
 

 

 



 
 

 

 

 

 

 

 

 

 

 

Alla Sig. Luigina, che ammirava il mio percorso 

dando rilievo ad ogni mio piccolo passo; 

 

Ai miei Nonni, mentori e promotori di diligenza;   

 

A mia madre e mio padre, fonti di saggezza e 

perspicacia, elementi chiave del mio traguardo;  

 

A mia sorella, compagna di vita ed infinita 

sorgente di felicità e spensieratezza; 

 

A Serena, amorevole sostenitrice e complice 

essenziale del percorso di studi fin dall’infanzia;  

 

Agli amici di sempre, Andrea e Federico, fidati alleati 

di avventure, sapienti consiglieri e stimatori. 

 

 

 

 



 
 

  



TABLE OF CONTENTS   

 
 

  

TABLE OF CONTENTS 

INTRODUCTION .......................................................................................................... 5 

1. MACHINE LEARNING: A REAL-WORLD PERSPECTIVE ............................. 7 

1.1 FinTech Revolution .......................................................................................... 7 

1.1.1 Machine Learning progress ............................................................................... 8 

1.2 Stock Market Prediction ................................................................................. 9 

1.2.1 Literature review .............................................................................................. 10 

1.3 Research Objective ........................................................................................ 14 

2. BOOSTED REGRESSION TREES FORECASTING FRAMEWORK ............ 18 

2.1 Modern Portfolio Theory .............................................................................. 18 

2.2 Decision Tree Learning ................................................................................. 22 

2.2.1 Boosting ........................................................................................................... 25 

2.3 Conditioning Information ............................................................................. 28 

2.3.1 Conditional Stock Returns estimates ............................................................... 29 

2.3.2 Conditional Volatility estimates ...................................................................... 29 

2.4 Predicting Optimal Portfolio Allocations .................................................... 30 

3. OUT-OF-SAMPLE EMPIRICAL APPLICATION’S RESULTS ...................... 33 

3.1 Data ................................................................................................................. 33 

3.2 Two Step BRT Model .................................................................................... 38 

3.2.1 Return ............................................................................................................... 38 

3.2.2 Volatility .......................................................................................................... 42 

3.2.3 Optimal Portfolio Weights ............................................................................... 45 

3.3 One Step BRT Model ..................................................................................... 47 

3.4 Portfolio Allocation Performance ................................................................. 49 

3.4.1 Mean-Variance Investor’s Utility Value Perspective ...................................... 53 

CONCLUSION ............................................................................................................. 56 

REFERENCES ............................................................................................................. 58 

APPENDIX ................................................................................................................... 66



INTRODUCTION   

5 
 

  

INTRODUCTION 

This study aims to clarify the growing role of Machine Learning techniques in the 

financial industry and in particular in asset pricing. We have a deep investigation on how 

a representative mean-variance investor should exploits publicly available information to 

formulate forecasting on excess return and volatility as well as optimal portfolio 

allocations. 

We employ a semi-parametric method known as Boosted Regression Tree (BRT) to 

forecast European market returns and volatility at the monthly frequency. BRT is a 

statistical method that generates previsions basing on a large set of conditioning 

information without imposing strong parametric assumptions such as linearity or 

monotonicity.  

In our research we identify the ability of macroeconomic and financial variables to 

incorporate conditioning information about expected stock returns and volatility that a 

mean-variance investor could exploit. By using Python as programming language, we 

start by forecasting separately both excess return and volatility of the market index and 

compare the results of the BRT-method with the benchmarks. Our findings highlights the 

overperformance of BRT forecasts with a more significant market timing. 

Subsequently, we test BRT from an asset allocation perspective with the aim to select 

optimal portfolio weights from excess returns and volatilities forecasts obtained, as well 

as through a direct BRT selection. Tests of optimal portfolio weights predictability 

demonstrate that portfolio allocations are time-varying and forecastable with a better 

performance of the one-step BRT compared to the statistical methods adopted as 

benchmark. 

At the end, we evaluate whether the forecasts are economically valuable by computing 

the realized utilities level obtained by the investor by comparing BRT-based strategies 

and passive ones. Again, our results demonstrate the greater performance of the BRT-

based model against the passive strategies. 

Our paper contributes to the long-standing literature assessing the predictability of stock 

returns and helps justify the growing role of ML throughout the architecture of the 

burgeoning FinTech industry. We demonstrate that extending the highly non-linear 

conditioning information set results in an higher out-of-sample predictive accuracy and 
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subsequently to a better forecast compared to standard statistical models of the literature 

adopted as benchmarks.
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CHAPTER 1 

Machine learning: a real-world perspective 

 

Summary: 1 – Fintech Revolution. –  

2 – Stock Market Prediction. – 3 – Research Objective. 

 

 

1.1 FinTech Revolution 

Disruptions have transformed many sectors and in last years have started to affect the 

financial one as well and becoming the most influential business idea of the early 21st 

century. The disruptive terminology was defined and first analysed by the American 

scholar Clayton M. Christensen and his collaborators in 1995. It expresses an innovation 

that creates a new market and value network and eventually disrupts the existing ones, 

displacing established market-leading firms, products, and alliances (Ab. Rahman, Airini 

et al., 2017). 

In recent years, the leading disruptive technology in the financial sector is the so-called 

Financial Technology (FinTech). FinTech firms are companies that use technology for 

banking, payments, financial data analytics, capital markets and personal financial 

management (Huang, 2015). Global FinTech investment are continues to rise. According 

to the Pulse of Fintech H20201, overall global FinTech funding across M&A, PE and VC 

was $105 billion across 2,861 deals in 2020: the third highest level of investment in 

fintech ever. FinTech companies are entering into a disruptive revolution due to their new 

alternatives that enhance the efficiency and quality of services. 

 

 

 

 
1 Bi-annual report on global fintech investment trends published by KPMG. 
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1.1.1 Machine Learning progress  

Machine learning (ML) tools are gaining popularity in the FinTech sector, as can be 

seen in figure 1.1. 

 
Fig. 1.1: Trends in the FinTech industry 

  Source: Mediant Investor Communication, 2019 

 

There are many machine learning applications in finance, including for banking and credit 

offerings, payments and remittances, asset management, personal finance, regulatory and 

compliance services.  

Machine learning algorithms in FinTech are definitely better fortune tellers than any 

human. Historical data is only the grounds on which predictions are made, because  such 

algorithms are also able to monitor data sources available in real time, such as news or 

trade results, to reveal patterns indicating stock market dynamics and, for sure, making 

forecasting. The task left to traders is to determine which ML algorithms to include in 

their strategies, make a trading forecast, and choose a behavioural pattern. 

Following Alpadyn (2004) , we define Machine Learning as programming the computers 

to optimize a performance criterion using training data or past experience. In detail, we 

use the term of Machine Learning in order to describe a collection of high-dimensional 

models for statistical prediction, combined with both the so called “regularization” 

methods2 for model selection and mitigation to overfit, and efficient algorithms3 for 

searching among an huge number of potential model specifications. Therefore, ML is 

suited for empirical asset pricing according to three main reasons: first, it is specialized 

 
2 Refinements in implementation that emphasize stable out-of-sample performance to guard against overfit. 
3 Clever ML tools designed to approximate optimal specification with manageable computational lost. 
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for prediction tasks, so ideally for the risk premium measurement; second, it is able to 

reduce the degrees of freedom and to condensate redundant variation among predictors 

for the risk premium; third, it includes a wide net in its specification search, as well as it 

is designed to approximate complex non-linear associations of the high-dimensional 

predictors and it is able to avoid overfit biases and false discovery through parameter 

penalization and conservative model selection criteria (Gu et al., 2018). 

 

1.2 Stock Market Prediction 

Information plays a central role in modern finance. Investors faces an ever-increasing 

number of new facts, data and statistics every minute of the day. Assessing the 

predictability of stock returns requires formulating risk premium4  forecasts on the basis 

of large sets of conditioning information, but conventional statistical methods fail in such 

circumstances. In some cases, Machine learning techniques double the performance of 

leading regression-based strategies from the literature and trace their predictive gains to 

allowing non-linear predictor interaction missed by other methods (Gu et al., 2018).  

Risk premium prediction is the fundamental goal from an asset pricing point of view. For 

a long time, it was believed that stock returns were not forecastable according to the 

Random Walk hypothesis5 (Malkiel and Fama 1970; Malkiel and Burton 2003) and the 

Efficient Market hypothesis6 (Jensen 1978) which assess that it is impossible to make 

economic gains if the market is efficient compared to a current information. Therefore, if 

it is impossible to outperform the market owing to the randomness in stock prices, 

economic profits cannot rise.  

Stock market trends are almost dynamic, non-parametric7, chaotic and noisy in nature 

making investments intrinsically risky. These fluctuations are prominent in the short-run 

and tend to develop linear trends in the long-run. Market risk and forecasting errors are 

 
4 Conditional expected stock returns in excess to the risk-free rate. Academic finance traditionally refers to 

this quantity as the “risk premium” because of its close connection with equilibrium compensation for 

bearing equity investment risk. We use the terms “expected return” and “risk premium” interchangeably. 
5 Random walk theory suggests that changes in stock prices have the same distribution and are independent 

of each other. Random walk theory infers that the past movement or trend of a stock price or market cannot 

be used to predict its future movement. 
6 The efficient-market hypothesis  is an hypothesis in financial economics that states that asset prices reflect 

all available information. 
7 A model is "non-parametric" if all the parameters of the regression are in infinite-dimensional spaces. 
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strongly correlated each other and they need to be minimized. If expected returns were 

perfectly observed, investors will be able to increase their financial performance by 

minimizing risks. Unfortunately, risk premiums are notoriously difficult to measure due 

to the huge amount of unforecastable news that affects the daily market. Because of its 

complex and dynamic nature, predicting accurately trends in stock market prices has 

always been a challenge of interest for researchers and practitioners. 

Last decades have seen the use of the increasingly powerful computational abilities to 

rise. Given different market situations, quantitative investment strategies have the 

advantage of not being impacted by the human emotions which Keynes in his general 

theory sees as "animal spirits [...] spontaneous urge to action rather than inaction, and not 

as the outcome of a weighted average of quantitative benefits multiplied by quantitative 

probabilities". For this reason, human mind started to exploit ML techniques through for 

example the so called robo-advisors by seeking low-cost and automated investment 

advice. These allow investors to set up customized portfolios and give access to other 

wealth management services such as retirement income planning, portfolio tax efficiency 

and, in particular, cash flow forecasting, being superior to human financial advisors, as 

the latter have been shown to display behavioural biases and cognitive limitations 

(Linnainmaa, et al., 2018). As a result, robo-advisors are quickly attracting attention from 

policymakers and investors who need less effort to manage their investment portfolio 

(Rossi and Utkus, 2021). 

 

1.2.1 Literature review 

Our work contributes to the finance and economics literatures on stock return prediction 

which has already made a large number of attempts to add evidence of stock returns and 

volatility by developing itself during the years.  

Starting from the Capital Asset Pricing Model8 (CAPM), nowadays we are arrived at 

more complex and efficient methods for stock return prediction through ML techniques. 

Literature comes from in two basic strands: cross-sectional (i.e. observations that come 

from different individuals or groups at a single point in time) and time-series (i.e. set of 

 
8 It assumes that asset’s beta with respect to the market portfolio is a sufficient statistic for the cross section 

of expected returns. See Sharpe (1964), Lintner (1965), and Mossin (1966). 
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observations collected at usually discrete and equally spaced time intervals) regressions 

of future stock returns9.  

In the first strand, a relevant contribution is given by Fama and French (1992) with a 

three-factor model composed by market return and only 2 factors: size risk and a value 

risk able to explain cross section of stock returns. Following the publication of Fama and 

French (1992), many researchers tried to identify new characteristics10 and factor not 

explained by the three-factor model. They tried to ask the question “Which characteristics 

really matter  by providing independent information about returns?”. In order to find 

these, researchers first have to identify a subset of candidate predictors and then, they 

have to estimate the quality of these predictors. Authors in this literature usually consider 

their proposed return predictor in isolation without conditioning on previously discovered 

return predictors11, in particular by employing Fama and MacBeth (1973) regressions12 

to combine the information in multiple characteristics. See for instance Harvey et al. 

(2015), Lewellen (2015), McLean and Pontiff (2016) and Green et al. (2017) who 

considering a comprehensive set of 94 firm characteristic conclude that relatively few 

characteristics affect cross-sectional value-weighted expected return. In addition, Han et 

al. (2019) re-examine the information content of the 94 firm characteristics by applying 

a robust forecast combination approach to the cross section of returns. 

Gagliardini, Ossola, and Scaillet (2016) develop a weighted two-pass cross-sectional 

regression method to estimate risk premium from an unbalanced panel of individual 

stocks. Giglio and Xiu (2016) instead use a three-pass regression method that combines 

principal component analysis13 (PCA) and a two-stage regression framework to estimate 

consistent14 factor risk premium also when not all factors in the model are specified. 

 
9 There are also papers that combine elements from both cross-sectional and timeseries regressions; see 

Back et al. (2015), Baker et al. (2017), and Feng et al. (2017). 
10 Size, Market Value, Asset Growth, Momentum, ROA, ROE, Leverage, Beta, Risks etc. 
11 See DeMiguel, Martin-Utrera, Nogales, and Uppal (2016) who extend the parametric portfolio approach 

of Brandt et al. (2009) to study which characteristics provide valuable information for portfolio 

optimization. 
12 The Fama–MacBeth regression is a method used to estimate parameters for asset pricing models such as 

the CAPM. The method estimates the betas and risk premium for any risk factors that are expected to 

determine asset prices. 
13 Data simplification technique used in factor model to reduce the number of variables describing a set of 

data to a smaller number of latent variables, limiting the loss of information as much as possible. PCA has 

been usen to find asset pricing factors among others by Connor and Korajczyk (1988), Connor and 

Korajczyk (1993), Kozak et al. (2017), Kelly et al. (2017) and Fan et al. (2016). 
14 An estimator is consistent if, as the information increases, i.e. the sample size, its probability distribution 

is concentrated in correspondence with the value of the parameter to be estimated. 
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Kelly, Pruitt, and Su (2017) generalize standard PCA to allow for time-varying loadings15 

and extract common factors from the universe of individual stocks. Light et al. (2017) use 

partial least squares (PLS) to aggregate information on firm characteristics. Huang et al. 

(2018) demonstrate that in pricing portfolios a reduced-rank approach (RRA) outperforms 

the Fama-French five-factor model. In addition, among others, Bryan et al. (2018) 

proposed the Instrumented Principal Component Analysis (IPCA), that allows for latent 

factors and time-varying loadings16. 

Conversely, in the second strand (i.e. time-series regressions) we can find Welch and 

Goyal (2008), Koijen and Nieuwerburgh (2011), Rapach, Strauss, and Zhou (2010)17 and 

Rapach and Zhou (2013). In particular, Welch and Goyal (2008) find that numerous 

economic variables with in-sample predictive ability18 for the equity premium fail to 

deliver consistent out-of-sample forecasting gains relative to the historical average. 

Before them,  in-sample test has already generated several doubts regarding their accuracy 

because regressors considered are very persistent19 (i.e. the value of the variable at a 

certain date is closely related to the previous value) and data snooping bias (i.e. when 

exhaustively searching for combinations of variables, the probability that a result arose 

by chance grow with the number of combinations tested) is a concern if researchers who 

test for many model specifications report only the significant ones, being less severe 

compared to out-of-sample ones20. Furthermore, in-sample analysis could be interest only 

from an econometric point of view due to its ex-post assessment, instead out-of-sample 

tests better help investors to exploit conditioning information for return predictability in 

real time by choosing ex-ante models21. 

Due to these advantages, a growing body of literature has developed out-of sample tests. 

See for instance Pesaran and Timmermann (1995, 2000), Bossaerts and Hillion (1999), 

 
15 Factor loadings are correlation coefficients between observed variables and latent common factors. 
16 PCA has problems identifying factors with a small variance that are important for asset pricing. See also 

Lettau and Pelger (2018). 
17 They show that combination forecast acts as a shrinkage device, so mitigating overfitting and improving 

time-series forecast of risk premium. 
18 Roze (1984), Fama and French (1988), Campbell and Shiller (1988a,b), Kothari and Shanken (1997) and 

Ponti and Schall (1998) find that valuation ratios predict stock returns, particularly so at long horizons; 

Fama and Schwert (1977), Keim and Stambaugh (1986), Campbell (1987), Fama and French (1989), 

Hodrick (1992) show that short and long-term treasury and corporate bonds explain variations in stock 

returns; Lamont (1998), Baker and Wurgler (2000) show that variables related to aggregate corporate 

payout and financing activity are useful predictors as well. 
19 See Nelson and Kim (1993), Stambaugh (1999), Campbell and Yogo (2006) and Lewellen et al. (2010). 
20 See Lo and MacKinlay (1990), Bossaerts and Hillion (1999) and Sullivan et al. (1999). 
21 For exceptions, see Dangl and Halling (2008) and Johannes et al. (2009). 
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Marquering and Verbeek (2005), Campbell and Thompson (2008), Goyal and Welch 

(2003).  Nevertheless, results by out-of-sample studies are also related to the model 

specification and the conditioning variables employed, such as the data frequency22. 

Many literatures are focused for simplicity on simple linear regression forecasting 

without considering that most asset pricing theories do not imply linear relationships 

between the equity premium and the predictor variables23. Approaching the forecasting 

through standard non-parametric methods is generally not a viable option because these 

methods encounter “curse-of-dimensionality” problems when the size of the conditioning 

information set increases, so overfitting concerns24. In addition, another consideration has 

to be made for transaction costs associated with trading individual characteristics in order 

to optimize investor’s portfolio. Papers have found that combining characteristics helps 

to reduce transaction costs25. Frazzini et al. (2015) explains that value and momentum26 

trades tend to offset each other, resulting in lower turnover which has real transaction 

costs benefits. DeMiguel et al (2019) show how transaction costs change the number of 

jointly significant characteristics for an investor’s optimal portfolio, so changing the 

dimension of the cross section of stock returns. 

In general, traditional statistical methods as regressions and portfolio sorts are ill-suited 

to handle the large numbers of predictor variables the literature has accumulated over 

these years. ML tools help to overcome these issues, helping researchers to analyse Big 

Data. For this reason, the theoretical framework for ML algorithms started to be studied. 

