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Abstract 

 

The popularity in academic research of the area of option pricing 

techniques improved since Black, Scholes, and Merton (1973) 

developed the first option pricing method, following the fast 

development of derivatives market of the last decades. The more an 

option has particular characteristics, the more it will be possible to 

find difficulties in selecting the right method, among the many 

existing, to evaluate it.  

This thesis introduces the Least Squares Monte Carlo approach to 

option pricing applied by Longstaff and Schwartz (2001) on different 

types of American-style options. Specifically, this thesis refers to the 

valuation of an American-Bermudan put Option through this method, 

comparing the numerical results of this valuation with the ones 

obtained evaluating the prices of the Options using a dense Binomial 

Trees model as a benchmark. The application of these pricing methods 

will be executed through a program developed in Python language.  

Finally, the thesis analyzes the Numerical Results to discuss the 

advantages and disadvantages of the LSM approach for this specific 
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type of option when fronting various scenarios. It will show how the 

LSM method outperforms the traditional numerical method 

considering the trade-off between the amount of possible scenarios to 

test, the computational time required and the valuation precision, 

when a certain size of paths simulated, degrees of polynomials and 

exercise time points is exceeded. 
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Chapter 1 

Introduction 

 

In the last half of century, options, derivatives including options, and 

any other derivatives with similar features, became popular financial 

instruments traded, in both the Over-the-Counter (OTC) and the 

Exchange markets.  

The price of an option depends on several factors: time to maturity, 

strike price, volatility and price of the underlying asset, interest rate 

and, eventually, dividends.  

This thesis will concentrate on those types of options having the 

characteristic, typical of the so-called American options, of giving the 

possibility to the holder to exercise the option in many time points 

before the maturity. The prediction of the theoretical price of certain 

types of options is now more than a challenge for traders, derivatives 

issuers, and academic researchers. The importance of doing it quickly 

and precisely led to the development of various option pricing 



2 
 

techniques, each of these to be chosen and applied based on the way it 

fits with the features of the option to be priced. 

The Black-Scholes model for option pricing is one of the first and 

most celebrated works in this field. For the contribution that this 

model gave to the research, in 1997 Myron Scholes and Robert 

Merton received the Nobel prize for Economics. This model is going 

to be defined more in depth in the 2nd chapter of the thesis. 

Even if there have been found some analytical expressions for the 

price of American Options in many elementary forms 

(MCkean(1965); Roll (1977); Geske (1979); and Whaley (1981)), 

differently from what happens for European options, the Black-

Scholes model for American options doesn’t provide the analytical 

solutions to determine the price of the option. This represents an issue 

for the traders willing to use this method, as most of the options issued 

and traded in the CBOE (Chicago Board of Options Exchange) are of 

the American type. 

Eventually, a way to price American Options and similar, is by 

applying numerical solutions. The binomial model exposed by Cox, 

Ross and Rubinstein (1979) is probably the most popular technique 
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giving a fast numerical solution determining American options’ price. 

The binomial model is very intuitive, so it is commonly approached 

academically and in financial industry. In chapter 2 it will be 

described more in depth, as this thesis will use this model as the 

numerical benchmark to analyze the robustness and convergence 

precision of the prices evaluated through LSM.  

One of the main issues with this and many other numerical methods is 

that the only stochastic factor considered in the valuation of the option 

is the price of the underlying asset, while the other relevant variables 

are assumed to be constants. It comes natural to consider that a 

method assuming factors like dividends, multiplicity and weights of 

underlying assets, volatility, and interest rate as constants could miss 

in flexibility, precision, and reliability compared to others. although it 

has great academic importance. In facts, the problem of using this 

model importing more factors as stochastic, is the so-called curse of 

dimensionality: the number of binomial nodes grows exponentially, 

making the model computationally unaffordable. 

The necessity of finding numerical solutions considering multiple 

stochastic factors gave room to the Monte Carlo simulation. The first 
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introducing this simulation for pricing options was Phelim Boyle in 

the article “Options: a montecarlo approach” (1977). The possibility to 

apply this technique on options with multiple stochastic factors led the 

evaluations of European Options’ price through this method to 

become popular by the years, while it kept being hard to implement it 

on American Options, because of computational issues. In facts, it’s 

required to calculate the optimal early exercise price, at a certain time, 

recursively, when processing the price of American Options. Since it’s 

just one single future path for any time spot, this calculation would 

show biased results.  

From that moment, many studies came over trying to propose a way to 

price American Options through simulation. James Tilley suggested to 

define the optimal stopping time point along the paths through a 

simulation algorithm imitating the standard lattice. With a similar 

approach, Martineau and Barraquand (1995) proposed their method, 

the so-called Stratified State Aggregation along the Payoff.  To price 

American options through Monte Carlo simulation, a model 

essentially related to the binomial model, instead, has been proposed 

by Broadie and Glasserman (1997). 
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Jacques Carriere (1996) defined a way to determine the optimal early 

exercise strategy associating the calculation of the numbers of 

conditional expectations through a backword induction system to the 

evaluation of American Options. To elaborate a precise approximation 

of the conditional expectation he combined advanced regression 

methods with the simulation. From this idea, Francis A. Longstaff and 

Eduardo S. Schwartz (2001) took the inspiration to elaborate a method 

based on simulation, called Least Squares Monte Carlo (LSM) 

algorithm. In their article they use a simple least squares cross-

sectional regression to estimate the conditional expectation function 

for every exercise date and determine the optimal exercise strategy for 

each path. This work, that will be deepened more in the 4th chapter of 

this thesis, also applies this method to other specific types of options 

that are path-dependent, such as cancellable index amortizing swaps, 

and different forms of American-Bermudan options, (which is the type 

of option that will be analyzed in this thesis). 

This thesis will focus on the application of the Least Squares method 

of Longstaff and Schwartz on pricing American-Bermudan Options. 

This brief introduction on the literature regarding analytical and 
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numerical methods for option pricing, paying more attention on the 

issue of pricing American Options, has been given to show to the 

reader a basic idea of the area of research this thesis aims to contribute 

to, and why and how this research area developed in this direction in 

the last 50 years.  

In chapter 2, it will be initially defined the financial background 

necessary to ensure to be acknowledged of every specific financial 

term and every basic financial process present in this thesis. 

Subsequently the main types of options will be described, paying 

particular attention to the types linked to the one evaluated in this 

thesis. 

The attention will then be driven to the description of the methods of 

Option Pricing concerning this thesis: in the last two paragraphs of the 

second chapter there will be, at first, the illustration of the oldest 

within the most famous Black-Scholes model, defining its basic 

assumptions and obtaining its pricing formula for European Options. 

Then, there will be the illustration of the binomial tree model, the 

logic behind this method and some comparisons with other numerical 

methods, focusing on the advantages of the use of the former, which 
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will be used later in this thesis as a benchmark to show the 

consistency of the LSM method successively approached to evaluate 

the American option.  

In the third chapter the Monte Carlo simulation will be more 

specifically introduced and explained in its logics.  As for the Black-

Scholes method, this numerical method will be defined in its basic 

assumptions. Although the normal distribution N(0,1) is provided as a 

black-box function in almost every software, in the third chapter we 

will briefly illustrate how to generate pseudo-random numbers, 

proving how it’s possible to convert random numbers sampled from 

U[0,1] in numbers sampled from the normal distribution N[0,1]. 

Successively, this method will be applied running the pricing formula 

of a European Call Option as for example, and the numerical results 

obtained through this simulation will be compared to the theoretical 

result coming from the former method, all of it involving a program to 

be run on python. We will prove how the Monte Carlo simulation 

results to be a valid instrument for pricing European Options. In facts, 

we will notice that the accuracy of the evaluations, in terms of 

robustness and convergence to the true value evaluated using the 
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Black-Scholes method, will be satisfying when a certain number of 

paths (10,000) are simulated. 

Then, it will follow the definition and evaluation of the Least Square 

Method proposed by Longstaff and Schwarz to estimate the price of 

American-style Options. At first, there will be explained the reasons 

of the failure in pricing more complicated options than the European-

style ones using the numerical methods explained before, and the 

reasons why it became so necessary to find a way to evaluate the 

American-style options. After the illustration of the LSM method, the 

biggest issue will be to prove how LSM could price these options 

successfully, managing their most challenging characteristics such as 

the path-dependency and the presence of multiple stochastic factors. 

Additionally, this thesis will provide the mathematical foundation of 

this simulation method in terms of convergence and robustness.  

Moreover, in this chapter it will follow the individuation of the proper 

basis function considered for this option type, the definition of the 

dynamic programming algorithm used to evaluate the American-

Bermudan options, and its application on a put option.  
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In the last part of the fourth chapter, numerical results will be 

illustrated and analyzed, and then, in order to check the accuracy and 

the feasibility of the LSM simulation method, these will be compared 

to the results obtained applying the Binomial Tree model. This chapter 

ends up analyzing the performance of this method in terms of the 

trade-off between precision of the price evaluation and computational 

time, taking consideration of different amounts of possible exercise 

points in the time, different amounts of paths in simulation and 

different degrees of the basic functions used in the regression process. 

We will realize how this method could represent a powerful tool to 

use in pricing American-Style option. When we impose a certain 

number of paths N simulated (10,000), of time-steps M introduced 

(100), and of degree of the regressive function implemented (2), the 

accuracy of our evaluations will result to be satisfying in terms of 

convergence to the average price of the simulations and to a 

benchmark price evaluated by Binomial Tree method, and in terms of 

robustness when changing the degree of the regressive function. 

Moreover, we’ll notice how the computational effort needed will not 
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be unaffordable, as it takes less than 19 seconds to get a sufficiently 

accurate evaluation. 

Finally, this thesis will summarize its major findings and contribution, 

and some possible inspirations for future research on its related field. 
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CHAPTER 2 

Foundation 

 

2.1 Financial Background 

In this chapter this thesis aims at deepening the most important 

financial terms and processes necessary to approach the illustrations 

and the analysis coming after. 

A financial contract having the value deriving from (or depending on) 

the value of one or many other underlying assets, is called derivative. 

Popular examples of derivatives are swaps, options, futures and 

forwards. Even if the biggest part of the methods described in this 

thesis can be applied to many other types of derivatives, this thesis 

will concentrate its attention to the options.  

The owner of an option contract holds the right to buy or sell the 

underlying asset at a predefined price, called Strike Price or Exercise 

price, at the expiration date (or maturity), and eventually in many 

predetermined points in the time before (this depends on the type of 
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the option contract, which will characterize the subject of the next 

paragraph). Options giving the possibility to the holder to buy the 

underlying asset at a certain time and at a predefined price are called 

Call Options, while options giving the possibility to the holder to sell 

the underlying asset at a certain time and at a predefined price are 

called Put Options. 

The parameters commonly considered to influence the most the value 

of an option contract are: the volatility of the underlying asset and its 

price; the dividends paid already and the one still to be paid on it; the 

time to maturity; the amount of future points in time available to 

exercise the option before the maturity (and their collocation in the 

timeline); and the interest rate. 

It’s logical that the relationship between the value of an option and its 

Strike Price, keeping anything else constant, works as such: the value 

of a call (put) option increases (decreases) when its strike price 

decreases, and vice versa. Coherently, the value of a call (put) option 

decreases (increases) when the price of its underlying asset decreases, 

and vice versa. Regarding its relationship with the volatility of the 

underlying asset, instead, the value of any type of option increases as 
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the former increases, since it is a measure of the possibility for the 

underlying asset (and so for the option) to make big changes in its 

price development (making the asset derived riskier when volatility is 

higher), which comport the possibility to increase up to the infinite 

(hypothetically) when the value of the option increases, while in the 

other sense the option could never be worth less then limit value of 0, 

which is a value quite common to result, even in low volatility 

options. When the risk-free interest rate increases, the price of a call 

(put) option increases (decreases), as it generally happens with most 

of the financial instruments. The increase in the time missing to 

maturity generally influences the value of both the types of option 

positively, and so would do an increase in the amount of time points 

available to exercise the option before the maturity, especially when 

uniformly distributed. 

A clever investor would often take advantage of arbitrage situations, 

if the possibility appeared. This is a trading strategy consisting in 

identifying securities priced differently in different markets, basically 

striking a combination of transactions, simultaneously purchasing 

where the price is lower and selling where it’ higher. This makes the 
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investor gaining from entering a riskless investment. A trading 

strategy approached with the aim of secure the investment position on 

one asset is the so-called hedging strategy: meaning covering, this 

strategy can be implemented in multiple ways, and basically consists 

in opening other positions on other assets, typically having strictly 

decorrelated returns with the first position hold, in order to minimize 

the volatility of the investment in its entirety. An option is often 

recognized as a valid instrument to use in a hedging strategy. One last 

concept necessary to start describing the various methods considered 

in this thesis is the development process of the price of an asset 

compounded continuously: 1 unit invested today, will be worth 𝑒rt in 

future, being “r” the compounded interest rate, and “t” the time 

expressed in years. 

 

2.2 Definition of different types of options 

As we have seen in the Financial Background’s chapter, the option 

contract gives to the holder the right to buy, or to sell, the underlying 

asset at a predetermined price in a predetermined time, depending on 

the contract referring to a call option or to a put option. 
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The right of the holder to exercise the option in a moment rather than 

in one or many others, is determined before in the option contract, and 

represents big part of the differences between some types of options 

and others.  

The two basic types of option are the European style option and 

American style option, also defined as plain vanilla options. The 

denominations are not actually related to geographic location. In facts, 

these two types of option differ in the sense that the latter allows the 

holder to exercise it any time before expiration date, while the former 

allows to exercise it only at maturity. Obviously, the possibility of 

exercising the option before maturity represents an advantage for the 

holder, which is usually denoted in the price of the American option, 

that is a bit higher than the price of a European option having all other 

characteristics equal. 

Other aspects influencing the categorization of the options can be the 

expiration cycle, the method used to trade them, and the underlying 

asset the options are related to. Generally, “Exotic” options are 

intended to be any of a broad category of options including more 
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specific and complex financial structures than the typical vanilla 

options. 

Some types of options giving less common approach to the rights of 

early exercise are: 

- Bermudan style option: A more specific type of option which is quite 

popular in financial markets. In this case the holder has the right to 

exercise the option in a predefined amount of time, generally 

discretely spaced. This is a very important type of option for the 

academic research in the field of option pricing, especially for the 

methods considered in this thesis: in facts, Longstaff and Schwartz 

proposed their work evaluating, with the others, a Bermudan option 

having a big amount of time steps where to exercise the option, in 

order to better replicate the condition of an American-style Option. 

- Canary option: This style of option is in a middle-way between 

European and Bermudan options, just like the geographical location of 

its name. The holder of a Canary option can typically exercise it at 

quarterly dates, but only after a predefined period (generally one 

year). 
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- Capped-style option: The profit of this option is predefined in the 

contract. It gets immediately exercised as the underlying reaches the 

predetermined price. 

- Compound option: It’s an option deriving another option as 

underlying asset. 

