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Abstract

This thesis compares the forecast accuracy of the GARCH and CaViAR class models

for calculating VaR. The results show that the Caviar models outperform the GARCH

models, particularly for the most extreme quantiles. For both classes of models,

asymmetrical specifications achieve more accurate results. The analysis will be

conducted by estimating the models using log-likelihood functions for GARCH

models and Regression Quantiles for CaViAR. Forecasts will be backtested using

different approaches. In the first part, the theoretical framework will be outlined,

briefly addressing VaR’s history, uses, and critics. Subsequently, the models used

from a theoretical point of view and the empirical results will be presented.
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Introduction

On 19 October 1987, after a growth of more than 44% in the first months of year,

the Dow Jones Industrial Average suffered a record loss of 22.6%. The increasing

occurrence of crises at the global level pushed countries worldwide to seek standard

prevention measures. The use of financial instruments capable of triggering the

exchange of securities on the occurrence of certain conditions made it clear that new

risk measures needed to be developed. For a financial institution, estimating the risk

of a position is a crucial issue. One possible way to measure risk is to consider the

size of the loss that security may incur if its price falls. The Value at Risk is the

greatest amount an investor can lose with a given probability over a certain period.

Since its introduction as part of the 1988 Basel Accords, which mandated the use

of VaR as the basis for calculating banks’ capital requirements, VaR has become

the financial world’s principal measure of risk. As witnessed by the intense debate

over methods to forecast the VaR, the accuracy of VaR estimates still remains a

major issue in finance. This issue becomes even more relevant during crisis, when

investors and banks may be more likely to resort to reserves to offset losses. To

ensure the solvency of the financial system, regulators provided some ground rules

for the minimum capital that financial institutions are obliged to hold as reserves to

face possible loss scenarios. VaR offered several opportunities:

• it reflects current market conditions, which are contained in the P&L distribu-

tion;

• it can be computed for options, swaps, and other derivatives, even if it is

simpler for stocks and bonds;

• it can be computed for a portfolio made by different instruments, even if it is

not sub-additive.

However, VaR has also some drawbacks, both due to its most popular calculation

approaches (i.e., assumption of normality) and intrinsically related to its definition.

This thesis aims to compare the accuracy of one-day ahead forecasts of the VaR. To

carry out this analysis, seven models of the classes GARCH and CaViaR, in different

specifications, will be considered. The comparison of the accuracy of the forecasts

will be conducted employing some of the most popular backtests. The analysis will

assess the differences in accuracy of the various models on different assets in the 3000
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daily observations period from 02/01/2009 to 01/12/2020. The sample includes the

economic crisis generated by the spread of the Covid-19 outbreak, which witnessed

a substantial increase in volatility. The analysis will be conducted on four assets:

SP500, WTI, Euribor3m, and EurUsd. The comparison results show that CaViaR

models provide more accurate forecasts than GARCH models. In particular, for

both classes of models, the asymmetric models (i.e., taking into account the leverage

effect) outperform the others.



Chapter 1

Risk Management and Value at

Risk

1.1 Literature Review

Risk measurement is a significant issue for financial institutions. The need to develop

a measure of risk has become increasingly apparent with the prominent role of finance

within the economy. To proceed with the analysis, it is first necessary to introduce the

notion of risk. Raiffa and Luce (1957)’s definition of risk distinguishes between risk,

uncertainty, and certainty. If the decision-maker knows the probabilities associated

with the outcome of the decision, then he is in the presence of risk. In the case in

which such probabilities are not known, the situation is uncertain. Finally, if the

decision will inevitably lead to a determined known outcome, one is in a situation of

certainty. Although risk management within companies has always been a subject of

study, it was not until the 20th century that it became a proper discipline. The first

academic books on Risk Management were published by Mehr and Hedges (1963) and

Williams and Heins (1964) and mainly dealt with pure Risk Management. With the

spread of the studies of Markowitz, Lintner (1965), Treynor (1961), Sharpe (1966),

and Mossin (1966), which later merged into the Capital Asset Pricing Model, Risk

Management focused on developing more sophisticated mathematical tools to assess

risk. As risk management became quantitatively oriented, formal risk definitions

became widespread. In Kaplan and Garrick (1981)’s definition, risk can be defined

as a ”set of triplets”: scenario, probability, and consequences. These answer the

questions: what is likely to happen? How likely is it to happen? What are the

consequences?

To answer these questions, it is possible to develop a list of possible outcomes or

scenarios, described in Table 1.1

Table 1.1: Scenario List
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Scenario Likelihood Consequence

S1 p1 x1

S2 p2 x2

. . .

. . .

. . .

SN pN xN

Where i-th raw can be intented as

R = {⟨si, pi, xi⟩} (1.1)

R denotes the risk represented by the scenario si, its probability pi, and the associated

outcomes xi.

This paper will focus on a particular type of risk, called market risk, which is defined

by the European Banking Authority as:

”The risk of losses in on and off-balance sheet positions arising from

adverse movements in market prices”.

In the 1970s and 1980s, due to the growing popularity of derivatives, Financial Risk

Management had become a priority for financial institutions, increasingly exposed to

price and interest rate fluctuations. As highlighted by Dionne (2013) risk management

included in its area of focus the effect of financial decisions on the overall value of a

company or portfolio.

Despite the intense scientific debate around risk management, there were still no

shared and uniformly respected practices within the entire financial circuit capable

of preventing or containing possible systemic financial crises. The market crash of

1987, which originated in Asia and then spread throughout the world, also known as

”Black Monday”, had one of its roots in the steady increase in volatility recorded

in the months preceding October 1987. A new financial product called portfolio

insurance had spread rapidly, involving extensive use of derivatives and options.

These contributed to accelerating drastically the crash’s pace due to the selling

mechanisms triggered by the initial losses. On October 19th 1987, after several days

of losses and extreme selling pressure on stocks, the Dow Jones Industrial Average

reported a loss of 22.6%.

The spread of the crisis throughout the world emphasized the need to take shared

measures between the various countries to cope with phenomena of such magnitude.

In the following years, the world’s major countries harmonized their provisions and

intensified cooperation activities. The Basel agreements were certainly the primary

efforts in this direction. The first agreement, included in the Basel 1 1988 for banking

regulation, was limited to credit risk. It required each bank to hold a reserve equal



to 8% (Cook ratio) of the value of securities to mitigate the credit risk of its portfolio.

Alongside this provision, internal models for calculating VaR were developed as an

additional element of risk assessment of the bank’s financial position. According to

JP Morgan’s RiskMetrics Technical Document of 1996:

”Value at Risk is a measure of the maximum potential change in value of

a portfolio of financial instruments over a pre-set horizon. VaR answers

the question: how much can I lose with α% probability over a given time

horizon.”

To clarify this definition it is possible to give an example: a 95% one-day Var is the

amount that would be lost the next day with a probability of 95%. To provide a

formal definition of the VaR, it is necessary to introduce its components first. Let

∆Pt(τ) = P (t+ τ)− P (t) (1.2)

denote the change in the value of a portfolio between time t and time t+ τ .

Let α ∈ (0, 1) denote the probability level, then formally the VaR is defined as

Pr[∆P (τ) < −V aR] = 1− α or

V aR(α) = inf{v|Pr(rt ≤ v) = α}.
(1.3)

Let ∆P have a cumulative distribution function F

F∆P (x) = Pr(∆P ≤ x). (1.4)

Assuming that F∆P admits a density, the VaR is the α-th quantile associated with

the distribution of the portfolio returns. It is then possible to write:

1− α =

∫ V aRα

−∞
f∆P (x) dx. (1.5)

In this first version of the Basel agreement, the VaR was calculated as the sum of the

VaRs relating to asset return risk, interest rate risk, exchange risk, and commodity

place risk. Computing VaR in this way did not consider the effect of diversification

to mitigate risk. The document also specified some further rules for the calculation

of VaR:

• time horizon was at ten market days or two weeks;

• confidence level was fixed at 99%;

• historical data used to produce estimates had to go back at least one year, with

an update of the parameters every three months.



Considering the arbitrariness of setting the reserves at 8% and the absence of mecha-

nisms designed to encourage diversification as a strategy for risk mitigation, VaR was

quickly preferred to the Cook Ratio. Over the years, the simplicity of VaR, which

expresses in a single number in monetary or percentage terms the likely loss of a

portfolio, has made it the international standard for measuring financial risk.

Over the past 18 years, there have been three regimes for calculating market risk

capital requirements: Basel 2, Basel 2.5, and Basel 3. The evolution of the interna-

tional banking regulation is summarized in Fig 1.1. However according to Gneiting

(2011), to understand the usefulness and popularity of VaR, it is helpful to consider

these regimes briefly.