The most popular machine learning technique is the penalized regressions called “least 

absolute shrinkage and selection operator” (Tibshirani 1996, LASSO)27. The main 

characteristic of this method is to avoids the overfitting  problem by using a penalty 

function that reduces regression coefficients to zero. This technique appears for the first 

time in finance with Repach et al. (2013) to predict monthly cross-sectional returns using 

 
22 Stock returns are found to be more predictable at quarterly, annual or longer horizons, while returns at 

the monthly frequency are generally considered the most challenging to predict. 
23 It follows that misspecification implied by linear regressions is economically large as well as training 

dataset overfitting. In fact, that simpler predictive regressions perform better out-of-sample due to 

overfitting (DeMiguel, Garlappi, and Uppal, 2009).  
24 The common practice is to use linear models and reduce the dimensionality of the forecasting problem 

by way of model selection and/or data reduction techniques, but these methods exclude large portions of 

the conditioning information set and therefore potentially reduce the accuracy of the forecasts. 
25 See, among others, Korajczyk and Sadka (2004), Barroso and Santa-Clara (2015), Novy-Marx and 

Velikov (2016) and Chen and Velikov (2017) 
26 Rate of acceleration of a security's price. It means the speed at which the price is changing. 
27 See Hastie, Tibshirani, and Friedman (2001) for a general introduction. 
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lagged returns of all countries and was then practiced by many other several researchers. 

See Goto and Xu (2015), Huang and Shi (2016), Chinco et al.(2018) and Messmer and 

Audrino (2017). More recently, Gu et al. (2019) employ LASSO to analyze the time-

series predictability of monthly individual stock returns, while Chinco et al. (2019) use 

the LASSO to predict individual stock returns one minute ahead using the entire cross-

section of lagged returns as candidate predictors. Freyberger et al. (2019) apply a non-

parametric version of the LASSO to study which characteristics provide incremental 

information for the cross-section of expected returns, instead Kozak et al. (2019) use the 

LASSO in a Bayesian context to model the stochastic discount factor based on a large 

number of firm characteristics. 

In addition to these famous ML tool, several papers apply neural networks to forecast 

derivatives prices28. More recently, also Deep Learning solutions have been developed. 

See Chen et al (2019), Ka Ho Tsang et al. (2019) and Feng et al. (2019) who impose a 

no-arbitrage constraint by using a set of pre-specified linear asset pricing factors and 

estimate the risk loadings with a deep neural network29. Sirignano, Sadhwani, and 

Giesecke (2016) estimate a deep neural network for mortgage prepayment, delinquency, 

and foreclosure or Heaton, Polson, and Witte (2016) for financial prediction problems 

such as those presented in designing and pricing securities, constructing portfolios, and 

risk management. At last, we can find Khandani, Kim, and Lo (2010) and Butaru et al. 

(2016) who use regression trees methodology in order to predict consumer credit card 

delinquencies and defaults, as well as Rossi and Timmermann (2010) who adopt a novel 

semi-parametric statistic method known as Boosted Regression Trees (BRT) to study the 

relation between risk and return.  

 

1.3 Research Objective 

Our paper contributes to the long-standing literature assessing the predictability of stock 

returns and helps justify the growing role of ML throughout the architecture of the 

burgeoning FinTech industry. Non-linear methods like Tree-based and Neural Network 

(NN) are the best performing ML techniques for predicting stock returns (Gu et al., 2018). 

 
28 See among others Hutchinson, Lo, and Poggio (1994), Yao et al. (2000). 
29 Their analysis considers various sets of sorted portfolios but is not applied to individual stock returns. 
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After comparing their efficiency in our specific context, we decided to focus our research 

on the first method. Indeed, NN’s use in finance industries is very limited, rather used in 

IT environments for chatbots content creations, voice assistants, etc. Tree-based 

modelling is an excellent alternative to linear regression analysis for three main reasons: 

first, it is used both for numerical and categorical data; second, it can handle data that are 

not normally distributed; third, it is easy to represent visually, making a complex 

predictive model much easier to interpret. 

In this paper we adopt the BRT method employed by Rossi (2018) who forecast stock 

returns and volatility at a monthly frequency basing on the S&P500 portfolio . BRT is a 

statistical method that generates forecasts basing on a large set of conditioning 

information without imposing strong parametric assumptions such as linearity or 

monotonicity. The result gives to an increase in the stability of the forecasts and therefore 

protects it against overfitting. Indeed, it does not overfit because it performs a type of 

model combination that features elements such as shrinkage30 and subsampling31. These 

features are really important for us in order to condition our forecasts on all the 

conditioning variables that literature has been considered so far. Moreover, BRT helps us 

to assess the relative importance of the various predictors at forecasting risk premium and 

volatility, giving important insights on the limitations of linear regression.  

We extend Rossi (2018) analysis trying to replicate his results employing a different 

market index: EURO STOXX 5032. We have a deep investigation on how a representative 

mean-variance investor should exploits publicly available information to formulate 

forecasting on excess return and volatility. In fact, much of the literature we presented 

before doesn’t focus on analysing the economic value associated for a representative 

investor. Therefore, our research answers three questions. The first is whether 

macroeconomic and financial variables contain information about expected stock returns 

and volatility that a mean-variance investor33 could benefit from. Indeed, in order to be 

exploited the out-of-sample forecast require not only that parameters are estimated 

 
30 Shrinkage is the reduction in the effects of sampling variation. 
31 Alternative method for approximating the sampling distribution of an estimator. 
32 EURO STOXX 50 is the equity index of the major companies in the eurozone. It is made up of 50 stocks 

from the 11 eurozone countries: Austria, Belgium, Finland, France, Germany, Ireland, Italy, Luxembourg, 

the Netherlands, Portugal and Spain. 
33 Modern portfolio theory (MPT) is a mathematical framework for the construction of assets’ portfolio 

such that the expected return is maximized for a certain level of the investor’s risk. 
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recursively, but also that conditioning information employed are selected in real time. 

The conditioning information we use are the twelve predictor variables proposed so far 

by Welch and Goyal (2008). We start our analysis by forecasting separately both excess 

return and volatility of the market index. Our estimates demonstrate that BRT forecasts 

outperform the Multivariate Linear Model and the GARCH(1,1) with a more significant 

market timing in both returns and volatility, respectively. 

The second question we answer is whether the conditioning information contained in 

macroeconomic and financial time-series can be exploited to directly select the optimal 

portfolio weights. We adopt Rossi (2018) approach as a semi-parametric method34 that 

avoids the so-called “curse of dimensionality”. Tests of optimal portfolio weights 

predictability demonstrate that portfolio allocations are time-varying and forecastable 

with a better performance of the one-step BRT compared to the statistical methods 

adopted as benchmark. 

The third question is whether the results forecasts are economically valuable in terms of 

portfolio allocations profitability. We assess this  by computing Mean, Standard 

Deviation, Sharpe Ratio, VaR and Maximum drawdown of the monthly portfolio returns 

obtained from our predictor variables also when short selling and borrowing constraints 

are taken into account.  

Furthermore, we compute the realized utilities level obtained by the investor by 

comparing BRT-based strategies and passive ones. Our findings show the greater 

performance of the BRT-based model against the passive strategies of portfolios 60/40 

and 100% market both accounting and not accounting for estimation uncertainty. 

Definitely, our work contributes to the household financial literature by exploiting BRT 

also in robo-advisory, including portfolio composition and risk-adjusted return35. 

Investors may also obtain financial education benefits, or emotional rewards such as 

improved financial well-being and peace of mind36. Indeed, financial advising can help 

mitigate under-diversification in order to realize better outcomes, as well as reducing 

traditional advising cost that are too costly for retail investors compared to FinTech ones. 

 
34 It is the  semi-parametric counterpart of Ait-Sahalia and Brandt (2001) methodology. 
35 See Kim, Maurer, and Mitchell (2016). 
36 See Rossi and Utkus (2019). 
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Lastly, our study is also relevant to the growing literature on technology adoption, crucial 

determinants of economic growth37.  

The rest of the paper is organized as follows. Chapter 2 introduces our empirical 

framework and describes how stock returns and volatility are predicted. Chapter 3 

implements BRT to directly select optimal portfolio allocations. Chapter 4 presents and 

discuss our result for the out-of-sample accuracy of the model, conducts formal tests of 

market timing in both returns and volatility and evaluates the empirical trading strategies 

performance. At the end, a brief conclusion.

 
37 See Romer (1990) and Aghion and Howitt (1992) 
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CHAPTER 2 

Boosted Regression Trees Forecasting Framework 

 

Summary: 1 – Modern Portfolio Theory. – 2 – Decision Tree Learning. –  

 3 – Conditioning Information. –  4 –Predicting Optimal Portfolio Allocations.   

 

 

2.1 Modern Portfolio Theory 

In order to introduce our empirical framework on how a representative mean-variance 

investor should exploits publicly available information to formulate forecasting on excess 

return and volatility, it is important to have a brief overview of what the Modern portfolio 

theory is based on. This subject has been extensively tackled by practitioners and 

academic researchers since of the introduction by Markowitz in 1952 due to its main 

limitation like the high sensitivity to historical data and the impossibility to include 

investors views. 

The Modern Portfolio Theory (MPT) refers to an investment theory that allows investors 

to assemble an asset portfolio that maximizes expected return for a given level of risk by 

assuming that investors are risk-adverse (i.e. for an higher level expected return, rational 

investors prefer the less risky portfolio, s.t. they want to be compensated with higher 

expected return if an higher level of risk occurs38). The main ideas being that risk and 

return should be considered together with the aim to diversify the portfolio. This is 

explained by the fact that when adding negative correlated assets to a portfolio, the losses 

incurred by one may be offset by the gains of the others. 

Given a set of assets, constructing a portfolio consists at choosing the weights to be 

assigned at each asset component according to performances goals criteria. It results from 

an optimization problem where many unknow market parameters like expected return, 

 
38 This concept is called Mean-Variance Criterion. 
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volatility and correlation, have to be accurately estimated. Every time that these 

parameters evolve in time, the portfolio has to be rebalanced by re-deriving the assets’ 

weights according to the new incoming data (conditioning information). We can see the 

mean as an approximation of returns and the standard deviation (i.e. square root of 

variance) as an approximation of risk. From the mean-variance trade-off, a rational 

investor should either maximize his return for a given level of risk or minimize his risk 

for a given level of returns.  

The exact trade-off between risk and expected return will not be the same for all investors 

because they evaluate it differently based on individual risk aversion characteristics. In 

1947, John von Neumann and Oskar Morgenstern proved that any individual has an utility 

function which can be increased (i.e. higher return or lower risk) or decreased (i.e. lower 

return or higher risk). In the basic mean-variance optimization, we assume an investment 

on a single time period. The utility function takes the form: 

 
𝑈𝑡 = 𝐸𝑡(𝑟𝑡+1) −

1

2
 𝐴 𝜎𝑡

2(𝑟𝑡+1) (1) 

where 𝐸𝑡(𝑟𝑡+1) is the expectation of the return at time t+1 given the information available 

as of time t, 𝜎𝑡
2(𝑟𝑡+1) is the variance at time t+1 given the information available as of 

time t and, finally, 𝐴 is the so called “risk-aversion coefficient” which measure the 

marginal reward required for additional risk39. 

According to the combination of risk and return pairs acceptable to an investor for a given 

level of utility function we obtain the indifference curves40 where all the points on each 

curve have the same utility (i.e. investor is indifferent) as is shown in fig. 2.1. 

 
39 Risk averse: A > 0; Risk neutral: A = 0; Risk seeking: A < 0. 
40 Graphically the Risk is measured through Standard Deviation which is the square root of Variance. It is 

used to determine how widely spread out the assets’ value movements are over time. Obviously, assets with 

a wider range of movements carry higher risk. 
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Fig. 2.1: Indifference curves 

Source: Chartered Financial Analyst (CFA) institute, 2017 

 

In constructing portfolios, investors often combine risky assets with risk-free assets to 

reduce risks. A complete portfolio is defined as a combination of a risky asset and a risk-

free one41. The Expected Return of this portfolio will be a weighted average of its 

individual assets’ expected returns and it is calculated as: 

 𝐸𝑡(𝑟𝑝,𝑡+1) = 𝜔1𝐸𝑡(𝑟𝑖,𝑡+1) + (1 − 𝜔1)𝑟𝑓,𝑡+1 (2) 

where 𝐸𝑡(𝑟𝑖,𝑡+1) is the expected return of the risky asset whose weight in the portfolio is 

𝜔1 , and 𝑟𝑓,𝑡+1 is the expected return of the risk-free asset whose portfolio’s weight is the 

remaining part of it, so (1 − 𝜔1)42. 

Conversely, the Variance of this portfolio will be:  

 𝜎2
𝑡(𝑟𝑝,𝑡+1) = 𝜔1

2𝜎𝑡
2(𝑟𝑖,𝑡+1) 𝜔2

2𝜎𝑡
2(𝑟𝑖,𝑡+1) + 2𝜔1𝜔2𝜌1,2𝜎𝑡(𝑟𝑖,𝑡+1)𝜎𝑡(𝑟𝑖,𝑡+1) (3) 

Where𝜌1,2𝜎𝑡(𝑟𝑖,𝑡+1)𝜎𝑡(𝑟𝑖,𝑡+1) is the covariance43 of the two asset whose correlation 

coefficient is 𝜌1,2. Being the second asset of our portfolio a risk-free one, obviously its 

 
41 In the mean-variance optimization framework is assumed normally distributed returns for the risky assets. 

All assets carry some degree of risk, therefore, assets that generally have low default risks and fixed returns 

are considered risk-free such as government Treasury Bonds. 
42 𝜔1 + 𝜔2 = 1 => 𝜔2 = (1 - 𝜔1). 
43 When the covariance of the two assets is positive, the Variance of the Portfolio will be higher, and vice 

versa if the covariance is negative. Since variance represents risk, diversification techniques are used in 

order to minimize portfolio risk by investing in risky assets with negative covariance with the aim to 

eliminate the so called idiosyncratic (specific) risk of the individual asset by leaving only the systemic risk 

(i.e. market portfolio risk).  
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variance, as well as its covariance with the risky asset, are zero, such that the Expected 

Risk represented by the Standard Deviation of the portfolio will be simply: 

 𝜎𝑡(𝑟𝑝,𝑡+1) = |𝜔1|𝜎𝑡(𝑟𝑖,𝑡+1) (4) 

Where 𝜎𝑡(𝑟𝑖,𝑡+1)  is the Standard Deviation of the risky asset whose weight is 𝜔1 as 

already seen44. In fact, 𝜎𝑡(𝑟𝑓,𝑡+1) will be zero because of its free-risk characteristic. 

By reformulating (4), we obtain:  

 𝜔1  =
𝜎𝑡(𝑟𝑝,𝑡+1)

𝜎𝑡(𝑟𝑖,𝑡+1)
 

(5) 

In addition, by reformulating (2), we obtain:   

 𝐸𝑡(𝑟𝑝,𝑡+1) = 𝑟𝑓,𝑡+1 + [𝐸𝑡(𝑟𝑖,𝑡+1) −  𝑟𝑓,𝑡+1)]𝜔1 (6) 

Therefore, by replacing (5) in (6), the Expected Return of the Portfolio will be: 

 
𝐸𝑡(𝑟𝑝,𝑡+1) = 𝑟𝑓,𝑡+1 +

𝐸𝑡(𝑟𝑖,𝑡+1) − 𝑟𝑓,𝑡+1

𝜎𝑡(𝑟𝑖,𝑡+1)
 𝜎𝑡(𝑟𝑝,𝑡+1) (7) 

where 𝐸𝑡(𝑟𝑖,𝑡+1) −  𝑟𝑓,𝑡+1 represents the excess return of the risky asset. The graphical 

line obtained with (6) is the so-called Capital Allocation Line45 whose slope is called 

Sharpe Ratio, or reward-to-risk ratio, which measures increase in expected return per unit 

of additional standard deviation. 

 

Fig. 2.2: Capital Allocation Line 

 
44 The absolute value is applied because the variance has to be always a positive value. 
45 It is called Capital Market Line if the risky asset is the market portfolio. 
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Source: Chartered Financial Analyst (CFA) institute, 2017 

Graphically, the optimal portfolio consists of a risk-free asset and a risky asset portfolio 

is the point where the CAL is tangent to the Indifference Curve of the investor46. 

 

Fig. 2.3: Optimal Portfolio with a risk-free asset and a risky asset 

Source: Chartered Financial Analyst (CFA) institute, 2017 

 

Conversely, by applying the Utility Theory to this portfolio, the investor will choose his 

asset allocation by maximize its utility function, leading to the optimal portfolio weights: 

 
𝜔∗

𝑡+1|𝑡  =
𝐸𝑡(𝑟𝑖,𝑡+1) −  𝑟𝑓,𝑡+1

𝐴 𝜎𝑡
2(𝑟𝑖,𝑡+1)

 (8) 

As we said at the beginning of this chapter, the Expected Return and the Variance we are 

considering represent conditional expectations on t+1 on the basis of the investor’s 

conditioning information at time t. Most of the literatures consider these conditional 

expectations to be linear function of  observable macroeconomic and financial time-

series, but this may be misleading in terms of forecasting accuracy and portfolio 

allocation profitability. For this reason, in this paper we consider these conditional 

expectations to be non-linear functions of observable macroeconomic and financial time-

series. 

 

2.2 Decision Tree Learning 

Decision tree learning or induction of decision trees is a statistics predictive model used 

in data mining and machine learning which employ a decision tree as a decision support 

 
46 For the combination of risky assets, the Efficient Frontier is considered instead of the Indifference Curve. 

For more information see Markowitz, Todd and Sharpe (2000). 
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tool that uses a tree-like model of decisions to go from initial observations to one or more 

target variables. Among all the categories of decision trees, regression trees represent the 

ones for estimating the relationship of a real number target variable (i.e. dependent 

variable) basing to the changes in different predictor input variables (i.e. independent 

variables). Decision trees are among the most popular ML algorithms given their 

intelligibility and simplicity (Piryonesi and El-Diraby, 2020) and their capability to 

incorporate multiway predictor interactions (Gu et al., 2018). 

