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0. Abstract 

 

The first chapter introduces the crypto market, its trends, and the instrument utilised during 

the whole analysis. Then, a first, short analysis is conducted on cryptocurrencies. 

The second chapter will actualise the research conducted by Holoviatuk, O. 

"Cryptocurrencies as an asset class in portfolio optimisation", based on 2014-2019 data. 

Since the latter investigation, the market changed with the sentiment on cryptocurrencies. 

The period under analysis range from June 2018 to June 2021, and it takes into consideration 

the market highly stressed by COVID-19. Since both individual and institutional investors 

are considering much more to invest - directly and indirectly - in the crypto world, we study 

Bitcoin, Ethereum, and more in general cryptos. Should they be considered an alternative 

asset class as of today? The answer will be provided at the end of the chapter. 

The third chapter develops the Modern and Post-Modern Portfolio Theories by combining 

Crypto, Stocks, Bonds, Commodities, FX and Real Estate. A total of 20'000 combinations 

are run to find the best tangency portfolio. 

Immediately after the above analysis, an obvious question springs to mind: How to invest in 

Crypto-assets? Moreover, what should be the time horizon? Chapter 4 presents the GRU: an 

algorithm that can predict the Bitcoin and Ethereum prices with extreme precision for the 

following twenty days. However, it could be applied to a wide range of cryptocurrencies and 

could be helpful to consciously invest in an asset class still not yet studied in deep, which 

could surprise even the more sceptical investors. 
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1. Introduction 

 

Since their introduction in 2008, cryptocurrencies have piqued the interest of researchers 

from various fields. Not only are these cryptocurrencies backed by a set of carefully 

reasoned and integrated scientific computer theories, but their digital nature perfectly 

aligns with the Internet era, allowing them to be used in situations where traditional fiat 

currencies have failed. Tax-free transactions and a reasonable level of data protection 

guaranteed by untracked payments are just a few of the significant advantages. 

 

This section will discuss the trend of cryptocurrencies and the technology and 

characteristics of two of the most important ones: Bitcoin and Ethereum. 

After, we will present the instruments used during our research: CRIX – the most well-

known proxy for cryptocurrencies – and five proxies that represent the five par 

excellence traditional asset classes – Stocks, Bonds, Commodities, FX, and Real Estate 

–. Finally, the chapter ends with a concise reasoning about cryptocurrencies: are they 

really a currency, a financial bubble, or none of them? 

 

 

1.1 The technology behind cryptocurrencies 

 

As for every cutting-edge technology, blockchain, which underpins cryptocurrencies, 

encounters both enthusiasm and resistance. While some believe that blockchain heralds 

the dawn of a new digital era, others contend it is a rising financial bubble or just a 

scheme for money laundering. On the other side, it should also be considered that ten 

years of expanding adoption of blockchain technology, its integration into public 

spheres, and its use in everyday transactions demonstrate its practical application.  

Cryptocurrencies emerged as the first wave of blockchain-based applications. Satoshi 

Nakamoto pioneered this technology's first implementation in his 2008 article "Bitcoin: 

A Peer-to-Peer Electronic Cash System," in which he stated: "What is required is an 

electronic payment system based on cryptographic proof rather than trust, allowing any 

two willing parties to transact directly between each other without the need for a trusted 
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third party"1. In other terms, blockchain is a decentralized, tamper-resistant transaction 

and data management system in which records are held across a network of multiple 

nodes. Another way of thinking about blockchain is as a distributed ledger that spans a 

network of numerous holders, places, or devices. 

 

As shortly mentioned above, blockchain comprises a series of ordered back-linked 

blocks that include information about transactions. Each block's transactions are 

combined and hashed into a binary tree, or Merkle tree, with the top (root) of the tree 

being preserved in each record2. Since they are part of a chain, blocks retain the hashes 

of all preceding blocks and replay them from the chain's origin. When the original data 

is modified, the hash is also modified and does not match the original fingerprint 

anymore. It leads to the necessity of rehashing all of the following blocks. This protects 

the system's integrity by making it nearly impossible to rewrite all the hashes and modify 

the data contained within the chain.  

 

What distinguishes blockchain technology is a set of three components that enables the 

creation, updating, verification, and auditing of data across the system without the 

interference of third parties.  

 

The first component is the peer-to-peer (P2P) network3, a collection of identically 

privileged nodes connected via a shared infrastructure. The blockchain database is then 

dispersed among various nodes, granting access to data to all network members. As a 

result, there is no need to rely on an intermediary, as blockchain technology can confirm 

and maintain a permanent record-keeping procedure that ensures personal data privacy. 

The second component that provides secure, non-modifiable communication is 

cryptography. The blockchain protects against retrospective alterations to records using 

a cryptographic hashing technique that acts as a fingerprint for authenticating the record. 

Once an initiator signs a transaction, it is validated and disseminated via the network of 

nodes until it is included in all nodes' blocks.  

The third component is the consensus algorithm, which ensures the database's 

consistency when a new transaction requires approval. 

                                                
1 Bitcoin: A Peer-to-Peer Electronic Cash System, S. Nakamoto, 2008 
2 Bitcoin: A Peer-to-Peer Electronic Cash System, S. Nakamoto, 2008 
3 Peer-to-Peer Networks: Architectures, Applications and Challenges, J. Sen, 2013 
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As Xingxiong Zhu states, “there are many common consensus algorithms, such as proof-

of-work (PoW), proof-of-stake (PoS), practical byzantine fault-tolerance (PBFT), 

delegated proof-of-stake (DPOS), Ripple, and Tendermint. They differ in computational 

complexity, fault-tolerance, scalability, performance, and effectiveness”4. Proof-of-

Work is the most often used consensus algorithm at the heart of Bitcoin and Ethereum. 

It requires miners to solve a mathematical problem, typically a hash function, to obtain 

consensus, which needs a lot of computer power and thus much energy.5 

 

 

1.2 Bitcoin 

 

1.2.1 Timeline  

 

Bitcoin was suggested in 2008 by Satoshi Nakamoto in the paper "Bitcoin: A Peer-to-

Peer Electronic Cash System." Nakamoto views a trusted third party as an unreliable 

middleman and advocates for an alternative system in which any party may easily 

confirm transactions, obviating the requirement for a trust-based intermediary. 

Bitcoin's source code was released in early 2009, but initially received little attention. 

The first Bitcoin transaction occurred a few days after the launch, when Nakamoto sent 

10 BTC to Hal Finney, one of the project's early supporters and collaborators, for testing 

purposes. Following that, Bitcoin continued to operate as a distinct currency system until 

May 2010, when the global economy collapsed. 

In the following years, more institutions began to accept Bitcoin, and its price began to 

rise, but not without any problem. In August 2010, a significant weakness in Bitcoin 

was exploited, allowing transactions to be improperly confirmed, essentially removing 

the 21 million BTC upper limit on Bitcoin issuance6. The vulnerability was immediately 

identified and patched, and even though this was the sole significant assault as of today, 

cryptographic attacks continued. Indeed, most of the remaining prominent Bitcoin 

exchanges have all been hacked. 

Bitcoin split into different structures in August 2017 due to a protracted argument over 

how to handle scalability. Without getting into technical details, the total number of 

                                                
4 Research on blockchain consensus mechanism and implementation, X. Zhu 2019 
5 Bitcoin and Cryptocurrency Technologies,  A. Narayanan, J. Bonneau, E. Felten, 2016 
6 Bitcoin History: The Complete History of Bitcoin [Timeline] 
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bitcoins will converge to 12 million BTC in 2140, and regardless of whether the Bitcoin 

community agrees to remove the upper bound in the future, this event will immediately 

influence Bitcoin's price and transactions. 

 

 

1.2.2 Technical Review 

 

Bitcoin has no formal sense of ownership; all transactions are anonymous. The owner 

controls the cryptographic private key necessary to sign the subsequent hashed 

transactions. 

It utilises a distributed global public ledger in which each block represents a transaction. 

Since every transaction is dependent on the status of the prior transaction, the blocks 

create a chain referred to as the blockchain. At each point in time, the longest blockchain 

is viewed as the consensus blockchain. Each transaction creates an integer value 

denoting the transaction's amount and a script snippet indicating the transaction's status. 

The subsequent transaction's input must match the prior transaction's output. In addition, 

the previous and current transactions' scripts must terminate correctly, and the total 

amount transacted must not exceed the total input amount. The entire transaction is then 

hashed using SHA-2562, with the hash value serving as the transaction's globally unique 

identifier7. 

Now that a set of stringent transaction rules have been established, it must be ensured 

that they operate in a network environment. What is needed is a protocol that addresses 

one of the most perplexing aspects of building a digital currency: the double spending 

dilemma. In the context of Bitcoin, the double-spending issue arises when the same 

bitcoins are spent several times concurrently. Bitcoin defends itself against the attack by 

utilising the global public ledger, which admits transactions only if published to the 

global public ledger. To be successfully posted to the global public ledger, the 

transaction has to be accepted and verified by the network of miners. 

Arguably the most creative aspect of Bitcoin, the consensus mechanism, also known as 

the Nakamoto consensus, utilises computer power to validate each transaction. As 

additional users trade with one another, the hashing difficulty constantly increases. 

                                                
7 Mining Process in Cryptocurrency Using Blockchain Technology: Bitcoin as a Case Study , A. A. Aljabr, A. Sharma, K. Kumar, 
2019 
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Furthermore, since the cryptographic quiz does not entirely remove the potential of 

contradictory concurrent publications, each transaction block awaits the addition of six 

further "confirmation" blocks before announcing its publication to the global public 

ledger. With the growing difficulty of hashing, this practice results in a longer 

verification time for each transaction8. 

 

 

1.3 Ethereum 

 

1.3.1 Timeline 

 

In 2014, Buterin and other Ethereum co-founders raised almost $18 million through a 

crowdsourcing effort in which they sold Ether (Ethereum tokens) to participants. In 

2015 Frontier, Ethereum's first live release, was announced. Since then, the platform has 

evolved dramatically, to the point of having hundreds of developers. 

Ethereum shares many of the same difficulties as Bitcoin at the beginning, most notably 

in terms of scalability. In 2016, an unnamed hacker stole $50 million in ETH, raising 

concerns about the platform's security. That resulted in the Ethereum community 

splintering into two blockchains: Ethereum and Ethereum Classic (ETHC). 

Even though the price of Ethereum has fluctuated dramatically, the cryptocurrency 

increased by more than 13,000 per cent in 2017. While this phenomenal growth is 

appealing to many investors, the volatility causes others to be cautious. 

Ethereum's structure has been improved in the last years in reaction to protection issues, 

and since it is not as monopolistic as Bitcoin, it results in more open to reforms that 

could eventually make it a superior solution to Bitcoin. 

Ethereum supporters believe that its key benefit over Bitcoin is that it allows individuals 

and businesses to do much more than merely move money between entities, and 

Bloomberg called it "the hottest platform in the world of cryptocurrencies and 

blockchains". 

To solve some of the classical problems of Ethereum, such as high gas fees, unlikely 

scalability, and network’s congestion, Ethereum 2.0 was launched in 2020. The 

                                                
8 Mining Process in Cryptocurrency Using Blockchain Technology: Bitcoin as a Case Study , A. A. Aljabr, A. Sharma, K. Kumar, 
2019 



 12 

implementation process should terminate in late 2022. 

 

 

1.3.2 Technical Review – Ethereum 2.0 

 

Ethereum early blockchain implementations struggled with performance because they relied 

on a processing power-intensive mechanism called Proof of Work to validate and record 

transactions. The issue with proof of work is that it is inefficient by design. To begin 

resolving that issue, Ethereum 2.0 will migrate to a more efficient Proof-of-Stake system. In 

such a system, an algorithm selects the node that records each transaction, with the likelihood 

of selection rising with the quantity of currency controlled by the node's owner. That enables 

a significant reduction in the complexity of cryptographic work, resulting in substantial 

throughput benefits for the entire network. Since each node must stake its currency to 

participate, attacking the network would remain prohibitively expensive.  

 

Additionally, to boost Ethereum's efficiency and scalability, the upcoming updates will add 

a processing approach known as Sharding9. Currently, all participating nodes must verify all 

data added to the chain. This indicates that the slowest participant restricts the overall 

system's processing, raising transaction costs and lowering throughput.  

By incorporating Sharding, Ethereum 2.0 can significantly improve resource utilisation 

efficiency. That will be accomplished by delegating data verification tasks to distinct nodes, 

each responsible for checking only the data it receives. This enables parallel processing over 

the entire blockchain, potentially increasing overall capacity severalfold. With this new 

technique combined with the move to Proof-of-Stake, the new Ethereum blockchain should 

be far swifter and more efficient than its precursor.  

 

One of the characteristics contributing to Ethereum's success as a platform and as a 

legitimate challenger to Bitcoin's dominance is its implementation of the Ethereum Virtual 

Machine (EVM). The EVM is a multi-node execution environment that enables smart 

contracts. These smart contracts differentiate Ethereum's blockchain from a purely financial 

system. On the EVM, smart contracts may be used to run games and carry out complicated 

financial transactions. 

                                                
9 Ethereum 2.0 Includes Major Changes That Could End Bitcoin's Blockchain Dominance, A. Kovačević, 2019 
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The introduction of eWASM10 will enable the execution of Ethereum application code 

directly in modern web browsers, a significant advance above the EVM. Additionally, it will 

allow programmers to build code for the blockchain using a variety of languages, including 

Rust, C, and C++. eWASM will significantly boost the number of prospective programmers 

for the ecosystem in one fell swoop by removing the requirement for users to learn a native 

Ethereum-only language. 

 

 

1.4 CRIX 

 

Professor Wolfgang Härdle and his team of academics at Humboldt University in Berlin 

developed the CRIX Index for crypto markets, bought in 2021 by Royalton Partners. 

 

Although it originated as an academic endeavour and is not traded, CRIX effectively 

represents the market and is used as a benchmark by academics and traders. 

Additionally, it is tailored to the crypto market's peculiarities, including a highly 

dynamic internal structure, the possibility of often disappearing and reappearing coins, 

and significant volatility. As explained below, the CRIX can face these characteristics 

by constantly applying weights reallocation and evaluation. 

