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Abstract 
 

In this paper I calibrate a jump diffusion model to dynamically extract log returns from 

exchange rate levels and one-month risk reversal quotes. The model is made up of a deterministic 

part representing the spread between overnight interest rates of the two countries and a stochastic part 

divided in two Levy processes to discern between up and down jumps. The estimation period covers 

2021’s daily observations and is mainly described by economic recovery, covid-19 spikes and risk 

sentiment swings reflected in both currency spot and options short-term trends. A fine connection is 

spotted between risk reversal jumps and spot levels, which corroborates the model’s capability for 

both estimation procedures. The aim of this study is to point out the importance of skewness when 

accounting for currency returns and option pricing, more than in the equity counterpart. The work is 

divided in two big sections, namely a literature and an empirical analysis part. The former starts by 

making an introductory presentation of market returns studies and the importance of skewness for 

investment purposes; secondly the focus shifts to the main features of the currency market, economic 

drivers and market quotes used to spot skewness, also from a more practical perspective. The 

empirical analysis section introduces the model of choice, inspired by Carr et al. (2007), and points 

the attention on the peculiar features of such structure. Then the calibration procedure is thoroughly 

detailed, together with the chosen optimization procedures and obtained results. Lastly in the 

conclusions section it is summarized the whole study process and some suggestions are made for 

further developments.  

 

 
Key words: jump diffusion, currency returns, stochastic skewness 
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1 Skewness and Market Returns 
 

It is widely known among both practitioners and academics that currency returns have been 

historically described by a leptokurtic distribution (fat tails), together with some degree of asymmetry 

mostly connected with fundamental factors such as monetary policy or economic growth. Several 

studies have indeed incorporated skewness and other higher moments factors into their risk premia 

analysis, suggesting that currency, and not only, returns can be significantly explained by such 

distribution anomalies. This evidence is reflected into another finding which points to investors 

preference for positive skewness in their asset allocation (Brunnermeier and Pedersen (2009)). For 

instance, Sokol and Eguren-Martin (2020) have shown that countries with a low level of net foreign 

assets and high interest rates are relatively more exposed to currency depreciation. More interestingly 

for the purpose of this paper, Iseringhausen (2021) develops a model for time-varying skewness and 

finds out that idiosyncratic skewness related to currency returns varies significantly over time and is 

negatively related to the carry trade strategy, which entails going long high interest rates currencies 

and short lower-yielding currencies. Additionally, Brunnermeier et al. (2008) demonstrate that 

traders’ funding constraints are a reasonable explanatory factor for the reduction of investment in 

high-yielding currencies, which explains why traders require a higher premium for holding such 

currencies, especially during periods of liquidity contraction.  On the other hand, the two more used 

risk premia factors for currency returns, explained by fundamental theory, are the interest rate 

differential and the real exchange rate. Against the uncovered interest parity equation, literature based 

on Fama regressions have shown that higher yielding currencies tend to appreciate in the short run. 

Alina Steshkova (2021) with a study based on the above two fundamental factors, finds out that 

interest rate differential is negatively bounded to skewness, which again explains the traders’ funding 

constraint concept. The real exchange rate has instead been found to have a somewhat monotonic 

relationship with the time horizon, i.e. it can be negligible to predict short-term risk premia and vice 

versa (Dahlquist and Penasse (2017)). All in all, skewness can be observed both in the short and long-

run, thus one useful assumption is to see currency returns as described by a skewed t-distribution 

(Steshkova 2021). Accounting for skewness can further simplify not only empirical studies aimed at 

comparing investment strategies and asset allocation, but also the calibration of risk management 

metrics, namely Value-at-Risk and Expected Shortfall. Giot and Laurent (2003) provide evidence 

that including higher moments factors can improve the accuracy of downside risk analysis, as 

compared with computing such metrics using only mean and variance (gaussian distribution) .  
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2 Currency Market 
2.1 Framework 
 

FX market drivers can be mainly divided into three categories, namely the stochastic 

movement of the exchange rate, captured by the most used Black & Scholes model, then the stochastic 

behavior of volatility, reflected for example in Heston’s and Bates’ models through specific diffusion 

processes introduced above, and the observed skewness of the log returns’ risk neutral distribution. 

The latter is priced by the market via the so called risk reversal, which is given by the difference in 

implied volatility between an out-the-money call option and an out-the-money put option contract. 

For consistency these contracts can be compared by looking at the same level of moneyness, which 

is practically linked to the delta, i.e. the probability that an out-the-money contract will expire in-the-

money. The most conventional measure used by market participants is the 25 delta risk reversal 

which, given its high degree of tradability, can be perceived as a gauge of positioning in the currency. 

However, some currency pairs may be more resilient than others and react differently to market 

expectations, for instance because of a traded volume argument. Over 2021, to make an example, 

both the EUR and the GBP downward movements against the US dollar have reflected market worries 

with respect to stagflation signals, even though the EUR has sometimes proved to have a more solid 

support given its ample liquidity (and fiscal stimulus). 

