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Abstract

Contrary to what one might think, derivatives, beyond their financial definition,

have existed for a long time. History has provided information on the first derivatives

already in ancient Greece, in the 6th century BC.

The reason for their wide spread use is, in part, due to the guarantees and benefits

that they afford to those who buy them. In this sense, derivatives can be used for

multiple purposes, such as to protect against risk, to block a price to be paid or

received, to speculate on the price of a share of stock.

For this reason it is necessary to know how to provide a fair price of derivatives, for

each of their strike price and for each of their maturity. In this sense, the research

community have become increasingly interested in the world of derivatives and

their modeling.

In effect, volatility modeling and option pricing is now a large and diverse area in

finance mathematics.

This thesis provides a review of the most significant models for option pricing.

It will be explained how the evaluation methods have implemented over the years,

and how all of them are able to determine the fair initial price, avoiding mis-pricing

between the option’s price and the underlying.

As already mentioned, a fundamental part of these models is played by volatility. It

will be shown how different assumptions about volatility dynamics will differentiate

the models, starting from the assumption that it is constant, up to the models that

assume it as a stochastic process.
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The thesis starts introducing briefly the Asset Pricing theory, the Geometric

Brownian Motion model for stock price, and then investigates the analytic solution

for Black-Scholes differential equation for European options. We will see why this

model suffers from several disadvantages, among which that it is not consistent

with the implied volatility, which varies according to the maturity and the strike,

and it is not constant as instead assumed by Black-Scholes. Other models will

therefore be analyzed.

These models include Local Volatilty methods, based on the Fokker-Planck equation

for the density of the underlying process, that takes into account the volatility

smile and overcomes the limits of the Black-Scholes model with the so-called local

implied volatility. However, this approach presents some limits: even though it’s

perfectly calibrated by construction, it is too poor in order to get the right market

dynamics.

Then we focus on stochastic volatility models. The Heston Model considers the

leverage effect and the clustering effect, which allows the volatility itself to be

random and also allows it to take the non-normally distributed stock return into

account. Nevertheless, although this models solve many problems of local volatility,

they are not flexible enough to capture the right behavior of market dynamics.

For this reason we finally move to study the local-stochastic volatility models,

since they have a new degree of freedom, called mixing factor, which can be used

to impose the implied volatility dynamics, capturing the main advantages of the

local volatility model and the stocastic volatility model.

Some definitions of derivatives, types and main option rules will be taken for

granted.

This thesis was entirely written in LaTeX.
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Chapter 1

Basic rules of mathematics for

finance

Before starting the discussion of the methods used to evaluate options, we need to

describe some basic mathematical results and notations.

The common thinking in finance is that since mathematicians started working

in investment banks and large asset management funds at the end of the cold war,

they have contributed greatly to change finance, allowing this science-non-science

to evolve incredibly [17].

In effect, we can say more: the deeper branch of finance, the quantitative one, can

be included in the area of applied mathematics. In this chapter it will be shown

how phenomena discovered by quantum physics scientists and mathematicians

have become the core of the finance world.

There are various steps to follow. First of all, the main results and mathematical

notations used in asset pricing will be defined. These concepts are the basis for

evaluating options, through methods that will be analyzed later.

The aim here is to generalize a model to describe the random evolution of stock

prices. There are two important parameters concerning these models, through



which the whole theory of option pricing will then develop. After that, it will be

shown the tight connection between stocks prices and derivatives.

These first basic assumptions will generally be for all models. But when we move

on to more ingenious models, we will require advanced mathematical tools and

concepts for multidimensional stochastic processes, such as Cholesky’s decomposition

and Itô multidimensional lemma.
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1.1 Fundamental concepts of mathematics and

statistics

1.1.1 Stochastic calculus

The french mathematician Bachelier, at the beginning of the 20th century, included

the Wiener process to incorporate the random nature of stock prices. This was the

first step towards a stochastic approach to finance, which was however neglected

for about 50 years. Indeed, it was only in 1969 that this model was revived, thanks

to Robert Merton, who introduced stochastic calculus into the study of finance,

trying to understand how prices are set in financial markets.

In this sense, it is easy to say that asset pricing lays its foundation in stochastic

calculus. In effect, describing the process followed by a stock is like modeling a

random system. There is therefore a need to learn how to govern this process.

Definition 1 (Stochastic process) A stochastic process, X(t), is a collection

of random variables, indexed by a time variable t, and defined on some sample space

Ω.

Hence, a stochastic process is function of two variables: for a fixed instant of

time ti, it is a random variable; for a fixed outcome w ∈ Ω, it is function of time

[14].

The evolution followed by a stochastic process is called realization, a trajectory of

the process X. Every path corresponds to a different realization of the random

variable, for each instant of time tm.

Mathematically, the first tool that allow us to describe the stochastic process is

the sigma-field (or sigma-algebra). It is a collection of Ω, closed under complement

and under countable-unions and countable intersections [2]. In this way, by combining

events whose probability can be calculated, the result is an event that still belongs

to the sigma-algebra.

Definition 2 (Sigma-field) The sigma-field, F , is collection of subsets of the

sample space Ω where:

(i) the empty set ∅ belongs to F ;
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Figure 1.1: Simulation of the trajectory followed by a stochastic process, according to some

asset price distribution.

(ii) whenever a set A belongs to F , its complement Ac also belongs to F ;

(iii) whenever a sequence of sets A1, A2, . . . , belong to F , their union U∞i=1Ai also

belongs to F .

The ordered sequence of sigma-field is called filtration, that can be interpreted

as the set of all events occurring within time t. It represents the information

available until a certain time Ti, providing the information generated by X in the

interval [5]. Mathematically speaking, for each set in F(t), the distribution of

random outcomes is known.

Definition 3 (Filtration) Let F be the sigma-algebra of the probability space

where the process is defined. A Filtration is a family of sub-sigma algebras of F
increasing in t, i.e. Fs is contained in Ft (Fs ⊂ Ft) if s < t.

If the filtration generated by process X, σ(Xt), is contained in Ft for each t,

the process is said to be adapted [2].
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1.1.2 Wiener process

The Wiener process, or Brownian motion, is the basic building block to model

uncertainty. In finance, it provides a model for the realistic asset realization,

describing asset prices movements over time.

Definition 4 (Wiener process) A stochastic process W (t) is a Wiener process

if the following properties hold:

(i) W (t0) = 0, i.e. it starts at zero,

(ii) W (t) is a continuous function with no jumps,

(iii) W (t) has stationary, independent increments,

(iv) each increments is normally distributed, W (t) − W (s) ∼ N(0, t − s), with

mean equal to 0 and variance rate of t− s.

Remark 1 Let X(t) be a stochastic process. X(t) is a martingale with respect

to the filtration Ft if:

(i) X(t) is F-adapted;

(ii) E[|X(t)|] <∞, i.e. the expected value of X(t), for every t, exists and is finite.

(ii) E[X(t)|F(s)] = X(s), for t > s, i.e. the expected value of a future state of the

process, note the evolution of the same in previous times, depends only on the last

observation made (Markov property).

The Wiener process, W (t), t ∈ [0, t], is a martingale, i.e. the conditioned

expectation of a future value is equal to its present value [14]:

E[W (t+ ∆t)−W (t)|F(t)] = E[W (t+ ∆t)|F(t)]− E[W (t)|F(t)]

= W (t)−W (t) = 0

1.1.3 Stochastic differentiation

For a stochastic process, the Riemann-Stieltjes integral cannot be used, as the

Wiener process is nowhere differentiable. It is therefore necessary to use the

integral of Itô, that is a stochastic generalization of the Riemann-Stieltjes integral,

where integrands and integrators are now stochastic processes [2].

To integrate a stochastic process X(t) it is necessary to know the conditions that

guarantee the existence of the stochastic integral.
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Remark 2 A stochastic process X(t) is Itô integrable on the interval [0, T ] if these

two conditions hold:

(i) X(t) is adapted for t ∈ [0, T ], i.e. X(t) is F(t)-measurable.

(ii) X(t) is locally square-integrable process,
∫ T

0
E[X2(t)dt] <∞.

Definition 5 (Itô Integral) For any square-integrable process X(t), adapted to

the filtration generated by W (t), with continuous sample path, the Itô integral is:

I(T ) =

∫ T

0

X(t)dW (t)

1.2 Stochastic model for asset and option pricing

So far it has been described how a Brownian motion can be able to describe the

randomness of a stock prices. However, this is not enough to define the entire

process followed by the evolution of a share price, which also depends on other

variables, which will now be defined.

1.2.1 Geometric Brownian Motion

The Wiener process, W (t), defined so far has a drift rate equal to 0 and a variance

rate equal to 1. It is therefore necessary to generalize this process in such a way

to have arbitrary drift rates and variances, where:

(i) drift rate, µ, is the mean change per unit time for a stochastic process;

(ii) variance rate, σ, is the variance per unit time for a stochastic process.

In effect, the Wiener process as defined involves some problems if used to describe

the evolution of assets, because drift rate equal to zero means that the expected

value of W at any given time t is equal to its current value, while in real life stocks

trend upward or downward [4]. To capture this aspect of stocks is necessary to

take a step further the Wiener process.

Definition 6 A Generalized Wiener process is stochastic process where the change

in a variable in time t has a normal distribution with constant mean and variance,

both proportional to t:

dS(t) = µdt+ σdW (t)
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It is therefore assumed that the stock will grow, moving at a constant rate µ, where

the dW (t) term adds noise.

However, this model fails to capture a key aspect of stock prices: the expected

percentage return required by investors from a stock is independent of the stock’s

price. In other words, with the assumption of constant expected drift rate, this

model allows us to drift the stock either up or down in a given direction.

This, however, is inappropriate, since a stock may rise at a constant rate but crash

the next day. It is therefore necessary to assume that the expected return (i.e.

expected drift divided by the stock price) is constant, and not the expected drift

rate[3].

The Geometric Brownian Motion (GBM) process is then introduced. It is the

exponential transformation of the linear Brownian Motion, where the logarithm of

the asset price follows an arithmetic Brownian motion, driven by a Wiener process

W (t).

Definition 7 (Geometric Brownian Motion) The asset price S(t) is said to

follow a Geometric Brownian Motion process if it satisfies the following SDE:

dS(t) = µS(t)dt+ σS(t)dW (t) (1)

(i) the Brownian motion, W (t), is under the real-world measure P ;

(ii) µ = µ is the drift parameter, a constant growth rate of the stock;

(iii) σ is the constant percentage volatility parameter, the amount by which an

asset price differs from its expected value.

Remark 3 Companies usually pay dividends during the year, but this aspect is

not taken into account in the basic model of Brownian Geometric Motion. To fix

this, it is assumed a continuous and constant dividend yield of size qS(t), i.e. a

proportional dividend of size qS(t)dt.

dS(t) = (µ− q)S(t)dt+ σS(t)dW (t)

XIII



Figure 1.2: Differences between a Wiener process and a Geometric Brownian Motion, with

drift rate µdt

.

1.2.2 Markov property

An important rule must be defined: past history of a stock is irrelevant on today’s

valuation, as it is assumed that today’s price incorporates all past information

(memoryless).

This is the so-called Markov process, that is a stochastic process in which only

the current value of the variable is relevant to predict the future. In mathematical

terms, the conditional probability distribution of future states depends only on the

present state, and not on the history [14].

