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Introduction

Last decades economic turbulences, such as the 2008 subprime mortgages
crisis and the 2020 COVID-19 pandemic, have served to expose the mon-
etary and financial system’s vulnerability (Rejeb A. et Al., 2021) [1].

As a reaction to the general market instability, individuals and fund
managers have began to include non-conventional investments in their
portfolios, in order to mitigate the negative effects of classic asset classes
downturns.

At the same time, new technologies have been developed. The blockchain
is one of the most significant and disruptive innovation of them all, as it
allows to collect data through a decentralized and distributed ledger main-
tained by all components of a certain network (Treiblmaier H., 2018) [2].
In this way, no intermediary is required to be in the middle of transactions
and international wires are speed up (Bação P. et Al, 2018) [3].

The most renowned application of blockchain is linked to cryptocurren-
cies, a type of virtual money introduced in 2008 by Satoshi Nakamoto with
Bitcoin [4] and that is now ramified into many variants with substantial
differences. According to Lerer & McGarrigle (2018), one of the author’s
goals was to react to the financial system’s manner of privatizing profits
and socializing losses (Lerer M. et Al, 2018) [5].

Cryptocurrencies can offer great investment opportunities in a well di-
versified portfolio, as the sector continues to grow despite the high volatil-
ity; indeed, as of February 2022, the total crypto market capitalization is
around $2 trillion1.

However, whether cryptos can qualify or not as an asset class in their
own right still remains a big question, as this aspect could carry important
implications for fund managers, regulators and policy makers. As a result,
the banking sector and financial institutions, such as the ECB, have began
to be more concerned about the topic (Dashkevich et Al., 2020) [6].

The first chapter of this thesis strives to investigate the classification and
the importance of cryptocurrencies in today’s financial system, particularly
from the asset management point of view. We will, in fact, assess if there

1https://coinmarketcap.com/charts/
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is any room for them to be considered as an asset class and which benefits,
and threats, may provide to portfolio settings.

In order to carry out the research, we will firstly introduce the cryp-
tocurrency environment from a technical point of view.

Starting from the original work of Nakamoto (2008) [7], we will report
the current views on cryptocurrencies.

In their simplest form, cryptocurrencies can be considered as digital
assets built to function as a medium of exchange based on cryptographic
technology, with the aim of ensuring the transactional flow as well as to
control the creation of additional monetary units (Chohan W. Usman,
2017) [8].

From the ECB’s point of view, cryptocurrencies are classified as a subset
of virtual currencies, unregulated, issued and controlled by their develop-
ers, used and accepted among the members of a specific virtual community
(ECB, 2012) [9].

Afterwards, the blockchain technology, unanimously defined as a de-
centralized and distributed ledger (Briere M. et Al., 2013) [10], will be
presented and the functioning of crypto transactions will be outlined, ac-
cording to Rejeb et Al. (2021) [1] and Hougan M. et Al. (2021) [4].

In second instance, we will investigate the crypto world starting from
an institutional investment management point of view.

To do that, we will analyze the alternative investment landscape, par-
ticularly focusing on ESG issues, considered to carry superior efficiency
in asset allocation by Abate G. et Al. (2021) [11], and on recent years
cryptoassets’ net inflows.

Moreover, despite the growth of ESG funds has faced difficulties in
entering the mainstream investment strategies, in recent years they began
being accepted as a distinct asset class, as noticed by Boffo R. et Al. (2020)
[12], and they had a strong decade in terms of net inflows, forecasted to
grow in the future as well.

Several updated reports from Fidelity, CoinShares and Grayscale will
also make clear that the rising presence of cryptos on the market cannot
be considered as transitory anymore, although last months net inflows sug-
gest that institutional investors are now monetizing on 2020-2021 extreme

12



gains.
At this stage, opportunities and threats of cryptos will be taken into

account. A literature review of the available valuation methods will be
proposed, starting from the total addressable market approach (Hougan
M. et Al., 2021) [4], the equation of exchange (Burniske C. et Al., 2017)
[13], the valuation of crypto as a network (Alabi K., 2017) [14], the cost
of production approach (Hayes A., 2015) [15] and the stock-to-flow model
(PlanB., 2019) [16], concluding with the reliability critics on crypto valu-
ation made by Damodaran (2017) [17].

The chapter will be concluded with a brief empirical analysis of corre-
lations and performances between some of main cryptocurrencies on the
market (Bitcoin, Ethereum, Ripple and Cardano) and the traditional as-
set classes employed in portfolio management (Equity, Bond, Real Estate,
Commodities and Gold).

We will find that cryptocurrencies show some key characteristics of a
distinct asset class (strong internal correlations, low correlations with tra-
ditional assets, acceptable market liquidity and room for market stability
improvements) that could make them suitable to diversify and boost port-
folio performances, despite the legal, technical and volatility issues that
still have to be improved.

Once having accepted cryptos as an asset class, clarified their opportuni-
ties in portfolio management and having understood their critical aspects,
it is important to define the correct investment strategy to adopt.

This research identified quite an extensive literature on specific top-
ics, such as portfolio optimization in general (Markowitz H., 1952 [18],
Sharpe W. F., 1966 [19] and Mossin J., 1966 [20]), cryptocurrencies from a
broad portfolio management point of view (Boiko V. et Al., 2021 [21] and
Colombo J. et Al., 2021 [22]), crypto portfolio optimization methodologies
only regarding specific coins (Bakry W. et Al., 2021 [23]) or with slightly
inaccurate constraints (Gambeta et Al., 2020 [24]).

Anyway, there still a lack of reviews specifically focused on the inclusion
of a cryptocurrency index, as crypto ETFs are still not widespreadly avail-
able in the investment management landscape, in a constrained portfolio
optimization environment using both static and dynamic asset allocation
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methodologies, that will be the core research question of the study.
The cryptocurrency index employed in the optimization is the CRIX,

developed by professor Wolfgang Härdle and his team of researchers from
Humboldt University, Berlin, that will be assumed to be a tradable ETF.
The index allows investors to track the cryptocurrency market using a
small number of constituents2, evaluated according to their market capi-
talization and liquidity [25]. The reallocation period is 1 month, which is
the time point where coin liquidity is checked again.

Traditional asset allocation methodologies will be taken into considera-
tion, as well as more sophisticated techniques. We will consider portfolios
coming both from Modern (Markowitz H., 1952 [18], Sharpe W. F., 1966
[19], Mossin J., 1966 [20], Linter J., 1965 [26], Jensen M. et Al., 1972 [27]
and Treynor J. L., 1965 [28]) and Post-Modern Portfolio Theory (Sortino
F. A. et Al., 1994 [29]), based respectively on the maximization of the
Sharpe and Sortino Ratio, and Risk Parity portfolios (Lee W., 2011 [30]),
in their relaxed variants in order to allow the compliance to constraints
(Gambeta et Al., 2020 [24]).

Portfolios will be constructed both including only equity and bonds and
including cryptocurrencies too, in order to determine benefits coming from
them. Moreover, all portfolios will be allocated both in a static way and
considering quarterly rebalancing.

At this stage, they will be evaluated from an ex-post point of view
considering main traditional and risk-adjusted statistics.

So, in the second chapter, we will focus on the empirical analysis from
a methodological point of view, while in the third chapter we will report
results and comments.

This study will suggests that cryptos, due to their exotic nature, un-
wavering appeal, and unknown set of drivers, could act as diversifiers and
they might also have hedge properties, as noticed by Bakry W. et Al.
(2021) too [23]. We will also find that carefully adding a basket of cryp-
tocurrencies to traditional portfolios (in the sense that all allocations will
be constrained to a maximum of 10% in crypto), as well as the quarterly

2As of December 2021, CRIX is constituted by Bitcoin, Ethereum, Cardano, Binance Coin, Ripple
and Solana
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rebalancing, leads to consistent and stable risk-adjusted outperformances
with respect to static non-crypto allocations.

Empirical analyses results will support the hypothesis that a careful em-
ployment of cryptos in portfolios could be beneficial from an asset manager
perspective.
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1 Cryptocurrencies as an Asset Class

1.1 Introduction

The blockchain technology is one of the most significant and disruptive
innovation that has been developed in last decades, as it allows to col-
lect data through a decentralized and distributed ledger maintained by all
components of a certain network.

The most renowned application of blockchain is linked to cryptocurren-
cies, a type of virtual money introduced in 2008 by Bitcoin and that is
now ramified into many variants with substantial differences.

In this section, the main elements characterizing the cryptoasset world
will be outlined. Starting from an overview of the crypto environment, we
will take a look at the various definitions of cryptocurrencies, the different
technologies behind them, the functioning of transactions and the main
cryptocoins existing in the market.

Subsequently, cryptocurrencies will be approached as an asset class and
the market trend of cryptos will be analyzed, as well as the alternative
investment management landscape and Decentralized Finance past and
current trends will be taken into account.

Hence, considerations that are central in crypto investment decisions
will be investigated, that is to say the valuation methods, the key char-
acteristics in portfolio settings and the pros and cons of cryptocurrency
investing.

1.2 Overview of the Cryptocurrency Environment

Blockchain and cryptoassets came out onto the the world stage in 2008
when the first cryptocurrency, the Bitcoin, was launched by Satoshi Nakamoto.

Since then, cryptocurrencies have gradually captured the attention of
the whole financial and technological communities, but few people really
understand what crypto is all about. An alternative currency? A revolu-
tionary technology? A big scam?

In this section we will try to outline the main characteristics of cryp-
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tocurrencies and the underlying processes that make them so interesting,
especially from a technological point of view.

1.2.1 What are Cryptocurrencies?

Virtual money has increasingly gained popularity over the last decades
and today’s technologies made an unknown computer programmer under
the pseudonymous of ”Satoshi Nakamoto” be able to create in 2008 the
first popular cryptocurrency, the Bitcoin.

Since then, hundreds of cryptocurrencies have been developed and the
number of people using them has significantly grown. Moreover, the cryp-
toasset market has gone through all the classic phases of a disruptive in-
novation: massive bull markets and crushing pullbacks, euphoric periods
and moments of despair, FOMO (Fear Of Missing Out), and everything in
between [4]. But what is it all about with the term ”cryptocurrency”?

In its simplest form, a cryptocurrency can be considered as a digital
asset built to function as a medium of exchange based on cryptographic
technology, in order to ensure the transactional flow as well as to control
the creation of additional monetary units [8].

From the ECB’s point of view, cryptocurrencies are classified as a subset
of virtual currencies, unregulated, issued and controlled by their develop-
ers, used and accepted among the members of a specific virtual community
[9].

Having said that, the best way to understand the crypto environment
is by starting talking about Bitcoins, as the developments that allowed
Bitcoin to emerge are the foundation of all crypto-based projects.

Satoshi Nakamoto’s vision on Bitcoin was described in his/her white pa-
per published on October 31st, 2008 named ”Bitcoin: A peer-to-peer Elec-
tronic Cash System”, where the author described how individuals could
exchange money and other items of value without any financial interme-
diary in the middle [7].

Shortly after the publication of this white paper, Nakamoto released
Bitcoin’s software and, on January 3rd, 2009 the first token3 was mined.

3Crypto tokens represents the fungible and tradable assets that resides in a cryptocurrency blockchain
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To realise why the technology introduced by Nakamoto is considered so
revolutionary, we need to think about a peculiarity of our society, namely
that although most of our lives have migrated online, payments have re-
mained analogue.

This aspect is often forgotten because of the various fintech apps and
online banking platforms that give the perception that everything is now
automated and fast, but the underlying financial system has remained
archaic.

For example, wiring any amount of money or paying bills takes several
days, as transferring anything valuable online is very complicated, to a
greater extent than with emails, messages and photos. So, in order to
allow any item to move the way messages do between two people, without
any intermediary in the middle, it requires a disruptive solution.

1.2.2 The Technology behind Cryptocurrencies

Namokoto’s proposal to solve the above-mentioned problem was to create
a decentralised database that could be accessed by anyone willing to check
balances and to make transactions at any time without any centralised
entity controlling its functioning.

This system, called blockchain, is the basis of most crypto projects and
it is structured to allow peer-to-peer transactions, as illustrated in figure
1 below [4].

The real innovation of the blockchain was to create timely updated and
bad-actor-proof consensus copies of the decentralized ledger, in order to
prevent synchronicity issues and to reflect honest transaction only [10].
Through the blockchain, Nakamoto solved the problem of trust establish-
ment in a distributed system, as now no-one could tamper the documents
without being detected [2].

In other words, the blockchain provides a distributed trust mechanism
where multiple parties keep record of the transactions and every party
can verify that the order and the timestamps of transactions have not

(that will be discussed more in dept in the following section). The biggest difference between cryptocur-
rencies and tokens is that the formers have their own blockchain, while the latters are build on an existing
one
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Figure 1: Value transfer in the Crypto world: the figure shows how centralized and
decentralized peer-to-peer networks work with regards to value transfer

been tampered with [31]. It is possible to think about the blockchain
as a three-column register, where the first column holds the transaction’s
timestamp, the second one stores the transaction’s details and the third
one stores a hash4 of the current transaction, containing its details plus
the hash of the preceding transaction.

When a new record is added to the register, the most recently computed
hash is transmitted to everyone interested. As everyone knows the last
hash, anyone in the blockchain network can check the validity of the data
and can verify that they have not been modified, as doing that would be
impossible without obtaining a new and hence incorrect hash.

The only method to keep the correct hash and manipulate the data is
to find a data collision, which is computationally impossible and uneco-
nomical.

1.2.3 How Transactions Work

In order to understand how the process of validation and adding blocks
to the blockchain works, the best way is to describe a bitcoin transaction
taking place between 2 counterparties.

4A hash is a function that converts an input into an encrypted output of fixed length. It cannot
be reversely converted into the original input since a hash is a one-way function. Cryptographic hash
functions, the ones that it is possible to find in a blockchain, add security features to a standard hash
function and they are employed to link the blocks of the transactions
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Alice wants to send Bob 2 bitcoins. In order to do that, she sends a
request to all network participants5 having a copy of the updated ledger,
signing it with her private key. This key is a unique password that allows
participants to effectively know that the message is coming from her and
each node, using Alice’s public key, verify her by identifying and checking
if she has the sufficient amount of bitcoins to send.

At this stage, the proposed transaction has been placed in a sort of
waiting room together with other requests waiting for confirmation, in
order to make all computers of the network aware of the demands, as they
all possess a copy of the database (figure 2 [4]).

Figure 2: Network status after the proposal: the figure shows the copies of the ledger
(in orange) after the transaction has been proposed. As the transaction has not been settled
yet, they have not been updated

Now, miners, special participants of the network, enter the process; they
are computers scattered around the world that aggregate groups of valid
transactions in blocks6 and propose them for settlement.

In order to do that, miners reprocess the data of a block through com-
plex mathematical functions, the hashes, and the output of this process
has a fixed length, making anyone unable to tell how long the input was.

Solving the hash starts with the data contained in the block header,
composed by a version number, a timestamp, the hash from the previous
block, the hash of the Merkle root, the nonce and the target hash [32].

5That are the so-called ”nodes”
6Which is were the ”block” of ”blockchain” comes from
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Miners focus on the nonce, a string of numbers that is appended to the
hashed content from the previous block and that then it is hashed again.
The new hash has to be less or equal than the target hash and if this
condition is satisfied, then the new block is settled and it is added to the
blockchain7.

The miner (or pool of miners) that finds the solution first is rewarded
with 6.258 newly minted Bitcoins [33] and, occasionally, with transaction
fees that individuals append to incentivize miners to settle their pending
transaction ahead of others. These recompenses push miners to verify
transactions continuously and update the database, despite the fact that
the mining activity requires significant computing power and burns a lot
of energy.