Over the decades, both academics and practitioners have studied and implemented several 

approaches to efficiently trade exchange rates, mainly from an hedging perspective. Both macro and 

technical factors have played a role in such task, even though the former resulted to be more reliable 

for longer-term estimates, whereas the latter has been widely used by traders and market makers to 

predict intra-day or daily exchange rate estimates. Fair value models, or more generally tools based 

on economic variables such as interest rate differentials, growth estimates or monetary policy, are 

widely used by institutional investors to gauge the market over/underreaction compared to the actual 

value of the exchange rate. It can be of great help from a positioning point of view, when accounting 

for currency allocation in a multi-diversified portfolio. Corporate flows, on the other hand, can 

indicate some specific interest with respect to one currency against the other, usually related with 

forward expectations related to data releases, macro events or even some seasonal portfolio 

adjustments, usually observed on a quarterly basis or towards the end of the month, in the form of a 

rebalancing market price action. Technical indicators can instead be very useful to identify shorter-

term trends in the exchange rate level, being such indicators based on variables like traded volume, 

moving-averages and so forth. Moreover, they can be combined with economic variables to match a 
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subjective belief about some specific trend or, more simply, for the best timing in terms of trade 

execution. 

 

2.2 Skewness and OTC option quotes 

 

Option prices have been widely used to describe the distribution of market returns, however 

it must be reminded that options are able to retrieve the risk-neutral probability density function (pdf) 

and not the actual density of such returns. Still, options are forward-looking instruments able to 

incorporate information that may only be relevant much later into the exchange rate’s trend. Garch 

models, where volatility is assumed to follow a stochastic process, do not update their parameters 

often enough to reflect major regime changes while on the other side, Campa, Chang and Reider 

(1997) have proven that currency options are highly sensitive to market news and thus to sudden 

changes in the exchange rate level, which might affect the overall trend structure. Such big changes 

in the pdf can be attributed for example to unexpected uncertainty over an election programme or a 

monetary authority decision. The main advantage of using an option-based approach to retrieve 

market returns is that it does not depend on any specific functional form, which makes it a good fit 

to cope with different environments such as switching regimes, target zones and so forth. Empirically, 

it has been spotted a significant relation between the spot rate level and the degree of risk-neutral 

skewness, suggesting that exchange rate expectations (implied in options) are indeed “extrapolative”, 

hence the connection between a strong currency and high probability of future appreciation.  

In the over-the-counter market options are more liquid and thus more competitive relative to 

exchange-traded options, in particular the daily turnover and notional amount outstanding have 

historically been about 10% lower than its OTC counterpart. With regards to the latter, quotes are 

expressed in terms of implied volatility through which traders retrieve, via the Garman-Kohlhagen 

formula (i.e. the Black-Scholes adjusted for the foreign interest rate), the option premium. In this way 

option quotes do not require constant updating given that this approach implies a one-to-one mapping 

between implied volatility, representing traders’ assessment of future changes in the underlying asset, 

and option prices. On the contrary, if prices were expressed in terms of strike price, it would fairly 

require greater connection between spot and option markets. 

Dealing with over-the-counter option quotes, there are several approaches used to compute 

the degree of skewness. Firstly, skewness can be estimated via the probability density function (pdf), 

for which approach Campa et al. (1997) focused on the well-known trimmed binomial tree approach 

to derive the density and thus the skewness. Secondly, the level of asymmetry can be computed by 
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looking at relative intensities around the tails. In particular, it can be compared the density function 

below and above a certain critical level as follows: 

 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑆) = + ,𝑆- − 𝑆	0𝑓(𝑆-)𝑑𝑆-
3

4
 

 

Where f(ST) is the risk neutral density and the equation expresses the sum of any appreciation 

above a certain exchange rate multiplied by the probability that such realizations will take place, 

whilst on the other side: 

 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(S_) = + (𝑆_ − 𝑆-	)𝑓(𝑆-)𝑑𝑆-
4_

7
 

 

By the difference between the two intensities it can be computed the relative skewness of the 

distribution given that, by looking at only one of the tails the analysis could merely point to a 

leptokurtic distribution, i.e. described by fat tails. Accordingly, the two thresholds are chosen 

symmetrically around the forward rate, otherwise the relative intensity would always equal zero given 

that, as discussed above, the distribution’s mean must always equal the forward rate. The magnitude 

of such appreciations is usually chosen as a function of volatility, so that changes in skewness are 

independent from changes in realized volatility. Similarly, even if not equally used, the total 

probability can be measured around the threshold levels and then obtain the difference. However, 

given that probability is centered around the median rather than the mean, for a positive skewed 

distribution the total probability would be greater below the forward rate, or mean, but the further the 

threshold is brought from the mean the more likely is the relative probability to switch sign. 

Lastly, for OTC currency options, there is a specific market aimed at providing an estimate 

of skewness related to the price of two option contracts with symmetric features. More specifically, 

the so called ‘risk reversal’ denotes the difference in price between a call and a put option with the 

same level of moneyness, where the latter expresses the likelihood of such contracts of expiring in-

the-money. The general idea can be reconnected to the relative intensity approach, even though for 

this case the threshold is chosen by the delta. In the market, 25 delta contracts are the most traded as 

opposed to 10 delta for instance, meaning that the mostly traded OTC options for risk reversal 

strategies are contracts with a risk-neutral probability of 25% of expiring in-the-money. This 

approach can be recognized as more reliable given that it reflects market sentiment and it is not subject 

to estimation errors, given by smoothing procedures used to compute the probability density function. 