A tree “grows” in a sequence of steps where a new “branch” sorts the data leftovers from 

the preceding step into bins based on one of the predictor variables. This sequential 

branching divides the space of predictors into rectangular partitions where the simple 

average of all the outcome variable’s value in each partition represents the forecast 

observation in that partition. Next, one or both of these binary partitions is split into two 

additional ones, and so on until a stopping criterion is reached.  A basic example of this 

system can be seen in the figure 2.4. 

 

Fig. 2.4: Regression tree example 

Left figure presents the diagrams of a regression tree where the terminal nodes of the tree 

are coloured in blue, yellow, and red. Based on their values of these two characteristics, the 

sample of individual stocks is divided into three categories (partitions) in the right figure. 

Source: Gu et al. (2018) 

 

More formally, suppose we have P  potential predictor independent variables 𝑥𝑡 with 𝑥𝑡 =

𝑥𝑡,1, 𝑥𝑡,2, … , 𝑥𝑡,𝑃  and a single dependent variable 𝑦𝑡+1 over T observations for t = 1,…,T. 

Fitting a regression tree requires deciding about which predictor variables to use to split 

the sample space and which split points to use (e.g. in figure 2.4 has been chosen size and 

value as predictors and 0,5 and 0,3 as split points for respectively the size and the value).  
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The regression trees we use employ recursive binary partitions47 so the fit of such 

regression tree can be written as48: 

 

𝒯 (𝑥; {𝑆𝑗, 𝑐𝑗}
𝑗=1

𝐽
) = 𝑓(𝑥) = ∑ 𝑐𝑗  𝐼{𝑥 ∈ 𝑆𝑗}

𝐽

𝑗=1

 (9) 

where 𝑆𝑗 with j =1,….J is one of the terminal nodes (i.e. categories or partitions) we split 

the space of the predictors into, 𝑐𝑗 is the constant associated at each partition to model the 

dependent variable and it is defined to be the sample average of the outcomes within the 

partition and, finally, 𝐼{𝑥 ∈ 𝑆𝑗} is an indicator variable. For instance, the regression tree 

represented in the figure 2.4 has the following prediction equation: 

𝒯 (𝑥; {𝑆𝑗 , 𝑐𝑗}
𝑗=1

3
) =  𝑐1 𝐼{𝑠𝑖𝑧𝑒𝑡 < 0,5}𝐼{𝑣𝑎𝑙𝑢𝑒𝑡 < 0,3} + 𝑐2 𝐼{𝑠𝑖𝑧𝑒𝑡 < 0,5}𝐼{𝑣𝑎𝑙𝑢𝑒𝑡,𝑝 ≥ 0,3} +  𝑐3 𝐼{𝑠𝑖𝑧𝑒𝑡 > 0,5} 

As we already said, by using BRT is necessary to define the optimal splitting point, but 

this is a complex issue, in particular when the number of potential predictors variables is 

quite large. Hence, a sequential greedy algorithm49 is employed. Using the full set of data, 

the algorithm employs a splitting variable 𝑝 and a split point 𝑠 to construct half-planes50: 

 𝑆1(𝑝, 𝑠)= {𝑋|𝑋𝑝 ≤ 𝑠}           and           𝑆2(𝑝, 𝑠)= {𝑋|𝑋𝑝 > 𝑠} (10) 

that minimize the sum of squared residuals:  

 

min
𝑝,𝑠

[min
𝑐1

∑ (𝑦𝑡+1 − 𝑐1)2

𝐽

𝑥𝑡 ∈ 𝑆1(𝑝,𝑠)

+ min
𝑐2

∑ (𝑦𝑡+1 − 𝑐2)2

𝐽

𝑥𝑡 ∈ 𝑆2(𝑝,𝑠)

 ] (11) 

Finally, for a given choice of 𝑝 and 𝑠, the constant values 𝑐𝑗 assumes the value of: 

 
𝑐1̂ =

1

∑  𝐼{𝑥𝑡 ∈ 𝑆𝑗(𝑝, 𝑠)}𝑇
𝑡=1

∑ 𝑦𝑡+1 𝐼{𝑥𝑡 ∈ 𝑆𝑗(𝑝, 𝑠)}

𝑇

𝑡=1

 (12) 

 
47 We focus on recursive binary trees for simplicity. For more complex structures see Breiman et al. (1984). 
48 Our methodology’s description draws on Hastie et al. (2009) and Rossi and Timmermann (2010) who 

provide a more in-debt coverage of the approach. 
49 A greedy algorithm is a simple, intuitive algorithm used in optimization problems. The algorithm makes 

the optimal choice at each step as it attempts to find the overall optimal way to solve the entire problem. 
50 A half-plane is a planar region consisting of all points on one side of an infinite straight line, and no 

points on the other side. 
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The best splitting pair (p, s) in the first iteration can be determined by searching through 

each of the P predictor variables. After having obtained the best partition from the first 

step, the data is then partitioned into two additional predictors and the splitting process is 

repeated for each of the subsequent partitions. The choice of splitting variable definitely 

performs variable selection because if a predictor variable is  never used to split the 

sample space, this means that it will not influence the fit of the model. 

Regression trees are generally employed in high-dimensional datasets where the relation 

between predictor and predicted variables is highly non-linear. This is relevant when 

modelling stock returns as target variable 𝑟𝑡+1 , because a very incremental number of 

predictor variables 𝑥𝑡 has been proposed so far in the literature and the theoretical 

frameworks rarely imply a linear or monotonic relation between predictor and predicted 

variable. Indeed, advantages of the tree model are the invariance to monotonic 

transformation of predictors, the possible accommodation of both categorical and 

numerical data in the same model to better represents non-linearities, and its capability to 

capture j – 1  interactions. On the other hand, the approach is sequential (i.e. successive 

splits are performed on ever more few observations) and this increase the risk of 

overfitting, so without any guarantee on a globally optimal solution. For this reason, trees 

must be heavily regularized as primary defence against overfitting to improve models’ 

out-of-sample predictive performance. Different regularization methods for model 

selection and mitigation of overfit, have been developed by literature. The regularization 

procedures rely  on the choice of hyperparameters (“tuning parameters”) including, for 

instance, the penalization parameters in lasso and elastic net, the number of iterated trees 

in boosting, the number of random trees in a forest, and the depth of the trees51. Among 

all the regularization procedures, we employ the method known as boosting. 

 

2.2.1 Boosting 

Boosting consists in the idea that many oversimplified learner regression trees, should 

form a single “stronger learner” with greater stability, in order to lead to more accurate 

forecasts than those available from individual model, so reducing the overfitting risk and, 

subsequently, the accuracy of the forecasts52. Boosted regression trees combine the 

 
51 For more detailed insights see Gu et al. (2018). 
52 For similar results in the context of linear regression see Rapach et al. (2010). 
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strengths of two algorithms: regression trees (models that relate a response to their 

predictors by recursive binary splits) and boosting (an adaptive method for combining 

many simple models to give improved predictive performance). Boosting algorithms 

iteratively re-weight data used in the initial fit model by adding new trees s.t. the weight 

of observations modelled poorly by the existing tree is increase, thus they have an higher 

probability of being selected in the new tree. This means that after the first tree is fitted, 

the model will take into account the residual of that tree to fit the next tree, and so on. 

The process continues until some stopping criterion is reached. The number of trees used 

in the summation is also known as the number of boosting iterations. Formally, a boosted 

regression tree (BRT) is simply the sum of regression trees for B boosting interactions: 

 
𝑓𝑏(𝑥) = ∑ 𝒯𝑏 (𝑥; {𝑆𝑏,𝑗, 𝑐𝑏,𝑗}

𝑗=1

𝐽
)

𝐵

𝑏=1

 (13) 

Where 𝒯𝑏 (𝑥; {𝑆𝑏,𝑗, 𝑐𝑏,𝑗}
𝑗=1

𝐽
) is the regression tree used in the bth  boosting interaction. 

Given the model fitted up to the (b – 1)th boosting interaction (i.e.  𝑓𝑏−1(𝑥) ), the 

subsequent boosting interaction 𝑓𝑏(𝑥) seeks to find parameters {𝑆𝑏,𝑗 , 𝑐𝑏,𝑗}
𝑗=1

𝐽
 for the next 

tree to solve the minimization problem: 

 
{𝑆𝑏,𝑗, 𝑐𝑏,𝑗}

𝑗=1

𝐽
= min

{𝑆𝑏,𝑗,𝑐𝑏,𝑗}
𝑗=1

𝐽
  ∑ [𝑦𝑡+1 − (𝑓𝑏−1(𝑥𝑡) + 𝒯𝑏 (𝑥𝑡; {𝑆𝑏,𝑗, 𝑐𝑏,𝑗}

𝑗=1

𝐽
))]

2𝑇−1

𝑡=0

 (14) 

 

At the end, for a given set of 𝑆𝑏,𝑗 , the optimal constant  𝑐𝑏,𝑗 in each partition is derived 

iteratively from the solution of the minimization problem: 

 

�̂�𝑗,𝑏 = min
 𝑐𝑏,𝑗

  ∑ [𝑦𝑡+1 − 𝑓𝑏−1(𝑥𝑡) − 𝑐𝑗,𝑏]
2

𝐽

𝑥𝑡 ∈ 𝑆𝑗,𝑏

 (15) 

where 𝑦𝑡+1 − 𝑓
𝑏−1

(𝑥𝑡) = 𝑒𝑡+1,𝑏−1 that is the empirical error after b – 1 boosting 

interactions. Indeed, the problem to solve in (15) is given by the minimization of the 

average of the squared residuals ∑ 𝑒𝑡+1,𝑏−1
2𝑇

𝑡=1 ∈ 𝑆𝑗,𝑏
 of the regression tree. Therefore, the 

obtained �̂�𝑗,𝑏 represents the mean of the residuals in the jth partition.  



Chapter 2 – Boosted Regression Trees Forecasting Framework  

27 
 

  

Boosting is originally described in Schapire (1990) and Freund (1995) for classification 

problems to improve the performance of a set of weak learners. Friedman et al. (2000) 

and Friedman (2001) extend boosting to contexts beyond classification, leading to the 

gradient boosted regression tree (GBRT) procedure, that is the one we adopt with J=2 

nodes. Following Rossi (2018) we adopt three refinements on the basic methodology. The 

first is shrinkage, which is a simple regularization technique to limit overfitting risk that 

slows the rate at which the empirical risk is minimized on the training sample. In order to 

do that, we use a shrinkage parameter  0 < 𝜆 < 1 which determines how much each 

boosting iteration contributes to the overall fit: 

 
𝑓𝑏(𝑥) =  𝑓𝑏−1(𝑥) +  𝜆 ∑ 𝑐𝑗,𝑏 𝐼{𝑥 ∈ 𝑆𝑗,𝑏}

𝐽

𝑗=1

 (16) 

Where ∑ 𝑐𝑗,𝑏 𝐼{𝑥 ∈ 𝑆𝑗,𝑏}
𝐽
𝑗=1  is the regression tree 𝒯𝑏 (𝑥; {𝑆𝑏,𝑗, 𝑐𝑏,𝑗}

𝑗=1

𝐽
) at the bth boosting 

iteration whose forecast is added to the total with a shrinkage weight of 𝜆, while  𝑓𝑏−1(𝑥) 

is the boosted regression tree fitted up to the last previous boosting interaction. This is 

iterated until there are a total of B trees in the ensemble. In order to set the value of 𝜆 , 

Friedman (2001) identifies as the best empirical strategy to set 𝜆 very small, equal to 

0,001   and correspondingly increase the number of boosting iterations to refine the fit53.  

The second refinement is subsampling and is inspired by a more general procedure known 

as bootstrap aggregation, or bagging (Breiman, 1996). The baseline bagging technique 

consists into three steps: first, it extracts bootstrap samples of the data54, secondly, it fits 

a separate regression tree to each and, finally, it averages their forecasts, therefore 

reducing the variance of the final predictions. In our specific context, at each boosting 

iteration we sample without replacement one half of the training sample and fit the next 

tree on the sub-sample obtained. 

Finally, according to a large literature which suggests that squared-error loss55 gives too 

much weight on observations with large absolute residuals, our analysis employ the  mean 

absolute errors, i.e. 
1

𝑇
∑ |𝑦𝑡+1 − 𝑓(𝑥𝑡)|𝑇

𝑡=1 , as function to minimize in order to obtain the 

 
53 See Rossi (2018) in comparing 3 boosting iterations against 5.000 ones. 
54 Bootstrapping is a statistics technique which randomly extract samples from the data in order to 

approximate the sample distribution of the data by replacing them. It is a resampling method. 
55 The squared-error loss measures the average of the squares of the errors (i.e. the average squared 

difference between the actual values 𝑦𝑡+1 and the estimated values 𝑓(𝑥𝑡). 
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forecast which results to be the conditional median of 𝑦𝑡+1 rather than the conditional 

mean given by the squared error loss minimization. By minimizing absolute errors, our 

regression model is likely to be more robust to outliers, thus reducing the overfitting risk, 

in particular for fat-tailed distributions such as those for stock returns and volatility.  

 

2.3 Conditioning Information 

Information plays a central role for investors who faces every day a lot of information 

which will affect their investment portfolio. For this reason, an ever-increasing method 

are developing to study the relation between risk and return.  

The conditioning information we are use are the predictor variables already analysed in 

Welch and Goyal (2008) and by others subsequently. Their predictor variables were 

available during 1927-2005 and then updated by Welch website until 2020, but we cannot 

use them because they are referred to the S&P500 Index and the relative American 

market. For this reason, we replicate these 12 predictor variables56 by deriving a new 

dataset referred to our EUROSTOXX50 Index and its relative market, over the sample 

period from May 2001 up to May 2021. All predictor variables are suitably lagged57, 

indeed they are known at time t in order to forecast returns in t+1. The predictor variables 

consist to three large categories: “risk and return”, “fundamental to market value” and 

“interest rate term structure and default risk”58. The first includes lagged returns (exc), 

long-term bond returns (ltr) and volatility (vol). The second contains the log dividend-

price ratio (dp) and the log earnings-price ratio (ep). Finally, the third comprises the three-

month T-bill rate (Rfree), the T-bill rate minus a three-month moving average (rrel), the 

yield on long term government bonds (lty), the term spread measured by the difference 

between the yield on long-term government bonds and the three-month T-bill rate (tms) 

and the yield spread between BAA and AAA rated corporate bonds (defspr). Following 

Rossi (2018), we also include inflation (infl) and the log dividend-earnings ratio (de) for 

a total of twelve predictor variables. 

 
56 Following Rossi (2018) a few variables were excluded from the analysis, including net equity expansion, 

the book-to-market ratio and the consumption wealth ratio. 
57 The lag time is the time between the two correlated time series (e.g. in a time series data at t=0,1,…,n, 

then taking the autocorrelation of data sets (0,1),(1,2)…(n−1,n) apart would have a lag time of 1. 

Conversely, if the autocorrelation of data sets to (0,2),(1,3),(n−2,n) that would have lag time 2 etc.) 
58 Additional details on data sources and the construction of these variables are provided by Welch and 

Goyal (2008). 
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Stock returns are tracked by EU STOXX 50. They represent the Annual Total Return, 

including dividends when holding such index. The EU STOXX 50 index is a basket of 

50 large EU stocks, weighted by market cap, and is the most widely followed index 

representing the UE stock market. In order to obtain the excess returns, we subtract the 

risk-free rate by taking into account the 3-month German Bund return as benchmark for 

the European Market.  

 

2.3.1 Conditional Stock Returns estimates 

Conditional stock returns expectations are for simplicity generally obtained according to 

the following linear model: 

 𝐸𝑡(𝑟𝑖,𝑡+1) =   �̂�𝑡+1∣𝑡 =  𝛽𝜇
′ 𝑥𝑡  (17) 

where 𝑥𝑡  represents a set of publicity available predictor variables and  𝛽𝜇 is a vector of 

parameter estimates obtained via ordinary least square (OLS) method.  

Actually, the linear specification imposed brings to some misspecifications. In particular, 

asset  pricing models suggest a wide array of economic variables for both returns and 

volatility which should be incorporated, but linear specification tends to over-fitting if the 

number of parameters to be estimated is large compared to the number of observations. 

Subsequently, researchers tend to exclude a large portion of the conditioning information 

available. In addition, theoretical frameworks rarely identify linear relations between the 

variables. 

However, in our context, these misspecifications are not a source of concern because it 

does not mean a lower predictive accuracy, which is definitely what we are focused on 

for optimal portfolio allocation. 

 

2.3.2 Conditional Volatility estimates 

Conditional volatility estimates have been developed in different shapes in the recent past 

years. Following Rossi (2018), our research bases the estimation for conditional volatility 

on two main models. The first extends the linear framework presented by Paye (2010), 

Ludvigson and Ng (2007) and Marquering and Verbeek (2005). They estimate monthly 

return volatility according to the following linear specification: 
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 𝜎𝑡(𝑟𝑖,𝑡+1) =   �̂�𝑡+1∣𝑡
𝑙𝑖𝑛 =  𝛽𝜎

′ 𝑥𝑡  (18) 

where 𝑥𝑡  represents the same set of publicity available predictor variables we employ for 

conditional expected returns and  𝛽𝜇 is a vector of parameter estimates obtained via 

ordinary least square (OLS) method. Even if linear estimation methods give interesting 

in-sample results, their out-of-sample performance was never satisfactory. For this 

reason, our first approach estimates conditional expected volatility via BRT: 

 �̂�𝑡+1∣𝑡
𝐵𝑅𝑇 =  𝑓𝜎(𝑥𝑡|𝜃𝜎)    (19) 

where 𝜃𝜎 are estimates of the parameters obtained via Boosted Regression Tree. 

The second model has the aim to forecast volatility according to the GARCH(1,1) where 

expected conditional variance is defined according to the following formula: 

 �̂�𝑡+1∣𝑡
𝐺𝐴𝑅𝐶𝐻 =  √ω + α (𝑟 𝑡 −   𝜇 𝑡)2 + 𝛽𝜎 𝑡 =  √ω + α 𝜎 𝑡𝜖𝑡

2 + 𝛽𝜎 𝑡   (22) 

 

where 𝜔𝑑 are the optimal weights computed with a specific function called “Beta 

weights”: 

 
𝜔𝑑(𝑘1, 𝑘2) =  

(
𝑑

𝐷
)

𝑘1−1
 (1−

𝑑

𝐷
)

𝑘2−1

∑ (
𝑑

𝐷
)

𝑘1−1
 (1−

𝑑

𝐷
)

𝑘2−1
𝐷
𝑑=0

   (21) 

where D represents the maximum lag length (set to 250 days). This estimation technique 

is also used to estimate the parameters α and β in (22). 