Definition 8 (Markov property) The adapted stock price process S(t) on a

filtered probability space has the Markov property, if for each bounded and

measurable function g : RN → R,

E[g(S(t))|F(s)] = E[g(S(t))|S(s)], s ≤ t

Brownian Motion is a particular type of Markov stochastic process with a mean

change of zero and a variance rate of 1.0 per year.
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1.2.3 Itô process

Definition 9 (Itô process) An Itô process is a type of Geometric Brownian

Motion process where the constants µ and σ are dependent on the value of the

underlying variable x and time t. In mathematical terms [5]:

dX(t) = µ(t,X(t))dt+ (t,X(t))dW (t) (2)

All option pricing models define the process followed by the stocks as an Itô

process. But what about the option pricing?

Since an option is nothing more than a function of the price of the underlying asset

and time, we need a link between the stochastic process of the stock (underlying)

and that of the derivative.

In this sense, it is fundamental to introduce the Itô lemma, which is the tool that

allows us to derive the stochastic process followed by the function of a variable

based on the process followed by the variable itself [2], i.e. it finds the stochastic

process followed by a differentiable function G(x, t).

Definition 10 (Itô’s lemma) Let g(t,X) be a function of X = X(t) and time

t, with continous partial derivatives, ∂g
∂X
, ∂g

2

∂X2 ,
∂g
∂t

. A stochastic variable Y (t) :=

g(t,X) then also follow an Itô process, governed by the same Wiener process W (t),

that is:

dY (t) =
(
∂g
∂t

+ µ(t,X) ∂g
∂X

+ 1
2
∂2g
∂X2σ

2(t,X)
)

dt+ ∂g
∂X
σ(t,X)dW (t)

Itô lemma is a calculation tool for the processes described by stochastic differential

equations (SDEs). It is a way of calculating the stochastic process followed by a

function of a variable from the stochastic process followed by the variable itself [3].

Remark 4 Itô lemma shows that the random variable S of the Geometric Brownian

Motion is log-normally distributed. Using dX(t) = logS:

dX(t) = (µ− 1
2
σ2)dt+ σdW (t),
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1.3 Multidimensionality

When more complex option pricing models will be analyzed, we will face with

multi-dimensional stochastic processes. In this case it is necessary to move to

SDE system, with uncorrelated (independent) Brownian motions, W̄(t).

The mathematical tool needed to change the formulation of multidimensional

processes from W(t) dependent Brownian motions to W̄(t) independent motions

is the Cholesky decomposition [5].

1.3.1 Cholesky decomposition

Definition 11 (Cholesky decomposition) Each symmetric positive definite matrix

C has a unique factorization, the so-called Cholesky decomposition, of the

form,

C = LLT

with L is a lower triangular matrix with positive diagonal entries.

1.3.2 Itô multidimensional lemma

Let X(t) be a stochastic process based on independent Brownian motions.

dX(t) = µ̄(t,X(t))dt+ σ̄(t,X(t))dW̄(t) (3)

It can be expressed in function of drift µ̄ and volatility terms σ̄ as:dX1

. . .

dXn

 =

µ̄1

. . .

µ̄n

 dt+

σ̄1,1 . . . σ̄1,n

. . . . . . . . .

σ̄n,1 . . . σ̄n,n


dW̄1

. . .

dW̄n


Let g ≡ g(t,X(t)) be differentiable on R x Rn. The increment dg(t,X(t)) is

governed by the SDE, named as the Itô lemma for processes with independent

Brownian Motion:

dg(t,X(t)) =
∂g

∂t
dt+

n∑
j=1

∂g

∂xj
dXj(t) +

1

2

n∑
i,j=1

∂2g

∂xi∂xj
dXi(t)dXj(t)
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= (
∂g

∂t
+

n∑
i=1

µ̄i(t,X(t))
∂g

∂xi
+

1

2

n∑
i,j,k=1

σ̄i,k(t,X(t))σ̄j,k(t,X(t))
∂2g

∂xi∂xj
)dt

+
n∑

i,j=1

σ̄i,j(t,X(t))
∂g

∂xi
dW̄j(t)

1.4 Quick remarks of derivatives definitions

A derivative can be defined as a financial instrument whose value depends on

the values of an underlying variables. A stock option, for example, is a derivative

whose value is dependent on the price of a stock [3].

An option is a contract that gives the buyer the right, but not the obligation,

to buy or sell an underlying asset at a specific price (the so-called strike price,

K) on or before a certain date.

A call option is a contract that gives the buyer the right, but not the obligation, to

buy an underlying asset at a specific price on or before a certain date (the so-called

expiry date)[3]. The payoff is given by:

max(S −K, 0)

where S is the value of the underlying at the maturity date.

A put option is a contract that gives the buyer the right, but not the obligation, to

sell an underlying asset at a specific price on or before a certain date (the so-called

expiry date)[3]. The payoff is given by:

max(K − S, 0)

where S is the value of the underlying at the maturity date.

There are many different variations of puts and calls, the most popular being

European and American option types. The main difference between European

and American options is the exercise date: while the European can be exercised
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only at the date of expiration, the American options may be exercised at any time

before, or on, the date of expiration.

As we will see in later chapters, it is possible to obtain an analytical formula

for the value of the derivative under the assumptions of no arbitrage opportunities

(Black, Merton and Scholes Theory [7]). In this approach the dynamical model

for the underlying of the derivative plays a fundamental role and in particular its

volatility.
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Chapter 2

Characteristics of Volatility

The concept of volatility is of paramount importance. Pricing models vary around

its definition and use. It will be shown how it can be calculated and its central

role in option pricing.

This chapter starts first of all with volatility various definitions. After that, it

will be shown a deep analysis of volatility and its relationship with the different

strike prices and the different maturities of stocks, the so-called volatility surfaces,

and the implications that exist with the strike price, the so-called volatility smiles.

Implied volatility, which is the basis of all these assumptions, plays a crucial role

in the valuation models: although this is calculated by the Black-Scholes equation

(as the only variable that is not observable) it plays a fundamental role in the

other models that will be shown later.

In essence, the ability to model volatility is crucial to option pricing, since in

the stochastic differential equation it governs the asset price. All models strongly

depend on it.



2.1 Definitions of volatility

Among the definitions, volatility, σ, is the measure of uncertainty about the stock

returns, measured as the degree of variation of the price of financial instruments

over time.

2.1.1 Historical volatility

Historical volatility estimates the fluctuations of a financial securities by measuring

price changes over predetermined periods of time, i.e. using past empirical price

data [3].

The σ is provided by using empirical asset price data and is calculated as:

σ̂ =

√
V̂

∆t

where V̂ is the sample variance of the log-returns of the stock:

V̂ =
1

n− 1

n∑
i=1

(xi − x̄)2

with xi as the log-returns of the stock:

xi = ln
( X(ti)

X(ti−1)

)
and x̄ as the sample mean:

x̄ =
1

n

n∑
i=1

xi

2.1.2 Diffusion term - volatility

In stochastic differential equations, σ(t, S(t)) can be defined as the diffusion term

that measures the randomness in asset return S(t+ ∆t)− S(t) [1].

In this sense, the volatility is related to the standard deviation of the logarithmic

price increments, conditioned on price observations, that are usually described

with the following stochastic process in the Black and Scholes Theory:

dS(t) = µS(t)dt+ σS(t)dW (t)
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2.1.3 Implied volatility

The implied volatility, σimp, is the volatility implied by option prices observed

in the market. It is defined as the parameter of the Black-Scholes solution that

provides the market option price V mkt
c (K,T ) at time t0 = 0.

Remark 5 The implied volatility is derived from the Black-Scholes formula, which

will be subsequently derived. However, it is necessary here to define the formula

from which implied volatility is calculated.

A call option value can be written as:

Vc(t, S) = S(t)FN(0,1)(d1)−Ke−r(T−t)FN(0,1)(d2)

A put option value can be written as:

Vp(t, S) = Ke−r(T−t)FN(0,1)(d2)− S(t)FN(0,1)(−d1)

where:

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
log(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T − t.

FN(0,1) = cumulative distribution function of a standard normal variable.

Matematically speaking, σimp is the σ-value, for which:

Vc(t0, S;K,T, σimp, r) = V mkt
c (K,T ) (4)

As opposed to historical volatility, which is backward looking, it is forward looking.

The implied volatility is relatively low for at-the-money options, while it becomes

progressively higher for into-the-money and out-of-the money options [1].

Remark 6 (Option moneyness) The intrinsic value of an option is the difference

between the strike price and underlying asset price. It is possible to have:

1. At the money (ATM), that are options whose strike price is at or very near

to the current market price of the underlying.
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2. In the money (ITM), that are options whose value in a strike price that is

favorable in comparison to the market price of the underlying asset:

(a) An in-of-the-money call option means that the underlying price is trading

above the strike price of the call.

(b) An in-of-the-money put option means that the underlying’s price is

below the put’s strike price.

3. Out of the money (OTM), are options that has no intrinsic value.

(a) An out-of-the-money call option means that the underlying price is

trading below the strike price of the call.

(b) An out-of-the-money put option means that the underlying’s price is

above the put’s strike price.

2.2 Volatility surface

The plot of the implied volatility of an option as a function of its strike price K

and time to maturity T , i.e. in a (t, S)-plane, is known as volatility surface. It

defines the appropriate volatilities for the valuation of options with different strike

prices and different maturities [1].

Since Black-Scholes assumes that the volatility of the underlying asset is constant,

the volatility surface in Black-Scholes method is completely flat.

However, in real life this is not true: Black-Scholes assumptions are violated, and

with one σ input, the Black-Scholes model can only match one market quote at a

strike and maturity.

This is why other various models have been developed over the years; in the next

chapters, it will be shown the local volatility model and stochastic volatility model.

1. Local volatility models take into account the volatility smile, in which the

volatility in the dS(t)/S(t) term is written as a function of S(t).

2. In stochastic volatility models, volatility has its own dynamics described by

a stochastic process.
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Figure 2.1: An example of implied volatility surface with a the three-dimensional surface that

relates the implied volatilities of options with different strikes and different maturities.

As said, the Black-Scholes formula is used to find the volatility value. In doing

so, however, we come up against the biggest inconsistency of the model itself: the

value of the implied volatility in the prices is not constant but varies according to

the maturity and the strike. This behavior is known as an implied volatility smile.

2.3 Volatility smile

The relationship between implied volatility and strike price for options with a

certain maturity is known as a volatility smile (thanks to the u-shaped relationship

[1]), thus relating the implied volatilities as a function of exercise prices.

Mathematically speaking, implied volatility is generally a convex function of the

strike price, with lowest point on the plot is usually around the at the money point

where S(t) = K.

It is actually possible to have different results from an empirical observation:
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if implied volatility is a concave function of the strike price, it will be defined the

volatilty frown [5].

Moreover, when the plot is downward sloping, it is defined as a volatility skew, i.e.

implied volatilities are higher for low strikes than for high strikes [5].

Figure 2.2: Possible implied volatility shapes. In the left figure we see a so-called volatilty

smile. In the right figure a volatilty skew.

Both Local volatility and Stochastic volatility models take the volatility smile

into account.