In 1996, the Basel 2 accords allowed banks to use their own ”internal” models to

calculate regulatory capital. These models included 99% VaR with a 10-day horizon.

Once the latter was calculated and ”validated” through some backtesting procedures,

including the Traffic Light test introduced by the Commission, the regulatory capital

was calculated as follows:

CAB2
t = max(V aRt−1,mcV aRt−1), (1.6)

where mc is a multiplicative factor which is assigned according to the ”traffic light”

system. V aRt−1 is the VaR of the previous day and V aRt−1 is the average VaR of the

previous 60 days. The multiplication factor is at least 3 but can take on greater values

as the inaccuracy of the model (measured by the backtests) increases. After the

outbreak of the 2008 crisis, the standards imposed by Basel 2 appeared inadequate

to measure systemic risk. This resulted in maintaining inadequate levels of capital

buffers to withstand a crisis. Therefore, Basel 2.5 introduced the Stressed VaR,

which was a VaR calculated during 12 months of financial stress. The calculation of

capital requirements was therefore modified:

CAB2.5
t = max(V aRt−1,mcV aRt−1) +max(SV aRt−1,msSV aRt−1). (1.7)

The first term is the same from Basel 2. SV aRt−1 is the Stressed VaR of the previous

day, and SV aRt−1 is the average Stressed VaR for the previous 60 days. Given that

Stressed VaR is at least equal to VaR and assuming that the two multipliers are

equal, this change resulted in at least a doubling of the capital buffers under Basel

2. Finally, under Basel 3, it was decided to use Expected Shortfall as the measure

to base capital requirements because it considers both the likelihood of loss and

its value. The ES is more difficult to estimate due to the lack of the property of

elicitability, i.e., the property whereby a risk measure is detectable as the solution

to the problem of minimizing an expected loss function. Anyway, the ES is both

consistent and coherent, while the VaR is neither. To understand why the VaR is

not coherent, it is first necessary to introduce briefly the notion of risk measure.



Figure 1.1: Evolution of International Bank Regulation

Let L be a space of random variables. A risk measure is a decreasing function that

links the future risky position X ∈ L to the minimal amount ρ(X) that should be

collected to cover the risk X. A risk measure ρ over a random variable X, is said to

be coherent if it satisfies the following conditions:

• Homogeneity: given h ≥ 0

ρ(h,X) = hρ(X); (1.8)

• Sub-additivity: given X1, X2;

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2); (1.9)

• Monotonicity:

X1 ≤ X2 ⇒ ρ(X1) ≤ ρ(X2); (1.10)

• Translation invariance: given a ∈ R

ρ(X − a) = ρ(X)− a; (1.11)

The VaR is not a coherent risk measure, since it can be shown that sub-additivity

is not always guaranteed. As demostrated by Ibragimov (2005), in presence of log-

concave distributions, this condition is satisfied . Following the example of Dańıelsson

et al. (2013), it is possible to see why the VaR is not sub-additive. Let X1, X2 be two

assets that are usually normally distributed, but that can be subject to the shocks:

Xi = ϵi + ηi, ϵi ∼ IIDN (0, 1)



ηi =

0 with prob. 0.991

−10 with prob. 0.009

X1 and X2 have the same distribution and are independent. If the shock η

occurs the 1% VaR for X1 and X2 is 3.1, otherwise it would be 2.3. Since the

probability of getting η = −10 for a X1 or X2 is higher than 1%, a portfolio formed

by (X1 +X2) has an higher VaR than that composed of 2X1. In this case then, the

sub-additivity is not respected. The crucial importance of sub-additivity in portfolio

optimization problems is due to its relationship with convexity. As shown by Acerbi

and Tasche (2002), convexity follows from sub-additivity and positive homogeneity,

and is necessary to ensure that the risk minimization process guarantees a unique

and well-diversified solution. In addition to the lack of sub-additivity, VaR has other

pitfalls: its widespread use can result in the overvaluation of its limited implications.

First of all, it is necessary to remind that VaR is a measure of risk estimation,

regardless of the method used to calculate it. It is just one of the useful tools to have

an idea of the riskiness of a portfolio. Furthermore, Abad et al. (2014) have shown

that the methods used for VaR estimation differ considerably from one another,

causing a substantial difference in precision. As highlighted by Jorion (1996), to

be interpreted correctly, the VaR must also be presented with its own confidence

interval: the width of the interval provides information about the accuracy of the

estimate, defining its reliability.

Although VaR is a rather simple concept, the methods used to calculate it can be

very complex. The traditional models for calculating VaR can be divided into two

approaches: the Delta-Normal method and the Historical Simulation method. The

latter, together with all the other models that will be mentioned, will be analyzed

from a theoretical point of view in the following sections.

The Delta-Normal method, also called Variance-Covariance Method, is a simple and

not computationally expensive method that can be applied to portfolios with jointly

normally distributed positions which can be represented by their delta exposures.

Since linear combinations of normal positions that are jointly normally distributed

are themself normally distributed, it is possible to compute the VaR in a simple

way. Only market values of the positions, their respective weights in the portfolio,

and their volatility estimates are needed to compute the Delta-Normal estimates.

However, this method has several drawbacks. A first problem is the existence of fat

tails in the distribution of returns on most financial assets as pointed out by Duffie

and Pan (1997). These fat tails are of particular concern precisely because VaR seeks

to understand the behavior of the tails. Secondly, the financial returns often show

long-term memory and volatility clustering. According to Cont (2007) volatility

clustering can be defined as the property often observed in time series that tends

to cluster large price changes together, resulting in persistence of the amplitudes

of price changes. Long term memory reflects the long run dependency between



stock market return.Without taking those elements into account, VaR estimates can

become rather inaccurate. Furthermore, this method cannot be applied to non-linear

instruments such as options.

The Historical Simulation method does not make any assumption about the dis-

tribution of risk factors. The method consists of estimating the distribution of

returns using the empirical distribution and then directly calculating the quantile.

This approach solves the problem of fat tails while remaining simple to implement.

Although this method is one of the most popular among banks, it has been shown

by Abad and Benito (2013) that the estimates produced in this way are not very

accurate. The choice of the length of the time window is subjective and one can

run the risk of including irrelevant events for future periods, or conversely omitting

relevant events just outside the selected range. Furthermore, this method assumes

that the distribution of returns remains constant over time, although the findings in

this regard are not univocal. To overcome the criticalities of the above mentioned

approaches, more complex models were developed to improve the reliability of the

above-mentioned VaR approaches. One of the most important contributions in

this area has been the class of GARCH model developed by Bollerslev (1986) as a

generalization of the ARCH model introduced four years earlier by Engle (1982).

Given its ability to handle volatility clustering and its great predictive power, recently

confirmed also by Hansen and Lunde (2005), the GARCH model has become very

popular. However, it has some drawbacks too: first, GARCH cannot deal with the

asymmetry of shocks. In GARCH models, volatility is a function of the magnitude

of the lagged residuals but not of their sign. However, some studies have shown

that adverse shocks can cause more significant increases in volatility than positive

shocks. This is attributed to the leverage effect, caused by the worsening of the

debt-to-equity ratio resulting from lower yields. The leverage effect is the negative

correlation between past returns and future volatility. According to the work of

Jean-Philippe et al. (2008), this effect can be interpreted as a ”specific market panic

phenomenon”. Various variants of this model have been developed to overcome these

drawbacks while remaining within the GARCH structure. The EGARCH by Nelson

(1991) and GJR-GARCH model by Glosten et al. (1993) are particularly relevant as

they take into account the asymmetry of return shocks are .

A different method of calculating VaR than that proposed by GARCH models is

the CaViaR Engle and Manganelli (2004).This model, is based on a direct estimate

of the quantile, without specifying any assumptions about the distribution of the

time series. CaviaR has several specifications, but Şener et al. (2012) have shown

that those specifications that take into account the leverage effect provide better

estimates than symmetric models. Gerlach et al. (2011) showed that at a confidence

level of 0.01, CaViaR performs better than several models in the GARCH family.



Chapter 2

Methodology

This thesis will consider several models to estimate the VaR. Firstly, the traditional

methods, Historical Simulation, and Delta Normal method will be presented, which

will serve as a benchmark for more sophisticated models. Subsequently, VaR esti-

mation will be performed using the models of the GARCH class, and finally with

the different specifications of the CaViaR model. In this chapter, models will be

presented discussing their main assumptions and implications. VaR estimates will

be constructed at 95% and 99% confidence levels. Each sample will be divided into

an in-sample period in which the initial parameter estimates are produced, and an

out-of-sample period which provides forecasts.

