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Introduction

Econophysics is the application of the principles of physics to the study of
financial markets. It was first introduced by the theoretical physicist Eugene
Stanley in 1995.

Physicists are currently contributing to the modeling of “complex systems”
by using tools and methodologies developed in statistical mechanics and theo-
retical physics. Financial markets are remarkably well-defined complex systems,
which are continuously monitored - down to time scales of seconds. Further,
virtually every economic transaction is recorded, and an increasing fraction of
the total number of recorded economic data is becoming accessible to interested
researchers. Facts such as these make financial markets extremely attractive
for researchers interested in developing a deeper understanding of modeling of
complex systems.

In this thesis we will study an application of the Schrödinger equation to the
stock market. In quantum mechanics the Schrödinger equation is a fundamental
equation that determines the temporal evolution of the state of a system, for
example of a particle, an atom or a molecule. Formulated by Erwin Schrödinger
in 1925 and published in 1926, is a partial differential equation, linear, complex
and non-relativistic with the wave function Ψ, and hase the form

iℏ
∂

∂t
Ψ(x, t) =

[
− ℏ2

2m

∂2

∂x2
+ V (x, t)

]
Ψ(x, t)

It was formulated relying on de Broglie’s hypothesis of the wave particle
duality. According to the Copenhagen interpretation, the square modulus of
the wave function is related to the probability of finding a particle in a given
spatial region.
The application of this equation to the stock market is in the parallelism between
the quantum world and the stock market. If we consider a stock as a micro
system, defining a proper potential -forces that act on the stock- we can describe
it by the wave function Ψ.

Through this thesis we will introduce the mathematical and physics tools to
solve the Schrödinger equation for the specific potential defined in Chapter 3.

In the first Chapter we will introduce some elements of Functional Analysis,
the concepts of distance, norm and inner product with the aim to define what a
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Hilbert space is, since it is the space were wave functions lie. We will define what
an operator is, with the further definition of linear operators, adjoint operator,
and eventually self-adjoint operators. This is due to the fact that quantities
of interest such as position or momentum are represented by “observables”,
which are self-adjoint linear operators acting on the Hilbert space. The position
operator of quantum mechanics will be the price operator of our financial model.
We will face some definition from spectral theory and the concepts of projections
and bases.

When an observable corresponding to an operator A with discrete spectrum
is measured in a system, the measured result will be one of the eigenvalues λ of
A, and the probability of measuring a given eigenvalue λi will equal ⟨Ψ|Pi|Ψ⟩,
where Pi is the projection onto the eigenspace of A corresponding to the λi. The
last two sections of Chapter 1 are elements that will play a role when solving
the Schrödinger equation of Chapter 3.

The second chapter leads, with the help of the mathematical tools explained
in the first chapter, to an overview of the Schrödinger equation. After a brief
introduction of quantum mechanics, the equation is presented. Further we ex-
pose the statistical interpretation, i.e. that the probability density of finding a
particle at a given point, when measured, is proportional to the square of the
magnitude of the particle’s wave function at that point.

Momentum and position operators are then presented, they will be used in
the third chapter when measuring the average rate of return and the rate of
price change, which corresponds to the trend of the price in the stock market.
The Heisenberg uncertainty principle is illustrated. Section 2.3 presents the
formalism used in quantum mechanics. After a brief introduction to the Dirac’s
bra-ket notation, all the mathematical tools provided in the first chapter are
used to describe the Schrödinger equation’s components.

In section 2.4 three classical cases are presented and analytically solved: the
infinite square well, the harmonic oscillator and the free particle. Those are
three types of potential V (x) well known in quantum physics. This will be help-
ful to see how the equation is actually solved for the simpler cases.

The third chapter illustrates the model. After an introduction to econo-
physics, the quantum model for the stock market is presented. The parallelism
between quantum system and a stock is described. A proper Hamiltonian de-
scribing market’s perturbations is built, to then face an initial value problem to
be solved.

We set a change of variables, and guess a solution composed by two functions.
After some algebraic computation, the problem is simplified to a free particle
equation, whose solution is known from Chapter 2, and where the coefficients
are found approximated to the second order. The distribution of the rate of
return and its average evolution are found numerically, and the results of the
model are presented.

iii



Chapter 1

Elements of Functional
Analysis

1.1 Metric Spaces

Definition 1.1.1. Let X be a set. A function is said to be a metric or a dis-
tance if for each couple x, y ∈ X associates a number d(x, y) with the following
properties:

1. d(x, y) ≥ 0; d(x, y) = 0 iff x = y (positive definiteness)

2. d(x, y) = d(y, x) (symmetry)

3. d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality)

The couple (X, d) is said metric space.

Thanks to the concept of distance we can define a neighbourhood I of a
point x0 as

I(x0, r) = {x ∈ X : d(x, x0) < r}

And from this we can define open sets, closed sets, accumulation points, bound-
ary points, limit of a sequence of points in X, and anything that depends on
distance1.

1.2 Hilbert Spaces

1.2.1 Norm and Banach Space

Let us start this theory section by recalling the notion of normed vector space.
Let X be a vector space on a real or complex field. A vector space is said to be

1See Herman, Strang, Calculus 1.
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normed if you can define a norm in it:

∥·∥ : X → R

Such that, ∀λ and ∀ x, y ∈ X the following properties are valid:

1. ∥x∥ ≥ 0; ∥x∥ = 0 iff x = 0 (positive definiteness)

2. ∥λx∥ = |λ| ∥x∥ (homogeneity)

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangular inequality)

A normed vector space is also metric, with the distance induced by:

d(x, y) = ∥x− y∥

Definition 1.2.1. Let p and q be two norms on a vector space X. Then p and
q are called equivalent if there exist two real constants c and C with c > 0 such
that ∀x ∈ X

cq(x) ≤ p(x) ≤ Cq(x)

A sequence {xn}n∈N of elements in X is said to be a Cauchy sequence if its
terms become arbitrarily close to each other as the sequence progresses, i.e.

d(xm, xn) = ∥xm − xn∥ → 0 per m,n→ ∞

While it is said to be convergent to x ∈ X if

d(xn, x) = ∥xn − x∥ → 0 per n→ ∞

Theorem 1.2.1. Every sequence {xn}n∈N that converges, is a Cauchy sequence.

Proof.
From the triangular inequality:

∥xm − xn∥ ≤ ∥xm − x∥+ ∥xn − x∥

If the series converges, for n,m going to ∞ the right terms go to 0, hence also
∥xm − xn∥ → 0, hence {xn}n∈N is Cauchy. □
The inverse is not necessarily true, as we can see in the sequence following in
the metric space Q

xn =

(
1 +

1

n

)n

It is a Cauchy sequence but has as limit the irrational number e that does not
belong to Q. If the inverse holds in a vector space, such vector space is said to
be complete.

Definition 1.2.2. A complete normed vector space is called Banach space.

2



Let X,Y be two metric spaces and let F : X → Y be a function from X to
Y . F is said to be continuous at x ∈ X if ∀{xn}n∈N ⊂ X,

∥xn − x∥X → 0 implies ∥F (xn)− F (x)∥Y → 0

or, equivalently, if

∥F (y)− F (x)∥Y → 0 if ∥y − x∥X → 0

Theorem 1.2.2. Every norm in a space X is continuous in X.

Proof.
Let ∥·∥ be a norm in X. From the triangular inequality,

∥y∥ ≤ ∥y − x∥+ ∥x∥ and ∥x∥ ≤ ∥y − x∥+ ∥y∥

Hence
|∥y∥ − ∥x∥| ≤ ∥y − x∥

So if ∥y − x∥ → 0, also |∥y∥ − ∥x∥| → 0, hence the norm is continuous. □

Given two equivalent norms p and q, a sequence {xn}n∈N is Cauchy with respect
to the norm p if and only if is Cauchy with respect to the norm q. In particular,
the space X is complete w.r.t. the norm p iff it is complete w.r.t. the norm q.
Some examples are in order.

Space of continuous functions.
Let A be a compact subset on Rn, the symbol C0(A), or simply C(A) in-

dicates the vector space of (real or complex) continuous functions in A. Let
X = C(A), endowed with the norm (called maximum norm)

∥f∥C(A) = max
A

|f |

A sequence {fm} converges to f in C(A) if

max
A

|fm − f | → 0

That is, if fm converges uniformly to f in A. Since a uniform limit of continuous
functions is continuous2, C(A) is a Banach space.

Note that other norms may be introduced in C(A), for instance the least
squares or L2(A) norm

∥f∥2 =

(∫
A

|f |2
) 1

2

2See the statement of the uniform limit theorem in James Munkres, Topology, 1999
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Equipped with this norm C(A) is not complete. Let, for example A = [−1, 1] ⊂
R. The sequence

fm(t) =

 0 t ≤ 0
mt 0 < t ≤ 1

m (m ≥ 1)
1 t > 1

m

contained in C([−1, 1]), is a Cauchy sequence with respect to the L2 norm. In
fact (letting m > k)

∥fm − fk∥2L2(A) =

∫ 1

−1

|fm(t)− fk(t)|2dt = (m− k)2
∫ 1

m

0

t2dt+

∫ 1
k

0

(1− kt)2dt

=
(m− k)2

3m3
+

1

3k
<

1

3

(
1

m
+

1

k

)
→ 0 as m, k → ∞

However, fn converges in L2(−1, 1) norm (and pointwise) to the Heaviside func-
tion

H(t) =

{
1 t ≥ 0
0 t < 0

Which is discontinuous at t = 0 and therefore does not belong to C([−1, 1]).

Summable and bounded functions.
Let Ω be an open set in Rn and p ≥ 1 a real number. Let X = Lp(Ω) be the

set of functions f such that |f |p is Lebesgue integrable in Ω. Identifying two
functions f and g when they are equal almost everywhere (a.e.), hence at all
points in Ω, but for a subset of measure zero, Lp(Ω) becomes a Banach space
when equipped with the norm (integral norm of order p)

∥f∥Lp(Ω) =

(∫
Ω

|f |p
) 1

p

The identification of two functions equal a.e. amounts to saying that an element
of Lp(Ω) is not a single function but, actually, an equivalence class of functions,
different from one another only on subsets of measure zero.

A function f : Ω → R (or C) is essentially bounded if there exists M such
that

|f(x)| ≤M a.e. in Ω (1.1)

The infimum of all numbers M with property (1.1) is called essential supre-
mum of f, and denoted by

∥f∥L∞(Ω) = ess sup
Ω

|f |

If we identify two functions when they are equal a.e., ∥f∥L∞(Ω) is a norm in
L∞(Ω) and L∞(Ω) becomes a Banach space.
From this definition we can state the Hölder inequality:∣∣∣∣∫

Ω

fg

∣∣∣∣ ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω) (1.2)
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Where p and q are conjugate exponents, i.e.

1

p
+

1

q
= 1

The case p = 1 and q = ∞ is allowed.

Proof.

We first state Young inequality.
Given a, b ∈ R, a > 0, b > 0 and given p and q conjugate exponents, then

ab ≤ ap

p
+
bq

q

This means that

|f(x)|
∥f∥p

· |g(x)|
∥g∥q

≤ 1

p

(
|f(x)|
∥f∥p

)p

+
1

q

(
|g(x)|
∥g∥q

)q

Integrating both sides

1

∥f∥p∥g∥q

∫
Ω

|fg| = ∥fg∥1
∥f∥p∥g∥q

≤ ∥f∥p
p∥f∥p

+
∥g∥q
q∥g∥q

=
1

p
+

1

q
= 1

□

1.2.2 Inner product and Hilbert Space

In order to define a Hilbert space we first need to recall the concept of inner
product.

Definition 1.2.3. Let X be a linear space over R. An inner or scalar product
in X is a function

(·, ·) : X ×X → R

With the following properties. For every x, y, z ∈ X and scalars λ, µ ∈ R

1. (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0 (positivity)

2. (x, y) = (y, x) (symmetry)

3. (µx+ λy, z) = µ(x, y) + λ(y, z) (bilinearity)

If the scalar field is C, the inner product is defined as

(·, ·) : X ×X → C

With the properties

1. (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0
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2. (x, y) = (y, x)

3. (z, µx+ λy) = µ(z, x) + λ(z, y)

Where (y, x) indicates the complex conjugate. In the C the inner product is said
to be antilinear with respect to its second argument or that it is a sesquilinear
form in X.
The inner product induces the norm

∥x∥ =
√

(x, x)

With respect to the above norm we state the following theorem.

Theorem 1.2.3. Let x,y ∈ X. Then:

1. Schwarz’s inequality:

|(x, y)| ≤ ∥x∥∥y∥

Equality holds if and only if x and y are linearly dependent

2. Parallelogram law:

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2

The Schwarz’s inequality implies that the inner product is continuous. A
linear space endowed with an inner product is called an inner product space.

Definition 1.2.4. Let H be an inner product space. We say that H is a Hilbert
space if it is complete with respect to the norm induced by the inner product.

L2(Ω) is one of the most important Hilbert spaces, with respect to the inner
product

(u, v)L2(Ω) =

∫
Ω

uv

Two Hilbert spaces H1 and H2 are isomorphic if there exists a linear map
L : H1 → H2 which preserves the inner product, i.e.:

(x, y)H1
= (Lx, Ly)H2

∀x, y ∈ H1

1.3 Projections and Bases

1.3.1 Projections

As in finite-dimensional linear spaces, two elements x, y belonging to an inner
product space are called orthogonal if (x, y) = 0, and we write x ⊥ y.

Now, if we consider a subspace V of Rn, e.g. a hyperplane through the origin,
every x ∈ Rn has a unique orthogonal projection on V . In fact, if dimV = k

6



and the unit vectors v1,v2, ...,vk constitute an orthonormal basis in V , we may
always find an orthonormal basis in Rn, given by

v1,v2, ...,vk,wk+1, ...,wn

Where wk+1, ...,wn are suitable unit vectors. Thus, if

x =

k∑
j=1

xjvj +

n∑
j=k+1

xjwj

The projection of x on V is given by

PV x =

k∑
j=1

xjvj

PV x can also be defined without involving a basis in Rn as the point in V which
minimizes the distance from x.

Theorem 1.3.1. (Projection Theorem). Let V be a closed subspace of a Hilbert
space H. Then, for every x ∈ H, there exists a unique element PV x ∈ V such
that

∥PV x− x∥ = inf
v∈V

∥v − x∥

Moreover, the following properties hold:

1. PV x = x if and only if x ∈ V

2. Let QV x = x− PV x. Then QV x ∈ V ⊥ and

∥x∥2 = ∥PV x∥2 + ∥QV x∥2

The elements PV x, QV x are called orthogonal projections of x on V and
V ⊥, respectively. Even if V is not a closed subspace of H, the subspace V ⊥ is
always closed. In fact, if yn → y and {yn} ⊂ V ⊥, we have, for every x ∈ V

(y, x) = lim
yn→y

(yn, x) = 0

Whence y ∈ V ⊥

1.3.2 Bases

If A ⊂ H, we say A is dense in H if its closure3, A = H. A Hilbert space
is said to be separable when there exists a countable dense subset of H. An
orthonormal basis in a separable Hilbert space H is a sequence {wk}k≥1 ⊂ H
such that {

(wk, wj) = δkj k, j ≥ 1
∥wk∥ = 1 k ≥ 1

3The closure of a subset S consists of all points of the set plus its limit points.
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Where δkj is the Kronecker delta:

δjk :=

{
1 if j = k
0 if j ̸= k

Every x ∈ H may be expanded in the form:

x =

∞∑
k=1

(x,wk)wk (1.3)

The series (1.3) is called generalized Fourier series4 and the numbers ck =
(x,wk) are the Fourier coefficients of x with respect to the basis {wk}. More-
over:

∥x∥2 =

∞∑
k=1

(x,wk)
2

An example of separable Hilbert space is L2(Ω), Ω ⊆ Rn. In particular, the set
of functions

1√
2π
,
cosx√
π
,
sinx√
π
,
cos 2x√

π
,
sin 2x√

π
, ...,

cosmx√
π

,
sinmx√

π

Constitutes an orthonormal basis in L2(0, 2π)

Proposition 1.3.1. Every separable Hilbert space H admits an orthonormal
basis.

1.4 Operators

1.4.1 Linear Operators

Let H be a Hilbert space. A linear operator from D(A) ⊂ H into H is a function

A : D(A) ⊂ H → H

such that, ∀α, β ∈ C and ∀f, g ∈ D(A) ⊂ H

A(αf + βg) = αAf + βAg

For every linear operator we define its Kernel, N (A) and Range, R(A)

Definition 1.4.1. The Kernel of A, is the pre-image of the null vector in H:

N (A) = {f ∈ D(A) : Af = 0}

The Range of A is the set of all outputs from points in D(A):

R(L) = {g ∈ H : ∃f ∈ D(A), Af = g}
4More details in section 1.6
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N (L) and R(L) are linear subspaces of D(A) and H, respectively.

Definition 1.4.2. A linear operator A : H1 → H2 is bounded if there exists a
number L such that ∀f ∈ H1

∥Af∥H2
≤ L∥f∥H1

∀f ∈ H1

The number L controls the expansion rate operated by A on the elements
of H1. In particular, if L < 1, A contracts the sizes of the vectors in H1. The
infimum of the set of all constants L that satisfy the above property is the norm
of the operator, indicated with ∥A∥

∥A∥ = inf {L ≥ 0 : ∥Af∥ ≤ L∥f∥ ∀f ∈ H1} (1.4)

Or otherwise written as

∥A∥ = sup
f∈H1,f ̸=0

{
∥Af∥
∥f∥

}
(1.5)

We indicate the set of all bounded operator from H1 into H2 as B(H1, H2). If
H1 = H2 = H the former becomes B(H).

Proposition 1.4.1. A linear operator A : H1 → H2 is bounded if and only if
it is continuous.