For a given strike price and maturity, the correct volatility to price an option

derivative is the same, whether it is a call option or a put option. In this sense, it

is possible to say that volatility smile is the same, as well as volatility surface, is

the same for (European) calls and puts, thanks to the Put-Call parity.

Remark 7 (Put-Call parity)

Put-call parity shows the relationship that has to exist between european put and

call options that have the same underlying asset, maturity, and strike prices.

Vc(t, S) = Vp(t, S) + S(t)−Ke−r(T−t)
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Chapter 3

Constant volatility model

The Black-Scholes model is the basic building block of all option pricing models.

Proposed in 1973, it was the first model to model the stock price as a Geometric

Brownian Motion, with the assumption of constant volatility.

In this chapter, the structure of the model and the details of the derivation of

the pricing formula will be presented.

Black-Scholes analysis of European options provides a closed-form solution to

option pricing, which requires only observable variables, except volatility.

The two main assumptions of the model are that volatility is constant and that

the underlying follows a geometric Brownian motion.

Its derivation will be shown, as well as its relationship with the dimension to the

risk, the so-called Greeks.

Finally, a list of the pros and cons of this model will be made. We will see in

the next chapters how other models try to overcome them.



3.1 Black-Scholes method

Black and Scholes derived their famous partial differential equation (PDE) for

the valuation of option derivatives in 1973. With their equation, it is possible to

compute the fair value for the option price at any time t ∈ [0, T ], and at any future

stock price S(t) ∈ [0, Smax].

The key hypothesis is that the interest rate r and volatility σ are constants or

known functions of time t. Other assumptions includes:

(1) There are no arbitrage opportunities

(2) The underlying follows a geometric Brownian motion

(3) The market is completely liquid

(4) Short selling is possible

(5) There are no transaction costs

(6) The underlying and the derivative are traded at any instant of time and can

have any positive real value

(7) There are no dividends

3.1.1 Derivation of the partial differential equation

The derivation of the pricing PDE is based on the concept of a replicating portfolio,

i.e. a risk-free portfolio containing shares and options. In theory, in the absence

of arbitrage opportunities the rate of return of this portfolio must be equal to the

risk-free interest rate, as both the stock and the option are subject to the same

source of uncertainty, i.e. the change in the stock price.

The replicating portfolio, Π(t, S), consists of:

(i) one long position in the option V (t, S);

(ii) a short position of size ∆ in the underlying S(t).

Π(t, S) = V (t, S)−∆S(t)

Where the underlying for the financial derivative contract is a stock price

process, S ≡ S(t), that is assumed to be a Geometric Brownian Motion, with
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the dynamics under the real-world measure P :

dS(t) = µS(t)dt+ σS(t)dW (t)

The derivative contract, V ≡ V (t, S), represents the value of a European

option. It is a function of the stochastic process S(t) and of time t. It is thank to

Itô’s lemma that it is possible to build a model that describes the dynamics of the

derivatives:

dV (t, S) =
∂V

∂t
dt+

∂V

∂S
dS +

1

2

∂2V

∂S2
(dS)2

=

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW

Applying Itô’s lemma it is possibile to show the evolution for an infinitesimal

change in portfolio value:

dΠ = dV −∆dS

=

(
∂V

∂t
+ µS

∂V

∂S
dS +

1

2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW −∆[µSdt+ σSdW ]

=

[
∂V

∂t
+ µS(

∂V

∂S
−∆) +

1

2
σ2S2∂

2V

∂S2

]
dt+ σS(

∂V

∂S
−∆)dW

This portfolio contains some randomness, which depends on the Brownian

Motion W . Setting up a risk-less portfolio, i.e. setting up a delta-neutral position

in the replicating portfolio, it is possible to eliminate the risk:

Remark 8 The Delta, ∆, is the sensitivity of the option with respect to the stock,

i.e. the rate of change in the option value with respect to a change in the stock

value ∆ = ∂V
∂S

.

In this sense, the dW -terms cancel out, and the infinitesimal change of portfolio

Π(t, S), in time instance dt, is given by:

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt
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Since it is a risk-less portfolio, it must do not contain the drift parameter µ,

which drives the stock S(t) under the real-world measure P . The only value the

portfolio depends on is volatility, σ, which is the representation of the uncertainty

about the future behavior of the stock prices.

The return provided by the portfolio is the risk-free rate, as a money-savings

account, M(t) = M(t0)εr(t−t0), that for an amount Π ≡ Π(t, S) can be expressed

as:

dΠ = rΠdt

where r is to the constant interest rate on a money-savings account.

The change in portfolio value is thus:

dΠ = r

(
V − S∂V

∂S

)
dt

Equating the change in this risk-less portfolio and replicating portfolio, the

final Black-Scholes partial differential equation for the value of the option V (t, S)

is revealed:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV = 0 (5)

It is a parabolic PDE, that must be satisfied by the price of any derivative

dependent on a non-dividend-paying stock, holding for both calls and puts [1].

Moreover, since risk factors do not enter the equation, it is said that Black-Scholes

equation is independent of risk preferences, i.e. the assumption that all investors

are risk neutral.

3.1.2 Black-Scholes solution

The natural condition for the Black-Scholes PDE is a final condition, where:

V (T, S) = H(T, S)

XXVIII



where H(T, S) is the payoff function:

Vc(T, S) = H(T, S) = max(S(T )−K, 0), for a call option

Vp(T, S(T )) = H(T, S(T )) = max(K − S(T ), 0), for a put option

Using Feynman-Kac theorem [2], that form the basis for a closed-form expression

for the option value, it is possible to compute the correct expectation of a discounted

payoff function.

It provides a link between the partial differential equation of a diffusion process

and its expectation.

Given the money-savings account, modeled by dM(t) = rM(t)dt, with constant

interest rate r, let V (t, S) be a sufficiently differentiable function of time t and stock

price S = S(t). Suppose that V (t, S) satisfies the following partial differential

equation, with general drift term, µ(t, S), and volatility term, σ(t, S):

∂V

∂t
+ µ(t, S)

∂V

∂S
+

1

2
σ2(t, S)

∂2V

∂S2
− rV = 0

The solution V (t, S) at any time t < T is then given by:

V (t, S) = e−r(T−t)E[H(T, S)|F(t)]

The Feynman-Kac theorem also holds true in logarithmic coordinates, i.e.,

whenX(t) = logS(t). With this transformation of variables, the resulting log-transformed

Black-Scholes PDE reads:

∂V

∂t
+ r

∂V

∂X
+

1

2
σ2

(
∂V

∂X
+
∂2V

∂X2

)
− rV = 0

The final solution V (t,X) gives the representation of option value:

V (t,X) = e−r(T−t)E[H(T,X)|F(t)]

A closed-form solution of the Black-Scholes PDE for a European options with a

constant strike price K can be finally derived, with Hc(T, S) = max(S(T )−K, 0).

A call option value can be written as:

Vc(t, S) = S(t)FN(0,1)(d1)−Ke−r(T−t)FN(0,1)(d2) (6)
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A put option value can be written as:

Vp(t, S) = Ke−r(T−t)FN(0,1)(d2)− S(t)FN(0,1)(−d1) (7)

where:

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 =
log(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T − t.

FN(0,1) = cumulative distribution function of a standard normal variable.

3.2 Hedge parameters - Greek letters

Important information are provided with the so-called hedge parameters, i.e. the

option Greeks, where each Greeks measures a different dimension to the risk in an

option position.

3.2.1 Delta, ∆

As seen, Delta, ∆, is the sensitivity of the option value V with respect to small

changes in stock S, or, as usually defined, it is the rate of change of the option

price with respect to the price of the underlying asset [3].

∆ =
∂V

∂S
(8)

Practically, it is the number of stocks that one must buy or sell to hedge against

the risk, i.e. to be delta-neutral: if ∆ = 0.1, then it is necessary to buy 0.1 of a

stock to be delta neutral. A negative number implies that short-selling of stocks

should take place.

As seen, Delta is crucial in the derivation of the Black-Scholes differential equation,

as it allows to set up a risk-less portfolio consisting of a position in an option on

a stock and a position in the stock, i.e. to build a portfolio delta-neutral. It is

therefore derived from this hedging hypothesis, keeping the value of the portfolio
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Figure 3.1: An example of Delta of the call option. It varies both with moneyness and

maturity date T.

stable, not making it change when the underlying asset moves. In this sense, the

portfolio derivative must be equal to 0.

∂Π(t, S)

∂S
= ∆ =

∂V

∂S

Moreover, we can also express Delta in function of a call and a put options.

Respectively:

∆ =
∂

∂S
Vc(t, S) = FN(0,1)(d1)

∆ =
∂

∂S
Vp(t, S) = FN(0,1)(d1)− 1

3.2.2 Gamma, Γ

Gamma, Γ, is a measure of the rate of change of ∆ with respect to the price of

the underlying asset. It could be thought of as the ∆ of Delta, measuring the

sensitivity of the option delta [3].
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Mathematically, it is the second partial derivative of the portfolio with respect to

asset price.

Γ =
∂∆

∂S
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Figure 3.2: An example of Gamma. It has the highest values around the ATM level for short

maturities.

When gamma is extremely positive or negative, the delta is very sensitive to

the price of the underlying asset, thus changing rapidly. A frequent adjustment is

therefore necessary in this case.

3.2.3 Theta, Θ

Theta, Θ, is a measure of V with respect to the passage of time, t. It is the rate

of change of the value of the portfolio with respect to the passage of time with all

else remaining the same [3].

This is sometimes referred to as the time decay of the value of the option: mathematically,

the Θ of a derivative is the rate of change of the value with respect to the passage

of time (partial derivative with respect to small t).

Θ = −∂V
∂t
.
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3.2.4 Relationship between Greeks and Black-Scholes

Note that every derivative is a Greek in the Black-Scholes differential equation:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV = 0

Thus by direct substitution we have,

Θ + rS∆ +
1

2
σ2S2Γ = rV

According to Black-Scholes method, it can be created a delta-neutral portfolio

building up a portfolio where ∆ = 0.

Θ +
1

2
σ2S2Γ = rV (9)

This shows the inverse relationship between Θ and Γ: when the former is

extremly positive, the latter tends to be large and negative, and viceversa.

3.2.5 Vega, V

The Vega of an option is the partial derivative of its value with respect to volatility

σ [3].

It therefore represents the risk factor derived from the volatility itself, thus going to

the assumptions of Black-Scholes method, where volatility is constant. In effect, as

it will be shown next, in real life there is evidence that volatility changes randomly.

V =
∂V

∂σ

When Vega is highly positive or highly negative, the portfolio’s value is very

sensitive to small changes in volatility.

3.3 Limits of Black-Scholes model

The assumptions made to derive the Black-Scholes model do not reflect the reality

of the financial markets.

XXXIII



strike K

80 85 90 95 100 105 110 115 120

matu
rity

 T

0.0
0.2

0.4
0.6

0.8
1.0

ve
ga

(K
, T

)

0
5
10
15
20
25
30
35

Figure 3.3: An example of Vega. It increases with T and decreases from the ATM level in

both directions, i.e. OTM and ITM

3.3.1 Log-returns

Geometric Brownian motion predicts that log returns are distributed like a normal

one. Empirically, however, we observe a distribution whose tails (especially the

left) are much fatter than those expected, i.e. the extreme realizations in the real

world occur with a greater frequency than the theoretical one.