 

Mathematically, the CRIX is a market index constructed using the Laspèyres method. 

Laspèyres' index is defined as: 

 

 
𝐼𝑁𝐷𝐸𝑋𝑡

𝐿𝑎𝑠𝑝è𝑦𝑟𝑒𝑠
=

∑ 𝑃𝑖 𝑖𝑡
𝑄𝑖0

∑ 𝑃𝑖0𝑄𝑖0𝑖
 

 

1.1 

 

 

With 𝑃𝑖𝑡 denoting the price of crypto i at time t and 𝑄𝑖0 denoting the amount of crypto i 

at time 0. 𝑃𝑖0 denotes the price at time 0. The CRIX is a minor variation: 

 

                                                
10 Breaking Down ETH 2.0 – eWASM and EVM Explained, Moralis Academy, 2020 



 14 

 
𝐶𝑅𝐼𝑋𝑡 =

∑ 𝑃𝑖𝑡𝑄𝑖0𝑖

∑ 𝑃𝑖0𝑄𝑖0𝑖
 

 

1.2 

 

Where 𝑀𝑉𝑖𝑡 constitutes the market capitalisation of cryptocurrency i at time t. The 

Divisor secures the stability of the changes. The Divisor for CRIX is: 

 

 
𝐷𝑖𝑣𝑖𝑠𝑜𝑟 =

∑ 𝑀𝑉𝑖0𝑖

1000
 

 

1.3 

 

As a result, the CRIX's initial value is 1000. The Divisor is revised whenever the total 

number of coins in a cryptocurrency changes. This ensures that only changes in prices 

impact CRIX.  

 

 𝑀𝑉𝑖,𝑡−1

𝐷𝑖𝑣𝑖𝑠𝑜𝑟𝑡−1
= 𝐼𝑁𝐷𝐸𝑋𝑇−1

𝐶𝑅𝐼𝑋 = 𝐼𝑁𝐷𝐸𝑋𝑡
𝐶𝑅𝐼𝑋 =

𝑀𝑉𝑖,𝑡

𝐷𝑖𝑣𝑖𝑠𝑜𝑟𝑡
 

 

1.4 

 

𝐷𝑖𝑣𝑖𝑠𝑜𝑟𝑡−1 is the 𝐷𝑖𝑣𝑖𝑠𝑜𝑟 prior to changing the number of coins. 𝐷𝑖𝑣𝑖𝑠𝑜𝑟𝑡 is the one 

immediately after that.  

 

A cryptocurrency can have a large market capitalisation but be seldom traded. 

Therefore, the following rule is used:  

 

 𝐴𝐷𝑇𝑉𝑖 ≥ 𝐴𝐷𝑇𝑉0.25 

 

1.5 

 

Where 𝐴𝐷𝑇𝑉0.25 is the 0.25 percentile of the Average Daily Trading Volume 

distribution of all cryptos over the last period, and 𝐴𝐷𝑇𝑉𝑖  represents the Average Daily 

Trading Volume of the single crypto.11 

                                                
11 www.royalton-crix.com 
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If a cryptocurrency satisfies the rule, it is eligible to be included in the CRIX list of 

constituents. 

 

For reasonably stable markets, a settled number of elements may be the right approach.  

 

In any case, CRIX weights each cryptocurrency according to its market capitalization, 

and its constituents are re-evaluated quarterly and rebalanced monthly.12 

 

We will use it as a proxy for cryptocurrencies in the following sections. 

 

 

1.5 Asset classes and their proxies 

 

We will often talk about stocks, bonds, and other asset classes in the following chapters. 

 

Table 1 shows the five asset classes we will analyse and the proxies that have been chosen. 

 

 

 

Table 1: Asset Classes and their proxies 

 

 

These ETFs track the developed countries’ economies through different perspectives. The 

chosen currency is the USD. 

 

The Vanguard FTSE Developed World UCITS ETF is an exchange-traded fund launched by 

Vanguard Group (Ireland) Limited. The fund is co-managed by Vanguard Asset 

                                                
12 CRIX an Index for cryptocurrencies, S. Trimborn, 2018 
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Management, Limited and The Vanguard Group, Inc. It invests in developed countries' 

public equity markets across the globe. The fund aims at investing in large-cap and mid-cap 

companies operating across diversified sectors. In addition, the fund seeks to replicate the 

performance of the FTSE Developed Index by employing a representative sampling 

methodology. 

 

The Xtrackers II Global Government Bond UCITS ETF is an exchange-traded fund launched 

by Deutsche Asset Management S.A. It is co-managed by Deutsche Asset Management 

Investment GmbH and Deutsche Asset Management (U.K.) Limited. The fund invests in 

developed countries' fixed income markets across the globe. It invests in local currency-

denominated, fixed-rate sovereign bonds with a maturity of at least one year. The fund 

invests in the investment-grade securities rated by S&P, Moody’s, and Fitch. It replicates 

the performance of the Citi World Government Bond Index - Developed Markets by 

employing a representative sampling methodology. 

The Bloomberg Commodity CMCI Composite SF UCITS ETF is an exchange-traded fund 

launched by LSAM Investments. It is co-managed by UBS Asset Management (U.K.) Ltd 

and UBS Global Asset Management, London. The fund utilises derivatives such as futures 

and swaps to invest in commodity markets - energy, precious metals, industrial metals, 

agriculture, and livestock commodities. In addition, it seeks to replicate the performance of 

the UBS Bloomberg Constant Maturity Commodity Index Excess Return by employing 

synthetic replication methodology. 

 

The Euro Currency Index represents the arithmetic ratio of four major currencies against the 

Euro: US Dollar, British Pound, Japanese Yen and Swiss Franc. 

 

The iShares Developed Markets Property Yield UCITS ETF is an exchange-traded fund 

launched by BlackRock Asset Management Ireland Limited. It is managed by BlackRock 

Advisors (U.K.) Limited. The fund invests in the developed countries' public equity markets 

globally except for Greece. It invests in real estate sector companies, including real estate 

investment trusts (REITs) and real estate holding & development companies. The fund 

invests in dividend-paying companies across all market capitalisations. It replicates the 

performance of the FTSE EPRA/NAREIT Developed Dividend + Index by employing a 

representative sampling methodology. 
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1.6 Crypto Trends 

 

The year 2021 was a great one for the cryptocurrency industry. Indeed, at the end of 

2021, the Cryptocurrencies Market Capitalisation has reached 2.368,53 billion US 

Dollars.13 

In 2021, Ethereum outperformed its only larger peer, Bitcoin. The EIP-1559 upgrade, 

which lowered ETH’s inflation rate, was one of the causes that contributed to such a 

dramatic outperformance. 

In 2021, Ethereum increased by 425 per cent, while Bitcoin increased by 66%. The S&P 

500, the benchmark index of the United States, rose 31%, while gold fell slightly. 

However, the foundations of the largest crypto coin have begun to strengthen. According 

to Glassnode, just 18.34% of the entire circulating supply is now at a loss.14 

Despite the current price movements, long-term investors’ holdings climbed by 1.84 

million Bitcoins in 2021, while short-term holders’ supply has decreased by 1.42 million 

Bitcoins. 

In 2021, the exchange lost a total of 67,800 Bitcoins. Based on the preceding two facts, 

the number of holders increases while the supply decreases. 

The Bitcoin hash rate has been drastically reduced due to China’s ban. However, it has 

not only recuperated but has increased by 27% during the same year. The latter 

demonstrates that it endured the prohibition and outperformed its previous record. 

Stable coins are gaining traction in the cryptocurrency industry. Being connected to 

physical assets, such as commodities and government-issued currencies, they can reduce 

cryptocurrency fluctuation. As a result, stable coin market capitalisation has climbed 

from USD 5 billion in 2020 to USD 120 billion at the end of 2021. Aside from acting as 

a bridge between fiat currencies and crypto-assets, they also serve as a reasonably safe 

“parking area” for crypto volatility, being used as collateral in crypto-asset derivative 

transactions or decentralised financing (“DeFi”)15. 

 

                                                
13 www.coinmarketcap.com 
14 The Week Onchain (Week 52, 2021), Insights Glassnode 
15 Crypto year at glance: Ethereum ouperformed in 2021, Metaverse in new DeFi, The Economic Times, 2022 
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1.6.1 COVID-19 Impact Assessment  

 

The COVID-19 pandemic harmed the cryptocurrency market since its level of stability 

has significantly decreased, and cryptocurrencies have become more volatile. 

Furthermore, bitcoin has a low level of regularity compared to international equities 

markets, which reduced the demand for cryptocurrency during the pandemic. On the 

other hand, the demand for traditional asset classes also decreased due to the crisis. 

 

1.6.2 Untapped Potential in Emerging Markets  

 

Developing economies provide enormous opportunities for cryptocurrency businesses 

to expand their operations by facilitating access to capital and financial services. Bitcoin 

has already allowed many companies and individuals to expand and thrive as a source 

of revenue. The economy is gradually moving to meet these demands, and 

cryptocurrencies have huge potential. 

 

Evolving demographics, increased consumerism, and openness to new technologies 

such as IoT, Blockchain, and others create an attractive potential for cryptocurrency in 

emerging countries. For instance, according to Oxford Business Group, Nigeria is the 

leading country in cryptocurrency adoption, owing to its use for sending remittances.16 

 

In addition, the Philippines’ central bank allowed 16 bitcoin exchanges. As a result, the 

country is quickly becoming one of the world’s most significant adopters of 

cryptocurrencies. Furthermore, as smartphone adoption increases in Latin America and 

Africa, mobile payment service providers will offer increasingly complex services on 

mobile phones. This may represent a significant opportunity for market expansion. 

 

 

1.7 Classification of Cryptocurrencies 

 

                                                
16 Can cryptocurrencies drive a Covid-19 recovery in emerging markets?, Oxford Business Group, 2021 
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Since cryptocurrencies are uncommon for financial markets, researchers and investors have 

yet to classify them fully. While some experts identify them as a financial bubble, others 

believe they are a new type of currency; others still consider them a distinct asset class. 

 

As Central Banks define it, a traditional currency must officially fulfil three tasks to be 

designated currency: unit of account, store of value, and medium of exchange. Generally, 

only large-cap cryptocurrencies can meet all conditions mentioned above, while the rest 

struggle to meet even one. 

The unit of account is a currency's primary function; it enables measuring value in a 

specified unit and allows comparisons with other currencies. Digital currencies are made up 

of precise, individual, and quantifiable account units. This function is satisfied by high-cap 

cryptocurrencies and stablecoins since their value is determined and comparable. 

Conversely, cryptos with low daily volume do not meet this criterion. 17 

The term "store of value" refers to the ability of an item to retain purchasing power in the 

future so that it can be more, less, or equally valuable and exchanged later. It requires a 

degree of certainty regarding the asset's future value, which may be challenging with crypto 

assets due to their high volatility. For example, gold and digital currencies can store value, 

decoupled from fiat money, and act as a haven during a crisis; nevertheless, only gold retains 

these characteristics over time. According to some researchers, daily exchanges of Bitcoin, 

Ethereum, and Litecoin have exceeded even the annual inflation rates of recession-stricken 

countries such as Mexico and South Africa, implying that it is safer to hold the Mexican 

Peso than top crypto cryptocurrencies if we value them under the volatility perspective18. 

Due to the high degree of volatility, the crypto assets' suitability as a safe store of value is 

debatable as long as the market will not stabilise. 19 

For an instrument to serve as a medium of exchange, it must be universally accepted and 

exchangeable for all accessible products and services. In addition, it must function as an 

intermediary and avoid the constraints inherent in barter transactions. According to a recent 

Hartford Steam Boiler poll20, at least one-third, or roughly 36%, of small to medium-

sized enterprises in the United States currently accept cryptocurrencies as payment for 

goods and services. 

                                                
17 Can cryptocurrencies fulfil the functions of money?, S. Ammous, 2018 
18 Crypto-Assets Unencrypted, S. Kim, A. Sarin, D. Virdi, 2018 
19  18   Can cryptocurrencies fulfil the functions of money?, S. Ammous, 2018 
20 Survey released by Hartford Steam Boiler and Insurance Co. (HSB) 



 20 

In March 2021, Paypal Holdings, Inc. acquired Curv, a cryptocurrency security firm 

established in Israel. With this acquisition, PayPal Holdings enhances and expands its 

support to cryptocurrencies and digital assets. Curv is a cryptocurrency security firm 

established in Israel. In addition, Paypal customers in the United States can utilise the 

digital currency at retailers who accept PayPal payments. Accepted cryptocurrencies 

include Bitcoin, Ethereum, and Litecoin. 

Other major market players accept cryptocurrencies as payment in direct and indirect 

ways, such as Microsoft Corporation, AT&T, Twitch, Amazon.com, Starbucks, Etc. 

However, most cryptocurrencies partially fit this requirement, as they are not readily usable 

for every recurring payment. For example, ETH, USDT, and USDC enable access to other 

crypto assets and mediate between fiat money and cryptocurrency. Consequently, 

cryptocurrencies should be fully considered a medium of exchange just for crypto assets.21 

 

Following the Central Banks criteria, cryptos can not be considered a currency today. 

 

 

2. Cryptocurrencies as an asset class 

 

Given the new and emerging status of the cryptocurrency market, it is critical for investors 

and regulators to understand the properties of cryptocurrencies and their relationships with 

other asset classes. Indeed, despite their rapid growth, the literature on cryptocurrency 

markets is still significantly less developed than that on traditional asset classes. 

This chapter will explicate the literature’s requirements to be considered an asset class, and 

we will challenge this definition by analysing cryptocurrencies. 

 

 

2.1 The seven requirements of an asset class 
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By definition, cryptocurrencies must meet seven basic requirements to be designated a 

distinct asset class.22 23 24 25 

 

1.   Stable aggregation 

 

An asset class's composition should be reasonably stable. Otherwise, determining its optimal 

composition would require continuous monitoring and analysis, and maintaining it would 

require periodic rebalancing. Both initiatives may be too expensive. 