More interestingly, given that over-the-counter options contracts are priced in terms of Black and 
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Scholes implied volatility, the difference in premium paid between call and put options simply 

reflects the spread in terms of volatility. It is important to remind that, by the Black and Scholes 

assumptions, the volatility surface across a series of strike prices should be flat, making risk reversal 

quotes approximately zero. Also, with stochastic volatility models like Heston’s (1993), a random 

change in volatility is associated with an increase in the price of contracts far-from-the-money as 

opposed to contracts with a relatively higher intrinsic value, thus merely pointing towards a change 

in kurtosis. 

 

2.3 Empirical findings    
 

 
For this case study, attention will be put on risk reversal quotes, giving a direct market sense 

of one currency appreciation against one or more others. Risk reversals are expressed in terms of the 

‘quote currency’, which in the case of GBPUSD determines the skewness towards an appreciation of 

the US dollar. Empirically,  the correlation between skewness and exchange rate level is based on the 

assumptions regarding the exchange rate dynamics. For instance, in a target zone regime, when the 

level stays closer to the floor of the range, the skewness would be relatively more positive and vice 

versa when the level trades around the ceiling. Similarly, by looking at long-term fair value estimates, 

a depreciation of the spot level would be more likely when the latter sits above fair value, making the 

relative skewness ‘more’ negative. Conversely, when assuming a random walk process, the 

correlation between spot level and skewness should be zero since the relative skewness would be 

theoretically absent.  When assuming volatility to have a stochastic process, it can be shown that the 

Black & Scholes implied volatility has its minimum at-the-money forward, i.e. when the strike price 

equals the forward rate, whereas it increases the further the option goes out-the-money. This pattern 

is most commonly known as the “volatility smile” but the shape can vary, quite frequently for 

currency options, depending on the strength of one currency against the other. The same pattern can 

be shown using either calls or puts given that, by assuming the put-call parity, the implied volatility 

is the same for any level of moneyness.  

Furthermore, in relation with the observed volatility smile, skewness has empirically resulted 

from a negative correlation between price level and volatility shocks, as discussed by Hull and White 

(1987) and Heston (1993). Unlike in equity markets, as shown by Jackwerth and Rubinstein (1996), 

skewness in the currency market has been relatively less systematic over time. Studies on dollar 

crosses during mid-1980’s have found negative skewness on the back of an unusually overbought 

greenback, which would coincide with mean-reversion. More specifically, positive skewness would 

indicate that the right tail of the distribution is fatter, meaning that large positive realizations are more 
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probable than a depreciation. However, it is important to remember that the mean of the risk-neutral 

distribution must always be the forward rate, thus broadly speaking a positive risk-neutral skewness 

does not imply that an appreciation is more likely than a depreciation. An interesting interpretation 

of such risk-neutral based concepts provided by Campa, Chand and Reider (1997) is that “markets 

do not necessarily view large appreciation of a strong currency as statistically more likely; they may 

simply attach a higher valuation to states of large appreciation”.  

Going back to risk reversal quotes, by the Black and Scholes formula, calls and puts with the 

same level of moneyness, or delta, should have the same sensitivity to changes in volatility. Hence 

option traders would not need to hedge vega when buying or selling risk reversals. However, to 

compute the actual level of volatility for out-the-money options it is useful to look at strangles quotes 

as well, i.e. contracts made of an out-the-money call plus an out-the-money put with the same level 

of moneyness. By looking at both contracts it is possible to retrieve a more accurate price for each 

individual option contract. More interestingly, Bertola and Caballero (1992) showed how the positive 

relation between spot and skewness reflects the economic interpretation that exchange rates follow 

target zones. On this respect, when the spot rate gets closer to the ceiling, the probability of an upward 

realignment should be greater and vice versa, as well as support and resistance levels within the 

technical analysis framework. Moreover, traditional currency models based on interest rate parity 

have been empirically found less reliable over the short term. On that respect, the so called ‘carry 

trade’ strategy has been widely implemented to anticipate an appreciation of the currency caused by 

a spike in interest rate (opposite idea of the interest rate parity). Because of the success of such 

strategy over the years, currencies have started to be categorized according the appeal of their 

respective yield curve. For instance, currencies like the US dollar, the Canadian dollar or the New 

Zealand dollar have been classified as high-yielding, whilst the Japanese Yen or the Swiss Franc as 

low-yielding or funding currencies. The latter name has been reasonably attached to these currencies 

given that, according to the carry trade strategy, the investor would borrow funds in the low-yielding 

currency and invest in some higher-yielding currency to make a profit between lending and borrowing 

costs.  The chosen time period for this case study (2021) has seen a rise in those strategies, given that 

a global economic recovery has pushed central banks and governments to reconsider their monetary 

policy and fiscal stimulus. Accordingly, countries like the United States or New Zealand have 

perceived a more hawkish change of policy, to be reflected in a rise in interest rates, unlike the Japan 

whose central bank has always been known for its low interest rates policy. However, such strategies 

have been empirically found to last for a certain amount of time followed by a so called ‘policy 

normalization’ period, when all countries tend to realign in terms of monetary policy. All in all, a 

plurality of factors have pushed towards the acceptance of a more stochastic trend in terms of currency 
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pairs, to be backed by either macro-economic or technical factors which may indeed affect the overall 

skewness of currency returns. 