3.3.2 Leverage effect

Leverage effect ca be defined as the negative correlation between stock prices and

volatility.

leverage =
v

MKT

Where v is the the total debt of a firm and MKT is the market capitalisation.

In effect, it is empirically proven that falls in underlying correspond to a peak in

the volatility values and vice-versa.
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Figure 3.4: Log-return. MSFT’s QQ plot of log-return distributions: many observations fall

outside the red line, i.e. extreme observations are not in line with the normal distributed

quantiles.

3.3.3 Volatility clustering

Volatility clustering can be defined as a positive auto-correlation of the absolute

log-returns over few days. In other words, it refers to the phenomenon whereby

volatility tends to crystallize on the most recent values: therefore periods of

high volatility are more likely to be followed by periods with high volatility and

vice-versa (see Figure 3.6).

3.3.4 Implied volatilty hypothesis

As said, the key assumptions of the Black-Scholes theory is that volatility is

constant. This, however, is not consistent with the observations of the financial

market: proceeding with the calculation of the implied volatility through the

Black-Scholes equation, it shows a so-called implied volatility smile.

3.4 Alternative models

Models that take these disadvantages into account have thus been developed.
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Figure 3.5: The volatility term structure for Black-Scholes model with constant volatility σ.

1. In Local Volatility models, volatility is a function of both the current asset

and time. These models are based on the implied volatility observed by the

market, and then automatically-calibrates, reproducing furthermore exactly

the smiles and inclinations of the market volatility.

2. In Stochastic volatility models, volatility of the asset follows a random process.

They needs to be re-calibrated frequently, to determine the open parameters

of the underlying stock process so that model and market option prices fit.
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Figure 3.6: Volatility Clustering. MSFT’s log-returns: the series seems to randomly fluctuate

around zero, meaning there is little autocorrelation.
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Chapter 4

Local volatility models

As seen, the Black-Scholes model is based on the assumption that the stochastic

process of the underlying evolves according to a geometric Brownian motion, whose

diffusion coefficient, i.e. volatility, is constant.

However, in real life the value of this implied volatility is not constant but varies

according to the maturity and the strike, generating the so-called implied volatility

smile.

In essence, Black-Scholes model is that it is not able to recognize the implied

volatility smile.

The so-called Local-Volatility models have therefore been developed, in which

volatility is expressed as a deterministic function of time and of the underlying.

These models have a great advantage: it is consistent with the market. Dupire’s

volatility, as will be shown, is exact by construction. So, no additional source of

randomness is introduced into the model. In this case it is said that the model is

complete.



4.1 Local Volatility methods

In local volatility models, the volatility of the process is a function of the stock

S(t).

The approach is to take into account the volatility smile, overcoming the limits of

the Black-Scholes model, where the volatility is constant, which is not consistent

with the empirical observation that implied volatility varies with the option’s

expiration date.

In essence, local volatility models aim to be consistent with the volatility smiles

observed on the market, setting the diffusive parameter of the underlying, the

so-called local volatility, in order to fit market prices [1].

The structure of local volatility models is made by:

dS(t) = rS(t)dt+ σLV (t, S)S(t)dW (t)

With the diffusive parameter σLV as a deterministic function dependent on time

and on the value of the underlying.

There are two main models supporting the local-volatility:

1. Parametric Local Volatility, that consists in assuming a parametric shape

dependent on several parameters, which will be calibrated on the market

surface.

2. Dupire Local Volatility, that will be shown in this thesis, where the local

volatility is calculated directly from the market prices by exploiting the

partial differential equation that governs asset dynamics.

4.1.1 Local Volatility derivation

Local volatility modeling is based on the financial version of the Fokker-Planck

equation, which describes the evolution over time of the probability density function

(PDF) of the position of a particle [5].

In this case, the implied stock density, is provided from option prices via differentiation

of the call prices.

fS(t)(y)) = e−r(T−t0) ∂
2

∂y2
Vc(t0, S0;K,T )
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4.1.2 Fokker-Planck Equation

The transition density fS(t)(y) = fS(t, y; t0, S0), i.e. the marginal density of spot

at maturity T , associated to the general SDE for S(t),

dS(t) = µ(t, S)dt+ σ(t, S)dW (t), (10)

evolves following the Fokker-Planck equation.

Definition 12 (Fokker-Planck PDE) For the diffusion process as defined, the

Fokker-Planck PDE for the probability density fS(t)(y) of the random variable

S(t) is:

∂

∂t
fS(t)(y) +

∂

∂y
[µ(t, y)fS(t)(y)]− 1

2

∂2

∂y2
[σ2(t, y)fS(t)(y)] = 0

fS(t0)(y) = δ(y = S0)

4.1.3 Dupire Equation

The risk neutral price of a call with strike K and maturity T is given by:

∂Vc(t0, S0;K,T )

∂T
=

∂

∂T
(e−r(T−t0)

∫ +∞

K

(y −K)fS(t)(y)dy

= −rVc(t0, S0;K,T ) + e−r(T−t0)

∫ +∞

K

∂fS(t)(y)

∂T
dy

Since it was seen that fS(t)(y) satisfies the the Fokker-Planck PDE, integral

can be written as ∫ +∞

K

(y −K)
∂fS(T )(y)

∂T
dy =

−r
∫ +∞

K

(y −K)
∂(yfS(T )(y))

∂y
dy +

1

2

∫ +∞

K

(y −K)
∂2σLV (T, y)y2fS(T )(y))

∂y2
dy

with µ(t, S(t)) = rS and σ(t, S) = σLV (t, S)S.
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Remark 9 The partial derivative of a call option with respect to the strike is

given by the following expression.

Let Vc(t0, S0;K,T ) be the call price, with payoff max (S − K, 0). The partial

derivative of a call option with respect to the strike is given by the following

expression:

∂Vc(t0, S0;K,T )

∂K
= −eâr(T−t0)

∫ ∞
K

fS(T )(y)dy

= −e−r(T−t0)(1− FS(T )(K))

where FS(T ) is the CDF of stock S(T ) at time T .

Remark 10 The second derivative with respect to K:

∂2Vc(t0, S0;K,T )

∂K2
= −e−r(T−t0)FS(T )(K)

Both integrals in the equation can be expressed in terms of call option values:

−
∫ +∞

K

∂(yfS(t)(y))

∂y
dy = e−r(T−t0)[K

∂Vc(t0, S0;K,T )

∂K
− Vc(t0, S0;K,T )]

and ∫ +∞

K

∂2σLV (T, y)y2fS(t)(y))

∂y2
dy = −e−r(T−t0)σ2

LV (T,K)
∂2Vc(t0, S0;K,T )

∂K2

Collecting all terms obtained, we find the Dupire equation.

Definition 13 (Dupire equation) Let Vc(T,K) be the price of a European call

with strike price equal to K and maturity T . Then it satisfies the following

equation:

∂

∂T
Vc = −rK∂Vc

∂K
+

1

2
σ2
LV (T,K)K2∂

2Vc
∂K2

(11)

4.1.4 Dupire Formula

From the inverse formula, we can find the parameter of the volatility σLV (T,K).

It is important to note, as mentioned, that the volatility σLV (T,K) is provided

from market quotes of option values, so it perfectly fit to the market option quotes.

σ2
LV (T,K) =

∂Vc(t0,S0;K,T )
∂T

+ rK ∂Vc(t0,S0;K,T
∂K

1
2
K2 ∂

2Vc(t0,S0;K,T )
∂K2

(12)
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4.2 Implied local volatility

The local volatility function relies on the available implied volatility surface, σimp(T,K),

for each expiry date T and strike price K [6]. In effect, the easiest way to calculate

local volatility σLV (T,K) is to express it in terms of implied volatilities σimp(T,K).

Figure 4.1: Consistency of the volatility calculated by the local volatility model versus the

volatility calculated by the Black-Scholes, in comparison to the true implied volatility.

To relate implied (Black-Scholes) volatilities, σimp(T,K) with Dupire’s local

volatilty σLV (T,K), we use the generic arbitrage-free formula European call option

prices, expressed in functions of two variables:

(i) w = σ2
imp(T,K)(T − t0)

(ii) y = log K
S0er(T−t0)

= log K
S0
− r(T − t0)

For the variables w and y, we define the call price, c(y, w), as:

Vc(t0, S0;K,T ) = S0[FN (0,1)(d1)]− eyFN (0,1)(d2)] = c(y, w)

where:
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d1 =
1

2

√
w − y√

w
andd2 = d1 −

√
w

With the partial derivative with respect to T and with respect to K, it is

possible to find the relationship between the σLV and σimp. In the final result,

beyond the calculations, the local Dupire variance is obtained:

σ2
LV (T,K) =

∂w
∂T

+ rK ∂w
∂K

1 +K ∂w
∂K

(1
2
− y

w
) + 1

2
K2 ∂2w

∂K2 + 1
2
K2( ∂w

∂K
)2(−1

8
− 1

2w
+ y2

2w2 )
(13)

Where:

(i) ∂w
∂T

= σ2
imp + 2(T − t0)σ2

imp

∂σ2
imp

∂T

(ii) ∂w
∂K

= 2(T − t0)σ2
imp

∂σ2
imp

∂K

(iii) ∂2w
∂K2 = 2(T − t0)(

∂σimp

∂K
)2 + 2(T − t0)σ2

imp

∂2σ2
imp

∂K2

Local volatility function σ2
LV (T,K) can thus be expressed in terms of the implied

volatilities σimp.

4.3 Limits of Local volatility models

Local volatility models overcome some imperfections of the Black-Scholes model.

In fact, Local volatility models use the observed implied volatilities market option

quotes as input to the model, to then generate the local volatility value for each

strike price K and for each expiry date T .

Therefore, calibration to these input European options is thus highly accurate.

However, there are drawbacks in these models: first of all, it is unthinkable that all

the source of uncertainty is due solely to the underlying and that local volatility is

conditioned only by the value of the spot is too strong an assumption to describe

the behavior of the market.

XLIV



Figure 4.2: Implied Volatility versus Local Volatility.

Moreover, there are no derivatives (options) for so many maturities and for all

types of shares, and it is therefore difficult to generate a clear stock density for these

shares. In this sense, Local volatility models may suffer from significant mis-pricing

inaccuracy when dealing with financial derivatives products that depend on the

volatility paths and, generally, on density functions.

The last problem in using local volatility models is the low robustness they offer

as the data changes: the local volatility surface tends to move a lot in the face of

small shifts in the spot value. This is an indication of scarce consistency with the

dynamics observed on the market. One of the purposes of the stochastic volatility

models is precisely to overcome this problem.
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Chapter 5

Stochastic Volatility models

In stochastic volatility models volatility has its own dynamics described by a

stochastic process.

Some new mathematical and stastical conditions must be included: some econometric

behaviors observed in the historical series of volatility are introduced, such as mean

reversion, i.e. the assumption that an asset’s price will tend to converge to the

average price over time.

An important aspect is that for the stochastic volatility, the discounted characteristic

function can be derived, which forms the basis of the Fourier option pricing

techniques. It allows a quick calibration process, i.e. an easy choice of parameters

that allow to better replicate market data.