2.1 Model specification

2.1.1 Delta Normal Method

As previously mentioned, the Delta Normal method relies on the hypothesis that

the market risk factors (and therefore also the Profit & Loss distribution of the

portfolios) follow a multivariate normal distribution. Using the properties of the

normal distribution, it is then possible to determine the quantile corresponding to

the desired level α. For example, consider a VaR at 99%: according to the tables of

the standard normal, the corresponding quantile is:

V aR99% = −µ− 2.33σ

Where 2.33 represents the 99th percentile of the standard normal, µ the mean of the

distribution.

It is then clear that the estimation of the standard deviation is a key issue for this

method. The standard deviation of a portfolio depends on the standard deviations
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of the securities that compose it and their respective correlations

σP =

√∑
i

∑
j

wiwjρijσiσj.

Estimating correlations can be very time-consuming and expensive if the portfolio

consists of many securities. With a portfolio of n securities, the number of parameters

to estimate would be n(n+1)
2

. It is possible to decompose the portfolio into the k

major risk factors to which it is exposed and then recreate as simpler simulated

portfolio as a linear combination of them. As shown by Linsmeier and Pearson (2000)

this process will speed up the computations, avoiding estimating many parameters.

Formally then, a normal distribution of portfolio returns ∆X, with mean µ and

variance σ2:

∆X ∼ N (µ, σ2),

and its probability density function

f(x) =
1

σ
√
2π

exp

(
−1

2

(
x− µ

σ

)2
)
.

Then following the previously given definition of VaR with a probability level α,

it is possible to write

1− α =

∫ V aRα

−∞
f(x) =

1

σ
√
2π

exp

(
−1

2

(
x− µ

σ

)2
)
dx.

Considering the cumulative distribution function F

α = P (X ≤ V aRα),

It is possible to obtain Z ∼ (0, 1) standardazing X. It is now possible to write:

α = P

[
Z ≤

(
V aRα − µ

σ

)]
Finally, with some simple algebraic manipulation, the following result is obtained:

V aRα = µ+ zασP ,

where zα is the α-th percentile of a normal standard distribution.

As previously specified, this model is based on the normality assumption which is

difficult to apply to time series of returns. Therefore, the derived estimates must be

considered little reliable in much of the empirical cases.



2.1.2 Historical Simulation

According to Pérignon and Smith (2010), the Historical Simulation method is one

of the most widely used for calculating VaR . Its use is mainly related to its two

major advantages. First, it is a simple method to implement because it does not

require optimization or parameter estimation. Second, this method is model-free,

since Historical Simulation is not based on any parametric model, but only considers

historical realizations. Consider the series of asset returns X in a portfolio with

returns:

R =
n∑

i=1

wiXi,

and the information contained therein relating to the series of m events that have

previously occurred. Consider a hypothetical portfolio built using the historical

returns of the underlying securities, weighted by the current portfolio weights:

{Rt+1−τ}mτ=1 ≡

{
n∑

i=1

hiRt+1−τ

}m

τ=1

,

where τ is the time horizon of the returns and hi are the historical weights of the

portfolio. The return constructed in this way simulates the returns of a hypothetical

portfolio using current positions. This method assumes that the distribution of the

variable at time t+1 is well approximated by its historical distribution. The Value at

Risk in this case is simply the percentile associated with the α level of the historical

distribution.

The Filtered Historical Simulation method was developed by Barone-Adesi and

Giannopoulos (2001) to improve this approach while retaining its framework, and it

has been shown that it is able to provide more reliable estimates.

2.1.3 GARCH models

The ARCH model class was developed by Engle (1982) and later extended by

Bollerslev (1986) with the introduction of the GARCH class. Let

• Θ0 ∈ Θ the element of interest belonging to the set of parameters Θ;

• rt(Θ0) be the stochastic process, with conditional mean

µt(Θ0) := Et−1(rt); (2.1)

• the past return innovations

εt−1 = rt−1 − µt−1; (2.2)



Then εt follows an ARCH/GARCH model if

σ2(Θ0) = V art−1[εt(Θ0)] = Et−1[ε
2
t (Θ0)], (2.3)

with Et−1[εt(Θ0)] = 0.

Considering now the process

εt(Θ0) = zt(Θ0)σt(Θ0) (2.4)

Et−1[zt(Θ0)] = 0 (2.5)

V art−1[zt(Θ0)] = 1. (2.6)

If zt(Θ0) ∼ N (0, 1), it is possible to write

Et−1[ε
2
t ] = Et−1[z

2
t (Θ0)]Et−1[σ

2
t (Θ0)] = σ2

t . (2.7)

Having defined its elements, the model GARCH(1,1) is given by

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1,

where ω is the term referring to the long term variance; α1ε
2
t−1 is the the paramiter

driving the impact of past innovations and β1σ
2
t−1 is the autoregressive component.

The GARCH(1,1) sufficient condition for strict stationarity is α1 + β1 < 1. The

unconditional variance V ar(rt) = E(ε2t ) = E(σ2
t ) under stationarity can be rewritten

as follows:

E(σ2
t ) = ω + α1E(ε

2
t−1) + β1E(σ

2
t−1)

E(σ2
t−1) = E(ε2t−1) = E(σ2

t )

V ar(rt) =
ω

1− α1 − β1
.

(2.8)

The GARCH(1,1) model is among the most widely used, as it has only three

parameters to estimate and has shown good predictive capabilities. It is possible to

generalized the model to a GARCH(p,q), which parameterizes the variance based on

q lags of squared errors and p lags of conditional variance:

σ2
t = ω + α1(L)εt + β(L)σ2

t , (2.9)

where (α1L) = α1L+ α2L
2 + ...+ αpL

p and β(L) = βL+ βL2 + ...+ βLq.

Since the normality assumption of zt did not seem very realistic, to consider heavier

tails, some modification to the initial model was proposed. Bollerslev (1987) proposed



a modification where zt was distributed as a t-student or as a Generalized Error

Distribution (GED).

In addition, although the GARCH is able to account for volatility clustering and

leptokurtosis phenomena, it did not account for the leverage effect. The development

of several variants of GARCH dealt with these problems.

Nelson (1991) proposed a version of GARCH that solves the problem of non-negativity

of the parameters and considers the leverage effect: the EGARCH. This model can

be specified with the following equation:

log(σ2
t ) = ω +

q∑
i=1

βi log(σ
2
t−i) +

p∑
j=1

αi[ϕzt−1 + ψ(|zt−1| − E|zt−1|)]. (2.10)

With this new specification, volatility depends on the magnitude and direction of

shocks. The term (|zt−1| − E|zt−1|) accounts the magnitude effect and is weighted

by ψ. The direction of the zt shocks affects volatility through the parameters ϕ

and ψ. For example, if ψ = 0 and ϕ < 0, a negative innovation shock zt−1 result in

an increase in volatility log(σ2
t ). Nelson assumed that zt has a Generalized Error

Distribution (GED). The latter is a vast family of distributions, including the normal

and uniform distribution, through distributions with fatter tails.

Glosten et al. (1993) proposed a new version of the GARCH, which was able to

take into account the asymmetry of the shocks in a more straightforward way. They

specified the following GJR-GARCH model in the following way:

σ2
t = ω +

q∑
j=1

βjσ
2
t +

p∑
i=1

(αiε
2
t−1 + γi1(−∞;0)(εt)ε

2
t−1). (2.11)

If γ is positive, the increase in volatility will be greater than in the opposite case,

since the indicator function will take on a null value. Therefore, if γ > 0, a leverage

effect is observed. To control for outliers in the series and provide a better fit to the

returns, Harvey and Chakravarty (2008) proposed the Beta-t-EGARCH, which was

then brought back to the class of Generalized Autoregressive Score (GAS) models

introduced by Creal et al. (2013). The GAS models use the score of the density

function of the data to update the density function of the process under analysis.

Among the various advantages that the use of the score involves, particularly relevant

is the one related to the use of the information coming from the whole distribution

ft, while traditionally, only the first and second-order moments of the series under

analysis are used. The Beta-t-EGARCH(1,1) model can be specified as follows:

defining the time series

yt = µt + εt

εt = exp tut,
(2.12)



where ut ∼ t(ν)i.i.d.. Let then define the following:

λt = α0 + α1et−1 + β1t−1 (2.13)

et = (ν + 1)bt − 1 (2.14)

bt =
(yt − µt)

2/(ν exp 2λt)

1 + (yt − µt)2/[ν exp 2λt]
. (2.15)

Estimating GARCH models

The Maximum Likelihood method is a common way to estimate the parameters of

the GARCH models. The process finds the parameter values most likely to return

the actual data. A Likelihood function is first constructed and then maximized with

respect to the model parameters to proceed with the estimation.