- Double option: Doesn’t get traded on exchanges, but only on 

commodities, it gives the holder the possibility to either buy or sell the 

underlying at the strike price K. 

- Evergreen option: It allows the holder to exercise the right to buy or 

sell by providing the notice in a pre-determined period of time. 

- Shout option: It allows the holder to lock-in in a price reached by the 

underlying in a moment before maturity, keeping such a price when 

exercising the option at maturity. 

- Swing option: Typically adopted in energy trading, allows the option 

holder to purchase a predetermined amount of underlying at a 

predetermined price while maintaining a certain degree of flexibility 

in the amount purchased and the price paid. The holder can also 

exercise a predetermined amount of options for every time step 

precedingly specified. 
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The exotic options having standard exercise styles (as vanillas), but 

different methods in calculating the payoff values are: 

- Basket option: It’s an option deriving an asset composed by many 

assets (a “basket” of assets). A particular type of Basket option is the 

“Rainbow option”, having the weights depending on the performance 

up to maturity of the assets composing the basket. 

- Boston option: This option works as an American option, but the 

payoff can be collected only at maturity. 

- Composite option: Also named “cross option” has the strike price 

denominated in a defined currency, and the underlying asset 

denominated in another one. So, it’s suggested to consider the 

exchange rate volatility, and the correlations between the two 

currencies and the underlying asset, when trading these options. A 

type of composite option is the “quanto option”, which is hedged by 

the exchange rate risk keeping it stable from the issuance of the 

contract. 

- Exchange option: It gives the holder the right to exchange one asset 

for another, if convenient. 
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- Low Exercise Price option: It works as a European style option with a 

predefined exercise price equal to $0.01. 

Other relevant exotic options differing both in the calculation of 

payoffs and in the style of exercise from vanillas, are: 

- Asian options: This type of option, particularly relevant for this thesis, 

as we’ll find out, has its payoff determined by the average price of the 

underlying asset in the final period having predetermined size, instead 

of being determined by the asset’s price at maturity. In this case, the 

name is coherent with the geographical location in which it first has 

been modelled and traded, which is Tokyo. An example of payoff for 

an Asian put option could be the difference between the strike price 

and the daily average of the last 3 months, if positive, or zero if such a 

difference is negative. Traders use this option in order to reduce the 

risk related to unexpected bounces of the stock price, especially when 

getting closer to maturity.  

- Barrier option: It involves the existence of a limit price, which, once it 

gets reached, activates the option to be exercised by the holder to 

exercise or, instead, deactivates it, imposing him not to exercise it 

anymore. 
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- Binary option: has a fixed payoff, which could be a predetermined 

amount or zero, depending on the level reached by the underlying 

asset’s price at maturity. 

- Chooser option: This contract gives the holder the right to choose to 

make this derivative a call or a put before a predefined date. 

- Forward start option: This type of options has the strike price 

determined after a predefined amount of time. A series of forward 

start options is called “Cliquet option”.  

- Game option: Also named “Israeli option”, it allows the writer to 

liquidate the option to the holder, paying the payoff at that moment 

plus a predefined penalty fee. 

- Lookback option: This path dependent option gives the holder the 

right to buy (sell) the underlying asset at its lowest (highest) price 

reached in a predefined precedent period. 

- Parisian option: The standard version of the Parisian option makes the 

payoff to depend by the maximum amount of consecutive time spent 

by the underlying instrument above or below the strike price. The 

cumulative version of this option depends on the total amount of time 

spent by the asset above or below the strike price. 
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- Parisian barrier option: The standard version of this type of option 

works as if the value of the underlying asset stays above or below a 

“price limit” for more than a certain amount of consecutive time, the 

option can be exercised, or it can no longer be exercised. The 

cumulative version of this option doesn’t require the amount of time 

defining the threshold to be consecutive. 

- Reoption: This type of derivative contract gives the holder the right to 

activate again an option expired without being exercised. 

In this thesis, we will propose the application of Binomial tree and 

LSM pricing methods on an American-Bermudan Put Option, that’s 

one of those proposed by Longstaff and Schwartz themselves in their 

masterpiece. The main features of this type of option are its 

exercisability any time before expiration (that’s why American) but in 

a predefined big amount of exercise dates equally distant within each 

other (making it discrete, as a Bermudan option). 

The LSM approach to American-style options’ evaluation is based on 

imposing a very big number of exercise dates, as it’s not actually 

possible to give a continuous possibility of exercise (which should 

technically be available for American options). This aspect makes the 
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discrete American-style options evaluated through Longstaff-Schwarz 

method often termed as Bermudan-style options. The biggest is the 

amount of exercise dates made available and the closest the option 

gets to a pure American-style one. 

 

2.3 Black-Scholes model 

Fisher Black, Myron Scholes and Robert Merton are considered as 

pioneers in the field of the option pricing research. Thanks to the 

massive breakthroughs proposed through the model developed and 

published in the early 1970s, Scholes and Merton achieved to win the 

Nobel Prize for economic science in 1997, and Black got the mention 

for his contribution by the Swedish academy, as he died in 1995, 

resulting ineligible for the prize. The influence of Black-Scholes 

model on the way traders approach pricing and hedging options is 

evident and has its reflection in numerous subsequent research, as well 

as it gave several inputs to the growth in popularity and quality of 

financial engineering.  
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To follow, the framework of the Black-Scholes model will be defined, 

and the way the model can be implemented on the evaluation of a 

European call and put option (having the underlying stock paying zero 

dividends) will be illustrated. 

In order to derive the Black-Scholes model, there are several explicit 

assumptions necessary to be made: 

- There are no arbitrage opportunities. 

- The underlying asset pays zero dividends. 

- Securities are continuously available and possible to trade. 

- It’s always possible to buy any fraction of a share (Securities are 

always divisible). 

- Short selling never undergoes restrictions. 

- Transaction costs are not considered. 

- The risk-free interest rate is constant and it’s always possible to lend 

and borrow money instantly at that rate. 

- The underlying asset’s price follows a geometric Brownian motion 

with constant volatility and drift. 

Successively some of these assumptions have been relaxed to extend 

the Black-Scholes model and make it more realistic. 
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Mainly, the model is based on the idea that the structure of the return 

on an option can be precisely replicated by a continuous rebalancing 

of a hedged portfolio composed by a risk-free asset gaining interests at 

a continuously compounded rate (which could be, for example, a 

government bond) and by a variable number of shares of the 

underlying asset. The return of such a portfolio depends exclusively 

on some known constant variables and on the time, as it is 

independent from the price movement of the stock. This return is 

deterministic, so, as it doesn’t allow arbitrage opportunities, it cannot 

have an expected return, at the start, higher than the one on the initial 

investment compounded at the risk-free rate of interest (so the initial 

investment itself). In facts, the eventual arbitrage possibility would 

emerge by borrowing at a risk-free rate, moving the amount on the 

(eventually higher yielded) hedged portfolio, forcing the combination 

of the two assets to reach the risk-free condition, with a higher yield 

than the one to pay for the borrowing. 

Before deriving the Black-Scholes pricing formulas, some notations 

used in this section will be defined: 

- “S”, the stock price. 
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- “𝑓”, the price of a derivative as a function of the stock price and of the 

time. 

- “𝑐”, the European call option’s price. 

- “𝑝”, the European put option’s price. 

- “𝐾”, the strike price of an option. 

- “𝑟”, the continuously compounded zero-risk interest rate annualized. 

- “𝜇”, the average growth rate of the stock annualized, that is the drift 

rate of S. 

- “σ”, the square root of the quadratic variation of the stock’s price 

process, that is the volatility of the stock. 

- “𝑡”, the time expressed in years; we generally adopt now = 0, at 

maturity = T. 

- Π, the portfolio value. 

- 𝑅, the accumulated profit or loss following a delta-hedging trading 

strategy. 

- 𝑁(𝑥), the function of standard normal cumulative distribution, N(x) =

1

2π
∫ e− 

x2

2 dz
x

−∞
. 
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- “𝑁′(𝑧)”, the derivate of the previous function, that represents the 

function of standard normal probability density, 
e

− 
x2

2

√2π
 . 

A Wiener process, also defined as Brownian motion, is a specific kind 

of Markov stochastic process having variance rate per year equal to 1, 

and a mean equal to zero. To be following a Wiener process, a 

variable z respects the next two properties: 

First property: Given a little interval of time Δt, the equation for the 

change in Δz is: 

                                          Δ𝑧 = 𝜖 √Δt                                             (2.1) 

being 𝜖 a standardized normal distribution 𝜙(0, 1). 

Second property: For any two different little interval of time Δt, the 

value of Δz is independent. 

It is possible to define a generalized Wiener process in terms of dz as: 

                                        𝑑𝑥 = 𝑎𝑑𝑡 + 𝑏𝑑𝑧                                             (2.2) 

being a and b constant values. 
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A generalized Wiener process in which the constants a and b consist 

in being functions of the variables x and t, is called Itò process. The 

equation of this further kind of stochastic process is, then: 

                                 𝑑𝑥 = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝑑z                             (2.3) 

More specifically, the Itò process supposed to be followed by a 

variable x, is represented in the Itò’s Lemma (K. Itò, 1951) involving 

a function G of x and t following the process: 

                       𝑑𝐺 = (
∂G 

 ∂t
 + 

∂G 

 ∂x
𝑎 + 

1

2

∂2G

∂x2
b2 )𝑑𝑡 + 

∂G

∂x
𝑏𝑑z                  (2.4) 

The model assumes that the process of the stock price goes with the 

following geometric Brownian motion: 

                                        𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧                                  (2.5) 

Assuming f representing the price of a derivative (such a call or put 

option) having the stock priced by S as underlying asset, it must 

formally consist in a function of the price S and the time t. Applying 

the Itò’s lemma from (2.4), the equation obtained is: 

                         𝑑f = (
∂f 

 ∂t
 + 

∂f 

 ∂S
𝜇S + 

1

2

∂2f

∂S2
σ2S2 )𝑑𝑡 + 

∂f

∂S
 σ𝑑z             (2.6) 
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Converting the equations (2.5) and (2.6) in their discrete versions, we 

obtain: 

                                            Δ𝑆 = 𝜇𝑆 Δ𝑡 + 𝜎𝑆 Δ𝑧                             (2.7) 

And 

                        Δf = (
∂f 

 ∂t
 + 

∂f 

 ∂S
𝜇S + 

1

2

∂2f

∂S2
σ2S2 ) Δ𝑡 + 

∂f

∂S
 σ Δz            (2.8) 

Being Δ𝑆 and Δf the differences in values of S and f after a small time 

Δ𝑡. As the underlying of S is the same underlying of f, both these 

functions should follow the same Wiener process. So, formally, the Δ𝑧 

of (2.7) and the Δ𝑧 of (2.8) should have the same value (𝜖 √Δt). This 

sets up the possibility of eliminating algebraically the Wiener process 

by composing a portfolio with the stock S and the derivative f. 

The portfolio allowing this possibility is composed as follow: 

{
∂f 

 ∂S
, shares

−1, derivative
 

Meaning that the portfolio is made selling 1 unit of derivative for 

every 
∂f 

 ∂S
 of shares bought. The expression defining the price of this 

portfolio is, then: 
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                                               Π = -f + 
∂f

∂S
S                                       (2.9) 

The value’s change of this portfolio ΔΠ in the interval of time Δt 

results: 

                                                  ΔΠ = -Δf + 
∂f

∂S
ΔS                               (2.10) 

From the substitution of the equations (2.8) and (2.9) in the equation 

(2.10) we obtain: 

                                       ΔΠ = (- 
∂f 

 ∂t
 - 

1

2

∂2f

∂S2
σ2S2)Δ𝑡                          (2.11) 

This last expression evidences how the change in value ΔΠ in the 

fraction of time Δ𝑡 is not influenced by the stochastic process Δ𝑧, 

reducing to zero the level of risk for that amount of time. The 

portfolio, then, must gain immediately the same rate of return of the 

risk-free securities, for the assumption of zero arbitrage to hold, so: 

                                                  ΔΠ =r Π Δt                                  (2.12) 

Being r the zero-risk interest rate. From combining the expressions 

(2.8), (2.9) and (2.12) it comes: 

                                    
∂f 

 ∂t
 + 

∂f 

 ∂S
 r S + 

1

2

∂2f

∂S2
σ2S2  = r f                    (2.13) 
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Next, the Black-Scholes PDE (partial differential equations) for a 

specific valuation of an option will be illustrated. The conditions 

determining the European call option’s value c, are: 

- 𝑐(𝑆, 𝑇) = max(𝑆 − 𝐾, 0) 

- 𝑐(𝑆, 𝑡) → 𝑆 as 𝑆 → ∞ 

- 𝑐(0, 𝑡) = 0 for all 𝑡 

The conditions determining the European put option’s value p are 

similar to the call option’s ones. First, the Black-Scholes PDE will be 

transformed in a diffusion equation, and consequently, the equations 

will be solved adopting the standard methods. So, being 

d1 = [loge(S0/K) + (r + σ2/2)Tx] / (σ √T) 

d2 = [loge(S0/K) + (r - σ2/2)Tx] / (σ √T) = d1 - σ √T , 

the values of the call and the put option will result to be: 

                                 𝑐 =S0 N(𝑑1) - 𝐾e−rT𝑁(𝑑2)                          (2.14) 

                               p = 𝐾e−rT𝑁(-𝑑2) - S0 N(-𝑑1)                        (2.15) 
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In the article "The Pricing of Options and Corporate Liabilities", 

Black and Scholes (1973) produced a model that represents a 

milestone for the research in the field of option pricing, which is still 

widely used. The formula adopted to price European options, requires 

accepting several conditions. One assumption necessary to be made is 

that markets don’t produce arbitrage opportunities, as they denote how 

the return of a portfolio composed by a risk-free asset gaining interests 

at a continuously compounded rate and by a variable number of shares 

of the underlying asset, can perfectly replicate the return of the option 

itself. Merton, in one of the most relevant extensions of the Black-

Scholes model, defined how there are no differences between the 

values of American options and European options having the same 

underlying assets, the same expiration date, and the same strike price, 

when the underlying asset doesn’t pay dividend. This because he 

found it never optimal to exercise the American option before the 

maturity. That’s one of the few cases in which, adopting this method, 

there has been a representation of a closed form solution for American 

options’ evaluation. 
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The fact of the Black-Scholes model imposing very strict assumptions 

to make it possible to rely on closed form solutions, often makes this 

method not appropriate for dealing with real market’s features, 

bringing practisers to approximate the values through numerical 

methods instead of looking for theoretical values. In facts, in the 

financial industry, the implementation of numerical techniques for 

pricing options increased exponentially by the time, as these became 

more popular and sophisticated in academic research. In the section 

2.4 it will be introduced the numerical method approached in this 

thesis: the binomial tree method. 