Proof.
Let A be bounded, ∀f, f0 ∈ X we have

∥A(f − f0)∥H2
≤ L∥(f − f0)∥H1

So that, if ∥(f−f0)∥H1
→ 0 also ∥A(f)−A(f0)∥H2

= ∥A(f−f0)∥H2
→ 0, hence

A is continuous.
Let A be continuous. For f = 0 by definition of continuity, ∀ε ∃δ such that

∥Af∥H2 ≤ ε if ∥f∥H1 ≤ δ

Take g ∈ H1 such that ∥g∥H1 = 1, take ε = 1 and let h = δg, so ∥z∥H1 = δ
which implies

δ∥Ag∥H2
≤ ∥Ah∥H2

≤ 1

Or

∥Ag∥H2
≤ 1

δ
□

Equipped with norm (1.4), B(H1, H2) is a Banach space.

Definition 1.4.3. An operator A : H1 → H2 is closed if ∀{fn}n∈N ∈ H1 and
{Afn}n∈N such that

fn → f and Afn → g

Then
f ∈ H1 and g = Af

9



Theorem 1.4.1. Let A : H1 → H2 be a closed operator. If ∃A−1, then A−1

is closed.

Definition 1.4.4. An operator A : H1 → H2 is symmetric if ∀x, y ∈ H1

(Ax, y) = (x,Ay)

1.4.2 Functionals and dual space

Definition 1.4.5. We define functional a linear operator A : H1 → H2 in
which the arrival space H2 is R (or C, for complex Hilbert spaces).

Definition 1.4.6. The collection of all bounded linear functionals on a Hilbert
space H is called dual space of H and denoted by H∗.

From the definition of dual space we can state the Riesz’s representation
theorem which states that every Hilbert space is isomorphic to its dual space.

Theorem 1.4.2. (Riesz’s Representation Theorem). Let H be a Hilbert space,
∀A ∈ H∗ ∃!gA ∈ H such that

Af = (f, gA) ∀f ∈ H (1.6)

And
∥L∥ = ∥gA∥ (1.7)

The Riesz’s map R : H∗ → H given by

A 7−→ gA

Is a canonical isometry, since it preserves the norm:

∥A∥ = ∥gA∥

Indeed, an isometry is a distance-preserving transformation between metric
spaces: it maps elements to a metric space such that the distance between
the image elements in the new metric space is equal to the distance between the
elements in the original metric space. Examples of isometries are rotation and
translation, or a combination of the two.

We say that gA is the Riesz’s element associated with A with respect to the
scalar product (·, ·). Moreover, H∗ endowed with the inner product

(A1, A2)H∗ = (gA1
, gA2

)

Is clearly a Hilbert space. This means that the Representation Theorem allows
the identification of a Hilbert space with its dual.

10



1.4.3 Adjoint operator

The concept of adjoint operator extends the notion of transpose of an m × n
matrix A and plays a crucial role in determining compatibility conditions for
the solvability of several problems. The transpose AT is characterized by the
identity

(Ax, y)Rm = (x, ATy)Rn ∀x ∈ Rn,∀y ∈ Rm

We use this definition to define the adjoint of a bounded linear operator.
Let A : H1 → H2 be a bounded operator. If y ∈ H2 is fixed, the real map

Ty : x 7−→ (Ax, y)H2

Defines an element of H∗
1 . From Riesz’s Theorem ∃!w ∈ H1 depending on y

denoted by w = A†y such that

Tyx = (x,w) = (x,A†y) ∀x ∈ H1,∀y ∈ H2

This defines A† as an operator from H2 into H1, which is called the adjoint of
A. Precisely:

Definition 1.4.7. The operator A† : H2 → H1 defined by the identity

(Ax, y)H2 = (x,A†y)H1 ∀x ∈ H1,∀y ∈ H2

is called the adjoint of A

Symmetric matrices correspond to self-adjoint operators. Indeed we have
the following definition

Definition 1.4.8. Let A : H1 → H2 be an operator. We say that A is self-
adjoint if:

1. A = A†

2. H1 = H2

Hence
(Ax, y) = (x,Ay) (1.8)

In the finite-dimensional space, such operators are called Hermitian. An
example of a self-adjoint operator in a Hilbert space H is the projection PV on
a closed subspace of H. In fact, recalling the Projection Theorem:

(PV x, y) = (PV x, PV y +QV y) = (PV x, PV y) = (PV x+QV x, PV y) = (x, PV y)

Proposition 1.4.2. Let A,A1 ∈ B(H1, H2) and A2 ∈ B(H2, H3). Then:

1. A† ∈ B(H1, H2). Moreover (A†)† = A and

∥A†∥B(H2,H2) = ∥A∥B(H2,H2)

2. (A2, A1)
† = A†

1A
†
2. In particular, if A is an isomorphism, then

(A−1)† = (A†)−1

11



1.5 Spectral Theory

1.5.1 Spectrum of a matrix

Let A be a n× n matrix, and λ ∈ C. Then, either the equation

Ax− λx = b

has a unique solution for every b or there exists u ̸= 0 such that

Au = λu

In the last case we say that λ,u constitutes an eigenvalue-eigenvector pair. The
set of eigenvalues of A is called spectrum of A, denoted by σ(A). If λ /∈ σ(A),
the resolvent matrix (A− λI)−1 is well defined. The set

ρ(A) = C \ σ(A)

is called the resolvent of A. If λ ∈ σ(A), the kernel N (A− λI) is the subspace
spanned by the eigenvectors corresponding to λ and it is called the eigenspace
of λ. Note that σ(A) = σ(AT ).
Symmetric matrices are particularly important: all eigenvalues λ1, ..., λn are real
(possibly of multiplicity greater than 1) and there exists in Rn an orthogonal
basis of eigenvectors v1, ...,vn. The extension of those concepts in the Hilbert
space setting is useful for the method of separation of variables.

1.5.2 Separation of variables

Suppose we have to solve the problem ut = uxx x ∈ Ω, t > 0
u(x, 0) = g(x) x ∈ Ω
u(x, t) = 0 x ∈ ∂Ω, t > 0

Where Ω is a bounded one dimensional domain. Let us look for solutions of the
form

u(x, t) = v(x)w(t)

And

ut = v(x)w′(t)

uxx = v′′(x)w(t)

Substituting into the differential equation, we obtain

v(x)w′(t) = v′′(t)w(t)

Separating variables
w′(t)

w(t)
=
v′′(x)

v(x)
= −λ

12



Since the left hand side of the equation only depends on the t variable while
the right hand side of the equation only depend on the x variable, they must be
equal to a constant, indeed −λ. This leads to two problems

w′ + λw = 0 (1.9)

And {
−v′′ = λv in Ω
v = 0 on ∂Ω

(1.10)

A number λ such that there exists a non trivial solution v for (1.10) is an eigen-
value of the operator −∂2/∂x2 in Ω and v is the corresponding eigenfunction.
The problem can be solved if the following two properties hold:

1. There exists a sequence of real eigenvalues λk with corresponding eigen-
vectors uk. Solving (1.9) for λ = λk yields

wk(t) = ce−λkt

2. The initial data g can be expanded in series of eigenfunctions:

u(x) =
∑

gkuk(x)

Then the solution is given by

u(x, t) =
∑

gke
−λktuk(x)

The second condition requires that the set of eigenfunctions of −∂2/∂x2 con-
stitutes a basis in the space of initial data. This leads to the problem of deter-
mining the spectrum of a linear operator in a Hilbert space, and in particular,
of self-adjoint operators.

1.5.3 Spectrum of an operator

Definition 1.5.1. Let A : H1 → H2 be a bounded linear operator. A complex
number λ is said to be in the specrtum of A, σ(A), if (λI−A) is not invertible,
where I is the identity operator.

Definition 1.5.2. Let H1, H2 be Hilbert spaces, and I the identity in H. Let
A : H1 → H2 be a bounded operator. A complex number λ is said to be in the
resolvent set of A, ρ(A), if the operator (λI −A) is one-to-one and onto

ρ(A) = {λ ∈ C | (λI −A) is one-to-one and onto}

Notice that σ(A) ∪ ρ(A) = C.
We define the operator (λI−A)−1 the resolvent of A, R(λ,A). As a consequence
of the closed graph theorem, that states that if the graph of a linear operator
A : H1 → H2 is closed in H1 ×H2, then A is bounded, we can deduce the fact

13



that if λ ∈ ρ(A), the resolvent is bounded.

If H has finite dimension, any linear operator is represented by a matrix,
so that its spectrum is given by the set of its eigenvalues. In infinitely many
dimensions the spectrum may be divided in three subsets.

If A − λI is not one-to-one, (A − λI)−1 does not exists. This means that
N (A− λI) ̸= ∅, i.e. that the equation

Af = λf (1.11)

has non trivial solution. Then, we say that λ is an eigenvalue of A and that the
non zero solutions of (1.11) are the eigenvectors corresponding to λ. The linear
space spanned by these eigenvectors is called the eigenspace of λ and denoted by
N (A− λI). The set σP (A) of the eigenvalues of A is called the point spectrum
of A.

Definition 1.5.3. Point spectrum.
If (λI − A) is not injective, hence there exist two distinct elements x, y ∈ X
such that (λI − A)(x) = (λI − A)(y), λ is said to be in the point spectrum of
A, denoted σP (A).

If A−λI is one-to-one, R(A−λI) is dense in H, but R(λ,A) is unbounded.
Then, we say that λ belongs to the continuous spectrum of A, σC(A).

Definition 1.5.4. Continuous spectrum.
If (λI − A) is injective, and its range is a dense subset R of X, λ is said to be
in the continuous spectrum of A, denoted σC(A)

Finally, A− λI is one-to-one but R(A− λI) is not dense in H. This defines
the residual spectrum of A.

Definition 1.5.5. Residual spectrum.
If (λI − A) is injective, but its range is not dense in X, λ is said to be in the
residual spectrum of A, denoted σR(A).

So the spectrum is the disjoint union of these three sets:

σ(A) = σP (A) ∪ σC(A) ∪ σR(A)

Example
Let l2 be the set of sequences x={xm} such that

∞∑
i=1

|xm|2 <∞

Let A : l2 → l2 be the shift operator which maps x = {x1, x2, ...} ∈ l2 into
y = {0, x1, x2, ...}. We have

(A− λI)x = {−λx1, x1 − λx2, x2 − λx3, ...}

14



If λ ̸= 0, then λ ∈ ρ(A). In fact for every z = {z1, z2, ...} ∈ l2,

(A− λI)−1z =
{
−z1
λ
,−z2

λ
+
z1
λ2
, ...

}
Since R(A) contains only sequences whose first element is zero, R(A) is not
dense in l2, therefore 0 ∈ σR(A) = σ(A). For the purpose of this thesis, we are
mainly interested in the spectrum of self-adjoint operators, where the following
theorem is fundamental.

Theorem 1.5.1. Let A : H1 → H2 be a compact5, self-adjoint operator on a
separable Hilbert space. Then:

a) 0 ∈ σ(A) and σ(A) \ {0} = σP (A) \ {0}

b) H1 has an orthonormal basis {um} consisting of eigenvectors fo A

c) If dimH1 = ∞, the corresponding eigenvalues different from zero {λm} can
be arranged in a decreasing sequence |λ1| ≥ |λ2| ≥ ..., with λm → 0 as
m→ ∞

Thus, the spectrum of a compact self-adjoint operator always contains λ = 0,
which is not necessarily an eigenvalue. The other elements in σ(A) are eigen-
values, arranged in a sequence converging to zero if H is infinite dimensional.

1.6 Fourier Analysis

Fourier analysis is the study of the way general functions may be approximated
by the sums of simple trigonometric functions.

There are two types of Fourier expansions: Fourier series and Fourier trans-
forms.

1.6.1 Fourier Series

Fourier’s theorem states that any reasonably well-behaved function can be writ-
ten as a discrete sum of trigonometric functions.

Theorem 1.6.1. Consider a function f(x) that is periodic on the interval 0 ≤
x ≤ L, then f(x) can be written as

f(x) = a0 +

∞∑
n=1

[
an cos

(
2πnx

L

)
+ bn sin

(
2πnx

L

)]
5See Conway, A course in functional analysis, for the definition of compact operator.
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an and bn are specific coefficients that can be determined exploiting the
orthogonality properties of trigonometric functions, i.e.∫ L

0

sin

(
2πnx

L

)
cos

(
2πmx

L

)
dx = 0

∫ L

0

cos

(
2πnx

L

)
cos

(
2πmx

L

)
dx =

L

2
δnm

∫ L

0

sin

(
2πnx

L

)
sin

(
2πmx

L

)
dx =

L

2
δnm

(1.12)

With δmn is the Kronecker delta.
Given these properties, we can calculate the coefficients

a0 =
1

L

∫ L

0

f(x)dx (1.13)

an =
2

L

∫ L

0

f(x) cos

(
2πnx

L

)
dx (1.14)

bn =
2

L

∫ L

0

f(x) sin

(
2πnx

L

)
dx (1.15)

Example (Sawtooth function)
Consider the function f(x) = Ax for −L/2 < x < L/2 and period L shown

in Figure 1.1.

Figure 1.1: Sawtooth function

Given f(x) is an odd function of x, an coefficients are zero, while the bn ones
are given by

bn =
2

L

∫ L/2

−L/2

f(x) sin

(
2πnx

L

)
dx =

2

L

∫ L/2

−L/2

Ax sin

(
2πnx

L

)
dx
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Integrating by parts∫
x sin(rx)dx = x

(
−1

r
cos(rx)

)
dx−

∫
−1

r
cos(rx)dx

= −x
r
cos(rx) +

1

r2
sin(rx)

Given r ≡ 2πn/L

bn =
2A

L

[
−x

(
L

2πn

)
cos

(
2πnx

L

)∣∣∣∣L/2

−L/2

+

(
L

2πn

)2

sin

(
2πnx

L

)∣∣∣∣∣
L/2

−L/2


=

(
− AL

2πn
cos(πn)− AL

2πn
cos(−πn)

)
+ 0

= −AL
πn

cos(πn)

= (−1)n+1AL

πn

So the Fourier trigonometric series of the Sawtooth function becomes

f(x) =
AL

π

∞∑
n=1

(−1)n+1 1

n
sin

(
2πnx

L

)
The larger the number of terms included the better the approximation is. The
partial series plots for 1, 3, 10, 50 terms are shown in 1.2

Figure 1.2: Partial series plots for the first 1, 3, 10 and 50 terms of the Sawtooth
function
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1.6.2 Fourier Exponential Series

A function that can be written in terms of sines and cosines can also be written
in terms of exponentials, i.e.

f(x) =

∞∑
n=−∞

Cne
i2πnx/L (1.16)

Where the Cn coefficients are given by

Cn =
1

L

∫ L

0

f(x)e−i2πnx/Ldx (1.17)

Equation (1.17) exploits again the orthogonality of the exponential functions.
Example (Sawtooth function)

We consider another time the Sawtooth function

Cn =
1

L

∫ L/2

−L/2

Axe−i2πnx/Ldx

Integrating by parts ∫
xe−rxdx = −x

r
e−rx − 1

r2
e−rx

This is true for r ̸= 0. Given r ≡ i2πn/L (hence n ̸= 0) we obtain

Cn = −A
L

(
xL

i2πn
e−i2πnx/L

∣∣∣∣L/2

−L/2

+

(
L

i2πn

)2

e−i2πnx/L

∣∣∣∣∣
L/2

−L/2


The second of these terms yields zero because the limits produce equal terms.
The first term is instead

Cn = −A
L

(L/2)L

i2πn

(
e−iπn + eiπn

)
Given the sum of exponential equal to 2(−1)n. So we are left

Cn = (−1)n
iAL

2πn

For n ̸= 0, while if n = 0 the integral yields C0 = (A/L)(x2/2)
∣∣L/2

−L/2
= 0. We

could expect this since Ax is an odd function.
We can then write the Fourier exponential series

f(x) =
∑
n ̸=0

(−1)n
iAL

2πn
ei2πnx/L
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Writing the exponential in trigonometric form

f(x) =
∑
n ̸=0

(−1)n
iAL

2πn

[
cos

(
2πnx

L

)
+ i sin

(
2πnx

L

)]
Since (−1)n/n is an odd function of n and since cos(2πnx/L) is an even function
of n the cosine terms sum to zero. Moreover, the function of sine is an odd
function of n, hence we can restrict to the sum of just the positive integers and
then double the result. Using i2(−1)n = (−1)n+1 we can rewrite the solution
as

f(x) =
AL

π

∞∑
n=1

(−1)n+1 1

n
sin

(
2πnx

L

)
As obtained in the previous example.

There is relation among coefficients obtained in the exponential series and
in the trigonometric series, given the formulas

cos(z) =
eiz + e−iz

2
and sin(z) =

eiz − e−iz

2i

We can get these relations among the coefficients

Cn =
an − ibn

2
and C−n =

an + ibn
2

And C0 = a0

1.6.3 Fourier Transform

The Fourier trigonometric or exponential series require the function to be peri-
odic. A non periodic function can still be written as a series if considering the
period of infinite length, passing from sums to integrals. Starting from equa-
tions (1.16) and (1.17), we define kn = 2πn/L with difference among kn and
kn−1 of 2π/L since n ∈ Z. This difference goes to zero as L → ∞, letting us
consider k a continuous variable. Equation (1.16) becomes

f(x) =

∫ ∞

−∞
C(kn)e

iknxdkn (1.18)

With C(kn) ≡ (L/2π)Cn. Recalling equation (1.17)

C(kn) ≡
L

2π
Cn =

L

2π
· 1
L

∫ ∞

−∞
f(x)e−iknxdx =

1

2π

∫ ∞

−∞
f(x)e−iknxdx (1.19)

Dropping the n variable, the previous equations can be summed up in

f(x) =

∫ ∞

−∞
C(k)eikxdk C(k) =

1

2π

∫ ∞

−∞
f(x)e−ikxdx (1.20)

C(k) is known as the Fourier transform of f(x).
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1.7 Bessel funciton

Bessel functions are canonical solutions of the Bessel’s equation, an ordinary
differential equation of the form

x2y′′ + xy′ + (x2 − ν2)y = 0 (1.21)

Where ν is a constant and defines the order of the Bessel’s equation.