Figure 3: Network status after the approval: a miner (in blue) builds a block of
transactions and updates the ledger; at the moment, only this specific miner can see the fully
updated blockchain (in purple).

Once a miner posts its solution to the problem, other participants check
it (figure 3 [4]) and if it is correct, they update their ledger too and Alice’s
transaction is settled (figure 4 [4]).

What would have happened if the miner had proposed an invalid block
or Alice did not have sufficient amount of Bitcoins? Simply, the network

7New Bitcoin blocks are settled roughly every 10 minutes, while blockchains based on other cryp-
tocurrencies may take significantly less time

8This reward used to be significantly higher, as every four years the system halves the reward for
miners. When Bitcoin was launched, the reward was 50 Bitcoins for each block and now is 6.25 after the
latest halving in May 2020
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participants would have rejected the block.
But we have to notice that this kind of situations is very unlikely to

happen, as validating transactions and checking for their validity is trivially
easy, while attempting to settle them is costly. So, the incentive to even
try to defraud the system is minimal and the database has never been
hacked, all without a single centralized entity monitoring it.

Figure 4: Network status after other participants have checked the solution:
finally, the whole network validates and accepts the block.

This mechanism is the so-called ”Consensus Algorithm” and it is de-
fined as a specific (cryptographic) validation method that ensures a correct
sequencing of transactions on the blockchain [34]. The consensus protocol
may follow different criteria and the main ones are:

1. Proof of Work (PoW), the one that is being used by the Bitcoin’s
blockchain and it is based on the mining process described above.

2. Proof of Stake (PoS), where nodes must prove their stake in the cryp-
toasset in order to be allowed to validate a transaction. The greater
the participation, the greater the likelihood that the system will not
be violated. PoS mechanisms are usually applied to cryptocurrencies
that have all of their tokens issued, so the only incentive to validate
a transaction comes from the fees.
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1.2.4 Main Cryptocurrencies

As said, the first blockchain technology was introduced by Bitcoin in 2008
and, later, many others have been developed on its basis, differing however
under many aspects.

Among the main cryptocurrencies that exist today, Ethereum and Rip-
ple have blockchains that make them two of the most interesting to analyze
in the whole crypto landscape.

Paragraph: Ethereum (ETH) Ethereum is a community-run technol-
ogy powering the cryptocurrency, Ether, and thousands of decentralized
applications9. The idea behind its launch, made by Vitaliy Dmitrievič
Buterin in 2015, was to expand the list of Bitcoin’s capabilities. In fact,
BTC’s blockchain was programmed to send, receive and holding Bitcoins
only, while ETH’s blockchain was programmed to do anything a general
computer can do thanks to its smart contracts, giving birth to the so-called
”Decentralized Finance” of DeFi [35].

This translates into making people able to put in place a broad range
of operations, like IPO-style fundraising, collateralized loans or automated
market making softwares that are the basis of fully decentralized exchanges,
increasing Ethereum’s liquidity.

However, this additional flexibility comes at a a cost, because hav-
ing a broader range of functionalities enlarges the attack surface of the
blockchain. In other words, the simpler the software, the more secure the
technology.

This is why Bitcoin is often referred to as the ”digital gold”, because its
simplicity is what makes it secure and appeases people to put large sum
of money into it.

Paragraph: Ripple (XRP) Ripple is a network for real time payments
settlement created in 2012 by Ripple Labs, then OpenCoin, and its native
cryptocurrency is the XRP10. Its blockchain differentiates from Bitcoin’s

9https://ethereum.org/en/
10https://www.ripple.com
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one from a complexity and centralization point of view.
As said, Bitcoin is fully decentralized and this aspect prevents any sin-

gle government to disrupt or shut down its blockchain, as it is virtually
maintained all around the world and this makes it a powerful vehicle to
store value or to move large sum of money.

The negative side is that it is too slow for day-to-day use, as any block
takes around 10 minutes to be approved.

XRP was engineered to solve this specific issue, as it possesses a more
centralized system than Bitcoin. In fact, XRP’s blockchain is maintained
just by 36 nodes and Ripple controls 6 of these. The clear advantage is
that its payment system is way faster than other blockchains and it is
capable of processing tons of transactions at a significant pace.

The downside in this case is that XRP is more exposed to seizure,
government oversight and censorship.

As of October 2021, other than Bitcoin, Ethereum and Ripple, the
main cryptocurrencies based on market capitalization are11 Binance Coin
(BNB), Cardano (ADA), Tether (USDT), Solana (SOL), Polkadot (DOT),
USD Coin (USDC) and Dogecoin (DOGE).

1.3 The Evolution of Cryptocurrency and Alterna-

tive Investments Markets

After years of steady but volatile growth, the cryptocurrency market sur-
passed the barrier of $1 trillion of market capitalization in January 2021,
and it is now valued at over $2 trillion as of February 2022. But while
many cryptocurrencies have remained on the market for many years, other
projects have failed to survive in the long run.

According to data from Coinopsy.com12, a website that tracks dead
cryptocurrencies, the number of dead coins stands at 2,316 as of October
2021. The term dead coin is given to cryptos that don’t exist anymore due
to scams, wallet issues, low liquidity or simply their developers abandoned

11https://www.coinmarketcap.com
12https://www.coinopsy.com/dead-coins/
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them and their number rose when crypto projects began being financed via
ICOs13. Considering the number of existing coins over the years, Figure
514 illustrates the rising trend of cryptocurrencies on the market in the
period 2013-2021.

Figure 5: Number of cryptocurrencies over the years

Along with the rising number of cryptocurrencies circulating in the
market, the crypto market capitalization has grown as well, as illustrated
by Figure 615.

One important element to underline is that Bitcoin had the ”first mover
advantage”, as it was the first and most popular currency over the years,
but it steadily lost ground as other coins emerged [36].

Indeed, by looking at Figure 716, it is possible to notice that Bitcoin
went from detain nearly the 100% of market cap in 2013 to less than 50%

13An ”Initial Coin Offering” is the crypto equivalent of ”Initial Public Offering”: it is a crowdfunding
mechanism used by many crypto entrepreneurs in which buyers receive tokens or a stake relative to the
company launching the project

14https://www.statista.com/statistics/863917/number-crypto-coins-tokens/, data from CoinMarket-
Cap

15https://coinmarketcap.com/charts/
16Ibidem
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Figure 6: Total Cryptocurrencies Market Capitalization

in October 2021.

Figure 7: Cryptoassets as Percentage of Market Capitalization

These huge price growths in cryptocurrencies have attracted institu-
tional investors’ attention during last years. Especially due to COVID-19
crisis, market conditions have been a catalyst for investors with positions
in classical asset classes only, and many funds have began to adopt digital
assets to offset portfolios’ losses.

According to a survey17 conducted by Fidelity in September 202118, on
a total of 1,100 total institutional investors’ responses, 52% of the surveyed

17Pool composed by Financial Advisors, High-Net-Worth Investors, Family Offices, Pension Funds,
Hedge Funds, Venture Capital Funds and Endowments & Foundations

18Neureuter J., ”The Institutional Investor Digital Assets Study”, 2021. Available at
https://www.fidelitydigitalassets.com/bin-public/060 www fidelity com/documents/FDAS/2021-
digital-asset-study.pdf
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pool has an investment in digital assets, with adoption rates rising each
year. Moreover, European and Asian investors showed higher interest in
cryptos than Americans, even if the familiarity in them is significantly
growing.

An important element to highlight is that institutional investors often
prefer buying digital assets in the investment product form over direct
purchase. Figure 819 shows current adoption rates divided by investor
category in the US.

Figure 8: Current Adoption Rates and Channels to Exposure

As expected, native crypto hedge funds and venture capital have the
highest rates, followed by family offices, financial advisors and high-net-
worth individuals.

Nonetheless, the positive perception of digital assets has grown (figure
920), as the US market increased confidence in cryptos by 11% since 2019.

Figure 9: Perception of Digital Assets by Institutional Investors

The crypto features most sought for by institutional investors are linked
to high potential upside, uncorrelation to traditional assets, as well as

19Ibidem.
20Ibidem.
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macro/inflation offsetting potential, as we can see from figure 1021.

Figure 10: Appeal of Digital Assets

On the other hand, most investors answered that price volatility con-
tinues to be the most significant barrier to adoption. As this concern is
pretty much widespread across the whole financial community, many coins
are set in the form of stablecoins22

Other key concerns are represented by the lack of fundamentals to gauge
coins’ appropriate value23, the security of the asset custody, regulatory
classification and market manipulation.

Anyway, almost 80% of participants feel like digital assets have a place
in their portfolios. In fact, generally speaking, investments in alternative
assets almost doubled during last decades, growing from 6% in 2004 to
12% in 2018 and they are forecasted to be at about 18% - 24% by 2025
(figure 1124).

Figure 11: Alternative Assets in Institutional Investors’ Portfolios

21Ibidem
22Class of cryptocurrencies that attempt to offer price stability and are backed by a reserve asset. In

a diversified crypto portfolio, they could represent the ”cash” part of the allocation.
23In the following section, we will try to address this concern according to recent literature.
24Ibidem
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Alternative investments are mostly driven by new generations of asset
classes, that, apart from cryptos, are linked to megatrends25 and ESG26

issues, that made institutional investors more sensible to non-conventional
financial topics. The goal of these alternative investments is to assure
acceptable yields while investing in sustainable assets and each year more
and more funds are launched within this scope.

Despite the growth of ESG funds has faced difficulties in entering the
mainstream investment strategies, in recent years they began being ac-
cepted as a distinct asset class [12] and, as we can see from figure 1227,
they had a strong decade in terms of net inflows, forecasted to grow in the
future as well.

Figure 12: Sustainable Funds Annual Flows and Assets

Indeed, as observed by Seth R. et Al., 2021 [37], ESG issues are now a
predominant topic and, in the near future, alternative investments will be
no longer seen as an innovation but as the ”new normality”.

25Word invented by John Naisbitt in 1982 to describe the complex societal tendencies able to provoke
significant structural changes on long-term economies’ trends, with factors often linked to demography,
innovations and environmental issues. https://www.altroconsumo.it/finanza/lexicon/m/megatrends

26Environmental, Social and Corporate Governance issues.
27https://www.morningstar.com/articles/1019195/a-broken-record-flows-for-us-sustainable-funds-

again-reach-new-heights
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This change in asset managers’ preferences is also reflected in the cryp-
tocurrencies’ environment, as demonstrated by the number of 13F28 filed
by US funds [38] and by the exponential growth in digital ETP under
management (figure 1329).

Figure 13: Digital Asset ETP & Mutual fund Net New Assets US$m

According to Coinshares’ report, the total number of coins in investment
product form has expanded from 9 to 15. 37 investment products were
launched in 2021 versus 24 in 2020 and now total 132, indicative of the
demand and popularity of digital assets30.

Moreover, according to a recent Grayscale Investments report31, the
next phase of crypto investing will not be only driven by digital coins,
but more broadly by Web 3.0 innovations, such as the Metaverse and
Decentralize Finance ecosystems. In less than two years, DeFI market
capitalization as percentage of S&P500 financial companies has grown from
0.11% to 2.61% (figure 1432).

28The 13F is a form required by the ”Securities and Exchange Commission’s” to be filled quar-
terly by all US institutional investment managers with at least $100 million in assets under man-
agement. It disclose their holding and can give some insights of big players’ market activity.
https://www.sec.gov/pdf/form13f.pdf

29https://coinshares.com/research/digital-asset-fund-flows
30Ibidem
31https://grayscale.com/learn/a-report-on-decentralized-finance-defi/
32Ibidem
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Figure 14: DeFi Market Cap as % of S&P500 Financial Services Market Cap

Having said that, according to Coinshares33, institutional investors’
most recent net inflows in crypto have been decreasing during last year,
as the tendency of the sector was to take the profits realized during 2020
(figure 1534).

Figure 15: Crypto Asset Fund Flows as a Percentage of Fund AuM

In any case, it must be stressed that, while it is true that most institu-
tional investors have lost interest in certain coins, they are still continuing
to keep a stake in big players.

33https://coinshares.com/research/digital-asset-fund-flows
34Ibidem
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As we can see from figure 1635, Bitcoin and Ethereum have been the
digital assets that most drove investment flows during last year and it is
likely to be the case for 2022 as well, despite other cryptocurrencies now
possess higher upside potential.

Figure 16: 2020/21 Weekly Crypto Asset Flows by Asset (US$m)

In a nutshell, we have observed that an increasing homogeneity among
digital investments perception tends to characterize the investment man-
agement landscape, net of the divergences between individual cryptocoins.

As a matter of fact, the Decentralized Finance market is now expand-
ing significantly, up to the point that the crypto sector might become a
stable investment option in the years to come, even for more conservative
investment funds.

1.4 Crypto as an Investment Opportunity

As stressed in the previous section, cryptocurrencies have a clear potential
to be classified as a distinct asset class in the future, but many aspect
remain unclear when deciding whether or not to invest in them. How to
evaluate them? What are their intakes in portfolio settings? What are the
benefits and risks for an investor?

In this section, we will try to answer these questions.
35Ibidem
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1.4.1 Crypto Valuation Approaches

One key consideration that an investor has to make when approaching
cryptoassets as an investment opportunity is how to properly evaluate
them. This is of one of the most debated, challenging and disagreed aspect
of the crypto world as there is not a single approach agreed by everyone.

In this section, the five most discussed approaches will be examined.

Approach 1: Total Addressable Market This is the most popular
approach to evaluate the addressable market capitalization of a cryptocur-
rency and to compare it with its current one. For instance, considering
that Bitcoin is believed to be the new non-sovereign store of value just as
gold, it is possible to approach its valuation starting from the market value
of the latter: the total supply of gold held above ground is estimated to be
around $13 trillion at current prices, so, knowing that the total number of
bitcoins that will be ever made is 21 million, each Bitcoin should be worth
around $620.000 [4].

Adjusting the valuation, if Bitcoin captures 10% of the gold market,
each Bitcoin should be worth $62.000, implying that, as of now, Bitcoin
captures less than 8% of gold market capitalization36.

This approach has clear advantages in terms of simplicity and easiness to
understand, but it provides just rough valuation estimates as comparative
metrics do not explain the true intrinsic value of a certain instruments.

Approach 2: Equation of Exchange MV = PQ Another valuation
approach is based on the monetary equation of exchange traditionally used
to value fiat currencies [13]:

MV = PQ (1)

The equation is based on the assumption that the currency value is
based on its velocity and on market’s size.

36Data as of October 23rd 2021, source https://coinmarketcap.com/it/
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For example, assuming that Bitcoin processes 100 billion transactions
(Q) of $100 each (P) per year and that the average velocity (V) of a Bitcoin
is 5 (i.e. one Bitcoin changes hand five times a year), then it is possible
to arrive at a potential market capitalization of $2 trillion or $95,238 per
Bitcoin.

The downside in this approach is the estimation of V, which is notori-
ously hard to do for a fiat currency, because key measures of velocity have
varied significantly over time and they are likely to vary even more in the
case of cryptocurrencies [4].

Approach 3: Crypto as a Network Another popular approach is
based on the concept that cryptoassets should be considered as a network
and their valuation should be proportional to the square of the number of
participants. For instance, if the value of a network of 2 users is 4, the
value of a network of 4 participant is 16 and so on.

Ken Alabi applied Metcalfe’s Law to value cryptoassets using the num-
ber of daily users in their networks and he showed that the differences in
valuation between certain coins can be explained through this model [14].

Two key drawbacks of this approach are that this method is appropriate
only for relative valuations and that it gives equal weight to each user.

Approach 4: Cost of Production The cost of production approach
is based on the fact that miners, in order to produce cryptocurrencies like
Bitcoin, spend fiat money in terms of hardware and energy [15].