 

2.4 Binomial Tree Model 

As it has precedingly been illustrated, the Black-Scholes model 

requires numerous and strict assumptions to be imposed, making it 

often not completely adequate for the real market conditions. There 

have been many attempts to reduce or change many of these 

assumptions in many extensions of the Black-Scholes model, but none 

of them brought to available closed form solutions. As a solution, 

many practisers started looking for the approximated values involving 
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numerical methods, rather than keeping looking for the theoretical 

values. In this Paragraph, the numerical method of the Binomial Tree 

will be defined, since it will be applied, then, as a benchmark method 

for the evaluation of American-Bermudan options’ prices successively 

approached through the LSM method. This method, as well as the 

Finite Difference method, has been typically approached to solve the 

issue of giving a closed form solution for the evaluation of American 

Options and many other derivatives giving the holder the possibility to 

exercise before maturity, which couldn’t be directly derived using the 

Black-Scholes method. Basically, most of the derivative types can be 

priced through this method, even though sometimes this has some 

issues to deal with can come out.  

Cox, Rubinstein, and Ross were the first formalizing the Binomial 

pricing model for derivatives, in their paper “Option Pricing: A 

Simplified Approach”, in 1979, after William Sharpe first proposed it 

as a concept in 1978.  

This model consists in the representation in a diagram of the possible 

different paths available for the asset price over the time to maturity. 

The assumption that the underlying asset’s price follows a random 
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walk holds. For every time step, there is a defined probability that the 

price goes up by a certain percentage amount and a defined 

probability that the price goes down by a certain percentage amount. 

Making the time steps the smallest possible, the limit of the binomial 

tree brings to the lognormal assumption for the price of the stock, 

that’s the same assumed for the Black-Scholes Model. 

To follow the pricing mechanism related to the probability for any 

step: 

Defining St the value of the stock at time t, it’s price at next time step 

t+1, is going to be St+1 = uSt with probability p, and St+1 = dSt with 

probability 1-p, being u > 1 > d. 

Considering a call option on the stock expiring at the end of the actual 

time step, let f be the function representing its current value, S0 be its 

actual price, and K be its Strike Price. From before, we obtain fu = 

max (S0 u – K, 0) and fd = max (S0 d – K, 0).  

Let’s consider a portfolio composed by a long position in a Δ number 

of shares for each unit of options in a short position. We’ll extrapolate 

the number of shares Δ necessary to make a zero-risk portfolio. 

When the price increases, the portfolio is worth 
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S0 u Δ - fu 

When the price decreases, the portfolio is worth, instead  

S0 d Δ – fd 

To make a riskless portfolio, the last equations must be equal 

S0 u Δ - fu = S0 d Δ – fd 

Consequently  

                                              Δ = 
fu−fd 

S0u−S0d
                                       (2.16) 

This situation shows a riskless portfolio, since it keeps the same value 

independently by the direction of the stock price. Because of the 

Assumption of No-Arbitrage, the growth of the portfolio’s value must 

immediately follow the risk-free rate r. So 

S0  Δ – f = (S0 u Δ – fu) e−rT 

Isolating the option price f 

                                f = S0 u Δ(1 – u e−rT) + fu e−rT                     (2.17) 

Importing the value of Δ from (2.16) and evaluating, the price 

becomes 
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                                    f = e−rT[ p fu + (1 – p) fd ]                         (2.18) 

being  

                                               p = 
e−rT−d 

u−d
                                       (2.19) 

At this point, it’s noticeable how the probability of the stock price to 

move up or down is not involved in the pricing formula for option in 

(2.18). This aspect is also maintained when the amount of time steps 

in considered in the development of the price paths increases. The 

more time nodes there are in a binomial model, the more accurate the 

approximation to the real stock price moving can result. 

Typically, a satisfying approximation can be obtained by developing 

the binomial tree on 30 or more timesteps. In facts, imposing 30 time-

steps propose 31 final stock prices, and 230 possible price paths to 

follow for the asset: more than one billion. 

To follow, an exemplificative representation of a binomial tree 

developed on three time-nodes will be illustrated. 
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Figure 2.1: Binomial tree on three time-nodes 

 

 

The graph above shows how the price increases or decreases for each 

time step. 

For the evaluation of the option’s price, starting from the values 

obtained at the end of each path, the same pricing formula of the 

single-node binomial model (2.18) needs to be applied in each node of 
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the last binomial tree (fig. 4.1). It’s required a backward induction 

from the last options’ prices.   

f = e−r3ΔT[ p3 fuuu + p2 (1 – p) fuud + p (1 – p)2fudd + (1 – p )3 fddd] 

We can then formalize the value for any model at n multiple nodes 

f = e−rnΔT[ pn fuu…uu + pn-1 (1 – p) fuu…ud +…. + p (1 – p)n-1fud…dd + (1                            

–                                              -p)n fdd...dd]                                       (2.20) 

Being Δ𝑇 the time running from a node to another. 

The formula above holds for European Options, as it doesn’t consider 

the influence on the price of the possibility to early exercise the 

option. 

In facts, to adapt the model to American Option pricing it’s required 

to check at each node whether it’s profitable to exercise, and to adjust 

the price of the option accordingly. 

For an American call, the value of the option at a node is given by  

                      fxx = = max (K – Sxx, e−rΔT [p fxxu   + (1-p) fxxd]     (2.21) 

So, if the value of the payoff gainable exercising the option is greater 

than the value of the option itself, we assign that price for the 
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American option at that node. Otherwise, we assign the value the 

option would have when unexercised.  

When a node shows an option price higher than it would be without 

exercising, it influences the prices of the nodes following back 

through the tree. This would make an American option to be more 

valuable than a European option with the same characteristics.  

This basic model has been successively updated with many extensions 

due to its ductility and simplicity. One of the most famous updates has 

been proposed by White and Hull (1990) importing in the model the 

dividends payment and some multivariate evaluation problems. 
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CHAPTER 3 

Simulative methods for option pricing 

 

3.1 Monte Carlo Simulation.  

Monte Carlo simulation is usually applied for derivatives where the 

payoff is dependent on the history of the underlying variable, or for 

derivatives with multiple factors of uncertainty or other complicated 

features. In facts, as we precedingly stated, one of the main issues 

with numerical methods like binomial trees is that they consider the 

price of the underlying asset as the only stochastic factor in the 

valuation of the option, while the other relevant variables are assumed 

to be constants. In order not to have computational issues related to 

the curse of dimensionality, the development of an accurate simulative 

approach seemed to be necessary. 

Regarding some historical references, Stanislaw Ulam coined the term 

“Monte Carlo method” in the late 40s. Then, Phelim Boyle resulted to 

be the pioneer of the application of this simulative approach for 
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pricing options in his article “Options: a Monte Carlo approach” 

(1977). The possibility to apply this technique on options with 

multiple stochastic factors led the evaluations of European Options’ 

price through this method to become popular by the years, while it 

kept being hard to implement it on American Options, because of 

computational issues. In facts, it’s required to calculate the optimal 

early exercise price at a certain time, recursively, in the process of 

pricing American Options. Since it’s just one single future path for 

any time spot, this calculation would show biased results. From that 

moment, many studies came over trying to propose a way to price 

American Options through simulation. James Tilley suggested to 

define the optimal stopping time point along the paths through a 

simulation algorithm imitating the standard lattice. 

With a similar approach, Martineau and Barraquand (1995) proposed 

their method, the so-called Stratified State Aggregation along the 

Payoff. In the fourth chapter of this thesis, we will introduce a 

development for Monte Carlo simulation, useful in pricing American-

style options. 
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Turning our attention on the illustration of the method, we’ll take in 

exam the calculation of the following integral to get the fundamental 

idea of the Monte Carlo simulation 

                                          ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥 =
|

𝐴
 �̅�                              (3.1) 

Identifying g(x) as an arbitrary function, f(x) as a density function of 

probability, and A as the range of integration. An estimation of 

�̅� through Monte Carlo can be obtained generating an independent and 

identical distributed sample {𝑥1, x2, . . .,xn-1,x𝑛} from 𝑓(𝑥) and 

developing  

                                              𝑔  =  
1

𝑛
 ∑ .𝑛

𝑖=0 g(xi)                               (3.2) 

The value of the variance �̂�2 of 𝑔 is                

                                          �̂�2 =  
1

𝑛
 ∑ .𝑛

𝑖=0 (g(xi) - 𝑔)2                          (3.3) 

Being 

                                               
�̂�−�̅� 

√�̂�2/𝑛
   → 𝑁(0, 1)                               (3.4) 

When n → ∞, it’s possible to obtain the confidence intervals. 
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This approach has been used by Boyle (1977) for pricing a European 

option having the underlying asset following a geometric Brownian 

motion. It appears necessary to re-propose from the equation (2.5) the 

assumption that, being dz a Wiener process, 

                                             𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧                              (3.5) 

For the path of S to be simulated, the life of the option needs to be 

divided in N intervals of time Δt with very short length. Then, the 

equation (3.5) must be approximated by 

                         𝑆(𝑡 + Δ𝑡) – 𝑆(𝑡) = 𝜇𝑆(𝑡) + 𝜎𝑆(𝑡)𝜖√Δt                 (3.6) 

Being 𝜖 a random sample from a normal distribution N(0,1).  

It’s then possible to construct a path for the stock price S repeating 

this process using N random samples from N(0,1). 

Anyway, calculating ln 𝑆 rather than 𝑆 would generally bring to a 

more accurate approximation. Differently from S, the stochastic 

process by Itò’s lemma followed by ln 𝑆 results as 

                                     𝑑 ln 𝑆 = (𝜇 – 
σ2

2
)𝑑𝑡 + 𝜎𝑑𝑧                          (3.7) 
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For short time intervals Δ𝑡, as for dS in the equation (3.6), d ln S can 

be discretely approximated as follows 

                        ln 𝑆(𝑡 + Δ𝑡) − ln 𝑆(𝑡) =(𝜇 – 
σ2

2
)Δ𝑡 + 𝜎𝜖√Δt          (3.8) 

Automatically, for all T, the equation (3.8) results as follows 

                            ln 𝑆(𝑇) − ln 𝑆(0) = (𝜇 – 
σ2

2
)𝑇 + 𝜎𝜖√T               (3.9) 

Developing it to obtain a function of S in T, we get 

                              𝑆(𝑇) = 𝑆(0) exp[(𝜇 – 
σ2

2
)𝑇 + 𝜎𝜖√T]              (3.10) 

The estimations of the values of the stock price S at any time T 

provided by the equation (3.10) constructs the path for the stock price. 

An aspect of this type of estimation is that √𝑛 has inverse 

proportionality with the standard error. Aiming at improving the 

accuracy of the simulation reducing the size of the standard error, 

Boyle (1977) introduces antithetic variates and control variates. The 

possibility of Monte Carlo simulation to handle the problem of the 

payoff depending on both the paths followed by the underlying asset S 

represents the key advantage on numerical methods like Binomial 

Tree, which could show more problems in the application on such an 
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environment. Even though another major drawbacks of Monte Carlo 

simulation consist in this being computationally time consuming 

sometimes, making it hard to apply on American-style options (issue 

that this thesis aims to solve in Chapter 4, through the evaluation by 

Least Squares method),  there are many examples of the application of 

the former advantage showed in successive researches: one of the 

most relevant for this thesis comes from Paul Glasserman and Mark 

Broadie (1996), who explained how to price Asian Options through 

Monte Carlo simulation. 

 

3.2 Application on European option 

As defined in the previous section (3.1), there are 

                                      𝑑 ln 𝑆 = (𝜇 – 
σ2

2
)𝑑𝑡 + 𝜎𝑑𝑧                       (3.11) 

and 

                              𝑆(𝑇) = 𝑆(0) exp[(𝜇 – 
σ2

2
)𝑇 + 𝜎𝜖√T]              (3.12) 
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Let’s make the function 𝑓(𝑆, 𝑡, 𝐾, 𝑇) represent the value of an option 

at time t having underlying asset worth S, strike price K and expiration 

at time T. Naturally, the value of such a function at time 0 will have to 

be equal to its expected value at maturity discounted at the interest 

rate r. So 

                 𝑓(𝑆, 0, 𝐾, 𝑇) = e-rT 𝔼𝑔(𝑆(0) exp[(𝜇 – 
σ2

2
)𝑇 + 𝜎𝜖√T]    (3.13) 

g(x) represents the payoff function. The value of g(x) for a European 

call option is 

𝑔(𝑥) = max(𝑆(𝑇) − 𝐾, 0) 

Denoting an amount M of independent and identically distributed 

samples generated from N(0,1) as {𝑦1,y2, . . . ,yM-1, 𝑦M}, the value of 

the option f will be, by the Law of Large Numbers 

    𝑓(𝑆, 0, 𝐾, 𝑇) = 
1

𝑀
 e-rT ∑ .𝑀

𝑖=0 g(𝑆 (0) exp[(𝜇 – 
σ2

2
)𝑇 + 𝜎 yi √T]) (3.14) 

Before proceeding with the execution of the simulation on a European 

call option, although the normal distribution N(0,1) is provided as a 

black-box function in almost every software, we will now briefly 

illustrate how to generate pseudo-random numbers, proving how it’s 
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possible to convert random numbers sampled distributed between 

[0,1] in numbers sampled from the normal distribution N[0,1]. 

For a random sample N(0,1) to be generated, we could start from 

generating a random sample distributed between [0,1]. In facts, 

statistical randomness doesn’t imply necessarily “real” randomness, 

that is objective unpredictability. In many cases it’s sufficient to use 

Pseudorandomness. The function generating a pseudorandom number 

is provided by most of the programs, and it’s typically based on the 

linear congruential generator that, in order to generate these numbers, 

uses the recurrence 

𝑋𝑛+1 = (𝑎𝑋𝑛 + 𝑏) mod m 

Using the theorem below, it is possible to transfer a series of samples 

supposed to be independent and uniformly distributed between 0 and 1 

into a series of samples extracting from the normal distribution N(0,1)  

Theorem: Imposing 𝑈1 and 𝑈2 independent and uniformly distributed 

between 0 and 1, defining 

𝑋1 = √−2 ln U1 cos(2𝜋𝑈2), 𝑌1 = √−2 ln U2 sin(2𝜋𝑈2) 
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Automatically, 𝑋1 and Y1 are independent and the distribution of both 

is of 𝑁(0, 1). 

Demonstration: first, we need to express and prove the following two 

lemmas are necessary 

Lemma 1: Assuming (𝑋1, 𝑋2) and (𝑌1, 𝑌2) to have the same 

distribution, and 𝑔(𝑥1, 𝑥2) and ℎ(𝑥1, 𝑥2) to be the 2-dimension real 

functions, define: 

{
Z1 =  g(X1, X2) ,

Z2 =  h(X1, X2) ,
 

{
W1 =  g(Y1, Y2) ,

W2 =  h(Y1, Y2) ,
 

Automatically, (𝑍1, 𝑍2) and (𝑊1, 𝑊2) will have the same distribution 

as well. 

Demonstration: This lemma can be proved assuming (𝑋1, 𝑋2) and (𝑌1, 

𝑌2) to have a joint distribution density function 𝑓(𝑥, 𝑦).  