Bessel equation of order zero

In this case ν = 0, so equation (1.21) reduces to

L[y] = x2y′′ + xy′ + x2y = 0 (1.22)

We seek for a solution in series form

y = xr
∞∑

n=0

anx
n

We find the first derivative

y′ =

∞∑
n=0

(r + n)anx
r+n−1

And the second derivative

y′′ =

∞∑
n=0

(r + n)(r + n− 1)anx
r+n−2

Substituting in the Bessel’s equation

L[y] = x2
∞∑

n=0

(r + n)(r + n− 1)anx
r+n−2 + x

∞∑
n=0

(r + n)anx
r+n−1 + x2

∞∑
n=0

anx
r+n

=

∞∑
n=0

(r + n)(r + n− 1)anx
r+n +

∞∑
n=0

(r + n)anx
r+n +

∞∑
n=0

anx
r+n+2

(1.23)

We change the index of the third term to have a function of the same power of
x.

Let m = n+ 2, equation (1.23) becomes

L[y] =

∞∑
n=0

(r+ n)(r+ n− 1)anx
r+n +

∞∑
n=0

(r+ n)anx
r+n +

∞∑
m=2

anx
r+m (1.24)

That can be reduced as

L[y] = a0[r(r−1)+r]xr+a1[(r+1)r+(r+1)]xr+1+

∞∑
n=2

{an[(r+n)(r+n−1)+(r+n)]+an−2}xr+n = 0

(1.25)
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Since this equation must be true for all x, coefficients must sum up to zero,
building up a recurrence relation

an(r) = − an−2(r)

(r + n)(r + n− 1) + (r + n)
= − an−2(r)

(r + n)2
n ≥ 2 (1.26)

When r is equal to zero, hence when we seek for the y1(x) solution, the first
term of equation (1.25) goes to zero, while the second does not, this means that
a1 = 0, and hence, from equation (1.26), a3 = a5 = · · · = 0. So only coefficients
with even index are nonzero, starting from r = 0

an(0) = −an−2(0)

n2
n = 2, 4, 6, . . .

We set n = 2m to indicate it is an even index, obtaining

a2m(0) = −a2m−2(0)

(2m)2
m = 1, 2, 3, . . .

Thus
a2(0) = −a0

22
a4(0) =

a0
2422

a6(0) = − a0
26(3 · 2)2

Leading to the general case

a2m(0) =
(−1)ma0
22m(m!)2

m = 1, 2, 3, . . . (1.27)

Inserting in the y function

y1(x) = a0

[
1 +

∞∑
m=1

(−1)mx2m

22m(m!)2

]
x > 0 (1.28)

Function in brackets is known as the Bessel function of the first kind of order
zero and is denoted by J0(x).

Figure 1.3: Bessel function of the first kind of order zero, denoted by J0(x)
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Bessel functions have plenty of properties, for the purpose of this thesis we
present the recurrence formulae

2J ′
n(z) = Jn−1(z)− Jn+1(z) (1.29)

2n

z
Jn(z) = Jn−1(z) + Jn+1(z) (1.30)

22



Chapter 2

The Schrödinger equation

2.1 Brief Introduction to Quantum Mechanics

Quantum Mechanics is a fundamental theory in physics that provides a descrip-
tion of the physical properties of nature at the scale of atoms and subatomic
particles, since classical physics has been resulted not sufficient to represent the
microscopic world. The first main difference is the concept that energy in the
quantum world can only assume certain values of energy and not a continuum of
energies. Max Planck in 1900 assumed that any energy-radiating atomic system
can theoretically be divided into a number of discrete energy levels, with each
level of energy described by

En = nhv n = 1, 2, 3, . . . (2.1)

Where v is the frequency of radiation of energy and h is a numerical value called
Planck’s constant

h ≈ 6.63× 10−34J · s (2.2)

Equation (2.1) means that energy cannot assume any value (−∞,+∞), but
rather an integer multiple of the elementary quantity hv, that for this reason is
called quantum of energy.

In 1923, the french physicist Louis de Broglie theorized a new cinematic, based
on the idea that matter had both a corpuscular and wave nature: the now
well known wave-particle duality. It is from this new way to see matter that
Erwin Schrödinger postulated in 1925 his equation for describing a quantum-
mechanical system. It was then published in 1926, forming the basis for the work
that resulted in his Nobel Prize in Physics in 1933. From Planck’s hypothesis
of quantized energy, Schrödinger supposed that a particle with energy E and
momentum q can be represented as a wave packet with frequency v = E/h and
wave length λ = h/p, where h is Planck’s constant and p is the momentum.
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From those ideas Schrödinger wrote his equation

iℏ
∂Ψ

∂t
= − ℏ2

2m
∆Ψ+ V (x)Ψ (2.3)

t is time.

x is the position of the particle.

m is the mass of the particle

i is the imaginary unit.

V (x) is the potential the particle is subject to.

ℏ = h/2π is the reduced Planck constant.

∆ is the Laplace operator (or Laplacian) and is the sum of all unmixed second
partial derivatives

∆f =

n∑
i=1

∂2f

∂x2i

Note For the purpose of this elaborate, the equation is written in the one
dimensional case.

Equation (2.3) is a linear partial differential equation depending on time and
position.

2.2 The wave function

2.2.1 Statistical Interpretation

The solution of the Schrödinger equation, the wave function Ψ(x, t), describes
the quantum state of a system. The manner Ψ represents the state of a particle
is explained by Born’s statistical interpretation of the wave function, formulated
by Max Born in 1926.

It states that the probability density of finding a particle at a given point,
when measured, is proportional to the square of the magnitude of the wave
function |Ψ(x, t)|2.
Indeed, the integral ∫ b

a

|Ψ(x, t)|2dx

gives the probability of finding the particle between a and b at time t. Hence
the probability is represented by the area under the graph of |Ψ(x, t)|2 from a
to b. It follows that the integral of |Ψ|2 must be 1, i.e. the probability of the
particle to be somewhere in the space is 100%. Hence here we find the first
property of the wave function∫ +∞

−∞
|Ψ(x, t)|2dx = 1 (2.4)
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Equation (2.4) is know as normalization condition. Any wave function for which
the integral of the square modulus converges can be normalized, if multiplied
for an opportune constant.

One might claim that even if we have normalized the wave function for a
certain time, say t = 0, we cannot be certain that that Ψ will stay normalized
as time goes on and Ψ evolves.

Here comes a crucial property of the wave function, that is the preservation
of the normalization. Here is the proof.

d

dt

∫ +∞

−∞
|Ψ(x, t)|2dx =

∫ +∞

−∞

∂

∂t
|Ψ(x, t)|2dx (2.5)

By the product rule,

∂

∂t
|Ψ|2 =

∂

∂t
(Ψ∗Ψ) = Ψ∗ ∂Ψ

∂t
+
∂Ψ∗

∂t
Ψ (2.6)

Now Schrödinger equation says that

∂Ψ

∂t
=

iℏ
2m

∂2Ψ

∂x2
− i

ℏ
VΨ (2.7)

and hence, taking the complex conjugate of equation (2.7)

∂Ψ∗

∂t
= − iℏ

2m

∂2Ψ∗

∂x2
+
i

ℏ
VΨ∗ (2.8)

So

∂

∂t
|Ψ|2 =

iℏ
2m

(
Ψ∗ ∂

2Ψ

∂x2
− ∂2Ψ∗

∂x2
Ψ

)
=

∂

∂x

[
iℏ
2m

(
Ψ∗ ∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)]
(2.9)

The integral in Equation (2.5) can now be evaluated explicitly:

d

dt

∫ +∞

−∞
|Ψ(x, t)|2dx =

iℏ
2m

(
Ψ∗ ∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)∣∣∣∣+∞

−∞
(2.10)

But Ψ(x, t) must go to zero as x goes to ±∞, otherwise the wave function would
not be normalizable. It follows that

d

dt

∫ +∞

−∞
|Ψ(x, t)|2dx = 0 (2.11)

And hence that the integral is constant, independent of time. If Ψ is normalized
at t = 0 it stays normalized for all future time □

2.2.2 Momentum

Any observable, i.e. any quantity which can be measured, is associated with
a self-adjoint linear operator. The operators must yield real eigenvalues, since
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they are values which may come up as the result of a measurement. As we saw
in section 1.4 this means that the operator must be Hermitian. The probability
of each eigenvalue is related to the projection of the physical state on the sub-
space related to that eigenvalue.

Back to the position operator, for a particle in state Ψ, the expectation value
of the position operator, x, is:

⟨x⟩ =
∫ +∞

−∞
x|Ψ(x, t)|2dx (2.12)

The value ⟨x⟩ is the average of repeated measurements on an ensemble of iden-
tically prepared systems. As time goes on, ⟨x⟩ will change, due to the time
dependence of Ψ, and we might be interested in how fast it moves. Referring to
equations (2.9) and (2.12), we see that

d ⟨x⟩
dt

=

∫
x
∂

∂t
|Ψ|2dx =

iℏ
2m

∫
x
∂

∂x

(
Ψ∗ ∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx (2.13)

This expression can be simplified, using integration by parts and the fact that
Ψ goes to zero at ±∞, into

d ⟨x⟩
dt

= − iℏ
2m

∫ (
Ψ∗ ∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx (2.14)

Performing another integration by parts∫ (
Ψ∗ ∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx =

∫
Ψ∗ ∂Ψ

∂x
−
∫
∂Ψ∗

∂x
Ψ =

Ψ∗Ψ|+∞
−∞ −

∫
∂Ψ∗

∂x
Ψ−

∫
∂Ψ∗

∂x
Ψ =

−2

∫
∂Ψ∗

∂x
Ψ

(2.15)

Hence equation (2.14) becomes

d ⟨x⟩
dt

= − iℏ
m

∫
Ψ∗ ∂Ψ

∂x
dx (2.16)

This result is the velocity of the expectation value of x, denoted as ⟨v⟩.
Actually, it is customary to work with momentum (p = mv), rather that

velocity:

⟨p⟩ = m
d ⟨x⟩
dt

= −iℏ
∫

Ψ∗ ∂Ψ

∂x
dx (2.17)

Hence we have found the expression for two fundamental operators:

⟨x⟩ =
∫

Ψ∗(x)Ψdx (2.18)
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⟨p⟩ =
∫

Ψ∗
(
ℏ
i

∂

∂x

)
Ψdx (2.19)

That represents respectively, position and momentum in quantum mechanics.
Other quantities can be expressed in terms of position and momentum. Ki-

netic energy is

K =
1

2
mv2 =

p2

2m
(2.20)

With expectation

⟨K⟩ = − ℏ2

2m

∫
Ψ∗ ∂

2Ψ

∂x2
dx (2.21)

2.2.3 Uncertainty principle

The wavelenght of Ψ, λ is related to the momentum of the particle by the de
Broglie formula:

p =
h

λ
=

2πℏ
λ

(2.22)

Thus a spread in wavelenght corresponds to a spread in momentum, and our
general observation now says that the more precisely determined a particle’s
position is, the less precisely is its momentum. Quantitatively,

σxσp ≥ ℏ
2

(2.23)

Where σx is the standard deviation in x, and σp is the standard deviation in p.
This is Heisenberg’s famous uncertainty principle.

2.3 Formalism

2.3.1 Dirac’s bra and ket notation

Bra-ket notation was introduced by Paul Dirac to describe a state of a system.
In such notation, the vectors in the space are called ket vectors, or simply kets
and are denoted as |α⟩.

A ket |α⟩ can be expressed in a simpler way by the n-tuple of its components,
{an}, with respect to a specified orthonormal basis:

|α⟩ =


a1
a2
...
an


Two kets can be summed

|α⟩+ |β⟩ = |γ⟩
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And the sum |γ⟩ is also a ket. The product between a ket |α⟩ and a number c
is still a ket. The constant c can stay on the right or left side of the ket

c |α⟩ = |α⟩ c

If c = 0 the resulting ket is the null ket. An operator Q acts on a ket from the
left:

A(|α⟩) = A |α⟩

and the result is another ket.
We define autoket of an operator, indicated with the notation

|a′⟩ , |a′′⟩ , |a′′′⟩ , ...

A ket with the property

A |a′⟩ = a′ |a′⟩ , A |a′′⟩ = a′′ |a′⟩ , A |a′′′⟩ = a′′′ |a′′′⟩

Hence the action of A over an autoket produces the same ket times a factor.
The set of numbers {a′, a′′, a′′′, ...} represents the set of the eigenvalues of the
A operator.

We then define the bra vectors, or simply bras, denoted with the symbol ⟨α|,
the mirror image of the symbol for a ket vector.

Thanks to this notation we can introduce the inner product in the bra-ket
notation as the complex number:

⟨α|β⟩ = a∗1b1 + a∗2b2 + ...+ a∗nbn

Let us enunciate some properties of the inner product.

⟨α|β⟩ = ⟨β|α⟩∗ (2.24)

Hence, ⟨α|β⟩ and ⟨β|α⟩ are complex conjugates, that is the second property of
the inner product in C stated in the first Chapter. From equation (2.24) we
deduce that ⟨α|α⟩ is real (the only way a number can be equal to its conjugate
is that the imaginary part is zero, hence that the number belongs to R).

But since ⟨·|·⟩ is an inner product we remind the property:

⟨α|α⟩ ≥ 0 (2.25)

From which we can define the norm

∥α∥ =
√

⟨α|α⟩

An operator Q acts on a bra from the right

(⟨α|)Q = ⟨α|Q
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And the result is another bra.

We can then build the product |α⟩ ⟨β| in this order, known as outer product.
The result is an operator:

|α⟩ ⟨β| :=


a1
a2
. . .
an

 ( b∗1 b∗2 . . . b∗n ) =


a1b

∗
1 a1b

∗
2 . . . a1b

∗
n

a2b
∗
1 a2b

∗
2 . . . a2b

∗
n

...
...

. . .
...

anb
∗
1 anb

∗
2 . . . anb

∗
n


Another property is that if the operator Q is defined as

Q = |β⟩ ⟨α|

Then
Q† = |α⟩ ⟨β|

2.3.2 Hilbert Space

In the previous Chapter we stated various elements of functional analysis that
will be useful to solve the Schrödinger equation. Quantum theory is based on two
constructs: wave functions and operators. The state of a system is represented
by its wave function, observables are represented by operators. Mathemati-
cally, wave functions satisfy the defining conditions for abstract vectors and are
represented by kets, while operators act on them as linear transformations.

Linear transformations, A, are represented by matrices (with respect to the
specified basis), which act on vectors (to produce new vectors) by the ordinary
rules of matrix multiplication:

|β⟩ = A |α⟩ =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

an1 an2 . . . ann




a1
a2
...
an


In quantum mechanics we encounter functions instead of vectors, in infinite-
dimensional spaces.

To represent a possible physical state, the wave function Ψ must be normal-
ized: ∫

|Ψ|2dx = 1

The set of all square-integrable functions on a specified interval is a space we
have already met before, i.e. the L2(Ω) space, which is a Hilbert space when
embedded with the proper inner product

⟨f |g⟩ =
∫
Ω

f(x)∗g(x)dx
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If f and g are both square-integrable, their inner product is guaranteed to exists
thanks to the Schwarz’s inequality.

Moreover, the inner product of f(x) with itself,

⟨f |f⟩ =
∫
Ω

|f(x)|2dx

is real and non-negative, and equals zero only when f(x) = 0 a.e.

Finally, a set of functions is complete if any other function in the space can
be expressed as a linear combination of them

f(x) =

∞∑
n=1

cnfn(x) (2.26)

If the functions {fn(x)} are orthonormal, the coefficients are given by the so
called Fourier’s trick.

We exploits the othonormality of fn multypling both sides of equation (2.26)
by fm(x)∗ and integrate∫

fm(x)∗f(x)dx =

∞∑
n=1

∫
fm(x)∗fn(x)dx =

∞∑
n=1

cmδmn = cm

So the general way to find coefficients is

cn = ⟨fn|f⟩

2.3.3 Observables

An observable is a physical quantity that can be measured. Examples include
position and momentum. The expectation value of an observable Q(x, p) can
be expressed in inner-product notation:

⟨Q⟩ =
∫

Ψ∗Q̂Ψdx = ⟨Ψ|Q̂Ψ⟩ (2.27)

Where Q̂ is the operator constructed from Q by the replacement

p→ p̂ ≡ ℏ
i

d

dx

These operators are linear, in the sense that

Q̂[af(x) + bg(x)] = aQ̂f(x) + bQ̂g(x)

For any function f and g and any complex number a and b.
The outcome of a measurement has to be real, and so, a fortiori, is the average
of many measurements:

⟨Q⟩ = ⟨Q⟩∗ (2.28)
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But the complex conjugate of an inner product reverses the order, so

⟨Ψ|Q̂Ψ⟩ = ⟨Q̂Ψ|Ψ⟩ (2.29)

And this must hold true for any wave function Ψ. Thus operators representing
observables have the very special property that

⟨f |Q̂f⟩ = ⟨Q̂f |f⟩ ∀f(x) (2.30)

But can be shown that they satisfy the ostensibly stronger condition:

⟨f |Q̂g⟩ = ⟨Q̂f |g⟩ ∀f(x), g(x) (2.31)

From equation (1.8) we know that such operators are Hermitian operators.

Suppose you want to prepare a state such that every measurement of Q is
certain to return the same value, q. An example are the stationary states of the
Hamiltonian: when you make a measurement of the total energy on a particle
in the stationary state Ψn is certain to yield the corresponding allowed energy
En.