It will be also introduced the techniques to correlate independent Brownian motions,

dealing with a two-dimensional option pricing PDE.

The Heston stochastic volatility model is the most studied of the stochastic volatility

models, where the asset’s variance follows a Cox-Ingersoll-Ross process. The pros

and cons of this method will be analyzed, as well as its calibration process.



5.1 Mathematics underlying the model

Stochastic volatility models describes the evolution of the volatility of an underlying

asset assuming that the volatility of the asset is described by an additional stochastic

process, in a different way than the corresponding asset prices.

In this case, the assumption of constant volatility in asset pricing is modeling the

volatility as a diffusion process, with two-dimensional option pricing PDE (system

of SDEs), which is correlated to the asset price process S(t) [5].

Moreover, important assumptions concern the implied volatility smile and skew,

which is present in the market, and can be accurately recovered by stochastic

volatility models, especially for options with a medium to long time to the maturity

date.

5.1.1 Stochastic volatility - CIR process

One of the most famous stochastic process describing volatility stems from the

process square-root of Cox, Ingersoll and Ross (COS), that models the dynamics

of variance dv(t):

dv(t) = k(v̄ − v(t))dt+ γ
√
v(t)dWQ

v (t) (14)

This stochastic process is a mean reverting square-root process, composed of a

deterministic term, k(v̄ − v)dt, to which a stochastic term γ
√
v(t)dWQ

v is added.

In the process the volatility therefore oscillates around the average value v

(mean-reverting process), where the parameter v̄ is called long-term volatility.

The value of k indicates the speed of this oscillation and determines its frequency

(reversion speed), while γ (the so-called volatility of volatility) indicates the intensity

of the disturbance generated by the Brownian motion, i.e. controls the volatility

of the variance process.

As mentioned, the process models a mean reversion feature for the volatility: if

the volatility exceeds or goes below its mean, it is driven back to the mean with

the speed k of mean reversion [1].
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5.1.2 Characteristic function

A general asset price stochastic volatility model can be defined by a two-dimension

system of stochastic differential equation SDEs, with a diffusive volatility structure:

dS(t) = rS(t)dt+ a(t, v)S(t)dWx(t)

dv(t) = b(t, v)dt+ c(t, v)dWQ
v (t)

Where the underlying Brownian motions are correlated:

dWQ
x dW

Q
v = ρx,vdt ≤ 1

Under some conditions on the drift b and volatlity c coefficients, this class of

models can be included in the class of affine diffusions [5], which guarantees that

the corresponding discounted characteristic function can be derived. It is can then

possible to express the model in terms of the independent Brownian motions.

Remark 11 Stochastic models in the class of affine diffusion (AD) processes can

be expressed by the following stochastic differential form.

dX(t) = µ̄(t,X(t))dt+ σ̄(t,X(t))dW̃ (t)

where W̃ is a column vector of independent Brownian motion and the function µ̄

and σ̄ is of the following form [2]:

µ̄(t,X(t)) = a0 + a1X(t)

(σ̄(t,X(t))σ̄(t,X(t))T )ij = (c0)ij + (c1)Ti,jXj(t)

For this class of processes, the characteristic function, φX(u; t, T ), can be

determined, often in closed form.

φX(u; t, T ) = EQ[e−
∫ T
t r(s)ds+iuTX(T )|F(t)] = eĀ(u,τ)+B̄T (t,τ)X(t)

Where the coefficients Ā(u, τ) and B̄T (t, τ) satisfy the ordinary differential equations

(ODEs):

dĀ

dτ
= −r0 + B̄Ta0 +

1

2
B̄T c0B̄
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dB̄

dτ
= −r1 + aT1 B̄ +

1

2
B̄T c1B̄

These ODEs can be derived by adding the general solution for the characteristic

function, in the pricing PDE, which originates from the asset price process.

With the log-transformation X(t) = logS(t), for X(t) = [X(t), v(t)]T :[
dX(t)

xv(t)

]
=

[
µ̄1(t,X(t))

µ̄2(t,X(t))

]
dt+

[
σ̄1(t,X(t)) σ̄1,2(t,X(t)

σ̄2(t,X(t)) σ̄2,2(t,X(t)

][
dWx(t)

dWv(t)

]
With the drift terms as:

µ̄(t,X(t)) =

[
r − 1

2
a2(t, v)

b(t, v)

]
=

[
a0 + a1v

b0 + b1v

]
With the diffusion term as:

σ̄(t,X(t))σ̄(t,X(t))T =

[
a2(t, v) ρx,va(t, v)c(t, v)

ρx,va(t, v)c(t, v) c2(t, v)

]
=

[
c0,1,1 + c1,1,1v c0,1,2.+ c1,1,2v

c0,2,1 + c1,2,1 c0,2,2 + c1,2,2v

]
It follows that:

a2(t, v) = (
√
v)2 = c0,1,1 + c1,1,1v

ρx,va(t, v)c(t, v) = ρx,v
√
vc(t, v) = c0,1,2 + c1,1,2v

c2(t, v) = c0,2,2 + c1,2,2v

The generator of the stochastic volatility model, for X = [X1(t), X2(t)]T =:

[X(t), v(t)]T , is given by,

A =
2∑
i=1

µ̄i(t,X)
∂

∂Xi

+
1

2

2∑
i=1

2∑
j=1

(σ̄(t,X)σ̄(t,X)T )i,j
∂2

∂Xi∂Xj

(15)

By the Feynman-Kac theorem, the corresponding PDE for V (t,X) is then known

to be:
∂

∂t
V +AV − rV = 0

with the corresponding solution

V (t,X) = e−r(T−t)EQ[H(T,X)|F(t)] (16)

where H is the boundary condition of the PDE.
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5.2 Heston model

The most used stochastic volatility model is the so-called Heston stochastic volatility

models (Heston SVM), defined by two stochastic differential equations (2D system

of SDEs), one for the underlying asset price S(t), and one for the variance process

v(t).

dS(t) = rS(t)dt+
√
v(t)S(t)dWQ

x (t), S(t0) = S0 > 0

dv(t) = k(v̄ − v(t))dt+ γ
√
v(t)dWQ

v (t), v(t0) = v0 > 0.

Where the underlying Brownian motions are correlated:

dWQ
x dW

Q
v = ρx,vdt

5.2.1 Heston option pricing PDE derivation

To define the Heston option pricing PDE, it is possible to carry on the same

method used to derive Black-Scholes equation, that is building up a replicating

portfolio with value Π(t, S, v).

The hedging portfolio in the case of stochastic volatility consists of:

1. the option sold, with value V (t, S, v)

2. −∆ units of the underlying asset S(t),

3. −∆1 units of another option, which is bought with value V1(t, S, v;K1, T ),

with the goal to hedge the risk associated with the random volatility.

The final replicating portfolio is made by:

Π(t, S, v) = V (t, S, v;K,T )−∆S −∆1V1(t, S, v;K1, T ) (17)

Where V1 is an option with the same maturity of V , but with a different strike K1.

As did with Black-Scholes PDE derivation, with Itô lemma it is possible to compute

the stochastic differential and derive the process for an infinitesimal change of
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the portfolio Π(t, S, v), eliminating the randomness of the portfolio with a proper

hedge, canceling the terms in dS and dv:

∂V

∂S
−∆1

∂V1

∂S
−∆ = 0

∂V

∂v
−∆1

∂V1

∂v
−∆ = 0

The final portfolio evolves in deterministic way, and must earn only the risk-free

rate:

dΠ = r(V −∆S −∆1V1)dt

Both option value V and option value V1 are a function of the independent

variables t, S, v. They must be equal to a specific function, g(t, S, v), which only

depends on the independent variables S, v, t.

The final option pricing PDE is provided by:

∂V

∂t
+

1

2
vS2∂

2V

∂S2
+ ρx,yγSv

∂2V

∂S∂v
+

1

2
γ2v

∂2V

∂v2
+ rS

∂V

∂S
+ k(v̄ − v)

∂V

∂v
− rV = 0

5.2.2 Heston characteristic function and solution

The Heston dynamics, with X(t) = logS(t), are thus given by the following system

of SDEs:

dX(t) = (r − 1

2
v(t))dt+

√
v(t)dWx(t)

dv(t) = k(v̄ − v(t))dt+ γ
√
v(t)dWv(t)

Where the underlying Brownian motions are correlated:

dWQ
x dW

Q
v = ρx,vdt

This model is affine, and can be expressed in terms of two independent Brownian

motions.[
dX(t)

dv(t)

]
=

[
r − 1

2
v(t)

k(v̄ − v(t))

]
dt+

[ √
v(t) 0

ρx,vγ
√
v(t) γ

√
(1− ρ2

x,y)vt

][
dWx(t)

dWv(t)

]
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with:

σ̄(t,X(t))σ̄(t,X(t))T =

[
v(t) ρx,vγv(t)

ρx,vγv(t)) γ2v(t)

]

which is affine in its state variables X(t) = [X(t), v(t)]T for constant γ and

ρx,v.

It is possible to define as the so-called Heston ODEs the system of:

dĀ

dτ
= kv̄C̄ + r(B̄ − 1)

dB̄

dτ
= 0

dC̄

dτ
= B̄(B̄ − 1)/2− (k − γρx,vB̄)C̄ + γ2C̄2/2

The solution of this system is given by:

Ā(u, τ) = r(iu− 1)τ +
kv̄τ

γ2
(k − γρx,viu−D1)− 2kv̄

γ2
log(

1− ge−D1τ

1− g
)

B̄(u, τ) = iu

C̄(u, τ) =
1− e−D1τ

γ2(1− ge−D1τ
(k − γρx,viu−D1)

where

D1 =
√

(k − γρx,v)iu)2+(u2+iu)γ2

g =
k − γρx,viu−D1

k − γρx,viu+D1
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5.2.3 Calibration

Calibration is the process that makes a model consistent with the market, trying to

minimize the difference between market plain vanilla option prices and the model

prices, such that Vmkt = VH [1].

In particular, the calibration problem therefore consists in finding Ω such that:

σmkt ≈ σhest

It is important to underline that, however, the existence and uniqueness of

the Ω solution cannot be guaranteed in any way. For this reason the calibration

process becomes a numerical optimization problem. In this sense, a target function

is defined, where parameters that vary are Ω = (ρx,v, v, v0, v̄, k, γ)

min
Ω

∑
i

∑
j

wi,j(V
mkt
c (t0, S0;Ki, Tj)− V hest

c (t0, S0;Ki, Tj,Ω))2

and

min
Ω

∑
i

∑
j

wi,j(σ
mkt
imp (t0, S0;Ki, Tj)− σimp(t0, S0;Ki, Tj,Ω))2

1. V mkt
c (t0, S0;Ki, Tj) is the call option price for strike K and maturity T in

the market;

2. V mkt
c (t0, S0;Ki, Tj,Ω) is the Heston call option value;

3. σmktimp is the implied volatilities from the market

4. σimp is the implied volatilities from the Heston model

5. wi,j is some weighting function.

The goal is therefore to set a J (Ω) equal to the sum of the squared differences

between the prices of the European model and market calls:

J (Ω) =
∑
i

∑
j

(
Vc
mkt
i (Ti, Kij,Ω)− Vchesti (Ti, Kij)

2
)

(18)

This choice leads to greater weighting of the errors committed At-The-Money,

as the Out and In ones depend little on volatility.
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5.2.4 Heston Implied volatility

As seen, in the Heston model the variance, v(t) = σ2(t), is governed by the mean

reverting CIR process, where the process does not move towards infinite values,

but tends to oscillate around a determined level (long-term average) [5].