According to the microeconomic theory, the cost of producing each
marginal token should align with the price of Bitcoin itself because, if the
mining activity of a certain cryptocurrency were unprofitable, miners could
just switch their investments to other coins.

Anyway, the model do not take into account the massive short-term
volatility of cryptocurrencies prices and, furthermore, this approach cannot
be applied to proof-of-stake based coins.

Approach 5: Stock-to-Flow Model This last approach has been de-
veloped specifically for Bitcoin and states that Bitcoin’s price should re-
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flect its scarcity, measured through the stock-to-flow ratio (extant value of
Bitcoin to the amount being produced each year) [16].

This method shows that Bitcoin’s price has been highly correlated over
the years with the increasing scarcity expressed by the stock-to-flow ratio.

The drawbacks of this approach are that it assumes that Bitcoin’s evolu-
tion is driven only by its price and it is clear that the ratio will perpetually
increase over time, as new bitcoins are programmed to be mined only till
a predetermined date37.

The unfortunate reality of these approaches is that none of them is
academically defensible as traditional DCFs are for stocks. Cryptoassets
are still in the early stages of their development to let us know exactly
how to approach their valuation.

Furthermore, NYU professor Aswath Damodaran, widely known as the
”Dean of Valuation”, has compared cryptocurrencies to commodities and
currencies, pointing out that ”cash generating assets can be both valued
and priced, commodities can be priced much more easily than valued, and
currencies and collectibles can only be priced” [17], implying that valuation
for cryptocurrencies is almost impossible, but not their pricing.

1.4.2 Key Considerations for Crypto in Portfolio Settings

An investor looking at cryptoassets’ historical returns could easily say that
he/she should have allocated at least a small portion of his/her portfolio
on them in the past, as these instruments have shown some characteristics
often sought for during an investment decision.

Table 1 and figure 17 show respectively the correlations between main
asset classes (Equity, Bond, Real Estate, Commodities and Gold) and Bit-
coin, Ethereum, Ripple and Cardano38 and their the cumulative returns.

From these data, it is possible to highlight some elements that an in-
vestor should bear in mind when deciding whether or not to invest in
cryptocurrencies:

37Happening in 2140 [39].
38Data from Yahoo Finance, from 01/01/2018 to from 01/01/2022. Tickers: ĜSPC, T̂NX, GD = F,

ŜP500-60, GC = F, BTC-USD, ETH-USD, XRP-USD, ADA-USD
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Table 1: Asset Classes Correlation Matrix

Figure 17: Asset Classes Cumulative Returns

• High Volatility: cryptoassets are still relatively in an immature phase
of their evolution and their prices have always been sensible to regu-
lations, technical hurdles and skepticism.

This aspect has led cryptocurrencies to be historically characterized
by high volatility and it is likely to continue in the future too. If
we look at figure 17, it is evident that cryptos had extreme standard
deviation values over the last four years, especially when we compare
them to traditional asset classes.

• Rising Trading Volumes: an interesting element to underline is the
increasing trading volume of cryptos, which reflects the great atten-
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tion of investors in this new asset class and the good liquidity of the
currencies.

However, it is important to note that surges in trading volumes sug-
gest either strongly bullish or strongly bearish sentiment and often,
especially during 2021, these fluctuations have been accompanied by
price decreases in the main coins.

• Low Correlation with Traditional Assets: another key characteristic of
cryptocurrencies is their high positive correlation between each other
but a low correlation with traditional assets and financial markets,
implying that they may offer diversification benefits to investors [40].

In fact, by looking at table 1, we can see low-medium correlations
only to the S&P500 and very modest correlations between them and
other asset classes.

• High Potential Returns: although the difficulty of forecasting future
prices of cryptoassets is a major downside for investors, crypto bulls
argue that historical returns will persists in the next years, as crypto
has just began to penetrate the mainstream and many financial insti-
tutions has began to develop blockchain-linked applications for their
services.

On the other side, crypto bears continue to argue that most cryptocur-
rencies are highly overvalued and that they are destined to collapse
in the near future.

Anyway, the empirical evidence shows that cryptocurrencies have sur-
vived several moments of panic even when they were seen just as
bubbles, and each year they set lows higher than the preceding year.
Risks will still be present, but the potential of crypto is undeniable.

1.4.3 Pros and Cons of Cryptocurrency Investing

As seen, cryptocurrencies investing has some upsides as well as downsides
that will be summed up in this section.

Regarding the pros, it is possible to outline the main ones:
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• Diversification: the low correlation with traditional assets makes cryp-
tocurrencies a good instrument to increase the overall diversification
of an equity-bond portfolio, and crypto may also potentially act as a
hedge against periods of bear stock market.

• Potential for Appreciation: as said in the previous section, crypto
prices have grown exponentially and each year their lows have been
higher. If allocated in a well-balanced portfolio, cryptocurrencies have
the potential to enhance returns with limited risk.

• Resilience: despite massive price fluctuations and high volatility, ma-
jor cryptocurrencies have managed to remain on the market and, after
an initial skepticism, they have began being understood by the invest-
ment community and financial institutions.

The main cons are:

• Volatility: huge volatility swings are common for most cryptocurren-
cies and speculators could benefit from them, but long-term investors
see them as too dangerous. As long as cryptocurrencies remain in an
immature phase, this characteristic will persist.

• Lack of Regulation: the absence of an organization monitoring for de-
centralized cryptocurrencies is a key element behind the crypto phi-
losophy, but the lack of regulatory oversight is seen by some investors
as a key drawback.

As there is no governing body checking for the correct functionality
of coins, if a cryptocurrency-holder has any concern or problem, in
most cases he/she will be unable to complain anyone.

Moreover, laws and taxes are often ambiguous or unclear and they
differ from country to country, making the investment, in some cases,
difficult to be liquidated.

• Technical Risks: cryptocurrencies are stored in digital or physical
wallets whose passwords often cannot be restored if lost, and they
may be sensible to file corruption.
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Furthermore, even most established cryptocurrencies may have bugs
that could expose them to hacks. For instance, in 2018 some re-
searches discovered a technical bug in the Bitcoin code that could
have led to potentially infinite issuance of new tokens39.

1.5 Conclusions

The goal of this first chapter was to provide an introductory overview
of cryptoassets and explain the different definitions given to them, their
functioning and the key features in the underlying technology.

Cryptocurrencies are a massive step ahead in the financial industry, but
they are currently a big concern for most investors, as there is no unifor-
mity when approaching them in terms of regulations and characteristics
in portfolio settings.

In fact, the valuation approaches are various and none of them is con-
sistent with traditional literature, making crypto still an obscure topic.

Moreover, huge volatility swings, the lack of regulatory oversight and
eventual technical issues that may arise, make cryptoassets still a challeng-
ing asset class to introduce in portfolios.

Nevertheless, cryptocurrencies possess some distinctive attributes of-
ten sought for by investors: low correlation with traditional assets, high
potential for appreciation and diversification benefits.

This is why cryptoassets have the potential to be a huge investment
opportunity in the near future, as many institutional investors have already
noticed.

In the following chapters we will take a look at some applications in
static and dynamic portfolio settings, starting from the methodological
point of view in the second chapter and ending with the results in the last
chapter.

39https://www.coindesk.com/markets/2018/09/21/the-latest-bitcoin-bug-was-so-bad-developers-
kept-its-full-details-a-secret/
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2 Theoretical Framework

2.1 Introduction

Having introduced the crypto environment, we can now move on to study
cryptocurrencies as an investment opportunity. In this section, we will in-
vestigate some of the most used portfolio optimization techniques, thereby
reporting the methodology behind the empirical analysis.

Firstly, we will focus on the traditional Mean-Variance Optimization
introduced by Harry Markowitz and the general Modern Portfolio Theory
Framework, that entails the Sharpe Ratio and the Capital Asset Pricing
Model. Further, the limitations of the myopic approach will be presented.

Subsequently, we will analyze an extension of MPT, the Post-Modern
Portfolio Theory: the main differences from the traditional approach will
be highlighted in terms of risk-adjusted performance indicators and the
optimization based on the Sortino Ratio and Volatility Skewness will be
explained.

Finally, the focus will shift from the capital allocation, used up to now,
to the risk allocation, implemented in the Risk Parity approach. Hence,
considerations on the main differences from the pre-debated optimization
methods will be made.

Throughout the research, other statistical tools have been added in
order to better compare the optimization techniques and they will be pre-
sented in the last section.

2.2 Modern Portfolio Theory and Capital Asset Pric-

ing Model

In this section, we will discuss the fundamentals of the classical portfolio
optimization approach. We will introduce the main concepts of the Modern
Portfolio Theory by Harry Markowitz, so the asset allocation based on the
Mean-Variance optimization, and one of its extension, the Capital Asset
Pricing Model, introducing concepts like the Beta, the Capital Market Line
and the Security Market Line.
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2.2.1 Expected Returns

Modern Portfolio Theory began with the model theorized by Nobel-prize-
winner Harry Markowitz in 1952 [18], where he outlined a framework to
compose and select the optimal portfolio for any given level of risk and
return.

According to this theory, the starting point to construct a portfolio is
to calculate its expected return, as returns can be interpreted as a non-
dimensional summary of an investment opportunity.

The returns used in the development of this thesis are the continuously
compounded returns, given by the natural logarithm of simple returns and
represent the compounded growth rate of prices over a certain period:

ri,t = ln(
Pi,t
Pi,t−1

) (2)

where P represents the price of each security i at each period t and t-1.
Having found the continuously compounded returns, the expected re-

turns for each security can be calculated through the arithmetic average
of logarithmic returns:

E[Ri] =
1

T

T∑
t=1

ri,t (3)

where T represents all logarithmic returns in each period t.
At this stage, it is possible to obtain the overall expected return by

weighting each security’s expected return for its weight in the portfolio:

E[RP ] =
N∑
i=1

E[Ri]wi (4)

s.t.
n∑
i=1

wi = 1
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where N represents the number of securities in the portfolio and wi

represents the weight of each security in it, with weights summing up to
1.

In matrix form, the portfolio expected return is found as:

µP = µ′w =
[
µ1 µ2 · · · µn

]

w1

w2
...
wn

 (5)

where µ is the expected returns vector.

2.2.2 Volatility

The estimation of risk, that is the chance that an investment actual re-
turn will be different from its expected return, for a security requires the
calculation of its variance, that determines how far each return in a given
period is from the mean40:

σ2
i =

∑T
t=1(ri,t − E[Ri])

2

T − 1
(6)

with T being the total number of returns in the observed period.
At this point, in order to find the security’s volatility, we have to calcu-

late the square root of the variance, that basically is its standard deviation:

σi =
√
σ2
i (7)

But when it comes to portfolio volatility, we cannot just calculate the
weighted average of each security’s standard deviation, as the diversifica-
tion benefits occur and the overall riskiness of the portfolio should be lower
than the sum of individual volatilities.

40https://www.treccani.it/vocabolario/varianza/
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In order to perform it, we have to consider the correlation coefficient,
that measures the degree to which two variables move in relation to each
other41:

ρi,j =
σi,j
σiσj

(8)

where σi,j is the covariance between i and j, used to determine the rela-
tionship between the movement of two asset prices42, and it is calculated
as:

σi,j =

∑T
t=1(ri,t − E[Ri])(rj,t − E[Rj])

T − 1
(9)

Values of ρ are comprehended in the range of -1 and 1 and a ρ near 0
means that the two asset are uncorrelated, boosting the portfolio diversi-
fication.

As risk is considered to be composed by a systematic and an unsystem-
atic component [41], where the former is inherently existing in the market
and the latter is asset-specific, diversification is aimed at mitigating the
unsystematic part.

In practice, if two securities move in a different way, the negative perfor-
mances of an asset can be offset by the positive performance of the other
one.

In this way, the overall portfolio volatility can be reduced. We can
estimate portfolio variance as:

σ2
P =

N∑
i=1

M∑
j=1

wiwjσiσjρi,j

=
N∑
i=1

M∑
j=1

wiwjσi,j

(10)

41https://www.treccani.it/vocabolario/correlazione/
42https://www.treccani.it/enciclopedia/covarianza-%28Enciclopedia-della-Scienza-e-della-

Tecnica%29/

44



or, in matrix form, as:

w′Σw =
[
w1 w2 · · · wn

]

σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

... . . . ...
σn1 σn2 · · · σnn



w1

w2
...
wn

 (11)

and then:

σP =
√
σ2
P (12)

2.2.3 Sharpe Ratio and the Capital Market Line

In order to determine the most suitable asset allocation in securities, in-
vestors choose the combination of assets that guarantees the best risk/reward
relationship.

A commonly used indicator to rank portfolios in terms of return/volatility
trade-off is the Sharpe Ratio [19]. For an asset i, the Sharpe Ratio is found
as:

SRi =
E[Ri]− rF

σi
(13)

The ratio measures the incremental reward, in terms of expected excess
return compared to the risk-free43, for each increase in the volatility of that
asset [42]; in general, the higher the ratio, the more efficient the asset.

At this stage, an investor has to decide how to allocate his/her money
and he/she can simulate a large number of asset combinations in order to
find the most efficient ones in terms of volatility and expected return.

43The risk-free rate represents the return on an investment without uncertainty associated to its cash-
flows. Generally, the rF is identified in the short-term government bonds such as T-Bills in the US.
https://www.borsaitaliana.it/borsa/glossario/tasso-risk-free.html
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Anyway, only certain portfolios can be considered: they are located
on the Efficient Frontier, that is composed by portfolios ”providing the
maximum expected return for a given admissible risk or — which is the
same — the minimum risk for a given desired expected return” [43].

Portfolios under the frontier are called ”inefficient”, as there are port-
folios providing higher returns for that level of volatility, or portfolios car-
rying less risk for that level of return.

Figure 18: Efficient Frontier and Capital Market Line: the green line represents the
Efficient Frontier, while the red one represents the Capital Market Line. The tangency point
between the two lines corresponds to the highest Sharpe Ratio portfolio.

The next step to evaluate the best combination of assets is to draw the
Capital Market Line, a tangent line starting from the risk-free asset with
slope equal to the maximum Sharpe Ratio portfolio; the tangency point
represents the best mix of stocks and bonds among all possible combina-
tions [44].

Moreover, the other portfolios that lie on the CML provide the best
risk/return combination too, and, according to the Tobin’s Theorem [45],
the more they are near to the risk-free, the more they will be selected by
moderate investors, while the more they are after the tangency point, the
more they will be likely to be picked by aggressive investors.

46



2.2.4 Capital Asset Pricing Model

As an extension to the Modern Portfolio Theory, William Sharpe [46], and
subsequently Lintner [26] and Mossin [20], developed a new model in 1964,
called Capital Asset Pricing Model, that measured asset returns in relation
to a risk factor, the beta.

The model relies on three main assumptions about investors [47]:

• Investors can trade all securities at market prices and can borrow at
the risk-free rate

• Investors only hold efficient portfolios

• Investors have homogeneous expectations on expected returns, volatil-
ities and correlations

Given these assumptions, each investor on the market will identify and
invest in the maximum Sharpe Ratio portfolio and he/she will only decide
what portion of the portfolio to be composed by the rF . Therefore, the
tangent portfolio must equal the market portfolio.

For an asset i, the CAPM formula is:

E[ri] = rF + βi

(
E[rM ]− rF

)
(14)

where:

βi =
σi,M
σ2
M

(15)

In general, for any portfolio, its beta can be computed as the weighted
average of its individual assets:

E[rP ] = rF + βP

(
E[rM ]− rF

)
(16)

where:
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βP =
σP,M
σ2
M

=
N∑
i=1

wiβi (17)

The βi is an important element to evaluate the riskiness of a security i,
as the σ2

i only tells us the risk associated with its own fluctuations from
the mean, but not with respect to the market. For instance, if an asset i
is uncorrelated with the market, then its βi will be equal to 0 and it will
mean that there is no risk, and so no reward, associated with the security.