 

2.4 Predicting Optimal Portfolio Allocations 

In the previous paragraph we have observed how to forecast returns and volatility in 

separately ways with the aim to construct optimal portfolio allocations only in a second 

step. Our objective now is to directly forecast the optimal portfolio allocations given the 

same set of conditioning information we already seen. Secondary, we are able to assess 

whether such approach leads to more or less profitable forecasts.  
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As we seen in (8), conditional optimal portfolio weights for a mean-variance investor are 

given by the ratio of conditional expected excess return and variance, scaled by the risk-

aversion coefficient that we set to 4 as a common choice in the literature. Therefore, in 

order to make forecasts, conditional optimal portfolio weights represent our target 

variable as follow: 

 �̂�𝑟𝑒𝑎𝑙
𝑡+1|𝑡  = 𝑓𝜔(𝑥𝑡|𝜃𝜔) (27) 

 

where 𝑥𝑡 represents the same set of publicly available predictor variables we use for return 

and volatility and 𝜃𝜔 are estimates of the parameters obtained via BRT. 

There are few papers59 as well as no economic theories which analyse the direct 

relationship between economic activity and the publicly conditioning information set 

variables. Brandt, Santa-Clara and Valkanov (2004) model directly the portfolio weight 

in each asset as a function of the asset’s characteristics where the coefficients are found 

by optimizing the investor’s average utility of the portfolio’s return over the sample 

period. Rossi and Timmermann (2010) observe that the three most important predictors 

for equity premium are inflation, log earnings price ratio and the de-trended T-bill rate; 

while for volatility are the lag volatility, the default spread and the lag return on the market 

portfolio. Only more recently, Rossi (2018) analyses the relation between the optimal 

portfolio weights and the predictor variables. In his paper, it is highlighted that the 

predictors with the greatest Relative Influence (i.e. weight) are the log earnings price ratio 

(ep), the inflation (infl), the log dividend earnings ratio (de), the yield on long term 

government bonds (lty), the stock market volatility (vol) and the three-month T-bill rate 

(Rfree). In particular, the relationship between the optimal weight and the log earnings 

price ratio (ep) is positive, strongest at low or high levels of this ratio and weaker at 

medium levels. Regarding  inflation (infl), at negative levels the relationship is either flat 

or rising60 and, vice versa, at positive levels of inflation61. The log dividend earnings ratio 

(de) is inversely related to the conditional portfolio weights and its sensitivity is greatest 

for medium values of the ratio and weakest at low and high levels of the ratio. Finally, 

 
59 See Ait-Sahalia and Brandt (2001) for instance. 
60 Thus, in a state of deflation, rising consumer prices leads to a higher exposure to risky assets by the 

investor (i.e. more weight). 
61 Thus, higher consumer prices become bad news for stocks. 
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the relation between optimal portfolio weights and long-term government bonds, 

volatility and the T-bill rate are all highly nonmonotonic, s.t. the optimal investment in 

risky asset increase for low values of the predictors and decrease for high values of them. 

These findings imply strong non-linearities in the functional form relating the predictor 

and predicted variables. Therefore, comparing to linear models, BRT helps us in 

correcting their misspecification. In order to assess whether correcting for such 

misspecification translates into greater predictive accuracy, we assess next the out-of-

sample forecasting performance of BRT versus the other common benchmark models we 

have illustrated in paragraph 2.3. We start our analysis by separately forecasting expected 

returns and conditional volatility of the EUROSTOXX50 Index and secondly uses these 

results as input for the optimal mean-variance portfolio allocation. Subsequently, we 

continue by directly estimating portfolio weights according to a one-step BRT. For 

comparison, we also present results for investment portfolios constructed using stock 

return predictions from a multivariate linear regression model on the full set of predictor 

variables and volatility predictions from the most common GARCH (1,1) model which 

bases the prediction only on the excess return predictor.
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CHAPTER 3 

Out-of-Sample Empirical Application’s Results  

 

Summary: 1 – Data. – 2 – Two Step BRT Model. –  3 – One Step BRT Model. –  

 4 – Portfolio Allocation Performance.  

 

 

3.1 Data  

We investigate the performance of the strategies discussed in the previous chapter for 

forecasting the monthly EUROSTOXX50 excess return, set as dependent variable. The 

dependent variable is always the equity premium, i.e., the total rate of return on the stock 

market minus the prevailing short-term interest rate. Throughout the empirical section we 

set May 2001 as the starting value for our out-of-sample evaluation period and May 2021 

as end value. The choice is led by the need to have the largest training sample as possible 

for the European Index, so allowing us for a 20-year test sample. 

 

 

  Fig. 3.1: EUROSTOXX50 Index price 

  Source: Own elaboration, 2021 

 

Our first set of independent variables relate primarily to risk and return: 
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• Lagged returns (exc): we use EUROSTOXX50 index month-end prices  from 

2001:05 to 2021:05 from Refinitev Workspace (ex. Thomson-Reuters) add-in in 

Excel. Stock Returns are the continuously compounded returns on the 

EUROSTOXX50 index62. The risk-free rate taken into consideration to obtain 

excess return values in such European context is the three-month German Bund 

monthly Return from the period 2001:05 to 2021:05. Data are obtained from 

FRED website63 by expressing them as percentage of the observed listed values 

and by considering negative values equal to 0. 

• Long Term bond returns (ltr): taking into account the European index, our 

government bond used as benchmark is the German one. In the context of a long-

term bond, we considered the 10Y German Bund price from the period 2001:05 

to 2021:05 from Refinitev Workspace’s month-end values in order to compute 

relatives returns by Excel. 

• Volatility (vol): it is measured by the standard deviation of logarithmic daily 

returns computed through Excel Pivot table tool  from the daily log returns on the 

EUROSTOXX50 Index prices for the period 2001:05 to 2021:05 from Refinitev 

Workspace’s daily-end values.  

Our second set of independent variables relate to fundamental to market value: 

• Log dividend-price ratio (dp): it is the difference between the log of dividends and 

the log of prices. According to logarithms’ properties, we compute it as the log of 

the dividend-price ratio which is directly obtained relative to the EUROSTOXX50 

Index by Refinitev Workspace add-in in Excel. For monthly frequency, we can 

only begin in the Refinitev period which starts from May 2001, so we set this as 

our start period. 

• Log earnings-price ratio (ep): it is the difference between the log of dividends and 

the log of prices. According to logarithms’ properties, we obtain it as the log of 

the inverse PE monthly ratio which is directly observed relative to the 

 
62 We have to figure out if everything is defined in simple or log returns. Goyal and Welch explain it in 

their 2003 Management Science paper "Predicting the Equity Premium with Dividend Ratios") more 

clearly. 
63 https://fred.stlouisfed.org/series/IR3TIB01DEM156N. 
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EUROSTOXX50 Index on Refinitev Workspace add-in in Excel from the whole 

period 2001:05 to 2021:05.  

Our third set of independent variables relate to fundamental to interest rate structure and 

default risk: 

• T-bill rate (Rfree): we considered the three-month German Bund Return from the 

period 2001:05 to 2021:05. Data are obtained from FRED website by expressing 

them as percentage of the observed listed values. The provided rate is in simple, 

not log returns, so we compute the right one64 by Excel.  

• Relative T-Bill rate (rrel): given by the difference between the three-month 

German Bund rate and the moving average of the previous three months’ values 

directly computed manually on Excel from FRED database’s values. 

• Long Term government bond yeld (lty): we considered the 10Y German Bund 

price from the period 2001:05 to 2021:05 from Refinitev Workspace’s month-end 

values by expressing them as percentage of the observed listed values. 

• Term Spread (tms): we manually obtain this variable on Excel by the difference 

between the long-term government bond Return and the T-bill rate.  

• Default Spread (defspr): given by the Return spread between BAA and AAA rated 

corporate bonds. Monthly values for each rated corporate bond are obtained from 

FRED website. After setting them as percentage values, we manually compute the 

difference on Excel in order to obtain our defspr end-month values. 

• Inflation (infl): we obtain monthly values for inflation by the Consumer Price 

Index (All items for the Euro Area) for the period 2001:05 to 2021:05 FRED 

database’s values by expressing them as percentage of the observed values. 

Because inflation information is released only in the following month, in our 

monthly regressions, we inserted one month of waiting before use Inflation.  

• Log dividend-earnings ratio (de): we compute these values by dividing our dp and 

ep predictor predictor’s monthly values. 

 
64 Log return and simple return have the additivity property for, respectively, time-series and cross-section 

perspectives. In addition, stock return is always assumed to follow a Log Normal Distribution, so that Log 

return is used for statistical evaluation. 
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All predictor variables are appropriately lagged, i.e. they are known at time t for 

forecasting returns at time t+1.  

Figure 3.2 portrays the 12 predictor variables for the 2001:05 to 2021:05 sample period. 

Visually, the predictors variables represent a variety of information sources65. 

 

 

 Fig. 3.2: Predictor Variables 

 Source: Own elaboration, 2021 

 

We start our analysis from a two-step BRT which first forecasts separately expected 

returns and conditional volatility of the EUROSTOXX50 Index and secondly uses these 

results as input for the optimal mean-variance portfolio allocation66. Subsequently, we 

continue our analysis by directly estimating portfolio weights according to a one-step 

BRT67. For comparison, we also present results for investment portfolios constructed 

 
65 See Appendix B for detailed data of predictors. 
66 See section 2.3. 
67 See section 2.4. 
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using stock return predictions from a multivariate linear regression model on the full set 

of predictor variables and volatility predictions from the most common GARCH (1,1) 

model which bases the prediction only on the excess return predictor. 

In order to develop our algorithms, we initially exploited scikit-learn68 libraries and 

guides to then manually write the code based on our needs, assumptions and available 

data69. 

The process of writing starts from the download of the programming language Python 

and the pip installer70. Then, from the Command Prompt (cmd.exe) of Windows 10, we 

install pip and, subsequently, we use it to install other useful libraries71. After these 

preliminary activities, we were able to write the algorithms necessary for our purposes. 

First, it was necessary to load the data by read the predictors Excel file (properly 

converted into .csv format) in order to present all our predictor variables at time t and our 

dependent variable properly lagged at time t+1. Then, data are reprocessed: throughout 

the empirical section we split our data into a 17-year train sample period (i.e. 2001-2018)  

and  a 3-year test sample (i.e. 2018-2021). The choice is driven by the need to have the 

largest training sample according to the European Index data. Finally, each regression 

model is fit such that the output is given, allowing us to test the out-of-sample forecasting 

accuracy.  

In the following section, we present the out-of-sample performance of Boosted 

Regression Trees and other benchmark forecasting methods. We present the results in 

terms of Mean Squared Error (MSE)72 as it is the most common loss function for 

forecasting problems with continuous dependent variables. In addition, we also present 

R2 coefficient as it represents the proportion of the variance for our dependent variable 

that is explained by the predictors of the regression model. The R-squared, also called the 

coefficient of determination, is used to explain the degree to which input variables 

(predictor variables) explain the variation of output variables (predicted variables). 

 
68 Scikit-learn is a free online software of ML libraries for the Python programming language and it is 

designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy. 
69 See Appendix A for detailed information on libraries installation steps. 
70 pip is the package installer for Python used to install packages from the Python Package Index and other 

indexes. 
71 See Appendix. 
72 The L2  norm loss function, also known as the least squares error (LSE), is used to minimize the sum of 

the square of differences between the target value and the estimated value. The MSE is the average squared 

difference between the estimated values and the actual values of our dependent variable. 
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Generally speaking, an higher R2 indicates a better fit for the model. The best possible 

score is 1.0 and it can be negative (i.e. the model can have a worse fit than the horizontal 

line). It is given by the following formula: 

 
𝑅2 = 1 −

∑ (𝑦𝑡 − �̂�𝑡)2𝑇
𝑡= 1

∑ (𝑦𝑡 − �̅�𝑡)2𝑇
𝑡= 1

  (28) 

 

where  ∑ (𝑦𝑡 − �̂�𝑡)2𝑇
𝑡= 1  is the Residual Sum of Squares given by the difference between 

the actual values of our dependent variable 𝑦𝑡 and the predicted ones �̂�𝑡 , while 

∑ (𝑦𝑡 − �̅�𝑡)2𝑇
𝑡= 1  is the Total Sum of Squares given by the difference between the actual 

values 𝑦𝑡 and its mean value �̅�𝑡 over the out-of-sample test period. 

Finally, we compute mean directional accuracy (MDA) results as it is known since Leitch 

and Tanner (1991) that the latter forecast evaluation criterion is closely related to the 

profitability of financial forecasts. It is given by the mean of the times of correct direction 

of the time series forecasts. In simple words, MDA provides the probability that the model 

is able to correctly detect the direction of the time series. It is given by the formula: 

 1

𝑁
 ∑  [1𝑠𝑔𝑛 (𝑦𝑡 − 𝑦𝑡−1)  = 𝑠𝑔𝑛(�̂�𝑡 −  𝑦𝑡−1)]

𝑇

𝑡= 1

 (29) 

 

where  𝑦𝑡 is the actual dependent variable values over the out-of-sample test period, �̂�𝑡 is 

the predicted dependent variable, 1 is an indicator function that takes the value of 1 when 

the even happen and 0 when the event does not happen, while sgn() is a sign function that 

extract the sign of a real number. 

 

3.2 Two Step BRT Model 

3.2.1 Return 

Fig. 3.3 reports the results for the forecasted monthly excess return in terms of R2 and 

MDA. The results are reported for a Boosted Regression tree model with 10,000 boosting 
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interactions, as well as a competing model proposed in the literature: the Multivariate 

Linear Model73. 

 R2 MDA 

Boosted Regression Tree -1,28 % 57,14% 

Multivariate Linear Model -6,31 % 45,71% 

 

Fig. 3.3: Out-of-sample forecasting accuracy for Excess Return forecasts  

Source: Own elaboration, 2021 

 

 

Over the sample 2001-2021 BRT outperforms the benchmark by achieving an out-of-

sample R2  of -1,28 %, which is better relative to the performance of the multivariate linear 

model which presents an R2 of -6,31 %.  

Our results are consistent with the ones presented by Rossi (2018) in the sense that BRT 

outperforms the linear model. Indeed, our results demonstrate that even if the linear 

framework and boosted regression trees conditioning their forecasts on the same set of 

predictors, only the latter is able to effectively better exploit this information to generate 

forecasts74.  

As we already said, we also compared the forecast direction to the actual realized 

direction through the Mean Directional Accuracy coefficient which provides the 

probability that our forecasting method should detect the correct direction of the time 

series. For this reason, MDA is a popular metric for forecasting performance in economics 

and finance. Also with this other ratio, BRT outperforms the multivariate linear model 

with an MDA of 57,14% compared to the lower 45,71% of the benchmark. 

Finally, following Goyal and Welch (2008), we present the so called “CumSum analysis” 

for stock returns, which is defined in our case as: 

 

𝐶𝑢𝑚𝑆𝑢𝑚(𝑇) = ∑(�̂�𝑡+1|𝑡
𝑙𝑖𝑛𝑒𝑎𝑟 − 𝑟𝑡+1)

2
𝑇−1

𝑡= 𝒯

− (�̂�𝑡+1|𝑡
𝐵𝑅𝑇 − 𝑟𝑡+1)

2
  (30) 

 

 
73 See Appendix C for more details about the algorithm steps. 
74 In the context of financial market prediction, an higher R2, even if it is very low (negative in our case), 

translate into profitable investment strategies, see Campbell and Thompson (2008). 
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where 𝒯 is the first month we start our calculations from, “linear” stands for multivariate 

linear model and BRT is the BRT prediction. This measure is useful at tracking the 

performance of the forecasting framework on each period because an upward sloping 

“CumSum” curve over a given month entails that the predictive model outperforms the 

linear, and vice versa. Figure 3.4  shows that BRT outperforms the multi-variate linear 

model over the sample under consideration.  

 

Fig. 3.4: Cumulative Sum of Squared Error Difference of Excess Return forecasts 

Source: Own elaboration, 2021 

 

BRT outperforms the multivariate linear method for the whole period from July 2018 to 

January 2019, from April 2019 to September 2020 and from November 2020 to the end 

of our out-of-sample period. It underperforms the multivariate linear method only for two 

short periods: a little lack from January 2019 to April 2019 and a biggest one for the 

month of October 2020. It is relevant to show that this latter month exactly corresponds 

to the worst month for stock returns according to the Dow Jones since March 2020 as 

Coronavirus was spreading. Stock markets in Europe have had their worst month after 

investors shrugged off record-breaking growth for the eurozone and focused on the likely 

impact of new coming lockdown restrictions due to the rising of the Coronavirus 

infection.  
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In addition to the “CumSum” analysis presented above, we present in figure 3.5 the 

cumulative out-of-sample mean directional accuracy difference between BRT and the 

multivariate linear model75. The vertical axis is called “Cumulative Sum of MDA 

difference” and it simply counts the times of differential directional forecasts between the 

prediction model and our benchmark.  

 

Fig. 3.5: Cumulative Sum of MDA difference of Excess Return forecasts 

Source: Own elaboration, 2021 

 

BRT performs very well from the beginning to our out-of-sample test period over March 

2020. At this date, the performance is rather poor with a small downhill peak and then 

immediately resume its ascent after July 2020. By analysing this behaviour for the MDA, 

we notice that the worst period in terms of predictive directional accuracy corresponds to 

a negative performance for excess stock returns. In fact, among our predictor variables, 

the month of March 2020 recorded an excess return of -17%, surely due to the 

implementation of the international lockdown plans.  

Our BRT analysis uses 10,000 boosting iterations to estimate the regression trees. In 

unreported results we demonstrate that our findings are not sensitive to this choice. 

Consistently with Rossi (2018), we test our BRT model both with 5,000 and 15,000 

 
75 For our analysis, comparing to the previous Cumulative Sum of Square Error difference, the order of the 

BRT model and our benchmark is inverted because an higher MDA is better than a lower one.  
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boosting iterations and we observe that they both outperform the benchmark in Fig. 3.3. 

Our conclusion is that boosted regression trees performance is not sensitive to the choice 

of boosting iterations. 