Another interesting study by Brunnermeier et al. (2008) explains how carry trades might be 

related to currency crash risk, and thus to the degree of skewness. In particular, they state that the 

carry trade strategy delivers negatively skewed returns given that sudden abandonment of these 

strategies can be positively linked to currency crashes. Moreover, these kind of market events can be 

related to shocks in overall volatility, which might force traders to set higher margins to overcome 

the illiquidity issue, hence the unwinding of carry trades. These findings support the view that 

macroeconomic factors can severely affect currencies’ interest rate differential, while funding 

constraints and volatility spikes can instead be linked to the likelihood of a currency crash. Following 

the same idea of currency crashes, Farhi and Gabaix (2008) worked on a model that studies the link 

between currency forward premium and the sensitivity to global economic crunch periods. Unlike 

the study of Brunneimeier, Farhi et al. point the attention on more exogenous productivity shocks, 

while still accounting for skewness patterns observed in currency option quotes. Galati et al. (2007) 

focus instead on net banking flows between countries, which can be fairly useful to gauge the degree 

of carry trade activity. All in all, currencies have been found to have similar patterns when accounting 

for similar yield curves, and the relation between spot level and skewness or between carry trade and 

liquidity constraints can be further useful to anticipate spikes in the forward premium.  

Finally, Sunjin Park (2016) carries on a case study aimed at predicting carry trade returns 

based on changes in conditional expected growth and global conditional skewness. The model is built 

on agents with heterogeneous beliefs about growth rate expectations, according to which model the 

degree of skewness can vary quite frequently. The latter is seen by Park as a global risk factor that 

affects the discounting factor of each country and thus the exchange rate level. Unlike disaster risk, 

skewness has the benefit of accounting for both positive and negative directions of asymmetry, which 

in a currency trade environment can result in a more parsimonious model able to measure not only 

unexpected shifts related to bad news but also extreme positive events which could weigh on one 

currency strength. 
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3 Modelling  
3.1 Stochastic Volatility 
 

Empirical studies on volatility patterns have shown that, unlike traditional option pricing 

models that assume constant volatility over the life time of a contract, the implied volatility increases 

as the underlying asset moves more in-the-money or out-the-money. This simply contradicts the 

assumed flat volatility surface plotted against a series of strike prices (moneyness), and suggests a 

more realistic u-shaped function of moneyness with regards to volatility implied into option prices. 

The latter would thus suggest that the risk-neutral conditional distribution of market returns is fat 

tailed. Accordingly, second generation models have successfully considered such behavior when it 

comes to pricing option contracts. Namely the Heston stochastic volatility model (1993) is able to 

capture not only the volatility smile but also the stochastic variation in the implied volatility level for 

a given degree of moneyness, or the jump-diffusion stochastic volatility model of Bates (1996) which 

captures the same features through the presence of a jump parameter. These kind of models have 

unfortunately been unable to generate relevant time variations in the risk-neutral skewness attached 

to returns. The latter is a feature which can be practically recognized as deterministic in some kinds 

of option markets, like equity. In particular, equity options returns have been historically described 

by negatively skewed distributions, on the back of the so called “crunch premium” which reflects 

higher prices related to bottom-side hedges as opposed to top-side bets.  

 

 
Figure 1: S&P 500 one-month call options implied volatility surface. The three lines represent three 

different dates, to depict the surface change on a six-month basis. The shape of the surface slightly 
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changed over the year, maintaining the so called “smirk” form. Interestingly the minimum of the 

curves stays systematically closer to the in-the-money zone. 

 

The above chart depicts the latter concept indeed, despite a change in the relative price of put 

and call options over six-month period, the S&P 500’s volatility surface remains of the same smirk 

shape. The slope of the curve is merely changing between time periods, which indicates a fairly 

preference from equity investors for put options, as a form of hedging strategy. Currency market 

returns are instead described by strong time variation in risk-neutral skewness, which has been found 

not only to vary stochastically but also to change sign depending on option markets expectations 

about future exchange rates movements. In particular, some exchange rates have historically shown 

some relevant trend moves right after such “psychological” changes in skewness, to go hand in hand 

with significant market events expected within the life time of the option contract, such as 

expectations of rate hikes or the start of a tapering cycle. For instance an interesting currency pair, 

analyzed by Carr and Wu (2007) with respect to skewness behavior affecting changes in price, would 

be the USDJPY. The latter has mainly shown negative skewness historically, to be found in a 

preference for JPY OTM calls, given its safe-haven flavor even relative to the highly liquid greenback 

during risk-off periods of time. However a few changes in the skewness sign have been followed by 

significant spikes in the exchange rate, via a relative increase in the demand for USD OTM calls. 