So, the βi can be seen as a measure of systematic risk that cannot be
eliminated with diversification.

Furthermore, in practical terms, the beta corresponds to the best fitting
line in the plot of a stock’s excess returns versus the market excess returns
and it can be obtained through a linear regression:

E[ri,t]− rF,t = αi + βi

(
E[rM,t]− rF,t

)
+ εi,t (18)

or, in matrix form as:

E[r1,t]− rF,t =α1 + β1

(
E[rM,t]− rF,t

)
+ ε1,t

E[r2,t]− rF,t =α2 + β2

(
E[rM,t]− rF,t

)
+ ε2,t

...

E[rN,t]− rF,t =αN + βN

(
E[rM,t]− rF,t

)
+ εN,t

(19)

The result of the regression can be visualized in figure 9:
The last element of the regression, εi,t, is the error or residual term

and represents the deviations of the points from the best-fitting line. On
average, it is equal to zero, and the aim of the simple linear regression44 is
to minimize the sum of the squared distances from the line.

44In this case, we are referring to the Ordinary Least Squares
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Figure 19: OLS regression: the beta corresponds to the slope of the best fitting line [47].

In order to evaluate the regression, the coefficient of determination, or
simply R2, is used. The R2 is a statistical measure that tells us the link
between the data variability and the correctness of the regression model. In
finance, it tells us how closely the performance of an asset can be attributed
to the performance of a selected benchmark index [48]:

R2 = 1− RSS

TSS
= 1−

∑N
i=1 ε

2
i∑N

i=1(yi − y)2
= 1−

∑N
i=1 yi − ŷ∑N

i=1(yi − y)2

=
ESS

TSS
=

∑N
i=1(ŷ − y)∑N
i=1(yi − y)2

(20)

where TSS stands for Total Sum of Squares, RSS stands for Residual
Sum of Squares and the ESS is the Explained Sum of Squares.

Briefly, R2 varies from -∞ to 1 and the more the value is closer to 1,
the more the model explains the data correctly.
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2.2.5 The Security Market Line

The CAPM equation implies that there is a linear relation between the
stock’s beta and its expected return. This relation is represented by the
Security Market Line, a function with slope equal to the Market Risk
Premium45 and intercept equal to the rF .

Figure 20: Security Market Line: the figure shows the relation between the CML and
the SML [47].

The purpose of the SML is to determine the right rate of return of a
security given a beta value and to identify those stocks not aligned with
their systematic risk expectations.

2.2.6 Jensen’s Alpha

Recalling equation (18), the constant αi is the stock’s Alpha and, when it
is estimated in this way, it is referred as the ”Jensen’s Aplha” [27].

The Alpha is a ex-post indicator employed to evaluate the performances
of a security (or portfolio) and it is used to determine whether that asset
had or not abnormal returns over the expected return predicted by the
CAPM. We can calculate it as:

αi = E[ri]−
[
rF + βi

(
E[rM ]− rF

)]
(21)

45Given by β(E[rM ]− rF )
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2.2.7 Treynor Ratio

The Treynor Ratio was introduced in 1965 by J. L. Treynor [28] and it is a
similar reward-to-risk measure to the Sharpe Ratio. The main difference is
that the Sharpe Ratio uses the volatility as risk measure, while the Treynor
Ratio uses the beta:

For an asset i, the Treynor Ratio is found as:

TRi =
E[Ri]− rF

βi
(22)

This implies that the two ratios treat risk differently because, while
the Sharpe Ratio uses the total risk associated with the investment, the
Treynor Ratio only uses the risk associated with the systemic component
of the portfolio. This aspect could lead to very divergent results.

The interpretation of the ratio is that, the higher the value, the higher
will be the portfolio capability to remunerate the exposure to systemic
risk.

2.2.8 Limits of the Myopic Approach

Despite the validity of this theory, the traditional portfolio model is based
on some strict assumptions that result in many limitations and weaknesses:

• The CAPM assumes risk-adverseness, rationality and realistic expec-
tations of all market participants, but the market is not formed by
rational investors only.

• The Mean-Variance optimization only uses expected returns and volatil-
ity to decide the portfolio optimization, leaving out other useful sta-
tistical measures like higher moments of the return distribution.

Moreover, the standard deviation is a very simplistic tool to represent
risk and two portfolios could exhibit the same volatility levels but for
different reasons, one for small and frequent losses and the other for
two or three larger declines.
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• The single-period time horizon appears unrealistic as it does not con-
sider portfolio rebalancing and cannot capture factors that vary over
time.

2.3 Post-Modern Portfolio Theory

Mean and variance are important measures of the returns’ distribution, but
they are often not able to properly explain the data, as they are related
to the first and second moment of the distribution.

These measures, as said, are useful when dealing with normally46 dis-
tributed returns but, due to the nature of the stock market, returns are
often asymmetrical (or skewed).

This huge con of MPT was handled in subsequent researches on portfolio
optimization, where risk began to be treated with special focus on the
downside part of volatility.

The tools introduced by Post-Modern Portfolio Theory researchers are
more practitioners-world oriented and today they are industry standard.
Main ones are Downside Risk, Sortino Ratio and Volatility Skewness, and
they will be described in this section.

2.3.1 Higher Moments of the Distribution: Skewness

Before introducing PMPT, it is important to understand what is asymme-
try in a distribution and how we can measure it through skewness.

Skewness is the third moment[49] of a distribution and measures its
degree of departure from normality[50]. Left-sided distribution are defined
as positive skewed, while right-sided are negative, with normal distribu-
tion having a value of skewness equal to zero and a perfectly symmetrical
distribution.

Values lower than -1 and higher than 1 imply highly skewed returns,
while values around zero imply moderate skewness.

Sample skewness for one asset is given by:

46Normal Distribution, also called Gaussian or Bell Curve, is a probability distribution in which values
are usually centered around the mean
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Figure 21: Skewness: A general relationship of mean and median under differently skewed
unimodal distribution.

Si =
N

(N − 1)(N − 2)

(∑T
t=1 ri,t − E[Ri]

σi

)3

(23)

while portfolio skewness is given by:

SP = ω′M3(ω ⊗ ω) (24)

where M3 is the co-skewness matrix and ⊗ is the Kronecker matrix
operator. M3 is found as:

M3 = E[(ri,t − E[Ri])(rj,t − E[Rj])
′ ⊗ (rk,t − E[Rk])

′]

= {si,j,k}
(25)

with elements si,j,k defined as:

si,j,k = E[(ri,t − E[Ri])(rj,t − E[Rj])(rk,t − E[Rk])] (26)

for all i,j,k = 1,...n. In matrix form, the resulting co-skewness matrix
for 3 assets is given by:

53



M3 =

s1,11s1,12s1,13 s2,11s2,12s2,13 s3,11s3,12s3,13

s1,21s1,22s1,23 s2,21s2,22s2,23 s3,21s3,22s3,23

s1,31s1,32s1,33 s2,31s2,32s2,33 s3,31s3,32s3,33

 =
[
S1 S2 S3

]
(27)

2.3.2 Downside Risk

Downside Risk is a measure of standard deviation of those returns that
are less then the mean. It is often called semi-deviation (or square root of
semi-variance) and differs from volatility as the latter assumes equivalence
between upside and downside standard deviation, while the former treat
them separately.

For an asset i, the downside risk is found as:

DSRi =

√∑T
t=1

(
ri, t− E[Ri]

)2

T − 1
(28)

s.t. ri,t < E[Ri]

Moreover, following the same approach, it is also possible to calculate
the semi-covariance of n assets in order to find the optimal Sortino Ratio
allocation:

σ−i,j =

∑T
t=1

(
ri, t− E[Ri]

)(
rj, t− E[Rj]

)
T − 1

(29)

2.3.3 Sortino Ratio

The downside risk is useful to calculate the Sortino Ratio, a variation of
the Sharpe Ratio. The two ratios differs from each other in the treatment
of risk, as the Sortino Ratio uses the downside deviation instead of the
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standard deviation, so the focus is only on the volatility of negative asset
returns [29].

For an asset i, the Sortino Ratio is found as:

SoRi =
E[Ri]−MAR

DSRi
(30)

where the MAR is the minimum acceptable return set by the investor
(for instance, in case of a risk-averse individual, the MAR could be equal
to the rF ).

A high Sortino index indicates that the variability of returns is not pre-
dominantly concentrated below the MAR; conversely a low Sortino index
indicates that the variability is concentrated below the minimum accept-
able.

The intuition behind the ratio is that investors are concerned only in
case of negative fluctuations of the asset price, while they will not feel
pressures in case of returns above their MAR. This is why it is useful
when there are two comparable investments that show the same Sharpe
ratio.

2.3.4 Volatility Skewness

Volatility skewness is another important indicator of PMPT and it mea-
sures the percentage of variance from returns above the mean to the vari-
ance from return below the mean.

Thus, if a distribution is normal, the ratio will be equal to 1, while
values greater than 1 indicate positive skewness and values lower than 1
indicate negative skewness.

For an asset i, the volatility skewness is found as the ratio between
upside variance and downside variance:

Sσi =

∑T
t=1

(
ri, t− E[Ri]

)2
with ri,t < E[Ri]∑T

t=1

(
ri, t− E[Ri]

)2
with ri,t > E[Ri]

=
USRi

DSRi
(31)
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The more skewed a distribution, the more the traditional MPT risk
measures will not be able to capture its true risk.

2.4 Risk Parity Approach

Another interesting portfolio optimization method is the Risk Parity ap-
proach, a risk-based allocation strategy firstly implemented by Bridgewater
Associates in the ”All Weather Fund” launched in 199647.

Risk Parity portfolios define a strategy where the focus when choosing
weights is not on the capital anymore, but on the marginal risk contri-
bution of each asset class; this approach asserts that when allocation is
adjusted to the same risk level, the portfolio can achieve higher Sharpe
Ratios and is more resilient to market downturns. We refer to marginal
risk as the percentage of volatility that each asset brings to overall portfolio
risk.

In this sense, the Risk Parity approach defines an equally-risk-weighted
portfolio where risk contributions are not about having the same volatility,
but they are more about contributing in the same manner to the overall
portfolio risk. Furthermore, unlike Mean-Variance Optimization, no ex-
pected return is required in the allocation process.

2.4.1 Optimal Risk Parity Portfolio

In order to build a Risk Parity portfolio, we recall equation 10, 11 and 12,
and we use Euler’s decomposition to fractionate portfolio volatility into
marginal components [24]:

σP =
w′Σw√
w′Σw

=
N∑
i=1

wi
[Σw]i√
w′Σw

=
N∑
i=1

MRCi (32)

s.t. MRCi =
1

N
σP

where MRCi is the marginal risk contribution of asset i.

47https://www.reuters.com/article/usa-bonds-funds-idINKBN26X18W
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Figure 22: Equally Weighted vs Risk Parity: the figure compares the allocation based
on equal weights versus the allocation based on equal risk contribution.

The optimization process has the aim to make risk contribution equal,
so, in addition to the non-short selling constraint, we impose that allMRCi
are equal.

2.4.2 Relaxed Risk Parity Approach

In the development of the empirical analysis, weight constraints have been
imposed to each optimization method, such that the Equity asset class
has at least 50% of weight, Fixed Income has at least 20% and Crypto a
maximum of 10%.

This aspect lead the Risk Parity model to violate the property of having
all MRCi equal and produce portfolios with different risk contributions.

This model can be thought of as an extended Risk Parity optimization
with a risk diversification constraint that focuses on risk parity allocations,
resulting in near Risk Parity portfolios [24].
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2.5 Further Elements in the Analysis

Apart from the indicators contained in the Modern and Post-Modern Port-
folio Theories, other statistical measures have been added to the analysis,
in order to compare deeper the different asset allocation strategies.

2.5.1 Value at Risk

The Value at Risk is a Risk Management indicator that synthetically ex-
presses the maximum potential loss that a portfolio/position can suffer
given a specified time horizon and a specified confidence level during nor-
mal days or market crashes [51]. It depends on time, frequency and market
value of the position and it comes with a probability that tells us how likely
is the potential loss to be greater than the VaR.

The definition of a 95%, n-day, Value-at-Risk with initial value P0, is
V aR95%(P0) such that [52]:

Pr
[
(Pt − P0) < V aR95%(P0)

]
= 0.95 (33)

or:

Pr
[
(Pt − P0) > V aR95%(P0)

]
= 0.05 (34)

There are three main approaches for its calculation:

• Parametric Approach: it uses returns and volatility and assumes nor-
mal distribution to calculate the VaR.

• Historical Simulation: it sorts historical returns in increasing order
and assumes that past returns are a benchmark for future returns.

• Monte Carlo Simulation: it develops a model to predict future price
changes through multiple hypothetical trials.

During the empirical analysis, the parametric approach has been used
and the general formula for its calculation is:
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Figure 23: Value at Risk

V aR95%,i = σi
√
t α95% ∆ (35)

where σi is the asset volatility,
√
t is the time horizon in year fraction,

α95% is the value of the cumulative function given a 95% confidence interval
and ∆ is the sensitiveness of the underlying risk factor to market value
changes.

This approach has clear advantages of simplicity, but we have to bear
in mind that returns are often skewed and the assumption of normality
cannot hold.

2.5.2 Expected Shortfall (Conditional Value at Risk)

An additional downside of the VaR is that it tells us what is the probability
of losses exceeding the VaR, but it does not tell us the entity of the loss,
(i.e. it fails to capture the “tail risk”).

In order to overcome this issue, we can extend the Value at Risk model
to the Conditional Value at Risk model, or Expected Shortfall; given a
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certain confidence level, CVaR represents the expected loss when it is
greater than the value of the VaR calculated with that confidence level.

Figure 24: Conditional Value at Risk: a quick comparison between VaR and CVaR
shows that the latter has greater power to capture tail risk.

We can express it as:

CV aR95%,i =
1

1− c

∫ V aR95%,i

−1

xp(x)dx (36)

where p(x) is the probability density function and c is the point where
the VaR is set.

Although the ES is heavily affected by the accuracy of tail modelling,
it has superior properties in portfolio management as it measures the out-
come that hurt the most [53].

2.5.3 Kurtosis

In previous sections, we introduced the third moment of the distribution,
but it is also important to highlight the fourth moment, the kurtosis. Kur-
tosis measures the height and sharpness of the central peak, relative to the
ones of a standard bell curve, where values equal to zero imply mesokurto-
sis (normality), values greater than zero imply leptokurtosis (fatter tails)
and values less than zero imply platykurtosis (thinner tails).

Sample kurtosis for one asset is given by:
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Figure 25: Kurtosis: illustration of meso, lepto and platykurtosis.

Ki =

[
N(N + 1)

(N − 1)(N − 2)(N − 3)

(∑T
t=1 ri,t − E[Ri]

σi

)4
]

− 3(N − 1)2

(N − 2)(N − 3)

(37)

while portfolio kurtosis is given by:

KP = ω′M4(ω ⊗ ω ⊗ ω) (38)

where M3 is the co-kurtosis matrix and it is found as:

M4 = E[(ri,t − E[Ri])(rj,t − E[Rj])
′ ⊗ (rk,t − E[Rk])

′ ⊗ (rk,t − E[Rk])
′]

= {ki,j,k,l}
(39)

with elements ki,j,k,l defined as:

ki,j,k,l = E[(ri,t − E[Ri])(rj,t − E[Rj])(rk,t − E[Rk])(rl,t − E[Rl])] (40)

for all i,j,k,l = 1,...n. In matrix form, the resulting Co-Kurtosis matrix
for 3 assets is given by:
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M4 =
[
k11klk12klk13kl k21klk22klk23kl k31klk32klk33kl

]
(41)

2.5.4 Maximum Drawdown

The Maximum Drawdown of an investment is simply the percentage dis-
tance between the maximum peak of an investment and its minimum dur-
ing a certain time frame.