Consider a random variable y, whose realization is conditional on a set of unknown

parameters Θ and with a probability density function f(y|Θ). The product of n

independent and identically distributed individual densities is called the likelihood

function

f(y1, ..., yn|Θ) =
n∏

i=1

f(yi|Θ) = L(Θ|y). (2.16)

Since this specification may lead to numerical problems, usually the logarithmic

transformation is applied:

log L(Θ|y) =
n∑

i=1

logf(yi|Θ) (2.17)

This is the most common form, so usually the log-likelihood function is identified

directly with L(Θ|y). Considering the example of a GARCH(1,1) with normal

innovations, the log-likelihood function for the t-th observation would be:

log L(Θ|y) = −1

2
log(2π)− 1

2
log(σ2

t )−
ε2

2σ2
t

, (2.18)

with εt = yt − µt(Θ).

Once the parameters of a GARCH model have been estimated, it is possible to

conduct the diagnostic test based on the Ljung-Box statistic to check for the presence

of serial correlation and ARCH effects in the standardised residuals. Let

ζt ∼ N(0, 1), (2.19)

be a White Noise series. Its sample autocorrelation coefficients will be approximately



distributed according to a normal

ρ̂s ∼ approx.N(0, 1/T ), (2.20)

where T is the sample size and ρ̂s is the autocorrelation obtained in the sample at lag

s. Ljung and Box (1978) proposed a statistical test to check that all the coefficients

ρ̂n are simultaneously zero. The test considers squared coefficients to avoid eliding

terms with opposite signs. The test statistic Q∗ is calculated as follows:

Q∗ = T (T + 2)
n∑

k=1

ρ̂s
T − k

∼ χ2
n. (2.21)

This test is a modification of the Box and Pierce (1970) test, which is less accurate

for small samples. Therefore, the null hypothesis of the Ljung-Box test is that

all coefficients are simultaneously zero, against the alternative hypothesis that at

least one of them is non-zero. In the case of GARCH models, the test verifies

that the standardized residuals are not autocorrelated. Therefore, the absence of

autocorrelation makes it possible to establish that the model has captured any serial

correlation present in the time series.

2.1.4 Caviar Models

In 2004, Engle and Manganelli (2004) introduced a new class of models for estimating

VaR to overcome some of the critical issues associated with previous approaches.

Parametric approaches, such as the Delta Normal method or GARCH models,

estimate VaR by estimating portfolio volatility. These methods need to assume a

specific distribution of innovations and therefore the distribuition of their returns.

These models are exposed to the risk of incorrect specification of the distribution

of the Data Generating Process. The application of Extreme Value Theory in the

financial field has shown that it can sometimes improve the accuracy of forecasts.

As summarised by Rocco (2010), the accuracy and flexibility of estimates made with

this approach are due to its consideration of the tails of the data, without considering

the centre of the distribution. This fundamental feature is particularly useful when

estimating risk measures that focus on the tails. However, even this approach proved

somewhat inaccurate when not particularly ”extreme” quantiles, such as 5%, are

taken into analysis.

Rolling quantile methods typically assume that each return has the same probability

of being observed within the specified time window. This method implicitly assumes

that the distribution of returns is stationary over the time window, which is usually

one year. The approach to quantile estimation that Engle and Manganelli propose

involves directly modeling the quantile. The model includes an autoregressive

component able to consider the phenomena of volatility clustering. The Conditional



Autoregressive Value at Risk can be introduced as follows.

Defining:

• α the level of probability associated to the VaR,

• {yt}mt=1 the vector of portfolio returns,

• βα the p-dimentional vector of the unkonwn parameters,

• xt a vector of observable variables,

• ft(β) ≡ ft(xt−1, βα) the time t α-quantile of the portfolio return distribution

conditioned on information available at time t− 1 (for simplicity βα will be

indicated just as β),

then the CAViaR can be described as follows:

ft(β) = β0 +

q∑
i=1

βift−i(β) +
r∑

j=1

βil(xt−j), (2.22)

where the dimension of β is p = r + q + 1. l is a function of the lagged values of

observables and links ft(β) with the information set. βift−i(β) is the autoregressive

component. Usually lagged returns are used as xt−j.

It is than possible to specify different specification of CAViaR:

• Adaptive:

ft(β1) = ft(βt−1) + β1
(
[1 + expG[yt−1 − ft−1(β1)])]

−1 − α
)
, (2.23)

where G is a positive finite number. Using this specification, if the VaR forecast

is less than the realised loss, then the next forecast will increase and vice versa.

This decreases the probability of no hits throughout the series.

• Symmetric:

ft(β) = β1 + β2ft−1(β) + β3|yt−1|

• Asymmetric:

ft(β) = β1 + β2ft−1(β) + β3(yt−1)
+ + β4(yt−1)

−

where (y)+ = max(y, 0) and (y)− = −min(y, 0)

Since the coefficients of the lagged VaR are not constraint to be one, the Symmetric

and Asymmetric specifications are mean revearting. In this way, when VaR forecasts

differ too much from their average, they will be “reset” to their long term average.



Estimating Caviar models

Let {yt}mt=1 be the vector of observed portfolio returns generated by the model

yt = x′
tβ

0 + εαt, Quantα(εαt|xt) = 0 (2.24)

where Quantα(εαt|xt) is the α-quantile of εαt conditional on xt. Considering

ft(β) ≡ xtβ is now possible to define the estimate associated with the level α

as the value β̂ that solves:

min
β

1

m

m∑
t=1

[α− I(yt < ft(β)][yt − ft(β)]. (2.25)

This minimisation can be carried out using either OLS (ordinary least squares) or

LAD (least absolute deviation), although the latter provides more robust results.

2.1.5 Backtesting VaR

Assessing the predictive capabilities of VaR models is a key element in risk man-

agement. The Basel Accords included the need to test models to understand their

reliability. Backtesting refers to evaluating a financial risk model using future profit

and loss realizations forecasts. As pointed out by Christoffersen (2008), risk manage-

ment teams typically perform this type of evaluation, or bank regulators. In VaR

models, backtesting is performed to ensure that the model can provide sufficiently

accurate estimates. Although several approaches exist, the most popular ones tradi-

tionally are those developed by Kupiec (1995) and Christoffersen (1998).

Consider a model V aRt(α), where α is the probability level the VaR prediction

return is reasonably assumed to be exceeded. Given yt the series on which VaR is

calculated, define the hit sequence of V aRt, the violations:

It =

1, if yt < V aRt(α),

0, otherwise
(2.26)

This definition does not consider the magnitude of the violation, so it will be used in

terms of frequency. Kupiec (1995) tests for the following hypothesis:H0 It ∼ IID Bernoulli(α)

H1 It ∼ IID Bernoulli(π)
(2.27)

In other words, it is possible to rewrite the null hypothesis as H0 : E[It] ≡ π = α. To

estimate the expected value of the hit sequence, one can consider the sample average:

π̂ = 1
T

∑T
t=1 It =

T1

T
, where T1 is the number of 1s in the sample. If the VaR model

passes the Kupiec’s test, it produces hits on average with probability α. If the null



hypothesis was right, the expected value of π̂ would be:

E[π̂] =
1

T

m∑
t=1

It = α. (2.28)

A simple test can then be implemented to check if the difference between π and α is

statistically significant:

MT =
√
T

π − α√
V ar(It)

∼ N (0, 1), (2.29)

Where the variance V ar(It) can be estimated as the sample variance of the hit

sequence.

It is also possible to implement the test using a Likelihood ratio test. To do so, it is

first necessary to write the likelihood function of an IID Bernoulli(π) sequence:

L(π) =
T∏
t=1

(1− π)1−It+1πIt+1 = (1− π)T0πT1 , (2.30)

where T0 and T1 are respectively the number of zeros and ones in the the sample. π̂

can be estimated as stated before, as the observed violations on the correct valuation

of the model, π̂ = T1

T
. Replacing π in equation 2.30, with π̂, the Likelihood function

is maximised:

L(π̂) =

(
1− T1

T

)T0
(
T1
T

)T1

(2.31)

If the null hypothesis is correct, π = α, where α, the likelihood would be:

L(α) =
T∏
t=1

(1− α)1−It+1αIt+1 = (1− α)T0αT1 (2.32)

The Likelihood ratio test statistics can be written as follows:

LRuc = −2ln

[
L(α)

L(π̂)

]
∼ χ2

1 (2.33)

If the model is correctly specified, violations should occur randomly. However, due to

the phenomenon of volatility clustering, changes in the volatility of large magnitude

tend to occur one after the other. For example, as stated by Pritsker (2006) the

presence of volatility clustering, therefore, violations will not happen randomly but

will be correlated with each other.