 

3.2.2 Volatility 

Fig. 3.6 reports the results for the forecasted monthly volatility in terms of R2 and MDA. 

The results are reported for both our Boosted Regression tree model and the most 

common competing model proposed in the literature: the GARCH (1,1) model. Setting 

the regression model, we distinguish the two methods: GARCH (1,1) predicts volatility 

only from the time series of returns, conversely, in the BRT model algorithm we set the 

volatility included among our predictors (i.e. vol) as the dependent variable, s.t. the BRT 

model is able to take into account all the twelve predictors described in paragraph 3.1. in 

order to obtain the  final monthly prediction regarding expected volatility76. 

 

 R2 MDA 

Boosted Regression Tree 25,33% 40,00% 

GARCH (1,1) -97,96% 48,57% 

 

Fig. 3.6: Out-of-sample forecasting accuracy of Volatility forecasts 

Source: Own elaboration, 2021 

 

 

Over the sample 2001-2021 BRT performs best compared to the benchmark with an out-

of-sample R2 of 25,33%, which is better relative to the performance of the GARCH(1,1)  

model which achieves a really worst R2 of -97,96%.  

Our results are consistent with the ones presented by Rossi (2018) in the sense that BRT 

outperforms the most common GARCH(1,1) model. 

Also with the volatility, we compared the forecast direction to the actual realized direction 

through the MDA coefficient to test if our forecasts can correctly detect the direction of 

the time series. In order to do that, due to the fact that volatility is always positive by 

nature, following Marquering and Verbeek (2005) we define as positive or negative sign 

those periods characterized by a volatility lower or greater than the full sample median 

 
76 See Appendix  C for more details about the algorithm steps. 
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volatility value. Differently from the previous R2 coefficient, BRT underperforms the 

GARCH(1,1) model with an MDA of 40% compared to the higher 48,57% of our 

benchmark.  

Finally, we present the results of the modified “CumSum analysis” for the volatility, 

which is defined as: 

 

𝐶𝑢𝑚𝑆𝑢𝑚(𝑇) = ∑(�̂�𝑡+1|𝑡
𝐺𝐴𝑅𝐶𝐻 (1,1)

− 𝑟𝑡+1)
2

𝑇−1

𝑡= 𝒯

− (�̂�𝑡+1|𝑡
𝐵𝑅𝑇 − 𝑟𝑡+1)

2
  (31) 

where now the GARCH (1,1) model replaces the linear one in the definition and acts as 

the benchmark. The plot is given in fig. 3.7.  

 

Fig. 3.7: Cumulative Sum of Squared Error Difference of Volatility forecasts 

Source: Own elaboration, 2021 

 

A close examination of Figure 3.6  reveals that BRT outperforms the GARCH (1,1) model 

over the full out-of-sample period taken into account. It is relevant to notice how the 

predictability of volatility is increased by the Boosted Regression Tree method from 

March 2020, which corresponds at the month of the first announced lockdown in Europe 

due to the emerging COVID-19 Pandemic. Indeed, in early March, global markets 

became extremely volatile and there were large swings. Our result demonstrates how the 

efficiency of Boosted Regression Tree to predict volatility values is increases for higher 
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values of volatility. This reveal is consistent with Marquering and Verbeek (2005), which 

already noticed that volatility values are easier to predict when volatility is high. 

Fig. 3.8 repeats the CumSum analysis for the out-of-sample mean directional accuracy 

difference between BRT model forecasts and GARCH (1,1) that we employ as the 

benchmark. The vertical axis is called “Cumulative Sum of MDA difference” and it 

simply counts the times of differential directional forecasts between the prediction model 

and our benchmark. 

 

Fig. 3.8: Cumulative Sum of MDA difference of Volatility forecasts 

Source: Own elaboration, 2021 

 

The plot highlights that BRT underperforms our benchmark for a longer part of our out-

of-sample test period. In particular, BRT beat the benchmark in terms of mean directional 

accuracy only from March 2019 to November 2019. From this date, the performance is 

particularly disappointing until the end of the period under consideration. We can explain 

this behaviour basing on the same previous considerations we present for fig. 3.7: even if 

the performance of BRT to predict volatility is increased in terms of R2, for higher values 

of volatility given by the emerging COVID-19 spread,  the mean directional accuracy is 

conversely more difficult to predict.  

In unreported results, by repeating the test made for the excess return forecast, also for 

the volatility prediction obtained by our Boosted Regression Tree analysis which uses 
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10,000 boosting iterations, we show that our findings are not sensitive to the choice of 

boosting interactions. BRT with 5,000 or 15,000 boosting interaction outperforms the 

benchmark in Fig. 3.5. Again, our conclusion is that boosted regression trees performance 

is not sensitive to the choice of boosting iterations. 

 

3.2.3 Optimal Portfolio Weights 

In the previous paragraph we have illustrated how to separately forecast returns and 

volatility. Now, we apply our observed prediction algorithms in order to receive optimal 

portfolio weights as output in a second step (i.e. two-step BRT).  

By applying the Utility Theory to this portfolio, the investor will choose his asset 

allocation by maximize its utility function, leading to the optimal portfolio weights choice 

given in (8). The only parameter in the latter formula is the risk-aversion coefficient, that 

we set equal to 4 as a commonly chosen parameter in the literature77 because it 

corresponds to a moderately risk-averse investor. 

In figure 3.9 we report the results for BRT-based optimal weight predictions in terms of  

R2 and MDA. The results are compared with a benchmark strategy which uses stock 

excess returns predictions from the multivariate linear regression model and volatility 

predictions from the GARCH(1,1) model78. 

 R2 MDA 

Boosted Regression Tree 6,21% 62,86% 

Linear Model & GARCH (1,1) -7,18% 51,43% 

 

Fig. 3.9: Out-of-sample forecasting accuracy of Optimal Portfolio Weights forecast 

Source: Own elaboration, 2021 

 

 

BRT has a significant overperformance compared to our benchmark with a positive R2 of 

6,21% compared to the negative one of -7,18% of the Linear Model & GARCH (1,1) 

weights prediction. This overperformance of BRT is also observed regarding the MDA 

coefficient which is 62,86% with an high-performance differential of 11,43% relative to 

our benchmark strategy. These results confirm the better performance of the BRT model 

 
77 See Paragraph 2.1 of Chapter 2. 
78 See Appendix E for more details about the algorithm steps. 
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forecasts and it is perfectly in compliance with Rossi (2018) achievements for optimal 

weights predictions.  

In order to complete our findings, we presents estimates of the modified “CumSum 

analysis” for the optimal weights forecast defined as: 

 

𝐶𝑢𝑚𝑆𝑢𝑚(𝑇) = ∑(�̂�𝑡+1|𝑡
𝑙𝑖𝑛&𝐺𝐴𝑅𝐶𝐻 (1,1)

− 𝑟𝑡+1)
2

𝑇−1

𝑡= 𝒯

− (�̂�𝑡+1|𝑡
𝐵𝑅𝑇 − 𝑟𝑡+1)

2
  (32) 

where now the Linear Model & GARCH (1,1) model act as our benchmark. The plot is 

given in fig. 3.10.  

 

Fig. 3.10: Cumulative Sum of Squared Error Difference of Optimal Weight forecasts 

Source: Own elaboration, 2021 

 

The plot gives us the ultimate idea of the outperformance of our BRT model throughout 

the out-of-sample period. After a continuous rising of performance from early 2019 we 

observe a short pick fall exactly in the month of October 2020 that corresponds to the 

worst month for stock returns due to the rising of worries about the COVID-19 spread. 

Finally, figure 3.11 plots the cumulative out-of-sample mean directional accuracy 

difference between BRT and our benchmark strategy of Linear Model & GARCH (1,1). 
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Fig. 3.11: Cumulative Sum of MDA of Optimal Weight forecasts 

Source: Own elaboration, 2021 

 

The plot shows that while a great performance of mean directional accuracy was present 

until December 2019 by the BRT model, over the rest of the out-of-sample test period the 

performance is mainly falling, probably due to the still in progress emergency situation 

which created instability on the international market  which our BRT algorithms was 

unable to predict perfectly in terms of directional accuracy comparing to the benchmark. 

In conclusion, based on the mean square error and mean directional accuracy as 

performance evaluation criteria, the results reported in this paragraph highlight the 

superiority of the BRT model compared to the common benchmarks often used in the 

literature as regards the prediction of the equity premium and associated volatility. 

Actually, our preliminary results suggest that BRT outperforms the benchmark in terms 

of R2 but the evidence for MDA is not convincing in terms of volatility forecasts. 

 

3.3 One Step BRT Model 

In the previous paragraph we have focused our attention on two steps: predicting excess 

returns and volatility in a separately way and then constructing optimal portfolio weights. 

We now attempt to directly forecast the optimal portfolio allocation for a mean-variance 

investor by set the risk-aversion coefficient equal  to 4 as we already done in the previous 
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paragraph according to the common practice in the  literature for a moderately risk-averse 

investor. In order to do that, in the initial phase of our algorithm we compute optimal 

portfolio weights directly from excess return and volatility values of our monthly 

predictor variables according to formula (8) by creating a new column of the data which 

set our dependent variable. Subsequently, we split weight results into train sample and 

test sample. At the end, we set the regression BRT model by fitting it with the predictors 

described in paragraph 3.1 in order to obtain the final predictions regarding expected 

monthly optimal portfolio weights79. 

In figure 3.12 we report the results for optimal portfolio weight predictions for the 

previous two-step BRT model and the new one-step BRT model in terms of R2 and MDA.  

 

 R2 MDA 

Two-step BRT 6,21% 62,86% 

One-step BRT 7,14% 65,71% 

 

Fig. 3.12: Out-of-sample forecasting accuracy of Optimal Portfolio Weights forecast in BRT models 

Source: Own elaboration, 2021 

 

 

One-step BRT has a small overperformance compared to our benchmark with an R2 of 

7,14% compared to the one of 6,21% of the two-step BRT weights prediction. This 

overperformance is also observed regarding the MDA coefficient which is 65,71% for 

the one-step BRT model with a relatively small high-performance differential of 2,85% 

compared to our benchmark model. These results evince the better performance of  the 

BRT model which directly predict optimal portfolio weights  in one single step. 

In the following paragraph, we construct optimal portfolio allocations based on market 

excess returns 𝑟𝑡+1 and volatility 𝜎𝑡+1. We present the results by using our Boosted 

regression tree models with 10.000 boosting iterations and then we assess the 

performance by comparing them with the ones obtained in paragraph 3.2.  

 

 

 
79 See Appendix E for more details about the algorithm steps. 
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3.4 Portfolio Allocation Performance 

After predicting the market index over time, our analysis aims to verify predictions’ 

implementation from an asset allocation point of view80. In this paragraph we use Market 

Timing81 to derive a signal of rebalancing of the stock market index portfolio during time 

for unconstrained portfolio weights for the mean variance investor described in chapter 2 

who uses both the Boosted Regression Tree models and the Linear & GARCH (1,1) one 

to formulate returns and volatility predictions. We distinguish the two-step BRT where 

market returns and volatility are forecasted separately and the optimal mean-variance 

portfolio allocation is computed in a second stage, from the one-step BRT where optimal 

portfolio weights are forecasted directly from the implemented predictors. For 

comparison, we also present results for three benchmark strategies. The first one imposes 

short selling and borrowing constraints to the optimal portfolio weights which have to lie 

between 0 and 1, such that: 

 

 

𝜔∗
𝑡+1|𝑡  =  {

0 𝑖𝑓 𝜔∗
𝑡+1|𝑡 < 0,

𝜔∗
𝑡+1|𝑡 𝑖𝑓 0 ≤  𝜔∗

𝑡+1|𝑡  ≤ 1

1 𝑖𝑓 𝑖𝑓   𝜔∗
𝑡+1|𝑡 > 0

 (33) 

 

The second one is the classical static portfolio consisting of 60% stocks and 40% bonds. 

Stock returns are based on the European Market Index EU STOXX 50 compounded  

monthly returns. On the other hand, Bond returns are based on 3-month German Bund 

price82. 

Finally, the third benchmark strategy we adopt as benchmark is the passive strategy where 

the investor purchase our European Market Index and hold it over the long-time horizon 

without short-term trading83.  

 
80 The asset allocation is the percentage composition of the portfolio by financial asset macro classes 

(stocks, bonds, monetary) or first-level assets with further details for each macro class (e.g. foreign 

investments, small-cap stocks and large-cap stocks). Asset allocation decisions result from the investor's 

time horizon, risk tolerance and overall financial knowledge 
81 Market timing consists in anticipating stock market movements in order to buy and sell stocks in a short 

time period to make a profit. It is appeal when markets are volatile, as the change of making profit quickly 

is more, even if the risk to lose money is higher as well due to the fact that predicting the stock market 

consistently is really difficult. 
82 See par. 3.1. 
83 See Appendix F for more details about the algorithm steps. 



Chapter 3 – Out-of-Sample Empirical Application’s Results  

50 
 

  

In order to formulate optimal portfolio weights, we use formula (8) by setting the investor 

risk coefficient to 4 which corresponds to a moderately risk-averse investor. In 

constructing portfolios, investors often combine risky assets with risk-free assets to 

reduce risks84. Therefore, our complete portfolio is defined as a combination of the risky 

asset (i.e. Market Index) and the risk-free one (i.e. 3 month German Bund). The Return 

of this portfolio will be a weighted average of its individual assets’ returns and it is 

calculated according to formula (34) as follow: 

 𝑟𝑝,𝑡+1 = 𝐸𝑡(𝑤𝑖,𝑡+1) 𝑟𝑖,𝑡+1 + (1 − 𝐸𝑡(𝑤𝑖,𝑡+1)) 𝑟𝑓,𝑡+1 (34) 

where 𝑟𝑖,𝑡+1 is the return of the risky asset whose expected weight in the portfolio is 

𝐸𝑡(𝑤𝑖,𝑡+1) , and 𝑟𝑓,𝑡+1 is the return of the risk-free asset whose portfolio’s weight is the 

remaining part of it, so (1 − 𝐸𝑡(𝑤𝑖,𝑡+1)) because portfolio weights sum to 1. Positive 

weight in the portfolio means that the investor long buy the stock. Conversely, a negative 

portfolio weight is considered as a negative investment in the asset, s.t. the investor short 

sell the stock.  

The performance of these strategies is evaluated over the three-year test sample period 

from 2018 to 2021 and it is express in terms of Mean, Standard Deviation, Sharpe Ratio85, 

VaR86 and Maximum drawdown87. 

Fig. 3.13 reports our performance valuation indicators by considering unconstrained 

weights. Our results confirms that the best model is the BRT that forecasts the optimal 

portfolio allocation in two steps (i.e. Two-step BRT) with a Sharpe Ratio of 19,30%. The 

Linear Model & GARCH(1,1) performs significantly worst comparing to other 

benchmark strategies with a negative Sharpe Ratio of -8,64%. This model beats others 

 
84 See chapter 2, par. 1 
85 Sharpe Ratio measures the performance of a portfolio compared to a risk-free asset, after adjusting for 

its risk. Indeed, it is defined as the difference between the portfolio’s return and the risk-free return, divided 

by the portfolio’s standard deviation (i.e. its volatility). 
86 Value at risk (VaR) is a statistic for financial risk which provides an estimate of the maximum loss of 

portfolio over a specific period of time. In our estimations we compute it with a 95% confidence level. This 

means that with a 95% probability, the maximum expected loss at the end of the considered period will not 

be higher than the VaR obtained. For sure, nothing tells us what will happen in the remaining 5% of cases. 
87 Maximum Drawdown is the maximum observed loss from a peak to a trough of a portfolio before a new 

peak occurs. It is an indicator of downside risk over a specified time period, and it is calculating the negative 

returns, hence it is between 0 and -1. 
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BRT models only in terms of Standard Deviation with a value of 0,22%, not too far from 

the 1,83% of the Two-step BRT and the 2,39% of the One-step BRT. 

 Mean St.Dev Sh.Ratio VaR MaxDrawd. 

Two-step BRT -0,06% 1,83% 19,30% -3,07% -13,50% 

One-step BRT -0,10% 2,39% 12,82% -4,03% -18,24% 

Linear Model & GARCH(1,1) -0,43% 0,22% -8,64% -0,78% -14,02% 

 

Fig. 3.13: Portfolio Allocation Performance with unconstrained weights 

Source: Own elaboration, 2021 

 

In figure 3.14 we repeat the same exercise imposing short-selling and borrowing 

constraints as represented in formula (33). Unexpectedly, these limits increase the 

profitability of both the two-step BRT-based investment and the Linear Model & 

GARCH(1.1) strategies: in the first Mean is increased by 0,04% while,  in the second, 

they are increased by 0,04% and 21% respectively. Again, the best investment strategies 

is the one that adopt the Two-step BRT model in order to make forecasts. It presents a 

considerably higher Sharpe Ratio of 23,15%. compared to the One-step BRT which has 

a value drop to 11,59%. The lower Sharpe Ratio is due to both lower Mean and Standard 

Deviation of this portfolio strategy compared to the one with unconstrained weights. The 

opposite holds true for the investment strategy that exploits Linear Model & GARCH(1,1) 

forecasts, where the Sharpe Ratio significantly increase from -8,64% to 12,36%. As also 

has been observed  by Rossi(2018) there are different reasons for this, among which the 

most important one is that there is a fair degree of estimation error in the estimated 

optimal portfolio allocations, due to the minimization of the L2 criterion functions. 

 Mean St.Dev Sh.Ratio VaR MaxDrawd. 

Two-step BRT -0,02% 1,70% 23,15% -2,81% -11,03% 

One-step BRT -0,16% 2,11% 11,59% -3,64% -16,20% 

Linear Model & GARCH(1,1) -0,39% 0,12% 12,36% -0,59% -12,97% 

 

Fig. 3.14: Portfolio Allocation Performance with short selling and borrowing constraints 

Source: Own elaboration, 2021 
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Overall, these results highlights that BRT models outperform the established benchmark 

in term of constrained and unconstrained portfolio allocation performance. They also 

demonstrate that, between BRT models, portfolio allocations based on both returns and 

volatility estimates (i.e. two-step BRT) is more profitable than the one that directly exploit 

expected weights (i.e. one-step BRT).  