In the situation described the standard deviation of Q, in a determinate
state, would be zero

σ2 = ⟨(Q̂− ⟨Q⟩)2⟩ = ⟨Ψ|(Q̂− q)2Ψ⟩ = ⟨(Q̂− q)Ψ|(Q̂− q)Ψ⟩ = 0 (2.32)

This means that
Q̂Ψ = qΨ (2.33)

This is the eigenvalue equation for the operator Q̂; Ψ is an eigenfunction of Q̂,
and q is the corresponding eigenvalue. So determinate states are eigenfunctions
of Q̂. This means that determinate states of the total energy are eigenfunctions
of the Hamiltonian:

Ĥψ = Eψ (2.34)

2.3.4 Eigenfunctions of a Hermitian Operator

Our attention is thus directed to the eigenfunctions of Hermitian operators,
that represents, as stated before, determinate states of observables. These fall
into two categories: If the spectrum is discrete, i.e. the eigenvalues are sepa-
rated from one another, then the eigenfunctions lie in Hilbert space and they
constitute physically realizable states. If the spectrum is continuous then the
eigenfunctions are not normalizable, and they do not represent possible wave
functions (though linear combinations of them may be normalizable). Some op-
erators have a discrete spectrum only, like for example, the Hamiltonian for the
harmonic oscillator, some have only a continuous spectrum, like the free particle
Hamiltonian, and some have both a discrete part and a continuous part, like
the Hamiltonian for a finite square well.
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Discrete Spectra

Mathematically, the normalizable eigenfunctions of a Hermitian operator have
two important properties

Theorem 2.3.1. The eigenvalues of Hermitian operator are real

Proof.
Suppose

Q̂f = qf

Hence f(x) is an eigenfunction of Q̂ with eigenvalue q and

⟨f |Q̂f⟩ = ⟨Q̂f |f⟩

Since Q̂ is Hermitian
q ⟨f |f⟩ = q∗ ⟨f |f⟩

q is a number, so it comes outside the integral, and because the first function is
the inner product is complex conjugated so too is the q on the right.

Since ⟨f |f⟩ cannot be zero, due to the fact that the zero function is not a
legal eigenfunction, q = q∗, and hence q is real. □

Theorem 2.3.2. Eigenfunctions of Hermitian operators belonging to distinct
eigenvalues are orthogonal

Proof.
Suppose

Q̂f = qf

And
Q̂g = q′g

And Q̂ is Hermitian. Then

⟨f |Q̂g⟩ = ⟨Q̂f |g⟩

So
q′ ⟨f |g⟩ = q∗ ⟨f |g⟩

Where the inner products exist because the eigenfunctions are in Hilbert space
by assumption. But q is real, so if q′ ̸= q it must be that ⟨f |g⟩ = 0 □

Moreover, the eigenfunctions of an observable operator are complete, i.e.
any function in Hilbert space can be expressed as a linear combination of them.
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Continuous Spectra

If the spectrum of a Hermitian operator is continuous, the eigenfunctions are
not normalizable, hence the proofs of the two theorems stated when facing the
discrete spectrum fail, because the inner products may not exist. Nevertheless,
there is a sense in which the three essential properties of reality, orthogonality
and completeness still hold.

For example, let fp(x) be the eigenfunction and p the eigenvalue of the
momentum operator

ℏ
i

d

dx
fp(x) = pfp(x) (2.35)

The general solution is
fp(x) = Aeipx/ℏ

This is not square-integrable, for any (complex) value of p, hence the momentum
han no eigenfuncitons in Hilbert space. However, restricting the spectrum to
real eigenvalues, we recover a kind of orthonormality∫ +∞

−∞
f∗p′(x)fp(x)dx = |A|2

∫ +∞

−∞
ei(p−p′)x/ℏdx = |A|22πℏδ(p− p′)

Choosing A = 1/
√
2πℏ

fp(x) =
1√
2πℏ

eipx/ℏ

Then
⟨fp′ |fp⟩ = δ(p− p′) (2.36)

Where δ is the Dirac delta:

δ(x) =

{
+∞ x = 0
0 x ̸= 0

Which is also constrained to satisfy the identity∫ +∞

−∞
δ(x)dx = 1

Equation (2.36) is called Dirac orthonormality.

About completeness, we take the example of the position operator. Let gy(x)
be the eigenfunction and y the eigenvalue:

xgy(x) = ygy(x) (2.37)

Here y is a fixed number (for any given eigenfunction), but x is a continuous
variable. The only function of x with the property to be the same whether you
multiply it by x or by the constant y is the zero function, except in the one
point where x = y. Hence we find again the Dirac function

gy(x) = Aδ(x− y)
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These eigenfunctions are also complete:

f(x) =

∫ +∞

−∞
c(y)gy(x)dy =

∫ +∞

−∞
c(y)δ(x− y)dy

With the trivial solution in this case for c(y) that if equal to f(y).

2.3.5 Generalized Statistical Interpretation

If you measure an observable Q(x, p) on a particle in the state Ψ(x, t) you are
certain to get one of the eigenvalues of the Hermitian operator Q̂(x,−iℏ d

dx ). If

the spectrum of Q̂ is discrete, the probability of getting the paticular eigenvalue
qn associated with the orthonormalized eigenfunction fn(x) is

|cn|2

Where
cn = ⟨fn|Ψ⟩ (2.38)

If the spectrum is continuous, with real eigenvalues q(z) and associated Dirac-
orthonormalized eigenfunctions fz(x), the probability of getting a result in the
range dz is

|c(z)|2dz

Where
c(z) = ⟨fz|Ψ⟩ (2.39)

When making a measurement, the wave function collapses to the corresponding
eigenstate.

As stated before, the eigenfunctions of an observable operator are complete,
to the wave function can be written as a linear combination of them:

Ψ(x, t) =
∑
n

cnϕn(x) (2.40)

Given the orthonormality of the eigenfunctions we can compute coefficients with
Fourier’s trick

cn = ⟨ϕn|Ψ⟩ =
∫
ϕn(x)

∗Ψ(x, t)dx (2.41)

The generalized statistical interpretation tells us that |cn|2 is the probability
that a measurement of Q would yield the value qn, i.e. the eigenvalue of ϕn.

Since the total probability must be one∑
n

|cn|2 = 1 (2.42)
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This follows from the normalization of the wave function

1 = ⟨Ψ|Ψ⟩ = ⟨(
∑
n′

cn′fn′ |
∑
n

cnϕn)⟩

=
∑
n′

∑
n

c∗n′cn ⟨ϕn′ |ϕn⟩

=
∑
n′

∑
n

c∗n′cnδn′n

=
∑
n

c∗ncn

=
∑
n

|cn|2

Similarly, the expectation value of Q should be the sum over all possible
outcomes of the eigenvalue times the probability of getting that eigenvalue

⟨Q⟩ =
∑
n

qn|cn|2 (2.43)

Indeed
⟨Q⟩ = ⟨Ψ|Q̂Ψ⟩ = ⟨(

∑
n′

cn′ϕn′ |Q̂
∑
n

cnϕn)⟩

But Q̂ϕn = qnϕn, so

⟨Q⟩ =
∑
n′

∑
n

c∗n′cnqn ⟨fn′ |fn⟩ =
∑
n′

∑
n

c∗n′cnqnδn′n =
∑
n

qn|cn|2

2.4 Solution of the Schrödinger equation

In the first chapter we introduced some elements of functional analysis that are
used in quantum mechanics as we have seen in Section 2.3. We also gave an
explanation of the statistical meaning of the wave function and of the operators
used to compute quantities of interest.

We can now face the real problem of the equation, that is, how to actually
find Ψ(x, t) in the first place. Hence we need to solve the Schrödinger equation

iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ VΨ

for a specified potential. The final aim is to be able to solve the equation for
a potential that depends both on time and position, but first we start with the
easier case with a potential that is independent of time.

Whenever the Schrödinger equation presents a time-independent potential,
it can be solved with the method of separation of variables, i.e. the hypothesis
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that our solution takes the form of a product of a function of t and a function
of x,

Ψ(x, t) = ψ(x)ϕ(t)

Where we make a distinction between the lower case ψ that indicates a function
of x alone, in contrast with the upper case Ψ that is the function of both x and t.

Given our guess solution, we compute the derivatives appearing in the equa-
tion:

∂Ψ

∂t
= ψ

dϕ

dt

∂2Ψ

∂x2
=
d2ψ

dx2
ϕ

Replacing the found derivatives in the equation we obtain

iℏψ
dϕ

dt
= − ℏ2

2m

d2ψ

dx2
ϕ+ V ψϕ

We now divide each side by ψϕ

iℏ
1

ϕ

dϕ

dt
= − ℏ2

2m

1

ψ

d2ψ

dx2
+ V

Following the same reasoning of Section 1.5.2, since the left side depends only
on t and the right side depends only on x, the only way this can possibly be
true is if both sides are constant.

iℏ
1

ϕ

dϕ

dt
= − ℏ2

2m

1

ψ

d2ψ

dx2
+ V = E

Then

ϕ′ = −iE
ℏ
ϕ (2.44)

And (
− ℏ2

2m

d2

dx2
+ V

)
ψ = Eψ (2.45)

The method of separation of variables has turned a partial differential equation
into two ordinary differential equations.

Let us now solve each of these.
About the first one, it is easy to solve:

ϕ′

ϕ
= −iE

ℏ

Integrating both sides we obtain

ln |ϕ| = −iE
ℏ
t+ c

36



Elevating e to each side we found the solution

ϕ(t) = C1e
−iEt/ℏ

About the second equation, this is the so called time-independent Schrödinger
equation and can be solved only when the potential V (x) is specified.

One may claim that the hypothesis that the solution has the form ψ(x)ϕ(t)
is way too strong, and that in this way we can find only a tiny subset of all
possible solutions. However, the solutions we find with separation of variables
are indeed of great interest for some reasons.

First of all, they are states of a definite total energy. We know from classical
physics that the total energy of a system is the kinetic energy plus the potential
energy, i.e.

E =
1

2
mv2 + V

Where V is the potential energy and the kinetic one is expressed by its formula.
Observing the left hand side of the time-independent equation, the operator
acting on ψ is given by

− ℏ2

2m

d2

dx2
+ V

Given the momentum operator we have previous defined in equation (2.19) and
the kinetic energy defined in equation (2.20), we recognize the total energy of
the system in what in classical physics is called the Hamiltonian:

H(x, p) =
p2

2m
+ V (x) (2.46)

From what we can derive the corresponding Hamiltonian operator by the sub-
stitution

p→ ℏ
i

∂

∂x

That is

Ĥ = − ℏ2

2m

∂2

∂x2
+ V (x) (2.47)

We can then rewrite the time-independent Schrödinger equation in the form

Ĥψ = Eψ

The expectation value of the Hamiltonian, hence the expectation value of the
total energy is

⟨H⟩ =
∫
ψ∗Ĥψdx = E

∫
|ψ|2dx (2.48)

Since the normalization of Ψ entails the normalization of ψ, last equation can
be rewritten in

E

∫
|Ψ|2dx = E
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Moreover
Ĥ2ψ = Ĥ(Ĥψ) = Ĥ(Eψ) = E(Ĥψ) = E2ψ

And hence

⟨H2⟩ =
∫
ψ∗Ĥ2ψdx = E2

∫
|ψ|2dx = E2

So the variance of H is

σ2
H = ⟨H⟩2 − ⟨H2⟩ = E2 − E2 = 0 (2.49)

Hence σH = 0, meaning that every member of the sample must assume the
same value E, in order to have zero spread among measurements.

So we have just shown that a separable solution has the property to have a
value of the total energy always equal to E.

Another important property of the solutions obtained with the method of
separation o variables is that they are stationary states. A stationary state is a
quantum state with all observables independent of time. This means that the
system remains in the same state as time elapses, in every observable way. For
the Hamiltonian of a single particle, this means that the particle has a constant
probability distribution for its position, momentum, etc. In fact, the probability
density

|Ψ(x, t)|2 = Ψ∗Ψ = ψ∗e+iEt/ℏψe−iEt/ℏ = |ψ(x)|2 (2.50)

Due to the fact that the time dependent factors cancel out, does not depend on
time. Analogously, the computation of the expectation value of any operator
can be reduced to

⟨Q(x, p)⟩ =
∫
ψ∗Q

(
x,

ℏ
i

d

dx

)
ψdx

This means, as stated in the definition of stationary state, that the expectation
value of every observable of such a solution is independent of time. In particular,
⟨x⟩ is constant, and hence ⟨p⟩ = 0. Nothing ever happens in a stationary state.

This does not mean that the wave function itself is stationary. We know
that the solution with separation of variable has the component ϕ(t) that in-
deed depends on time. Given the expression of ϕ(t) = e−iEt/ℏ the wave function
continually changes to form a standing wave, i.e. a wave that oscillates over time
but whose peak amplitude profile does not move in space.

Finally, solutions found with the method of separation of variable have a last
important property: the general solution is a linear combination of separable
solutions.

Given the total energy of system property, we know that the time-independent
Schrödinger equation yields an infinite collection of solutions ψ1(x), ψ2(x), ...
each of them associated with the total value of energy E1, E2, .... We have then
a different wave function for each allowed energy:

Ψn(x, t) = e−iEnt/ℏψn(x)
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The time-dependent Schrödinger equation has the property that any linear
combination of solutions is itself a solution. This is the so called superposition
principle.

Quantum superposition is a fundamental principle of quantum mechanics
that states that the linear combination of two or more quantum states is an-
other valid quantum state, or conversely, that every quantum state can be writ-
ten as a linear combination of two or more distinct states. This is due to the
mathematical property of linear equation: since the Schrödinger equation is lin-
ear, any linear combination of solution is also a solution. Such a property is
so important that is the first described by Paul Dirac in its book Principles of
Quantum Mechanics, where it describes the phenomenon with these words:

The general principle of superposition of quantum mechanics applies to the
states, [that are theoretically possible without mutual interference or contradic-
tion], of any one dynamical System. It requires us to assume that between these
states there exist peculiar relationships such that whenever the System is def-
initely in one state we tan consider it as being partly in each of two or more
other states. The original state must be regarded as the result of a kind of su-
perposition of the two or more new states, in a way that cannot be conceived on
classical ideas. Any state may be considered as the result of a superposition of
two or more other states, and indeed in an infinite number of ways. Conversely
any two or more states may be superposed to give a new state.

This means that once we have found the separable solution, we can construct
a general one of the form

Ψ(x, t) =

∞∑
n=1

cnψn(x)e
−iEnt/ℏ (2.51)

Hence, finding the right constants c1, c2, ... every solution of the time dependent
Schrödinger equation can be written as this infinite sum.

So given the above information, we can face again the problem of solving
the equation given an initial condition Ψ(x, 0). Using the separation of variables
you find ϕ(t) and an infinite set of ψn(x) for any possible energy value En. To
fit the initial condition, you can rewrite Ψ(x, 0) as a linear combination of the
solutions found

Ψ(x, 0) =

∞∑
n=1

cnψn(x)

And you can always do this thanks to the superposition principle.
In this way, you can construct Ψ(x, t) by multiplying the time independent

components of the initial state by their time dependent component

Ψ(x, t) =

∞∑
n=1

cnψn(x)e
−iEnt/ℏ =

∞∑
n=1

cnΨn(x, t) (2.52)
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The separable solutions themselves

Ψn(x, t) = cnψn(x)e
−iEnt/ℏ (2.53)

are stationary states, hence all probabilities and expectation values are indepen-
dent of time, but this property is not shared by the general solution of equation
(2.52) since exponentials do not cancel out when computing |Ψ|2 as energies are
different for different stationary states.

What we need know is to actually find the ψ(x) solution in the first place.
This is possible only knowing the potential V (x) and in the following sections
we will analyze the solutions for three well known potential examples.

2.4.1 The infinite square well

Let’s take the potential V (x) of the infinite square well, that takes the form

V (x) =

{
0 −a ≤ x ≤ a
∞ otherwise

(2.54)

A particle in this potential is free but bounded to stay between the two ends
−a and a since out of this region an infinite force prevents.

x

V (x)

−a/2 a/2

Figure 2.1: Infinite quantum well potential.

This means that outside the well the probability of finding the particle is zero,
i.e. ψ(x) = 0. On the other side, inside the well the equation

− ℏ2

2m

d2ψ

dx2
= Eψ
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Introducing the variable k

k ≡
√
2mE

ℏ
(2.55)

The equation becomes
d2ψ

dx2
= −k2ψ

That is a second order differential equation with constant coefficients.
In order to solve it we write the characteristic polynomial P (λ) associated

to the equation
P (λ) = λ2 + k2

And we find its roots
λ = ±ik

Since the roots are complex conjugates, the solution is with sine and cosine

ψ(x) = A sin kx+B cos kx (2.56)

A and B are constants fixed by the boundary conditions of the problem. Good
boundary conditions are that ψ and dψ/dx are both continuous. The first
requires

ψ(−a/2) = ψ(a/2) = 0

Since outside the well ψ(x) = 0. Substituting in the solution

ψ(−a/2) = A sin(−ka
2
) +B cos(−ka

2
) = 0 (2.57)

Since sin(−x) = − sin(x) and cos(−x) = cos(x) we can rewrite (2.57) as

ψ(−a/2) = B cos(
ka

2
)−A sin(

ka

2
) = 0

The other boundary condition is that

ψ(a/2) = B cos(
ka

2
) +A sin(

ka

2
) = 0

Summing the two we have

2B cos(
ka

2
) = 0

From this system either B = 0 or cos(ka2 ) = 0. B = 0 gives the null trivial

solution which we are not interested in, hence cos(ka2 ) must be zero, so this
leads to

ka

2
=
nπ

2
(2.58)

Since cosine function is pair, cos(−θ) = cos(θ) we can absorb the minus into a
and find the distinct values of k

kn =
nπ

a
with n = 1, 2, 3, . . . (2.59)
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Recalling equation (2.55) and (2.58) we infer that the boundary conditions in-
fluence values of the energy E:

En =
ℏ2k2n
2m

=
n2π2ℏ2

2ma2
(2.60)

This is a peculiar and fundamental aspect of quantum mechanics: the system
can have just some allowed values of energy.

x

ψ1(x)

−a
2

a
2

x

ψ2(x)

−a
2

a
2

x

ψ3(x)

−a
2

a
2

Figure 2.2: The first three stationary states of the infinite square well.