It is possible to test the independence of the violations through a test based on

the Likelihood function. To proceed, it is necessary to assume that the sequence of

hits can be described by a first-order Markov process, with the following transition



probability matrix:

Π1 =

[
1− π01 π01

1− π11 π11

]
,

where the probability that in period t+1 a hit occurs given that at the current period

t this has not occurred (so the VaR estimate is lower than the actual realization) is

equal to π01. Similarly, the probability that there are two consecutive violations is

given as π11 = Pr(It = 1
⋂
It+1 = 1). The other elements of the matrix represent

the probabilities of the complements.

Once this process is defined and the T observations of the sample are considered,

the Likelihood function for this Markov process can be written as follows:

L(Π1) = (1− π01)
T00(1− π11)

T10πT01
01 π

T11
11 ,

where Ti,j,with i, j = 0, 1 is the number of observations j followed by observations i.

Maximising the function with respect to π01 and π11, then π̂01 and π̂11 are obtained:

π̂01 =
T01

T01 + T11

π̂11 =
T11

T10 + T11
.

(2.34)

The probabilities for the other two events can be obtained simply as follows:

π̂00 = 1− π̂01

π̂10 = 1− π̂11.
(2.35)

If the model is correctly specified, all probabilities πij with i, j = 1, 1 must be equal.

One can consider the hypothesis π01 = π11 using the likelihood ratio test:

LRind = −2ln

[
L(π̂01)

L(Π̂1)

]
∼ χ2

1.

Combining the tests of independence and the tests of unconditional coverage yields

the test of conditional coverage: LRcc = LRind + LRuc, which asymptotically

LRcc ∼ χ2(2).

To evaluate the validity of the VaR calculation models, the Basel Committee in

1996 proposed an intuitive system for backtesting VaR called Traffic Light.

Consider the VaR forecast series V aR(α)i, with i = 1, . . . , N such that:

V aR(α) := inf{y ∈ R : FL(z) ≤ α},

Where FL(y) is the cumulative distribution function of the variable L evaluated at

y. Recalling the definition of VaR violation It 2.26, we define the total number of



violations as:

XN
V aR(α) :=

N∑
i=1

(It).

To evaluate the goodness of the forecasts, the Traffic Light test considers the difference

with the theoretical number of breaches E[XN
V aR(α)] = Nα and the actual number of

violations. A correctly specified model should have a number of breaches very close

to the theoretical one, with deviations due to the randomness of sampling . Having

defined α and N , the cumulative probability of obtaining a number of breaches equal

to or less than x, is defined as:

Ψα,N
V aR(x) := P [XN

V aR(α) ≤ x].

This probability is compared with that of a binomial with parameters N and 1− α.

In particular, the model under test is assigned a colour according to the following

criterion:

• Green: Ψα,N
V aR(x) ≤ 95%;

• Yellow: 95% ≤ Ψα,N
V aR(x) ≤ 99%;

• Red: Ψα,N
V aR(x) ≥ 99%;

Thus, a model falls into the green zone if the cumulative probability of obtaining the

number of breaches x is equal to or less than 95%. It falls into the yellow area if the

probability of getting those breaches is between 95% and 99%, and finally, it belongs

to the red zone if the cumulative probability exceeds 99%. These three colors identify

a hierarchical criterion to assess the adequacy of a bank’s risk model. Intuitively,

green does not cast doubt on the accuracy of the model. Yellow expresses an inconclu-

sive doubt. Finally, red indicates that the model is inadequate and should be modified.

In their paper Engle and Manganelli (2004) presented the Dynamic Quantile test

to verify the independence of VaR violations and the violation rate of the exceedances.

Within this work, the test was implemented on R, via the GAS package Ardia et al.

(2019). Consider the violation indicator function It, where t = 1, . . . , N , defined as

in equation 2.26. In the paper the function Hitαt is constructed by subtracting its

mean from the indicator:

Hitαt = It − α.

If the tested model is correctly specified, the process Hitαt with t = 1, . . . , N will

have mean 0 and serially uncorrelated. These two hypotheses together constitute

the null hypothesis of the test, which is implemented by the following regression:

Hitαt = δ0 +
L∑
l=1

δlHit
α
t−l + δL+1V aRlt−1(α) + ϵt, (2.36)



where L represents the number of Lags. Wald’s test is performed on this regression,

with null hypotheses predicting joint nullity of all coefficients δ.

In the paper of González-Rivera et al. (2004), a VaR-based loss function based on

the work of Koenker and Bassett (1978) is proposed. The authors propose function

defined as follows:

Q = P−1

N∑
t=1

(α− It+1)(yt+1 − V aRα
t+1), (2.37)

Where It is defined in eq. 2.26. The function is asymmetric because the observations

in which the returns exceed the forecasted VaR have more weight. Between two

models the one with the smaller Q-statistic is preferred. The loss function allows

the performance of the models to be compared, although to get a clearer idea of

the correct specification of the models, it is better to look at the whole set of tests

proposed.
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Chapter 3

Data

3.1 Data collection

Data from four time series will be used to compute VaR estimates. Each data series

is taken from a different asset class, to understand if there are differences in their

behaviours. The assets chosen for the analysis are the following:

• Stocks: SP500

• Commodity: WTI

• Forex: EURUSD

• Interest Rate: Euribor 3M

These assets were chosen because they are highly liquid, widley traded and identify

key market risk factors. Each time series goes from 2nd Jenuary 2009 to 1st December

2021, with 3000 daily observations. Data were extracted from Bloomberg.

To deal with returns instead of prices, the following log-transformation was applied:

rt = ln

(
Pt

Pt−1

)
. (3.1)

In this formula, rt is the daily return, Pt is the price at day t and Pt−1 is the

price at the preceding day. Due to this transformation, each time series loses one

observation. The negative value in the WTI series on 20th April 2020 was replaced

with the average of the two preceding and following days. This manipulation is

necessary to avoid a negative argument in the logarithmic transformation. In this

respect, a negative price indicates that producers are willing to pay buyers to take

their production. Negative prices are due both to a technical component of the

market, linked to the dynamics of the futures, and to the fact that producers’ storage

capacities had reached their limit. Sellers needed to rent oil tankers in order to

manage the supply surplus. For model estimates and forecasts, Euribor3m interest
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rates were converted into prices using the formula

PEuribor,t = 100− rt,

Where rt is the interest rate extracted from Bloomberg.

3.2 Descriptive statistics

As previously specified, financial returns often do not come from normal distributions.

The statistical tests of Kolmogorov-Smirnov Massey Jr (1951), Anderson-Darling

Anderson and Darling (1954), and Cramer-von Mises Cramr (1928) were performed

to test for normality.

Kolmogorov-Smirnov Test tests the theoretical distribution and the data distribution

have the same cumulative distribution function. The statistic used for the test is the

maximum difference in absolute value between the empirical cumulative distribution

function F̂ (x) and the theoretical one G(x):

D∗ = max
x

(|F̂ (x)−G(x)|).

The two-sided test tests the null hypothesis that the empirical and Hypothesised

distribution are equal. If this difference is sufficiently large (i.e. exceeds the critical

threshold determined by the distribution of the test- statistic), the null hypothesis is

rejected.

Another way that can be used to assess whether or not a sample comes from a normal

distribution is testing with quadratic statistics. Let F (x) be the empirical distribution

and G(x) the theoretical distribution to be tested, and let x1 ≤ x2 ≤ x3 · · · ≤ xn be

the ordered observations and ui = G(xi). Quadratic statistics measure the distance

between F(x) and G(x) using the following formula:

Q2 = n

∫ +∞

−∞
(F (x)−G(x))2Ψ(x) dF (x). (3.2)

The AD test is imposed Ψ(x) = 1
F (x)(1−F (x)

, so Q2 takes the form:

A2 = n

∫ +∞

−∞

(F (x)−G(x))2

F (x)(1− F (x))
dF (x), (3.3)

And its test statistic can be approximated from 3.3 as follows:

A2 = −n− 1

n

n∑
i=1

(2i− 1) [ln(ui) + ln(1− un−j+1)] .