𝑃(𝑍1 ≤ 𝑧, 𝑍2 ≤ 𝑤) = 𝑃(𝑔(𝑋1, 𝑋2) ≤ 𝑧, ℎ(𝑋1, 𝑋2) ≤ 𝑤) 

= ∫ 𝑅2 𝐼{𝑔(𝑥, 𝑦) ≤ 𝑧, ℎ(𝑥, 𝑦) ≤ 𝑤}𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

= 𝑃(𝑔(𝑌1, 𝑌2) ≤ 𝑧, ℎ(𝑌1, 𝑌2) ≤ 𝑤) 
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                                       = 𝑃(𝑊1 ≤ 𝑧, 𝑊2 ≤ 𝑤)                           (3.15) 

Thus, (𝑍1, 𝑍2) and (𝑊1, 𝑊2) have the same distribution. 

Lemma 2: Supposing X and Y to be independent and to be distributed 

in N(0,1), and supposing (𝑅, Θ) to be determined by the following 

polar coordinates transformation: 

                                          Δ: {
X =  R cos(Θ) ,

Y =  R sin(Θ) ,
                             (3.16) 

In such a case, 𝑅 has the Rayleigh Distribution, and Θ is uniformly 

distributed between [0, 2𝜋].  

Demonstration: The joint distribution density function of (X,Y) is 𝑓(𝑥, 

𝑦) = 
1

2π 
exp(−

𝑥2+𝑦2

2
). Also, for (𝑅, Θ) the range is  

{(𝑟, 𝜃)∣𝑟 ≥ 0, 𝜃 ∈ [0, 2𝜋]} 

Being 𝛼 the angle of amplitude for (𝑥, 𝑦), we define the set 𝐷 = {(𝑥, 

𝑦)∣√𝑥2 + 𝑦2 ≤ 𝑟, 𝛼 ∈ [0, 𝜃)}. Under the transformation Δ, {𝑅 ≤ 𝑟, Θ ≤ 

𝜃} = {(𝑋, 𝑌 ) ∈ 𝐷}. So, it’s noticeable how the joint distribution 

function for (𝑅, Θ) can be  

𝐺(𝑟, 𝜃) = 𝑃(𝑅 ≤ 𝑟, Θ ≤ 𝜃)  
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= 𝑃((𝑋, 𝑌 ) ∈ 𝐷)  

= ∫
1

2π 
exp(−

𝑥2+𝑦2

2
)dxdy

𝐷
 (let 𝑥 = 𝑡 cos 𝛼, 𝑦 = 𝑡sin 𝛼) 

= 
1

2π 
 ∫  dα 

θ

0
 ∫ exp(−

𝑡2

2
)dt

𝑟

0
  

= 
θ

2π 
 ∫ exp (−

𝑡2

2
) t dt

𝑟

0
 

Since 𝐺(𝑟, 𝜃) is continuous, and it’s derivable whereas its derivate is 

defined ( always except for limit linear lines), using the following 

derivative we will obtain the joint distribution density function for (𝑅, 

Θ): 

𝑔(𝑟, 𝜃) =(−
∂2

∂r ∂θ
) G(𝑟, 𝜃) = 

1

2π 
exp(−

𝑟2

2
) 

Being 𝑟 ≥ 0, 𝜃 ∈ [0, 2𝜋). 

In 𝑔(𝑟, 𝜃) the variables are divided. Consequently, 𝑅 and Θ are 

independent and have respectively the density function below: 

                                       𝑔𝑅(𝑟) = exp(−
𝑟2

2
)𝐼[0, ∞)                         (3.17) 

                                          𝑔Θ(𝜃) = 1 2𝜋 𝐼[0,2𝜋)                             (3.18) 
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These last two equations show R to have the Rayleigh distribution and 

Θ to have the [0, 2𝜋) uniform distribution. 

Imposing 𝑅1 = √−2 ln U1  = 2𝜋𝑈2, its distribution function results to 

be 

                                    F(𝑟) = 𝑃(𝑅1 ≤ 𝑟) 

                                    = 𝑃( √−2 ln u1 ≤ 𝑟) 

                                    = 𝑃(𝑢1 ≥ exp(−
𝑟2

2
))                                         (3.19) 

                                    = ∫ du
1

exp(−
𝑟2

2
)

1 

                                    = 1 − 𝑒xp (−
𝑟2

2
) (𝑟 ≥ 0) 

The density function of 𝑅1 

                                   𝑓(𝑟) = 𝐹 ′ (𝑟) = 𝑟 𝑒xp (−
𝑟2

2
)                       (3.20) 

From the last equation we can notice 𝑅1 to have the Rayleigh 

distribution too. Consequently, (𝑅1, Θ1) has the same distribution of 

(𝑅, Θ) in equation (3.16). (𝑋1, 𝑌1) and (𝑋, 𝑌 ) in (3.16) will have the 

same distribution too, according to the Lemma. This means that 𝑋1 
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and 𝑌1 are proved to be independent and to have the normal 

distribution 𝑁(0, 1). 

After this illustration of the framework of Monte Carlo simulation for 

pricing European options, an example of its application will be 

provided. 

Successively the accuracy and efficiency of this method will be 

discussed. We will use the Black-Scholes model as the benchmark 

method, and we’ll compare the true value coming from it with the 

results from Monte Carlo simulation. 

 

3.3 Numerical Results 

In the following example, we will give to each variable a predefined 

value, and from that we will simulate the payoff value of a European 

call option. 

For simplicity, the expiration date of the option will be at T=1 year. 

The payoff of the option will be evaluated from 5 different starting 

prices of the underlying stock, from 26 to 34. The strike price will be 
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30, the volatility of returns σ of the underlying will be equal to 0.4, 

and the risk-free interest rate will be r=0.06. 

As already illustrated, there will be 5 different values of S. For every 

S, we will run different amounts of paths for 5 different times. The 

first execution will simulate 10 paths for each of the 5 prices, the 

second will simulate 100 paths, the third 1000 paths, and the last 

10000 paths. The aim of simulating different sizes of samples is to 

prove how the accuracy of this method increases proportionally with 

the amounts of paths.  In facts, the payoff values will be then 

compared to the ones obtained through Black-Scholes pricing model, 

chosen as the benchmark method for the evaluation of European 

options because of its simplicity and accuracy. The code for the 

program executing the simulation and the benchmark method will be 

presented at the bottom of this thesis.  The results are in the table that 

follows. 

 

 

 



54 
 

Table 3.1: European Call option with Monte Carlo Simulation 

S  26        28        30         32         34 s.e.          av. bias          %bias 

B-S 3.265   4.333   5.542   6.875   8.318 

N 

10 

 

100 

 

1000 

 

10000 

 

4.059   5.188   6.064   5.851   9.835  

 

3.730   5.274   5.730   6.801   7.162 

 

3.217   4.599   4.741   7.135   8.800 

 

3.306   4.419   5.473   6.976   8.464 

 

0.126               0.942            3,33% 

 

0.040               0,565            1,99% 

 

0.013               0,371            1,31% 

 

0.004               0,089            0,31% 

 

The table above shows how the Monte Carlo simulation method 

results to be a valid option in pricing European options, unless the 

number of paths simulated are too low. In facts, it’s noticeable how 

the prices of the Option evaluated with Monte Carlo gets closer to the 

true value of the option, evaluated with Black-Scholes, as the number 

of paths simulated increases. For example, for the simulations with 10 

paths, we see how the difference between the two values is always 

bigger than 10% for each of the 5 starting prices S0, which is 
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unacceptable. For the simulations with 100 paths, we can notice how 

the difference between a simulated price and a true one can 

abundantly exceed 10% (as it does for the evaluation of the payoff 

when S0=26), but for two starting prices S0 out of five (S0=30 and 

S0=32) is lower, indicating an improving trend. Not by chance, when 

executing the evaluation simulating 1,000 different paths for each 

starting price S0, only for two starting prices S0 out of five (S0 = 28 

and S0 = 30) the differences between the true expected payoff and the 

simulated one exceeds 5%. Finally, 10,000 paths simulated seem to be 

enough to obtain an acceptable approximation. In facts, in this case, 

for all the 5 evaluations the differences between the simulated option 

price and the true one is less than 2%. 

In the figure below we represent the change of the geometric 

Brownian Motions as the number of paths simulated increases. We 

take in example the simulation behaviour when evaluating the option 

price for S0 = 30. As the number of paths simulated increases, we can 

notice how the possible area covered by the asset price gets more clear 

and foreseeable.  
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Figure 3.1: 4 Brownian motions development increasing N 

 

 

The illustration of Monte Carlo above regards the simplest of the 

option types, as the aim was to stress the mechanism of this method in 

the clearest way possible. It’s also possible to apply this method for 

more complex tasks. In facts, it can be used when the number of 

random variables increase (e.g., it can consider variables correlated 

with various sources of risk as inflation or volatility of commodities), 

and generally when compounding in the uncertainty. It can also be 

applied when the option shows more complex features, like having the 

payoff related to the average of the underlying price (Asian options), 
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or having the payoff depending on several underlying assets (Basket 

options, Rainbow options, etc.) when the simulation considers the 

correlation. 

However, although many techniques for reducing the computations 

can be applied (e.g., variance reduction techniques), Monte Carlo 

method is quite time consuming, which makes numerical methods to 

be preferable alternatives in some cases. 

In the next chapter we will illustrate and apply a development of 

Monte Carlo simulation method useful for pricing Options granting 

the right of early exercise. More specifically, the framework of the 

LSM will be exposed approaching an American-Bermudan option, 

benchmarking its values with the ones obtained using binomial tree 

method. 
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CHAPTER 4 

Least Squares Method for options pricing 

 

In chapter 2 and chapter 3 we defined the basis necessary to introduce 

the simulative method for pricing options of different types, which is 

what this chapter is going to face. In facts we’ve seen an example of 

Monte Carlo simulation algorithm for pricing European options, and 

we discussed its utility comparing it to the Black-Scholes method 

precedingly defined. In this chapter we will develop this work 

implementing and discussing the application of the simulative method 

on American-Bermudan options. Regarding the benchmark method 

for the discussion of the simulation, we will apply the Binomial tree 

model defined in chapter 2, as it’s well suited for valuing options with 

early exercise, although it’s often considered difficult to implement 

when the elaboration of multiple variable factors is required.  

We’ve noticed how Monte Carlo simulation results to be strong in 

handling the evaluation of path-dependent factors and multiple 

factors, and regarding the uncertainties related to its application on 
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options granting early exercise, we will see in this chapter how the 

Least Square Monte Carlo algorithm (LSM) developed by Longstaff 

and Schwartz in 2001 could represent a valid instrument for this task. 

The main difference to consider between the evaluations of European 

and American options, for Monte Carlo simulation to be used, is that 

the European option requires only the last value of the simulated path, 

while the American one needs all of it.  

Since the advantages of many numerical methods are combined in 

LSM, many types of derivatives under a universal class of price 

dynamics can be approached through this method. Another advantage 

of this method is that its implementation is simple and efficient. All 

these aspects explain how the popularity of this technique among 

traders and academicals increased over the time. 

 

4.1- The LSM Algorithm 

To follow, the framework of the Least Square Monte Carlo method 

will be defined and implemented on an American option discretized in 
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its dates of exercise, so to give the clearest idea of the dynamics of the 

model.  

As previously said, American options typically grant to the holder the 

possibility to exercise any time before maturity, while European 

options don’t. For every exercise point, in order to define a fair value 

of the option, it’s required to decide whether to exercise it or to keep 

it. The determination of the exercise value at every time-step is 

intuitive: for American Put options it’s max (K-S, 0), while for 

American Call Options it’s max (S-K, 0). The computation of the 

continuation value, instead, represents the key issue for the 

determination of the option value. Between the various ways to 

determine the continuation values proposed by academicals and 

researchers, the Least Square Monte Carlo Algorithm (LSM) exposed 

by Longstaff and Schwartz (2001) results to be one of the most 

successful. 

In order to determine the best-fit relationship between the value of 

exercise and the value of continuing for each time step, the use of the 

least square analysis is involved in the LSM algorithm. The nature of 

this algorithm is iterative, and the construction it executes of the 
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estimated expected value of the American-style option develops time-

step by time-step, with the condition of the option not to have been 

exercised before each time-step of the evaluation. The estimation of 

such a conditional expectation is obtained through linear regression. 

Getting more in depth, the first step consists in generating, under 

adequate price dynamics, a group of sample paths. Successively, as 

we said before, the interval of possible exercise times, which should 

be continuous for all the life of the option as by definition of 

American options, will be instead approximated with a discrete set of 

time points. Then, all the discounted future payoffs realized (by 

exercising the option) will be regressed on functions of the state which 

can variate at each of the time steps. Applying the dynamic 

programming principle, we can obtain a complete estimation of the 

strategy of optimal early exercise. This principle implies that the 

option should be exercised as soon as both it’s in-the-money (having 

payoff higher than 0) and it has an estimated value of conditional 

expectation of continuation lower than the value it would have when 

exercising immediately. The option’s estimated value results to be, 

then, the estimated expected payoff discounted at time 0. 
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In order to explain efficiently the mechanism behind the LSM 

algorithm, it will follow the illustration of a simple numerical 

example. In table 4.1 (see below) we simulate 10 paths for a stock 

price running on three different time steps and having current Stock 

price S0 = 30 at time 0. The aim is to evaluate the price of an 

American Call option having such a stock as underlying, exercisable 

at time t=1 and at time t=2, at a strike price K = 30. We suppose in 

facts, for simplicity, that the stock price has the same characteristics of 

the one we considered in pricing the European Call option in Chapter 

3, recycling that code to obtain the values needed in this example. So, 

the volatility is σ = 0.4 and the risk-free interest rate is r=0.06. After 

developing the 10 paths by printing the values at time 1 and at time 2, 

we obtain the following table: 
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Table 4.1: Simulations of 10 Paths running through 2 Exercise dates. 

Path t=0 t=1 t=2 

1 30 29.02 28.70 

2 30 29.76 31.79 

3 30 30.74 31.20 

4 30 30.07 31.86 

5 30 30.59 31.08 

6 30 29.51 31.03 

7 30 29.88 28.59 

8 30 29.57 29.07 

9 30 31.74 31.03 

10 30 28.18 31.26 

 

At time t=2, to identify the optimal strategy it’s simply necessary to 

exercise when S2 > 30, so that the option is in-the money. The cash 

flow realized approaching the optimal strategy at time t=2, 

conditional on the fact that the option doesn’t get exercised before 

time 2, is represented in the following table. 
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Table 4.2: Payoff for call option from table 4.1 in t=2 

Path t=0 t=1 t=2 

1 - - 0 

2 - - 1.79 

3 - - 1.20 

4 - - 1.86 

5 - - 1.08 

6 - - 1.03 

7 - - 0 

8 - - 0 

9 - - 1.03 

10 - - 1.26 

 

Now we will get the values for time t=1. Here the option holder needs 

to decide whether to exercise the option or to keep it until the next 

time spot. That is if the path is in-the-money, otherwise it becomes not 

relevant to choose, since exercising would be useless as the option’s 

payoff is zero at that time (which is the minimum value possible in 

any case). From this simulation, there result to be 4 paths out of 10 in-
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the-money at time t=1 (paths 3;4;5;9). In the table below we define as 

�̃�(1) the stock price at time t=1 when in-the-money, and as �̃�(1) the 

discounted value (at r=0,05 and Δ𝑡=0,01, since in the code we 

compute 100 time-steps per year) of the payoff at time t=2 for the 

corresponding path if the option is not exercised. 