Eventually we find B by normalizing the function:∫ a
2

− a
2

|2B|2 cos2(kx)dx

The integral can be solved by the change of variable z = kx, so dz
k = dx

∫ ka
2

− ka
2

|2B|2

k
cos2(z)dz =

4|B|2

2k
(z + sin z cos z)

∣∣∣∣ ka
2

− ka
2

= |B|2 a
2
= 1

So

B =

√
2

a

Where we took a positive value of B for simplicity.
We then found the solutions inside the well

ψn(x) =

√
2

a
cos

(nπ
a
x
)

(2.61)

So we get an infinite set of solutions, one for each positive integer n. The ψn

associated to lowest energy possible, hence ψ1 is called ground state, while others
are named excited states. We enunciate some properties of the ψn functions:
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1. They are alternatively even and odd with respect to the center of the well
(0)

2. Each new level of energy carries a function with one more node (zero
crossing)

3. They are orthonormal

4. They are complete, any other function can be expressed as a linear com-
bination of them:

f(x) =

∞∑
n=1

cnψn(x) =

√
2

a

∞∑
n=1

cn cos
(nπ
a
x
)

Where cn are found with Fourier’s trick

cn =

∫
ψn(x)

∗f(x)dx (2.62)

These properties are not peculiar to the infinite square well, the first is true
whenever the potential itself is a symmetric function, the second is universal,
regardless the shape of the potential.

The stationary states are

Ψn(x, t) =

√
2

a
cos

(nπ
a
x
)
e−i(n2π2ℏ/2ma2)t (2.63)

And the general solution of equation (2.52) becomes:

Ψ(x, t) =

∞∑
n=1

cn

√
2

a
cos

(nπ
a
x
)
e−i(n2π2ℏ/2ma2)t (2.64)

As stated in Section 2.3.5, |cn|2 is the probability that a measurement of the
energy would yield the value En.

2.4.2 The Harmonic Oscillator

The quantum harmonic oscillator has the following potential

V (x) =
1

2
mω2x2 (2.65)

That leads to the time-independent Schrödinger equation

− ℏ
2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ (2.66)

We now present the analytic method to solve the equation.

43



It is customary to “clean” the equation by introducing the dimensionless
variable ξ

ξ ≡
√
mω

ℏ
x (2.67)

So we can rewrite the equation in terms of this new variable

d2ψ

dξ2
= (ξ2 −K)ψ (2.68)

Where K is the total energy of the system expressed in units of (1/2)ℏω:

K ≡ 2E

ℏω
(2.69)

We will now attempt to solve equation (2.68). To begin with, notice that for
very large value of ξ, ξ2 dominates over K, and hence we can write

d2ψ

dξ2
≈ ξ2ψ (2.70)

The above equation can be traced back to the parabolic cylinder function to
obtain the approximate solution

ψ(ξ) ≈ Ae−ξ2/2 +Be+ξ2/2 (2.71)

We can immediately see that the second term of the equation is not normalizable
since it blows up as |x| → ∞, so the physically acceptable solutions have the
asymptotic form, for large value of ξ

ψ(ξ) → h(ξ)e−ξ2/2 (2.72)

For the function h(ξ) we look for a power series.

h(ξ) = a0 + a1ξ + a2ξ
2 + · · · =

∞∑
k=0

akξ
k (2.73)

This is known as the Frobenius method for solving differential equations.
According to Taylor’s theorem, any function well-behaved function can be ex-
pressed as a power series without loss of generality. Differentiating equation
(2.72), we have

dψ

dξ
=

(
dh

dξ
− ξh

)
e−ξ2/2

and
d2ψ

dξ2
=

(
d2h

dξ2
− 2ξ

dh

dξ
+ (ξ2 − 1)h

)
eξ

2/2

We can then rewrite the Schrödinger equation in terms of h

d2h

dξ2
− 2ξ

dh

dξ
+ (K − 1)h = 0 (2.74)
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We compute now the first and second derivative of h(ξ)

dh

dξ
= a1 + 2a2ξ + 3a3ξ

2 + · · · =
∞∑
k=0

kakξ
k−1

And

d2h

dξ2
= 2a2 + 2 · 3a3ξ + 3 · 4a4ξ2 + · · · =

∞∑
k=0

(k + 1)(k + 2)ak+2ξ
k

And put them in (2.74) to obtain

∞∑
k=0

[(k + 1)(k + 2)ak+2 − 2kak + (K − 1)ak]ξ
k = 0 (2.75)

And so
(k + 1)(k + 2)ak+2 − 2kak + (K − 1)ak = 0

We can see then that the coefficients are codependent, i.e.

ak+2 =
2k + 1−K

(k + 1)(k + 2)
ak (2.76)

So from a0 we can recursively find all the even-numbered coefficients, while a1
generate the odd-numbered coefficients.

However, in finding the solution we need to remember that we want normal-
izable solutions. For large values of k, we can approximate (2.76) into

ak+2 ≈ 2

k
ak

So a general ak is approximately equal (here the example for even-numbered
coefficients)

ak ≈
∞∏

k=0,2,4,...

2

k
=

1

(k/2)!

So the equation for h(ξ) becomes

h(ξ) ≈
∑ 1

(k/2)!
ξk =

∑ 1

j!
ξ2k = eξ

2

This causes h to blow up as we go on with its coefficients ak, with the conse-
quence that ψ blows up to. This behaviour is in contrast with the constraint
that the ψ must be normalizable.

To overcome this problem the power series must terminate. There has to be
a maximum value n such that an+2 = 0, in order to truncate either the odd or
the even series, the other one will be truncated from the start with a1 = 0 if n is
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even and a0 = 0 if n is odd. In order to terminate this series we recall equation
(2.76)

K = 2k + 1

But from equation (2.69)
2E

ℏω
= 2n+ 1

Meaning that

En =

(
n+

1

2

)
ℏω (2.77)

The energy in quantized, as we expected from quantum theory.
So we found, again, n solutions ψn that depend on the grade of the polyno-

mial hn(ξ). Those polynomials are called Hermite polynomials, Hn(ξ), leading
to the normalized stationary states of the harmonic oscillator:

ψn(x) =
(mω
πℏ

)1/4 1√
2nn!

Hn(ξ)e
−ξ2/2 (2.78)

2.4.3 The free particle

We now consider the case where V (x) = 0. The time independent Schrödinger
equation then reads

− ℏ2

2m

d2ψ

dx2
= Eψ (2.79)

And as in the case of the infinite square well, introducing the variable

k ≡
√
2mE

ℏ

The equation becomes
d2ψ

dx2
= −k2ψ

And the solution, in exponential form, is

ψ(x) = Aeikx +Be−ikx (2.80)

But differently from the infinite square well, we do not face boundary condi-
tions that can help us to find the value of k and, hence, of the energy of the
system. Let us go back the general solution, reintroducing the time dependence,
exp(−iEt/ℏ)

Ψ(x, t) = Aeik(x−
ℏk
2m t) +Beik(x+

ℏk
2m t) (2.81)

In this form, any function of x and t that depends on x and t in the combination
(x±vt), for some constant v represents the wave function of a particle travelling
in the ∓x direction, at speed v. A fixed point on the waveform, such a maximum
or a minimum, corresponds to a fixed value of the argument, and hence to x
and t such that

x± vt = c
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Or
x = ∓vt+ c

Where c is a constant. The first term in equation (2.81) represents a wave
traveling to the right, while the second represents a wave going to the left.
Since they only differ by the sign in front of k, we can write

Ψk(x, t) = Aei(kx−
ℏk2

2m t) (2.82)

And

k ≡ ±
√
2mE

ℏ
with

{
k > 0 travelling to the right
k < 0 travelling to the left

(2.83)

The problem of this solution is that it is not normalizable, since the integral∫ +∞

−∞
Ψ∗

kΨkdx = ∞

This means that that in the case of the free particle the separable solutions do
not represent physically realizable states. In the sense that there is no such a
thing as a free particle with a definite energy.

Still separable solutions play a mathematical role in the general solution,
that is a linear combination of them, as a integral over the continuous variable
k, instead of a sum over the discrete values.

Ψ(x, t) =
1√
2π

∫ +∞

−∞
ϕ(k)ei(kx−

ℏ2

2m t)dk (2.84)

For appropriate value of ϕ(k), this wave function can be normalized.
In order to find ϕ(k), we start from the initial wave function Ψ(x, 0), since

it has to satisfy the condition

Ψ(x, 0) =
1√
2π

∫ +∞

−∞
ϕ(k)eikxdk (2.85)

We here recognize equation (1.20), and get the relation

f(x) =
1√
2π

∫ +∞

−∞
F (k)eikxdk

F (k) =
1√
2π

∫ +∞

−∞
f(x)e−ikxdx

(2.86)

The existence of those integrals is guaranteed by the fact that Ψ(x, 0) is nor-
malizable by definition.

So in order to find ϕ(k) we need to compute the Fourier inverse

ϕ(k) =
1√
2π

∫ +∞

−∞
Ψ(x, 0)e−ikxdx (2.87)
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Chapter 3

A quantum model for the
stock market

We now illustrate an application of the Schrödinger equation to the stock mar-
ket, a model suggested by Chao Zang and Lu Huang in 2010, in the journal
Physica A: Statistical Mechanics and its Applications [3].

3.1 Introduction to econophysics

Econophysics is a research field that applies physics to economics problems. It
denotes the activities of physicists who are working on economics problems to
test a variety of new conceptual approaches deriving from the physical sciences.

Physicists are currently contributing to the modeling of “complex systems”
by using tools and methodologies developed in statistical mechanics and theo-
retical physics. Financial markets are remarkably well-defined complex systems,
which are continuously monitored - down to time scales of seconds. Further,
virtually every economic transaction is recorded, and an increasing fraction of
the total number of recorded economic data is becoming accessible to interested
researchers. Facts such as these make financial markets extremely attractive
for researchers interested in developing a deeper understanding of modeling of
complex systems.

3.2 The model

The model we are presenting is an application of quantum mechanics to the stock
market. As quantum mechanics describes the micro world, it is reasonable a
parallelism between a stock and a micro system.

We face a corpuscular property of a stock since it is always traded at a
certain price, but at the same time a wave behavior is met in the fluctuation
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of such a price. In this way, the wave particle duality, cornerstone of quantum
mechanics, is satisfied.

In the model, the square modulus of the wave function Ψ(x, t), represents
the price probability distribution. In Dirac notation, following the superposition
principle -equation (2.51)- we write

|Ψ(x, t)⟩ =
∑
n

cn |ψn⟩ (3.1)

With cn computed with the mentioned formula cn = ⟨ϕn|Ψ⟩ and |ϕn⟩ possible
state of the stock system. The superposition principle of quantum mechanics
has been studied in the stock market by Shi [15] and Piotrowski [16]. The
trading process can be seen as a physical measurement, that forces the wave
function to collapse in one of its possible states, with a certain price associated.

As explained in Section (2.3.5), |cn|2 represents the probability to observe
state n, and

P (t) =

∫ b

a

|Ψ(x, t)|2dx (3.2)

Is the probability to find the stock between price a and b and time t.

The energy of the stock, hence the Hamiltonian, can be viewed as the inten-
sity of the price movement.

On the other side, we introduce the variable p for the momentum

p = m
d

dt
x (3.3)

That denotes the rate of price change, i.e. its trend.
The variable m is the equivalent of the mass in quantum mechanics. In our

model, the mass of the stock can be seen as a measure of its inertia. Stocks with
bigger mass will have prices difficult to move. Analogously to reality, stocks with
larger market capitalization move slower than the smaller market capitalization
ones.

We can then enunciate the uncertainty principle of quantum mechanics ap-
plied in our stock market model

σxσp ≥ ℏ
2

(3.4)

With σx and σp standard deviation of price and trend respectively.
An example of the uncertainty principle in finance is the knowledge at a

certain time of nothing but the exact price of the stock. As a result, one cannot
know the rate and direction of price change in future times, meaning that the
uncertainty of the trend seems to be infinite (right as the uncertainty principle
states).

In real stock market, one can get information also on how many buyers and
sellers there are near the current price (e.g. investors in China are able to see
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five or ten bid and ask prices and their volumes on the screen via stock trading
software). Hence what we get is more a distribution on the price, where we can
evaluate the standard deviation, and from (3.4), an estimate of the stock trend.

For example, if a trader may see a number of buyers far greater than the
number of sellers near the current price, she may predict that the price will rise
the next time. In finance, the standard deviation of the asset price is usually an
indicator of the financial risks. Introducing the uncertainty principle of quan-
tum theory may be helpful in the study of risk management theory.

As unit of price we will take the Chinese Yuan, with an estimation of its
standard deviation, according to [5] of σx = 10−3 Yuan.

On the other side, the standard deviation of the trend can be approximated,
given the small value of σx, to

σp = σ

(
d

dt
x

)
=

√√√√〈(
d

dt
x

)2
〉

−
〈
d

dt
x

〉2

≈

√√√√〈(
d

dt
x

)2
〉

(3.5)

The average stock price change is estimated as 10−2 Yuan per ten seconds in
Chinese stock market. We can then estimate the mass of the stock thanks to
the property of the standard deviation that

σ(cX) = |c|σ(X)

From equation (3.4), given the value of ℏ in equation (2.2)

σxσp = 10−3|m|10−2 ≥ 6.63× 10−34 ≈ 10−33

So
m ≈ 10−28

From the parallelism mentioned, we present the Schrödinger equation de-
scribing the evolution of a stock micro system.

iℏ
∂

∂t
Ψ(x, t) = HΨ(x, t) (3.6)

Where, as in quantum mechanics, H is the Hamiltonian, an operator depending
on price and time.

The difficulty is to find the right Hamiltonian for the stock system, an op-
erator able to involve the broad range of factors influencing the price, from
the economic environment to the psychology of investors. We will construct
an Hamiltonian simulating the fluctuation of the stock price in Chinese market
under an ideal periodic impact of external factors.

3.3 The infinite square well

In Chinese stock market there is the price limit rule, applied to most stocks
in China, according to which the rate of return in a trading day cannot be
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more that ±10%1 of the previous day’s value. From this assumption we can
build our Hamiltonian as a one dimensional infinite square well, with a width
of d0 = x0 × 20%, with x0 previous day’s closing price of a stock.

We introduce a transformation of coordinate

x′ = x− x0 (3.7)

To obtain a symmetric infinite square well with width d0, with the stock price
transformed in its absolute return. Let us introduce another variable, r,

r =
x′

x0
(3.8)

That is the rate of return, a dimensionless variable. The width of the well
becomes d0 = 20%. This leads us to evaluate the mass of the stock again, with
a dimensionless value of 10−30.

We will choose a cosine squared function to describe the return distribution,
due to the fact that return distribution can be described approximately by the
Gaussian [6], and the shapes of the two are close. This decision is made because
the ground state of the symmetric infinite square well is a cosine function, as we
know from equation (2.61), that we can rewrite according to the new variables
as

ψ1(r) =

√
2

d
cos

(πr
d

)
(3.9)

With the corresponding energy from equation (2.60) of

E1 =
ℏ2π2

2md2

We know from Chapter 2 that the square modulus of (3.9) is the probability
distribution of the rate of return. We can infer the similarity of this distribution
and the Gaussian one by the fact that the maximal value of the density is reached
at zero return, and both decrease symmetrically and gradually on right and left
sides. The main difference between the two is that the cosine square distribution
does not have fat tails and the sharp peak. But besides that, the cosine squared
distribution is a good approximation for the Gaussian distribution with a large
variance, as shown in Figure 3.3.

1https://www.szse.cn/English/rules/siteRule/
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−a/2 a/2

Figure 3.1: Cosine squared function (black line) and Gaussian distribution
(dashed blue line) compared.

We want to introduce in the equation something we can compare with the
role of information on prices. New information has the consequence to make the
stock’s price either raise or decline, we can then contemplate this oscillating be-
havior, assuming a periodic appearance of news, by adding the function cos(ωt).
The variable ω can be seen as the frequency of appearance of different kind of
information, and is assumed to be ω = 10−4/s. The value is reasonable, as it
means that the information fluctuates in a single cycle of about four trading
days.

The stock here is similar to a charged particle moving in the electromagnetic
field, where the external field of stock market is constructed by the information.
The stock price may be influenced by such a field.

The potential energy of the stock can be similarly expressed as eFr cos(ωt),
with e a constant and where F denotes the magnitude of the external field, with
a value of F = 10−9. Thanks to the addition of such a field, we can rewrite the
Hamiltonian as

H = − ℏ2

2m

∂2

∂r2
+ eFr cos(ωt) (3.10)

The first term of the Hamiltonian, i.e. the kinetic energy, represents some
intrinsic properties of the stock. On the other side, the second term of the
Hamiltonian, i.e. the potential energy of the stock, reflects the cyclical impact
the stock feels due to the information field.

The multiplication of eFcos(ωt) for the rate of return r has as a result a line
whose slope changes over time depending on the value of the cosine factor. So
our potential V (x, t) becomes

V (x, t) =

{
eFr cos(ωt) −d/2 < x < d/2

∞ otherwise
(3.11)

As shown in Figure 3.2
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0

d/2−d/2

Figure 3.2: The addition of the periodic field into the Hamiltonian causes the
slope of the bottom of the quantum well to change periodically.