Chapter3 26



SP500 WTI Euribor3M EurUsd

Statistic P-Value Statistic P-Value Statistic P-Value Statistic P-Value
Kolmogorov-Smirnov 0.4799 0.0000 0.4636 0.0000 0.3108 0.0000 0.4908 0.0000
Anderson-Darling 76.260 0.0005 193.345 0.0000 133.02 0.0000 123.196 0.0005
Cramer-von Mises 13.905 0.0010 146.111 0.0010 22.102 0.0010 20.703 0.0010

Table 3.1: This table shows the results of the main goodness of fit tests for each time
series. The tests statistics are followed by their p-values.

The function is chosen to give more weight to the tails. In fact, given its formulation,

Ψ(x) takes on larger values when F(x) is close to 0 or 1, and vice versa for values

relative to 0.5. This choice of Ψ(x) is suitable for comparing distributions assumed

to disagree in the tails. Still, it loses power when they have differences close to the

median of F(x). This test is one of the most powerful ones to check whether the

tails of the theoretical and empirical distribution coincide. However, both tails are

assigned the same weight, which should be taken into account if one wants to obtain

information on only one of the tails. A modification of the AD test was proposed by

Sinclair et al. (1990) to assign different weights to the two tails of the distributions.

The Cramer-von Mises test instead assigns a value of 1 to Ψ, and its test statistics is

computed as follows:

W 2 =
1

12n
+

n∑
i=1

[
2i− 1

2n
−G(xi)

]2
.

This test is a variant of the Anderson-Darling test, which does not assign higher

weights to the tails of the distributions than to the less extreme values. As with

the Anderson-Darling test, the null hypothesis is that the theoretical and empirical

distributions are equal. A high value of the W 2 statistic means that the null

hypothesis cannot be accepted.

The results of the three good-of-fitness tests just presented are proposed in the

Table 3.1. They show all reject the null hypothesis, confirming that data are not

normally distribuited. Figure 2.1 shows the comparison of the empirical distribution

of the SP500 data with the normal distribution. The time series of the SP500

displays volatility clustering during the last period of the sample. The presence of

this phenomenon should favour the use of those GARCH models designed to deal

with it. Descriptive statistics of the four time series are displayed below.

All series show a mean and median very close to zero and with kurtosis and

skewness values incompatible with a normal distribution. These data support the

evidence that financial returns exhibit fatter tails than a normal and skewness in the

distribution.



Figure 3.1: The figure shows the difference between the empirical cumulative dis-
tribution function and the normal cumulative distribution function for the SP500
series.

Figure 3.2: Log-returns of the four times series from 2nd Jenuary 2009 to 1st
December 2021.



SP500 WTI Euribor3M EurUsd

Observations 3000 3000 3000 3000
Minimum -0.1277 -0.4361 -0.0006 -0.0241
Maximum 0.0897 0.3196 0.0009 0.0345
Mean 0.0001 0.0000 0.0001 0.0000
Median 0.0007 0.0000 0.0000 0.0000
Variance 0.0001 0.0000 0.0000 0.0000
Stdev 0.0117 0.0057 0.0000 0.0057
Skewness -0.6805 -10.343 2.9753 0.0260
Kurtosis 160.503 415.813 48.073 48.599

Table 3.2: This table shows the descriptive statistics for each time series.



Chapter 4

Results

This chapter will present the main empirical results, comparing the accuracy of

VaR forecasts. Two classes of models are proposed in the analysis: GARCH models

and CAViaR models. For both classes, several variants are considered. Finally, the

results will be compared with the main backtests of the literature to compare their

characteristics.

4.1 GARCH models

The models considered are those described in the previous sections: GARCH(1,1),

EGARCH(1,1), Beta-t-EGARCH(1,1), and GJR-GARCH(1,1). Only models with

lags (1,1) are adopted to keep the confrontation easy to present. This model is the

most widely used since models with p, q bigger than one usually provide very similar

results to the simplest one. Brooks and Burke (2003) however, showed that the use

of more sophisticated information criteria than the traditional BIC and AIC statistic

could sometimes lead to improvements in the estimates.

In evaluating the models, three types of zt innovations were considered: normal,

t-student, and Generalized Error Distribution (GED). Based on the above definition

of GARCH models, it is evident that future returns and zt innovations follow the

same conditional distribution. Therefore, an incorrect specification of the distri-

bution of innovations may lead to inaccurate estimates. Furthermore, considering

that financial returns typically follow distributions with fat tails, it is appropriate

to consider distributions that take this characteristic into account. The results of

this analysis confirm that models with skewed and fat-tailed innovation distributions

outperform those that adopt normal innovations. Only the estimates of models with

GED innovations that provided the best results among the others will be presented

for brevity.

The samples were divided into two parts: an in-sample part, to estimate the parame-

ters, and an out-of-sample part to compute the forecasts to be tested later. The table

below shows the in-sample parameter estimates and their respective standard errors.
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For the sake of brevity, only the model GJR-GARCH, with GED innovations, which

led to the best forecasting performance, is shown. Models calculated with t-student

innovations show very similar results. However, the number of VaR exceedings

increase sensibly when normal innovations are used. Estimates are performed in

Matlab, using the log-likelihood maximization method. The in-sample covers the

days from 01/02/2009 to 10/20/2016 for 2000 observations. After estimating the

parameters of the various GARCH models, the fitted values of the variance were

reconstructed.

The table below shows that the all series presents a null intercept, while the

leverage coefficients γ characteristics of the GJR model are expecially high in the

SP500 and Euribor3m series. This data shows that the leverage phenomenon is

present in the in-sample period. It confirms the evidence that the direction of the

shock has an impact on the volatility estimates. The serial correlation between the

standardized residuals is analyzed by performing the Ljung test. According to the

null hypothesis that the standardized returns do not exhibit serial correlation for

20 lags. The inability to reject the null hypothesis for all series, except Euribor,

indicates that in the in-sample period, all GARCH effects were captured by the model.

GJR-GARCH(1.1)

Parameter Estimate Std. Error Ljung-Box

Reject Null

SP500

Constant: α0 .000 .000

NO
ARCH: α1 .000 .019

GARCH: β .839 .019

Leverage: γ .029 .040

WTI

Constant: α0 .000 .000

NO
ARCH: α1 .012 .008

GARCH: β .094 .008

Leverage: γ .079 .014

Euribor3m

Constant: α0 .000 .000

YES
ARCH: α1 .541 .905

GARCH: β .011 .220

Leverage: γ .772 1.01

Eurusd

Constant: α0 .000 .000

NO
ARCH: α1 .017 .009

GARCH: β .958 .007

Leverage: γ .038 .001



(a) WTI

(b) SP500

Figure 4.1: WTI and SP500 Fitted GJR-GARCH Variance and Realized Variance.
The fitted series are computed from in-sample estimates on 2000 observations.



: This table shows the in-sample parameter estimates of GJR-GARCH model. The
estimates are computed considering an in-sample period starting from 2nd Jenuary
2009 and containing 2000 observations.

The out-of-sample forecasts were then formulated, considering a rolling window

of 100 days, used to calculate one-day-ahead volatility. The VaR was calculated from

the product between the estimate of volatility and the quantile corresponding to the

α value. The quantile was calculated considering the following formula:

V aRt+1 = F (α)σt+1, (4.1)

F (α) corresponds to the desired quantile of the distribution’s density funtion. σt+1

is the 1-day ahead forecast provided by the models. To provide backtesting, the

realized variance was computed applying the following formula:

RV =
N∑
i=1

r2t,i,

where N is the number of observations. Table 4.2 shows that the model that has

provided the best performance in terms of the difference between expected and

observed violations is, for all models, the GJR-GARCH. While for the SP500, WTI,

and Euribor series, the forecasts tend to underestimate VaR, the models tend to

overestimate VaR for the EurUsd. In order to verify the validity of the forecasts, the

models were subjected to backtesting. The Unconditional and Conditional Coverage

tests agree almost every time in rejecting or not the correct specification of the

model. The Null hypothesis of the Unconditional Coverage test is that the frequency

of realized hits is equal to that expected value α. The SP500 is the only model

where the test rejects the null hypothesis for both levels of α. In this sense, likely,

the economic crisis following the spread of the Covid-19 epidemic has negatively

affected the performance of the model. For an α = 5%, the GJR-GARCH provides

estimates that do not reject the null hypothesis of correct specification of the models

for both WTI and EurUsd. The proposed VaR models for the latter were able to

provide forecasts that almost always failed to reject the null hypothesis of the correct

specification. The hits for the other models, although rather small in number, are

not independent from each other. This result is also observed by the DQ test on

the models’ Hit Variables. For both confidence levels, all models reject the null

hypothesis of no correlation of the sequence of Hit variables. Even if the lowest

values of the loss functions are obtained from the forecasts on the Euribor series, it

is not possible to establish a univocal hierarchy of models based on the loss function

values. The loss function values indicate that for GARCH models, forecasts with a

confidence level of 1% obtain higher values than those calculated on forecasts at 5%.