Asset classes whose constituents are weighted according to their relative capitalisations are 

stable, as their relative capitalisations fluctuate proportionately as their prices vary. By 

contrast, a proposed asset class whose members are weighted according to time-varying 

criteria such as momentum, value, or size may lack the necessary composition stability to 

qualify as an asset class. It is sufficient, of course, a matter of empirical judgment. For 

instance, momentum is inherently less stable than value, which is less stable than size. As a 

result, a collection of momentum stocks is unlikely to qualify as an asset class, whereas 

stocks within a specified capitalisation range may qualify. 

The above conditions may be verified through qualitative analysis of cryptocurrencies. 

 

2. Investable  

 

An asset class's essential component should be easily investable. If not, the investor could 

choose a replicating securities batch that tracks the economic variable. However, replication 

may present two difficulties. To begin, in addition to the uncertainty associated with the 

economic variable's out-of-sample behaviour, the investor is exposed to the uncertainty 

associated with the mapping coefficients that define the relationship between the economic 

variable and the replicating securities. Second, the investor faces increased rebalancing 

expenses because the optimal composition of replicating securities varies with time. 

To test the capacity for the investment of cryptocurrencies, we need to prove easy access to 

channels of direct investing for this class. 

 

3. Internally Homogeneous 

                                                
22 Cryptocurrencies As an Asset Class? An Empirical Assessment, D. Bianchi, 2020 
23 Cryptocurrencies as an asset class in portfolio optimisation, O. Holovatiuk, 2019 
24 Asset Allocation: From Theory to Practice and Beyond, W. Kinlaw, M. P. Kritzman, D. Turkington, 2021 
25 Portfolio Management: Theory & Practice, Schultz Collins, 2008 
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The components of an asset class should be comparable. If they are not, the investor 

implicitly constrains the efficiency of two or more separate groupings within a larger group. 

Conversely, if the suggested asset class is segmented into distinct groups, the investor can 

weigh them optimally.  

For instance, domestic equities may perform significantly differently than foreign equities, 

and foreign equities may behave differently than equities from emerging economies. As a 

result, investors may be able to construct a more efficient portfolio by disentangling various 

equity markets and weighting them according to their relative contributions to a portfolio's 

expected utility, rather than relying on their weights in a broad global index. Not only may 

the best weights for these components change concerning to one another, but the optimal 

allocation to equities could change concerning the allocation that would occur if they were 

treated as a unified class. 

The internal homogeneity of the asset class can be proved when assets are positively 

correlated. Thus, we expect correlation coefficients to be positive from 0 to 1. 

 

4. Externally Heterogeneous 

 

Each asset class should be sufficiently distinct from the other asset classes in a portfolio and 

linear combinations of the other asset classes. If asset classes are excessively similar, the 

investor will be forced to waste superfluous efforts analysing their projected return and risk 

characteristics and determining the most efficient strategy to invest in them. 

Our investigation will be based on the statistical analysis of the asset classes' properties and 

the comparison of their profiles. We will compute the daily mean, standard deviation, 

median, median absolute deviation, minimum, maximum, skewness, kurtosis, and maximum 

rangerange. To satisfy the External Hetereogenity requirement, the statistical features of 

each class must be distinct from those of other asset classes. 

 

5. Expected Utility 

 

The addition of an asset class to a portfolio should increase the expected utility of the 

portfolio. That could happen in one of two ways. First, including the asset class may boost 

the portfolio's expected return. Second, its inclusion may help reduce portfolio risk, either 
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because it carries little risk on its own or because it has minimal correlations with the 

portfolio's other asset types. 

The expected return and risk characteristics of an asset class should not be determined solely 

based on averages over various market conditions. For example, a particular asset class, such 

as commodities, may have a low expected return and a high-risk profile on average 

throughout changing market regimes but may provide extraordinary diversification against 

financial assets during moments of severe financial upheaval. Given an extreme aversion to 

significant losses, which generally occur during moments of financial turmoil, commodities 

can indeed increase a portfolio's expected utility, despite their average expected return and 

risk characteristics.  

To increase the expected utility of a portfolio, an asset class must be externally 

heterogeneous. However, not all externally heterogeneous asset classes increase expected 

utility. While an asset class may be different, its expected return or risk may be insufficient 

to increase a portfolio's expected utility. As a result, we could avoid considering the external 

heterogeneity requirement because it is included in the expected utility. 

Modern and Post-Modern Portfolio theories are used to check expected utility. 

 

6. Selection Skill 

 

The distinction between random and skilful selection is modest but critical. A portfolio's 

expected utility should not require the asset allocator's ability to discover superior 

investments to raise the portfolio's expected utility. Even if the asset allocator randomly 

selects investment managers within the same asset class or by investing passively, the 

expected utility should rise. Since not all investors possess selection ability, this should not 

preclude them from engaging in asset allocation. 

Analysis of existing Exchanged Traded Funds will serve as a test for this standard. 

 

7. Access at a reasonable price 

 

Investors should be able to allocate a significant portion of their portfolios to an asset class 

without incurring high transaction costs or materially hurting the liquidity of their portfolios. 

If investing in an asset class is extremely expensive, the after-cost improvement in projected 

utility may be insufficient to justify inclusion. Additionally, if the inclusion of the asset class 
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significantly restricts the portfolio's liquidity, it may become prohibitively expensive to 

maintain the portfolio's optimal weights or fulfil cash demands, reducing expected returns. 

An analysis of bid-ask spread and liquidity is conducted to prove this characteristic of 

cryptocurrencies. 

 

 

2.2 Results 

 

1. Stable Aggregation 

 

The stability of digital assets helps to their asset class conformance. Cryptocurrencies 

resilience is aided by blockchain technology. For instance, Bitcoin has been able to retain 

stability due to halving. The blockchain can thus control demand and supply. That ensures 

the asset's stability. Cryptocurrencies are expected to become more stable over time due to 

various causes. These include greater liquidity, institutional involvement, regulatory 

reforms, and worldwide participation. In addition, the failure to add additional assets to this 

class has contributed to its stability. Under these circumstances, asset aggregation can be 

considered stable. Additionally, two unique characteristics distinguish cryptocurrencies: it 

is a peer-to-peer network exchange and is entirely electronic. As a result, the asset class's 

first requirement is satisfied. 

 

2. Investable 

 

Cryptocurrencies must allow easy investment access to qualify as an asset class. 

While directly purchasing cryptocurrency is the most typical way to add crypto exposure to 

a portfolio, there are several other ways to invest in cryptocurrency. 

It is possible to buy and hold the most established digital currencies, such as Bitcoin and 

Ethereum, or unknown cryptocurrencies, on more than 300 exchanges. For cryptos that are 

new on the market, there is the possibility of participating in the Initial Coin Offering (ICO), 

the equivalent of an Initial Public Offering (IPO) that raises money to create a new coin or 

service related to cryptocurrencies. However, to participate, it is often needed to acquire a 

more conventional digital currency and have prior knowledge of wallets and exchanges. 

It is possible to invest in businesses entirely or partially focused on cryptocurrencies, such 

as mining firms and hardware manufacturers, and companies promoting cryptocurrencies, 
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such as PayPal Holdings, Inc. and Robinhood Markets, Inc. . Investing in companies with 

significant crypto holdings on their balance sheet could constitute another option. 

Cryptocurrency-focused funds are an excellent alternative to avoid picking specific 

cryptocurrency companies. There are many exchange-traded funds (ETFs), including index 

and futures funds. Certain crypto-focused funds invest directly in cryptocurrencies, while 

others invest in cryptocurrency-related enterprises or derivatives, such as futures contracts. 

Becoming a cryptocurrency miner or validator is perhaps the simplest way to invest in 

bitcoin is to mine it or function as a validator in a cryptocurrency network. Cryptocurrency 

miners and validators earn cryptocurrency rewards, which they can keep or exchange for 

another currency. 

 

In conclusion, cryptocurrencies offer many ways to invest in the market. The typical one is 

also the easiest, and it allows investors to enter the market with little to no difficulties. Of 

course, in some cases, an understanding of the methodology is required, but it can not be 

considered a barrier to entry. Thus, cryptocurrencies meet the criteria of being investable. 

 

3. Internally Homogeneous 

 

This criterion can be verified by looking at Figure 1. It shows the Pearson's correlation 

matrix, also referred to as the "product-moment correlation coefficient" (PMCC). 

Correlation coefficients range between 1 and -1. The regression slope determines the sign of 

the correlation: a value of +1 indicates that all data points lie on a line where Y rises as X 

increases, and vice versa for a value of -1. A value of 0 indicates that the variables are not 

linearly dependent on one another. 
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Figure 1: Pearson’s correlation matrix. Own work computed in Python. 

 

The cryptocurrencies with the highest market capitalisation are analysed. 

As expected, while the coefficients vary, the majority indicates a significant positive 

connection among the titles within the class. Some correlation values exceed 0.9. Two 

exceptions are present: USDT and USDC, two of the most popular and versatile 

cryptocurrency coins that emerged in the last few years. Also known as stablecoins, they aim 

to maintain their value pegged to the USD. Consequently, they show no linear relationship 

with other cryptos and a slight correlation between themselves. Being stablecoins principally 

used as a medium of exchange to enter and exit the positions in other cryptos by deceiving 

transaction fees, the above study suggests that cryptocurrencies exhibit internal uniformity, 

which is a critical characteristic of an asset class. The third condition is therefore satisfied. 

 

4. Externally Heterogeneous 

 

Table 2 summarizes the descriptive data for all asset classes. The data spans the first of June 

2018 to June 2021. 

The table shows that the CRIX generates the highest values for each parameter analysed, 

except for Kurtosis. For example, the mean, or daily return, is 0.28 per cent, while the highest 

parameter for the traditional asset classes is given by equities, with a daily return of 0.051%. 

 



 27 

 

Table 2: Descriptive data for all asset classes. Own work computed in Python. 

 

On the other side, risk measures such as Standard deviation and Mean Absolute Deviation 

are significantly higher than the other asset classes. Compared to the stocks, they are 

respectively 3.8 and 4.1 times bigger. Again, the CRIX’s range is the highest. However, 

Stocks and Real Estate have a very high range compared to their historical data. 

Except for the FX, all the asset classes have their bell curve negatively skewed. Stocks, 

Commodities, and Real Estate are the asset classes more impacted by the COVID-19 crisis. 

This skewness shock is one of the most damaging characteristics of the recession. The sharp 

drop in the skewness of the distribution of cumulative returns, and the subsequent left shift 

in the tails of the cumulative stock returns' distribution, was slightly less significant during 

the Great Recession, as shown in Figure 4. 

 

Figure 2: Cross-sectional distribution of cumulative returns, “Skewed Business Cycles”, 

Bloom, Guvenen, Salgado 

 

On the other hand, Cryptocurrencies demonstrated resiliency since they manifest a skewness 

equal to just -0.16. 
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The kurtosis of 3.4 shows a slight leptokurtic distribution for CRIX, with large tails and 

extreme values. The same reasoning made for Skewness can be applied for Kurtosis. Indeed, 

Stocks and Real Estate are the asset classes that carry the highest level of risk, having a 

Kurtosis of 12.4 and 11.5, respectively. If compared to the other asset classes, 

Cryptocurrencies show a high level of strength again to challenging moments. 

 

5. Expected Utility 

 

Through the Modern Portfolio Theory and the Post-Modern Portfolio Theory, we will have 

a clear view of the expected utility of cryptocurrencies and how they can optimise a portfolio 

using different strategies. It will be shown in the next chapter.26 

 

 

 

6. Selection skill 

 

As explained in the Methodology section, this criterion implies that an investor should not 

be required to possess any unique abilities to select an asset. Employing a cryptocurrency 

index enables investors to sidestep the selection of specific currencies. If not, even buying a 

basket of cryptocurrencies would allow buyers to invest in the asset class without having 

particular picking abilities (i.e. purchasing the ten coins with the highest Market 

Capitalisation). 

 

7. Access at a reasonable price  

 

The final criterion examines the transaction costs and liquidity of cryptocurrencies. Table 3 

summarises the results for the Spread Percentage and the Turnover Ratio. 

The market Spread Percentage is the difference between the order book's highest bid and the 

lowest ask price. The formula can be represented as below: 

 

 

                                                
26 The expected utility of cryptocurrencies will analysed in details in the 3rd chapter: Portfolio Optimisation 
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𝑆𝑝𝑟𝑒𝑎𝑑 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =

(𝐴𝐿𝑡
− 𝐵𝐻𝑡

)

𝑃𝑡
 

 

2.1 

 

Where 𝐴𝑡 is the lowest ask price, 𝐵𝐻𝑡
consists in the highest bid price, and 𝑃𝑡 is the close 

price at time t. 

 

Market spreads can have a significant impact on the strategy's performance. 

Cryptocurrencies are often traded weekly or monthly, so a low Spread Percentage is 

desirable. 

We can immediately notice that the Spread Percentage can have very different values, 

depending on the Crypto itself. For instance, USDT and USDC - the Stablecoins - show a 

Spread Percentage of 1,3% and 1,2%, respectively. These values are as low even when 

compared to the stock market. On the other side, the bid-ask spread percentage can arrive at 

9,8%, such as in the case of LUNA. The market can be considered pretty variable under this 

perspective, but it generally shows higher costs than traditional asset classes. 

Another critical factor to be taken into consideration are the trading commissions. 

Cryptocurrencies exchange fees range from 0.1% to 1%. They are modest compared to 

traditional assets, which can arrive at up to 5% of the investment. 
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The turnover ratio is the best measure to understand how liquid an asset or an entire market 

is. The formula can be represented as: 

 

 

 
𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑅𝑎𝑡𝑖𝑜𝑡 =

𝑆ℎ𝑡

𝑁𝑆ℎ𝑡
 

 

2.1 

 

Where ℎ𝑡 denotes the coins traded at time t, and 𝑁𝑆ℎ𝑡 denotes the coins in circulation on 

day t. 

 

Table 3 indicates that the market is highly liquid, with positive peaks for the single cryptos 

above 60%, and with a mean of 24,8% for the whole basket. 