An in-depth analysis is due, as each parameter has a specific effect on the implied

volatility curve generated by the following dynamics:

1. when the correlation between stock and variance process, ρx,v, gets increasingly

negative, the slope of the skew in the implied volatility curve increases.

2. an increasing volatility-of-volatility, γ, increases the implied volatility curvature.

Figure 5.1: Relationship between the variation of the parameter γ (left) and the variation of

the parameter ρx,v (right), compared with the strike price K.

3. the speed of mean reversion, k, of v(t) has a limited effect on the implied

volatility smile or skew, but determines the speed at which the volatility

converges to the long-term volatility .

5.3 Limits of Stochastic volatility models

While in local volatility models, volatility is a deterministic function of time and

stock prices and is therefore perfectly correlated with stock price, in stochastic

volatility models volatility follows a stochastic process of its own. This is the
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Figure 5.2: Relation between the Heston k parameter on the implied volatility as a function

of strike K (left side) and its contribution on an ATM volatility (right).

rationale behind this new model, also based on market observations which clearly

state that there is no perfect correlation empirically observed.

Moreover, Stochastic Volatility models are able to explain in a consistent way the

smile observed on the market even if it is difficult to calibrate the prime maturities,

also managing to provide a fairly realistic dynamics of the underlying.

The Heston model considers the leverage effect and the clustering effect, which

allows the volatility itself to be random and also allows it to take the non-normally

distributed stock return into account [6].

However, these models are not perfect: the extra randomness from the second

stochastic process is one of the main problems.

A review of advantages and disadvantages is provided below:

1. The closed-form solution allows the calibration.

2. Heston model price dynamics allows for non-lognormal probability distribution.

3. The volatility is mean-reverting.

4. Heston models takes into account the leverage effect (negative correlation

of stock returns and implied volatility), allowing to change the correlation
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between the stock price and the volatility.

The disadvantages, as mentioned, concern the estimation of the parameters

and the calibration:

1. Since volatility is not easily observable in the market, the parameters values

in the Heston Model are not easily estimated.

2. The results depending greatly on the parameters used, thus and therefore

the whole model depends on the calibration.

3. The Heston Model fails to produce decent results for short maturity. To

perform well, the further extensions of the model are necessary, such as

Local-Stochastic volatility model

5.4 Towards Local-Stochastic Volatility model

In this section we briefly describe the local-stochastic volatility model, which

purpose is to unify the two previous categories of models while maintaining the

positive aspects of one and eliminating the negative ones of the other.

The disadvantages and advantages of the local volatility model and the stochastic

volatility model have already been explained. For example, calibrating the Heston

model, however, is not always an easy task, and also not all types of smiles and

implied volatility skews can be modeled using Heston dynamics. (aggiungi rif)

The Local-Stochastic Volatility model (SLV) was therefore developed. More precisely,

it will be defined as the Heston-Stochastic Local Volatility (H-SLV) model, that

is a model where the Heston stochastic volatility model where a non-parametric

local volatility component is added.

This model can be transformed into the pure stochastic volatility model, if the

local volatility component σ̄(t, S(t)) = 1, or into the local volatility model, if the

stochastic component of the variance, bv(t, v(t)) = 0.
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5.4.1 Local-Stochastic Volatility models

The stochastic-local volatility (SLV) model is governed by the following system of

SDEs:

dS(t)/S(t) = rdt+ σ̄(t, S(t))ξ̄(v(t))dWx(t)

dv(t) = av(t, v(t))dt+ bv(t, v(t))dWv(t)

dWx(t)dWv(t) = ρx,vdt

with:

1. correlation parameter ρx,v between the corresponding Brownian motions,

Wx,Wv, and constant interest rate r.

2. σ̄(t, S(t)) governs local volatility.

3. ξ̄(v(t) governs the stochastic volatility.

4. The terms av(t, v(t)) and bv(t, v(t)) represent the drift and diffusion of the

variance process, respectively.

The question around which the model revolves is the following: the term

σ̄(t, S(t)), defined as the densities implied by the market and the model are equal,

is not specified.

It is therefore necessary to define this local component part.

5.4.2 Specify the local volatility

Although local volatility component represents the local part of the process, it

does not coincide with Dupire volatility.

Intuitively, it is a function whose purpose is to correct the implicit volatility smileys

obtained with the stochastic part by pushing them towards the market ones.

For the derivation of this component an extension will be made to the lemma

of Itô, through the Tanaka-Meyer formula.
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Definition 14 (Tanaka-Meyer formula) Given a probability space (Ω,F ,Q),

let, for X(t) = X(t0) + XI(t) + XII(t) be a semi-martingale, where XI(t) is

a continuous local martingale, and XII(t) is a cadlag adapted process of locally

bounded variation, i.e. XII(t) is defined on R and is right-continuous with left

limits almost everywhere. For the function g(x) = (x− a)+, with a ∈ R, it follows

that,

g(X(t)) = g(X(t0)) +

∫ t

t0

1X(z)>adXI(z) +

∫ t

t0

1X(z)>adXII(z) +
1

2

∫ t

t0

g′′(X(z))(dXI(z))2

This formula is useful for determining the dynamics of option value.

For the derivation, we start from the price of a European call option, and study

its dynamics by applying Itô’s lemma.

Vc(t0, S0) =
M(t0)

M(t)
EQ[(S(t)−K)+|F(t0)]

where dM(t) = rM(t)dt.

dVc(t0, S0) = (d
1

M(t)
)E[(S(t)−K)+] +

1

M(t)
dE[(S(t)−K)+]

= − r

M(t)
E[(S(t)−K)+]dt+

1

M(t)
dE[(S(t)−K)+]

where the Fubini theorem justifies the equality:

d(E[(S(t)−K)+]) = E[d(S(t)−K)+]

The Itô lemma is not suitable since the function g(x) = (x−a)+ is not differentiable

at the point x = a.

It is therefore necessary to apply the Tanaka-Meyer formula. The formula becomes:

(S(t)−K)+ = (S(t0)−K)+ +

∫ t

t0

1X(z)>KdS(z) +
1

2

∫ t

t0

δ(S(z)−K)(dS(z))2

where δ is the Dirac delta function.

In differentiable form:

d(S(t)−K)+ = 1(S(t0)>K)dS(t) +
1

2
δ(S(t)−K)(dS(t))2
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Substituting the SLV dynamic of S(t), shown at the beginning, it is possible

to derive the dynamics of the European call option price Vc(t0, S0):

dVc(t0, S0) =
rK

M(t)
E[1S(t)>K ]dt+

1

2M(t)
E[δ(S(t)−K)σ̄2(t, S(t))ξ̄2(v(t))S2(t)]dt

dVc(t0, S0) =
rK

M(t)
E[1S(t)>K ]dt+

1

2M(t)
E[δ(S(t)−K)σ̄2(t, S(t))ξ̄2(v(t))S2(t)]dt

Where the expectations are conditioned on F(t0)

From this equation we can find the SLV local volatility term:

σ̄2(t,K) =
σ2
LV (t,K)

E[ξ̄2v(t))|S(t) = K]

The SLV local volatility component σ̄2(t,K) thus consists of two components, a

deterministic local volatility σLV and a conditional expectation E[ξ̄2(v(t))|S(t) =

K].
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Chapter 6

Application: Volatility estimates

and Simulation of Heston model

In this final chapter we will put into practice what we have seen in the previous

chapters.

In the first section we will do a simple study on implied volatility, taking historical

data of Amazon.com, Inc. (ticker: AMZN) from Yahoo Finance website.

Thus, we will calculate the implied volatility, showing how to use the strike

prices and implied volatility for different maturities in order to calculate any other

volatilities for any given strike and expiration date. Here, we will see that the

Black-Scholes constant volatility assumption does not hold.

Moreover, we will also make a comparison between the volatility surface (from

Black-Scholes model) and local volatility surface (from Local Volatility model a la

Dupire).

In the second part we will see how the Heston model works and its calibration,

evaluating it with the market values. We will make a simple simulations, starting

from Heston pricing up to calibration.



6.1 Volatilty estimates

European options on an equity underlying such as a stock trade for different

combinations of strikes and maturities.

First of all, to build a volatility surface let’s take some data from Amazon.com,

Inc. (ticker: AMZN).

The reference data are:

(i) Initial date: Nov 06, 2015

(ii) Adj. Close price: 659.37

(iii) Eight different Strikes prices

(iv) Exipiration times that go forward from month to month for 24 months (up to

2 years).

It is important to underline that implied volatility is available from Yahoo Finance

data, so we don’t need to compute it from option prices.

In this way, we can thus build a [8x24] matrix where for each row there is a

different exipiration time, and each column corresponds to various strikes as given

in strikes, i.e. a sample matrix of volatility quote by expiration date and strike.

Interpolating these volatilities, it is possible to construct the implied volatility

surface for any other combination of strike and time-to-maturity.

Remark 12 Recall that the implied volatility of a European (Call or Put) option

with market quote is the value of the volatility σimp which substituted in the Black-Scholes

formula gives us this market quote.

Now the Black-Scholes volatility surface can be constructed using the BlackVarianceSurface

function (See Appendix) and the volatilities for any given strike and expiry pair

can be easily obtained using BlackVarSurface.

As we know, it turns out that the Black-Scholes implied volatility for these options

with different maturities and strikes is not the same, generating the so-called

volatility smile.
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Figure 6.1: Volatility as a function of the strike prices (orange points) and interpolation of

these points.

We can then plot the volatility surface; in the construction, we create a three-dimensional

plot where the x-axis is the strike price, the z-axis is the implied volatility, and

the y-axis is the time to maturity.

Figure 6.2: Volatility surface (plotting Strike, Expiration, and Implied Volatility)

We can highlight some features on the graph above: first of all, some volatility

skews levels out as the option expiration date increases.

Furthermore, especially for short maturities, there is a great variability for the

different strike prices. Hence, we see pronounced curvature for short maturities,
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and flatter surfaces for longer maturities.

The appearence of the market implied volatility surface shows that the Black-Scholes

model is far from accurate. In effect, we can go further in the analysis: we know

that in Dupire Local Volatility, the local volatility is calculated directly from the

market prices by exploiting the partial differential equation that governs asset

dynamics.

We know from the Dupire formula (12) that the volatility σLV (T,K) is provided

from market quotes of option values, so it perfectly fits to the market option quotes.

σ2
LV (T,K) =

∂Vc(t0,S0;K,T )
∂T

+ rK ∂Vc(t0,S0;K,T
∂K

1
2
K2 ∂

2Vc(t0,S0;K,T )
∂K2

Figure 6.3: Local volatility surface (a la Dupire).

If we compare implied volatility surface with local volatility surface, we can

see that the fit is pretty good. Actually, the Local Volatility models, unlike

Black-Scholes model, are very good and even perfect at fitting arbitrage-free surface

of implied volatilities (smile), via Dupire’s formula.
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6.2 Pricing of Heston model and Calibration

As seen in Chapter 5, an alternative to Local Volatility models are the Stochastic

Volatility models, that can produce a more realistic volatility surface, where the

smile is almost self similar, compared to local volatility models which flatten out

the forward volatility curve and vanish the smile.