At the end, we focus our attention on figure 3.15 which reports results for models that 

assume a passive strategy. The first is the classical static portfolio consisting of 60% 

stocks and 40% bonds, while the second one consists in investing 100% of wealth in the 

risky asset.  

 

 Mean St.Dev Sh.Ratio VaR MaxDrawd. 

Portfolio 60/40 0,12% 3,44% 15,41% -5,53% -17,28% 

100% Market 0,47% 5,74% 15,36% -8,97% -27,25% 

 

Fig. 3.15: Portfolio Allocation Performance with Passive strategies 

Source: Own elaboration, 2021 

  

Starting from an internal comparison between them, we denote that the second strategy 

allows to obtain a more profitable portfolio, but riskier. Indeed, even if they have similar 

Sharpe Ratios, first strategy has a significantly lower Mean which differ from the 

benchmark by -0,35%. Conversely, the second strategy has an higher value by 

considering Standard Deviation and Maximum Drawdown, by differing from the 

benchmark by  2,3%, 9,97%. In addition, it has a lower VaR of -8,97% compared to the 

-5,53% of the Portfolio 60/40 investment.  

The analysis of these results are also useful in order to better understand how these passive 

strategies are more or less efficient for a better asset allocation compared to the 

benchmark active strategies of figure 3.13 and 3.14. We can easily highlight that the 

Passive strategies are the only ones that present a positive output in terms of Mean, even 

if the higher Sharpe Ratio is given only by the two-step BRT strategy with 19,30% with 

unconstrained weights and 23,15% with short selling and borrowing constraints that again 

has demonstrate its efficiency. Unlike profit, passive strategies are riskier than all the 

active benchmarks. Indeed, these kind of investments presents  almost double Standard 
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Deviation and also lower VaR and Maximum Drawdown. The riskiest investment is the 

passive strategy which allocates 100% of the investor’s wealth in the market portfolio.  

Even though widely used, the performance measures considered in our analysis until now 

may be not correct measures. For instance, Fleming, Kirby and Ostidiek (2001) and 

Marquering and Verbeek (2005) argues that the Sharpe Ratio is not efficient as risk-

adjusted returns’ measure in the presence of time-varying volatility. For this reason, in 

the next paragraph we focus our analysis on the economic value generated by the trading 

strategies based on the BRT forecasts.  

 

3.4.1 Mean-Variance Investor’s Utility Value Perspective 

Following Fleming, Kirby and Ostidiek (2001) and Marquering and Verbeek (2005), we 

define an utility-based performance measure based on the ex-ante investor’s utility 

function we presented in (1) adapted to the portfolio: 

 

𝑈𝑝,𝑡 = 𝐸𝑡(𝑟𝑝,𝑡+1) −
1

2
 𝐴 𝜎𝑡

2(𝑟𝑝,𝑡+1) 
(35) 

where 𝐸𝑡(𝑟𝑝,𝑡+1) is the expectation of the portfolio return at time t+1 given the 

information available as of time t, 𝜎𝑡
2(𝑟𝑡+1) is the variance at time t+1 given the 

information available as of time t and 𝐴 is the risk-aversion coefficient. 

By substituting (34) in (35), we can re-write the expression in order to construct an ex-

post average realized utility function for each investment strategy we observed, by using 

the following formula: 

 

𝑈𝑝 =
1

𝑇
∑ [𝑟𝑓,𝑡+1 + 𝑤𝑖,𝑡+1 𝑟𝑖,𝑡+1 −

1

2
 𝐴 𝑤𝑖,𝑡+1

2 𝜎2
𝑖,𝑡+1]

𝑇−1

𝑡=0

 
(35) 

where 𝑟𝑓,𝑡+1 and 𝑟𝑖,𝑡+1 are the actual monthly return of the risk-free asset and risky asset 

respectively between t and t+1, while 𝜎2
𝑖,𝑡+1 is the monthly variance of the risky asset. 

The average utility level is express in percentage and refers to the relative satisfaction that 

an investor derives from the portfolio according to its own risk-aversion perception. 
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In figure 3.16 we report the output for the average realized utility of the BRT-based88 

portfolio also according to different risk-aversion coefficient ranging from 2 to 10. 

  𝐴 = 2 𝐴 = 4 𝐴 = 6 𝐴 = 8 𝐴 = 10 

Two-step BRT Unconstrained weights -0,24% -0,36% -0,48% -0,61% -0,73% 

 Short. and borrow. constraints -0,24% -0,35% -0,46% -0,58% -0,69% 

One-step BRT Unconstrained weights -0,27% -0,37% -0,47% -0,57% -0,67% 

 Short. and borrow. constraints -0,39% -0,49% -0,59% -0,69% -0,80% 

Fig. 3.16: Average realized utilities for BRT-based strategies 

Source: Own elaboration, 2021 

 

In addition to the previous consideration, it is relevant to denote that until now we have 

ignored estimation uncertainty. In fact, expected returns and volatilities are not know but 

only estimated from the data. Even though we used the longest possible time-series 

available, it is not too high in terms of data intensity because the EUROSTOXX50 is not 

too old as the S&P 500. The noise obtained may be responsible for making the portfolio 

weights too volatile over time. A number of approaches have been proposed to mitigate 

the effect of estimation uncertainty89. Here, following Rossi (2018) inspired by 

Marquering and Verbeek (2005), we re-estimate the optimal portfolio weights using a 

“pseudo-risk aversion coefficient” 𝐴 which is now considered the double of the true risk-

aversion coefficient considered until now. Instead of 4, 𝐴 is now 8. 

In figure 3.17 we report the output for the average realized utility of the portfolio 

accounting for estimation uncertainty. 

  𝐴 = 2 𝐴 = 4 𝐴 = 6 𝐴 = 8 𝐴 = 10 

Two-step BRT Unconstrained weights -0,28% -0,32% -0,35% -0,38% -0,41% 

 Short. and borrow. constraints -0,29% -0,32% -0,35% -0,38% -0,40% 

One-step BRT Unconstrained weights -0,29% -0,39% -0,49% -0,58% -0,68% 

 Short. and borrow. constraints -0,36% -0,45% -0,54% -0,63% -0,72% 

Fig. 3.17: Average realized utilities for BRT-based strategies accounting for estimation uncertainty 

Source: Own elaboration, 2021 

 

 
88 Linear Model and GARCH (1,1) performance is not reported for brevity. 
89 See Ter Horst, De Roon, and Werker (2000) and Maenhout (2004). 
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In addition, for a better comparison, in figure 3.17 we report the output for the average 

realized utility of the portfolio for an investor who adopt passive strategies by placing 

100% of his wealth in the market portfolio or adopt a classical strategy 60/40. 

  𝐴 = 2 𝐴 = 4 𝐴 = 6 𝐴 = 8 𝐴 = 10 

Passive strategies Portfolio 60/40 -0,48% -0,83% -1,18% -1,53% -1,88% 

 100% Market -0,91% -1,89% -2,86% -3,84% -4,81% 

Fig. 3.18: Average realized utilities for passive strategies 

Source: Own elaboration, 2021 

 

Taking into account the investor’s utility function, passive are the worst strategies 

compared to the BRT-based benchmark. Again, the better performance is given by the 

two-step BRT, in particular when short selling and borrowing constraints are taking into 

consideration. For instance, the unconstrained weights investment strategy based on the 

two-step BRT model that does not correct for estimation uncertainty delivers an average 

monthly realized utility of -0,24% to an investor with a risk-aversion coefficient of 2. On 

the other hand, the one-step BRT counterpart presents a value of realized utility equal to 

-0,27%. Both are much larger than both the -0,48% provided by the portfolio 60/40 

strategy and the -0.91% obtained by the investor who allocates 100% of his wealth on the 

market index. The higher performance of the active strategies increase when the risk-

aversion coefficient increase, achieving a significantly gap with a risk-aversion 

coefficient equal to 10. For instance, with a risk-aversion coefficient equal to 10 the 100% 

market strategy has a realized utility value of -4,81% compared to the two-step BRT 

investment correct for estimation uncertainty which gives a value of -0,41%.  

From a wider point of view, it is relevant to highlight the greater realized utilities in 

presence of unconstrained weights. The results hold whether we adopt one or two-step 

BRT models. All the investment strategies provide higher realized utilities for low 

coefficient of risk-aversion. Overall, our results indicate that without accounting for 

estimation uncertainty provides a better realized utility only for a low risk-aversion 

coefficient. In fact, from 𝐴 = 4  not account for estimation uncertainty result in too 

volatile portfolio allocations with a subsequently lower utility function’s value. 
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CONCLUSION 

Our paper contributes to the long-standing literature assessing the predictability of stock 

returns and helps justify the growing role of ML throughout the FinTech industry.  

We have a deep investigation on how a representative mean-variance investor should 

exploits publicly available information to formulate forecasting on excess return and 

volatility as well as optimal portfolio allocations. We adopt the BRT method on the 

market index EU STOXX 50 that is able to make forecasts basing on a large set of 

conditioning information without imposing strong parametric assumptions such as 

linearity or monotonicity.  The conditioning information we use are the twelve predictor 

variables proposed so far by Welch and Goyal (2008). 

The first question we answer is whether macroeconomic and financial variables contain 

information about expected stock returns and volatility that a mean-variance investor 

could benefit from. We present new evidence of the outperformance of BRT-methods 

forecasts against the established benchmarks with a more significant market timing in 

both returns and volatility. BRT-based forecasts method translate into profitable portfolio 

allocations in terms of both Mean Squared Error and Mean Directional Accuracy. 

The second question we answer is whether the conditioning information contained in 

macroeconomic and financial time-series can be exploited to directly select the optimal 

portfolio weights. Tests of optimal portfolio weights predictability demonstrate that 

portfolio allocations are time-varying and forecastable with a better performance of the 

one-step BRT compared to the statistical methods adopted as benchmark. 

The third question is whether the results forecasts are economically valuable in terms of 

portfolio allocations profitability. We assess this  by computing Mean, Standard 

Deviation, Sharpe Ratio, VaR and Maximum drawdown of the monthly portfolio returns 

obtained from our predictor variables also when short selling and borrowing constraints 

are taken into account. Actually, the more significant market timing of BRT-based 

methods, as well as their better performance compared to classical statistical methods 

implemented as benchmark, does not translate into profitable performance exploiting the 

predicted optimal weights of the portfolio. Indeed, passive strategies have demonstrated 

a better performance in our research compared to the active ones in terms of Mean. The 

possible reason behind is the scarcity of data available for the European Market Index 
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that does not allow to have an efficient data intensity, so a longer period, able to make 

more correct previsions. At this consideration, it is also necessary to add the criticisms 

happened in our test period (i.e. last years) which includes the word pandemic effect that 

affected the stock market integrity in terms of higher volatility.  

We also calculate the realized utilities level obtained by the investor by comparing BRT-

based strategies and passive ones. Our findings show the greater performance of the BRT-

based model against the passive strategies of portfolios 60/40 and 100% market. The 

different results compares to the previous consideration is due to the higher volatility 

presented in the passive strategies compared to the active investments.  

The limits presented by our work in terms of data intensity should be inspirations for 

future research again in an European context but with a longer period into account. 

Machine learning in banking and finance is beginning to play a significant role in various 

processes. However, not many FinTech providers considered machine learning as a key 

driver of financial services. Easier-to-use machine learning tools, multiple algorithms, 

and good computing power will only increase its adoption in financial technology, so now 

is the time to catch up with this performing trend. 
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APPENDIX 

A. Libraries Installation 

 

Input: py get-pip.py 

Output: 

 

 

  

Input: pip install numpy 

Output: 

 

 

 

Input: pip install scikit-learn 

Output: 

 

 

 

Input: pip install matplotlib 

Output: 

 

 

 

Input: pip install pandas 

Output: 
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Input: pip install statsmodels 

Output: 

 

 

 

Input: pip install seaborn 

Output: 
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B. Selected Predictor variables 

date exc ltr vol dp ep Rfree rrel lty tms defspr infl de 

200105 -0,06564 -0,02805 0,01313 -1,75945 -1,32552 0,04357 -0,00212 0,05165 0,00808 0,00780 0,00500 1,32737 

200106 -0,08577 0,00444 0,01222 -1,73993 -1,31281 0,04370 -0,00118 0,05104 0,00734 0,00790 0,00200 1,32535 

200107 -0,07922 0,01689 0,01325 -1,72354 -1,31387 0,04261 -0,00159 0,04881 0,00620 0,00840 -0,00200 1,31181 

200108 -0,12779 0,00701 0,01203 -1,67572 -1,28780 0,03906 -0,00424 0,04785 0,00879 0,00830 -0,00100 1,30122 

200109 -0,16260 -0,00138 0,03306 -1,62160 -1,23553 0,03537 -0,00642 0,04800 0,01263 0,00860 0,00300 1,31248 

200110 0,02043 0,03238 0,02049 -1,64397 -1,28126 0,03330 -0,00572 0,04373 0,01043 0,00880 0,00100 1,28309 

200111 0,01745 -0,01422 0,01523 -1,66555 -1,33445 0,03290 -0,00300 0,04557 0,01267 0,00840 -0,00100 1,24811 

200112 0,00678 -0,03305 0,01643 -1,69037 -1,35257 0,03284 -0,00101 0,04997 0,01713 0,01280 0,00400 1,24975 

200201 -0,06937 0,00787 0,01314 -1,67572 -1,33866 0,03302 0,00001 0,04887 0,01585 0,01320 0,00100 1,25179 

200202 -0,04583 -0,00408 0,01334 -1,68613 -1,30492 0,03335 0,00042 0,04946 0,01611 0,01380 0,00200 1,29213 

200203 0,00951 -0,02186 0,00858 -1,69897 -1,42144 0,03350 0,00043 0,05253 0,01903 0,01300 0,00600 1,19525 

200204 -0,09113 0,00862 0,01068 -1,67985 -1,41414 0,03408 0,00079 0,05134 0,01726 0,01270 0,00500 1,18790 

200205 -0,07647 -0,00354 0,01142 -1,66154 -1,39568 0,03405 0,00041 0,05184 0,01779 0,01340 0,00200 1,19049 

200206 -0,12275 0,01708 0,02162 -1,62160 -1,37694 0,03353 -0,00035 0,04949 0,01596 0,01320 0,00000 1,17768 

200207 -0,18711 0,01513 0,03339 -1,55440 -1,31597 0,03297 -0,00092 0,04755 0,01458 0,01370 -0,00100 1,18118 

200208 -0,02385 0,01432 0,03075 -1,55752 -1,31994 0,03256 -0,00095 0,04555 0,01299 0,01210 0,00100 1,17999 

200209 -0,23833 0,02200 0,03066 -1,46852 -1,22376 0,03209 -0,00093 0,04268 0,01059 0,01250 0,00300 1,20001 

200210 0,10264 -0,01824 0,02999 -1,52578 -1,28171 0,03076 -0,00178 0,04539 0,01463 0,01410 0,00200 1,19042 

200211 0,02430 0,00106 0,01968 -1,57025 -1,29973 0,02899 -0,00282 0,04483 0,01584 0,01310 -0,00100 1,20814 

200212 -0,13528 0,02180 0,01854 -1,52433 -1,25406 0,02792 -0,00269 0,04189 0,01397 0,01240 0,00500 1,21551 

200301 -0,08619 -0,02513 0,01875 -1,49894 -1,22917 0,02652 -0,00270 0,04075 0,01423 0,01180 0,00000 1,21947 

200302 -0,07395 0,01252 0,02190 -1,47886 -1,29336 0,02499 -0,00282 0,03897 0,01398 0,01110 0,00400 1,14342 

200303 -0,07475 -0,01113 0,03128 -1,45593 -1,33905 0,02502 -0,00146 0,04037 0,01535 0,01060 0,00600 1,08728 

200304 0,10826 -0,00280 0,01754 -1,51286 -1,40993 0,02372 -0,00179 0,04068 0,01696 0,01110 0,00100 1,07300 

200305 -0,01879 0,02996 0,01475 -1,50307 -1,36361 0,02129 -0,00328 0,03693 0,01564 0,01160 -0,00100 1,10227 

200306 0,01659 -0,01014 0,01332 -1,51713 -1,40960 0,02108 -0,00227 0,03797 0,01689 0,01220 0,00100 1,07629 

200307 0,01943 -0,08951 0,01305 -1,54821 -1,42716 0,02118 -0,00085 0,04205 0,02087 0,01130 -0,00100 1,08482 

200308 -0,00670 0,00083 0,00904 -1,57025 -1,47349 0,02125 0,00006 0,04167 0,02042 0,01130 0,00100 1,06567 

200309 -0,08618 0,01491 0,01093 -1,53760 -1,43870 0,02121 0,00004 0,04010 0,01889 0,01070 0,00400 1,06874 

200310 0,05076 0,01419 0,01136 -1,58670 -1,47625 0,02136 0,00015 0,04328 0,02192 0,01030 0,00100 1,07482 

200311 0,00006 -0,01022 0,00966 -1,59346 -1,48643 0,02124 -0,00004 0,04468 0,02344 0,01010 0,00000 1,07200 

200312 0,02763 0,01283 0,00590 -1,59346 -1,51135 0,02068 -0,00059 0,04301 0,02233 0,00980 0,00300 1,05433 

200401 0,00753 0,00391 0,00697 -1,60555 -1,52504 0,02049 -0,00060 0,04236 0,02187 0,00900 -0,00200 1,05279 

200402 -0,00123 0,01281 0,00670 -1,59176 -1,34163 0,02008 -0,00072 0,04038 0,02030 0,00770 0,00200 1,18644 

200403 -0,05750 0,01119 0,01259 -1,56225 -1,22634 0,02028 -0,00014 0,03921 0,01893 0,00780 0,00600 1,27391 

200404 -0,02065 -0,02141 0,00963 -1,55440 -1,23477 0,02064 0,00036 0,04213 0,02149 0,00730 0,00500 1,25885 

200405 -0,03458 -0,00851 0,01064 -1,54975 -1,22866 0,02091 0,00057 0,04376 0,02285 0,00710 0,00300 1,26134 

200406 0,00117 -0,00292 0,00731 -1,56864 -1,23754 0,02094 0,00033 0,04313 0,02219 0,00770 0,00000 1,26754 

200407 -0,05384 0,00704 0,00726 -1,55284 -1,22298 0,02092 0,00009 0,04214 0,02122 0,00800 -0,00200 1,26972 