With the constructed Hamiltonian, we face the following initial value problem
(IVP) 

iℏ
∂

∂t
Ψ(r, t) =

[
− ℏ2

2m

∂2

∂r2
+ eFr cos(ωt)

]
Ψ(r, t)

Ψ(d/2, t) = Ψ(−d/2, t) = 0

(3.12)

Definition 3.3.1. Let H1, T , H2 be Hilbert spaces. A function Ψ : H1×T → H2

is a global classical solution of the PDE

F (x1, . . . , xn, t,Ψx1 , . . . ,Ψx1,x1 ,Ψx1,x2 , . . . ,Ψx1,x1,x1 , . . . ) = 0 ∀x, t ∈ H1 × T
(3.13)

If it is differentiable at every x, t ∈ H1 × T and it satisfies (3.13).

Where the unknown Ψ = Ψ(x1, . . . , xn, t) is a function of n+1 variables and
Ψxj , . . . ,Ψxixj , . . . are its partial derivatives. The highest order of differentia-
tion occurring in the equation is the order of the equation.

The case we are studying with equation (3.12) is a second order partial
differential equation depending on two variables, r and t.

Proposition 3.3.1. The function Ψ(r, t) defined as

Ψ(r, t) = exp

[
− iEct

ℏ
− ieFr sin(ωt)

ℏω
− ie2F 2(2ωt− sin(2ωt)

8ℏmω3

]
×

+∞∑
l=−∞

Al exp(−ilωt)
{
exp

[
ikl

(
r − eF cos(ωt)

mω2

)]
+ (−1)l exp

[
−ikl

(
r − eF cos(ωt)

mω2

)]}
(3.14)

Is a solution to the IVP of equation (3.12).
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The coefficients Al are approximated to the second order to

Al = il



Jl(q) +
q(q2 − π2)v2

64
[Jl+1(q)− Jl−1(q)]−

3q2v

32
[Jl+2(q)− Jl−2(q)]

−q
2v2

32
[Jl+2(q) + Jl−2(q)]−

q3v2

64
[Jl+3(q)− Jl−3(q)]

+
9q4v2

2048
[Jl+4(q) + Jl−4(q)]


(3.15)

And

v =
ℏω
Ec

q =
k0eF

mω2
(3.16)

Proof.
To find the exact solution we make a transformation of the coordinate system.
The wave function of our system responds to a time varying external field,
related to a time varying, spatially uniform force f(t). We can eliminate the
time-dependency of the field with a transformation of variable whenever we face
an equation in the form

iℏ
∂

∂t
Ψ(x, t) = − ℏ2

2m

∂2

∂x2
Ψ(x, t) + [U(x, t)− xf(t)]Ψ(x, t) (3.17)

In our case, U(x, t) = 0 inside the well. We now transform equation (3.17)
to a system with the coordinates ξ, t, where

ξ = x− q(t) (3.18)

And

q(t) =
1

m

∫
p(t)dt (3.19)

With

p(t) =

∫
f(t)dt (3.20)

Combining (3.12) and (3.17) we infer that

f(t) = −eF cos(ωt)

So we can compute p(t)

p(t) =

∫
−eF cos(ωt)dt = − 1

ω
eF sin(ωt)

And then q(t)

q(t) =
1

m

∫
− 1

ω
eF sin(ωt)dt =

1

mω2
eF cos(ωt)
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So we can now introduce the coordinate ξ for our system

ξ = r − eF cos(ωt)

mω2
(3.21)

We express Ψ(r, t) in the following form

Ψ(r, t) = ϕ(ξ, t)χ(r, t) (3.22)

With

χ(r, t) = exp

[
− iEt

ℏ
+
ixp(t)

ℏ
−

∫
ip2(t)

2ℏm
dt

]
(3.23)

To compute the integral, we first compute p2(t)

p2(t) =
1

ω2
e2F 2 sin2(ωt)

So the integral inside (3.23) becomes∫
ip2(t)

2ℏm
dt =

∫
i

2ℏm
e2F 2

ω2
sin2(ωt)dt =

i

2ℏm
e2F 2

ω2

∫
sin2(ωt)dt

∫
sin2(ωt) =

1

2ω
[ωt− sin(ωt) cos(ωt)] =

1

4ω
[2ωt− sin(2ωt)]

Hence the χ(r, t) function becomes

χ(r, t) = exp

[
− iEct

ℏ
− ieFr sin(ωt)

ℏω
− ie2F 2(2ωt− sin(2ωt)

8ℏmω3

]
(3.24)

Where Ec denotes the energy of the driven system. In order to substitute Ψ(r, t)
with χ(r, t)ϕ(ξ, t) in equation (3.12) we compute the first derivative with respect
to t and the second derivative with respect to r of our new wave function.

Using the product rule of derivative, ∂
∂tΨ becomes

∂

∂t
[χϕ] = χtϕ+ ϕtχ

Where we omit the independent variables for ease. The first derivative with
respect to t of ϕ is given by

ϕt =
∂ϕ

∂t
+
∂ϕ

∂ξ

∂ξ

∂t
(3.25)

Given ∂ϕ
∂ξ = 1, equation (3.25) becomes

ϕt =
∂ϕ

∂t
+
eF sin(ωt)

mω
(3.26)
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χt = exp

[
− iEct

ℏ
− ieFr sin(ωt)

ℏω
− ie2F 2(2ωt− sin(2ωt)

8ℏmω3

]
·

·
[
− iEc

ℏ
− ieFr cos(ωt)

ℏ
− ie2F 2

4ℏω2m
+
ie2F 2 cos(2ωt)

4ℏω2m

] (3.27)

To shorten, we put

β(r, t) = − iEc

ℏ
− ieFr cos(ωt)

ℏ
− ie2F 2

4ℏω2m
+
ie2F 2 cos(2ωt)

4ℏω2m

So that
χt = βχ

For the second derivative with respect to r, we first notice that

ϕ(ξ, t)r =
∂ϕ

∂ξ

∂ξ

∂r

But ξ = r − q(t), so its derivative with respect to r is 1.

Ψr = χrϕ+ ϕξχ

And
Ψrr = χrrϕ+ 2χrϕξ + ϕξξχ

We now compute the second derivative of χ with respect to r

χr = exp

[
− iEct

ℏ
− ieFr sin(ωt)

ℏω
− ie2F 2(2ωt− sin(2ωt)

8ℏmω3

]
·

·
[
− ieF sin(ωt)

ℏω

] (3.28)

χrr = exp

[
− iEct

ℏ
− ieFr sin(ωt)

ℏω
− ie2F 2(2ωt− sin(2ωt)

8ℏmω3

]
·

·
[
−e

2F 2 sin2(ωt)

ℏ2ω2

] (3.29)

To shorten, we put

α(t) = − ieF sin(ωt)

ℏω
So that

χr = αχ

And
χrr = α2χ
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Our equation can now pass from this form

iℏ
[
χtϕ+ χ

(
ϕt +

eF sin(ωt)

mω
ϕξ

)]
= − ℏ2

2m
[χrrϕ+ 2χrϕξ + ϕξξχ]+eFr cos(ωt)χϕ

To the one with the above specified variables:

iℏ
[
βχϕ+ χ

(
ϕt +

eF sin(ωt)

mω
ϕξ

)]
= − ℏ2

2m

[
α2χϕ+ 2αχϕr + ϕξξχ

]
+eFr cos(ωt)ϕχ

In order to simplify the equation we divide both side by χ(r, t), so we obtain

iℏ
(
βϕ+ ϕt +

eF sin(ωt)

mω
ϕξ

)
= − ℏ2

2m

[
α2ϕ+ 2αϕξ + ϕξξ

]
+ eFr cos(ωt)ϕ

(3.30)
After this division, we subtract from both sides[

rf(t) +
p2(t)

2m

]
ϕ+

iℏp(t)
m

ϕξ

Let us compute the unsolved entities inside the brackets

rf(t) = −eFr cos(ωt)

p2(t)

2m
=
e2F 2 sin2(ωt)

2mω2
=

2m

ℏ
α

Notice that

p(t) = −eF sin(ωt)

ω
=

ℏ
i
α

So we subtract this quantity[
−eFr cos(ωt) + 2m

ℏ
α

]
ϕ+

ℏ2α
m

ϕξ

From equation (3.30)

iℏβϕ+ iℏϕt +
iℏeF sin(ωt)

mω
ϕξ + eFr cos(ωt)ϕ− 2m

ℏ
αϕ− ℏ2α

m
ϕξ =

= −ℏ2α2

2m
ϕ− ℏ2α

m
ϕξ −

ℏ2

2m
ϕξξ + eFr cos(ωt)ϕ+ eFr cos(ωt)ϕ− 2m

ℏ
αϕ− ℏ2α

m
ϕξ

With some simplification we are left with[
iℏβ +

ℏ2α2

2m
− eFr cos(ωt) +

ℏ2

2m

∂2

∂r2

]
ϕ = −iℏϕt (3.31)

Let us unwrap the previous simplification

iℏβ = Ec + eFr cos(ωt) +
e2F 2

4ω2m
− e2F 2 cos(2ωt)

4ω2m
(3.32)
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Given the trigonometric rule

sin2(x) =
1− cos(2x)

2

The former (3.32) becomes

iℏβ = Ec + eFr cos(ωt) +
e2F 2 sin2(ωt)

2ω2m

On the other side
ℏ2

2m
α2 = −e

2F 2 sin2(ωt)

2ω2m
(3.33)

So equation (3.31) becomes[
− ℏ2

2m

∂2

∂r2
− Ec

]
ϕ = iℏϕt (3.34)

We here recognize the problem of the free particle from Section 2.4.3, and hence
we know from equation (2.82) that the solution is in the form

ϕ(ξ, t) =
∑
l

Al exp [±iklξ − ilωt] (3.35)

With the energy expressed as

E = Ec ± lℏω

We can define k

kl =

√
2m(Ec + lℏω)

ℏ
Given the above expression we can now write Ψ

Ψ(r, t) = exp

[
− iEct

ℏ
− ieFr sin(ωt)

ℏω
− ie2F 2(2ωt− sin(2ωt)

8ℏmω3

]
×

+∞∑
l=−∞

Al exp(−ilωt)
{
exp

[
ikl

(
r − eF cos(ωt)

mω2

)]
+ (−1)l exp

[
−ikl

(
r − eF cos(ωt)

mω2

)]}
(3.36)

Ψ(r, t) is of the form exp[−iEt/ℏ]u(t), with u(t) = (t + 2π/ω) [17] from which
we infer the magnitude of the period, i.e. 2π/ω. The coefficients Al are to be
determined combining the boundary conditions at r = ±d/2 and the following
Fourier expansion [12]

exp

(
i
kleF cos(ωt)

mω2

)
=

∞∑
n=−∞

inJn

(
kleF

mω2

)
exp(inωt) (3.37)
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Where Jn
(
kleF
mω2

)
is the n-th Bessel function. We know need equation (3.36)

satisfy the boundary condition of the infinite square well of our model, i.e.

Ψ(
d

2
, t) = Ψ(−d

2
, t) = 0 (3.38)

We can reduce [8] the summation of equation (3.37), and hence reduce equation
(3.36) that at the boundary turns out to be

∞∑
l=−∞

(−i)lAl

[
exp

(
ikl
d

2

)
+ (−1)l exp

(
−ikl

d

2

)]
Jn+l

(
kleF

mω2

)
= 0 ∀n

(3.39)
So far, all equation have been exact. In order to find an approximate solution

of equation (3.39), we define two dimensionless variables

v =
ℏω
Ec

(3.40)

q =
k0eF

mω2
(3.41)

And expanding the wave vector kl = k0
√
1 + lv to the second order of v. From

the Euler’s formula
eix + e−ix

2
= cos(x)

We rewrite equation (3.39) as

∞∑
l=−∞

(−i)lAl cos

(
k0d

√
1 + lv

2

)
Jn+l

(
kleF

mω2

)
= 0 ∀n (3.42)

The Taylor expansion to the second order of
√
1 + x is

√
1 + x ≈ 1 +

1

2
x− 1

8
(3.43)

Hence

kl = k0
√
1 + lv ≈ k0

(
1 +

1

2
lv − 1

8
l2v2

)
(3.44)

Substituting in the Bessel argument

Jl

(
kleF

mω2

)
= Jl

(
k0eF

mω2

√
1 + lv

)
≈ Jl

[
q

(
1 +

1

2
lv − 1

8
l2v2

)]
(3.45)

We introduce another variable for simplicity

ηl = q

(
1

2
lv − 1

8
l2v2

)
(3.46)
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So the approximation term of equation (3.45) becomes

Jl(q + ηl) ≈ Jl(q) + J ′
l (q)ηl +

1

2
J ′′
l (q)η

2
l

≈ Jl(q) +
1

2
J ′
l (q)qlv

(
1− 1

4
lv

)
+

1

8
J ′′
l (q)q

2l2v2
(3.47)

Exploiting the recurrence formula, (1.29) we know that

J ′
l (q) =

1

2
[Jl−1(q)− Jl+1(q)] (3.48)

J ′′
l (q) =

1

4
[Jl−2(q)− 2Jl(q) + Jl+2(q)] (3.49)

We substitute (3.48) and (3.49) in (3.47) and obtain

Jl +
qlv

4
Jl−1 −

qlv

2
Jl+1 −

ql2v2

16
Jl−1 +

ql2v2

16
Jl+1

+
q2l2v2

32
Jl−2 −

q2l2v2

16
Jl +

q2l2v2

32
Jl+2

(3.50)

We omit the argument of the Bessel function for simplicity. Now we exploit the
second recurrence formula (1.30)

lJl(q) =
q

2
[Jl−1 + Jl+1] (3.51)

l2Jl =
q

4
[q(Jl+2 + Jl + Jl−2) + 2(Jl−1 − Jl+1)] (3.52)

We can derive from (3.51), (3.52)

lJl+1 = (l + 1)Jl+1 − Jl+1 =
q

2
[Jl + Jl+2]− Jl+1 (3.53)

lJl+2 = (l + 2)Jl+2 − 2Jl+2 =
q

2
[Jl+1 + Jl+3]− 2Jl+2 (3.54)

And analogously

l2Jl+1 = (l + 1)2Jl+1 − 2lJl+1 − Jl+1

=
q

4
[q(Jl+3 + Jl+1 + Jl−1) + 2(Jl − Jl+2)]− 2lJl+1 − Jl+1

(3.55)

l2Jl+2 = (l + 2)2Jl+2 − 4lJl+2 − 4Jl+2

=
q

4
[q(Jl+4 + Jl+2 + Jl + 2(Jl+1 − Jl+3)]− 4lJl+2 − 4Jl+2

(3.56)

The same reasoning is for Jl−1, Jl−2. Now we substitute (3.56), (3.55), (3.54),
(3.53), (3.52) in (3.50) and exploit the Taylor expansion of the cosine function

cos

[
k0d

2

(
1 +

1

2
lv − 1

8
l2v2

)]
≈ − sin

(
k0d

2

)
k0d

4

[
1

2
lv − 1

8
l2v2

]
− cos

(
k0d

2

)(
k0d

2

)2
1

4
l2v2

(3.57)
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To obtain

Al = il



Jl(q) +
q(q2 − π2)v2

64
[Jl+1(q)− Jl−1(q)]−

q2v

32
[Jl+2(q)− Jl−2(q)]

−q
2v2

32
[Jl+2(q) + Jl−2(q)]−

q3v2

64
[Jl+3(q)− Jl−3(q)]

+
9q4v2

2048
[Jl+4(q) + Jl−4(q)]


(3.58)

With the required condition that

k0d =
π√

1 + q2v2/8
(3.59)

□

The authors use numerical methods to simulate the wave function’s distri-
bution at different times, specifically at time t = 0s, t = 1000s and t = 2500s,
plotted in Figure 3.3 respectively with solid, dotted and dashed line.

At time zero the distribution of the rate of return is nearly symmetric with
the previous day’s closing price, which corresponds to the initial state of the
stock, with a zero return being the most probable. By adding the external field
of information in, the distribution of the rate starts its evolution over time.
When t = 1000s and t = 2500s the probability density shift around the starting
one maintaining the same peak value.

Figure 3.3: Numerical simulations of the probability density of the rate of return
at t = 0 (solid line), t = 1000s (dotted line) and t = 2500s (dashed line),
parameters are e = 10−19, m = 10−30, ω = 10−4, F = 10−19 and d = 0.2 .
At t = 0 the distribution corresponds to the initial state of the system. The
external field makes the distributions imbalance at t = 1000s and t = 2500s.
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The change of distribution reflects the imbalance of the market under the
influence of external information.

We know that the average value of the rate of return can be written as

⟨r(t)⟩ =
∫ d/2

−d/2

Ψ∗(r, t)rΨ(r, t)dr (3.60)

The fluctuating average rate of return is shown in Figure 3.4. For the parame-
ters selected, the average rate of return vibrates about 20 times within a period,
that have been estimated being of 2π/ω, while the amplitude of the fluctua-
tion achieves about ±3% as shown in Figure 3.4. This underlines the intrinsic
volatility of the price, despite the market information.