Table 4.3: Exercise payoff vs Continuation value in t=1 

Path �̃�(1) �̃�(1)  

1 - - 

2 - - 

3 30.74 1.20𝑒−0.0005 

4 30.07 1.86𝑒−0.0005 

5 30.59 1.08𝑒−0.0005 

6 - - 

7 - - 

8 - - 

9 31.74 1.03𝑒−0.0005 

10 - - 

 

Regressing the discounted cash flow  �̃�(1) to a function of the current 

stock price �̃�(1) and to a constant, it is possible to estimate the            
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conditional expected value of the continuation to time 2. So,                 

𝐸[𝑌 ∣𝑆(1) = 𝑠(1)] =   -0,0145782235 s(1)+ 0,490923969 . 

When �̃�(1) ≥ 1,33 the payoff from immediate exercise is higher  

than the conditional expectation of continuing, making it convenient,  

in our case, to exercise the option at time 1 only for path 9.  

Table 4.4 will show the cash flow matrix correspondent to this case. 

                                   Table 4.4: Cash flows  

Path t=1 t=2 

1 - - 

2 - 1.79 

3 - 1,20 

4 - 1.86 

5 - 1.08 

6 - 1.03 

7 - - 

8 - - 

9 1.74 - 

10 - - 
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The average of all values discounted at their current value is the price 

of the option. So 

c = 
(1.74)𝑒−0.0005+(1.79+1.20+1.86+1.08+1.03+1.03)𝑒−0.001

10
 = 0.973 

Let’s analyze the mechanism of this method technically deeper.  

Assuming a horizon of time [0, T] and an underlying probability space 

(Ω, ℱ, 𝑃). All the possible developments of the stochastic economy on 

[0,T] are set in Ω, that has 𝜔 as its typical element. P is the measure of 

the probability defined on the sets (Ω) in ℱ = ℱ𝑇, that is the 𝜎-field of 

all the different events possible in the time horizon [0,T]. The 

associated price dynamic generates the filtration represented by 𝔽 = 

(ℱ𝑡 ;𝑡 ∈ [0, 𝑇]). It’s possible to assume that a measure Q of the risk 

neutral probability exists, if the conditions of the no-arbitrage 

paradigm hold.  

The aim of this definitions is to evaluate the price of an American-

style option generating random cash-flows in [0,T]. The fair price of 

the option is evaluated maximizing the expected value of all the 

discounted cash flows, being the research of the maximum extended 

over all the different time steps with respect to 𝔽 (as cash flows can 



68 
 

happen every time when dealing with American options). The pricing 

paradigm of no-arbitrage holding would also imply that expected 

value of the cash flows that remains with respect to Q is equal to the 

value of continuation, when following the rule of optimal stopping. 

Let’s impose using L discrete times 0 < 𝑡1 ≤ 𝑡2 ≤ . . . ≤ 𝑡𝐿 = 𝑇 to 

approximate the continuous time interval of possible spots of early 

exercise. The function of the expected value can be expressed as 

follows 

𝐺(𝜔;𝑡𝑙) = 𝐸𝑄[ ∑ .𝐿
𝑗=𝑙+1 exp(–∫ 𝑟(𝜔, 𝑢)𝑑𝑢

𝑡𝑗

𝑡1
) C𝐹(𝜔, 𝑡𝑗 ;𝑡𝑙 , 𝑇)∣ℱ𝑡l ] (4.1) 

The option generates the path of cash flows denoted as C𝐹(𝜔, 𝑡𝑗 ;𝑡𝑙 , 

𝑇)∣ℱ𝑡l ], which is conditional on the fact that the option doesn’t get 

exercised at t or before. Moreover, 𝑟(𝜔, 𝑡) is the zero-risk interest rate, 

and the holder of the option is assumed to be following at all time s, 𝑡𝑙 

≤ 𝑠 ≤ 𝑇 the optimal exercise strategy. 

As suggested by the name, in order to estimate the function of the 

conditional expectation at each of the possible exercise time spots, 

LSM adopts least squares regression. Going more in depth, we’ll 

assume, at time t1, that the functional form of 𝐺(𝜔;𝑡𝑙), which is 
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unknown, could be expressed as a countable linear combination of ℱ𝑡𝑙-

measurable basis functions. Since the type of derivatives we’re 

focusing on have random payoffs with finite-variance, the space of 

square integrable functions will include the conditional expectation 

function 𝐺(𝜔;𝑡𝑙), under the appropriate measure. 𝐺(𝜔;𝑡𝑙) can be 

expressed as a countable linear combination of elements of the 

countable orthonormal basis present in this Hilbert space. 

Substantially, 𝑀 < ∞ elements from such a basis are used by LSM for 

the approximation. We’ll define it 𝐺𝑀(𝜔;𝑡𝑙). When the number of 

sample paths gets closer to infinity, the conform value from the 

regression 𝐺M(𝜔;𝑡𝑙) converge to 𝐺𝑀(𝜔;𝑡𝑙) in mean square and in 

probability. That’s implied by the fact that there are too weak 

assumptions regarding the existence of moments.  

The LSM algorithm, as previously mentioned, holds the idea that 

least-square regression approximates the conditional expectation for 

each exercise date. It is possible to express the conditional expectation 

function at time t= tL-1 𝐺𝑀(𝜔;𝑡L-1) as a linear combination of various 

orthonormal basis functions (pj(X)) like the Hermite polynomial, the 
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Legendre’s, the Laguerre’s, the Chebyshev’s, the Jacobi’s, or the 

Genbauer’s one. The function would be, then 

                                  𝐺(𝜔;𝑡𝐿−1) = ∑ .∞
𝑗=0 𝑎jpj(X), 𝑎j ∈ ℝ                  (4.2) 

That is, after the approximation previously defined 

                                 𝐺M(𝜔;𝑡𝐿−1) = ∑ .M
𝑗=0 𝑎jpj(X), 𝑎j ∈ ℝ                 (4.3) 

We repeat this procedure going backwards through every time step 

until we reach the first exercise date. 

 

4.2 – LSM Convergence and Robustness 

The approach of the LSM method, as defined before, involves using 

discrete exercise dates and regressing on some basic functions 

selected for the approximation of the real value of American-style 

option. Now, the thesis will concentrate on the analysis of the 

robustness of the basic function’s selection and of the convergence of 

the algorithm with discrete time N, and the differences in these 

evaluations from type of option to type of option.  In their paper, 

Longstaff and Schwartz provided many results for the convergence 
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aspect. At first, they analyzed the correlation between the true value of 

an option being continuously exercisable and the value obtained from 

the evaluation through LSM with discrete exercise dates.  

Proposition 1. Assuming V(X) to express the American-style option’s 

true value and 𝐶𝐹(𝑤𝑖; D, M) to express the discounted cash flow 

obtained through the application of the LSM algorithm, the inequality 

exposed below will hold almost for sure. 

𝑉 (𝑋) ≥ lim
𝑁→∞

1

𝑁
 ∑ 𝐶𝑁

𝑖=1 F(𝑤i; D,M) 

From the expression above it is defined how any value obtained 

through the application of the stopping rule implied by the LSM 

algorithm can’t be bigger than the American-style option’s true value, 

since the former is based on the stopping rule maximizing its value.   

Generally, when there is a certain amount of discrete dates of exercise 

∑.t1,t2,..,tn = M, basis functions D, and price paths N, limits are 

necessary to be considered when dealing with a result of general 

convergence of LSM. In that sense, Longstaff and Schwartz proposed 

what follows 
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Proposition 2. Let the option value V(X) depend on a single state 

variable X that follows a Markov process having support on (0, ∞). 

Moreover, let the only possible exercise dates be t1 and t2. (so to make 

it easier generalizing to the case of M dates of exercise) and let to be 

absolutely continuous the conditional expectation function 𝐺(𝜔;𝑡1), 

that also respects the following  

∫ .
∞

0
𝑒−𝑋G2(𝜔;𝑡1)dX < ∞ 

∫ .
∞

0
𝑒−𝑋G2

X(𝜔;𝑡1)dX < ∞ 

Then, there exist an M < ∞ such that, for any 𝜀 > 0 

lim
𝑁→∞

𝑃[∣V(X) - 
1

𝑁
∑ 𝐶𝑁

𝑖=1 F(𝑤i;D,M) )∣ > 𝜀] = 0 

Such a result denotes how by choosing a linear combination of enough 

basis functions D and having the amount of paths N → ∞, the LSM 

result converge to the probability’s true value. This result also 

provides another important implication, that is, that in order to get the 

true value V accurately estimated, it’s not necessary to select an 

infinite number of basis functions D in the regression. 
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Extending the work of Longstaff and Schwartz, other LSM results of 

convergence have been established by Clement, Lamberton, and 

Protter, in their paper “An analysis of a least squares regression 

method for American option pricing” (2002). They managed to prove 

that, under certain general conditions, the LSM algorithm almost 

surely converges. Moreover, their research provides the determination 

of the rate of convergence and demonstrated the normalized error to 

be asymptotically Gaussian. 

It comes natural to raise the doubt that whether the choice of different 

basic functions could automatically provide different results or not, 

since the regression involves such a choice. In that sense, the literature 

contains many papers related to this LSM’s robustness issue. 

Javier Navas and Manuel Moreno (2003) developed an analysis of the 

various basis functions’ impact on the price of the option. In their 

research they price an American put option, a Bermuda call option, 

and an American-Bermuda-Asian option on a maximum of 5 assets, 

applying the LSM algorithm. The analysis consisted in the evaluation 

of in-sample and out of- sample prices of option, and the 
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determination of the standard errors for each of the different kinds and 

amounts of basis function used in the regression.  

It comes out how LSM shows to have different degrees of robustness 

when pricing different types of options. In facts, the research 

demonstrates how the LSM technique results to be very robust when 

pricing the American put option. Standard errors are very small in 

value and the resulting option values are very similar within each 

other when using different polynomial basis, also variating in the 

degree (from 3 to 20) of the various polynomials.  

For the other two types of options though, as they are more complex 

in their features, there is no guarantee for the robustness of the 

method, and there is not a clear indication on the proper basic function 

to be chosen. In facts, the option values resulted for those two types of 

option have consistent differences within each other when changing 

the features of the basic function adopted for the regression.  

Another way to denote the accuracy of the LSM method in pricing the 

value of an American-style option is by implementing the Hedging 

Policy and estimating the Hedging Error.  
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As for the case of the Binomial Tree model described in paragraph 

2.4, the logic behind the definition of the hedging strategy for the 

LSM consists in holding, for every option written (that we will 

arbitrarily consider of a put type), a portfolio that replicates precisely 

the value of the option, composed by an amount Δ of the option’s 

underlying stock shares and by some of the risk-free financial asset 

“B” (which could be a government bond).  

In the case of the American-Bermudan option, the equality must hold 

in all the M time-steps in which the option is exercisable. The 

resulting equation at each exercise date t will be 

Vt (St) = Bt + Δt (St) St 

Being Vt(St) the option’s value at time t.  

Since the stock price St changes its value every time for every path, 

this holding should be adjusted in a self-financing way, in order to 

replicate the option accurately. On that purpose, we would need to go 

forward in calculating the delta and the value of the option step-by-

step, starting from time t = 0. The value invested in the risk-free asset 

at time 0 should satisfy, then, the equation  
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B0 = V0(S0) – Δ0(S0) S0 

For every successive exercise date t, in order to find the new Δt, we 

would have to adequate the weights in the portfolio by changing our 

exposition on the risk-free asset Bt. Being r the risk-free interest rate, 

the amount Bt invested on the risk-free asset will then be evaluated by 

noting that the portfolio evolves, from a time-step to the next, as 

follows 

Bt-1 + Δt-1(St-1) St-1 ⇒ Bt-1 e
rΔt + Δt-1(St-1) St 

That will define our replicating strategy by setting 

Bt = Bt-1 e
rΔt + (Δt-1 - Δt) St 

The holder of the American-Bermudan put option has the right to sell 

a stock at the strike price K at each exercise date. The counterpart 

trying to replicate the option and hedge from this dynamic, 

compensate by receiving the (negative) amount (St – K) coming from 

such a sale of the option at time t, making the replicating portfolio 

react by liquidating its Δt in stockholding. What is left for the hedger 

would then be 

HedERRt = St – K + Bt + Δt St 
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That defines the Hedging Error. 

The assumption required to have a perfect replication strategy of the 

option is that the values of Δ amd B at the optimal exercise time must 

be respectively Δ = -1 and B = K, so that the Hedging Error will be 

HedERR = 0. 

In the following sections, we will apply this pricing technique on an 

American-Bermudan put option. We will evaluate the robustness of 

the LSM method for this type of option, developing the analyses with 

basic functions of various degrees, looking for confirming the results 

obtained by Navas and Moreno (2003) by applying our personal code 

to different scenarios (variating also the amount of exercise dates and 

paths). Moreover, we will evaluate the convergence to a benchmark 

value of the option, which will be evaluated through binomial tree 

method. 

 

4.3 Set-up of LSM model and Numerical Results 

In this section, we will use LSM to evaluate the price of the American-

Bermudan Put option similar to the one used by Longstaff and Schwarz 
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in their masterpiece, comparing the result with a Binomial Tree with 

equal density of time-steps.  

As for the Monte Carlo simulation executed in Chapter 3 on the 

European option, we will test out if the evaluation of the price of the 

American-style options with LSM simulation will result more 

convergent to a benchmark price and more robust, as the number of 

paths sampled and as the size of the regression function’s degree 

increase.  

To be consistent with the evaluations previously made in this thesis, and 

not to be too distant from the paper of Longstaff and Schwartz, we will 

keep using the same parameters used before for the underlying asset of 

the options that we are going to evaluate, but differently from the 

evaluation in chapter 3, the option will be of a put-type, rather than a 

call. 

So, the fixed variables considered in the estimations are the current 

stock price S0 = 26; the strike price K = 30; the continuously 

compounded annual interest rate r = 0.06; the returns’ volatility 𝜎 = 

0.4; the expiration date is T = 1 year; and the amount of simulations 

executed for every analysis E = 5.  
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In the first analysis the amount of paths simulated N will variate from 

10 to 100000, in order to evaluate the convergence with the fixed value 

of the options resulted using a binomial tree having same density of 

time steps, and to evaluate its correlation with the size of N. In the same 

way, for the evaluation of the robustness of this method, we will 

compare its applications variating the degree D of the basis function 

used as regression function for the evaluation of the continuation value. 