200408 -0,03924 0,01541 0,00796 -1,52724 -1,21669 0,02096 0,00004 0,04018 0,01922 0,00810 0,00200 1,25524 

200409 -0,00067 0,00835 0,00624 -1,56225 -1,22737 0,02125 0,00030 0,03990 0,01865 0,00810 0,00100 1,27284 

200410 0,00938 0,00809 0,00923 -1,57512 -1,24055 0,02147 0,00043 0,03854 0,01707 0,00740 0,00400 1,26969 

200411 0,00124 -0,03595 0,00570 -1,58838 -1,24502 0,02150 0,00027 0,03788 0,01638 0,00680 -0,00100 1,27579 
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200412 0,00438 0,01130 0,00564 -1,60206 -1,25744 0,02123 -0,00018 0,03675 0,01552 0,00680 0,00400 1,27407 

200501 -0,00984 0,01137 0,00523 -1,59688 -1,24944 0,02116 -0,00024 0,03543 0,01427 0,00660 -0,00600 1,27807 

200502 0,00326 -0,01396 0,00528 -1,54668 -1,19061 0,02115 -0,00015 0,03736 0,01621 0,00620 0,00400 1,29906 

200503 -0,02199 0,00338 0,00561 -1,51999 -1,15381 0,02115 -0,00003 0,03621 0,01506 0,00660 0,00700 1,31736 

200504 -0,06302 0,02231 0,00780 -1,47886 -1,09342 0,02103 -0,00012 0,03398 0,01295 0,00720 0,00400 1,35251 

200505 0,02793 -0,03581 0,00543 -1,50031 -1,12123 0,02089 -0,00022 0,03271 0,01182 0,00860 0,00200 1,33809 

200506 0,01254 0,01171 0,00586 -1,51145 -1,13001 0,02097 -0,00005 0,03134 0,01037 0,00900 0,00100 1,33755 

200507 0,02346 -0,00209 0,00640 -1,53760 -1,14457 0,02110 0,00014 0,03239 0,01129 0,00890 -0,00100 1,34338 

200508 -0,04020 0,00537 0,00732 -1,53760 -1,12385 0,02117 0,00018 0,03103 0,00986 0,00870 0,00200 1,36815 

200509 0,02751 -0,00010 0,00739 -1,55284 -1,14737 0,02173 0,00065 0,03152 0,00979 0,00900 0,00500 1,35340 

200510 -0,05545 -0,02116 0,00893 -1,53910 -1,12613 0,02333 0,00200 0,03395 0,01062 0,00950 0,00300 1,36672 

200511 0,01309 0,01738 0,00477 -1,53611 -1,14019 0,02443 0,00235 0,03449 0,01006 0,00970 -0,00200 1,34723 

200512 0,01273 0,01296 0,00547 -1,56225 -1,15806 0,02481 0,00164 0,03306 0,00825 0,00950 0,00300 1,34902 

200601 0,00527 -0,01346 0,00786 -1,54821 -1,16791 0,02567 0,00148 0,03477 0,00910 0,00950 -0,00400 1,32563 

200602 -0,00460 -0,00140 0,00761 -1,53462 -1,15564 0,02686 0,00189 0,03487 0,00801 0,00920 0,00300 1,32794 

200603 -0,00678 -0,02598 0,00606 -1,51286 -1,14051 0,02755 0,00177 0,03785 0,01030 0,00880 0,00600 1,32648 

200604 -0,03208 -0,01423 0,00665 -1,51145 -1,14019 0,02848 0,00178 0,03947 0,01099 0,00840 0,00700 1,32561 

200605 -0,08366 0,04350 0,01446 -1,48945 -1,09726 0,02942 0,00179 0,03987 0,01045 0,00800 0,00300 1,35743 

200606 -0,02733 -0,01000 0,01279 -1,53760 -1,09795 0,03055 0,00207 0,04058 0,01003 0,00890 0,00100 1,40043 

200607 -0,02005 0,01059 0,01038 -1,49894 -1,09342 0,03176 0,00227 0,03921 0,00745 0,00910 -0,00100 1,37087 

200608 -0,00166 0,00950 0,00608 -1,51999 -1,09447 0,03281 0,00223 0,03755 0,00474 0,00910 0,00100 1,38879 

200609 -0,01088 0,00970 0,00672 -1,53018 -1,10278 0,03442 0,00272 0,03706 0,00264 0,00920 0,00000 1,38757 

200610 -0,00867 -0,00489 0,00431 -1,55596 -1,11461 0,03534 0,00234 0,03741 0,00207 0,00910 0,00100 1,39596 

200611 -0,04058 -0,01560 0,00674 -1,54975 -1,11261 0,03618 0,00199 0,03691 0,00073 0,00870 0,00000 1,39290 

200612 -0,00409 -0,02204 0,00659 -1,55440 -1,11261 0,03683 0,00152 0,03959 0,00276 0,00900 0,00400 1,39708 

200701 -0,02335 -0,01095 0,00666 -1,53313 -1,13033 0,03747 0,00135 0,04095 0,00348 0,00940 -0,00500 1,35635 

200702 -0,06029 0,01410 0,00772 -1,51145 -1,10517 0,03817 0,00134 0,03964 0,00147 0,00890 0,00300 1,36762 

200703 -0,01627 -0,01101 0,01016 -1,51145 -1,11628 0,03898 0,00149 0,04064 0,00166 0,00970 0,00700 1,35401 

200704 0,00940 -0,01242 0,00665 -1,61261 -1,13418 0,03991 0,00170 0,04146 0,00155 0,00920 0,00600 1,42183 

200705 -0,01362 0,02638 0,00625 -1,64207 -1,13577 0,04064 0,00162 0,04410 0,00346 0,00920 0,00200 1,44577 

200706 -0,04638 -0,01334 0,00839 -1,64016 -1,13322 0,04130 0,00145 0,04555 0,00425 0,00910 0,00100 1,44735 

200707 -0,08398 0,01818 0,01076 -1,61618 -1,10551 0,04443 0,00382 0,04321 -0,00122 0,00920 -0,00200 1,46194 

200708 -0,05124 0,00882 0,01466 -1,61798 -1,10619 0,04633 0,00420 0,04249 -0,00384 0,00860 0,00100 1,46266 

200709 -0,02572 -0,01134 0,01060 -1,60033 -1,11628 0,04581 0,00179 0,04344 -0,00237 0,00850 0,00400 1,43363 

200710 -0,02097 0,01433 0,00606 -1,61083 -1,11727 0,04534 -0,00018 0,04290 -0,00244 0,00820 0,00500 1,44176 

200711 -0,06870 -0,01847 0,01035 -1,61798 -1,09726 0,04735 0,00152 0,04159 -0,00576 0,00960 0,00500 1,47457 

200712 -0,04276 -0,01331 0,00709 -1,59688 -1,10106 0,04384 -0,00233 0,04324 -0,00060 0,01160 0,00400 1,45031 

200801 -0,19113 0,03158 0,02475 -1,53165 -1,03342 0,04270 -0,00281 0,03933 -0,00337 0,01210 -0,00300 1,48211 

200802 -0,06311 0,00466 0,01480 -1,52143 -1,03703 0,04494 0,00031 0,03874 -0,00620 0,01290 0,00300 1,46711 

200803 -0,07296 -0,00231 0,01529 -1,48678 -1,02202 0,04673 0,00290 0,03901 -0,00772 0,01380 0,01000 1,45475 

200804 0,00543 -0,01698 0,01209 -1,50864 -1,05038 0,04743 0,00264 0,04116 -0,00627 0,01420 0,00300 1,43628 

200805 -0,06063 -0,00710 0,00693 -1,50307 -1,06145 0,04822 0,00186 0,04454 -0,00368 0,01360 0,00600 1,41605 

200806 -0,16777 -0,01382 0,01020 -1,45100 -1,01410 0,04842 0,00096 0,04628 -0,00214 0,01390 0,00400 1,43082 

200807 -0,04399 0,02203 0,01329 -1,45223 -1,00432 0,04846 0,00043 0,04352 -0,00494 0,01490 -0,00200 1,44598 

200808 -0,04962 0,01411 0,01070 -1,43890 -1,00130 0,04897 0,00061 0,04174 -0,00723 0,01510 -0,00100 1,43703 

200809 -0,15222 0,01294 0,02459 -1,40230 -0,96895 0,04987 0,00125 0,04030 -0,00957 0,01660 0,00200 1,44724 
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200810 -0,20044 0,00811 0,04303 -1,30190 -0,94694 0,04151 -0,00759 0,03878 -0,00273 0,02600 0,00000 1,37484 

200811 -0,09671 0,01335 0,03354 -1,31336 -0,93247 0,03240 -0,01439 0,03251 0,00011 0,03090 -0,00500 1,40847 

200812 -0,01717 0,02589 0,02539 -1,29158 -0,90363 0,02427 -0,01699 0,02947 0,00520 0,03380 -0,00100 1,42932 

200901 -0,10923 -0,02907 0,02238 -1,25259 -0,85612 0,01924 -0,01348 0,03277 0,01353 0,03090 -0,00800 1,46309 

200902 -0,14016 0,01502 0,01510 -1,32239 -0,91062 0,01622 -0,00908 0,03091 0,01469 0,02810 0,00400 1,45218 

200903 0,03278 0,00900 0,02456 -1,35556 -0,94498 0,01412 -0,00579 0,02997 0,01585 0,02920 0,00400 1,43449 

200904 0,12431 -0,01428 0,01794 -1,41567 -1,14983 0,01274 -0,00379 0,03183 0,01909 0,03000 0,00300 1,23119 

200905 0,01925 -0,05355 0,01539 -1,43771 -1,19673 0,01220 -0,00216 0,03612 0,02392 0,02520 0,00000 1,20136 

200906 -0,03012 0,01650 0,01492 -1,42713 -1,17406 0,00970 -0,00332 0,03385 0,02415 0,01890 0,00200 1,21555 

200907 0,08533 0,00759 0,01368 -1,46218 -1,25551 0,00857 -0,00298 0,03304 0,02447 0,01680 -0,00700 1,16461 

200908 0,04295 0,00272 0,01225 -1,49485 -1,46404 0,00769 -0,00247 0,03268 0,02499 0,01320 0,00300 1,02104 

200909 0,02717 0,00238 0,01099 -1,51570 -1,25237 0,00735 -0,00131 0,03206 0,02471 0,01180 0,00000 1,21027 

200910 -0,05313 -0,00030 0,01479 -1,49349 -1,26694 0,00714 -0,00073 0,03241 0,02527 0,01140 0,00200 1,17882 

200911 0,01231 -0,01429 0,01273 -1,51004 -1,29994 0,00709 -0,00030 0,03160 0,02451 0,01130 0,00100 1,16162 

200912 0,05145 -0,01954 0,00826 -1,54821 -1,32715 0,00677 -0,00042 0,03401 0,02724 0,01110 0,00300 1,16657 

201001 -0,07215 0,01666 0,01074 -1,51286 -1,27807 0,00660 -0,00041 0,03200 0,02540 0,00990 -0,00800 1,18371 

201002 -0,02400 0,00753 0,01381 -1,49757 -1,13481 0,00643 -0,00039 0,03107 0,02464 0,00990 0,00300 1,31966 

201003 0,06523 -0,00004 0,00728 -1,53462 -1,12287 0,00643 -0,00017 0,03102 0,02459 0,01000 0,01100 1,36669 

201004 -0,04662 0,01083 0,01385 -1,53462 -1,08778 0,00684 0,00036 0,02965 0,02281 0,00960 0,00400 1,41078 

201005 -0,08342 0,00616 0,02659 -1,46980 -1,05192 0,00725 0,00068 0,02653 0,01928 0,01090 0,00100 1,39725 

201006 -0,02271 0,00887 0,01599 -1,45717 -1,05038 0,00845 0,00161 0,02552 0,01707 0,01350 0,00000 1,38728 

201007 0,05463 -0,01049 0,01311 -1,49757 -1,08063 0,00892 0,00140 0,02672 0,01780 0,01290 -0,00400 1,38584 

201008 -0,05321 -0,01582 0,01149 -1,46471 -1,07737 0,00877 0,00056 0,02112 0,01235 0,01170 0,00200 1,35952 

201009 0,03661 -0,01383 0,01159 -1,48017 -1,08529 0,00993 0,00122 0,02285 0,01292 0,01130 0,00300 1,36385 

201010 0,02436 -0,02188 0,00878 -1,51286 -1,09656 0,01037 0,00116 0,02524 0,01487 0,01040 0,00300 1,37964 

201011 -0,08079 0,00833 0,01197 -1,46852 -1,06333 0,01017 0,00048 0,02667 0,01650 0,01050 0,00100 1,38105 

201012 0,04200 -0,02381 0,00848 -1,50585 -1,08565 0,01012 -0,00003 0,02949 0,01937 0,01080 0,00600 1,38705 

201101 0,04517 -0,01816 0,00958 -1,51145 -1,10992 0,01081 0,00059 0,03163 0,02082 0,01050 -0,00700 1,36177 

201102 0,00825 -0,00095 0,00833 -1,53760 -1,08778 0,01169 0,00132 0,03171 0,02002 0,00930 0,00400 1,41352 

201103 -0,04762 -0,01501 0,01096 -1,51856 -1,09096 0,01313 0,00225 0,03358 0,02045 0,00900 0,01300 1,39194 

201104 0,01974 0,07448 0,00855 -1,52578 -1,08099 0,01415 0,00228 0,03236 0,01821 0,00860 0,00600 1,41147 

201105 -0,06564 0,01821 0,00919 -1,47237 -1,05269 0,01478 0,00179 0,03021 0,01543 0,00820 0,00000 1,39867 

201106 -0,02054 -0,00079 0,01140 -1,47756 -1,05038 0,01585 0,00183 0,03028 0,01443 0,00760 0,00000 1,40669 

201107 -0,07999 0,04069 0,01282 -1,44249 -1,03782 0,01540 0,00048 0,02545 0,01005 0,00830 -0,00600 1,38992 

201108 -0,16365 -0,05662 0,02722 -1,39469 -0,98408 0,01525 -0,00009 0,02222 0,00697 0,00990 0,00200 1,41726 

201109 -0,07028 0,02952 0,02808 -1,37059 -0,96284 0,01564 0,00014 0,01888 0,00324 0,01180 0,00700 1,42348 

201110 0,07538 -0,01352 0,02053 -1,37059 -1,00561 0,01474 -0,00069 0,02025 0,00551 0,01390 0,00300 1,36295 

201111 -0,03740 -0,04401 0,02537 -1,36552 -1,05423 0,01416 -0,00105 0,02281 0,00865 0,01270 0,00100 1,29528 

201112 -0,01812 0,04194 0,01612 -1,35754 -1,01953 0,01215 -0,00270 0,01825 0,00610 0,01320 0,00300 1,33153 

201201 0,03188 0,00052 0,01093 -1,38195 -1,09202 0,01043 -0,00325 0,01793 0,00750 0,01380 -0,00800 1,26550 

201202 0,03019 -0,00245 0,00752 -1,39469 -1,14457 0,00855 -0,00370 0,01811 0,00956 0,01290 0,00500 1,21853 

201203 -0,02138 0,00252 0,01144 -1,40340 -1,17493 0,00742 -0,00296 0,01798 0,01056 0,01240 0,01300 1,19445 

201204 -0,07829 -0,00921 0,01675 -1,38091 -1,15106 0,00683 -0,00197 0,01663 0,00980 0,01230 0,00500 1,19968 

201205 -0,09135 0,04094 0,01091 -1,37161 -1,11594 0,00657 -0,00103 0,01211 0,00554 0,01270 -0,00100 1,22910 

201206 0,06158 -0,03570 0,01551 -1,40561 -1,13799 0,00496 -0,00198 0,01579 0,01083 0,01380 -0,00100 1,23517 

201207 0,02326 0,02831 0,01572 -1,45967 -1,15987 0,00332 -0,00280 0,01283 0,00951 0,01470 -0,00500 1,25848 
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201208 0,04580 -0,00531 0,01290 -1,48017 -1,19117 0,00246 -0,00249 0,01340 0,01094 0,01430 0,00400 1,24262 

201209 0,00346 -0,02912 0,01187 -1,48017 -1,19033 0,00208 -0,00150 0,01434 0,01226 0,01350 0,00700 1,24350 

201210 0,01800 -0,00551 0,00997 -1,48945 -1,20952 0,00192 -0,00070 0,01459 0,01267 0,01110 0,00200 1,23145 

201211 0,02635 0,01019 0,00911 -1,49894 -1,17725 0,00185 -0,00030 0,01383 0,01198 0,01010 -0,00200 1,27326 

201212 0,02124 0,00575 0,00609 -1,50585 -1,17984 0,00205 0,00010 0,01306 0,01101 0,00980 0,00400 1,27631 

201301 0,02288 -0,03416 0,00620 -1,52578 -1,16791 0,00223 0,00029 0,01677 0,01454 0,00930 -0,01000 1,30642 

201302 -0,02808 0,02037 0,01322 -1,51286 -1,17114 0,00206 0,00001 0,01458 0,01252 0,00950 0,00400 1,29178 

201303 -0,00571 0,01637 0,00943 -1,51713 -1,16137 0,00209 -0,00003 0,01282 0,01073 0,00920 0,01200 1,30633 

201304 0,03097 0,00643 0,01205 -1,53313 -1,18949 0,00201 -0,00012 0,01211 0,01010 0,00860 -0,00100 1,28890 

201305 0,01893 -0,02773 0,00674 -1,54212 -1,22141 0,00210 0,00005 0,01511 0,01301 0,00840 0,00100 1,26257 

201306 -0,06442 -0,01956 0,01133 -1,51286 -1,19728 0,00221 0,00015 0,01730 0,01509 0,00920 0,00100 1,26358 

201307 0,05941 0,00492 0,00853 -1,54363 -1,19728 0,00226 0,00015 0,01676 0,01450 0,00980 -0,00500 1,28928 

201308 -0,01927 -0,01628 0,00859 -1,53611 -1,21192 0,00223 0,00004 0,01855 0,01632 0,00880 0,00100 1,26750 

201309 0,05895 0,05169 0,00611 -1,55440 -1,21906 0,00226 0,00002 0,01780 0,01554 0,00830 0,00500 1,27508 