It is different from a loss, as it only expresses the magnitude of a move-
ment, but it can be used as another indicator of volatility.

For any asset i, the Maximum Drawdown is given by:

MDi =
Pmax − Pmin

Pmax
− 1 (42)

2.6 Conclusions

Modern Portfolio Theory is the starting point of most optimization tech-
niques and it has led the way of the asset allocation environment for many
years.

Anyway, the model’s limitations, like its strict assumptions and its my-
opic approach, have brought researchers to develop more advanced tools
that often outperform the original methodology.

In this sense, in the second chapter we have seen that Post-Modern
Portfolio Theory and Risk Parity attempt to adjust the deficiencies of
MPT and introduce new risk-adjusted indicators.

In the following chapter, we will investigate the performances of port-
folios constructed according to the methodologies described above and we
will assess the impact of cryptocurrencies and rebalancing.
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3 Analysis and Results

3.1 Introduction

At this stage, we have defined all the elements useful to conduct the em-
pirical analysis, that is based on the application of three asset allocation
methodologies outlined in the previous chapter.

We will then start with the description of the Data Sample, composed of
the S&P500, the 10-Year Treasury Bond and the CRIX index. The latter
is a synthetic cryptocurrency index created to track the market trend of
cryptos and, for the purposes of this thesis, it has been assumed to be a
tradable ETF.

Once reviewed the in-sample characteristics of the three assets, the key
aspects of the portfolios constructed by optimizing the Sharpe Ratio will
be outlined and they will be compared to the market index in order to
perform a preliminary performance analysis.

The same process will be then performed both for Sortino Ratio and
Relaxed Risk Parity portfolios.

Subsequently, all optimization techniques will be compared one with
each other, both taking into account the entire out-of-sample period and
considering the intertemporal statistics of the different allocations.

In conclusion, it will be possible to argue which one out of all portfolios
exhibited the best performing characteristics, outlining its strengths and
limitations, and, therefore, we could define the features of the optimal asset
allocation methodology for crypto investing among the ones reviewed.

3.2 Settings

3.2.1 Data Sample

The data the used in the empirical analysis are divided into 3 asset classes:

• Equity: S&P50048

48Data from the GSPC ticker at
https://it.finance.yahoo.com/quote/%5EGSPC?p=%5EGSPC&.tsrc=fin-srch
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• Bond: 10-Year Treasury Bond49

• Crypto: CRIX Index50

The S&P500 is one the main market-capitalization-weighted indexes
for the equity US market and it is constituted by the 500 largest stocks
according to their market cap, while the 10-Year Treasury Bond is the
benchmark for the US risk-free rate.

A deeper mention needs to be made for CRIX51, a cryptocurrency in-
dex developed by professor Wolfgang Härdle and his team of researchers
from Humboldt University, Berlin. The index allows investors to track the
cryptocurrency market using a small number of constituents52 that are
evaluated according to their market capitalization and liquidity [25]. The
reallocation period is 1 month, which is the time point where coin liquidity
is checked again.

The collection period of the data ranges from September 30th 2014 to
June 6th 2021 and the logarithmic returns have been calculated starting
from October 1st 2014. For each portfolio reallocation, the look-back in-
sample returns have been picked starting from the same day of the pre-
ceding year and the out-of-sample backtesting allocations have lasted for
the subsequent 3 months.

3.2.2 Assumptions and Constraints

In the development of the asset allocation and during the performance
evaluations, some assumptions have been made and some constraints have
been imposed:

• The CRIX index has been assumed to be a tradable ETF

• The annual risk-free in the performance evaluation statistics has been
assumed to be equal to 1.60% annually and 0.398% quarterly

49Data from the TNX ticker at
https://it.finance.yahoo.com/quote/%5ETNX?p=%5ETNX&.tsrc=fin-srch
50Data from the official website of the index at http://data.thecrix.de/data/crix.json
51Known as Royalton CRIX Index after the acquisition by Royalton Partners in 2021
52As of December 2021, CRIX is constituted by Bitcoin, Ethereum, Cardano, Binance Coin, Ripple

and Solana
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• No short selling constraint

• Equity weight at least equal to 50% of the overall asset allocation

• Bond weight at least equal to 20% of the overall asset allocation

• Crypto weight at maximum equal to 10% of the overall asset allocation

Because of the last three constraints, the Risk-Parity approach has been
relaxed in order to allow the compliance of these conditions.

Moreover, the allocation procedures have been set differently between
the static and the dynamic portfolios:

• Each portfolio is calibrated to look back at the prior 252 trading days,
with allocations starting from October 1st 2015

• The rolling horizon for the out-of-sample asset allocations is set at the
next 1449 trading days for static portfolios, as weights do not change,
while dynamic ones are reallocated each 63 days, so the total amount
of quarters is 23

Algorithm 1 shows the procedure used to set the data sample and the
constraints.

3.3 Data Sample Review

Before starting with the asset allocation methodologies, it is important
to analyze the data sample characteristics. Table 2 from the appendix
summarizes some key metrics useful to evaluate asset classes performances
over the entire in-sample and out-of-sample periods.

As we can see from figure 26, the logarithmic returns distribution of
the 10-year Treasury Bond and of the CRIX index spread in a much wider
way than the S&P500. This aspects resulted in high annualized stan-
dard deviation values, respectively of 53.78% for the bond and 76.49% for
crypto. These volatility values were reflected in high expected returns and
Sharpe Ratio only for crypto, while bond underperformed with respect to
the other asset classes.
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Algorithm 1 Data Set Initialization

Result: Data Selection and Constraints Setting

Initialize Data:

• Select Data Set → S&P500, 10-Year Treasury and CRIX

• Time Horizon → September 30th, 2014 to June 6th, 2021

• Calculate Logarithmic Returns

Constraint Settings:

• 1’w = 1

• 0.8 ≥ wE ≥ 0.5

• 0.5 ≥ wB ≥ 0.2

• 0 ≤ wC ≤ 0.1

Allocation Settings:

• Set the lookback period from lst to let → prior 252 trading days

• Set the rolling horizon from rst to ret

- Next 1449 trading days for static portfolios

- Next 63 trading days for dynamic portfolios

• Define the number of reallocation periods

- T = 1 for static portfolios

- T = 23 for dynamic portfolios

• rF = 1.60%
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For what regards the S&P500, its results were more stable and it showed
the lowest volatility value (18.27%), with an interesting Sharpe Ratio of
54.48%.

Figure 26: Logarithmic Returns (in-sample)

Skewness53 values indicate high asymmetry in the S&P500, a fairly
negative distribution for crypto and a slightly positive one for bond, while
kurtosis54 calculations tell us that all asset classes are characterized by a
highly peaked platykurtosis.

These aspects imply that the classical Modern Portfolio Theory asset
allocation (that in this thesis has been optimized according to the highest
Sharpe Ratio) could not result in the best performing portfolio choice, as
MPT is heavily based on normality assumptions.

Another important statistic to underline is the volatility skewness, telling
us that, while for equity and crypto the upside variance is around 70-80%
of the semivariance (or upside variance), in the case of bond it is higher
by 5%, implying that the returns above the mean have been more volatile
than the ones below it.

53Calculated over the entire sample period
54Calculated over the entire sample period
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Figure 27: Returns Distribution (in-sample)

The last interesting measures to notice are the differences between Value
at Risk and Expected Shortfall. In the case of equity and bond, the VaR
is higher than the CVaR, meaning that the worst possible outcome is
captured by the VaR. At the opposite, the crypto VaR is way less than its
ES, implying that the VaR was not fully able to capture the tail risk of
the distribution.

The last two graphs illustrate the cumulative returns over the entire
7-years period. Figure 29 shows the exponential growth of the cryptoas-
set market capitalization, especially in the first months of 2021, and a
well-developed asset allocation strategy could be able to capture this op-
portunity.

Finally, from figure 28, it is possible to notice a common phenomenon
in the market, that is the inverse correlation of equities versus bonds dur-
ing certain periods. This happened in particular during 2019, when the
S&P500 dropped in value during first quarters and subsequently investors
regained confidence in it, selling the bonds employed to hedge against eq-
uity.
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Figure 28: Equity and Bond Cumulative Returns (in-sample)

Figure 29: Crypto Cumulative Returns (in-sample)
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3.4 Sharpe Ratio Optimization

In this Modern Portfolio Theory application, the asset allocation process
was based upon the choice of the highest Sharpe Ratio portfolio.

Four kind of allocations have been made: static, with and without
cryptos, and dynamic, with and without cryptos.

Equation 43 refers to the static asset allocation approach:

max
w

µ′w − rF√
w′Σw

s.t. 1′w = 1

0.8 ≥ wE ≥ 0.5

0.5 ≥ wB ≥ 0.2

0 ≤ wC ≤ 0.1

(43)

while equation 44 refers to the dynamic strategy:

max
w

T∑
t=1

µ′twt − rF√
w′tΣtwt

s.t. 1′wt = 1

0.8 ≥ wE,t ≥ 0.5

0.5 ≥ wB,t ≥ 0.2

0 ≤ wC,t ≤ 0.1

(44)

with T being equal to 23 quarters. The procedure was conducted as
follows:

1. Looking back at the prior 252 trading days, the in-sample mean vector
and the in-sample covariance matrix have been calculated

2. At this stage, a Montecarlo simulation of 1000 different weight com-
binations have been conducted, always in compliance with the con-
straints set in the previous section

3. For each random portfolio, I calculated its in-sample Sharpe Ratio
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4. Subsequently, I locked the maximum Sharpe Ratio portfolio and I
stored its weights vector

5. Now we have two distinct situations:

• Static portfolios→ the weights selection procedure ends here and
these weights are now employed for the out-of-sample allocation,
that will last for the subsequent 1449 trading days (or 23 quarters)

• Dynamic portfolios → these weights are now employed for the
out-of-sample allocation, that will last for the subsequent 63 trad-
ing days; afterwards, the whole procedure will be iterated for
other 22 times

Algorithm 2 summarizes the codes used in the process.
The process was set as explained in order to ascertain if there has been

a benefit in rebalancing and a positive contribution from cryptos. The
portfolios were then compared to the S&P500 as a benchmark.

Starting from figure 30, we can see that portfolio returns are quite
correlated, probably due to the constraint of always having at least 50%
of the allocation in equity and this aspect results in a fairly comparable
volatility too.

Figure 30: MPT Logarithmic Returns (out-of-sample)
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Algorithm 2 Sharpe Ratio Portfolio Optimization

Stage 1: Optimal Weights

t = 0

while t ≤ T do:

• Compute the in-sample µt between lst and let

• Compute the in-sample Σt between lst and let

for i in range(1000) do:

• Generate 1000 random weights vectors

• Compute the in-sample SRt (as seen in equation 43) for each weight vector

end for

• Select the maximum SRt portfolio

• Store the optimal weights vector

• Iterate start period lst and end date let

• t = t + 1

- T = 1 for static portfolios

- T = 23 for dynamic portfolios

end while

——————————————————————————————————————–
Stage 2: Out-of-Sample Asset Allocation

t = 0

while t ≤ T do:

• Use optimal weights to allocate the assets in the rolling period → woptimal’ r from
rst to ret

• Iterate start period rst and end date ret

• t = t + 1

- T = 1 for static portfolios

- T = 23 for dynamic portfolios

end while
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Again, due to this constraint, we can observe in figure 31 how the distri-
butions assume similar out-of-sample skewness and out-of-sample kurtosis
values, all tending to negative skewness and platykurtosis.

Figure 31: MPT - Returns Distribution (out-of-sample)

From the expected return point of view, only the dynamic portfolio with
crypto managed to outperform the benchmark, obtaining an expected re-
turn equal to 16.29% annualized and a cumulative return of 2.22x, against
2.02x of the S&P500. Again, no other portfolio beat the market.

These conclusions were also confirmed by the Sharpe Ratio, which, in
the case of the dynamic crypto portfolio, recorded a value of 67.85% versus
66.35% of the market, while other portfolios performed significantly worse.

The portfolio in question has also performed better in terms of Maxi-
mum Drawdown, recording the lowest value of -37.99%, both with respect
to the -46.86% of the S&P500 and with respect to all other portfolios, all
above the value of the latter.

Considering the VaR and CVaR, it can be seen from table 3 that in all
distributions the first values are lower than the last ones, implying that
VaR calculations have been able to capture the tail risk of the returns,
but in this case no portfolio has been able to have a value lower than the
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market.
Finally, the Downside Risk values of all portfolios are quite aligned to

the market, but only the dynamic portfolio with crypto was able to express
a higher Sortino Ratio (equal to 99.60% annualized against 95.51% of the
benchmark), thanks to the higher expected return.

Figure 32: MPT Cumulative Returns (out-of-sample)

In conclusion, it is possible to state that, overall, the best performing
portfolio has been the dynamic one with cryptos, which was the most
resilient during bearish periods and has gained the most in bullish periods,
benefiting both from rebalancing and from the contribution of cryptos.
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Figure 33: Weights Rebalancing - Dynamic MPT

Figure 34: Weights Rebalancing - Dynamic MPT with Crypto
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3.5 Sortino Ratio Optimization

The Post-Modern Portfolio Theory approach followed a similar investment
strategy if compared to the Modern Portfolio Theory, but instead of the
Sharpe Ratio, in this case was the Sortino Ratio the one to be maximized,
so the Σ- element in the following two equation refers to the semicovariance
matrix.

Again, four portfolios have been constructed (static and dynamic, both
with and without crypto) and they were then compared to the S&P500.

Equation 45 refers to the static asset allocation approach:

max
w

µ′w − rF√
w′Σ−w

s.t. 1′w = 1

0.8 ≥ wE ≥ 0.5

0.5 ≥ wB ≥ 0.2

0 ≤ wC ≤ 0.1

(45)

while equation 46 refers to the dynamic strategy:

max
w

T∑
t=1

µ′twt − rF√
w′tΣ

−
t wt

s.t. 1′wt = 1

0.8 ≥ wE,t ≥ 0.5

0.5 ≥ wB,t ≥ 0.2

0 ≤ wC,t ≤ 0.1

(46)

with T being equal to 23 quarters. The procedure was conducted as
follows:

1. Looking back at the prior 252 trading days, the in-sample mean vector
and the in-sample semicovariance matrix have been calculated
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2. At this stage, a Montecarlo simulation of 1000 different weight com-
binations have been conducted, always in compliance with the con-
straints set in section 3.3

3. For each random portfolio, I calculated its in-sample Sortino Ratio

4. Subsequently, I locked the maximum Sortino Ratio portfolio and I
stored its weights vector

5. Now we have two distinct situations:

• Static portfolios→ the weights selection procedure ends here and
these weights are now employed for the out-of-sample allocation,
that will last for the subsequent 1449 trading days (or 23 quarters)

• Dynamic portfolios → these weights are now employed for the
out-of-sample allocation, that will last for the subsequent 63 trad-
ing days; afterwards, the whole procedure will be iterated for
other 22 times

Algorithm 3 summarizes the codes used in the process, that are basically
the same seen in the Sharpe Ratio process (pseudocode 2) except for the
Downside Risk matrix Σ-.

Figure 35: PMPT Logarithmic Returns (out-of-sample)
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Differently from the previous strategy, the PMPT crypto portfolios had,
overall, a higher allocation in the crypto asset class, as we can see com-
paring figure 39 to figure 34.

The logarithmic returns of all distributions are quite correlated, due to
50% in equity constraint, and exhibit a comparable volatility. None of the
four allocations had a standard deviation value, all around 22%, less than
the S&P500, equal to 18.72%.