This failure in model specification might be traced back to the pandemic crisis, which

generated a period of sudden and strong increases in volatility. A subsample of 250



observations from 05/12/19 to 01/12/2020 was considered to check for differences

in terms of VaR exceeding. The in-sample period was set to 160 observations. The

rolling window considered is 20 days. The results of the estimates are proposed

in the Table 4.1 and show that the GJR-GARCH model produces forecasts that

obtain the ”pass” the Traffic Light test. In addition, all the series do not reject the

Unconditional and Conditional Coverage tests. These results confirm the sensitivity

of the period used to produce the estimates and the size of the rolling window. The

decrease in sample size makes it more challenging to assess the model’s predictive

ability. Despite the decrease in sample size, however, the predictive power of VaR

improves significantly when an in-sample period, including the onset of the crisis in

2020, is considered.

Level
Unconditional

Coverage

Conditional

Coverage
Observed

Exceed

Expected

Exceed

Observed

Exceed %

Traffic Light Test

Reject Null Reject Null Colour

SP501 5% NO NO 4 4.4 4.9% GREEN

WTI 5% NO NO 6 4.4 6.7% GREEN

Euribor3m 5% NO NO 4 4.4 4.5% GREEN

EurUsd 5% NO NO 5 4.4 5.6% GREEN

Table 4.1: This table shows the VaR backtesting results of the four assets during the
year 2020. The in-sample period consisted in 160 observations, out of a total sample
size of 250 observations. The rolling window was reduced from the previous analysis
to 20 days. The table presents the results of the Unconditional and Conditional
Coverage tests with a confidence level of 95% and the output of the Traffic Light
test.

4.2 CAViaR models

The table below shows the values of the in-sample estimates of the various

specifications of the CaViar models. Estimates calculation and forecasts were

performed following the work of Engle and Manganelli (2004), using R for the basic

code, with the addition of some C++ functions. The parameters are estimated

using the Regression Quantile proposed in the paper. The table provides some first

insights for understanding the subsequent forecasts. First of all, the coefficients β1

are practically zero (in the order of 10−7). The series relative to the SP500, the WTI,

and the EurUsd, present a markedly high value of the autoregressive coefficient.

Such values indicate that the clustering phenomenon is present and accentuated in

the tails. In particular, during crises, there are often exceptionally high volatility

peaks, during which it is possible to observe the phenomena of volatility clustering.

Abad and Benito (2013) shown that even if GARCH and CaViaR models take

into account volatility clustering, sudden increases in volatility can reduce the
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performance of these models .

Parameter Values

SP500

Asymmetric

β1 0.00

β2 0.86

β3 0.06

β4 0.57

Symmetric

β1 0.00

β2 0.80

β3 0.51

Adaptive β1 0.00

WTI

Asymmetric

β1 0.01

β2 0.57

β3 0.51

β4 1.77

Symmetric

β1 0.01

β2 0.67

β3 0.97

Adaptive β1 0.00

Euribor3m

Asymmetric

β1 0.00

β2 0.88

β3 0.03

β4 0.43

Symmetric

β1 0.00

β2 0.74

β3 0.59

Adaptive β1 0.00

EurUsd

Asymmetric

β1 0.00

β2 0.94

β3 0.15

β4 0.13

Symmetric

β1 0.00

β2 0.94

β3 0.14

Adaptive β1 0.00



Table 4.3: This table shows the in-sample parameter estimates of CaViaR model.
The estimates are computed considering an in-sample period starting from 2nd
Jenuary 2009 and containing 2000 observations.

Once the in-sample estimates were calculated, the one-day ahead forecasts of VaR

were processed using a 100-day rolling window. The results have been represented in

the graphs below. To provide a clearer comparison, only the CaViar estimates with α

equal to 1% will be analyzed. From the visual analysis, the Asymmetric Caviar model

follows the SP500’s return pattern quite precisely. The breaches are mainly related

to the last period when the economic crisis caused by the spread of the Covid-19

pandemic led to a sudden and prolonged increase in volatility. To assess the accuracy

of the Caviar model estimates more accurately, the table below shows the backtests

previously introduced. The models generally seem to perform well in forecasting, in

agreement with the evidence found by Dionne (2013). None of the models is placed

in the red zone of the Traffic Light test, showing that the overruns that are always

moderately low. The estimates provided for Euribor, while delivering a relatively

small percentage of overruns in the Symmetric Absolute Value and Asymmetric

specifications, reject the null hypothesis of the Kupiec and Christoffersen tests. This

divergence indicates that the breaches that occurred were not random but linked

together by a dependency function. The DQ test do not reject the Null Hypothesis

for the asymmetric specification, while for the adaptive the Null is always rejected.

This means that the hits are serially uncorralated and have expected value equal

to zero. The lowest values of loss function are provided by the Euribor, but the

lovest value is provided by the SP500 the asymmetric specification. Another essential

element that emerges from the estimates is the difference in performance between

symmetric and asymmetric models: the latter produces the same or fewer breaches.

This evidence confirms the results provided by the forecasts of the GARCH models.
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Figure 4.2: Realized returns of the SP500 and one-day ahead forcasted VaR with
GJR-GARCH(1,1), with α = 0.01 and α = 0.05.

Figure 4.3: Realized returns of the WTI and one-day ahead Asymmetric Caviar
forcasts with α = 0.01.



Conclusive remarks

This thesis presented a comparison of different models for estimating VaR based on

both a parametric and a semi-parametric approach. The time series showed that data

did not originate from normal distributions since they presented particularly heavy

tails. The models were described and analyzed from a theoretical and empirical

point of view, highlighting their strengths and weaknesses. Two classes of models

were considered: the GARCH class models, belonging to the parametric approach for

calculating VaR, and the CaViaR semi-parametric models. The empirical analysis was

conducted by dividing the samples into in-sample and out-of-sample periods, making

estimates and one-day-ahead forecasts, respectively. A 100-day rolling window was

used to compute the analysis. The empirical results confirm that the most effective

GARCH estimates were obtained using GED and t-student innovations. The classical

GARCH model showed performances very similar to the more sophisticated versions,

demonstrating the good predictive capacity of even the most straightforward system.

However, the best results in terms of the forecast were obtained by the GJR-GARCH

model. This evidence underlines the presence of the leverage effect within the time

series under examination. However, although the number of breaches in these models

is relatively small, most of them reject the null hypotheses of the Christoffersen

and Kupiec tests. The DQ test agrees with the unconditional and conditional tests.

These results shows that the hits are not independent from each other. By restricting

the sample to 2020 to include the economic crisis from Covid-19 in the in-sample

period, the accuracy of the GARCH models increases significantly. This result may

indicate that the breaches in the whole sample can be traced back to the sudden

increase in volatility in 2020. Considering the good results obtained by the CaViaR

models, it is also possible that the difference in performance (as measured by the

backtests) can be explained by an incorrect specification of the data distribution.

Although it can be concluded with reasonable certainty that the returns are not

distributed according to a normal distribution, identifying the correct distribution is

not so easy. The outbreak of the crisis in the first half of 2020 has also led to an

evident change in the time series trend, to which the GARCH models have struggled

to adapt. However, it should be noted that the asymmetric CaViaR model with only

one lag uses four parameters to estimate the quantile. The presence of such a high

number of parameters to estimate can be particularly computationally intensive,
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making the use of simple GARCH models more attractive. The CaViaR model was

analyzed in its Symmetric Absolute Value, Asymmetric and Adaptive specifications.

The results provided by the latter proved able to pass the traffic light test, recording a

minimal number of surpluses. In terms of VaR estimates at 99%, the CaViaR models

showed superior performance than GARCH. Also, the best performing specifications

in this class of models are the asymmetric ones. Therefore, the importance of the

leverage effect in a period of high volatility, such as the first semester of 2020, is

evident.