The last analysis will consider a change in the number of time-steps M 

considered for each set of 5 evaluations. The computational issues (in 

the measure of the time) fronted while applying the LSM model will be 

evaluated in every analysis, and its correlation with the size of each 

variable factor will be discussed at the end of this paragraph.  The code 

for all these evaluations is included in the Appendix.  

The two tables below show the results for the evaluation of the 

American-Bermudan put option when variating the amount of paths 

simulated (as we did for the European call option in chapter 3) and 

simulating each combination for 5 times.  
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Table 4.5: Evaluating American put option variating N. 

E  1         2         3         4         5 Average    S.E.    Av.Bias    %Bias   time 

B-T 5.865   5.865  5.865   5.865   5.865 5.865                                                  0.1 s 

 N 

10 

 

100 

 

1000 

 

10000 

 

100000 

 

7.240   7.506   5.126   4.663   6.289 

 

 

 

5.500   5.289   6.295   5.783   5.345 

 

 

 

5.913   5.846   5.800   5.753   5.718 

 

 

 

5.832   5.819   5.829   5.819   5.873 

 

 

 

5.866   5.853   5.869   5.848   5.860     

 

 

6.164       0.502     0.299      5.10%    0.1 s 

 

5.642       0.165    -0.223    -3.80%    0.4 s 

 

5.806       0.031    -0.059    -1,01%    1.1 s 

 

5.834       0.009    -0.031    -0.53%     18 s 

 

5.859       0.004    -0.006    -0.01%   234 s 

 

The table above show the convergence results for the LSM 

evaluations to the value obtained with Binomial Tree’s model, 

denoted as B-T, and the variations in the robustness levels of these 

evaluations, when variating N, keeping r = 0.06; 𝜎 = 0.4; S0 = 26; K 

= 30; M = 100; E =5; D = 2. Obviously, the number of time-steps 

considered in the evaluation through binomial tree is equal to the one 

used for LSM, i.e., M = 100. 
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For what concerns the American-Bermudan put option, we can notice 

how well LSM works. In facts, for all the E = 5 evaluations made, the 

value of the option obtained with LSM tends to converge to the value 

obtained with Binomial Tree method as N increases, reaching 

acceptable indicators of accuracy when the paths sampled are N ≥ 

10,000. Specifically, we notice this from the development of the 

module of the difference in percentage between the average of the 5 

evaluations and the benchmark price, which is smaller and smaller as 

N increases, getting to a satisfying value smaller than 1% at N = 

10,000 (%Bias = 0.53%).  

Another relevant factor resulting from the table above regards the 

robustness of the values obtained, which increases consistently as N 

increases. In facts, we can see how the values of the five simulations 

made for every different size of N go closer and closer to their average 

value, as N increases. Specifically, the value highlighting this 

behaviour is the Standard Error (S.E.), which is the variance of the E 

= 5 evaluations for each set of Ns, divided by the square root of E 

itself (
σ

√𝐸
). This value develops becoming smaller and smaller as N 

increases, granting higher and higher results’ accuracy.  
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The following two tables illustrate the impact on convergence and 

robustness of the application of the LSM model when variating the 

degree of the regression function D. 

Table 4.6: Evaluating American put option variating D. 

E  1         2         3         4         5 Average    S.E.    Av.Bias    %Bias   time 

B-T 5.865   5.865  5.865   5.865   5.865 5.865                                                  0.1 s 

D  

1 

 

2 

 

4 

 

6 

 

8 

 

10 

 

5.920   5.800   5.809   5.850   5.791 

 

 

 

5.832   5.819   5.829   5.819   5.873 

 

 

 

5.837   5.851   5.846   5.887   5.844 

 

 

 

5.844   5.844   5.830   5.860   5.817 

 

 

 

5.851   5.827   5.820   5.859   5.838 

 

 

 

5.856   5.863   5.842   5.866   5.858     
 

 

5.832       0.021    -0.033    -0.56%      17s 

 

5.834       0.009    -0.031    -0.53%     18 s 

 

5.853       0.008    -0.012    -0.20%     19 s 

 

5.839       0.006    -0.026    -0.44%     19 s 

 

5.839       0.006    -0.026    -0.44%     20 s 

 

5.857       0.004    -0.008    -0.14%     23 s 

 

This table above show the results for the evaluation of the American-

Bermudan put option when variating the degree of the regression 
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function used to determine the continuation value at every time-step, 

keeping r =0.06; 𝜎 =0.4; S0 =26; K =30; M =100; E =5; N = 

10,000. We can notice how low the impact of the change in the 

degree of such a function is on the accuracy of the evaluations, with a 

little exception for the cases in which the degree is equal to D = 1, 

because the regression would be too simple as 𝑦 ∼ x. In facts, for 

American-Bermudan put option, when D = 1 it’s the only case in 

which the Standard Error is bigger than 0.01 (0.021), while for all the 

other evaluations it orbits between 0.009 and 0.004. 

Moreover, for what concerns the convergence to the benchmark value, 

the tables above show acceptable scores for all the values of D (%Bias 

< 1%), and very small positive correlation between the size of D and 

the accuracy of the evaluations (Bias tends to decrease a little). 

Since the effect of the changes in the degree of the regressive function 

seems to be so irrelevant on the robustness of the evaluations, we 

decided to use the regression function with D = 2 for the analysis on 

the effects of the changes in size of the other variables (although, as 

we will see, it wouldn’t influence the computational effort that much). 
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The last analysis will evaluate the impact on the convergence and on 

the robustness of the LSM model for pricing options of the change in 

the amount of time-steps M used to simulate the continuity of 

exercisability. The following table illustrate the results of this 

analysis. 

Table 4.7: Evaluating American put option variating M  

 E  1         2         3         4         5 Average    S.E.    Av.Bias    %Bias   time 

T-steps  

10 

 

50 

 

100 

 

500 

 

1000 

 

 

LSM 

B-T 

LSM 

B-T 

LSM 

B-T 

LSM 

B-T 

LSM 

B-T 

 

5.888    5.927   5.873   5.860   5.863 

 

5.930 

 

5.802   5.817   5.852   5.820   5.845 

 

5.874 

 

5.832   5.819   5.829   5.819   5.873 

 

5.865 

 

5.852   5.837   5.834   5.852   5.868 

 

5.861 

 

5.851   5.858   5.848   5.859   5.845 

 

5.863 

 

 

5.834       0.011    -0.096    -1.62%       2 s 

0.1s 

5.827       0.008    -0.047    -0.80%       8 s 

0.1s 

5.834       0.009    -0.031    -0.53%     18 s 

0.1s 

5.849       0.005    -0.012    -0.20%     54 s 

5.4s 

5.852       0.005    -0.011    -0.19%   123 s 

20s 

 

As anticipated before, Table 4.7 show the effect on the accuracy of the 

LSM evaluations when a change in the number of Exercise dates M 
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occurs, keeping r = 0.06; 𝜎 = 0.4; S0 = 26; K = 30; E = 5; N = 

10,000; D = 2. 

For the American-Bermudan put option, it is noticeable that in order 

to have an acceptable degree of robustness (S.E. < 0.01 is the 

threshold we took in all our analysis), it’s necessary to take 50 time-

steps or more, even though the differences when variating this factor 

is much less consistent than the difference when variating N. In facts, 

when M = 10 the S.E. is already only 0.011, which is only 0.003 

bigger than the S.E. when M = 50, and 0.006 bigger (the double) than 

the one of M = 1000.  

Regarding the Convergence to the benchmark value, in order to obtain 

an acceptable value of the inherent indicator (%Bias < 1%), again the 

number of time-steps to impose must be M ≥ 50, although again there 

is lower consistency of correlation (but still remarkable) than the one 

for the analysis in which N variates, as the % Bias when M = 10 is 

only 0.82 % higher than when M = 50 and 1.43% higher than when 

M = 1000.  

Then, it’s important to highlight how developing the evaluation of the 

Binomial Tree increasing the number of exercise dates (which is the 
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only factor able to improve the accuracy of the model, as it indirectly 

brings to increase also the amount of price paths, when increasing), 

the price has a little tendency to decrease. That’s actually a good sign 

for the convergence theory of the LSM methods, as in all the analysis 

developed with a minimum degree of accuracy, the option’s value 

resulted from LSM is often a little lower than the value resulted from 

Binomial Tree, but tended to increase as the size of variables sampled 

(i.e. N, D in part, and M) increases. This suggests that, for this type of 

option, as more N, M, and eventually D get close to ∞, the two values 

converge to the same price. 

In all the three analyses just executed, a factor we still miss to 

determine is the effect on the computational effort required to make 

each analysis when changing the size of the variables. A necessary 

premise to be made before, is that the measures of the computational 

time evaluated in this thesis are to be referred to the execution of the 

code, present in the Appendix, using a processor Intel(R) Celeron(R) 

N4020 CPU @ 1.10GHz and a RAM memory of 4,00 GB (3,83 GB 

usable). From the tables above we can notice how, for all the three 

factors we decided to increment (N, D, and M), there is a consequent 



87 
 

increment in the computational time required for the evaluation of the 

option price, which is an expectable result, as the amount of processes 

to be developed increases. Anyway, there are much different 

developments of this tendency for each of the three variables 

analyzed. In facts, the increase in the computational effort required 

when increasing the degree D of the regression function used to 

determine the continuation value is very low (only 20% more of 

computational time required when passing from D = 2 to D = 10). 

That would make it theoretically easy to use a high degree D of the 

regression function, if convenient (although we’ve seen it doesn’t 

make an appreciable difference in terms of convergence and 

robustness, making us decide to save some computational power for 

the other analyses, keeping D = 2).  

The increase in the computational time required when increasing the 

amount of exercise dates M, instead, is quite significative. In facts 

from table 4.7 we can see how it’s generally almost 4 times slower 

when increasing by 5 times the amount of time-steps M to develop. 

For this reason, we decided to operate in the other two analyses 

keeping M = 100, which gives sufficiently accurate results, without 
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costing too much more of computational time, and without 

approximating too much the possibility to exercise the option 

continuously, as M = 50 when T = 1 year would be too far away from 

a discrete American option (it would mean that the option could be 

exercised once a week, which is too much more like a Bermudan’s 

feature than an American’s one).  

Moreover, we can notice how the binomial tree also increases 

consistently in its computational time as M increases, since for every 

single time-step added, it doubles the paths generated (in facts, it’s 

determined how, maintaining all the other variables fixed, when M 

gets bigger than a value around 5000 the LSM method becomes faster 

than the binomial tree method to compute).  

Finally, the analysis showing a much higher correlation between a 

change in a variable factor and a change in computational time 

needed, is when the variable changed is the number of paths N. In 

facts, we can see how reaching the minimum accuracy threshold of N 

= 10,000, maintaining all the other variables fixed at the predefined 

values, the analysis already requires 18 seconds to be computed, and 

developing it with N = 100,000 paths the time required becomes 234 



89 
 

seconds. As in this case the accuracy of the computation doesn’t 

improve too much (S.E. = 0.004 rather than 0.009), we decided to 

execute the other two analyses with N = 10,000.  

To demonstrate the sufficient goodness of the standard values we took 

in all the analyses (N = 10,000, D = 2, M = 100), it will follow a 

comparison between the option evaluation with these canonical values 

and with the maximum values taken combined (N = 100,000, D = 10, 

M = 1000).  

TABLE 4.8: Comparison between evaluation MAX (N = 100,000, D 

= 10, M = 1000) and evaluation STA (N = 10,000, D = 2, M = 100) 

 B-T 1        2        3        4        5 Average  S.E.  Av.Bias  %Bias time 

MAX 5.863 5.854  5.861  5.864  5.858  5.855    5.858   0.002  -0.005  -0.05% 1230s 

STA 5.865 5.832  5.819  5.829  5.819  5.873 5.834    0.009  -0.031 -0.53%      18s 

 

From the table above we can notice how the method gets more 

accurate when maximizing all the variables correlated to an 

improvement of convergence and robustness of the evaluation 

(standard error decreases by 4 times, convergence with the benchmark 

value improves by 6 times), although the computational time required 
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increases exponentially (taking 20 minutes and 30 seconds, it 

increases by more than 65 times from the values obtained maintaining 

standard values of the three variables). That makes the effort probably 

too big to make it convenient to increase the variables sizes that much, 

if imagining to adopt this simulative method broadly, since the 

standard variables’ values considered already gives us acceptable 

results in terms of convergency and robustness level. 
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CHAPTER 5 

Conclusions 

 

This thesis stressed out the work of the research on analytical and 

numerical methods for pricing options, developing a comparison 

between the results coming from simulative methods applied on both 

European-style and American-style options, and respectively the 

Black-Scholes model and the Binomial Tree model, which are the 

most popular ones adopted in the Academical approaches. One of the 

aims of this thesis, in facts, was to develop the analyses in a manner 

that was the most comprehensible possible for students and practisers, 

applying the models to which the readers are supposed to be more 

used. Not by chance, we decided to define all the basic elements, and 

to illustrate all the basic notions necessary to better understand the 

different processes of the various models for option pricing.  

After the illustration of the Monte Carlo simulation and its application 

on option pricing, we proved its efficiency in pricing European-style 

options, since the resulting option value became closer and closer to 
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the value obtained with Black-Scholes as the number of paths 

simulated increased. 

Afterwards, the biggest issue to overcome was to readapt our program 

for Monte Carlo simulation to make it work for pricing American-

style options, which differ from the European-style ones by their 

feature of continuous exercisability. We decided to evaluate them 

through the Least Squares method proposed by Longstaff and 

Schwartz (2001), as it was proved to be efficient for many other types 

of options. In facts, another aim of this thesis is to represent a basis for 

future developments of this method on the various types of options (as 

the ones we described in paragraph 2.2) or derivatives in general. 

In order to confirm the impressions from the literature on the 

efficiency of the LSM on pricing American-style options, we 

developed many simulations with our updated code (integrating the 

linear regression for determining the continuation value of the option 

at each time-step). We arranged these simulations variating the size of 

the different variables influencing the accuracy of the evaluations 

(possibility that is not contemplated while adopting numerical 
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methods as Binomial Tree model, which allows to variate only the 

number of exercise dates).  

The results obtained applying this development of the Monte Carlo 

simulation confirmed that the LSM method represents e credible tool 

for pricing American-style options with a certain accuracy and 

elasticity, without necessarily employ excessive computational effort. 

In facts, we showed how the program developed simulations of prices 

of a certain level of convergence and robustness (<1% of %Bias with 

the benchmark price, and <0.01 of Standard Error), in an acceptable 

amount of time (18 seconds using average level of processor and 

RAM memory).  