 

Notwithstanding the high Spread Percentage, the Crypto assets show a high Turnover Ratio, 

a synonym of high liquidity, and low fees compared to the traditional asset classes. Because 

of that, we can consider the 7th criterion as fully satisfied. 

 

 

 

 

 

 

 

 

Table 3: Spread Percentage and Turnover Ratio 

for a basket of 10 cryptos. Own work, computed in 

Python 
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3. Portfolio Optimisation 

 

 

3.1 Theory behind Portfolio Optimisation  

 

3.1.1 Modern Portfolio Theory 

 

Harry Markowitz presented the modern portfolio theory under the title "Portfolio Selection" 

in the Journal of Finance in 1952. A portfolio is considered a weighted linear combination 

of the assets that make it up. 

 

The Modern Portfolio Theory is based on the following assumptions: 

• financial assets are correlated; 
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• the market is perfect: there are no entry barriers, taxes, transaction costs, entry barriers, 

information is freely available to all, and there is perfect competition; 

• investors are risk-averse. They aim at avoiding dangerous investments; 

• investors are rational. They attempt to maximise their returns for a given degree of risk; 

• all investors have the same time horizon for making investment decisions. 

 

According to Markowitz, the investor's objective is to maximise the portfolio's return while 

minimising its risk. The outcome is what he calls: "the efficient portfolio".27 

 The portfolio enables either maximisation of return or minimisation of risk for a given 

return. All the efficient portfolios form what Markowitz refers to as "the efficient frontier". 

These are the portfolios that prudent investors seek. By investing in additional securities, an 

investor can reap the benefits of diversification, a reduction in the riskiness of the portfolio. 

Diversification refers to the concept that a portfolio should contain uncorrelated assets (or 

just weakly correlated).  

 

The portfolio return is determined as the sum of the proportionally weighted assets’ returns, 

as below: 

 

 𝐸(𝑅𝑝) = ∑ 𝑤𝑖

𝑖

𝐸(𝑅𝑖) 

 

3.1 

 

Where 𝑅𝑝 denotes the portfolio return, 𝑅𝑖 is the return on the asset i, 𝑤𝑖 denotes the weight 

of an individual asset, and i denotes the number of assets in the portfolio.  

 

Portfolio variance is defined as a function of the correlation coefficients, volatilities, and 

weights of each asset pair in the portfolio (Markowitz, 1952), as shown in the below 

equation:  

 

 

                                                
27 Portfolio Selection, H. Markowitz, 1952 
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 𝜎𝑝
2 = ∑ 𝑤𝑖

2

𝑖

𝜎𝑖
2 + ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑖𝑝𝑖𝑗

𝑗≠𝑖𝑖

 

 

3.2 

 

Where 𝜎 denotes the standard deviation of an individual asset, and p is the correlation 

coefficient between the returns on a pair of assets i and j. 

 

The volatility, or risk of a portfolio, is measured as follows:  

 

 
𝜎𝑝 = √𝜎𝑝

2 

 

3.3 

 

The covariance of the constituent assets determines the variance of the entire portfolio. The 

greater the covariance among assets, the higher the portfolio's volatility. This relationship 

enables the use of uncorrelated assets to achieve diversification benefits.  

 

As mentioned before, the efficient frontier is a batch of optimal portfolios that provide the 

highest expected return for a specified risk grade or the lowest return for a specified level of 

risk. Portfolios that drop below the efficient frontier are suboptimal because they do not 

generate a reasonable return rate relative to the risk grade. Likewise, portfolios clustering to 

the right of the efficient frontier is suboptimal because they carry a higher risk relative to the 

defined rate of return. 
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Figure 3: Portfolio selections on Markowitz's efficient frontier; Indifference Curves 

(Copeland et al. 2005)28 

 

By introducing the risk-free tangent line from the y-axis point of this rate to the efficient 

frontier's upper bound, the capital allocation line is determined, forming a new efficient 

frontier. Tangency portfolios are a collection of risky assets with the highest Sharpe ratio , 

which can be calculated using the following formula:  

 

 
𝑆𝑎 =

𝐸[𝑅𝑎 − 𝑅𝑏]

𝜎𝑎
=

𝐸[𝑅𝑎 − 𝑅𝑏]

√𝑣𝑎𝑟[𝑅𝑎 − 𝑅𝑏]
 

 

3.4 

 

Where 𝑅𝑎 denotes the portfolio return, 𝑅𝑏 denotes the risk-free or benchmark return, and 𝑆𝑎 

denotes the asset's excess return's volatility. A greater Sharpe ratio signifies a higher rate of 

return on the risk unit.29 

 

3.1.2 Post-Modern Portfolio Theory 

 

                                                
28 Portfolio selections on Markowitz's efficient frontier; Indifference Curves (Copeland et al. 2005) 
29 Asset allocation: Management style and performance measurement, W. F. Sharpe, 1992 
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Due to the significant volatility of cryptocurrencies, the Post-Modern Portfolio Theory is 

used to determine the reliability of portfolio improvements due to crypto-asset inclusion. For 

each portfolio formed using PMPT optimisation, the downside risk and the Sortino ratio are 

assessed. This enables one to determine whether the addition of cryptocurrencies, despite 

their high volatility, provides diversification benefits and improves portfolio performance. 

 

The Post-Modern Portfolio Theory was devised in 1991 by software designers Brian M. Rom 

and Kathleen Ferguson in response to perceived problems and limits in Markowitz’s Modern 

Portfolio Theory, although the latter is still largely used in portfolio management and asset 

allocation. 

According to Brian M. Rom and Kathleen W. Ferguson, two of the most significant 

improvements made by the Post-Modern Portfolio Theory formulation are the downside risk 

and asymmetrical return distributions30. 

While the MPT assumes that the risk is symmetrical, the PMPT’s risk is asymmetrical in 

nature, being the weights assigned to a loss greater than those assigned to gain. The 

Downside risk is quantified with a target semi-deviation, referred to as the Downside 

Deviation, which captures negative returns. Therefore, the actual risk occurs when returns 

fall below a certain level, although positive moves above this level are desirable for an 

investor and do not constitute a risk. 

 

 

MPT Version Standard Deviation Alpha Beta Sharpe Ratio

Excess Return 

per Unit of 

Risk

Sortino Ratio 

(Excess Return 

DR)

Purpose
Outperformance vs 

Benchmark

Risk Compared to 

Benchmarks' risk

PMPT Version Downside Risk (DR)
Omega Excess; Also Excess 

Return (Above MAR)

DR vs Benchmark DR 

(Though various Betas 

could be calculated using 

DR Components)

Risk Measure

 

Table 4: MPT versus PMPT Measures. P. Swisher & G. W. Kasten (2005), Contributions 

to Post-Modern Portfolio Theory31 

 

                                                
30 Post-Modern Portfolio Theory Comes of Age, B. M. Rom, K. W. Ferguson, 1994 
31 Contributions to Post-Modern Portfolio Theory ,P. Swisher & G. W. Kasten,2005 
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The standard deviation influenced by downside risk is now defined as the annualised 

standard deviation of asset returns that fall below the investor-specified minimum acceptable 

threshold. In other words, it is a semi-deviation from the aim. The downside risk is expressed 

as a percentage, comparable to standard deviation (Sortino and Van Der Meer, 1991)32. 

 

 

𝑑 = √∫ (𝑡 − 𝑟)2𝑓(𝑟)𝑑𝑟
𝑡

−∞

 

 

3.5 

 

When d denotes downside risk or deviation, t is the minimum acceptable rate of return (MAR) 

– assumed as equal to the risk-free rate –, r denotes a random return, and f(r) denotes the 

annual return distribution function. Assume that MAR equals the risk-free rate, which in our 

instance is zero. 

 

So, Rom and Ferguson replaced MPT's Sharpe ratio with the Sortino Ratio33. 

Volatility skewness, which quantifies the percentage of the overall variation in distribution 

due to returns above and below the mean, was the second portfolio-analysis statistic added 

to the PMPT rubric. 

 

 
𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑟𝑎𝑡𝑖𝑜 =

𝑟 − 𝑡

𝑑
 

 

3.6 

 

Where r denotes yearly return, t denotes the target rate of return, and d denotes downside 

risk.  

 

 

3.2 Results 

 

                                                
32 Downside Risk, F. A. Sortino, R. Van Der Meer, 1991 
33  Performance Measurement in a Downside Risk Framework, F.A. Sortino, L. N. Price 
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This section will see in detail the tangency portfolios, assess portfolio weights, and generate 

performance measures such as the Sharpe ratio. The model we run follows the below 

assumptions:  

1. The indices are reflective of the asset class as a whole. Having chosen ETFs, it includes 

recomposition of the weights, and it comprehends eventual dividends. 

2. The risk-free rate is equal to zero.  

3. No transaction costs apply.  

4. The maximum weight of a single asset in a portfolio does not exceed 50% to avoid a single 

asset class gaining dominance and maintaining a well-diversified portfolio. 

 

3.2.1 Modern Portfolio Theory: Application 

 

As mentioned in the above paragraph, the Tangency portfolio is analysed for the Modern 

Portfolio Theory. It leads to the optimisation of the Sharpe Ratio. To find the best 

combination overall for the proxies mentioned in Section 1.3, we run 20’000 combinations 

on Python over the period spanning from June 2018 to June 2021. 

 

 

 

 

 

The weights optimisation for the Tangency Portfolio is shown in Table 5.34 35 36 

 

 

Table 4: Tangency Portfolio: weights optimisation (MPT). Own work computed in Python. 

 

We immediately notice that, when just long positions are allowed, the system recognises the 

FX proxy as inconvenient for maximising the Sharpe Ratio. Consequently, it is not allocated 

                                                
34 Portfolio Optimization using MPT in Python, P. Tyagi, 2021 
35 PyPortfolioOpt, pypi.org 
36 Portfolio Optimization with Python using Efficient Frontier, S. Dash, 2020 
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into the portfolio. The same logic applies to the long and short positions allowed scenario. 

The script prefers to sell the FX in variable measures, depending on the presence of the 

CRIX. Indeed, in the fourth scenario, the system finds it more convenient to buy more 

Cryptocurrencies and short sell the FX proxy in a lower measure. We find that the two asset 

classes with the highest allocation, for the Tangency Portfolio case, are Stocks and Bonds. 

Indeed, the two proxies result as the most used in the portfolio composition, spanning from 

the 31.85% and 34,56% - respectively - of the portfolio with Crypto and only long positions 

allowed, to the 50% each in the portfolio without Crypto, Long and Short positions allowed. 

Quick reminder: we set the maximum threshold equal to 50% to allow a good level of 

diversification. Finally, Crypto is found as convenient to insert in a diversified portfolio. 

Their optimal share range from 9 to 12%. 

 

To analyse the four portfolios mentioned above in depth, risk-reward measures for each are 

shown in Table 6. 

 

 

Table 5: Tangency portfolio’s descriptive statistics (MPT). Own work computed in Python 

 

The Expected Annual Return is significantly higher in the portfolios which include 

Cryptocurrencies: 10.4% and 13.5% versus the 6% and 9% of the portfolios not comprising 

Cryptos. This change – that leads to an increase in Annual Expected Returns of 1.7 and 1.5 

times – is due to the inclusion of the CRIX in a measure equal just to 9% and 12% of the 

whole portfolio and does not twist the portfolio composition. 

Of course, also the Annual Volatility augments, from 7.9% and 11.5% of the portfolios 

without Cryptos to the 9.6% and 12.4% of the portfolios including them. However, this 

increase is equal to 1.2 and 1.1 times. It means that the benefit of adding a basket of 

cryptocurrencies to a portfolio, both with long-only and long and short positions, leads to 

benefit in terms of risk-return tradeoff. 

That is well explained by the Sharpe Ratio, which shows the average return earned in excess 

of the risk-free rate per unit of volatility. In our case, however, having set the risk Free equal 

to zero, the formula could be represented as below: 
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𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =

𝑅𝑝

𝜎𝑝
 

 

3.7 3.9 

 

The computed Sharpe Ratio demonstrate that crypto-assets certainly provide an investor with 

diversification benefits due to their distinct risk/reward profile and lack of association with 

other asset classes. Consequently, allocating ≅ 10% of the capital to include a basket of 

cryptocurrencies in a portfolio results in risk-adjusted outperformance. 

 

 

3.2.2 Post-Modern Portfolio Theory: Application 

 

The Post-Modern Portfolio Theory's best allocation are analysed in Table 7.37 38 

 

 

Table 6: Tangency Portfolio: weights optimisation (PMPT). Own work computed in 

Python. 

 

The Tangency Portfolio, in this case, maximises the Sortino Ratio, which takes the portfolio's 

return, subtracts the risk-free rate, and then divides that amount by the asset's downside 

deviation. 

 

In our case, however, the risk-free is equal to zero. Hence, the formula occurs as below: 

 

 

                                                
37 Pymcef, pypi.org 
38 Investment Portfolio Analysis: Sortino Ratio, B. Mullen, 2021 
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𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑅𝑎𝑡𝑖𝑜 =

𝑅𝑝

𝜎𝑑
 

 

3.8 

 

With 𝑅𝑝 being the Expected Portfolio Return, and 𝜎𝑑 the Downside Standard Deviation. 

 

Comparing the MPT Portfolio maximising the Sharpe Ratio and the PMPT Portfolio 

maximising the Sortino Ratio, we immediately notice that the trend is the same. Shorting the 

FX proxy whenever short positions are allowed and allocating the highest weight among 

traditional asset classes to Stocks. 

However, under the Post-Modern Portfolio Theory, CRIX is found more convenient than 

under the MPT, having an asset allocation equal to 12,75% and 15,38% for both the 

portfolios in which it is allowed. 

 

 

Table 7: Tangency portfolio’s descriptive statistics (PMPT). Own work computed in 

Python. 

 

The conducted risk analysis suggests that the annual return is much higher including 

Cryptocurrencies, being 1,7 and 3,1 times higher than the alternative without the latter asset 

class. 

On the other hand, Downside Standard Deviation remains stable for the portfolios with long 

positions only, and sharply increase in the one allowing short positions. 