Summary

Risk management within organizations has always been a subject of study, but it

was only in the first half of the 20th century that it began to be structured into a

real discipline. From the need to find ways to measure risk, to be able to exploit

the opportunities and mitigate the dangers, Risk Management was born. This need

became even more evident after the 1987 crisis. On 19 October 1987, after more

than 44% growth in the first months of the year, the Dow Jones Industrial Average

suffered a record loss of 22.6%. The increasing occurrence of crises at the global level

pushed countries worldwide to seek standard prevention measures. Moreover, the

use of financial instruments capable of triggering the exchange of securities on the

occurrence of certain conditions made it clear that new risk measures needed to be

developed. In particular, to ensure the financial system’s stability, it was necessary

to develop methods to estimate possible losses. In response to this need, countries

worldwide sought shared measures to counter the onset of global crises. These efforts

took the form of the Basilea I Accords in 1988, which set minimum standards in

terms of capital financial that each bank had to maintain. In the first draft of the

Accords, reserves had to be maintained above the Cook Ratio of 8%. However, banks

were allowed to use internal models to assess the riskiness of their positions. Among

these measures, Value at Risk (VaR) was the most relevant, and it became the basis

for calculating the capital requirements of later versions of the Basel Accords. One

way of assessing the risk of a position is to consider the maximum loss that can

be realised. In 1996, JP Morgan’s RiskMetrics Technical Document provided the

following definition of VaR:

”Value at Risk is a measure of the maximum potential change in value of

a portfolio of financial instruments over a pre-set horizon. VaR answers

the question: how much can I lose with α% probability over a given time

horizon.”

VaR is defined on the basis of two elements: the time horizon and the confidence level

α. In the Basel I agreements, VaR had to be calculated according to the following

criteria:

• time horizon was at ten market days or two weeks;

• confidence level was fixed at 99%;
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• historical data used to produce estimates had to go back at least one year, with

an update of the parameters every three months.

As already mentioned, in 1996, with the Basel II agreements, the criteria for calcu-

lating capital requirements were redesigned. In particular, the following formula was

defined:

CAB2
t = max(V aRt−1,mcV aRt−1),

where V aRt−1 is an average of the VaR of the previous 60 days and mc is the

multiplication factor. This factor assumes a value of at least 3, but if the model used

to calculate VaR obtains negative results in the backtest, then it increases. Thus,

the amount of capital to be held increases if the criterion used to estimate VaR gives

inaccurate results. To assess the accuracy of VaR estimates, the Traffic Light test

was introduced. This test assigned a color to the models according to the accuracy

with which VaR was estimated: green models were of no particular concern and

could be used; those that were yellow needed to be analyzed further and tweaked;

and those that were red were rejected. The 2008 crisis made it clear that the capital

requirements outlined in 1996 were not adequate, so a new criterion for calculating

reserves was introduced in the Basel 2.5 agreements. The formula was modified as

follows:

CAB2.5
t = max(V aRt−1,mcV aRt−1) +max(SV aRt−1,msSV aRt−1),

where SV aRrepresents the stressed VaR, i.e., the VaR calculated during a financial

crisis. Thus, the capital to be held as reserves compared to Basel II was at least

doubled. Having briefly outlined the history of VaR to understand its importance,

this thesis proposes an empirical analysis conducted on four financial assets to assess

the differences in accuracy of different models to estimate VaR. The four assets

represent an essential part of market risk: the SP500, WTI, the three-month Euribor,

and the Euro-Dollar exchange rate.

Many models for calculating VaR stem from the scientific debate, and these are

continually evaluated to compare their accuracy. However, the Delta Normal Method

and Historical Simulation are among the simplest models in terms of computational

simplicity. In the second chapter, some of the methods used to calculate VaR are

analyzed from a formal point of view. The Delta Normal Method assumes that

returns are normally distributed to derive volatility estimates in a relatively simple

way from a computational point of view. However, several studies have shown that

this method often produces inaccurate estimates, as the assumption of normality of

returns is unrealistic. The Historical Simulation method uses a different approach,

approximating the distribution of returns based on the distribution of previous

realizations. The main problem lies in the subjectivity of the time window one decides

to use as a basis for estimation. A more sophisticated approach than the previous ones



is used by the Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

class of models, introduced by Bollerslev (1986). This class of models estimates the

conditional variance at time t through an outlier component and the variances in

previous periods. This class of models has become widely used, as it can return quite

reliable volatility estimates using a relatively low number of parameters. Several

modifications of GARCH have been produced over time. In this paper, we will

consider, together with GARCH, the E-GARCH Nelson (1991), GJR-GARCH Glosten

et al. (1993), and T-Beta-EGARCH models Harvey and Chakravarty (2008). These

variants manage to improve the performance of the classical GARCH, capturing

phenomena such as the leverage effect or the presence of outliers.

The other class of models analyzed is CAViaR, introduced by Engle and Manganelli

(2004). Unlike GARCH, which estimates volatility, CAViAR directly models the

quantiles of distributions. In this work, the Adaptive, Asymmetric, and Symmetric

specifications of CAViaR are analyzed.

The sample contains 3000 observations from Bloomberg from 2 January 2009 to 1

December 2021. Before proceeding with the VaR estimation, the descriptive statistics

of the time series are presented. The data show an average very close to zero, in

agreement with the literature, as well as a particularly pronounced kurtosis. The

Kolmogorov-Smirnov (Massey Jr (1951)), Anderson-Darling (Anderson and Darling

(1954)), and Cramer-von Mises (Darling (1957)) tests show that the data do not

come from normal distributions. These results confirm the evidence in the scientific

literature that financial returns come from distributions with fat tails.

In order to carry out the model forecasts, the samples are divided into an in-sample

period and an out-of-sample period. During the in-sample period, which includes

2000 observations, data are estimated from which forecasts are calculated for the

subsequent out-of-sample period. GARCH model estimates are made by maximizing

log-likelihood functions, while CaViaR estimates are made using Quantile Regression.

Once the forecasts are obtained, they will be subjected to several backtests to assess

their accuracy. The proposed backtests use different approaches. The Unconditional

( Kupiec (1995)) and Conditional Coverage (Christoffersen (1998)) tests, respectively

assess that VaR violations occur independently, with a frequency similar to the alpha

confidence level. The Basel Committee in 1996 proposed an intuitive system for

backtesting VaR called Traffic Light. To evaluate the goodness of the forecasts, the

Traffic Light test considers the difference with the theoretical number of breaches

and the actual number of violations. The models are classified within a hierarchical

color system based on the number of breaches obtained. Intuitively, green does not

cast doubt on the accuracy of the model; yellow expresses an inconclusive doubt;

finally, red indicates that the model is inadequate and should be modified. A further

proposed backtest is the DQ test introduced by Engle and Manganelli (2004). This

method simultaneously tests that VaR violations are not serially correlated and occur



with a frequency close to that of the α confidence level. Finally, the loss function of

González-Rivera et al. (2004) is proposed, which allows ordering the accuracy of two

or more models.

The empirical analysis is implemented in Matlab and R, with some functions in

C++.

The empirical results confirm that the most effective GARCH estimates were obtained

assuming that returns do not come from a normal distribution. The classical

GARCH model showed performances very similar to the more sophisticated versions,

demonstrating the good predictive capacity of even the most straightforward system.

However, the best results in terms of the forecast were obtained by the GJR-GARCH

model. This evidence underlines the presence of the leverage effect within the time

series under examination. Some studies have shown that adverse shocks can cause

more significant increases in volatility than positive shocks. This is attributed to the

leverage effect, which can be defined as the negative correlation between past returns

and future volatility. However, although the number of breaches in these models is

relatively small, most of them reject the null hypotheses of the Christoffersen and

Kupiec tests. The DQ test agrees with the Unconditional and Conditional tests.

These results shows that the hits are not independent from each other. By restricting

the sample to 2020 to include the economic crisis from Covid-19 in the in-sample

period, the accuracy of the GARCH models increases significantly. This result may

indicate that the breaches in the whole sample can be traced back to the sudden

increase in volatility in 2020. Considering the good results obtained by the CaViaR

models, it is also possible that the difference in performance (as measured by the

backtests) can be explained by an incorrect specification of the data distribution.

Although it can be concluded with reasonable certainty that the returns are not

distributed according to a normal distribution, identifying the correct distribution is

not so easy. The outbreak of the crisis in the first half of 2020 has also led to an

evident change in the time series trend, to which the GARCH models have struggled

to adapt. However, it should be noted that the asymmetric CaViaR model with only

one lag uses four parameters to estimate the quantile. In terms of VaR estimates at

99%, the CaViaR models showed superior performance than GARCH. Also, the best

performing specifications in this class of models are the asymmetric ones. Therefore,

the importance of the leverage effect in a period of high volatility, such as the first

semester of 2020, is evident.
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