Moreover, in this research we obtained important indications on the 

level of correlation between the accuracy of the option price 

evaluation and the size of each of the three different variables of the 

simulation supposed to influence the simulation accuracy (the amount 

of exercise dates M, the number of paths simulated N, and the degree 

of the regression function D). In facts, we denoted how increasing M 

and N can substantially improve the accuracy of the evaluation, while 

increasing D has a much lower impact on that (although it’s also the 
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less expensive improvement in terms of computational costs), 

confirming another conclusion of the previous research, regarding the 

satisfying robustness level of the price simulated on selecting different 

polynomials of different degrees D ≥ 2 for the regression. 

As for future research, this thesis aims to represent a basis for the 

development of the LSM model into a more accurate and sophisticate 

tool for pricing option types with more variable or complex features, 

such as options having payoff depending on more underlying assets 

(Rainbow or Basket options), or options depending on the average of 

the price of the underlying in predetermined amount of time (Asian 

options), or compounding in the uncertainty (variable risk-free interest 

rate). 

After demonstrating its efficiency on American-style options, this 

work aims to contribute to the idea that using simulations it’s possible 

to obtain many advantages in the evaluation and in the risk 

management of financial instruments, making it much more common 

and promising to insist on the research on this type of methods. 

Moreover, as the size of the derivatives’ market is increasing and 

many programming tools are improving and at the same time getting 
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more accessible, it will become much easier to implement more 

complex simulative methods (or integrations of the existing methods, 

like LSM), and to apply them on more complex and realistic financial 

instruments.  

Another aspect we may want to improve in future is to provide more 

detailed convergence and robustness results of the LSM when 

challenging particular scenarios, eventually using different types and 

combinations of basic functions, determining further mathematical 

foundation for this method.  

Considering that in many cases the residuals of the regression could 

be heteroskedastic, as LSM always consider the ordinary least squares 

to estimate the conditional expectation, another development of this 

work could be that of identifying the most adapt type of regression 

techniques for each scenario. We could try testing, for example, 

weighted least squares or generalized least squares, and discuss the 

efficiency and computational costs for every test.  

Finally, another possible development of this method for future 

research could be that of combining it with other pricing models 

(more advanced than Black-Scholes model or Binomial tree model) 
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very popular in the financial industry, as these eventually reflect more 

accurately the real market (e.g., Stochastic Volatility models, or 

Variance-Gamma models, or Jump-Diffusion models). 
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Appendix  

Related python codes.  

 

Binomial Tree for American put option.  

#This is the code for the evaluation of an American Put option price 

with the Binomial Tree method.  

# Importing the libriaries necessary. 

import numpy as np 

import matplotlib.pyplot as plt 

np.set_printoptions(formatter={'float':lambda x: '%6.5f' % x}) # 

printing untill the fifth digit after comma. 

%matplotlib inline 

S0 = 26  

T = 1.0   

r = 0.06   

sigma = 0.4 
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#Sm = 30 

#Tree_list = [] 

def Tree_Creation(M):   

             dt = T / M 

             u = np.exp(sigma * np.sqrt(dt))   

             d = 1 / u   

             S = np.zeros((M + 1, M + 1)) 

             S[0, 0] = S0 

             y = 1 

             for t in np.arange(1, M + 1): 

                 for i in np.arange(y): 

                     S[i, t] = S[i, t-1] * u 

                     S[i+1, t] = S[i, t-1] * d 

                 y += 1 

             return S 

M=100 
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TREE=Tree_Creation(M) 

dt = T / M  # Redefining dt outside the function 

# Importing the risk neutral probability of a price moving up 

u = np.exp(sigma * np.sqrt(dt))   

d = 1 / u   

p_rn=(np.exp(r*dt)-d)/(u-d) 

def Pay_Off_Call_Option(S,K): 

    return np.maximum(K-S,0) 

def 

American_Call_Price_Binomial_Tree_Definition(tree_price,pay_off,s

trike): 

    #Developing the tree for the option price initiating the matrix where 

to store it, with the same dimension of the tree for the underlying 

    option_tree=np.zeros((M+1,M+1)) 

    exercise_option_tree=np.zeros((M+1,M+1)).astype(int) # 

developing the matrix suggesting where to exercise the option and 

where to not 
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    #the last date value is the pay-off 

    option_tree[:,-1]=pay_off(tree_price[:,-1],strike) 

    exercise_option_tree[:,-1]=1*(tree_price[:,-1]<strike) 

    # Developing the price going backwards, applying at each node the 

expression above 

    for i in np.arange(M-1,-1,-1): 

        for j in np.arange(i+1): 

            option_tree[j,i]=np.maximum(np.exp(-

r*dt)*(p_rn*option_tree[j,i+1]+(1-

p_rn)*option_tree[j+1,i+1]),pay_off(tree_price[j,i],strike)) 

            exercise_option_tree[j,i]=1*(np.exp(-

r*dt)*(p_rn*option_tree[j,i+1]+(1-

p_rn)*option_tree[j+1,i+1])<pay_off(tree_price[j,i],strike)) 

             

    return [option_tree,exercise_option_tree] 

K=30 # strike 
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call_price_tree,exercise_option_tree=American_Call_Price_Binomial

_Tree_Definition(TREE,Pay_Off_Call_Option,K) 

print(call_price_tree) 

print(exercise_option_tree) 

 

Monte Carlo simulation and Black-Scholes model for 

European call option. 

#This is the code for Monte Carlo simulation in pricing European Call 

option and the black-scholes evaluation as a benchmark 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import norm 

def Stock_price_paths(S, T, r, q, sigma, steps, N): 

    """ 

    To follow, the inputs definitions: 

    #S Current Stock Price 
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    #K = Strike Price 

    #r = risk-free interest rate 

    #q = annual dividend yield 

    #sigma =annual volatility  

    #T = Time to maturity: 1 year = 1; 1 months = 1/12 

     

    The output definition: 

    # [steps,N] Matrix of paths of the Stock price  

    """ 

    dt = T/steps 

                                              #S_{T} = ln(S_{0})+\int_{0}^T(\mu-

\frac{\sigma^2}{2})dt+\int_{0}^T \sigma dW(t) 

    S_T = np.log(S) +  np.cumsum(((r - q - sigma**2/2)*dt +\ 

                              sigma*np.sqrt(dt) * \ 

                              np.random.normal(size=(steps,N))),axis=0) 

#application of the formula above using numpy library 
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    return np.exp(S_T) 

S0 = 26 #lower stock price  S_{0} 

Sm = 30 #median stock price  S_{2} 

K = 30 #strike price 

T = 1 #time to maturity in years 

r = 0.06 #risk-free rate per year in % 

q = 0.00 #dividend rate per year in % 

sigma = 0.4 #volatility per year in % 

steps = 10 #time steps 

N = 100 #number of trials for every S 

v = 5 #number of simulations for each S 

paths_list=[] 

for i in range(v): 

    paths = Stock_price_paths(S0,T,r, q,sigma,steps,N) 

    paths_list.append(paths) 
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    S0=S0+ Sm*(1/15) 

    plt.plot(paths); 

    plt.xlabel("Time Steps Incrementation") 

    plt.ylabel("Asset Price") 

    plt.title("Geometric Brownian Motion " + str(i+1)) 

    plt.show() 

 

def black_scholes_call_payoff(S,K,T,r,q,sigma): 

    """ 

    Inputs 

    #S Current Stock Price 

    #K = Strike Price 

    #r = risk-free interest rate 

    #q = annual dividend yield 

    #sigma =annual volatility  

    #T = Time to maturity: 1 year = 1; 1 months = 1/12 
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    Output 

    # call_price = option price   

    """ 

    d1 = (np.log(S/K) + (r - q + sigma**2/2)*T) / sigma*np.sqrt(T) 

    d2 = d1 - sigma* np.sqrt(T) 

     

    call_price = S * np.exp(-q*T)* norm.cdf(d1) - K * np.exp(-

r*T)*norm.cdf(d2) 

    return call_price 

S0=26 

v=5  

for i in range(v):     

    paths_payoffs = np.maximum(paths_list[i][-1]-K, 0) 

    option_present_price = np.mean(paths_payoffs)*np.exp(-r*T) 

#final value discounted back to present value 
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    black_scholes_price = 

black_scholes_call_payoff(S0,K,T,r,q,sigma) 

    S0 = S0+ Sm*(1/15) 

    print(f"Black Scholes Price for S" + str(i) + " is " + 

str(black_scholes_price) ) 

    print(f" Monte Carlo Simulation price for S" + str(i) + " is " + 

str(option_present_price) ) 

 

LSM for American put option. 

#This is the code for the evaluation of an American Put option 

Through LSM. At the end of it, it’s illustrated the integration of the 

cod to adapt it to the Moving Window Asian option by changing the 

payoff function. 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import norm 
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import math 

def Stock_price_paths(S, T, r, q, sigma, steps, N): 

    """ 

    To follow, the inputs definitions: 

    #S Current Stock Price 

    #K = Strike Price 

    #r = risk-free interest rate 

    #q = annual dividend yield 

    #sigma =annual volatility  

    #T = Time to maturity: 1 year = 1; 1 months = 1/12     

    The output definition: 

    # [steps,N] Matrix of paths of the Stock price  

    """ 

    dt = T/steps 

                                              #S_{T} = ln(S_{0})+\int_{0}^T(\mu-

\frac{\sigma^2}{2})dt+\int_{0}^T \sigma dW(t) 
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    S_T = np.log(S) + np.cumsum(((r - q - sigma**2/2)*dt +\ 

                              sigma*np.sqrt(dt) * \ 

                              np.random.normal(size=(steps,N))),axis=0) 

#application of the formula above using numpy library     

    return np.exp(S_T) 

def estimate_coef(x, y): #definition of the least square regression 

function 

    model = np.polyfit(x, y, 2) 

    #print(model)     

    return (model[0], model[1], model[2]) 

 

S0 = 26 #lower stock price S_{0} 

Sm = 30 #median stock price S_{2} 

K = 30 #strike price 

T = 1 #time to maturity in years 

r = 0.06 #risk-free rate per year in % 
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q = 0.00 #dividend rate per year in % 

sigma = 0.4 #volatility per year in % 

steps = 100 #time steps 

N = 100000 #number of trials for every S 

v = 1 #number of simulations for each S 

dt = T/steps 

paths = Stock_price_paths(S0,T,r, q,sigma,steps,N) #simulating the 

paths 

 

    #plt.plot(paths);                              #plotting the paths 

    #plt.xlabel("Time Steps Incrementation") 

    #plt.ylabel("Asset Price") 

    #plt.title("Geometric Brownian Motion " + str(i+1)) 

    #plt.show() 

path_payoff_US = np.zeros((steps,N))   #creating the zero-matrix for 

all the matrix we will need in computation of the payoff 
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path_exercise_US = np.zeros((steps-1,N)) 

coefficient_regression = np.zeros((steps-1,3)) 

discounted_cash_flow = np.zeros((steps,N)) 

stopping_rule = np.zeros((steps,N)) 

discounted_cash_flow_final =np.zeros(N) 

cash_flow =np.zeros((steps,N)) 

 

paths = Stock_price_paths(S0,T,r, q,sigma,steps,N)     #creating the 

payoff matrix 

for j in range(steps): 

    path_payoff_US[-j,:] = np.maximum(-paths[-j,:]+K, 0) 

#printing (path_payoff_US) 

 

for j in range(steps-1): 

    path_exercise_US[-j,:] = np.exp(-r*dt)*path_payoff_US[-j,:] 

#creating the matrix with the payoff discounted by un time-step 
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for j in range(steps-1):   #creating the coefficients of the regression for 

each time step 

    coefficient_regression[-j,:] = estimate_coef(paths[j-

1,:],path_exercise_US[-j,:]) 

         

for j in range(steps):      #iterating the LS regression in every time step 

to evaluate the continuation value, then executing the option every 

time (from 0) the payoff is higher than the continuation value 

    for y in range(N): 

        if path_payoff_US[-j-1,y] > 0 : 

            continuation_value = coefficient_regression[-j,0]*pow(paths[-

j-1,y], 2) + coefficient_regression[-j, 1]*paths[-j-1, y] + 

coefficient_regression[-j, 2] 

            if continuation_value  < path_payoff_US[-j-1,y]:                                                                          

                stopping_rule[-j-1,y] = 1  

        if path_payoff_US[-j-1,y] == 0 : 
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                stopping_rule[-j-1,y] = 0  

                 

for j in range(steps):         #imposing the exercise of the option to 

happen at the first convenient time  

    for y in range(N): 

        if stopping_rule[-j,y] ==1 :  

            stopping_rule[-j+1:,y] =0   

for j in range(N): 

    if np.sum(stopping_rule[:,j]) == 0: 

        stopping_rule[-1,j] = 1 

for j in range(steps): 

    for y in range(N): 

        if stopping_rule[j,y] ==1:         

  

            cash_flow[j,y] = path_payoff_US[j,y]    #creating the cash 

flow matrix 



113 
 

        else: 

            cash_flow[j,y] = 0 

#print(path_payoff_US) 

#print(cash_flow) 

#print(stopping_rule)      

for j in range(steps):      #discounting the cash flow matrix 

    for y in range(N): 

             discounted_cash_flow[-j,y] = np.exp(-r*dt*(steps-

j))*cash_flow[-j,y] 

for j in range(N):      #defining the option value by taking an average 

of all the discounted cash flows 

    discounted_cash_flow_final[j]  = 

np.sum(discounted_cash_flow[:,j]) 

PriceUS_list = np.average(discounted_cash_flow_final)   

print(PriceUS_list) 
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dddddddddddddddddddddddddtypes, so to have the possibility to 

dddddddddddddddddddddddddconsider multiple stochastic factors. 

Software:                                  Python 

 

 

Literature review:                           This work is based on theories of                 

ssssssssssssssssssssssssssssssss pricing models, simulative methods 

aaaaaaaaaaaaaaaaaaaaaaaaaaa    and regressive methods with dynamic                  

aaaaaaaaaaaaaaaaaassaaaaaaa    programming, as well as on previous  

aaaaaaaaaaaaaaaaaaaaaaaaaaa   findings about Monte Carlo 

aaaaaaaaaaaaaaaaaaaaaaaaaa     Simulations for option pricing. 

Empirical framework:            The analysis is based on various 

aaaaaasssssssssssssssssssssssssssssssssssssssss  s simulations of the price of two types of 

aaaaaaaaaaaaaaaaaaaaaaaoptio                                      having respectively one and three 

aaaaaaaaaaaaaaaaaaaaaa                                      aaaaa variating factors. 

Findings:                                  The thesis concludes that the adoption 

aaaaaaaaaaaaaaaaaaaaaaaaaaa    of simulative methods represents a   

aaaa                                            successful tool for pricing options, as it 

aaaaaaaaaaaaaaaaaaaaaaa                                   aaa  aallows to evaluate derivatives with 

aaaaaaaaaaaaaaaaaaaaaaaaa                                           multiple stochastic factors without  e     

eeeeeeeeeeeeeeeeeeeeeeeeee                                        eimpacting negatively on the accuracy 

eeeeeeeee                                  eeeeeeeeeeeeeeee of the evaluation and on the   

eeeeeeeeeeeeeeeeeeeeeeeee      ecomputational effort required. 
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1 Introduction 

 

This thesis concentrates on developing the work of Francis A. 