 

 
Figure 2: USDJPY one-month implied volatility surface. The three lines represent three different 

dates, to depict the surface change on a six-month basis. It is noticeable how in January 2021 there 
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was a somewhat symmetry between out-the-money call and put options, whereas the asymmetry 

increased in negative sign over the year, favoring out-the-money put options’ implied volatility. 

 

 

 
Figure 3: GBPUSD one-month implied volatility surface. The three lines represent three different 

dates, to depict the surface change on a six-month basis. It can be seen how the smile shape flattens 

over the year and the overall volatility level decreases, depicting a shift in risk appetite. 

 

 

The shown volatility surfaces describe the more frequent change in the relative price of puts 

versus calls with regards to exchange rates, as opposed to equity options. In particular, the charts 

shows how the implied volatility has been almost symmetric from the start of 2021 and has then 

slowly moved towards a more negatively skewed shape in favor of JPY-OTM puts. Furthermore, for 

OTM currency options, the absolute increase in implied volatility can further express a shift in market 

risk sentiment, which is sometimes correlated with the degree of skewness. The second chart, 

depicting GBPUSD options volatility surface, can further simplify the concept. The flattening of the 

surface happens simultaneously with an overall decrease in implied volatility, which could suggest 

future lower volatility for the exchange rate. It can be sometimes cumbersome to find the right 

causality behind a change in skewness, especially when accompanied by a solid change in volatility.  

The aim of this paper is indeed to define a model able to capture these features by calibrating both 

the spot level and risk reversal quotes of the exchange rate, in order to identify some degree of 

correlation and at the same time optimize the performance of the model via root mean squared error 
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and maximum likelihood. The calibration of a skewed process is indeed not the same as the one used 

for a process described more generally by fat tails. The degree of kurtosis, though essential for tail 

risk analysis and more, does not assume any difference between the two tails of the distribution. Even 

if volatility has been empirically found to be positively related with skewness, the sign of this relation 

may often differ in the currency market, especially when accounting for a shift in the likelihood of 

appreciation and thus strength of one currency against the other. An interesting approach related to 

the latter would be to consider a set of volatility regimes and observe the forward rate process, or 

mean of the distribution, across each different regime. The obtained span system would enable to 

discern between environments with a strong correlation where spikes in skewness cannot be discerned 

from spikes in volatility and with a higher degree of independency, where the level of asymmetry is 

not entirely affected by the deviation around the distribution mean. As will be thoroughly explained 

in the empirical analysis section, to obtain a stochastic skew process I will set the variance term equal 

to a constant, similar to setting the optimal volatility regime for a specific time period, and then, by 

constraining the stochastic time change and the jump process’ diffusion terms to be related by a 

specific correlation term, I will obtain a stochastic skew process both in the long and short-run. It is 

indeed crucial to account for some degree of correlation between skewness and volatility, which in 

this environment enables to identify which currency has a higher likelihood of depreciation. 

 

3.2 Jump Diffusion Models and Alternatives to Capture Stochastic 
Volatility and Skewness 
 

Jump diffusion models have been introduced and widely used in computational finance after 

spotting some biases in more traditional models like the Black-Scholes (1973). These findings 

(Jarrow & Rosenfeld (1984), Jorion (1988)) have brought academics to shape the underlying stock 

price function as a mixture between a continuous diffusion part and a discontinuous jump part, the 

latter being able to account for extreme events. To name the first introductions of such models, Cox 

& Ross (1976) developed a pure jump model where the underlying is modeled by a jump process of 

deterministic size without a diffusion part, whilst Merton (1976) defined a model described by a so 

called “normal” vibration part, through a geometric Brownian motion, and an “abnormal” vibration 

part modeled by a jump process. Interestingly for option pricing matters, these models can generate 

implied volatility curves which are more similar to the smile curves observed in the market, as same 

as stochastic volatility models (Hull & White (1987)). More generally, the process can be defined by 

the following stochastic differential equation (SDE): 
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dS9
S9:

= αdt + σdW9 + dI9 

 

where the equation focuses on the nearest point in time preceding t and alpha is the drift term, sigma 

expresses the diffusion part, W is the standard Weiner process and It indicates the jump component. 

In particular the dynamics of It  is described by the sum of J Poisson processes N and jump amplitudes 

Y, the latter to be greater than -1 to ensure non negative stock prices: 

 

dI9 =AYC,9dNC,9

F

CGH

 

 

where it is important to assume independency between the jump amplitudes and the related Poisson 

processes. As an example, in the Merton Model the jump amplitude is log-normally distributed. These 

models performed surprisingly well for derivatives pricing and risk management purposes, especially 

in the short-run more than in the long-run. Indeed, for longer time periods the probability of jump 

within a time series may become redundant, hence the relative underperformance (see, for example, 

Honore (1998)). Additionally, more recent studies (i.e. Lau et al. (2019)) have found out that by 

treating the jump event asymmetrically it can be further improved the overall accuracy of the model. 