Moreover, from figure 36, we can notice important negative out-of-
sample skewnesses and out-of-sample platykurtosis in the returns distri-
bution of all portfolios.

Figure 36: PMPT - Returns Distribution (out-of-sample)

Similarly to the MPT situation, only the dynamic portfolio with crypto
managed to outperform the market in terms of expected return, obtaining
a 15.41% annualized versus the 14.02% of the benchmark, thanks to the
portion of investment in crypto (as it is possible to see from figure 39) and
to the rebalancing strategy.

From the cumulative return point of view too, the dynamic crypto port-
folio gained the most with respect to other allocations and it was the
only one to outperform the market, obtaining a 2.10x versus 2.02x of the
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Algorithm 3 Sortino Ratio Portfolio Optimization

Stage 1: Optimal Weights

t = 0

while t ≤ T do:

• Compute the in-sample µt between lst and let

• Compute the in-sample Σt
- between lst and let

for i in range(1000) do:

• Generate 1000 random weights vectors

• Compute the in-sample SoRt (as seen in equation 45) for each weight vector

end for

• Select the maximum SoRt portfolio

• Store the optimal weights vector

• Iterate start period lst and end date let

• t = t + 1

- T = 1 for static portfolios

- T = 23 for dynamic portfolios

end while

——————————————————————————————————————–
Stage 2: Out-of-Sample Asset Allocation

t = 0

while t ≤ T do:

• Use optimal weights to allocate the assets in the rolling period → woptimal’ r from
rst to ret

• Iterate start period rst and end date ret

• t = t + 1

- T = 1 for static portfolios

- T = 23 for dynamic portfolios

end while
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S&P500.
Moreover, looking at Maximum Drawdown values, the dynamic portfo-

lio with crypto obtained the smallest value, equal to -38.96%, implying a
certain resilience during bearish periods.

Anyway, these results were not confirmed in terms of Sharpe Ratio, as
the dynamic crypto beat other portfolios but not the market, recording a
value of 62.65% versus 66.35%.

In this sense, also from the Sortino Ratio point of view we can draw
the same conclusions, where the dynamic crypto portfolio managed to do
better only if compared to other PMPTs, but not with respect to the
market (92.78% versus 95.51%).

Considering other risk measures, the downside volatilities of all portfolio
are quite comparable, and so are the volatility skewnesses, but in terms of
VaR and CVaR we can notice how the dynamic portfolio with crypto shown
the biggest values, respectively equal to 34.63% and 19.41% annualized
versus 27.66% and 17.67% of the benchmark.

Figure 37: PMPT Cumulative Returns (out-of-sample)

In conclusion, in this allocation methodology too, the best-performing
overall portfolio was the dynamic one with crypto, although it shown a
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certain riskiness in some alternative risk measures that make it not suitable
for all investment decisions.

Figure 38: Weights Rebalancing - Dynamic PMPT

Figure 39: Weights Rebalancing - Dynamic PMPT with Crypto
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3.6 Relaxed Risk-Parity Optimization

As said in chapter 2, the Relaxed Risk Parity approach is focused not on
the maximization of the Sharpe or Sortino Ratio, but on the near-equal
allocation of risk among all asset classes. This result can be achieved by
minimizing the sum of each asset’s deviation from parity.

The risk measure adopted in this approach is the volatility and the
strategy used to construct the portfolios (static and dynamic, with and
without crypto) resulted in very different asset allocations if compared to
Modern and Post-Modern Portfolio Theory. This aspect implies heavier
investments in cryptos and a smoother rebalancing during the quarters
(see figure 43 and figure 44).

Equation 47 refers to the static asset allocation approach:

min
w

N∑
i=1

∣∣∣∣wi [Σw]i√
w′Σw

∣∣∣∣− 1

N

s.t. 1′w = 1

0.8 ≥ wE ≥ 0.5

0.5 ≥ wB ≥ 0.2

0 ≤ wC ≤ 0.1

(47)

while equation 48 refers to the dynamic strategy:

min
w

T∑
t=1

[
N∑
i=1

∣∣∣∣wi,t [Σtwt]i√
w′tΣtwt

∣∣∣∣− 1

N

]
s.t. 1′wt = 1

0.8 ≥ wE,t ≥ 0.5

0.5 ≥ wB,t ≥ 0.2

0 ≤ wC,t ≤ 0.1

(48)

with T being equal to 23 quarters. The procedure was conducted as
follows:
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1. Looking back at the prior 252 trading days, the in-sample covariance
matrix have been calculated

2. At this stage, a Montecarlo simulation of 1000 different weight com-
binations have been conducted, always in compliance with the con-
straints set in section 3.3

3. For each random portfolio, I calculated its in-sample sum of deviations
from parity; in order to do so, the following steps have been carried
out:

(a) Recalling equation 47, through the first part of the formula, wi
[Σw]i√
w′Σw

,
I found the marginal risk contribution of asset i, while the second
part, 1

N , refers to the target MRCi

(b) Given that the sum of all marginal risk contributions is always 1,
as they are related to the total portfolio volatility, in a risk parity
portfolio the ideal result of wi

[Σw]i√
w′Σw

should be exactly equal to
1
N ; so, by taking the difference between these two elements, I can
find asset i ’s deviation from parity

(c) By repeating the above process for each asset i and by taking the
sum of all MRCs, I can find the total deviation from parity of the
whole portfolio

(d) Now, in order to obtain a near-equal risk allocation, I have to min-
imize the sum of these deviations by changing portfolio weights
(in practical terms, in the next step I will select the portfolio that
gives me the smallest total deviation from parity; in this way, if
the portfolio had not had any constraint, this result would have
been equal to 0, while in the case of relaxed risk parity portfolios
this result is near to 0)

4. Subsequently, I locked the minimum deviation from parity portfolio
and I stored its weights vector

5. Now we have two distinct situations:
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• Static portfolios→ the weights selection procedure ends here and
these weights are now employed for the out-of-sample allocation,
that will last for the subsequent 1449 trading days (or 23 quarters)

• Dynamic portfolios → these weights are now employed for the
out-of-sample allocation, that will last for the subsequent 63 trad-
ing days; afterwards, the whole procedure will be iterated for
other 22 times

Algorithm 4 summarizes the codes used in the process. As said, in this
case the optimization follows other rules in comparison to the Sharpe and
Sortino ratio portfolios, so the pseudocode will be slightly different.

Differently from other strategies, in RRP we have that both static and
dynamic crypto portfolios managed to outperform the market, exhibiting
annualized expected returns equal to 17.81% and 18.17% versus 14.02% of
the market.

Annualized volatility values shown differences between crypto and non-
crypto portfolios, with the formers around 21-22% and the latters around
24-25%, but none of them under the 18.72% of the market.

Figure 40: RRP Logarithmic Returns (out-of-sample)
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Algorithm 4 Relaxed Risk Parity Portfolio Optimization

Stage 1: Optimal Weights

t = 0

while t ≤ T do:

• Compute the in-sample Σt between lst and let

for i in range(1000) do:

• Generate 1000 random weights vectors

• Compute the in-sample sum of deviations from parity (as seen in equation
47) for each weight vector

end for

• Select the minimum deviation from parity portfolio

• Store the optimal weights vector

• Iterate start period lst and end date let

• t = t + 1

- T = 1 for static portfolios

- T = 23 for dynamic portfolios

end while

——————————————————————————————————————–
Stage 2: Out-of-Sample Asset Allocation

t = 0

while t ≤ T do:

• Use optimal weights to allocate the assets in the rolling period → woptimal’ r from
rst to ret

• Iterate start period rst and end date ret

• t = t + 1

- T = 1 for static portfolios

- T = 23 for dynamic portfolios

end while
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In RRP too, all distributions shown high out-of-sample platykurtosis
and negative out-of-sample skewnesses, as we can see from figure 41.

By looking at figure 42, it is possible to observe the extreme gains of
the crypto strategies, both going over the market with cumulative returns
equal to 2.43x for the static one and 2.48x for the dynamic one, versus
2.02x of the S&P500, with Maximum Drawdown values smaller than the
benchmark.

These results were confirmed both in terms of Sharpe and Sortino Ratio,
where the crypto strategies beat the market, and the dynamic one had
the best performances overall, also if compared to all other investment
techniques seen so far.

Figure 41: RRP - Returns Distribution (out-of-sample)

Crypto portfolios also shown comparable values with respect to the mar-
ket in terms of VaR and, more surprisingly, the dynamic crypto portfolio
had a CVaR value less than the S&P500 (13.73% versus 17.67%).
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Figure 42: RRP Cumulative Returns (out-of-sample)

Figure 43: Weights Rebalancing - Dynamic RRP
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Figure 44: Weights Rebalancing - Dynamic RRP with Crypto

In conclusion, the dynamic Relaxed Risk Parity approach with crypto
shown the best overall statistics and it was the most interesting portfolio
among all allocations made in the empirical analysis, implying that a risk-
focused rebalancing technique could exploit the best out of cryptos in terms
of investment properties.

3.7 Results Comparison

In this section, all portfolios will be compared and the best performing
ones will be highlighted. Other intertemporal measures will be taken in
consideration, such as the beta, the alpha and the Treynor Ratio, and
the empirical analysis will be concluded by identifying the optimal asset
allocation strategy.

Furthermore, two additional portfolios have been added as benchmarks
and table 6 from the appendix highlights their statistics.
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3.7.1 Performance Evaluation

From the backtesting performances seen through the analysis, we can see
that the only portfolios having outperformed the market belong to the
crypto category.

Only when comparing the non-crypto portfolios to the 60-40 benchmark
they carry higher returns, but they are away in terms of performances from
their respective allocations with crypto by a margin.

So, we can undoubtedly affirm that, despite the maximum 10% in crypto
allocation constraint, cryptos had a beneficial impact on all portfolios.

Moreover, the only instances of crypto portfolios failing to exceed the
cumulative return of the S&P500 involve the 50-40-10, the static MPT
and the static PMPT. Leaving aside the 50-40-10, which was included
as a benchmark, in the case of the other two it must be said that the
respective dynamic portfolios beat the market, implying that the quarterly
rebalancing has been beneficial to them.

Figure 45: Cumulative Returns (out-of-sample)

From figure 45 it is possible to observe that the best performing portfolio
was the dynamic crypto RRP, which obtained the best values both in terms
of cumulative performance and in risk-adjusted terms, as explained deeper
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in previous sections.

3.7.2 Intertemporal Statistics

Apart from the entire-out-of-sample statistics, it is important to highlight
some key intertemporal measures too, especially the ones that can be cal-
culated during each quarter only (beta, alpha and Treynor Ratio, as they
change during each rebalancing). These measures are expressed in quar-
terly values.

Figure 46: 12-months Quarterly Rolling Volatility (out-of-sample)

From figure 46 we can see that, with few exceptions, the most volatile
portfolios have been the benchmarks 60-40 and 50-40-10. The graph also
shows high rolling volatility values during first quarters of 2020, due to
the huge market crash and the consequential irrationality of market par-
ticipants; this was particularly true in the case of crypto portfolios, as
cryptoassets were seen as shelters during COVID-19 market crisis and this
resulted in extreme gains by some of them.

Another important element to outline is the high inverse correlation
between Jensen’s alpha and rolling volatility and their differences sharpen
especially during market downturns, as we can see from figure 47.
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Figure 47: Intertemporal Jensen’s Alpha (out-of-sample)

This aspect can be also explained through the beta, as during market
crashes portfolios had a higher allocation in equity (as we can see from
figure 48, where an higher beta implies higher S&P500 contribution in
portfolios) that reduced the alphas (recalling equation 21).

Figure 48: Intertemporal Beta (out-of-sample)
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Figure 49: Intertemporal Treynor Ratio (out-of-sample)

The same logic can be applied to the Treynor Ratio, as lower exptected
returns and higher betas during crises had a huge downward effect on the
indicator, while the Sharpe Ratio was affected by the huge increase in
volatility.

Figure 50: Intertemporal Sharpe Ratio (out-of-sample)
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Despite the dynamic crypto RRP has not been the best performing
portfolio during intertemporal performances, as it did not show any highest
Sharpe or Treynor Ratio value over the quarters, it has been one of the
most consistent and its performances have always been superior to most
portfolios.

This is not surprising because Risk Parity portfolios have a conservative
nature that do not let them have extreme gains; anyway, this feature
enables them avoid excessive drawdowns and be more stable than other
methodologies.

The clearest conclusion is that a long-term vision in portfolio allocation,
as seen in Risk Parity models, can led to superior performances and in the
next section we will outline why a dynamic Relaxed Risk Parity approach
could be one of the best portfolio choice for cryptos.

3.7.3 Optimal Asset Allocation

Through figure 51 and 52 we can visualize the Capital Allocation Line
with respect to the volatility and downside risk and the graphs clarify why
the dynamic Relaxed Risk Parity with crypto had the best risk-return
combination.

In fact, the portfolio has the highest annualized Sharpe Ratio, equal
to 76.73%, and the highest annualized Sortino Ratio, equal to 112.52%,
making both its Capital Allocation Lines equal to the Sharpe and Sortino
Ratio slope.

At this stage, we can outline the main winning elements of the strategy.
The risk parity approach was developed in order to avoid the uncer-

tainty linked to expected returns. In fact, while traditional techniques
rely on too strong risk/return forecasting assumptions, risk models are
only based on volatility and correlation, which are often easier to predict
and may led to more robust out-of-sample performances.

This characteristic helps the portfolio prevent disproportionate concen-
trations in few assets, thanks to an enhanced forced diversification; indeed,
the dynamic RRP with crypto portfolio was the only one to include a por-
tion of the investment in cryptos that lasted for the whole out-of-sample
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period and this was reflected in quarterly expected returns often superior
to other portfolios.

Figure 51: Efficient Frontier and Capital Allocation Line with Volatility

Figure 52: Efficient Frontier and Capital Allocation Line with DSR
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Anyway, given the conservative nature of risk parity, it is not strange
to find intertemporal Sharpe and Sortino Ratio values between other port-
folios, since this aspect allows the model to avoid important drawdowns.

In fact, as noticed by Qian (2005) [54], Maillard et Al. (2010) [55]
and Lee (2011) [30], risk parity techniques protect portfolios from bearish
trends thanks to superior diversification capabilities and, especially in the
case of the relaxed risk parity approach adopted in this thesis, the parame-
ters’ relaxations allow the portfolio to take advantage of early gains during
bullish periods, without having to dramatically raise the risk.

Regarding the diversification, differently from the approaches that aim
at maximize a certain risk/reward ratio (that may lead to non-properly
diversified portfolios), risk parity models delete the uncertainty linked to
non-reliable expected return estimations and the outcome is more robust
and stabler realized returns.

The key to this result relies in the fact that each asset class in portfolio
possess a certain degree of risk and, to this extent, it is not possible to
completely eradicate it from the allocation, as occurred in MPT and PMPT
strategies.

Therefore, excessive concentrations in certain assets are limited, result-
ing in a portfolio with more decorrelated elements that are able to capture
the benefits of bull markets more quickly than other strategies.

Moreover, the dynamic feature of the strategy allows the portfolio to
adjust the positioning dynamically in response to changes in volatility
of each asset class and in the whole portfolio. This means that, when
the decline of an asset is accompanied by an increase in volatility, the
dynamic RRP strategy decreases the allocation in that particular asset
and may allow the investor to avoid extreme losses if the asset continues
to decline, maintaining a certain potential for the subsequent rebound.