 

Summarising, Sharpe and Sortino ratios of the tangency portfolios lead to the same result: 

including cryptocurrencies increases the portfolio profitability leading to a less than 

proportional augment in risk. Hence, it permits to optimise the portfolios constituted just by 

traditional asset classes. 
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Nonetheless, price prediction techniques instruments may significantly increase the 

performance of portfolios including cryptocurrencies, and augment the investment 

awareness. This will be discussed in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Deep learning and Crypto prices prediction  

 

 

4.1 Introduction to Machine Learning 

 

Deep learning and artificial intelligence have recently established the foundation for bitcoin 

portfolio optimisation. Researchers examined a variety of state-of-the-art machine learning 

algorithms for forecasting Bitcoin prices, notwithstanding the difficulty associated with 

price volatility and dynamism. In cryptocurrency price prediction, machine learning 

techniques such as recurrent neural networks (RNN) and long short-term memory (LSTM) 

have been demonstrated to outperform standard time series models39. 

                                                
39 Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network, A. Sherstinsky, 2020 
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Numerous studies have been conducted on Bitcoin price prediction utilising machine 

learning and time series analysis40.  

With restricted data, neural networks such as the LSTM and gated recurrent unit (GRU) can 

effectively analyse prior data to learn from non-linear patterns. Compared to standard time-

series techniques, deep models require specific training and hyperparameter adjustment to 

get results that may be computationally intensive for large datasets. However, because 

market data for stock and cryptocurrency price prediction is usually restricted and computing 

complexity is irrelevant, light learning models can be employed effectively. Thanks to that, 

these models in the future may have a significant impact on quantitative finance. 

 

Traditionally, in research on deep learning, LSTM has been primarily employed to analyse 

time series. On the other hand, some analyses indicate that the GRU method outperforms the 

LSTM model. The simplicity of the GRU model, in which forgetting and updating occur 

concurrently, is effective in predicting Bitcoin prices. Furthermore, the Gated Recurrent Unit 

model outperformed the LSTM and bi-LSTM models, exhibiting much lower Mean 

Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) (RMSE). 

 

Research findings indicate that when machine learning models are implemented with 

sufficient understanding and backtesting, they can help manage portfolio risk and minimise 

financial losses. As a plan for the future, it would be interesting to investigate additional 

elements affecting the cryptocurrency market's prices, such as social media, tweets, and 

trading volume. 

 

This chapter focuses on the Gated Recurrent Unit (GRU) model to forecast future 

cryptocurrency prices using machine learning algorithms and artificial intelligence 

approaches by achieving accurate predictions to assist investors. 

 

 

4.2 Review of Literature 

 

                                                
40 Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang, M. Hessel, H. van Hasselt, M. Lanctot, N. de 
Freitas, 2016 
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Machine learning is a subset of artificial intelligence capable of forecasting the future using 

historical data. Machine Learning based models have several advantages over other 

forecasting models; as earlier researches have demonstrated, they produce a result close to 

or identical to the actual result, demonstrating a high result's accuracy. Neural networks 

(NN), support vector machines (SVM), and deep learning are examples of machine learning. 

Some researchers, in 2018, focused their work on forecasting time series data in particular 

and used two machine learning algorithms: random forests (RF) and stochastic gradient 

boosting machine (SGBM). The results demonstrate that the machine learning ensemble 

technique can forecast Bitcoin prices41. 

The decision-making process must make the appropriate choice at the appropriate moment, 

thereby mitigating the investing process’s inherent risks. Others aggregated Realised 

Volatility data using minute-sampled Bitcoin returns over three-hour periods. Many machine 

learning techniques, including ANN (MLP, GRU, and LSTM), SVM, and ridge regression, 

were employed to forecast future values based on historical data. The results were compared 

to the heterogeneous auto-regressive realised volatility (HARRV) model with optimum lag 

settings. The data indicate that the proposed approach accurately forecasts prices, implying 

that the technology might estimate prices for a range of cryptocurrencies42. Finally, 

researchers in "A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-

LSTM Machine Learning Algorithms" compared three models for predicting BTC, ETH, 

and LTC's prices (LSTM, GRU, and bi-LSTM). According to the experimental results, GRU 

had the again the best performance.43 

 

 

4.3 Gated Recurrent Unit (GRU) Model 

 

The Gated Recurrent Unit (GRU) is a Recurrent Neural Network that uses gating methods 

to govern and manage the flow of information between neural network cells. GRUs was 

introduced in 201444 by Cho et al. and can be viewed as a new design compared to the widely 

adopted LSTM proposed in 1997 by Sepp Hochreiter and Jürgen Schmidhuber45. 

                                                
41 Comparative Performance of Machine Learning Algorithms for Cryptocurrency Forecasting, N. A. Hitam, A. R. Ismail, 2018 
42 Artificial Neural Networks for Realized Volatility Prediction in Cryptocurrency Time Series, R. Miura, L. Pichl, T. Kaizoji, 2019 
43 A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms, M. J. 
Hamayel, A. Y. Owda, 2021 
44 Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, J. Chung, C. Gulcehre, H. Cho, Y. Bengio, 
2014 
45 Long Short-term Memory, S. Hochreiter, J. Schmidhuber, 1997 
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Figure 4: Representation of the GRU’s functioning 

 

The GRU's structure enables it to capture dependencies from big data sequences adaptively 

and without deleting information from earlier segments of the sequence. That is 

accomplished by using gating units similar to those used in LSTMs, which address the 

traditional RNN's vanishing/exploding gradient problem. These gates are in charge of 

determining how much information should be retained or discarded at each step. 

Apart from its internal gating method, the GRU acts similarly to an RNN in which the GRU 

cell consumes sequential incoming data together with the memory, also known as the hidden 

state. The hidden state is subsequently re-fed into the RNN cell together with the sequence's 

subsequent input data. This procedure, similar to a relay system, continues until the desired 

output is obtained. 

 

The GRU's capacity to retain long-term dependence is due to the computations performed 

within the GRU cell to generate the hidden state. While LSTMs transmit two distinct states 

between cells — the cell state and the hidden state — which contain the long and short-term 

memories, respectively, GRUs transmit only one hidden state between time steps. Due to the 

gating mechanisms and computations that the hidden state and input data undergo, this 

hidden state is capable of holding both long-term and short-term dependence concurrently46.  

 

                                                
46 Gated Recurrent Units (GRU), Dive into Deep Learning, 2020 
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Figure 5: GRU’s Structure in detail 

 

The GRU cell comprises only two gates: the Update and Reset gates. As with the gates in 

LSTMs, these gates in the GRU are taught to filter out irrelevant information while retaining 

helpful information. These gates are vectors with values ranging from 0 to 1 multiplied by 

the input data and hidden state. A 0 in the gate vectors signifies that the matching data in the 

input or hidden state is irrelevant and will thus be returned as a zero. A 1 value in the gate 

vector, on the other hand, indicates that the relevant data is significant and will be used.  

 

While the structure may appear complex because of the vast number of connections, the 

underlying mechanism can be broken down into three distinct steps. 

 

 

Reset Gate 

The Reset gate is derived and calculated using both the previous time step's hidden state and 

the current step's input data.  

 

The above is accomplished mathematically by multiplying the previous hidden state and the 

current input by their respective weights and summing them before applying a sigmoid 

function to the sum. The sigmoid function transforms the values between 0 and 1, enabling 

the gate to filter out less-important information in the following phases.  
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 𝐺𝑎𝑡𝑒𝑟𝑒𝑠𝑒𝑡 = 𝜎(𝑊𝑖𝑛𝑝𝑢𝑡𝑟𝑒𝑠𝑒𝑡
∙ 𝑥𝑡 + 𝑊ℎ𝑖𝑑𝑑𝑒𝑛𝑟𝑒𝑠𝑒𝑡

∙ ℎ𝑡−1) 

 

4.1 

 

When the entire network is trained by back-propagation, the weights in the equation are 

changed to ensure that the vector retains only meaningful information. 

 

 

Figure 5: Reset Gate 

 

The previous hidden state will be multiplied by a trainable weight and the reset vector 

element-wise (Hadamard product). This procedure will determine which information from 

earlier time steps should be retained together with the current inputs. Simultaneously, the 

current input will be multiplied by a trainable weight, and the product of the reset vector and 

the previous hidden state will be added. Finally, the final result will be applied to a non-

linear activation tanh function to yield r in the equation 4.2. 

 

 𝑟 = tanh (𝑔𝑎𝑡𝑒𝑟𝑒𝑠𝑒𝑡 ⊙ (𝑊ℎ1 ∙ ℎ𝑡−1) + 𝑊𝑥1 ∙ 𝑥𝑡) 

 

4.2 

 

The Update gate is computed using the previous hidden state and the current input data, like 

the Reset gate. 
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Figure 5: Update Gate 

   

 

The Update and Reset gate vectors are constructed using the same algorithm, but the weights 

multiplied by the input and hidden state are unique to each gate, resulting in unique final 

vectors. That enables the gates to perform their intended function. 

 

 𝐺𝑎𝑡𝑒𝑢𝑝𝑑𝑎𝑡𝑒 = 𝜎(𝑊𝑖𝑛𝑝𝑢𝑡𝑢𝑝𝑑𝑎𝑡𝑒
∙ 𝑥𝑡 + 𝑊ℎ𝑖𝑑𝑑𝑒𝑛𝑢𝑝𝑑𝑎𝑡𝑒

∙

ℎ𝑡−1) 

 

4.3 

 

The Update vector will then be multiplied by the previously concealed state element-by-

element to yield u in the equation below, which will be utilised to compute our final output 

later. 

 

 

 𝑢 = 𝑔𝑎𝑡𝑒𝑢𝑝𝑑𝑎𝑡𝑒 ⊙ ℎ𝑡−1 

 

4.4 
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Additionally, the Update vector will be employed in a subsequent operation to obtain the 

final output. In this case, the Update gate's goal is to assist the model in determining how 

much prior knowledge stored in the previous concealed state should be kept for the future. 

 

 

Finally, the Update gate is reused to access the updated hidden state.  

This time, the element-wise inverse of the same Update vector will be used (1 - Update gate) 

and multiplied by the output of the Reset gate, r. This action instructs the Update gate on 

which portion of the new data should be placed in the concealed state. 

Finally, the result of the preceding operations will be added to the output of the previous 

step's Update gate, u. That will update the hidden state. 

 

 

 ℎ𝑡 = 𝑟 ⊙ (1 − 𝑔𝑎𝑡𝑒𝑢𝑝𝑑𝑎𝑡𝑒) + 𝑢 

 

4.5 

 

By feeding this new hidden state through a linear activation layer, it can also be used as 

output for that time step. 

 

 

Figure 6: Final Output 
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As demonstrated in the processes above, the Reset gate is in charge of determining which 

portions of the previous hidden state should be combined with the current input to propose 

a new hidden state. 

 

Additionally, the Update gate determines how much of the previous hidden state should be 

preserved and how much of the new proposed hidden state (derived from the Reset gate) 

should be added to the final hidden state. When the Update gate is multiplied by the previous 

hidden state, the network decides which parts to retain and reject. Subsequently, it patches 

up the missing pieces of information by filtering the suggested new hidden state from the 

Reset gate using the inverse of the Update gate.  

That enables the network to maintain long-term ties. For example, if the Update vector 

values are near to 1, the Update gate can choose to preserve the majority of earlier memories 

in the hidden state without recalculating or updating the complete hidden state.  

The vanishing and exploding gradient problem happens during back-propagation, 

particularly when the RNN processes long sequences or has numerous layers. During 

training, the error gradient is utilised to update the network's weight in the correct direction 

and magnitude. However, this gradient is determined using the chain rule, beginning at the 

network's end. As a result, the gradients undergo continuous matrix multiplications during 

back-propagation and vanish or explode exponentially over long sequences. A too slight 

gradient prevents the model from updating its weights properly, whereas a too large gradient 

makes it unstable.  

The gates in GRU assist in resolving this problem. While conventional RNNs always replace 

the entire hidden state's content at each step, GRU retains most of the existing hidden state 

while adding new content. That enables back-propagation of error gradients without them 

vanishing or inflating too quickly due to addition operations.47 48 49 

 

 

4.4 Evaluation Matrix 

 

                                                
47 Gated Recurrent Units (GRU), Dive into Deep Learning, 2020 
48 Introduction to Gated Recurrent Unit (GRU), S. Saxena, 2021 
49 Understanding GRU Networks, S. Kostadinov, 2017 
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The most frequently used statistic for regression tasks is the root mean square error 

(RMSE) (root-mean-square error). It is the square root of the average squared difference 

between the actual and anticipated prices:  

 

 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=1

 

 

 

4.6 

 

The actual score for the ith data point is denoted by 𝑦𝑖, whereas the predicted value is denoted 

by ŷ𝑖. This formula can be understood intuitively as the Euclidean distance between actual 

and predicted prices vectors, averaged by n, whit n denoting the number of data points. 

 

Even though it is less robust to outliers than other indicators, RMSE is frequently used as an 

evaluation statistic, mainly when working with deep learning techniques. 

 

The advantage of using RMSE is that the output value is in the same unit as the desired 

output variable, which simplifies interpreting loss.  

 

The mean absolute percentage error (MAPE), alternatively known as the mean absolute 

percentage deviation (MAPD), is a statistical measure of a forecasting method's prediction 

accuracy. Typically, accuracy is expressed as a ratio specified by the formula:  

 

 
𝑀𝐴𝑃𝐸 =

100%

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=1

 

 

 

4.7 

 

Where 𝐴𝑡 denotes the observed value, and 𝐹𝑡 denotes the forecasted value. Their difference 

is calculated by dividing it by the actual value of At. The absolute value of this ratio is 

calculated by adding the absolute values of all projected points in time and dividing them by 

the number of fitted points, n.  
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Due to its natural interpretation in terms of relative error, mean absolute percentage error is 

frequently used as a loss function for regression concerns and model evaluation. 

 

 

4.5 Dataset 

 

The dataset used in the analysis was obtained from www.marketwatch.com and 

www.coinmarketcap.com. Prices were collected daily from 1st January 2013 to 1st January 

2022. 