The bottom idea is that jumps should be treated differently for upward and downward trends.  As for 

the aim of this paper, the discontinuous jump part will be modelled in order to differentiate between 

positive and negative jumps in the exchange rate trend, to reflect the stochastic behavior of skewness 

in the forex market.  

Another interesting approach, thoroughly detailed by La Bua and Marazzina (2021), to model 

volatility for pricing purposes is the so-called stochastic local volatility (hybrid) pricing paradigm. 

Local volatility models are well-known for derivatives pricing and risk management purposes, having 

been introduced by two main papers from Derman & Kani (1994) and Dupire (1994) through the 

introduction of a state-dependent diffusion process able to reproduce observed European options 

volatility surfaces. In particular, contributions from more recent papers such as Adreasen and Huge 

(2011), have managed to obtain a complete surface of arbitrage free option values, despite the 

existence of a discrete set of combinations of moneyness and maturity observed in the market. Albeit 

such results, local volatility models struggle with more exotic structures, in fact the deterministic 

nature of volatility does not perfectly match with the volatility dynamics of the underlying assets, 

thus delivering a much flatter surface than what observed in the market (Gatheral 2011). The latter is 

partially offset by adding a stochastic diffusion process into the volatility dynamics. Despite the more 
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realistic parametrization, such alternative approach fails at matching implied volatility quotes for 

bottom levels of moneyness, for which a solutions has been attempted by the above mentioned jump 

diffusion model proposed by Bates (1996). The mixture of the two approaches has been in high 

demand among academics during the last decade, which have found the opportunity to separately 

calibrate those and subsequently merge them through the so-called leverage function. Bua et al (2021) 

introduce the Wishart Stochastic Local Covariance model in the attempt to provide a more 

comprehensive multidimensional variance dynamics within the stochastic local volatility framework. 

As for the proposed leverage function, it acts as a compensator when the stochastic volatility expected 

level is considerably different from the local volatility. 
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4 Empirical Analysis 
4.1 The Model 
 

The model used for this analysis aims at calibrating the log currency return and has been built 

on the back of the model proposed by Carr et al. (2007), which differentiates from traditional jump 

diffusion models, i.e. Bates (1996), because of the presence of two Levy processes described by left 

and right skewness respectively. The bottom idea is that the log currency return is described by a 

time-changed Levy process, within a probability space (Ω, ℱ, ℱK, 𝒬) defined through the risk-neutral 

probability measure Q: 

 

																																																𝓈K ≡ ln 4Q
4R
= ,𝑟T − 𝑟U0𝑡 + V𝐿-QX

Y − 𝑇KY[ + (𝐿-Q\
] − 𝑇K])                     (1) 

 

where the domestic and foreign interest rates are assumed to be continuously compounded and 

deterministic, 𝐿Y	𝑎𝑛𝑑	𝐿_ are the two Levy processes, and 𝑇KY	𝑎𝑛𝑑	𝑇K] denote the two stochastic time 

changes. The correlation coefficient is constrained to be different from zero only for the right Levy 

process and its related stochastic time change as well as for the left Levy process and the left 

stochastic time change. 

The Levy components are made up of a pure jump component and a standard Brownian 

motion, according to the following equations: 

 

																																																																	𝐿KY = 	 𝐽KY + 	𝜎𝑊K
Y;		𝐿K] = 𝐽K] + 𝜎𝑊K

]                                          (2) 

 

where the two Brownian motions W as well as the pure jump components J are independent, whilst 

the latter can generate right and left skewness according to the following Levy densities: 

 

																																																															𝑓Y(𝑥) = e𝜆𝑒
gh/j𝑥gkgH,								𝑥 > 0

0,																															𝑥 < 0              , 

																																																												𝑓](𝑥) = e𝜆𝑒
g|h|/j|𝑥|gkgH,								𝑥 < 0

0,																																			𝑥 > 0
                                         (3) 

 

Such densities, taken from the CGMY model of Carr et al (2002), enables the right skewed 

jump component to generate only up jumps and vice versa. For simplicity, λ	and	v are the same for 

both jumps. The former can be interpreted as an approximation of the aggregate activity level, whilst 

the latter controls the rate of exponential decay attached to the two densities. The alpha coefficient is 
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instead affecting the sample path of the jump process and needs to remain less or equal than 2 to 

maintain finite quadratic variation. In particular the jump process can show finite activity (α<0), 

infinite activity with finite variation (0<α<1), or infinite variation (1<α<2) (Carr (2007)).  

 

4.2 Stochastic time change and Levy processes 
 

By applying a stochastic time change to the Levy component, the model is able to generate 

stochastic volatility and thus it can generate implied volatility smiles, when it comes to converting 

the above returns into OTC option quotes. Furthermore, given two different time changes into the 

model, the relative weight of the Levy components can generate a skewed conditional return 

distribution and thus a different from zero risk reversal. All in all, such features brought the author to 

label it as a stochastic skew model. The concept of time change has firstly been applied in finance by 

Clark (1976), from the basis that security prices volatility tends to be time-varying and show some 

clustering along the time series. The simplest case is represented by a standard Brownian motion X 

and an independent continuous time change T. The computed time-changed process Ys = XTs  has a 

conditional normal distribution with mean zero and variance equal to the time change factor T. The 

latter relies on the Dambis-Dubins-Schwarz theorem (1965), according to which: 

 

“Every continuous local martingale M = (Ms)s≥0 can be written as a time–changed Brownian motion 

(B[M]s)s≥0, where [M] = ([M]s) s≥0 is the quadratic variation of M.” 