For example, during the bearish market caused by COVID-19 pandemic,
the losses were sustained and accompanied by sharp increases in volatility.
This resulted in significant shift in allocations from the S&P500 and CRIX
to the safer 10-Year Treasury. The reallocation process allowed the portfo-
lio to sidestep subsequent losses in stocks, thus facing smaller drawdowns
than other strategies.
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Figure 53: Sum of Deviations from Parity in Dynamic RRP with Crypto

As we said, the relaxation of parameters allows the portfolio to take
advantage of market rebounds after bearish periods. This aspect clearly
implies a certain distance to the risk parity condition, that is depicted in
figure 53.

As the RRP model of this thesis is based on the research from Gambeta
et Al., 2020 [24], in which the limitation in response to market rebounds
was due to the long lookback epoch of the reallocations, I reduced the
training period of the data from three years to one year. This adjustment
resulted in more reactive portfolio responses to market changes and so the
distance to risk parity properly followed the volatility patterns of the asset
classes.

In fact, if we compare figure 53 to figure 26, we can see how the highest
volatility period of the three assets coincides with the highest distance from
risk parity, occurred during last quarters of 2020, right after COVID-19
market crash.

This recalibration let the dynamic RRP with crypto portfolio deliver
better risk-adjusted out-of-sample performances (in fact, the more the dis-
tance from risk parity, the higher are the improvements in Sharpe and
Treynor Ratio) and to go back to pre-pandemic levels in a shorter time
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than other portfolios, as we can see from figure 45.
Furthermore, as explained in Gambeta et Al., 2020 [24], the relaxation

usually comes at a cost, so higher portfolio volatility after the reallocation.
But the main difference between my research and the one in the paper is
that I only included three asset classes instead of ten, so the increase in
volatility is mainly due to general market conditions generated by COVID-
19.

Other key elements of the winning strategy reside in the portfolio’s
low intertemporal betas, low tail risk and, obviously, in the enhancements
coming from the CRIX index.

CRIX allowed all crypto portfolios to gain superior returns with respect
to their non-crypto reciprocals, thanks to its extreme gains, especially dur-
ing the second half of the observed in-sample period, and to the rebalancing
strategy inherent in the index.

Indeed, as said in section 3.2.1, CRIX rebalances the crypto portfolio
composition each month so it does not have any concentration polarized
in one specific coin and this aspect makes it relatively diversified, as long
as all cryptos are quire correlated between each other.

To conclude, the out-of sample performance analysis demonstrates the
model’s success by delivering higher returns while staying near risk parity.
Further researches could extend the model by adding more constraints or
by adjusting the magnitude of the deviations from parity to match with
different degrees of risk tolerance.

3.8 Conclusions

The final part of the thesis was focused on the evaluation of the allocation
methodologies seen in the previous chapter, that is to say the Sharpe Ratio,
Sortino Ratio and Relaxed Risk Parity optimizations.

Results showed sensible differences between the static and dynamic as-
set allocation techniques and a general positive impact from the CRIX
index.

Overall, this outcome has been confirmed both in the entire out-of-
sample period and in the intertemporal performance evaluation, although
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some considerations have to be made for the dynamic Relaxed Risk Parity
with crypto portfolio.

Indeed, it has been the best performing portfolio in the out-of-sample
horizon, reported the highest cumulative return among all techniques and
was the most reactive during the COVID-19 market crash.

Anyway, it did not show any particularly high-performing statistics in
the intertemporal evaluation, given its conservative nature that do not let
it earn excessive returns in the short term.

On the other side, this aspect has been quite beneficial to its perfor-
mances, as it protected the portfolio from extreme drawdowns and let it
be more stable during the rolling horizon, also thanks to its forced diver-
sification feature.

The conclusion is that this approach, among the ones analyzed, could
be a interesting portfolio choice when deciding whether or not to include
a small portion of the allocation in cryptos.
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Conclusions

In this thesis, we investigated whether cryptocurrencies can qualify or not
as an asset class in their own right, and if their introduction in diversified
asset allocations can enhance portfolio performances, along with dynamic
optimization techniques.

We found that cryptos show strong internal correlations, low correla-
tions with traditional assets, acceptable market liquidity and room for
market stability improvements. These characteristics allow us to identify
them as a distinct asset class, as they have the potential to provide diversi-
fication benefits and superior portfolio returns, despite the legal, technical
and volatility issues that still have to be improved.

In fact, during each optimization technique, crypto portfolios managed
to outperform their respective equity-bond only reciprocals, both in their
static and dynamic specifications.

Moreover, we found that Relaxed Risk Parity portfolios have the ability
to exploit the full potential out of cryptos.

Indeed, while traditional techniques rely on too strong risk/return fore-
casting assumptions, risk models are only based on volatility and cor-
relation, which are often easier to predict and this aspect led the RRP
portfolios to more robust out-of-sample performances.

We also found that this characteristic helps the portfolios to prevent dis-
proportionate concentrations in few assets, thanks to an enhanced forced
diversification; as a matter of fact, the dynamic RRP with crypto portfo-
lio was the only dynamic allocation to include a portion of the investment
in cryptos that lasted for the whole out-of-sample period and this was
reflected in quarterly expected returns often superior to other portfolios.

Therefore, excessive concentrations in certain assets are limited, result-
ing in crypto portfolios with more decorrelated elements that are able to
capture the benefits of bull markets more quickly than other strategies.

Anyway, given the conservative nature of risk parity, it is not strange to
find intertemporal Sharpe and Sortino Ratio values between other portfo-
lios, since this aspect allowed RRP models to avoid important drawdowns
as well as take advantage from early gains during bullish rebounds.
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An important implication of the dynamic strategies, especially in the
case of Risk Parity ones, is that their weights recalibration feature allows
the portfolios to adjust the positioning dynamically in response to changes
in volatility of each asset class, permitting them to sidestep losses in stocks
during COVID-19 crisis, thus facing smaller drawdowns than the other
strategies.

Referring particularly to the dynamic RRP with crypto portfolio, we
also found that the highest volatility period of the three assets coincides
with the highest distance from risk parity (occurred during last quarters of
2020, right after COVID-19 market crash) and that the more the distance
from risk parity, the higher are the improvements in Sharpe and Treynor
Ratio.

To conclude, the CRIX index allowed all crypto portfolios to gain su-
perior returns with respect to their non-crypto reciprocals, thanks to its
extreme gains, especially during the second half of the observed in-sample
period, and to the rebalancing strategy inherent in the index.

Out-of sample performance analysis demonstrates the dynamic crypto
RRP model’s success by delivering higher returns while staying near risk
parity. Further researches could extend the model by adding more con-
straints or by adjusting the magnitude of the deviations from parity to
match with different degrees of risk tolerance.

The conclusion is that this approach, among the ones analyzed, could
be a interesting portfolio choice when deciding whether or not to include
a small portion of the allocation in cryptos.
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Appendix

Data Sample Summary Statistics

Equity Bond Crypto
Expected Return 11.55% -8.20% 89.06%

Expected Excess Return 9.95% -9.80% 87.46%
Variance 3.34% 28.93% 58.50%
Volatility 18.27% 53.78% 76.49%

Sharpe Ratio 54.48% -18.22% 114.35%
Maximum Drawdown -46.93% -8.44% -0.48%

Skewness -1.03 0.34 -0.73
Kurtosis 20.78 31.05 8.48

Beta 1 0 0.98
R2 1 / 0.27

Jensen’s Alpha 0.00% -9.80% 77.70%
Treynor Ratio 9.95% / 89.16%

Upside Variance 0.01% 0.05% 0.08%
Downside Variance 0.01% 0.05% 0.10%
Upside Volatility 0.67% 2.20% 2.87%

Downside Volatility 0.79% 2.14% 3.18%
Volatility Skewness 72.14% 105.04% 81.42%

Sortino Ratio 12.57 -4.57 27.51
1-day 95% VaR 1.66% 2.10% 0.29%

252-day 95% VaR 26.33% 33.23% 4.58%
1-day 95% CVaR (ES) 0.92% 0.65% 7.07%

252-day 95% CVaR (ES) 14.50% 10.29% 111.76%

Table 2: Data Sample Summary Statistics
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Benchmarks Summary Statistics

S&P500 60-40 50-40-10
Expected Return 14.02% 5.93% 15.84%

Expected Excess Return 12.42% 4.33% 14.24%
Cumulative Return 2.02 1.11 1.97

Variance 3.51% 8.26% 8.06%
Volatility 18.72% 28.73% 28.39%

Sharpe Ratio 66.35% 15.09% 50.14%
Maximum Drawdown -46.86% -40.44% -39.18%

Skewness -1.11 -0.48 -0.55
Kurtosis 21.93 31.94 27.79

Upside Variance 1.20% 3.16% 2.99%
Downside Variance 1.69% 3.72% 3.57%
Upside Volatility 10.94% 17.78% 17.28%

Downside Volatility 13.01% 19.29% 18.91%
Volatility Skewness 84.10% 92.18% 91.40%

Sortino Ratio 95.51% 22.47% 75.31%
1-day 95% VaR 1.74% 1.86% 2.18%

252-day 95% VaR 27.66% 29.46% 34.63%
1-day 95% CVaR (ES) 1.11% 0.47% 1.26%

252-day 95% CVaR (ES) 17.67% 7.48% 19.95%

Table 6: Benchmarks Summary Statistics
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Table 7: 12-months Quarterly Rolling Volatility

109



Table 8: Intertemporal Jensen’s Alpha
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Table 9: Intertemporal Beta

111



Table 10: Intertemporal Treynor Ratio
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Table 11: Intertemporal Sharpe Ratio
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Summary

Introduction

Last decades economic turbulences, such as the 2008 subprime mortgages
crisis and 2020 COVID-19 pandemic, have served to expose the monetary
and financial system’s vulnerability.

As a reaction to the general market instability, individuals and fund
managers have began to include non-conventional investments in their
portfolios, in order to mitigate the negative effects of classic asset classes
downturns.

At the same time, new technologies have been developed during last
decades and cryptocurrencies are one of the most disruptive of them all.
Cryptocurrencies can offer great investment opportunities in a well diver-
sified portfolio, as the sector continues to grow despite the high volatility.

However, whether cryptos can qualify or not as an asset class in their
own right still remains a big question; for this reason, the first research
question of this thesis has been to ascertain if there is any room for them
to be considered as an asset class.

Once having accepted cryptos as an asset class useful to diversify and
boost portfolio performances, it is important to define the correct invest-
ment strategy to adopt.

Indeed, the second research question has been focused on the analysis
of main dynamic portfolio optimization techniques, in order to ascertain
what could be the optimal one when including the CRIX index (assumed
to be a tradable ETF) in the allocation.

Traditional asset allocation methodologies has been taken into consid-
eration, as well as more sophisticated techniques. We considered portfolios
coming both from Modern and Post-Modern Portfolio Theory, based re-
spectively on the maximization of the Sharpe and Sortino Ratio, and Risk
Parity portfolios, in their relaxed variants in order to allow the compliance
to constraints.

Portfolios have been constructed both including only equity and bonds
and including cryptocurrencies too, in order to determine benefits coming

123



from them. Moreover, all portfolios have been allocated both in a static
way and considering quarterly rebalancing.

At this stage, they have been evaluated from an ex-post point of view
considering main traditional and risk-adjusted statistics.

Cryptocurrencies as an Asset Class

What are Cryptocurrencies?

Virtual money has increasingly gained popularity over the last decades
and today’s technologies made an unknown computer programmer under
the pseudonymous of ”Satoshi Nakamoto” be able to create in 2008 the
first popular cryptocurrency, the Bitcoin.

Since then, hundreds of cryptocurrencies have been developed and the
number of people using them has significantly grown.

In its simplest form, a cryptocurrency can be considered as a digital
asset built to function as a medium of exchange based on cryptographic
technology, in order to ensure the transactional flow as well as to control
the creation of additional monetary units [8].

The best way to understand the crypto environment is by starting talk-
ing about Bitcoins, as the developments that allowed Bitcoin to emerge
are the foundation of all crypto-based projects.

Satoshi Nakamoto’s vision on Bitcoin was described in his/her white pa-
per published on October 31st, 2008 named ”Bitcoin: A peer-to-peer Elec-
tronic Cash System”, where the author described how individuals could
exchange money and other items of value without any financial interme-
diary in the middle [7].

Shortly after the publication of this white paper, Nakamoto released
Bitcoin’s software and on January 3rd, 2009 the first token was mined.

Crypto as an Investment Opportunity

Cryptocurrencies have a clear potential to be an important asset class
in the future, but some considerations have to be made when deciding
whether or not to invest in them.
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Asset Classes Cumulative Returns

Figure ”Asset Classes Cumulative Returns” and table ”Asset Classes
Correlation Matrix” show respectively the cumulative returns and the cor-
relations between main asset classes and main cryptocurrencies.

Asset Classes Correlation Matrix

From these data, we can highlight some elements:

• High Volatility: cryptoassets are still relatively in an immature phase
of their evolution and their prices have always been sensible to regu-
lations, technical hurdles and skepticism.

This aspect has led cryptocurrencies to be historically characterized
by high volatility and it is likely to continue in the future too. If
we look at the figure above, it is evident that cryptos had extreme
standard deviation values over the last four years, especially when we
compare them to traditional asset classes.
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• Rising Trading Volumes: an interesting element to underline is the
increasing trading volume of cryptos, which reflects the great atten-
tion of investors in this new asset class and the good liquidity of the
currencies.

However, it is important to note that surges in trading volumes sug-
gest either strongly bullish or strongly bearish sentiment and often,
especially during 2021, these fluctuations have been accompanied by
price decreases in the main coins.

• Low Correlation with Traditional Assets: another key characteristic of
cryptocurrencies is their high positive correlation between each other
but a low correlation with traditional assets and financial markets,
implying that they may offer diversification benefits to investors [40].

In fact, by looking at the table above, we can see low-medium cor-
relations only to the S&P500 and very modest correlations between
them and other asset classes.

• High Potential Returns: although the difficulty of forecasting future
prices of cryptoassets is a major downside for investors, crypto bulls
argue that historical returns will persists in the next years, as crypto
has just began to penetrate the mainstream and many financial insti-
tutions has begun to develop blockchain-linked applications for their
services.

On the other side, crypto bears continue to argue that most cryptocur-
rencies are highly overvalued and that they are destined to collapse
in the near future.

Anyway, the empirical evidence shows that cryptocurrencies have sur-
vived several moments of panic even when they were seen just as
bubbles, and each year they set lows higher than the preceding year.
Risks will still be present, but the potential of crypto is undeniable.