Longstaff and Eduardo S. Schwartz presenting a strategy to evaluate 

American-style options through Monte Carlo simulation, solving the 

issue of the path-dependency using a variable regressive function. 

In order to get to the method developed in the final analysis of this 

thesis, we define all the basic knowledges necessary to understand the 

various aspects of this research. After the definition of every specific 

financial term and every basic financial process present in this thesis, 

we describe the main types of options, paying particular attention to 

the types linked to the one evaluated in this thesis. 

Successively, we illustrate the most representative methods for pricing 

European-style and American-style options in the academical field: 

Black-Scholes model and Binomial Tree model. These two methods 

will be adopted as benchmark methods for the evaluations with 

simulative methods of respectively European and American-

Bermudan option. 
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After the illustration of the foundation of this research, the Monte 

Carlo simulation method is introduced and explained in its logics. 

Before the application of this method on the evaluation of a European 

Call option’s price, this thesis provides a brief illustration of the 

generation of pseudo-random numbers, proving how it’s possible to 

convert random numbers sampled from U[0,1] in numbers sampled 

from the normal distribution N[0,1].  

The positive results obtained on these evaluations explain why the 

application of the Monte Carlo method became much more popular 

over time in this specific research field. In facts, we notice that the 

accuracy of the evaluations, in terms of robustness and convergence to 

the true value evaluated using the Black-Scholes method, reach a 

satisfying level when a certain number of paths (10,000) are 

simulated.  

The possibility of reaching accurate evaluations using a method that 

enables the analysis to consider multiple stochastic factors (which 

can’t happen with basic numerical methods), led to the development 

of the research on the application of simulative methods on other 

types of derivatives. Specifically, the most popular and challenging 
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case regards the evaluation of path-dependent derivatives such as 

American-style options. This thesis aims to take up such a challenge 

by applying the Least Square Monte Carlo algorithm (LSM) proposed 

by Longstaff and Schwartz on an American-Bermudan Put option. 

This method determines the optimal early exercise strategy using a 

simple least squares cross-sectional regression to estimate the 

conditional expectation function for every exercise date and determine 

the optimal exercise strategy for each path, starting from the 

expiration date, iterating backwords until the first exercise date. The 

LSM algorithm is implemented in a Python code attached at the top of 

the Appendix.  

Net of an affordable computational effort required (19 seconds), the 

evaluations obtained using LSM applying a certain number of paths N 

simulated (10,000), of time-steps M introduced (100), and of the 

degree of the regressive function implemented (2), result very accurate 

in terms of convergence to the average price of the simulations and to 

a benchmark price evaluated by Binomial Tree method, and in terms 

of robustness when changing the degree of the regressive function. 

Finally, this thesis summarizes its major findings and contribution, 

and some possible inspirations for future research on its related field. 
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2 Foundation 

This thesis develops defining the most important financial terms and 

processes necessary to approach the illustrations and the analysis 

coming after. We provide the definitions of derivative, option, put and 

call type, strike price, arbitrage, and hedging. Then, we describe the 

correlation of an option’s price with its underlying’s volatility and 

with the risk-free interest rate, and the development process of an 

asset compounded continuously.  

Moreover, this thesis provides the definition of the various kinds of 

option contracts, starting from the definition of the plain vanilla 

options, which are European-style and American-style ones, following 

with the definition of Exotic option, and its categorization in three sets 

of types, linked to the expiration cycle, to the method used to trade 

them, and to the underlying asset the options are related to: some 

types of options giving less common approach to the rights of early 

exercise (Bermudan option; Canary option; Evergreen option; and so 

on), other options having standard exercise styles (as vanillas), but 

different methods in calculating the payoff values (Basket option; 

Rainbow option; Exchange option; and so on) and other options 
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differing both in the calculation of payoffs and in the style of exercise 

from vanillas (Asian option; Barrier option; Binary option; and so on).  

Specifically, this thesis proposes the application of the pricing 

methods described next on a typical European Call option and on an 

American-Bermudan Put option, which has exercisability at any time 

before expiration (that’s why American) but in a predefined big 

amount of exercise dates equally distant within each other (making it 

discrete, as a Bermudan option). However, we illustrated all these 

different types of options because we think that the results obtained in 

this thesis show that it could be worth to try to develop this analysis 

on more types of derivatives in future research. 

In the third paragraph of the second Chapter, this thesis provides the 

illustration of the masterpiece developed by Black, Scholes and 

Merton, that represents the first and most important model for pricing 

and hedging options.  

First, we defined the various conditions required when applying 

Black-Scholes, as its precision is strictly related to how close the 

referring market is to a market with perfect competition. Successively, 

we define how the model is based on the idea that the structure of the 
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return on an option can be precisely replicated by a continuous 

rebalancing of a hedged portfolio composed by a risk-free asset 

gaining interests at a continuously compounded rate (which could be, 

for example, a government bond) and by a variable number of shares 

of the underlying asset. The return of such a portfolio depends 

exclusively on some known constant variables and on the time, as it is 

independent from the price movement of the stock. Then, we defined 

a generalized Wiener process  

                                             𝑑𝑥 = 𝑎𝑑𝑡 + 𝑏𝑑𝑧                                             (2.2) 

And the Itò’s Lemma  

                       𝑑𝐺 = (
∂G 

 ∂t
 + 

∂G 

 ∂x
𝑎 + 

1

2

∂2G

∂x2
b2 )𝑑𝑡 + 

∂G

∂x
𝑏𝑑z                  (2.4) 

So, we derive the Black-Scholes model 

                        Δf = (
∂f 

 ∂t
 + 

∂f 

 ∂S
𝜇S + 

1

2

∂2f

∂S2
σ2S2 ) Δ𝑡 + 

∂f

∂S
 σ Δz            (2.8) 

And the Black-Scholes partial differential equations (PDE) 

                                 𝑐 =S0 N(𝑑1) - 𝐾e−rT𝑁(𝑑2)                          (2.14) 

                               p = 𝐾e−rT𝑁(-𝑑2) - S0 N(-𝑑1)                        (2.15) 
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Before going on illustrating the Binomial Tree model, we denote the 

limits of the Black-Scholes model in creating accurate estimations of 

the option value, as it imposes very strict assumptions, and it doesn’t 

provide closed form solutions for path-dependent derivatives. 

Numerical methods like binomial tree model represented an intuitive 

and functional alternative to Black-Scholes model as it gives a closed-

form solution for pricing American-style options, although, as for 

many other numerical methods, it allows to consider only the price of 

the underlying asset as stochastic factor in the evaluation, which led to 

a successive increase in popularity of simulative methods. 

This model consists in the representation in a diagram of the possible 

different paths available for the asset price over the time to maturity. 

The assumption that the underlying asset’s price follows a random 

walk holds. For every time step, there is a defined probability that the 

price goes up by a certain percentage amount and a defined 

probability that the price goes down by a certain percentage amount. 

Defining St the value of the stock at time t, it’s price at next time step 

t+1, is going to be St+1 = uSt with probability p, and St+1 = dSt with 

probability 1-p, being u > 1 > d. 
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Then, fu = max (S0 u – K, 0) and fd = max (S0 d – K, 0).  

Making the time steps the smallest possible, the limit of the binomial 

tree brings to the lognormal assumption for the price of the stock, 

that’s the same assumed for the Black-Scholes Model. 

Then we define the hedging strategy by determining the number of 

shares Δ necessary to make a zero-risk portfolio 

                                              Δ = 
fu−fd 

S0u−S0d
                                       (2.16) 

That, imported in 

                              f = S0 u Δ(1 – u e−rT) + fu e−rT                       (2.17) 

brings to 

                                  f = e−rT[ p fu + (1 – p) fd ]                           (2.18) 

being  

                                               p = 
e−rT−d 

u−d
                                       (2.19) 
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Figure 2.1: Binomial tree on three time-nodes 

 

To adapt the model to American Option pricing it’s required to check 

at each node whether it’s profitable to exercise, and to adjust the price 

of the option accordingly. 

For an American call, the value of the option at a node is given by  

                      fxx = = max (K – Sxx, e−rΔT [p fxxu   + (1-p) fxxd]     (2.21) 

When a node shows an option price higher than it would be without 

exercising, it influences the prices of the nodes following back 

through the tree making an American option to be more valuable than 

a European option with the same characteristics.  
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3 Simulative methods for option pricing 

In the third chapter we develop the illustration of the Monte Carlo 

simulation taking in exam the calculation of the following 

                                          ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥 =
|

𝐴
 �̅�                              (3.1) 

Identifying g(x) as an arbitrary function, f(x) as a density function of 

probability, and A as the range of integration. 

Then, from the development of the equation (2.6)  

                              𝑆(𝑇) = 𝑆(0) exp[(𝜇 – 
σ2

2
)𝑇 + 𝜎𝜖√T]              (3.10) 

Which constructs the paths of the stock price S at any time T. 

Applying it on a European option, we get the definition of its value  

    𝑓(𝑆, 0, 𝐾, 𝑇) = 
1

𝑀
 e-rT ∑ .𝑀

𝑖=0 g(𝑆 (0) exp[(𝜇 – 
σ2

2
)𝑇 + 𝜎 yi √T]) (3.14) 

Successively, although our software provides the normal distribution 

N[0,1] as a black-box function, we illustrate how to generate pseudo-

random numbers, proving that it’s possible to convert random 

numbers sampled distributed between [0,1] in numbers sampled from 

the normal distribution N[0,1]. 
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Then, we evaluate a European Call option having expiration at T=1 

year. The payoff of the option is evaluated from 5 different starting 

prices of the underlying stock, from 26 to 34. The strike price is 30, 

the volatility of returns σ of the underlying is 0.4, and the risk-free 

interest rate is r=0.06. The paths sampled for each price will be at first 

10, then 100, then 1000, and finally 10,000. This, in order to prove 

how the accuracy of this method increases proportionally with the 

amounts of paths. As previously said, we notice how sampling an 

amount of paths N ≥ 10,000 we obtain a sufficiently accurate value of 

the option for every simulation (S.E. < 0.004; % Bias < 1%), when 

compared to the true values obtained with Black-Scholes. 

Figure 3.1: 4 Brownian motions development increasing N 
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4 Least Squares Method for options pricing  

In the fourth chapter, we illustrate the development of the Monte 

Carlo simulation proposed by Longstaff and Schwarz in their 

masterpiece, the LSM, which aims to evaluate American-style option 

integrating, at every time-step from maturity going backwards, a 

simple least squares cross-sectional regression to estimate the 

conditional expectation function. 

We can obtain a complete estimation of the strategy of optimal early 

exercise through the application of the dynamic programming 

principle implying that the option should be exercised as soon as both 

it’s in-the-money (having payoff higher than 0) and it has an estimated 

value of conditional expectation of continuation lower than the value 

it would have when exercising immediately. The option’s estimated 

value is, then, the estimated expected payoff discounted at time 0. 

In the illustration present at the bottom of the first paragraph of this 

thesis we propose an example on an American call option having two 

exercise dates, to which it follows a deeper functional analysis. 
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Then, it follows the definition of the dynamics determining the 

accuracy of the estimations in terms of convergence to a benchmark 

price, convergence to an average of the estimates, and robustness 

relatively to the degree of the regressive function, which are going to 

be the criteria defining the quality of the numerical results obtained in 

the last paragraph of the chapter. Then, it will follow the 

documentation of a series of results coming from the findings of the 

literature regarding the convergence and the robustness of the 

estimations with LSM method on different types of options. 

Before introducing it to the analysis and the findings of this thesis 

itself, we illustrate the implementation of the Hedging policy with the 

Δ estimator on the LSM method, which consists in the fact that the 

following equality must hold for all of the M time-steps evaluated 

Vt (St) = Bt + Δt (St) St 

Resulting in the definition of the Hedging Error 

HedERRt = St – K + Bt + Δt St 

That should be worth 0 if the portfolio replicates perfectly the option. 
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In the last part of the chapter, we set up the LSM model, evaluating an 

American-Bermudan Put option having same characteristics of the 

European Call option from chapter 3, the degree of the regression 

function D = 2, and the amount of time-steps M = 100 in all the 

evaluations, except, of course, for the evaluations in which M or D 

variate. We premise that the benchmark values for the following 

analysis are obtained by applying a binomial tree model having the 

same size of M (its code is present in the appendix as well). 

So, the analysis consists in the evaluation of the option by variating 

the amount of paths N at first, from N = 10 to N = 100,000 denoting 

how a sufficiently appreciable level of accuracy results to come when 

N ≥ 10,000. 

For the analysis in which we variate the degree of the regressive 

function adopted to evaluate the continuation value at each step, we 

notice how the accuracy of the evaluation is not particularly sensitive 

to the change in the degree of the function, except for the too simple 

case of D = 1.  

Then, the analysis in which the amount of time-steps M variates, 

results to show acceptable accuracy when the value of M is M ≥ 50, 
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although we still prefer to use M ≥ 100, which better simulates the 

features of the American option (continuously exercisable). 

Finally, we analyze the correlation between the size of the various 

variables with the computational effort required to make the 

estimations. As expectable, we see how the factor determining the 

most the increase in computational time required is the size of the 

sampled paths N. A little less than N, but still consistently, M 

influences the computational time too, while variating D doesn’t bring 

to appreciable differences. The last analysis shows a comparison 

between the estimation with the factors N, M, and D having the 

minimum acceptable values to get enough accurate results, and the 

estimation with the maximum values of the three variables measured 

(N = 100,000 ; M = 1,000 ; D = 10). The latter requires 65 times more 

effort to be computed respect to the former, while the accuracy is only 

6 times better (although still acceptable). 
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5 Conclusion 

This thesis stressed out the work of the research on analytical and 

numerical methods for pricing options, developing a comparison 

between the results coming from simulative methods applied on both 

European-style and American-style options, and respectively the 

Black-Scholes model and the Binomial Tree model, which are the 

most popular ones adopted in the Academical approaches. In facts, we 

aimed to develop the analyses in a manner that was the most 

comprehensible possible for students and practisers, applying the 

models to which the readers are supposed to be more used.  

After successfully illustrating and implementing the simulative 

methods for pricing European options, the biggest issue to overcome 

for this thesis was to readapt our program for Monte Carlo simulation 

to make it work for pricing American-style options, which differ from 

the European-style ones by their feature of continuous exercisability. 

We can say that the results coming from our analysis strengthen the 

conclusions derived in the literature, as it showed how LSM methods 

represents an efficient tool for pricing path-dependent options with a 

certain accuracy level, without necessarily requiring massive 
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computational efforts.  

Moreover, differently from the traditional numerical methods, LSM 

allows the development of the evaluations imposing various amounts 

of stochastic factors, which makes it more adapt to the real market 

situations, and which pique our curiosity on an eventual 

implementation on more complex financial instruments. Also, as 

many programming tools are improving, it will become more and 

more accessible to integrate this method to more complex and 

computationally heavy scenarios and pricing models. 
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