Figure 3.4: The average rate of return fluctuates in a cycle under the market
information with the same parameters as in Figure 3.3. The fluctuation of a
single cycle is given in the figure,in which the symmetry axis appears at t = π/ω
and the amplitude of the fluctuation achieves ±3%.
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Conclusion

In this thesis we have explained some elements of Functional Analysis to have the
tools to introduce the Schrödinger equation, a partial differential equation that
describes a quantum-mechanical system. This equation has then been applied
to the stock market, with the parallelism between quantum systems and stocks,
and between the potential a particle is subject to and the forces that move a
stock’s price. To simulate how the fluctuation of information crashing the mar-
ket influences the price return, we build our potential using a cosine function
of time, and add an external field that simulate external factors affecting the
price, resulting in the potential eFr cosωt. We then find an exact solution with
approximate parameters to the second order. The solution of the equation, the
wave function Ψ(r, t) has the statistical interpretation we explained in Chapter
2, i.e. that the square modulus of it is the return’s probability distribution.
With a numerical computation, we get the probability distribution of the rate
of return under the action of the external field. The peak of the distribution
of the rate of return oscillates around the one of the starting distribution. The
average rate of return, vibrates about 20 times within a period of 2π/ω, with
an amplitude of ±3% reflecting the intrinsic volatility of the stock price despite
external factors, showing the wave behavior that confirms the analogy between
particles and stocks. The model gives a new theory of quantum finance, that
can be further implemented with the broad range of possible potentials we could
build that can quantify the factors affecting the stock price.
There is a strong belief we can further work on the connection between quan-
tum world and stocks from the market, building models able to predict the
future average return, or exploiting the uncertainty principle in the study of
risk management theory.
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Appendix A

Elements of probability
theory

A.1 Algebras and σ−algebras of sets

We denote by X a non empty set, by P(X) the set of all parts of X, and by ∅
the empty set.

Definition A.1.1. Let F be a nonempty subset of P(X). F is said to be an
algebra if

1. ∅, X ∈ F

2. A,B ∈ F ⇒ A ∪B ∈ F

3. A ∈ F ⇒ Ac ∈ F

Where Ac is the complement of A.

Definition A.1.2. An algebra F in P(X) is said to be a σ−algebra if, for any
sequence {An}n of elements of F , we have

⋃∞
n=1An ∈ F .

Definition A.1.3. A set Ω together with an associated σ−algebra, F , i.e., the
pair (Ω,F), is called a measurable space.

A.2 Probability Theory

We give a formal definition of the probability space or probability triple, (Ω,F , P ).

Definition A.2.1. The triple (Ω,F , P ) is a probability (measure) space if

• Ω is the sample space, that is, some (possibility abstract) set.

• F is a σ − algebra of sets (events) - the measurable subsets of Ω. Its
elements, {ω}, of Ω, are called elementary events.
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• P is a probability measure.

Definition A.2.2. P is said to be a probability measure if it satisfies the fol-
lowing Kolmogorov axioms:

1. For any A ∈ F , there exists a number P (A) ≥ 0; the probability of A.

2. P (Ω) = 1.

3. Let {An, n ≥ 1} be disjoint. Then

P (

∞⋃
n=1

An) =

∞∑
n=1

P (An)

Definition A.2.3. Let X be a real valued random variable. The distribution
function of X is

F (x) = P (X ≤ x) x ∈ R

Definition A.2.4. A distribution function F is

• Discrete iff for some countable set of numbers {xj} and point masses {pj}

F (x) =
∑
xj≤x

pj ∀x ∈ R

The function p is called probability function.

• Continuous iff it is continuous for all x.

• Absolutely continuous iff there exists a non-negative integrable function f ,
such that

F (b)− F (a) =

∫ b

a

f(x)dx ∀a < b

The function f is called the density of F .
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Chapter 1

Elements of Functional
Analysis

1.1 Metric Spaces

Definition 1.1.1. Let X be a set. A function is said to be a metric or a dis-
tance if for each couple x, y ∈ X associates a number d(x, y) with the following
properties:

1. d(x, y) ≥ 0; d(x, y) = 0 iff x = y (positive definiteness)

2. d(x, y) = d(y, x) (symmetry)

3. d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality)

The couple (X, d) is said metric space.

1.2 Hilbert Spaces

1.2.1 Norm and Banach Space

Let us start this theory section by recalling the notion of normed vector space.
Let X be a vector space on a real or complex field. A vector space is said to be
normed if you can define a norm in it:

∥·∥ : X → R

Such that, ∀λ and ∀ x, y ∈ X the following properties are valid:

1. ∥x∥ ≥ 0; ∥x∥ = 0 iff x = 0 (positive definiteness)

2. ∥λx∥ = |λ| ∥x∥ (homogeneity)

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangular inequality)
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A normed vector space is also metric, with the distance induced by:

d(x, y) = ∥x− y∥

Definition 1.2.1. Let p and q be two norms on a vector space X. Then p and
q are called equivalent if there exist two real constants c and C with c > 0 such
that ∀x ∈ X

cq(x) ≤ p(x) ≤ Cq(x)

A sequence {xn}n∈N of elements in X is said to be a Cauchy sequence if its
terms become arbitrarily close to each other as the sequence progresses, i.e.

d(xm, xn) = ∥xm − xn∥ → 0 per m,n→ ∞

While it is said to be convergent to x ∈ X if

d(xn, x) = ∥xn − x∥ → 0 per n→ ∞

Theorem 1.2.1. Every sequence {xn}n∈N that converges, is a Cauchy sequence.

The inverse is not necessarily true, if the inverse holds in a vector space,
such vector space is said to be complete.

Definition 1.2.2. A complete normed vector space is called Banach space.

Let X,Y be two metric spaces and let F : X → Y be a function from X to
Y . F is said to be continuous at x ∈ X if ∀{xn}n∈N ⊂ X,

∥xn − x∥X → 0 implies ∥F (xn)− F (x)∥Y → 0

or, equivalently, if

∥F (y)− F (x)∥Y → 0 if ∥y − x∥X → 0

Theorem 1.2.2. Every norm in a space X is continuous in X.

Given two equivalent norms p and q, a sequence {xn}n∈N is Cauchy with
respect to the norm p if and only if is Cauchy with respect to the norm q. In
particular, the space X is complete w.r.t. the norm p iff it is complete w.r.t.
the norm q.

Let Ω be an open set in Rn and p ≥ 1 a real number. Let X = Lp(Ω) be the
set of functions f such that |f |p is Lebesgue integrable in Ω. We introduce the
integral norm of order p

∥f∥Lp(Ω) =

(∫
Ω

|f |p
) 1

p

A function f : Ω → R (or C) is essentially bounded if there exists M such
that

|f(x)| ≤M a.e. in Ω (1.1)
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The infimum of all numbers M with property (1.1) is called essential supre-
mum of f, and denoted by

∥f∥L∞(Ω) = ess sup
Ω

|f |

We further state the Hölder inequality:∣∣∣∣∫
Ω

fg

∣∣∣∣ ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω) (1.2)

Where p and q are conjugate exponents, i.e.

1

p
+

1

q
= 1

The case p = 1 and q = ∞ is allowed.

1.2.2 Inner product and Hilbert Space

In order to define a Hilbert space we first need to recall the concept of inner
product.

Let X be a linear space over R. An inner o scalar product in X is a function

(·, ·) : X ×X → R

with the following properties. For every x, y, z ∈ X and scalars λ, µ ∈ R

1. (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0 (positivity)

2. (x, y) = (y, x) (symmetry)

3. (µx+ λy, z) = µ(x, y) + λ(y, z) (bilinearity)

If the scalar field is C, the inner product is defined as

(·, ·) : X ×X → C

With the properties

1. (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0

2. (x, y) = (y, x)

3. (z, µx+ λy) = µ(z, x) + λ(z, y)

Where (y, x) indicates the complex conjugate. In the C the inner product is said
to be antilinear with respect to its second argument or that it is a sesquilinear
form in X.
The inner product induces the norm

∥x∥ =
√

(x, x)

With respect to the above norm we state the following theorem.
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Theorem 1.2.3. Let x,y ∈ X. Then:

1. Schwarz’s inequality:

|(x, y)| ≤ ∥x∥∥y∥

2. Parallelogram law:

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2

The Schwarz’s inequality implies that the inner product is continuous. A
linear space endowed with an inner product is called an inner product space.

Definition 1.2.3. Let H be an inner product space. We say that H is a Hilbert
space if it is complete with respect to the norm induced by the inner product.

L2(Ω) is one of the most important Hilbert spaces, with respect to the inner
product

(u, v)L2(Ω) =

∫
Ω

uv

Two Hilbert spaces H1 and H2 are isomorphic if there exists a linear map
L : H1 → H2 which preserves the inner product, i.e.:

(x, y)H1 = (Lx, Ly)H2 ∀x, y ∈ H1

1.3 Projections and Bases

1.3.1 Projections

As in finite-dimensional linear spaces, two elements x, y belonging to an inner
product space are called orthogonal if (x, y) = 0, and we write x ⊥ y.

Now, if we consider a subspace V of Rn, e.g. a hyperplane through the origin,
every x ∈ Rn has a unique orthogonal projection on V . In fact, if dimV = k
and the unit vectors v1,v2, ...,vk constitute an orthonormal basis in V , we may
always find an orthonormal basis in Rn, given by

v1,v2, ...,vk,wk+1, ...,wn

Where wk+1, ...,wn are suitable unit vectors. Thus, if

x =

k∑
j=1

xjvj +

n∑
j=k+1

xjwj

The projection of x on V is given by

PV x =

k∑
j=1

xjvj

PV x can also be defined without involving a basis in Rn as the point in V which
minimizes the distance from x.
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Theorem 1.3.1. (Projection Theorem). Let V be a closed subspace of a Hilbert
space H. Then, for every x ∈ H, there exists a unique element PV x ∈ V such
that

∥PV x− x∥ = inf
v∈V

∥v − x∥

Moreover, the following properties hold:

1. PV x = x if and only if x ∈ V

2. Let QV x = x− PV x. Then QV x ∈ V ⊥ and

∥x∥2 = ∥PV x∥2 + ∥QV x∥2

The elements PV x, QV x are called orthogonal projections of x on V and V ⊥,
respectively.

Even if V is not a closed subspace of H, the subspace V ⊥ is always closed.

1.3.2 Bases

If A ⊂ H, we say A is dense in H if its closure, A = H. A Hilbert space
is said to be separable when there exists a countable dense subset of H. An
orthonormal basis in a separable Hilbert space H is a sequence {wk}k≥1 ⊂ H
such that {

(wk, wj) = δkj k, j ≥ 1
∥wk∥ = 1 k ≥ 1

Where δkj is the Kronecker delta. Every x ∈ H may be expanded in the form:

x =

∞∑
k=1

(x,wk)wk (1.3)

The series (1.3) is called generalized Fourier series and the numbers ck = (x,wk)
are the Fourier coefficients of x with respect to the basis {wk}. Moreover:

∥x∥2 =

∞∑
k=1

(x,wk)
2

Proposition 1.3.1. Every separable Hilbert space H admits an orthonormal
basis

1.4 Operators

1.4.1 Linear Operators

Let H be a Hilbert space. A linear operator from D(A) ⊂ H into H is a function

A : D(A) ⊂ H → H

such that, ∀α, β ∈ C and ∀f, g ∈ D(A) ⊂ H

A(αf + βg) = αAf + βAg
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Definition 1.4.1. A linear operator A : H1 → H2 is bounded if there exists a
number L such that ∀f ∈ H1

∥Af∥H2 ≤ L∥f∥H1 ∀f ∈ H1

The infimum of the set of all constants L that satisfy the above property is
the norm of the operator

∥A∥ = inf {L ≥ 0 : ∥Af∥ ≤ L∥f∥ ∀f ∈ H1} (1.4)

We indicate the set of all bounded operator from H1 into H2 as B(H1, H2). If
H1 = H2 = H the former becomes B(H).

Proposition 1.4.1. A linear operator A : H1 → H2 is bounded if and only if
it is continuous.

Equipped with norm (1.4), B(H1, H2) is a Banach space.

Definition 1.4.2. An operator A : H1 → H2 is closed if ∀{fn}n∈N ∈ H1 and
{Afn}n∈N such that

fn → f and Afn → g

Then
f ∈ H1 and g = Af

Theorem 1.4.1. Let A : H1 → H2 be a closed operator. If ∃A−1, then A−1

is closed.

Definition 1.4.3. An operator A : H1 → H2 is symmetric if ∀x, y ∈ H1

(Ax, y) = (x,Ay)

1.4.2 Functionals and dual space

Definition 1.4.4. We define functional a linear operator A : H1 → H2 in
which the arrival space H2 is R (or C, for complex Hilbert spaces).

Definition 1.4.5. The collection of all bounded linear functionals on a Hilbert
space H is called dual space of H and denoted by H∗

Theorem 1.4.2. (Riesz’s Representation Theorem). Let H be a Hilbert space,
∀A ∈ H∗ ∃!gA ∈ H such that

Af = (f, gA) ∀f ∈ H (1.5)

And
∥L∥ = ∥gA∥ (1.6)

The Representation Theorem allows the identification of a Hilbert space with
its dual.
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1.4.3 Adjoint operator

The concept of adjoint operator extends the notion of transpose of an m × n
matrix A and plays a crucial role in determining compatibility conditions for
the solvability of several problems.

Definition 1.4.6. The operator A† : H2 → H1 defined by the identity

(Ax, y)H2 = (x,A†y)H1 ∀x ∈ H1,∀y ∈ H2

is called the adjoint of A

Definition 1.4.7. Let A : H1 → H2 be an operator. We say that A is self-
adjoint if:

1. A = A†

2. H1 = H2

Hence
(Ax, y) = (x,Ay) (1.7)

In the finite-dimensional space, such operators are called Hermitian.

Proposition 1.4.2. Let A,A1 ∈ B(H1, H2) and A2 ∈ B(H2, H3). Then:

1. A† ∈ B(H1, H2). Moreover (A†)† = A and

∥A†∥B(H2,H2) = ∥A∥B(H2,H2)

2. (A2, A1)
† = A†

1A
†
2. In particular, if A is an isomorphism, then

(A−1)† = (A†)−1

1.5 Spectral Theory

1.5.1 Spectrum of a matrix

Let A be a n× n matrix, and λ ∈ C. Then, either the equation

Ax− λx = b

has a unique solution for every b or there exists u ̸= 0 such that

Au = λu

In the last case we say that λ,u constitutes an eigenvalue-eigenvector pair. The
set of eigenvalues of A is called spectrum of A, denoted by σ(A). If λ /∈ σ(A),
the resolvent matrix (A− λI)−1 is well defined. The set

ρ(A) = C \ σ(A)
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is called the resolvent of A. If λ ∈ σ(A), the kernel N (A− λI) is the subspace
spanned by the eigenvectors corresponding to λ and it is called the eigenspace
of λ. Note that σ(A) = σ(AT ) Symmetric matrices are particularly important:
all eigenvalues λ1, ..., λn are real (possibly of multiplicity greater than 1) and
there exists in Rn an orthogonal basis of eigenvectors v1, ...,vn. The extension of
those concepts in the Hilbert space setting is useful for the method of separation
of variables.

1.5.2 Separation of variables

Suppose we have to solve the problem ut = uxx x ∈ Ω, t > 0
u(x, 0) = g(x) x ∈ Ω
u(x, t) = 0 x ∈ ∂Ω, t > 0

Where Ω is a bounded one dimensional domain. Let us look for solutions of the
form

u(x, t) = v(x)w(t)

And

ut = v(x)w′(t)

uxx = v′′(x)w(t)

Substituting into the differential equation, we obtain

v(x)w′(t) = v′′(t)w(t)

Separating variables
w′(t)

w(t)
=
v′′(x)

v(x)
= −λ

Since the left hand side of the equation only depends on the t variable while
the right hand side of the equation only depend on the x variable, they must be
equal to a constant, indeed −λ. This leads to two problems

w′ + λw = 0 (1.8)

And {
−v′′ = λv in Ω
v = 0 on ∂Ω

(1.9)

A number λ such that there exists a non trivial solution v for (1.9) is an eigen-
value of the operator −∂2/∂x2 in Ω and v is the corresponding eigenfunction.
The problem can be solved if the following two properties hold:

1. There exists a sequence of real eigenvalues λk with corresponding eigen-
vectors uk. Solving (1.8) for λ = λk yields

wk(t) = ce−λkt
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2. The initial data g can be expanded in series of eigenfunctions:

u(x) =
∑

gkuk(x)

Then the solution is given by

u(x, t) =
∑

gke
−λktuk(x)

The second condition requires that the set of eigenfunctions of −∂2/∂x2 con-
stitutes a basis in the space of initial data. This leads to the problem of deter-
mining the spectrum of a linear operator in a Hilbert space, and in particular,
of self-adjoint operators.

1.5.3 Spectrum of an operator

Definition 1.5.1. Let A : H1 → H2 be a bounded linear operator. A complex
number λ is said to be in the specrtum of A, σ(A), if (λI−A) is not invertible,
where I is the identity operator.

Definition 1.5.2. Let H1, H2 be Hilbert spaces, and I the identity in H. Let
A : H1 → H2 be a bounded operator. A complex number λ is said to be in the
resolvent set of A, ρ(A), if the operator (λI −A) is one-to-one and onto

ρ(A) = {λ ∈ C | (λI −A) is one-to-one and onto}

Notice that σ(A) ∪ ρ(A) = C.

We define the operator (λI −A)−1 the resolvent of A, R(λ,A). In infinitely
many dimensions the spectrum may be divided in three subsets.

Definition 1.5.3. Point spectrum.
If (λI − A) is not injective, hence there exist two distinct elements x, y ∈ X
such that (λI − A)(x) = (λI − A)(y), λ is said to be in the point spectrum of
A, denoted σP (A).

Definition 1.5.4. Continuous spectrum.
If (λI − A) is injective, and its range is a dense subset R of X, λ is said to be
in the continuous spectrum of A, denoted σC(A)

Definition 1.5.5. Residual spectrum.
If (λI − A) is injective, but its range is not dense in X, λ is sais to be in the
residual spectrum of A, denoted σR(A)

So the spectrum is the disjoint union of these three sets:

σ(A) = σP (A) ∪ σC(A) ∪ σR(A)

9



Theorem 1.5.1. Let A : H1 → H2 be a compact1, self-adjoint operator on a
separable Hilbert space. Then:

a) 0 ∈ σ(A) and σ(A) \ {0} = σP (A) \ {0}

b) H1 has an orthonormal basis {um} consisting of eigenvectors fo A

c) If dimH1 = ∞, the corresponding eigenvalues different from zero {λm} can
be arranged in a decreasing sequence |λ1| ≥ |λ2| ≥ ..., with λm → 0 as
m→ ∞

Thus, the spectrum of a compact self-adjoint operator always contains λ = 0,
which is not necessarily an eigenvalue. The other elements in σ(A) are eigen-
values, arranged in a sequence converging to zero if H is infinite dimensional.