126



Empirical Analysis

The assets employed in the asset allocation processes have been:

• Equity: S&P500

• Bond: 10-Year Treasury Bond

• Crypto: CRIX Index

Some constraint and assumptions have been made:

• The CRIX index has been assumed to be a tradable ETF

• The annual risk-free in the performance evaluation statistics has been
assumed to be equal to 1.60% annually and 0.398% quarterly

• No short selling constraint

• Equity weight at least equal to 50% of the overall asset allocation

• Bond weight at least equal to 20% of the overall asset allocation

• Crypto weight at maximum equal to 10% of the overall asset allocation

For all allocation methodologies, four kind of allocations have been
made: static, with and without cryptos, and dynamic, with and without
cryptos. Moreover, the allocation procedures have been set differently
between the static and the dynamic portfolios:

• Each portfolio is calibrated to look back at the prior 252 trading days,
with allocations starting from October 1st 2015

• The rolling horizon for the out-of-sample asset allocations is set at the
next 1449 trading days for static portfolios, as weights do not change,
while dynamic ones are reallocated each 63 days, so the total amount
of quarters is 23

The processes has been set as follows in order to ascertain if there has
been a benefit in rebalancing and a positive contribution from cryptos.
The portfolios were then compared to the S&P500, 60-40 and 50-40-10
portfolios as benchmarks.
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Sharpe Ratio Optimization

Equation 49 refers to the static asset allocation approach:

max
w

µ′w − rF√
w′Σw

s.t. 1′w = 1

0.8 ≥ wE ≥ 0.5

0.5 ≥ wB ≥ 0.2

0 ≤ wC ≤ 0.1

(49)

while equation 50 refers to the dynamic strategy:

max
w

T∑
t=1

µ′twt − rF√
w′tΣtwt

s.t. 1′wt = 1

0.8 ≥ wE,t ≥ 0.5

0.5 ≥ wB,t ≥ 0.2

0 ≤ wC,t ≤ 0.1

(50)

with T being equal to 23 quarters. The procedure was conducted as
follows:

1. Looking back at the prior 252 trading days, the in-sample mean vector
and the in-sample covariance matrix have been calculated

2. At this stage, a Montecarlo simulation of 1000 different weight com-
binations have been conducted, always in compliance with the con-
straints set in the previous section

3. For each random portfolio, I calculated its in-sample Sharpe Ratio

4. Subsequently, I locked the maximum Sharpe Ratio portfolio and I
stored its weights vector

5. Now we have two distinct situations:
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• Static portfolios→ the weights selection procedure ends here and
these weights are now employed for the out-of-sample allocation,
that will last for the subsequent 1449 trading days (or 23 quarters)

• Dynamic portfolios → these weights are now employed for the
out-of-sample allocation, that will last for the subsequent 63 trad-
ing days; afterwards, the whole procedure will be iterated for
other 22 times

Sortino Ratio Optimization

In this case, it was the Sortino Ratio the one to be maximized, so the Σ-

element in the following two equation refers to the semicovariance matrix.
Equation 51 refers to the static asset allocation approach:

max
w

µ′w − rF√
w′Σ−w

s.t. 1′w = 1

0.8 ≥ wE ≥ 0.5

0.5 ≥ wB ≥ 0.2

0 ≤ wC ≤ 0.1

(51)

while equation 52 refers to the dynamic strategy:

max
w

T∑
t=1

µ′twt − rF√
w′tΣ

−
t wt

s.t. 1′wt = 1

0.8 ≥ wE,t ≥ 0.5

0.5 ≥ wB,t ≥ 0.2

0 ≤ wC,t ≤ 0.1

(52)

with T being equal to 23 quarters. The procedure was conducted as
follows:
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1. Looking back at the prior 252 trading days, the in-sample mean vector
and the in-sample semicovariance matrix have been calculated

2. At this stage, a Montecarlo simulation of 1000 different weight com-
binations have been conducted, always in compliance with the con-
straints set in section 3.3

3. For each random portfolio, I calculated its in-sample Sortino Ratio

4. Subsequently, I locked the maximum Sortino Ratio portfolio and I
stored its weights vector

5. Now we have two distinct situations:

• Static portfolios→ the weights selection procedure ends here and
these weights are now employed for the out-of-sample allocation,
that will last for the subsequent 1449 trading days (or 23 quarters)

• Dynamic portfolios → these weights are now employed for the
out-of-sample allocation, that will last for the subsequent 63 trad-
ing days; afterwards, the whole procedure will be iterated for
other 22 times

Relaxed Risk Parity Optimization

The risk measure adopted in this approach is the volatility and the strategy
used to construct the portfolios resulted in very different asset allocations
if compared to MPT and PMPT. This aspect implies heavier investments
in cryptos and a smoother rebalancing during the quarters.

Equation 53 refers to the static asset allocation approach:

min
w

N∑
i=1

∣∣∣∣wi [Σw]i√
w′Σw

∣∣∣∣− 1

N

s.t. 1′w = 1

0.8 ≥ wE ≥ 0.5

0.5 ≥ wB ≥ 0.2

0 ≤ wC ≤ 0.1

(53)
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while equation 54 refers to the dynamic strategy:

min
w

T∑
t=1

[
N∑
i=1

∣∣∣∣wi,t [Σtwt]i√
w′tΣtwt

∣∣∣∣− 1

N

]
s.t. 1′wt = 1

0.8 ≥ wE,t ≥ 0.5

0.5 ≥ wB,t ≥ 0.2

0 ≤ wC,t ≤ 0.1

(54)

with T being equal to 23 quarters. The procedure was conducted as
follows:

1. Looking back at the prior 252 trading days, the in-sample covariance
matrix have been calculated

2. At this stage, a Montecarlo simulation of 1000 different weight com-
binations have been conducted, always in compliance with the con-
straints set in section 3.3

3. For each random portfolio, I calculated its in-sample sum of deviations
from parity; in order to do so, the following steps have been carried
out:

(a) Recalling equation 53, through the first part of the formula, wi
[Σw]i√
w′Σw

,
I found the marginal risk contribution of asset i, while the second
part, 1

N , refers to the target MRCi

(b) Given that the sum of all marginal risk contributions is always 1,
as they are related to the total portfolio volatility, in a risk parity
portfolio the ideal result of wi

[Σw]i√
w′Σw

should be exactly equal to
1
N ; so, by taking the difference between these two elements, I can
find asset i ’s deviation from parity

(c) By repeating the above process for each asset i and by taking the
sum of all MRCs, I can find the total deviation from parity of the
whole portfolio
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(d) Now, in order to obtain a near-equal risk allocation, I have to min-
imize the sum of these deviations by changing portfolio weights
(in practical terms, in the next step I will select the portfolio that
gives me the smallest total deviation from parity; in this way, if
the portfolio had not had any constraint, this result would have
been equal to 0, while in the case of relaxed risk parity portfolios
this result is near to 0)

4. Subsequently, I locked the minimum deviation from parity portfolio
and I stored its weights vector

5. Now we have two distinct situations:

• Static portfolios→ the weights selection procedure ends here and
these weights are now employed for the out-of-sample allocation,
that will last for the subsequent 1449 trading days (or 23 quarters)

• Dynamic portfolios → these weights are now employed for the
out-of-sample allocation, that will last for the subsequent 63 trad-
ing days; afterwards, the whole procedure will be iterated for
other 22 times

Comparison

Cumulative Returns (out-of-sample)
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From the backtesting performances, the only portfolios having outper-
formed the market belong to the crypto category.

Only when comparing the non-crypto portfolios to the 60-40 benchmark
they carry higher returns, but they are away in terms of performances from
their respective allocations with crypto by a margin.

So, we can undoubtedly affirm that, despite the maximum 10% in crypto
allocation constraint, cryptos had a beneficial impact on all portfolios.

Moreover, the only instances of crypto portfolios failing to exceed the
cumulative return of the S&P500 involve the 50-40-10, the static MPT
and the static PMPT. Leaving aside the 50-40-10, which was included
as a benchmark, in the case of the other two it must be said that the
respective dynamic portfolios beat the market, implying that the quarterly
rebalancing has been beneficial to them.

From figure ”Cumulative Returns (out-of-sample)” it is possible to ob-
serve that the best performing portfolio was the dynamic crypto RRP,
which obtained the best values both in terms of cumulative performance
and in risk-adjusted terms.

Apart from the entire-out-of-sample statistics, it is important to high-
light some key intertemporal measures too, expressed in quarterly values.

12-months Quarterly Rolling Volatility (out-of-sample)

From figure ”12-months Quarterly Rolling Volatility (out-of-sample)”
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we can see that, with few exceptions, the most volatile portfolios have been
the benchmarks 60-40 and 50-40-10. The graph also shows high rolling
volatility values during first quarters of 2020, due to the huge market
crash and the consequential irrationality of market participants; this was
particularly true in the case of crypto portfolios, as cryptoassets were seen
as shelters during COVID-19 market crisis and this resulted in extreme
gains by some of them.

Another important element to outline is the high inverse correlation
between Jensen’s alpha and rolling volatility and their differences sharpen
especially during market downturns, as we can see from figure ”Intertem-
poral Jensen’s Alpha (out-of-sample)”.

Intertemporal Jensen’s Alpha (out-of-sample)

This aspect can be also explained through the beta, as during market
crashes portfolios had a higher allocation in equity (as we can see from
figure ”Intertemporal Beta (out-of-sample)”, where an higher beta implies
higher S&P500 contribution in portfolios) that reduced the alphas (recall-
ing equation 21).

The same logic can be applied to the Treynor Ratio, as lower exptected
returns and higher betas during crises had a huge downward effect on the
indicator, while the Sharpe Ratio was affected by the huge increase in
volatility.
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Intertemporal Beta (out-of-sample)

Despite the dynamic crypto RRP has not been the best performing
portfolio during intertemporal performances, as it did not show any highest
Sharpe or Treynor Ratio value over the quarters, it has been one of the
most consistent and its performances have always been superior to most
portfolios.

Intertemporal Treynor Ratio (out-of-sample)

This is not surprising because Risk Parity portfolios have a conservative
nature that do not let them have extreme gains; anyway, this feature
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enables them avoid excessive drawdowns and be more stable than other
methodologies.

The clearest conclusion is that a long-term vision in portfolio allocation,
as seen in Risk Parity models, can led to superior performances and in the
next section we will outline why a dynamic Relaxed Risk Parity approach
could be one of the best portfolio choice for cryptos.

Intertemporal Sharpe Ratio (out-of-sample)

Optimal Asset Allocation

Through figures relative to the Efficient Frontier and CML below, we can
visualize the Capital Allocation Lines with respect to the volatility and
downside risk and the graphs clarify why the dynamic Relaxed Risk Parity
with crypto had the best risk-return combination.

In fact, the portfolio has the highest annualized Sharpe Ratio, equal
to 76.73%, and the highest annualized Sortino Ratio, equal to 112.52%,
making both its Capital Allocation Lines equal to the Sharpe and Sortino
Ratio slope.

At this stage, we can outline the main winning elements of the strategy.
The risk parity approach was developed in order to avoid the uncer-

tainty linked to expected returns. In fact, while traditional techniques
rely on too strong risk/return forecasting assumptions, risk models are
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only based on volatility and correlation, which are often easier to predict
and may led to more robust out-of-sample performances.

This characteristic helps the portfolio prevent disproportionate concen-
trations in few assets, thanks to an enhanced forced diversification; indeed,
the dynamic RRP with crypto portfolio was the only one to include a por-
tion of the investment in cryptos that lasted for the whole out-of-sample
period and this was reflected in quarterly expected returns often superior
to other portfolios.

Efficient Frontier and Capital Allocation Line with Volatility

Efficient Frontier and Capital Allocation Line with DSR
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Anyway, given the conservative nature of risk parity, it is not strange
to find intertemporal Sharpe and Sortino Ratio values between other port-
folios, since this aspect allows the model to avoid important drawdowns.

In fact, as noticed by Qian (2005) [54], Maillard et Al. (2010) [55]
and Lee (2011) [30], risk parity techniques protect portfolios from bearish
trends thanks to superior diversification capabilities and, especially in the
case of the relaxed risk parity approach adopted in this thesis, the parame-
ters’ relaxations allow the portfolio to take advantage of early gains during
bullish periods, without having to dramatically raise the risk.

Regarding the diversification, differently from the approaches that aim
at maximize a certain risk/reward ratio (that may lead to non-properly
diversified portfolios), risk parity models delete the uncertainty linked to
non-reliable expected return estimations and the outcome is more robust
and stabler realized returns.

The key to this result relies in the fact that each asset class in portfolio
possess a certain degree of risk and, to this extent, it is not possible to
completely eradicate it from the allocation, as occurred in MPT and PMPT
strategies.

Weights Rebalancing - Dynamic RRP with Crypto

In fact, as we can see from figure above, the dynamic crypto RRP was
the only allocation to include a portion of CRIX that lasted for the whole
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out-of-sample period.
Therefore, excessive concentrations in certain assets are limited, result-

ing in a portfolio with more decorrelated elements that are able to capture
the benefits of bull markets more quickly than other strategies.

Moreover, the dynamic feature of the strategy allows the portfolio to
adjust the positioning dynamically in response to changes in volatility
of each asset class and in the whole portfolio. This means that, when
the decline of an asset is accompanied by an increase in volatility, the
dynamic RRP strategy decreases the allocation in that particular asset
and may allow the investor to avoid extreme losses if the asset continues
to decline, maintaining a certain potential for the subsequent rebound.

For example, during the bearish market caused by COVID-19 pandemic,
the losses were sustained and accompanied by sharp increases in volatility.
This resulted in significant shift in allocations from the S&P500 and CRIX
to the safer 10-Year Treasury. The reallocation process allowed the portfo-
lio to sidestep subsequent losses in stocks, thus facing smaller drawdowns
than other strategies.

Sum of Deviations from Parity in Dynamic RRP with Crypto

As we said, the relaxation of parameters allows the portfolio to take
advantage of market rebounds after bearish periods. This aspect clearly
implies a certain distance to the risk parity condition, that is depicted in
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figure ”Sum of Deviations from Parity in Dynamic RRP with Crypto”.
As the RRP model of this thesis is based on the research from Gambeta

et Al., 2020 [24], in which the limitation in response to market rebounds
was due to the long lookback epoch of the reallocations, I reduced the
training period of the data from three years to one year. This adjustment
resulted in more reactive portfolio responses to market changes and so the
distance to risk parity properly followed the volatility patterns of the asset
classes.

In fact, if we compare figure ”Sum of Deviations from Parity in Dynamic
RRP with Crypto” to figure ”Logarithmic Returns (in-sample)” (page 67),
we can see how the highest volatility period of the three assets coincides
with the highest distance from risk parity, occurred during last quarters
of 2020, right after COVID-19 market crash.

This recalibration let the dynamic RRP with crypto portfolio deliver
better risk-adjusted out-of-sample performances (in fact, the more the dis-
tance from risk parity, the higher are the improvements in Sharpe and
Treynor Ratio) and to go back to pre-pandemic levels in a shorter time
than other portfolios, as we can see from figure ”Cumulative Returns (out-
of-sample)”.

Furthermore, as explained in Gambeta et Al., 2020 [24], the relaxation
usually comes at a cost, so higher portfolio volatility after the reallocation.
But the main difference between my research and the one in the paper is
that I only included three asset classes instead of ten, so the increase in
volatility is mainly due to general market conditions generated by COVID-
19.

Other key elements of the winning strategy reside in the portfolio’s
low intertemporal betas, low tail risk and, obviously, in the enhancements
coming from the CRIX index.

CRIX allowed all crypto portfolios to gain superior returns with respect
to their non-crypto reciprocals, thanks to its extreme gains, especially dur-
ing the second half of the observed in-sample period, and to the rebalancing
strategy inherent in the index.

Indeed, as said in section 3.2.1, CRIX rebalances the crypto portfolio
composition each month so it does not have any concentration polarized
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in one specific coin and this aspect makes it relatively diversified, as long
as all cryptos are quire correlated between each other.

To conclude, the out-of sample performance analysis demonstrates the
model’s success by delivering higher returns while staying near risk parity.
Further researches could extend the model by adding more constraints or
by adjusting the magnitude of the deviations from parity to match with
different degrees of risk tolerance.

Conclusions

In this thesis we investigated whether cryptocurrencies can qualify or not
as an asset class in their own right, and if their introduction in diversified
asset allocations can enhance portfolio performances, along with dynamic
optimization techniques.

We found that cryptos show strong internal correlations, low correla-
tions with traditional assets, acceptable market liquidity and room for
market stability improvements. These characteristics allow us to iden-
tify them as a distinct asset class, as they have the potential to provide
diversification benefits and superior portfolio returns.

In fact, during each optimization technique, crypto portfolios managed
to outperform their respective equity-bond only reciprocals, both in their
static and dynamic specifications.

Moreover, we found that Relaxed Risk Parity portfolios have the ability
to exploit the full potential out of cryptos.

This approach, among the ones analyzed, could be a interesting portfolio
choice when deciding whether or not to include a small portion of the
allocation in cryptos.
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