 

Thus, a quadratic variation [𝑀]v = 	∫ 𝜎x𝑑𝑊y = 	∫ 𝜎yz𝑑𝑟
v
7

v
7  entails the independence between 

the standard Brownian motion W and the volatility parameter σ, which is equivalent to the 

independence between the standard Brownian motion and the continuous time change (Clark (1976)). 

Furthermore, it should be reminded the scaling property of a Brownian motion, which states that:  

“Given a standard Brownian motion Wt and a positive constant c, the stochastic process 𝑋K =
H
√}
𝑊}K, 𝑡 > 0 is also a Brownian motion.” 

In this environment, the theorem proves that it is possible to switch from “spatial” scaling 𝜎𝑋K 

into “temporal” scaling 𝑋~�K. From a practical perspective, we can note that the independence 

between sigma and the Brownian motion excludes the leverage effect, according to which there is an 

observable negative correlation between asset returns and volatility. 
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For our financial modelling purpose, the time change can be defined as subordinator or 

absolutely continuous time change. Subordinators are stationary and not autocorrelated non-

decreasing Levy processes. The absolutely continuous time changes are instead of the form 𝑇v =

∫ 𝜏�
v
7 𝑑𝑢 for a positive and integrable process  theta. It is important to note that T is always continuous, 

whilst theta can have jumps. Indeed the latter is commonly known as the “instantaneous activity rate”.  

The advantage of such structure is that it enables to obtain an affine model, which is then highly 

tractable. Consequently, I have used the second type of factor, to be specified below.  

 

The activity rate follows a mean-reverting square root process of the following form: 

 

																																																				𝑑𝜏K
� = 𝑘,1 − 𝜏K

�0𝑑𝑡 + 𝜎j�𝜏K
�𝑑𝑍K

�			𝑗 = 𝑅, 𝐿                                       (4) 

 

Where k expresses the speed of reversion, v is the so called ‘vol of vol’ parameter and Z are 

the Brownian motions related to each activity rate. It can be seen that, for normalization matters, I 

imposed the long run mean to be equal to 1 and the two remaining parameters, mean reversion k and 

vol of vol coefficient, to be the same for both left and right processes. From equation (4), the first two 

moments can be found through the decomposition described in the calibration section. The activity 

rate can be indeed seen as a random variable which follows a gaussian distribution with specific mean 

and variance (see the proof below).  Furthermore I let the Brownian motions in the jump process and 

in the activity rate process to be correlated by 𝑝]	𝑎𝑛𝑑	𝑝Y respectively. The latter is only assumed 

within left or right processes and not between the two. By setting 𝑝] negative 𝑎𝑛𝑑	𝑝Y positive  , it is 

possible to generate positive skewness in the short term via the jump component J, and in the long 

term via the positive correlation 𝑝Y, and viceversa on the other side.  

 

4.3.1 Calibration  
 

The above model has been calibrated to different exchange rates and risk reversal quote series, 

to gauge the accuracy of such structure to capture the stochastic behavior of skewness in the FX 

market. Firstly, to define the pure jump component J in equation (2) it is needed to define the initial 

jump mean, which will be constrained to be positive for the right jump and negative for the left jump. 

Unlike Carr (2007) I decided to make such means different between right and left jump so that the 

optimization procedure can weigh more on the magnitude of one of the two directional jumps if 

needed, clearly in relation with the real market observations. As for the stochastic time change factor, 
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equation (4) refers to the so called Cox-Ingersoll-Ross model (CIR). The latter is widely used in 

mathematical finance to price interest rates derivatives, given that the peculiar diffusion term allows 

the interest rate, which in this case is instead a time change, not to turn negative. The exact solution, 

though not explicit, can be defined via the following proof. 

 

Proof. Equation (4) can be rearranged as: 

 

𝑑𝜏(𝑡) + 𝑘𝜏(𝑡)𝑑𝑡 = 𝑘𝑑𝑡 + 𝜎�𝜏(𝑡)𝑑𝑍(𝑡) 

 

then by multiplying both sides of the equation by 𝑒�K: 

 

𝑒�K𝑑𝜏(𝑡) + 𝑘𝑒�K𝜏(𝑡)𝑑𝑡 = 𝑘𝑒�K𝑑𝑡 + 𝜎𝑒�K�𝜏(𝑡)𝑑𝑍(𝑡) 

 

and by integrating both sides on the interval 0-t: 

 

𝑒�K𝜏(𝑡) − 𝜏7 = 𝑘+ 𝑒�v𝑑𝑠
K

7
+ 𝜎+ 𝑒�v�𝜏(𝑠)𝑑𝑍(𝑠)

K

7
 

 

Finally, I obtain the solution of the following form: 

 

																																											𝜏(𝑡) = 	 𝑒g�K𝜏7 + (1 − 𝑒g�K) + 𝜎𝑒g�K ∫ 𝑒�v�𝜏(𝑠)𝑑𝑍(𝑠)K
7                          (5) 

 

The latter can be then used to compute explicitly the mean and variance, to be used for the calibration 

procedure. 