 

 

4.6 Results 

 

This section summarises the findings for Bitcoin and Ethereum.  

 

Figure 7 compares the actual and predicted prices of BTC using the GRU model. The graph 

demonstrates that the difference between predicted and actual prices is tiny throughout the 

testing set, with some time-frame variations.  

 

 

Figure 7: Comparison between Bitcoin Actual Data and Prediction Results. Own work, 

computed in Python. 
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The GRU’s Mean Absolute Percentage Error (MAPE) for BTC is equal to 0,17, while the 

Root Mean Square Error (RMSE) is 10671, which can be considered excellent since nine 

years of data have been analysed. 

 

 

Table 8: Descriptive statistics for Bitcoin's Actual and Prediction results. Own work, 

computed in Python. 

 

According to statistical analysis, the predicted price has a mean of 51.897,29 USD, a 

maximum of 69.313,59 USD, and a minimum of 35.786,04 USD, whereas the actual price 

has a mean of 50.789,14 USD, a maximum of 67.566,83 USD, and a minimum of 35.030,25 

USD. So, the results can be considered satisfactory. 

 

Figure 8 compares the actual and predicted prices of ETH using the GRU model. 

 

 

Figure 8: Comparison between Ethereum Actual Data and Prediction Results. Own work, 

computed in Python. 

 

With a Mean Absolute Percentage Error of 0,168 and a Root Mean Square Error of 761,54, 

the model can be considered accurate also for predicting Ethereum. 
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Table 9: Descriptive statistics for Ethereum's Actual and Prediction results. Own work, 

computed in Python. 

 

According to statistical analysis, the predicted price has a mean of 3666,80 USD, a maximum 

of 4623,42 USD, and a minimum of 2539,31 USD, whereas the actual price has a mean of 

3768,53 USD, a maximum of 4812,09 USD, and a minimum of 2724,62 USD. Therefore, 

the mean difference between actual and forecasted prices is 101,73 USD.  

 

Both for Bitcoin and Ethereum, the above results can be considered satisfactory. They are 

valuable for investment purposes and can definitely help investors include cryptocurrencies 

in their portfolios. 

 

 

 

 

 

 

5. Conclusion 

 

Notwithstanding their young age, cryptocurrencies confirmed a certain financial and 

composition strength. They are developing fast. The technology is continuously progressing, 

i.e. Ethereum 2.0, and the public diffusion continues to augment. 

By stressing cryptocurrencies with the seven requirements provided by several researchers, 

we found that cryptocurrencies are ready to be considered an asset class. They are probably 

unconventional, high volatile, but the analysis conducted on the portfolio optimization, by 

running more than 20.000 combinations, states that buying a percentage ranging from 9 to 

15% of the portfolio as a whole leads to the optimization of the risk-return tradeoff. On the 

other side, the following must be taken into consideration. The above is valid for a basket of 

cryptocurrencies. In order to invest in single cryptos or to compose an own portfolio of 

chosen crypto-assets, the model presented in Section 4 would be helpful, being able to 

predict the price with an accuracy of 83% for a range of 20 days. 
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!pip install yfinance 

!pip install yahoofinancials 

 

!pip install cryptocmd 

 

import time 

import pandas_datareader.data as pdr 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import io  

from cryptocmd import CmcScraper 

from math import * 

 

LUNA=CmcScraper("LUNA", "01-06-2016", "30-06-2021") 

# Pandas dataFrame for the same data 

LUNA = LUNA.get_dataframe() 

DOT=CmcScraper("DOT", "01-06-2016", "30-06-2021") 

# Pandas dataFrame for the same data 

DOT= DOT.get_dataframe() 

DOT['Turnover Ratio']=DOT['Volume']/DOT['Market Cap'] 

DOT['Spread Percentage']=(DOT['High']-DOT['Low']/DOT['Close']) 

LUNA['Turnover Ratio']=LUNA['Volume']/LUNA['Market Cap'] 

LUNA['Spread Percentage']=(LUNA['High']-LUNA['Low']/LUNA['Close']) 

BTC=CmcScraper("BTC", "01-06-2016", "01-06-2021") 

BTC=BTC.get_dataframe() 

BTC['Spread Percentage']=((BTC['High']-BTC['Low'])/BTC['Close']) 

BTC['Turnover Ratio']=BTC['Volume']/BTC['Market Cap'] 

ETH=CmcScraper("ETH", "01-06-2016", "01-06-2021") 
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ETH=ETH.get_dataframe() 

ETH['Spread Percentage']=((ETH['High']-ETH['Low'])/ETH['Close']) 

ETH['Turnover Ratio']=ETH['Volume']/ETH['Market Cap'] 

USDC=CmcScraper("USDC", "01-06-2016", "01-06-2021") 

USDC=USDC.get_dataframe() 

USDC['Spread Percentage']=((USDC['High']-USDC['Low'])/USDC['Close']) 

USDC['Turnover Ratio']=USDC['Volume']/USDC['Market Cap'] 

SOL=CmcScraper("SOL", "01-06-2016", "01-06-2021") 

SOL=SOL.get_dataframe() 

SOL['Spread Percentage']=(SOL['High']-SOL['Low']/SOL['Close']) 

SOL['Turnover Ratio']=SOL['Volume']/SOL['Market Cap'] 

ADA=CmcScraper("ADA", "01-06-2016", "01-06-2021") 

ADA=ADA.get_dataframe() 

ADA['Spread Percentage']=(ADA['High']-ADA['Low']/ADA['Close']) 

ADA['Turnover Ratio']=ADA['Volume']/ADA['Market Cap'] 

BNB=CmcScraper("BNB", "01-06-2016", "01-06-2021") 

BNB=BNB.get_dataframe() 

BNB['Spread Percentage']=(BNB['High']-BNB['Low']/BNB['Close']) 

BNB['Turnover Ratio']=BNB['Volume']/BNB['Market Cap'] 

USDT=CmcScraper("USDT", "01-06-2016", "01-06-2021") 

USDT=USDT.get_dataframe() 

USDT['Spread Percentage']=(USDT['High']-USDT['Low']/USDT['Close']) 

USDT['Turnover Ratio']=USDT['Volume']/USDT['Market Cap'] 

XRP=CmcScraper("XRP", "01-06-2016", "01-06-2021") 

XRP=XRP.get_dataframe() 

XRP['Spread Percentage']=(XRP['High']-XRP['Low']/XRP['Close']) 

XRP['Turnover Ratio']=XRP['Volume']/XRP['Market Cap'] 

 

Spread_Percentage_list=[BTC['Spread Percentage'].mean(),ETH['Spread 

Percentage'].mean(),USDT['Spread Percentage'].mean(),SOL['Spread 

Percentage'].mean(),USDC['Spread Percentage'].mean(),ADA['Spread 

Percentage'].mean(),BNB['Spread Percentage'].mean(),XRP['Spread 
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Percentage'].mean(),LUNA['Spread Percentage'].mean(),DOT['Spread 

Percentage'].mean()] 

 

turn_overratio_list=[BTC['Turnover Ratio'].mean(),ETH['Turnover 

Ratio'].mean(),USDT['Turnover Ratio'].mean(),SOL['Turnover 

Ratio'].mean(),USDC['Turnover Ratio'].mean(),ADA['Turnover 

Ratio'].mean(),BNB['Turnover Ratio'].mean(),XRP['Turnover 

Ratio'].mean(),LUNA['Turnover Ratio'].mean(),DOT['Turnover Ratio'].mean()] 

 

data_correlation = {'Cryptocurrency':crypto_list,'Spread Percentage': 

Spread_Percentage_list,'Turnover Ratio':turn_overratio_list} 

coin_rate = pd.DataFrame(data_correlation,columns=['Cryptocurrency','Spread 

Percentage','Turnover Ratio']) 

coin_rate 

 

import seaborn as sns 

 

#Correlation Matrix  

data_correlation = {'BTC':BTC['Close'],'ETH': ETH['Close'],'USDT': 

USDT['Close'],'USDC' : USDC['Close'],'ADA' 

:ADA['Close'],'BNB':BNB['Close'],'XRP':XRP['Close'],'LUNA':LUNA['Close'],'DOT':DO

T['Close'],'SOL':SOL['Close']} 

 

df = 

pd.DataFrame(data_correlation,columns=['BTC','ETH','USDT','USDC','ADA','BNB','XRP'

,'LUNA','DOT','SOL']) 

 

corrMatrix = df.corr() 

 

mask = np.triu(np.ones_like(corrMatrix, dtype=bool)) 

sns.heatmap(corrMatrix, annot=True, vmax=1, vmin=-1, center=0, cmap='vlag', 

mask=mask) 

plt.show() 
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stocks = yf.download('^GSPC', start='2016-06-01', end='2021-06-01') 

bonds=yf.download('VUN.TO',  start='2016-06-01', end='2021-06-01') 

 

import yfinance as yf 

 

cumulative_return_bonds=(bonds['Adj Close'].iloc[-1]-bonds['Adj 

Close'].iloc[0])/bonds['Close'].iloc[0] 

annualized_return_bonds=pow((1+cumulative_return_bonds),365/(bonds.index[-1]-

bonds.index[0]).days)-1 

cumulative_return_stocks=(stocks['Close'].iloc[-1]-

stocks['Close'].iloc[0])/stocks['Close'].iloc[0] 

annualized_return_stocks=pow((1+cumulative_return_stocks),365/(stocks.index[-1]-

stocks.index[0]).days)-1 

annualized_stdev_stocks=(stocks['Close'].pct_change().iloc[1:].std())*sqrt((stocks.index[-

1]-stocks.index[0]).days) 

annualized_stdev_bonds=(bonds['Close'].pct_change().iloc[1:].std())*sqrt((bonds.index[-

1]-bonds.index[0]).days) 

annualized_sharpe_ratio_bonds=annualized_return_bonds/annualized_stdev_bonds 

annualized_sharpe_ratio_stocks=annualized_return_stocks/annualized_stdev_stocks 

annualized_sharpe_ratio_stocks 

i = np.argmax(np.maximum.accumulate(bonds['Close']) - bonds['Close']) # end of the 

period 

j = np.argmax(bonds['Close'][:i]) # start of period 

drawdown_bonds=abs((bonds['Close'][i]-bonds['Close'][j])/bonds['Close'][j]) 

i = np.argmax(np.maximum.accumulate(stocks['Close']) - stocks['Close']) # end of the 

period 

j = np.argmax(stocks['Close'][:i]) # start of period 

drawdown_stocks=abs((stocks['Close'][i]-stocks['Close'][j])/stocks['Close'][j]) 

 

 

index_list=['Risk Return Measurements','Stocks','Bonds'] 
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data = {'Risk Return Measurements':['Annualized Return','Annualized Standard 

Deviation','Annualized Sharpe Ratio','Maximum DD'],'Stocks': 

[annualized_return_stocks,annualized_stdev_stocks,annualized_sharpe_ratio_stocks,drawd

own_stocks],'Bonds': 

[annualized_return_bonds,annualized_stdev_bonds,annualized_sharpe_ratio_bonds,drawd

own_bonds]} 

 

risk_return_df = pd.DataFrame(data,columns=index_list) 

 

risk_return_df  

 

 

daily_std_stocks=stocks['Close'].pct_change().iloc[1:].std() 

daily_std_bonds=bonds['Close'].pct_change().iloc[1:].std() 

daily_return_stocks=annualized_return_stocks/250 

daily_return_bonds=annualized_return_bonds/250 

y=[daily_return_stocks,daily_return_bonds] 

x=[daily_std_stocks,daily_std_bonds] 

 

plt.scatter(x,y,c='coral') 

  

# naming the x axis 

plt.xlabel('Daily Standard Deviation - axis') 

# naming the y axis 

plt.ylabel('Daily Return - axis') 

plt.style.use('seaborn') 

 

 

from google.colab import files  

upload=files.upload() 

(bonds.index[-1]-bonds.index[0]).days/365 
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dowjones_realestate=pd.read_csv(io.BytesIO(upload['Dow Jones Real Estate Historical 

Data.csv'])) 

dowjones_realestate 

 

 

upload=files.upload() 

fx=pd.read_csv(io.BytesIO(upload['Dow Jones FXCM Dollar Historical Data.csv'])) 

 

 

import matplotlib.pyplot as plt 

import seaborn as sns 

from matplotlib import style 

from matplotlib.pyplot import plot 

 

# use higher resolution for plots 

%matplotlib inline 

%config InlineBackend.figure_format = "retina" 

 

# scipy for computing skewness and kurtosis 

import scipy.stats as stats 

 

 

mean_list=[stocks['Close'].pct_change().iloc[1:].mean(),bonds['Close'].pct_change().iloc[1:

].mean()] 

sd_list=[stocks['Close'].pct_change().iloc[1:].std(),bonds['Close'].pct_change().iloc[1:].std(

)] 

median_list=[stocks['Close'].pct_change().iloc[1:].median(),bonds['Close'].pct_change().ilo

c[1:].median()] 
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mad_list=[stocks['Close'].pct_change().iloc[1:].mad(),bonds['Close'].pct_change().iloc[1:].

mad()] 

maximum_list=[stocks['Close'].pct_change().iloc[1:].max(),bonds['Close'].pct_change().ilo

c[1:].max()] 

minimum_list=[stocks['Close'].pct_change().iloc[1:].min(),bonds['Close'].pct_change().iloc

[1:].min()] 

range_list=[maximum_list[0]-minimum_list[0],maximum_list[1]-minimum_list[1]] 

skew_list=[stats.skew(stocks['Close'].pct_change().iloc[1:]),stats.skew(bonds['Close'].pct_

change().iloc[1:])] 

Kurtosis_list=[stats.kurtosis(stocks['Close'].pct_change().iloc[1:]),stats.kurtosis(bonds['Clo

se'].pct_change().iloc[1:])] 

data = {'Asset Class':['Stocks','Bonds'],'Mean':mean_list,'SD' : sd_list, 

'Median':median_list,'MAD':mad_list,'Maximum':maximum_list,'Minimum':minimum_list,