In the Stochastic Volatility model the asset price and its volatility are both assumed

to be random processes and can change over time, hence it gives more realistic

dynamics of the volatility smile, with a two-factor model that assumes separate

dynamics for both the stock price and instantaneous volatility.

In this section we show how to price European options with the Heston stochastic

volatility model.

The Heston model is defined a system of stochastic differential equations where

the stock price follows a geometric Brownian motion and its variance follows a

Cox-Ingersoll-Ross (CIR) process.

The basic Heston model assumes that St, the price of the asset, is determined by

a stochastic process:

dSt = µStdt+
√
νtStdW

S
t ,

where νt, the instantaneous variance, is given by CIR process,

dνt = κ (θ − νt) dt+ ξ
√
νtdW

ν
t

We already described volatility v as a mean reverting stochastic process with

a constant volatility of volatility σ.

The two stochastic processes have a correlation ρ.

Let’s define Heston parameters:

(i) k = 4.1

(ii) σ = 0.3

(iii) ρ = −0.7

(iv) v0 = 0.04

(v) θ = 0.06
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(vi) r = 0

(vii) S0 = 1

(viii) T = 0.4

(ix) logMoneyness = 0.1

Using these data and the characteristic function seen in Chapter 5, it is possible

to derive both the correct price for a call and the Heston Implied volatility. In

effect, we can use the model to deduce the implied volatility for a given option,

using the given parameters to obtain a plot called Heston Volatility Smile.

To run the script below you will need the HestonPValue and hestonEuropeanCall

(see Appendix).

Figure 6.4: Heston call price and Heston implied volatility.

We assumed that the model parameters were given. Actually, when we have

the Heston model and a pricing engine, we can pick the quotes with all strikes

and maturities in order to calibrate the model. In this sense, we will calibrate

the Heston model to fit to market volatility quotes with (for example) one year

maturity.

In effect, in order to estimate option prices under the Heston Model, we need

to find the five unknown input parameters, which are initial volatility, long-term

volatility, volatility of the stochastic volatility process, volatility mean-reverting

speed and correlation between stock price and volatility.

These five parameters are unknown because they cannot be easily observed in
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the market. The way to find these five parameters is to calibrate the Heston

Model to the option market prices. In this way, we can obtain the five parameters

that reflect the behaviors of the options that are traded in the real market.

However, in practice, it is not possible to match exactly the observed market

prices. Thus the problem of calibrating the Heston Model is formulated as an

optimization problem. Our objective is to minimize the pricing error between the

model prices and the market prices for a set of data.

Here we have defined the Levenberg-Marquardt (LM) algorithm, which finds local

minima and is very sensitive to initial conditions. It involves an iterative procedure,

with the aim of finding the right parameters of the model curve such that the sum

of the squares of the deviations is minimized [21].

In this sense, we look at the quality of calibration by pricing the options used

in the calibration using the model and lets get an estimate of the relative error.

Figure 6.5: Quality of calibration with estimate of the relative error.
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Appendix A

Appendix: Python code

A.1 Volatility estimates

import QuantLib as q l

import math

day count = q l . Actual365Fixed ( )

ca l endar = q l . UnitedStates ( )

c a l c u l a t i o n d a t e = q l . Date (6 , 11 , 2015)

spot = 659.37

q l . S e t t i n g s . i n s t anc e ( ) . eva luat ionDate = c a l c u l a t i o n d a t e

d i v i d e n d y i e l d = q l . QuoteHandle ( q l . SimpleQuote ( 0 . 0 ) )

r i s k f r e e r a t e = 0 .01

d i v i d e n d r a t e = 0 .0

f l a t t s = q l . YieldTermStructureHandle (

q l . FlatForward ( c a l c u l a t i o n d a t e , r i s k f r e e r a t e , day count ) )

d i v i d e n d t s = q l . YieldTermStructureHandle (

q l . FlatForward ( c a l c u l a t i o n d a t e , d iv idend ra te , day count ) )

e x p i r a t i o n d a t e s = [ q l . Date (6 , 12 ,2015) , q l . Date (6 , 1 , 2016 ) ,
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q l . Date (6 , 2 , 2016) ,

q l . Date (6 , 3 , 2016) , q l . Date (6 , 4 , 2016) , q l . Date (6 , 5 , 2016) ,

q l . Date (6 , 6 , 2016) , q l . Date (6 , 7 , 2016) , q l . Date (6 , 8 , 2016) ,

q l . Date (6 , 9 , 2016) , q l . Date (6 , 10 ,2016) , q l . Date (6 , 11 ,2016) ,

q l . Date (6 , 12 ,2016) , q l . Date (6 , 1 , 2017 ) , q l . Date (6 , 2 , 2017) ,

q l . Date (6 , 3 , 2017) , q l . Date (6 , 4 , 2017) , q l . Date (6 , 5 , 2017) ,

q l . Date (6 , 6 , 2017) , q l . Date (6 , 7 , 2017) , q l . Date (6 , 8 , 2017) ,

q l . Date (6 , 9 , 2017) , q l . Date (6 , 10 ,2017) , q l . Date ( 6 , 1 1 , 201 7 ) ]

\\
s t r i k e s = [ 5 2 7 . 5 0 , 560 .46 , 593 .43 , 626 .40 , 659 .37 , 692 .34 ,

725 .31 , 7 5 8 . 2 8 ]

data = [

[ 0 . 3 7 8 1 9 , 0 .34177 , 0 .30394 , 0 .27832 , 0 .26453 , 0 .25916 , 0 .25941 ,

0 . 2 6 1 2 7 ] , [ 0 . 3 4 4 5 , 0 .31769 , 0 .2933 , 0 .27614 , 0 .26575 , 0 .25729 ,

0 .25228 , 0 . 2 5 2 0 2 ] , [ 0 . 3 7 4 1 9 , 0 .35372 , 0 .33729 , 0 .32492 , 0 .31601 ,

0 .30883 , 0 .30036 , 0 . 2 9 5 6 8 ] , [ 0 . 3 7 4 9 8 , 0 .35847 , 0 .34475 , 0 .33399 ,

0 .32715 , 0 .31943 , 0 .31098 , 0 . 3 0 5 0 6 ] , [ 0 . 3 5 9 4 1 , 0 .34516 , 0 .33296 ,

0 .32275 , 0 .31867 , 0 .30969 , 0 .30239 , 0 . 2 9 6 3 1 ] , [ 0 . 3 5 5 2 1 , 0 .34242 ,

0 .33154 , 0 .3219 , 0 .31948 , 0 .31096 , 0 .30424 , 0 . 2 9 8 4 ] , [ 0 . 3 5 4 4 2 ,

0 .34267 , 0 .33288 , 0 .32374 , 0 .32245 , 0 .31474 , 0 .30838 , 0 . 3 0 2 8 3 ] ,

[ 0 . 3 5 3 8 4 , 0 .34286 , 0 .33386 , 0 .32507 , 0 .3246 , 0 .31745 , 0 .31135 ,

0 . 3 0 6 ] , [ 0 . 3 5 3 3 8 , 0 . 343 , 0 .33464 , 0 .32614 , 0 .3263 , 0 .31961 ,

0 .31371 , 0 . 3 0 8 5 2 ] , [ 0 . 3 5 3 0 1 , 0 .34312 , 0 .33526 , 0 .32698 , 0 .32766 ,

0 .32132 , 0 .31558 , 0 . 3 1 0 5 2 ] , [ 0 . 3 5 2 7 2 , 0 .34322 , 0 .33574 , 0 .32765 ,

0 .32873 , 0 .32267 , 0 .31705 , 0 . 3 1 2 0 9 ] , [ 0 . 3 5 2 4 6 , 0 .3433 , 0 .33617 ,

0 .32822 , 0 .32965 , 0 .32383 , 0 .31831 , 0 . 3 1 3 4 4 ] , [ 0 . 3 5 2 2 6 , 0 .34336 ,

0 .33651 , 0 .32869 , 0 .3304 , 0 .32477 , 0 .31934 , 0 . 3 1 4 5 3 ] , [ 0 . 3 5 2 0 7 ,

0 .34342 , 0 .33681 , 0 .32911 , 0 .33106 , 0 .32561 , 0 .32025 , 0 . 3 1 5 5 ] ,

[ 0 . 3 5 1 7 1 , 0 .34327 , 0 .33679 , 0 .32931 , 0 .3319 , 0 .32665 , 0 .32139 ,

0 . 3 1 6 7 5 ] , [ 0 . 3 5 1 2 8 , 0 . 343 , 0 .33658 , 0 .32937 , 0 .33276 , 0 .32769 ,

0 .32255 , 0 . 3 1 8 0 2 ] , [ 0 . 3 5 0 8 6 , 0 .34274 , 0 .33637 , 0 .32943 , 0 .3336 ,

0 .32872 , 0 .32368 , 0 . 3 1 9 2 7 ] , [ 0 . 3 5 0 4 9 , 0 .34252 , 0 .33618 , 0 .32948 ,

0 .33432 , 0 .32959 , 0 .32465 , 0 . 3 2 0 3 4 ] , [ 0 . 3 5 0 1 6 , 0 .34231 , 0 .33602 ,

0 .32953 , 0 .33498 , 0 .3304 , 0 .32554 , 0 . 3 2 1 3 2 ] , [ 0 . 3 4 9 8 6 , 0 .34213 ,
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0 .33587 , 0 .32957 , 0 .33556 , 0 .3311 , 0 .32631 , 0 . 3 2 2 1 7 ] , [ 0 . 3 4 9 5 9 ,

0 .34196 , 0 .33573 , 0 .32961 , 0 .3361 , 0 .33176 , 0 .32704 , 0 . 3 2 2 9 6 ] ,

[ 0 . 3 4 9 3 4 , 0 .34181 , 0 .33561 , 0 .32964 , 0 .33658 , 0 .33235 , 0 .32769 ,

0 . 3 2 3 6 8 ] , [ 0 . 3 4 9 1 2 , 0 .34167 , 0 .3355 , 0 .32967 , 0 .33701 , 0 .33288 ,

0 .32827 , 0 . 3 2 4 3 2 ] , [ 0 . 3 4 8 9 1 , 0 .34154 , 0 .33539 , 0 .3297 , 0 .33742 ,