1.6 Fourier Analysis

Fourier analysis is the study of the way general functions may be approximated
by the sums of simple trigonometric functions.

There are two types of Fourier expansions: Fourier series and Fourier trans-
forms.

1.6.1 Fourier Series

Fourier’s theorem states that any reasonably well-behaved function can be writ-
ten as a discrete sum of trigonometric functions.

Theorem 1.6.1. Consider a function f(x) that is periodic on the interval 0 ≤
x ≤ L, then f(x) can be written as

f(x) = a0 +

∞∑
n=1

[
an cos

(
2πnx

L

)
+ bn sin

(
2πnx

L

)]
an and bn are specific coefficients that can be determined with the following

formula:

a0 =
1

L

∫ L

0

f(x)dx (1.10)

an =
2

L

∫ L

0

f(x) cos

(
2πnx

L

)
dx (1.11)

bn =
2

L

∫ L

0

f(x) sin

(
2πnx

L

)
dx (1.12)

1See Conway, A course in functional analysis, for the definition of compact operator.
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1.6.2 Fourier Exponential Series

A function that can be written in terms of sines and cosines can also be written
in terms of exponentials, i.e.

f(x) =

∞∑
n=−∞

Cne
i2πnx/L (1.13)

here the Cn coefficients are given by

Cn =
1

L

∫ L

0

f(x)e−i2πnx/Ldx (1.14)

1.6.3 Fourier Transform

The Fourier trigonometric or exponential series require the function to be peri-
odic. A non periodic function can still be written as a series if considering the
period of infinite length, passing from sums to integrals. The Fourier transform
of a function f is given by

f(x) =

∫ ∞

−∞
C(kn)e

iknxdkn (1.15)

With

C(kn) =
1

2π

∫ ∞

−∞
f(x)e−iknxdx (1.16)

1.7 Bessel funciton

Bessel functions are canonical solutions of the Bessel’s equation, an ordinary
differential equation

x2y′′ + xy′ + (x2 − ν2)y = 0 (1.17)

The solution can be written in the form

y1(x) = a0

[
1 +

∞∑
m=1

(−1)mx2m

22m(m!)2

]
x > 0 (1.18)

Function in brackets is known as the Bessel function of the first kind of order
zero and is denoted by J0(x). We present the recurrence formulae

2J ′
n(z) = Jn−1(z)− Jn+1(z) (1.19)

2n

z
Jn(z) = Jn−1(z) + Jn+1(z) (1.20)
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Chapter 2

The Schrödinger equation

2.1 Brief Introduction to Quantum Mechanics

Quantum Mechanics is a fundamental theory in physics that provides a descrip-
tion of the physical properties of nature at the scale of atoms and subatomic
particles. In the quantum world can only assume certain values of energy ,
i.e. En = nhv with n ∈ N, v is the frequency of radiation of energy and h
is a numerical value called Planck’s constant that has an approximate value of
6.63× 10−34J · s.

In 1923, the french physicist Louis de Broglie theorized a new cinematic,
based on the idea that matter had both a corpuscular and wave nature: the now
well known wave-particle duality. It is from this new way to see matter that
Erwin Schrödinger postulated in 1925 his equation for describing a quantum-
mechanical system:

iℏ
∂Ψ

∂t
= − ℏ2

2m
∆Ψ+ V (x)Ψ (2.1)

t is time.

x is the position of the particle.

m is the mass of the particle

i is the imaginary unit.

V (x) is the potential the particle is subject to.

ℏ = h/2π is the reduced Planck costant.

∆ is the Laplace operator (or Laplacian) and is the sum of all unmixed second
partial derivatives

∆f =

n∑
i=1

∂2f

∂x2i
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2.2 The wave function

2.2.1 Statistical Interpretation

The manner Ψ represents the state of a particle is that the probability density
of finding a particle at a given point, when measured, is proportional to the
square of the magnitude of the wave function |Ψ(x, t)|2.
Indeed, the integral

∫ b

a
|Ψ(x, t)|2dx gives the probability of finding the particle

between a and b at time t. It follows that the integral must be 1, so that∫ +∞

−∞
|Ψ(x, t)|2dx = 1 (2.2)

Equation (2.2) is know as normalization condition.

2.2.2 Observables

Any observable, i.e. any quantity which can be measured, is associated with
a self adjoint linear operator. The operators must yield real eigenvalues, since
they are values which may come up as the result of a measurement. As we saw
in section 1.4 this means that the operator must be Hermitian. Here we present
three operators:

⟨x⟩ =
∫

Ψ∗(x)Ψdx (2.3)

⟨p⟩ =
∫

Ψ∗
(
ℏ
i

∂

∂x

)
Ψdx (2.4)

⟨K⟩ = − ℏ2

2m

∫
Ψ∗ ∂

2Ψ

∂x2
dx (2.5)

That represents respectively, position, momentum and kinetic energy.

2.2.3 Uncertainty principle

A spread in wavelenght corresponds to a spread in momentum, meaning that
the more precisely determined a particle’s position is, the less precisely is its
momentum. Quantitatively,

σxσp ≥ ℏ
2

(2.6)

Where σx is the standard deviation in x, and σp is the standard deviation in p.
This is Heisenberg’s famous uncertainty principle.

2.3 Formalism

2.3.1 Dirac’s bra and ket notation

Bra-ket notation was introduced by Paul Dirac to describe a state of a system.
In such notation, the vectors in the space are called ket vectors and are denoted
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as |α⟩.
Two kets can be summed

|α⟩+ |β⟩ = |γ⟩

And the sum |γ⟩ is also a ket. The product between a ket |α⟩ and a number
c is still a ket. An operator Q acts on a ket from the left, A(|α⟩) = A |α⟩ and
the result is another ket. An autoket of an operator is a ket with the property
A |a′⟩ = a′ |a′⟩. The set of numbers {a′} represents the set of the eigenvalues of
the A operator.

We then define the bra vectors, denoted with the symbol ⟨α|, the mirror
image of the symbol for a ket vector. The inner product in the bra-ket notation
is the complex number:

⟨α|β⟩ = a∗1b1 + a∗2b2 + ...+ a∗nbn

With the property ⟨α|β⟩ = ⟨β|α⟩∗ Hence, ⟨α|β⟩ and ⟨β|α⟩ are complex conju-
gates, while ⟨α|α⟩ is real.

From this inner product we can define the norm

∥α∥ =
√

⟨α|α⟩

An operator Q acts on a bra from the right

(⟨α|)Q = ⟨α|Q

And the result is another bra.

2.3.2 Hilbert Space

Quantum theory is based on two constructs: wave functions and operators. The
state of a system is represented by its wave function, a ket, while observables
are operators that act on it.

2.3.3 Eigenfunctions of a Hermitian Operator

Our attention is thus directed to the eigenfunctions of Hermitian operators,
that represents, as stated before, determinate states of observables. These fall
into two categories: If the spectrum is discrete, i.e. the eigenvalues are sepa-
rated from one another, then the eigenfunctions lie in Hilbert space and they
constitute physically realizable states. If the spectrum is continuous then the
eigenfunctions are not normalizable, and they do not represent possible wave
functions (though linear combinations of them may be normalizable).

Discrete Spectra

Mathematically, the normalizable eigenfunctions of a Hermitian operator have
two important properties
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Theorem 2.3.1. The eigenvalues of a Hermitian operator are real

Theorem 2.3.2. Eigenfunctions of Hermitian operators belonging to distinct
eigenvalues are orthogonal

Moreover, the eigenfunctions of an observable operator are complete: Any
function in Hilbert space can be expressed as a linear combination of them.

Continuous Spectra

If the spectrum of a hermitian operator is continuous, the eigenfunctions are
not normalizable. Nevertheless, there is a sense in which the three essential
properties of reality, orthogonality and completeness still hold.

2.3.4 Generalized Statistical Interpretation

If you measure an observable Q(x, p) on a particle in the state Ψ(x, t) you are
certain to get one of the eigenvalues of the hermitian operator Q̂(x,−iℏ d

dx ). If

the spectrum of Q̂ is discrete, the probability of getting the paticular eigenvalue
qn associated with the orthonormalized eigenfunction fn(x) is |cn|2, with cn =
⟨fn|Ψ⟩.

2.4 Solution of the Schrödinger equation

We need to solve the Schrödinger equation

iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ VΨ

for a specified potential.
Whenever the Schrödinger equation presents a time-independent potential,

it can be solved with the method of separation of variables, Ψ(x, t) = ψ(x)ϕ(t),
lower case ψ that indicates a function of x alone.

About the first one, the solution is given by: ϕ(t) = C1e
−iEt/ℏ About the

second equation, this is the so called time-independent Schrödinger equation
and can be solved only when the potential V (x) is specified.

Some properties of the solution with separation of variables are presented.

1. They are states of a definite total energy.

2. Solutions are stationary states, i.e. with all observables independent of
time.

3. The general solution is a linear combination of separable solutions.
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2.5 The infinite square well

Let’s take the potential V (x) of the infinite square well, that takes the form

V (x) =

{
0 −a ≤ x ≤ a
∞ otherwise

(2.7)

A particle in this potential is free but bounded to stay between the two ends
−a and a since out of this region an infinite force prevents.

The equation is a second order differential equation with complex eigenvalue,
so the solution has the following form:

ψ(x) = A sin kx+B cos kx (2.8)

With
kn =

nπ

a
with n = 1, 2, 3, . . . (2.9)

Boundary conditions influence values of the energy E, En = n2π2ℏ2

2ma2

Eventually we find B by normalizing the function, and get an infinite set
of solutions depending on n. Due to the superposition principle, the general
solution is:

Ψ(x, t) =

∞∑
n=1

cn

√
2

a
cos

(nπ
a
x
)
e−i(n2π2ℏ/2ma2)t (2.10)

2.6 The Harmonic Oscillator

The quantum harmonic oscillator has the following potential

V (x) =
1

2
mω2x2 (2.11)

That leads to the time-independent Schrödinger equation

− ℏ
2m

d2ψ

dx2
+

1

2
mω2x2ψ = Eψ (2.12)

The equation is solved with an analytic method that leads to the solution:

ψn(x) =
(mω
πℏ

)1/4 1√
2nn!

Hn(ξ)e
−ξ2/2 (2.13)

Where Hn(ξ) are the Hermite polynomials of the dimensionless variable ξ ≡√
mω
ℏ x.

2.7 The free particle

We now consider the case where V (x) = 0. The time independent Schrödinger
equation then reads

− ℏ2

2m

d2ψ

dx2
= Eψ (2.14)
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We set k = ±
√
2mE
ℏ , and the solution, in exponential form, is

Ψ(x, t) =
1√
2π

∫ +∞

−∞
ϕ(k)ei(kx−

ℏ2

2m t)dk (2.15)

With

ϕ(k) =
1√
2π

∫ +∞

−∞
Ψ(x, 0)e−ikxdx (2.16)
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Chapter 3

A quantum model for the
stock market

I am now presenting an application of the Schrödinger equation to the stock
market, a model suggested by Chao Zang and Lu Huang in 2010, in the journal
Physica A: Statistical Mechanics and its Applications.

3.1 The model

The model we are presenting is an application of quantum mechanics to the stock
market. As quantum mechanics describes the micro world, it is reasonable a
parallelism between a stock and a micro system.

We face a corpuscular property of a stock since it is always traded at a
certain price, but at the same time a wave behavior is met in the fluctuation
of such a price. In this way, the wave particle duality, cornerstone of quantum
mechanics, is satisfied.

In the model, the square modulus of the wave function Ψ(x, t), represent the
price probability distribution. The trading process can be seen as a physical
measurement, that forces the wave function to collapse in one of its possible
states, with a certain price associated.

P (t) =

∫ b

a

|Ψ(x, t)|2dx (3.1)

Is the probability to find the stock between price a and b and time t. While

p = m
d

dt
x (3.2)

Is the momentum of the stock, i.e. its rate of price change. The variable m
is the equivalent of the mass in quantum mechanics, it can be seen as a measure
of its inertia. The uncertainty principle is satisfied. As unit of price we will take
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the Chinese Yuan, with an estimation of its standard deviation of σx = 10−3

Yuan and an average price change is estimated as 10−2 Yuan per ten seconds,
and a mass of m ≈ 10−30. The Schrödinger equation describing the evolution
of a stock micro system is then

iℏ
∂

∂t
Ψ(x, t) = HΨ(x, t) (3.3)

Where, as in quantum mechanics, H is the Hamiltonian that needs to be defined.

3.2 The infinite square well

In Chinese stock market there is the price limit rule according to which the rate
of return in a trading day cannot be more that ±10% of the previous day’s value.
From this assumption we can build our Hamiltonian as a one dimensional infinite
square well, with a width of d0 = 20%, with p0 previous day’s closing price of
a stock. We define the dimensionless variable for the rate of return, r = x−x0

x0
.

We will choose a cosine square function to describe the return distribution. We
will build a Hamiltonian reflecting the oscillation of new information affecting
the price, with the form

H = − ℏ2

2m

∂2

∂r2
+ eFr cos(ωt) (3.4)

With the constructed Hamiltonian, we face the following initial value problem
(IVP) 

iℏ
∂

∂t
Ψ(r, t) =

[
− ℏ2

2m

∂2

∂r2
+ eFr cos(ωt)

]
Ψ(r, t)

Ψ(d/2, t) = Ψ(−d/2, t) = 0

(3.5)

That has the solution

Ψ(r, t) = exp

[
− iEct

ℏ
− ieFr sin(ωt)

ℏω
− ie2F 2(2ωt− sin(2ωt)

8ℏmω3

]
×

+∞∑
l=−∞

Al exp(−ilωt)
{
exp

[
ikl

(
r − eF cos(ωt)

mω2

)]
+ (−1)l exp

[
−ikl

(
r − eF cos(ωt)

mω2

)]}
(3.6)

The coefficients Al are approximated to the second order to

Al = il



Jl(q) +
q(q2 − π2)v2

64
[Jl+1(q)− Jl−1(q)]−

3q2v

32
[Jl+2(q)− Jl−2(q)]

−q
2v2

32
[Jl+2(q) + Jl−2(q)]−

q3v2

64
[Jl+3(q)− Jl−3(q)]

+
9q4v2

2048
[Jl+4(q) + Jl−4(q)]


(3.7)
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With

v =
ℏω
Ec

q =
k0eF

mω2
(3.8)

The authors use numerical methods to simulate the wave function’s distri-
bution at different times, specifically at time t = 0, t = 1000s and t = 2500s,
plotted in 3.1 respectively with solid, dotted and dashed line.

At time zero the distribution of the rate of return is nearly symmetric with
the previous day’s closing price, which corresponds to the initial state of the
stock, with a zero return being the most probable. By adding the external field
of information in, the distribution of the rate starts its evolution over time.
When t = 1000s and t = 2500s the the probability density shift around the
starting one but the peak values seem not to change.

Figure 3.1: Numerical simulations of the probability density of the rate of return
at t = 0 (solid line), t = 1000s (dotted line) and t = 2500s (dashed line),
parameters are e = 10−19, m = 10−30, ω = 10−4, F = 10−19 and d = 0.2 .
At t = 0 the distribution corresponds to the initial state of the system. The
external field makes the distributions imbalance at t = 1000s and t = 2500s.

The change of distribution reflects the imbalance of the market under the
influence of external information.

We know that the average value of the rate of return can be written as

⟨r(t)⟩ =
∫ d/2

−d/2

Ψ∗(r, t)rΨ(r, t)dr (3.9)

The fluctuating average rate of return is shown in Figure 3.2. For the parameters
selected, the average rate of return vibrates about 20 times within a period,
that have been estimated being of 2π/ω, while the amplitude of the fluctuation
achieves about ±3%. This underlines the intrinsic volatility of the price, despite
the market information.

20



Figure 3.2: The average rate of return fluctuates in a cycle under the market
information with the same parameters as in the 3.1. The fluctuation of a single
cycle is given in the figure,in which the symmetry axis appears at t = π/ω
andthe amplitude of the fluctuation achieves ±3%.
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Conclusion

In this thesis we have explained some elements of Functional Analysis to have the
tools to introduce the Schrödinger equation, a partial differential equation that
describes a quantum-mechanical system. This equation has then been applied
to the stock market, with the parallelism between quantum systems and stocks,
and between the potential a particle is subject to and the forces that move a
stock’s price. To simulate how the fluctuation of information crashing the mar-
ket influences the price return, we build our potential using a cosine function
of time, and add an external field that simulate external factors affecting the
price, resulting in the potential eFr cosωt. We then find an exact solution with
approximate parameters to the second order. The solution of the equation, the
wave function Ψ(r, t) has the statistical interpretation we explained in Chapter
2, i.e. that the square modulus of it is the return’s probability distribution.
With a numerical computation, we get the probability distribution of the rate
of return under the action of the external field. The peak of the distribution
of the rate of return oscillates around the one of the starting distribution. The
average rate of return, vibrates about 20 times within a period of 2π/ω, with
an amplitude of ±3% reflecting the intrinsic volatility of the stock price despite
external factors, showing the wave behavior that confirms the analogy between
particles and stocks. The model gives a new theory of quantum finance, that
can be further implemented with the broad range of possible potentials we could
build that can quantify the factors affecting the stock price.
There is a strong belief we can further work on the connection between quan-
tum world and stocks from the market, building models able to predict the
future average return, or exploiting the uncertainty principle in the study of
risk management theory.
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