'Range':range_list,'skew':skew_list,'Kurtosis':Kurtosis_list} 

asset_class_descriptive = pd.DataFrame(data,columns=['Asset 

Class','Mean','SD','Median','MAD','Maximum','Minimum','Range','skew','Kurtosis']) 

 

 

asset_return_df=pd.DataFrame() 

asset_return_df['Return_Stocks']=stocks['Close'].pct_change().iloc[1:] 

asset_return_df['Return_Bonds']=bonds['Close'].pct_change().iloc[1:] 

asset_return_corrMatrix = asset_return_df.corr() 

print (asset_return_corrMatrix) 

mask = np.triu(np.ones_like(asset_return_corrMatrix, dtype=bool)) 

sns.heatmap(asset_return_corrMatrix, annot=True, vmax=1, vmin=-1, center=0, 

cmap='vlag', mask=mask) 

plt.show() 

 

 

# use the function regplot to make a scatterplot 

sns.regplot(x=asset_return_df['Return_Stocks'], y=asset_return_df['Return_Bonds']) 
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def random_portfolios(num_portfolios, mean_returns, cov_matrix, risk_free_rate): 

    results = np.zeros((3,num_portfolios)) 

    weights_record = [] 

    for i in xrange(num_portfolios): 

        weights = np.random.random(4) 

        weights /= np.sum(weights) 

        weights_record.append(weights) 

        portfolio_std_dev, portfolio_return = portfolio_annualised_performance(weights, 

mean_returns, cov_matrix) 

        results[0,i] = portfolio_std_dev 

        results[1,i] = portfolio_return 

        results[2,i] = (portfolio_return - risk_free_rate) / portfolio_std_dev 

    return results, weights_record 

 

 

#create function for easy plotting 

def multiPlot(asset): 

    # distribution plot using simple returns 

    fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (16, 6)) 

    sns.histplot(asset.pct_change().iloc[1:], ax = ax[0], bins = 30, color = "lightcyan", stat = 

"density") 

    sns.kdeplot(asset.pct_change().iloc[1:], ax = ax[0], color = "blue", linestyle = "--", label 

= "Kernel Density") 

    ax[0].set_xlim(-0.3, 0.3) 

    ax[0].set_xlabel("Simple Returns") 

    ax[0].set_title("Histogram of simple returns") 

     

    # compute normal distribution for comparison with asset distributions 

    mean, std = stats.norm.fit(asset.pct_change().iloc[1:]) 

    x = np.linspace(-0.3, 0.3, 300) 

    p = stats.norm.pdf(x, mean, std) 
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    ax[0].plot(x, p, "r", linewidth = 2, label = "Normal") 

    ax[0].legend() 

 

    # probability plot 

    stats.probplot(asset.pct_change().iloc[1:], dist = "norm", rvalue = True, fit = True, plot = 

plt) 

    plt.xlabel("Normal Distribution") 

    plt.ylabel("Sample Distribution") 

 

 

bonds['Daily Return'] = bonds['Adj Close'].pct_change(1) 

stocks['Daily Return'] = stocks['Adj Close'].pct_change(1) 

 

 

from scipy import stats 

 

 

port_weights=[] 

port_returns=[] 

port_volatility=[] 

 

 

def sortino(returns, rf=0, periods=252, annualize=True, smart=False): 

 

    if rf != 0 and periods is None: 

        raise Exception('Must provide periods if rf != 0') 

 

    returns = _utils._prepare_returns(returns, rf, periods) 

 

    downside = _np.sqrt((returns[returns < 0] ** 2).sum() / len(returns)) 

 

    if smart: 
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        # penalize sortino with auto correlation 

        downside = downside * autocorr_penalty(returns) 

 

    res = returns.mean() / downside 

 

    if annualize: 

        return res * _np.sqrt( 

            1 if periods is None else periods) 

 

    return res 

 

 

index_returns_annual = [annualized_return_stocks,annualized_return_bonds] 

 

 

# get daily and covariance of returns of the stock 

cov_index_returns_annual  = np.cov(index_returns_annual) 

 

# empty lists to store returns, volatility and weights of portfolios 

port_returns = [] 

port_volatility = [] 

stock_weights = [] 

 

# set the number of combinations for imaginary portfolios 

num_assets = len(index_returns_annual) 

num_portfolios = 50000 

 

cov_index_returns_annual  

 

 

def create_results_dataframe(portfolio, number_portfolios,asset_yearly_returns, 

cov_matrix): 
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    results_temp = np.zeros((4 + len(portfolio) - 1, number_portfolios)) 

 

    for i in range(number_portfolios): 

        # select random weights for portfolio holdings 

        weights = np.array(np.random.random(2)) 

         

        # rebalance weights to sum to 1 

        weights /= np.sum(weights) 

 

        # calculate portfolio return and volatility 

        portfolio_return = np.sum(asset_yearly_returns * weights)  

        portfolio_std_dev = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) 

 

        risk_free_return = 0 

 

        vol=(weights.T @ cov_matrix @ weights) 

 

        # store results in results array 

        results_temp[0, i] = portfolio_return 

        results_temp[1, i] = portfolio_std_dev 

         

        # store Sharpe Ratio (return / volatility) - risk free rate element excluded for 

simplicity 

        results_temp[2, i] = (results_temp[0, i] - risk_free_return) / results_temp[1, i] 

          

        

        # iterate through the weight vector and add data to results array 

        for j in range(len(weights)): 

            results_temp[j + 3, i] = weights[j] 

         

       # convert results array to Pandas DataFrame 

    results_df = pd.DataFrame(results_temp.T, columns=['ret', 'stdev', 'sharpe', portfolio[0],  
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                                                       portfolio[1]]) 

     

    return results_df 

 

 

portfolio=['Stocks','Bonds'] 

number_portfolios=1000 

asset_yearly_returns=[annualized_return_stocks,annualized_return_bonds] 

 

 

asset_yearly_returns=[annualized_return_stocks,annualized_return_bonds] 

asset_yearly_returns 

 

 

portfolio_index=create_results_dataframe(['Stocks','Bonds'], 10000,asset_yearly_returns, 

asset_return_corrMatrix ) 

 

 

def max_sharpe_ratio(results_df): 

    """locate portfolio with highest Sharpe Ratio""" 

    return results_df.iloc[results_df['sharpe'].idxmax()] 

 

def min_volatility(results_df): 

    """locate portfolio with lowest volatility""" 

    return results_df.iloc[results_df['stdev'].idxmin()] 

 

 

crypto_min_vol_portfolio = min_volatility(portfolio_index) 

print(crypto_min_vol_portfolio) 

crypto_max_sharpe_portfolio = max_sharpe_ratio(portfolio_index) 

print(crypto_max_sharpe_portfolio) 
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def plot_graph(results_df, max_sharpe_port, min_vol_port): 

    ax = results_df.plot(kind= 'scatter', x = 'stdev', y='ret', s = 30,  

                         c=results_df.sharpe, cmap='RdYlBu',edgecolors='.1', figsize=(20,10)) 

    ax.grid(False, color='w', linestyle='-', linewidth=1) 

    ax.set_facecolor('1') 

    ax.set_xlabel('Volatility') 

    ax.set_ylabel('Returns') 

    ax.tick_params(labelsize = 14) 

 

    # # plot red star to highlight position of portfolio with highest Sharpe Ratio 

    ax.scatter(max_sharpe_port[1], max_sharpe_port[0], marker=(5, 1, 0), color='r', s=1000) 

    # # plot green star to highlight position of minimum variance portfolio 

    ax.scatter(min_vol_port[1], min_vol_port[0], marker=(5, 1, 0), color='g', s=1000) 

 

 

plot_graph(portfolio_index, crypto_max_sharpe_portfolio, crypto_min_vol_portfolio) 

 

plt.show() 

 

 

#Portfolio with inclusion of CryptoCurrency  

 

 

def create_sortino_ratio(returns, periods=252): 

    """ 

    Create the Sortino ratio for the strategy, based on a 

    benchmark of zero (i.e. no risk-free rate information). 

    Parameters: 

    returns - A pandas Series representing period percentage returns. 

    periods - Daily (252), Hourly (252*6.5), Minutely(252*6.5*60) etc. 

    """ 



 73 

    return np.sqrt(periods) * (np.mean(returns)) / np.std(returns[returns < 0]) 

 

 

def create_results_dataframe_sortino(portfolio, number_portfolios,asset_yearly_returns, 

cov_matrix): 

    results_temp = np.zeros((4 + len(portfolio) - 1, number_portfolios)) 

 

    for i in range(number_portfolios): 

        # select random weights for portfolio holdings 

        weights = np.array(np.random.random(2)) 

         

        # rebalance weights to sum to 1 

        weights /= np.sum(weights) 

 

        # calculate portfolio return and volatility 

        portfolio_return = np.sum(asset_yearly_returns * weights)  

        portfolio_std_dev = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) 

 

        risk_free_return = 0 

 

        vol=(weights.T @ cov_matrix @ weights) 

 

        # store results in results array 

        results_temp[0, i] = portfolio_return 

        results_temp[1, i] = portfolio_std_dev 

         

        # store Sharpe Ratio (return / volatility) - risk free rate element excluded for 

simplicity 

         

        results_temp[2,i]= create_sortino_ratio(portfolio_return) 

        

        # iterate through the weight vector and add data to results array 
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        for j in range(len(weights)): 

            results_temp[j + 3, i] = weights[j] 

         

       # convert results array to Pandas DataFrame 

    results_df = pd.DataFrame(results_temp.T, columns=['ret', 'stdev', 'sharpe', portfolio[0],  

                                                       portfolio[1]]) 

     

    return results_df 

 

 

weights = np.array(np.random.random(2)) 

 

 

portfolio_index=create_results_dataframe_sortino(['Stocks','Bonds'], 

10000,asset_yearly_returns, asset_return_corrMatrix ) 

 

 

/usr/local/lib/python3.7/dist-packages/numpy/core/_methods.py:234: RuntimeWarning: 

Degrees of freedom <= 0 for slice 

  keepdims=keepdims) 

/usr/local/lib/python3.7/dist-packages/numpy/core/_methods.py:195: RuntimeWarning: 

invalid value encountered in true_divide 

  arrmean, rcount, out=arrmean, casting='unsafe', subok=False) 

/usr/local/lib/python3.7/dist-packages/numpy/core/_methods.py:226: RuntimeWarning: 

invalid value encountered in double_scalars 

  ret = ret.dtype.type(ret / rcount) 

 

 

asset_yearly_returns 

portfolio_return = np.sum(asset_yearly_returns * weights)  

portfolio_return 
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APPENDIX 2: Crypto Prediction 
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Bitcoin Script 

 

!pip install cryptocmd 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib.dates as mdates 

from keras.models import Sequential 

from keras.layers import Dense, Dropout,GRU 

from keras import optimizers  

import io  

from sklearn.preprocessing import MinMaxScaler 

from cryptocmd import CmcScraper 

from google.colab import files  

seed = 1234 

np.random.seed(seed) 

plt.style.use('ggplot') 

 

start_date="01-01-2013" 

end_date="01-01-2022" 

 

pip install yfinance 

 

import warnings 

warnings.simplefilter(action='ignore', category=FutureWarning) 

 

uploaded = files.upload() 

dataraw=pd.read_csv(io.BytesIO(uploaded'BTC_USDSAMPLE1.csv')),index_col='Date', 

parse_dates=['Date']) 

 

uploaded = files.upload() 
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ETH=pd.read_csv(io.BytesIO(uploaded.get('ETH-USD.csv')),index_col='Date', 

parse_dates=['Date']) 

 

# use feature 'Date' & 'Close' 

dataset = pd.DataFrame(dataraw['Close']) 

print(' Count row of data: ',len(dataset)) 

fig = plt.figure(figsize=(20, 10)) 

plt.plot(dataset,color="blue") 

plt.xlabel('Date') 

plt.ylabel('Bitcoin Price') 

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d")) 

plt.title('Bitcoin Price') 

plt.show() 

 

# use feature 'Date' & 'Close' 

ETH = pd.DataFrame(ETH['Close']) 

print(' Count row of data: ',len(ETH)) 

fig = plt.figure(figsize=(20, 10)) 

plt.plot(ETH,color="blue") 

plt.xlabel('Date') 

plt.ylabel('ETHERUM Price') 

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d")) 

plt.title('ETHERUM Price') 

plt.show() 

 

#Min-Max Normalization 

ETH_norm = ETH.copy() 

ETH['Close'] 

scaler = MinMaxScaler() 

ETH_norm['Close'] = scaler.fit_transform(ETH[['Close']]) 

ETH_norm = ETH.copy() 

ETH['Close'] 
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scaler = MinMaxScaler() 

ETH_norm['Close'] = scaler.fit_transform(ETH[['Close']]) 

ETH_norm 

 

fig = plt.figure(figsize=(10, 4)) 

plt.plot(dataset_norm,color='green') 

plt.xlabel('Date') 

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m")) 

plt.title('Bitcoin Data Normalized') 

plt.show() 

fig = plt.figure(figsize=(10, 4)) 

plt.plot(ETH_norm,color='green') 

plt.xlabel('Date') 

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m")) 

plt.title('ETH DATA Normalized') 

plt.show() 

 

# Partition data into data train, val & test 

totaldata = dataset.values 

totaldatatrain = int(len(totaldata)*0.8) 

totaldataval = int(len(totaldata)*0.1) 

totaldatatest = int(len(totaldata)*0.10) 

 

# Store data into each partition 

training_set = dataset_norm[0:totaldatatrain] 

val_set=dataset_norm[totaldatatrain:totaldatatrain+totaldataval] 

test_set = dataset_norm[totaldatatrain+totaldataval:] 

 

# use feature 'Date' & 'Close' 

dataset = pd.DataFrame(dataraw['Close']) 

print(' Count row of data: ',len(dataset)) 
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fig = plt.figure(figsize=(14, 6)) 

plt.plot(dataset) 

plt.xlabel('Date') 

plt.ylabel('Bitcoin Price') 

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m")) 

plt.title('Bitcoin Price') 

plt.show() 

 