0 .33337 , 0 .32881 , 0 . 3 2 4 9 2 ] ]

i m p l i e d v o l s = q l . Matrix ( len ( s t r i k e s ) , len ( e x p i r a t i o n d a t e s ) )

for i in range ( i m p l i e d v o l s . rows ( ) ) :

for j in range ( i m p l i e d v o l s . columns ( ) ) :

i m p l i e d v o l s [ i ] [ j ] = data [ j ] [ i ]

b l a c k v a r s u r f a c e = q l . BlackVar ianceSur face (

c a l c u l a t i o n d a t e , ca lendar ,

e x p i r a t i o n d a t e s , s t r i k e s ,

imp l i ed vo l s , day count )

s t r i k e = 600 .0

exp i ry = 1 .2 # years

b l a c k v a r s u r f a c e . blackVol ( expiry , s t r i k e )

import numpy as np

% matp lo t l i b i n l i n e

from m p l t o o l k i t s . mplot3d import Axes3D

import matp lo t l i b . pyplot as p l t

from matp lo t l i b import cm

s t r i k e s g r i d = np . arange ( s t r i k e s [ 0 ] , s t r i k e s [ −1 ] ,10)

exp i ry = 1 .0 # years

i m p l i e d v o l s = [ b l a c k v a r s u r f a c e . blackVol ( expiry , s )

for s in s t r i k e s g r i d ]

a c tua l da ta = data [ 1 1 ]
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f i g , ax = p l t . subp lo t s ( )

ax . p l o t ( s t r i k e s g r i d , imp l i ed vo l s , l a b e l=” Black Sur face ” )

ax . p l o t ( s t r i k e s , ac tua l data , ”o” , l a b e l=” Actual ” )

ax . s e t x l a b e l ( ” S t r i k e s ” , s i z e =12)

ax . s e t y l a b e l ( ” Vols ” , s i z e =12)

legend = ax . legend ( l o c=”upper r i g h t ” )

p l o t y e a r s = np . arange (0 , 2 , 0 . 1 )

p l o t s t r i k e s = np . arange (535 , 750 , 1)

f i g = p l t . f i g u r e ( )

ax = f i g . gca ( p r o j e c t i o n= ' 3d ' )

X, Y = np . meshgrid ( p l o t s t r i k e s , p l o t y e a r s )

Z = np . array ( [ b l a c k v a r s u r f a c e . blackVol (y , x )

for xr , yr in zip (X, Y)

for x , y in zip ( xr , yr ) ]

) . reshape ( len (X) , len (X[ 0 ] ) )

s u r f = ax . p l o t s u r f a c e (X,Y, Z , r s t r i d e =1, c s t r i d e =1,

cmap=cm. coolwarm , l i n ew id th =0.1)

f i g . c o l o rba r ( sur f , sh r ink =0.5 , a spect =5)

l o c a l v o l s u r f a c e = q l . Loca lVolSur face (

q l . BlackVolTermStructureHandle ( b l a c k v a r s u r f a c e ) ,

f l a t t s ,

d iv idend t s ,

spot )

p l o t y e a r s = np . arange (0 , 2 , 0 . 1 )

p l o t s t r i k e s = np . arange (535 , 750 , 1)

f i g = p l t . f i g u r e ( )

ax = f i g . gca ( p r o j e c t i o n= ' 3d ' )

X, Y = np . meshgrid ( p l o t s t r i k e s , p l o t y e a r s )

Z = np . array ( [ l o c a l v o l s u r f a c e . l o c a l V o l (y , x )

for xr , yr in zip (X, Y)
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for x , y in zip ( xr , yr ) ]

) . reshape ( len (X) , len (X[ 0 ] ) )

s u r f = ax . p l o t s u r f a c e (X, Y, Z , r s t r i d e =1, c s t r i d e =1,

cmap=cm. coolwarm , l i n ew id th =0.1)

f i g . c o l o rba r ( sur f , sh r ink =0.5 , a spect =5)

A.2 Pricing of Heston model

from sc ipy . i n t e g r a t e import quad

import cmath

import numpy as np

import matp lo t l i b . pyplot as p l t

from math import i snan

from sc ipy . opt imize import b i s e c t

from sc ipy . s t a t s import norm

def Heston P Value ( hestonParams , r ,T, s0 ,K, typ ) :

kappa , theta , sigma , rho , v0 = hestonParams

return 0 .5+(1 ./ np . p i )∗ quad ( lambda x i :

In t Funct i on 1

( xi , kappa , theta , sigma , rho , v0 , r ,T, s0 ,K, typ ) , 0 . , 5 0 0 . ) [ 0 ]

de f In t Funct i on 1

( xi , kappa , theta , sigma , rho , v0 , r ,T, s0 ,K, typ ) :

r e turn ( cmath . e∗∗(−1 j ∗ x i ∗np . l og (K))∗
In t Funct i on 2

( xi , kappa , theta , sigma , rho , v0 , r ,T, s0 , typ )/(1 j ∗ x i ) ) . r e a l

de f In t Funct i on 2 ( xi , kappa , theta , sigma , rho , v0 , r ,T, s0 , typ ) :

i f typ == 1 :

w = 1 .

b = kappa − rho∗ sigma
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e l s e :

w = −1.

b = kappa

i x i = 1 j ∗ x i

d = cmath . s q r t ( ( rho∗ sigma∗ i x i −b )∗ ( rho∗ sigma∗ i x i −b)

sigma∗ sigma ∗(w∗ i x i −x i ∗ x i ) )

g = (b−rho∗ sigma∗ i x i −d) / (b−rho∗ sigma∗ i x i+d)

ee = cmath . e∗∗(−d∗T)

C = r ∗ i x i ∗T + kappa∗ theta /( sigma∗ sigma )∗ ( ( b−rho∗ sigma∗ i x i −d)

∗T − 2 .∗ cmath . l og ((1.0 −g∗ ee )/(1. −g ) ) )

D = ( ( b−rho∗ sigma∗ i x i −d )/( sigma∗ sigma ))∗(1 . − ee )/(1. −g∗ ee )

re turn cmath . e ∗∗(C + D∗v0 + i x i ∗np . l og ( s0 ) )

de f heston EuropeanCal l ( hestonParams , r ,T, s0 ,K) :

a = s0 ∗Heston P Value ( hestonParams , r ,T, s0 ,K, 1 )

b = K∗np . exp(−r ∗T)∗ Heston P Value ( hestonParams , r ,T, s0 ,K, 2 )

re turn a−b

de f he s ton Imp l i edvo l ( hestonParams , r ,T, s0 ,K) :

myPrice = heston EuropeanCal l ( hestonParams , r ,T, s0 ,K)

## B i s e c t i o n a lgor i thm when the Lee−Li a lgor i thm breaks down

de f smileMin ( vol , ∗ args ) :

K, s0 , T, r , p r i c e = args

re turn p r i c e − BlackScho les ( True , s0 , K, T, r , 0 . , vo l )

vMin = 0.000001

vMax = 10 .

re turn b i s e c t ( smileMin , vMin , vMax ,

args=(K, s0 , T, r , myPrice ) ,

r t o l =1e −15, f u l l o u t p u t=False , d i sp=True )

#Heston parameters

kappa = 4 .1

sigma = . 3

rho = −0.7
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v0 = 0.04

theta = 0.06

r = 0 .

s0 = 1 .

T = 0 .4

logMoneyness = 0 .1

hestonParams = kappa , theta , sigma , rho , v0

cp = heston EuropeanCal l ( hestonParams , r ,T, s0 ,

s0 ∗np . exp ( logMoneyness ) )

i v = hes ton Imp l i edvo l ( hestonParams , r ,T, s0 ,

s0 ∗np . exp ( logMoneyness ) )

p r i n t (” Heston Cal l Pr i ce : %.4 f ” %cp )

p r i n t (” Heston Impl ied v o l a t i l i t y : %.2 f%%” %(100.∗ i v ) )

logMoneynesses = np . l i n s p a c e ( − .5 , . 5 , 20)

c a l l s = [ heston EuropeanCal l ( hestonParams , r ,T, s0 , s0 ∗np . exp ( x ) )

f o r x in logMoneynesses ]

i v s = [ he s ton Imp l i edvo l ( hestonParams , r ,T, s0 , s0 ∗np . exp ( x ) )

f o r x in logMoneynesses ]

f i g = p l t . f i g u r e ( f i g s i z e =(14 ,8))

p l t . subp lot (2 , 2 , 1)

p l t . p l o t ( logMoneynesses , c a l l s , 'b−' , l i n ew id th =2)

p l t . t i t l e (” Heston Cal l p r i c e s ” , f o n t s i z e =12,

fontwe ight ='bold ' )

p l t . x l a b e l (u ' log−moneyness ' , f o n t s i z e =12)

p l t . subp lot (2 , 2 , 2)

p l t . p l o t ( logMoneynesses , ivs , 'b−' , l i n ew id th =2)

p l t . t i t l e (” Heston impl i ed v o l a t i l i t y ” , f o n t s i z e =12,

fontwe ight ='bold ' )

p l t . x l a b e l (u ' log−moneyness ' , f o n t s i z e =12)

p l t . show ( )
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A.3 Heston Calibration

#dummy parameters

v0 = 0 . 0 1 ; kappa = 0 . 2 ; theta = 0 . 0 2 ; rho = −0.75; sigma = 0 . 5 ;

p roc e s s = q l . HestonProcess ( f l a t t s , d iv idend t s ,

q l . QuoteHandle ( q l . SimpleQuote ( spot ) ) ,

v0 , kappa , theta , sigma , rho )

model = q l . HestonModel ( p roce s s )

eng ine = q l . Analyt icHestonEngine ( model )

# engine = q l . FdHestonVanil laEngine ( model )

h e s t o n h e l p e r s = [ ]

b l a c k v a r s u r f a c e . s e t I n t e r p o l a t i o n (” b i cub i c ”)

one yea r idx = 11 # 12 th row in data i s f o r 1 year exp i ry

date = e x p i r a t i o n d a t e s [ one yea r idx ]

f o r j , s in enumerate ( s t r i k e s ) :

t = ( date − c a l c u l a t i o n d a t e )

p = q l . Per iod ( t , q l . Days )

sigma = data [ one yea r idx ] [ j ]

#sigma = b l a c k v a r s u r f a c e . blackVol ( t /365 .25 , s )

he lpe r = q l . HestonModelHelper (p , ca lendar , spot , s ,

q l . QuoteHandle ( q l . SimpleQuote ( sigma ) ) ,

f l a t t s ,

d i v i d e n d t s )

he lpe r . s e tPr i c ingEng ine ( eng ine )

h e s t o n h e l p e r s . append ( he lpe r )

lm = ql . LevenbergMarquardt (1 e−8, 1e−8, 1e−8)

model . c a l i b r a t e ( he s ton he lpe r s , lm ,

q l . EndCr i ter ia (500 , 50 , 1 . 0 e −8 ,1.0 e−8, 1 . 0 e −8))

theta , kappa , sigma , rho , v0 = model . params ( )
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pr in t ” theta = %f , kappa = %f , sigma = %f , rho = %f ,

v0 = %f ” % ( theta , kappa , sigma , rho , v0 )

avg = 0 .0

p r i n t ”%15s %15s %15s %20s ” % (

” S t r i k e s ” , ”Market Value ” ,

”Model Value ” , ” Re la t i v e Error (%)”)

p r i n t ”=”∗70

f o r i , opt in enumerate ( h e s t o n h e l p e r s ) :

e r r = ( opt . modelValue ( )/ opt . marketValue ( ) − 1 . 0 )

p r i n t ”%15.2 f %14.5 f %15.5 f %20.7 f ” % (

s t r i k e s [ i ] , opt . marketValue ( ) ,

opt . modelValue ( ) ,

100 .0∗ ( opt . modelValue ( )/ opt . marketValue ( ) − 1 . 0 ) )

avg += abs ( e r r )

avg = avg ∗100.0/ l en ( h e s t o n h e l p e r s )

p r i n t ”−”∗70

p r i n t ”Average Abs Error (%%) : %5.3 f ” % ( avg )
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