201310 0,05643 0,00887 0,00643 -1,57025 -1,24846 0,00223 -0,00002 0,01679 0,01456 0,00780 -0,00100 1,25774 

201311 0,00334 -0,00154 0,00497 -1,57349 -1,24477 0,00273 0,00049 0,01693 0,01420 0,00750 -0,00100 1,26408 

201312 0,00430 -0,02174 0,00908 -1,57512 -1,24576 0,00292 0,00051 0,01941 0,01649 0,00760 0,00400 1,26438 

201401 -0,03392 0,00342 0,00963 -1,57187 -1,23019 0,00288 0,00025 0,01658 0,01370 0,00700 -0,01100 1,27774 

201402 0,04085 0,00258 0,00766 -1,58503 -1,24895 0,00305 0,00021 0,01628 0,01323 0,00650 0,00300 1,26908 

201403 0,00063 0,00512 0,01025 -1,58503 -1,33163 0,00329 0,00034 0,01570 0,01241 0,00680 0,00900 1,19029 

201404 0,00833 0,00873 0,00714 -1,58503 -1,34596 0,00324 0,00017 0,01470 0,01146 0,00660 0,00100 1,17762 

201405 0,01194 -0,01166 0,00676 -1,48413 -1,37273 0,00241 -0,00078 0,01355 0,01114 0,00600 -0,00100 1,08115 

201406 -0,00710 0,00938 0,00443 -1,46092 -1,38166 0,00205 -0,00093 0,01250 0,01045 0,00550 0,00100 1,05737 

201407 -0,03746 0,00751 0,00835 -1,50724 -1,36549 0,00191 -0,00065 0,01166 0,00975 0,00570 -0,00600 1,10381 

201408 0,01719 0,02486 0,00720 -1,49214 -1,40841 0,00097 -0,00115 0,00887 0,00790 0,00610 0,00100 1,05945 

201409 0,01584 -0,04999 0,00780 -1,46092 -1,39005 0,00083 -0,00082 0,00946 0,00863 0,00690 0,00400 1,05099 

201410 -0,03634 0,00916 0,01444 -1,55129 -1,37912 0,00081 -0,00043 0,00841 0,00760 0,00770 -0,00100 1,12484 

201411 0,04244 0,01330 0,00988 -1,54363 -1,39777 0,00081 -0,00006 0,00702 0,00621 0,00870 -0,00200 1,10436 

201412 -0,03330 0,01450 0,01363 -1,55284 -1,34341 0,00063 -0,00019 0,00541 0,00478 0,00950 -0,00100 1,15590 

201501 0,06264 -0,02380 0,01428 -1,51570 -1,38561 0,00048 -0,00027 0,00312 0,00264 0,00990 -0,01500 1,09389 

201502 0,07099 -0,00114 0,00675 -1,50446 -1,32756 0,00027 -0,00037 0,00324 0,00297 0,00900 0,00600 1,13325 

201503 0,02692 0,01329 0,00880 -1,49757 -1,29754 0,00005 -0,00041 0,00183 0,00178 0,00900 0,01200 1,15416 

201504 -0,02237 -0,01733 0,01065 -1,51286 -1,29425 -0,00010 -0,00037 0,00363 0,00373 0,00960 0,00400 1,16891 

201505 -0,01247 -0,01168 0,01103 -1,54061 -1,26928 -0,00014 -0,00021 0,00487 0,00501 0,00910 0,00300 1,21377 

201506 -0,04189 -0,02666 0,01345 -1,55909 -1,24650 -0,00019 -0,00012 0,00768 0,00787 0,00940 0,00000 1,25078 

201507 0,05023 0,05889 0,01453 -1,53313 -1,27830 -0,00028 -0,00013 0,00650 0,00678 0,01050 -0,00600 1,19936 

201508 -0,09645 -0,01418 0,01622 -1,57349 -1,21378 -0,00037 -0,00017 0,00793 0,00830 0,01150 0,00000 1,29635 

201509 -0,05306 0,01906 0,01563 -1,60906 -1,20222 -0,00054 -0,00026 0,00587 0,00641 0,01270 0,00200 1,33842 

201510 0,09750 0,00571 0,01066 -1,55440 -1,27114 -0,00088 -0,00048 0,00523 0,00611 0,01390 0,00100 1,22283 

201511 0,02548 0,00428 0,00907 -1,56384 -1,33284 -0,00126 -0,00067 0,00475 0,00601 0,01400 -0,00400 1,17331 

201512 -0,07057 -0,01495 0,01339 -1,59007 -1,30038 -0,00146 -0,00057 0,00635 0,00781 0,01490 0,00000 1,22277 

201601 -0,07050 -0,01731 0,01644 -1,65170 -1,26905 -0,00184 -0,00064 0,00335 0,00519 0,01450 -0,01500 1,30153 

201602 -0,03317 0,02180 0,01911 -1,69037 -1,24650 -0,00229 -0,00077 0,00110 0,00339 0,01380 0,00200 1,35609 

201603 0,01989 -0,00480 0,01049 -1,69680 -1,26811 -0,00250 -0,00063 0,00155 0,00405 0,01310 0,01200 1,33806 

201604 0,00772 -0,01220 0,01122 -1,65365 -1,29645 -0,00258 -0,00037 0,00280 0,00538 0,01170 0,00200 1,27552 

201605 0,01158 0,01249 0,01034 -1,61979 -1,29951 -0,00268 -0,00023 0,00146 0,00414 0,01030 0,00400 1,24646 
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201606 -0,06707 0,02544 0,02400 -1,61083 -1,27021 -0,00295 -0,00037 -0,00127 0,00168 0,01030 0,00200 1,26816 

201607 0,04305 -0,04685 0,01001 -1,60555 -1,28375 -0,00299 -0,00025 -0,00120 0,00179 0,00940 -0,00500 1,25067 

201608 0,01076 -0,00595 0,00777 -1,56067 -1,29645 -0,00302 -0,00015 -0,00061 0,00241 0,00920 0,00100 1,20380 

201609 -0,00693 0,00540 0,00867 -1,54061 -1,30600 -0,00309 -0,00011 -0,00117 0,00192 0,00900 0,00400 1,17964 

201610 0,01750 -0,02774 0,00593 -1,57512 -1,31513 -0,00313 -0,00010 0,00162 0,00475 0,00870 0,00200 1,19769 

201611 -0,00119 -0,01077 0,00922 -1,58336 -1,25792 -0,00316 -0,00008 0,00275 0,00591 0,00850 -0,00400 1,25871 

201612 0,07538 0,00715 0,00656 -1,52143 -1,28959 -0,00326 -0,00013 0,00207 0,00533 0,00770 0,00500 1,17978 

201701 -0,01835 0,00136 0,00539 -1,50585 -1,27623 -0,00329 -0,00011 0,00437 0,00766 0,00740 -0,00900 1,17992 

201702 0,02715 0,02284 0,00511 -1,46980 -1,27231 -0,00330 -0,00006 0,00206 0,00536 0,00690 0,00400 1,15523 

201703 0,05318 -0,01213 0,00553 -1,44009 -1,26055 -0,00331 -0,00003 0,00331 0,00662 0,00670 0,00800 1,14243 

201704 0,01662 0,00037 0,00896 -1,47237 -1,25624 -0,00330 0,00000 0,00323 0,00653 0,00700 0,00600 1,17205 

201705 -0,00140 0,00262 0,00519 -1,50169 -1,24452 -0,00331 0,00000 0,00300 0,00631 0,00700 -0,00100 1,20664 

201706 -0,03222 -0,01600 0,00670 -1,50585 -1,22917 -0,00331 0,00000 0,00473 0,00804 0,00690 0,00100 1,22509 

201707 0,00217 0,01781 0,00570 -1,53018 -1,22789 -0,00330 0,00001 0,00540 0,00870 0,00690 -0,00500 1,24619 

201708 -0,00812 0,01632 0,00642 -1,53313 -1,19811 -0,00330 0,00000 0,00361 0,00691 0,00680 0,00300 1,27963 

201709 0,04943 -0,00962 0,00385 -1,51145 -1,22089 -0,00330 0,00000 0,00463 0,00793 0,00670 0,00400 1,23799 

201710 0,02176 0,00940 0,00369 -1,51570 -1,22634 -0,00330 0,00000 0,00363 0,00693 0,00720 0,00000 1,23595 

201711 -0,02872 -0,00136 0,00487 -1,53910 -1,22037 -0,00328 0,00001 0,00368 0,00696 0,00700 -0,00200 1,26118 

201712 -0,01865 -0,00463 0,00621 -1,57512 -1,23172 -0,00329 0,00000 0,00424 0,00753 0,00710 0,00300 1,27879 

201801 0,02962 -0,02593 0,00563 -1,55596 -1,24452 -0,00329 0,00000 0,00695 0,01024 0,00710 -0,00900 1,25024 

201802 -0,04834 0,00310 0,01048 -1,59007 -1,19424 -0,00328 0,00000 0,00659 0,00987 0,00690 0,00200 1,33145 

201803 -0,02278 0,01632 0,00944 -1,64207 -1,16316 -0,00329 0,00000 0,00497 0,00826 0,00770 0,01100 1,41173 

201804 0,05076 -0,00662 0,00545 -1,57675 -1,19948 -0,00326 0,00003 0,00562 0,00888 0,00820 0,00400 1,31453 

201805 -0,03741 0,02091 0,00540 -1,58004 -1,17782 -0,00323 0,00005 0,00343 0,00666 0,00830 0,00600 1,34149 

201806 -0,00325 0,00311 0,00767 -1,58004 -1,17696 -0,00321 0,00005 0,00308 0,00629 0,00870 0,00100 1,34248 

201807 0,03754 -0,03708 0,00491 -1,56067 -1,18498 -0,00320 0,00004 0,00443 0,00763 0,00920 -0,00200 1,31705 

201808 -0,03834 0,01105 0,00634 -1,57840 -1,18949 -0,00319 0,00002 0,00332 0,00651 0,00890 0,00200 1,32695 

201809 0,00186 -0,01374 0,00642 -1,59860 -1,19257 -0,00318 0,00002 0,00474 0,00792 0,00900 0,00400 1,34047 

201810 -0,06117 0,00880 0,00868 -1,63451 -1,15594 -0,00317 0,00002 0,00384 0,00701 0,00930 0,00200 1,41401 

201811 -0,00765 0,00732 0,00599 -1,62525 -1,14051 -0,00312 0,00006 0,00309 0,00621 0,01000 -0,00600 1,42502 

201812 -0,05563 0,00605 0,00987 -1,63451 -1,11594 -0,00308 0,00007 0,00246 0,00554 0,01110 0,00000 1,46469 

201901 0,05130 0,00896 0,00803 -1,60206 -1,13925 -0,00309 0,00004 0,00155 0,00464 0,01190 -0,01000 1,40624 

201902 0,04300 -0,00303 0,00777 -1,57840 -1,18837 -0,00310 0,00000 0,00186 0,00496 0,01160 0,00300 1,32821 

201903 0,01608 0,02500 0,00707 -1,54212 -1,20249 -0,00311 -0,00002 -0,00068 0,00243 0,01070 0,01000 1,28244 

201904 0,04746 -0,00849 0,00365 -1,56225 -1,22660 -0,00312 -0,00003 0,00011 0,00323 0,01010 0,00700 1,27364 

201905 -0,06896 0,02043 0,00868 -1,57349 -1,19562 -0,00329 -0,00018 -0,00203 0,00126 0,00960 0,00100 1,31604 

201906 0,05725 0,01160 0,00621 -1,54975 -1,22167 -0,00366 -0,00048 -0,00328 0,00038 0,01040 0,00200 1,26855 

201907 -0,00197 -0,01104 0,00581 -1,56543 -1,23930 -0,00409 -0,00073 -0,00442 -0,00033 0,00990 -0,00500 1,26316 

201908 -0,01163 0,02678 0,01174 -1,54975 -1,23603 -0,00418 -0,00051 -0,00703 -0,00285 0,00890 0,00100 1,25381 

201909 0,04080 -0,01424 0,00471 -1,53313 -1,25237 -0,00414 -0,00016 -0,00572 -0,00158 0,00880 0,00200 1,22419 

201910 0,00975 -0,01704 0,00967 -1,49757 -1,26293 -0,00402 0,00011 -0,00403 -0,00001 0,00910 0,00100 1,18580 

201911 0,02714 -0,00489 0,00336 -1,48413 -1,27623 -0,00395 0,00016 -0,00360 0,00035 0,00880 -0,00300 1,16290 

201912 0,01116 -0,01642 0,00754 -1,46597 -1,28240 -0,00392 0,00012 -0,00187 0,00205 0,00870 0,00300 1,14315 

202001 -0,02823 0,02638 0,00675 -1,51713 -1,28035 -0,00410 -0,00013 -0,00434 -0,00024 0,00830 -0,01000 1,18493 

202002 -0,08941 0,01670 0,01394 -1,56067 -1,25551 -0,00417 -0,00018 -0,00608 -0,00191 0,00830 0,00200 1,24305 

202003 -0,17789 -0,01583 0,03976 -1,66154 -1,17464 -0,00254 0,00152 -0,00469 -0,00215 0,01270 0,00500 1,41451 
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202004 0,04936 0,01225 0,01853 -1,69465 -1,23121 -0,00272 0,00088 -0,00589 -0,00317 0,01700 0,00300 1,37640 

202005 0,04091 -0,01407 0,01679 -1,79317 -1,28126 -0,00377 -0,00062 -0,00448 -0,00071 0,01450 -0,00100 1,39954 

202006 0,05853 0,00325 0,01722 -1,73518 -1,30835 -0,00445 -0,00144 -0,00453 -0,00008 0,01200 0,00300 1,32624 

202007 -0,01865 0,00689 0,01077 -1,71220 -1,54195 -0,00481 -0,00116 -0,00531 -0,00050 0,01170 -0,00400 1,11041 

202008 0,03047 -0,01409 0,00969 -1,69250 -1,58184 -0,00493 -0,00058 -0,00398 0,00095 0,01020 -0,00400 1,06996 

202009 -0,02441 0,01193 0,01249 -1,71220 -1,57101 -0,00510 -0,00038 -0,00521 -0,00011 0,01050 0,00100 1,08987 

202010 -0,07657 0,00986 0,01176 -1,76447 -1,61511 -0,00522 -0,00028 -0,00625 -0,00103 0,01090 0,00200 1,09248 

202011 0,16604 -0,00561 0,01402 -1,70997 -1,72337 -0,00540 -0,00031 -0,00571 -0,00031 0,01000 -0,00300 0,99222 

202012 0,01706 -0,00023 0,00680 -1,71220 -1,73223 -0,00549 -0,00025 -0,00575 -0,00026 0,00900 0,00300 0,98843 

202101 -0,02024 -0,00351 0,00940 -1,70997 -1,71941 -0,00543 -0,00006 -0,00520 0,00023 0,00790 0,00200 0,99450 

202102 0,04356 -0,02614 0,00743 -1,65561 -1,70757 -0,00541 0,00003 -0,00257 0,00284 0,00720 0,00200 0,96957 

202103 0,07488 0,00353 0,00615 -1,54668 -1,74414 -0,00540 0,00004 -0,00292 0,00248 0,00700 0,00900 0,88679 

202104 0,01407 -0,00985 0,00621 -1,53018 -1,66539 -0,00603 -0,00062 -0,00200 0,00403 0,00700 0,00600 0,91881 

202105 0,01615 -0,00173 0,00922 -1,51713 -1,64532 -0,00643 -0,00082 -0,00183 0,00460 0,00660 0,00300 0,92208 
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C. Excess Return forecasts 

Input: py exc_BRT.py 

 

 

Output: 
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Input: py exc_Linear.py 

 

 

Output: 
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Input: py exc_CumSum.py 
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Output: 
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Input: py exc_CumSumMDA.py 
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Output: 
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D. Volatility forecasts 

Input: py vol_BRT.py 

 

 

Output: 
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Input: py vol_GARCH.py 

 

 

Output: 
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Input: py vol_CumSum.py 
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Output: 
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Input: py vol_CumSumMDA.py 
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Output: 
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E. Optimal Portfolio Weight forecasts 

Input: py TWOSTEP_weight_BRT.py 
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Output: 
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Input: py weight_LinearGARCH.py 
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Output: 
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Input: py ONESTEP_weight_BRT.py 

 

 

Output: 
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Input: py weight_CumSum.py 
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Output: 
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Input: py weight_CumSumMDA.py 
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Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX   

97 
 

  

F. Portfolio Performance 

Input: py ONESTEP_BRT_UnconstrainedWeights.py 
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Output: 
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Input: py ONESTEP_BRT_ShortsellingAndBorrowingConstraints.py 
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Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX   

101 
 

  

Input: py TWOSTEP_BRT_UnconstrainedWeights.py 
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Output: 
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Input: py TWOSTEP_BRT_ShortsellingAndBorrowingConstraints.py 
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Output: 
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Input: py LinearGARCH_UnconstrainedWeights.py 
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Output: 
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Input: py LinearGARCH_ShortsellingAndBorrowingConstraints.py 
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Output: 
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Input: py Portfolio6040.py 

 

 

Output: 
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Input: py 100MarketPortfolio.py 

 

 

Output: 
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Input: py TWOSTEP_BRT_UnconstrainedWeights_UTILITY.py 
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Output: 
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Input: py TWOSTEP_BRT_ShortsellingAndBorrowingConstraints_UTILITY.py 
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Output: 
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Input: py ONESTEP_BRT_UnconstrainedWeights_UTILITY.py 

 

 

Output: 
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Input: py ONESTEP_BRT_ShortsellingAndBorrowingConstraints_UTILITY.py 
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Output: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX   

118 
 

  

Input: py TWOSTEP_BRT_UnconstrainedWeights_UTILITY_Uncertainty.py 
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Output: 
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Input: py TWOSTEP_BRT_ShortsellingAndBorrowingConstraints_UTILITY_Uncertainty.py 
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Output: 
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Input: py ONESTEP_BRT_UnconstrainedWeights_UTILITY_Uncertainty.py 
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Output: 
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Input: py ONESTEP_BRT_ShortsellingAndBorrowingConstraints_UTILITY_Uncertainty.py 
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Output: 
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Input: py Portfolio6040_UTILITY.py 

 

 

Output: 
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Input: py 100MarketPortfolio_UTILITY.py 

 

 

Output: 

 

 

 

 