# Initiaton value of lag 

lag = 2 

# sliding windows function 

def create_sliding_windows(data,len_data,lag): 

    x=[] 

    y=[] 

    for i in range(lag,len_data): 

        x.append(data[i-lag:i,0]) 

        y.append(data[i,0])  

    return np.array(x),np.array(y) 

 

# Formating data into array for create sliding windows 

array_training_set = np.array(training_set) 

array_val_set = np.array(val_set) 

array_test_set = np.array(test_set) 

 

# Create sliding windows into training data 

x_train, y_train = create_sliding_windows(array_training_set,len(array_training_set), lag) 

x_train = np.reshape(x_train, (x_train.shape[0],x_train.shape[1],1)) 

# Create sliding windows into validation data 

x_val,y_val = create_sliding_windows(array_val_set,len(array_val_set),lag) 

x_val = np.reshape(x_val, (x_val.shape[0],x_val.shape[1],1)) 

# Create sliding windows into test data 

x_test,y_test = create_sliding_windows(array_test_set,len(array_test_set),lag) 
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x_test = np.reshape(x_test, (x_test.shape[0],x_test.shape[1],1)) 

 

# Hyperparameters 

learning_rate = 0.0001 

hidden_unit = 64 

batch_size=500 

epoch = 1000 

 

# Architecture Gated Recurrent Unit 

regressorGRU = Sequential() 

 

# First GRU layer with dropout 

regressorGRU.add(GRU(units=hidden_unit, return_sequences=True, 

input_shape=(x_train.shape[1],1), activation = 'tanh')) 

regressorGRU.add(Dropout(0.1)) 

# Second GRU layer with dropout 

regressorGRU.add(GRU(units=hidden_unit, return_sequences=True, activation = 'tanh')) 

regressorGRU.add(Dropout(0.2)) 

# Third GRU layer with dropout 

regressorGRU.add(GRU(units=hidden_unit, return_sequences=False, activation = 'tanh')) 

regressorGRU.add(Dropout(0.3)) 

 

# Output layer 

regressorGRU.add(Dense(units=1)) 

 

# Compiling the Gated Recurrent Unit 

regressorGRU.compile(optimizer=tensorflow.keras.optimizers.Adam(lr=learning_rate),los

s='mean_squared_error') 

 

# Fitting ke data training dan data validation 

pred = regressorGRU.fit(x_train, y_train, validation_data=(x_val,y_val), 

batch_size=batch_size, epochs=epoch) 
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# Graph model loss (train loss & val loss) 

fig = plt.figure(figsize=(10, 4)) 

plt.plot(pred.history['loss'], label='train loss') 

plt.plot(pred.history['val_loss'], label='val loss') 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(loc='upper right') 

plt.show() 

 

# Tabel value of training loss & validation loss 

learningrate_parameter = learning_rate 

train_loss=pred.history['loss'][-1] 

validation_loss=pred.history['val_loss'][-1] 

learningrate_parameter=pd.DataFrame(data=[[learningrate_parameter, train_loss, 

validation_loss]], 

                                    columns=['Learning Rate', 'Training Loss', 'Validation Loss']) 

learningrate_parameter.set_index('Learning Rate') 

 

import tensorflow 

 

from tensorflow import keras 

 

# Partition data into data train, val & test 

totaldata = dataset.values 

totaldatatrain = int(len(totaldata)*0.8) 

totaldataval = int(len(totaldata)*0.1) 

totaldatatest = int(len(totaldata)*0.1) 

 

# Store data into each partition 

training_set = dataset_norm[0:totaldatatrain] 
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val_set=dataset_norm[totaldatatrain:totaldatatrain+totaldataval] 

test_set = dataset_norm[totaldatatrain+totaldataval:] 

 

# graph of data validation 

fig = plt.figure(figsize=(10, 4)) 

plt.plot(val_set) 

plt.xlabel('Date') 

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m")) 

plt.title('Data Validation') 

val_set 

 

fig = plt.figure(figsize=(10, 4)) 

plt.plot(dataset_norm) 

plt.xlabel('Date') 

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m")) 

plt.title('Data Normalized') 

plt.show() 

 

# Tabel value of training loss & validation loss 

learningrate_parameter = learning_rate 

train_loss=pred.history['loss'][-1] 

validation_loss=pred.history['val_loss'][-1] 

learningrate_parameter=pd.DataFrame(data=[[learningrate_parameter, train_loss, 

validation_loss]], 

                                    columns=['Learning Rate', 'Training Loss', 'Validation Loss']) 

learningrate_parameter.set_index('Learning Rate') 

 

# Implementation model into data test 

y_pred_test = regressorGRU.predict(x_test) 

 

# Invert normalization min-max 

y_pred_invert_norm = scaler.inverse_transform(y_pred_test) 



 83 

 

# Comparison data test with data prediction 

datacompare = pd.DataFrame() 

datatest=np.array(dataset['Close'][totaldatatrain+totaldataval+lag:]) 

datapred= y_pred_invert_norm 

 

datacompare['Data Test'] = datatest 

#datacompare['Prediction Results'] = datapred 

 

datacompare 

datapred.shape 

 

# Calculatre value of Root Mean Square Error  

def rmse(datatest, datapred): 

    return np.round(np.sqrt(np.mean((datapred - datatest) ** 2)), 4) 

print('Result Root Mean Square Error Prediction Model :',rmse(datatest, datapred)) 

 

def mape(datatest, datapred):  

    return np.round(np.mean(np.abs((datatest - datapred) / datatest) * 100), 4) 

     

print('Result Mean Absolute Percentage Error Prediction Model : ', mape(datatest, 

datapred), '%') 

 

# Comparison data test with data prediction 

datacompare = pd.DataFrame() 

datatest=np.array(dataset['Close'][totaldatatrain+totaldataval+lag:]) 

datapred= y_pred_invert_norm 

 

datacompare['Data Test'] = datatest 

datacompare['Prediction Results'] = datapred 

datacompare 
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# Create graph data test and prediction result 

plt.figure(num=None, figsize=(10, 4), dpi=100,facecolor='w', edgecolor='k') 

plt.title('Graph Comparison Data Actual and Data Prediction') 

plt.plot(datacompare['Data Test'], color='red',label='Data Test') 

plt.plot(datacompare['Prediction Results'], color='blue',label='Prediction Results') 

plt.xlabel('Day') 

plt.ylabel('Price') 

plt.legend() 

plt.show 

 

 

 

 

 

 

 

 

 

 

Ethereum Script 

 

!pip install cryptocmd 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import matplotlib.dates as mdates 

from keras.models import Sequential 

from keras.layers import Dense, Dropout,GRU 

from keras import optimizers  

import io  

from sklearn.preprocessing import MinMaxScaler 
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from cryptocmd import CmcScraper 

from google.colab import files  

seed = 1234 

np.random.seed(seed) 

plt.style.use('ggplot') 

 

import tensorflow  

from tensorflow import keras 

 

import warnings 

warnings.simplefilter(action='ignore', category=FutureWarning) 

 

uploaded = files.upload() 

ETH=pd.read_csv(io.BytesIO(uploaded.get('ETH-USD.csv')),index_col='Date', 

parse_dates=['Date']) 

 

# use feature 'Date' & 'Close'// Plotting Close Price  

ETH = pd.DataFrame(ETH['Close']) 

fig = plt.figure(figsize=(30, 20)) 

plt.plot(ETH,color="red") 

plt.xlabel('Date') 

plt.ylabel('ETHERUM Price') 

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d")) 

plt.title('ETHERUM Price') 

plt.show() 

 

#Min-Max Normalization 

ETH_norm = ETH.copy() 

ETH['Close'] 

scaler = MinMaxScaler() 

ETH_norm['Close'] = scaler.fit_transform(ETH[['Close']]) 

ETH_norm = ETH.copy() 
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ETH['Close'] 

scaler = MinMaxScaler() 

ETH_norm['Close'] = scaler.fit_transform(ETH[['Close']]) 

fig = plt.figure(figsize=(10, 4)) 

plt.plot(ETH_norm,color='green') 

plt.xlabel('Date') 

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m")) 

plt.title('ETH DATA Normalized') 

plt.show() 

 

# Partition data into data train, val & test 

totaldata = ETH.values 

totaldatatrain = int(len(totaldata)*0.80) 

totaldataval = int(len(totaldata)*0.10) 

totaldatatest = int(len(totaldata)*0.10) 

 

# Store data into each partition 

training_set = ETH_norm[0:totaldatatrain] 

val_set=ETH_norm[totaldatatrain:totaldatatrain+totaldataval] 

test_set = ETH_norm[totaldatatrain+totaldataval:] 

 

# Initiaton value of lag 

lag = 2 

# sliding windows function 

def create_sliding_windows(data,len_data,lag): 

    x=[] 

    y=[] 

    for i in range(lag,len_data): 

        x.append(data[i-lag:i,0]) 

        y.append(data[i,0])  

    return np.array(x),np.array(y) 
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# Formating data into array for create sliding windows 

array_training_set = np.array(training_set) 

array_val_set = np.array(val_set) 

array_test_set = np.array(test_set) 

 

# Create sliding windows into training data 

x_train, y_train = create_sliding_windows(array_training_set,len(array_training_set), lag) 

x_train = np.reshape(x_train, (x_train.shape[0],x_train.shape[1],1)) 

# Create sliding windows into validation data 

x_val,y_val = create_sliding_windows(array_val_set,len(array_val_set),lag) 

x_val = np.reshape(x_val, (x_val.shape[0],x_val.shape[1],1)) 

# Create sliding windows into test data 

x_test,y_test = create_sliding_windows(array_test_set,len(array_test_set),lag) 

x_test = np.reshape(x_test, (x_test.shape[0],x_test.shape[1],1)) 

 

# Hyperparameters 

learning_rate = 0.0001 

hidden_unit = 64 

batch_size=500 

epoch = 1000 

 

# Architecture Gated Recurrent Unit 

regressorGRU = Sequential() 

 

# First GRU layer with dropout 

regressorGRU.add(GRU(units=hidden_unit, return_sequences=True, 

input_shape=(x_train.shape[1],1), activation = 'tanh')) 

regressorGRU.add(Dropout(0.1)) 

# Second GRU layer with dropout 

regressorGRU.add(GRU(units=hidden_unit, return_sequences=True, activation = 'tanh')) 

regressorGRU.add(Dropout(0.2)) 

# Third GRU layer with dropout 
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regressorGRU.add(GRU(units=hidden_unit, return_sequences=False, activation = 'tanh')) 

regressorGRU.add(Dropout(0.3)) 

 

# Output layer 

regressorGRU.add(Dense(units=1)) 

 

# Compiling the Gated Recurrent Unit 

regressorGRU.compile(optimizer=tensorflow.keras.optimizers.Adam(lr=learning_rate),los

s='mean_squared_error') 

 

# Fitting ke data training dan data validation 

pred = regressorGRU.fit(x_train, y_train, validation_data=(x_val,y_val), 

batch_size=batch_size, epochs=epoch) 

 

# Graph model loss (train loss & val loss) 

fig = plt.figure(figsize=(10, 4)) 

plt.plot(pred.history['loss'], label='train loss') 

plt.plot(pred.history['val_loss'], label='val loss') 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(loc='upper right') 

plt.show() 

 

# Implementation model into data test 

y_pred_test = regressorGRU.predict(x_test) 

 

# Invert normalization min-max 

y_pred_invert_norm = scaler.inverse_transform(y_pred_test) 

 

# Comparison data test with data prediction 

datacompare = pd.DataFrame() 



 89 

datatest=np.array(ETH['Close'][totaldatatrain+totaldataval+lag:]) 

datapred= y_pred_invert_norm 

 

datacompare['Data Test'] = datatest 

datacompare['Prediction Results'] = datapred 

# Calculatre value of Root Mean Square Error  

def rmse(datatest, datapred): 

    return np.round(np.sqrt(np.mean((datapred - datatest) ** 2)), 4) 

print('Result Root Mean Square Error Prediction Model :',rmse(datatest, datapred)) 

 

def mape(datatest, datapred):  

    return np.round(np.mean(np.abs((datatest - datapred) / datatest) * 100), 4) 

     

print('Result Mean Absolute Percentage Error Prediction Model : ', mape(datatest, 

datapred), '%') 

 

# Create graph data test and prediction result 

plt.figure(num=None, figsize=(10, 4), dpi=100,facecolor='w', edgecolor='k') 

plt.title('Graph Comparison Data Actual and Data Prediction') 

plt.plot(datacompare['Data Test'], color='red',label='Data Test') 

plt.plot(datacompare['Prediction Results'], color='blue',label='Prediction Results') 

plt.xlabel('Day') 

plt.ylabel('Price') 

plt.legend() 

plt.show 

 

 

 

 


	0. Abstract
	1. Introduction
	1.1 The technology behind cryptocurrencies
	1.2 Bitcoin
	1.2.1 Timeline
	1.2.2 Technical Review

	1.3 Ethereum
	1.3.1 Timeline
	1.3.2 Technical Review – Ethereum 2.0

	1.4 CRIX
	1.5 Asset classes and their proxies
	1.6 Crypto Trends
	1.6.1 COVID-19 Impact Assessment
	1.6.2 Untapped Potential in Emerging Markets

	1.7 Classification of Cryptocurrencies

	2. Cryptocurrencies as an asset class
	2.1 The seven requirements of an asset class
	2.2 Results

	3. Portfolio Optimisation
	3.1 Theory behind Portfolio Optimisation
	3.1.1 Modern Portfolio Theory
	3.1.2 Post-Modern Portfolio Theory

	3.2 Results
	3.2.1 Modern Portfolio Theory: Application
	3.2.2 Post-Modern Portfolio Theory: Application


	4. Deep learning and Crypto prices prediction
	4.1 Introduction to Machine Learning
	4.2 Review of Literature
	4.3 Gated Recurrent Unit (GRU) Model
	4.4 Evaluation Matrix
	4.5 Dataset
	4.6 Results

	5. Conclusion
	Bibliography
	APPENDIX 1: Asset Allocation and Portfolio Optimisation Scripts
	APPENDIX 2: Crypto Prediction
	Bitcoin Script
	Ethereum Script