Taking expectation from both sides of (5): 

 

𝐸[𝜏(𝑡)] = 𝑒g�K𝜏7 + (1 − 𝑒g�K) + 𝜎𝑒g�K + 𝑒�v�𝜏(𝑠)𝐸[𝑑𝑍(𝑠)]
K

7
 

																																																																							= 𝑒g�K𝜏7 + (1 − 𝑒g�K)                                                         (6) 

 

where the last step is due to the property of the Brownian motion, according to which for all points 

in time s and t, t greater than s, the Brownian motion increments follow a gaussian distribution with 

mean zero and variance given by t – s. Additionally, from the obtained first moment of the process, 
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it can be noted that the limit for t that tends to infinity of v(t) is equal to 1, which is the imposed long-

run mean of the activity rate. Last but not least, the variance is computed as: 

 

𝑉𝑎𝑟[𝜏(𝑡)] = 𝐸[𝜏z(𝑡)] − (𝐸[𝜏(𝑡)])z 

= 𝐸[(𝑒g�K𝜏7 + (1 − 𝑒g�K) + 𝜎𝑒g�K + 𝑒�v�𝜏(𝑠)𝑑𝑍(𝑠)
K

7
)z] 

−[𝑒g�K𝜏7 + (1 − 𝑒g�K)]z 

= 2V𝑒g�K𝑣7 + (1 − 𝑒g�K)[𝜎𝑒g�K𝐸[+ 𝑒�v�𝑣(𝑠)𝑑𝑍(𝑠)
K

7
] 

+𝜎z𝑒gz�K𝐸[(+ 𝑒�v�𝜏(𝑠)𝑑𝑍(𝑠))
K

7

z

] 

= 2V𝑒g�K𝜏7 + (1 − 𝑒g�K)[𝜎𝑒g�K[+ 𝑒�v�𝜏(𝑠)𝐸[𝑑𝑍(𝑠)]
K

7
] 

+𝜎z𝑒gz�K𝐸[(+ 𝑒z�v𝜏(𝑠)𝑑𝑠)
K

7
] 

 

= 𝜎z𝑒gz�K + 𝑒z�v𝐸[𝜏(𝑠)]𝑑𝑠
K

7
 

= 𝜎z𝑒gz�K + 𝑒z�v(𝑒g�K𝜏7 + (1 − 𝑒g�K))𝑑𝑠
K

7
 

=
𝜎z

𝑘 𝜏7(𝑒g�K − 𝑒gz�K) +
𝜎z

2𝑘 (1 − 2𝑒
g�K + 𝑒gz�K) 

																																																						= ~�

�
𝜏7(𝑒g�K − 𝑒gz�K) +

~�

z�
(1 − 𝑒g�K)z                                            (7) 

 

 where it has been applied both the zero mean property and the so called isometry property, which 

states that: 

 

𝐸 �(+ 𝑋(𝑠)𝑑𝑍(𝑠))
K

7

z

� = + 𝐸[𝑋z(𝑠)]𝑑𝑠
K

7
 

 

Additionally, an important feature to generate skewness in the long-run is the correlation 

coefficient between the jump processes and their respective stochastic time changes. To generate two 

correlated Brownian motions, both with gaussian distribution and same variance, it can be used the 
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well-known Kaiser-Dickman algorithm (Kaiser & Dickman, 1962). The latter is a simplified bivariate 

version of the Cholesky decomposition and has the following form: 

 

𝑌 = 𝜌𝑋H + �1 − 𝜌z𝑋z 

 

where X1 and X2 are two not correlated gaussian distributions with same variance and Y is a third 

gaussian distribution correlated by the coefficient 𝜌 with X1. However, for this case study I have used 

a slightly modified version of the above to account for two different diffusion terms. The equation 

can be proved by fixing the correlation coefficient between X1 and a linear combination between X1 

and X2 and imposing the variance preservation as follows: 

 

𝑐𝑜𝑟𝑟(𝑎𝑋H + 𝐵𝑋z, 𝑋H) = 𝜌	; 

𝑣𝑎𝑟(𝑎𝑋H + 𝐵𝑋z) ≡ 𝑎z𝑣𝑎𝑟(𝑋H) + 𝐵z𝑣𝑎𝑟(𝑋z) = 𝑣𝑎𝑟(𝑋z) 

 

which can be further developed into: 

 

𝜌 =
𝑐𝑜𝑣(𝑎𝑋H + 𝐵𝑋z, 𝑋H)

�𝑣𝑎𝑟(𝑎𝑋H + 𝐵𝑋z)𝑣𝑎𝑟(𝑋H)
=
𝑎𝑐𝑜𝑣(𝑋H, 𝑋H) + 𝐵𝑐𝑜𝑣(𝑋H, 𝑋z)
�𝑣𝑎𝑟(𝑎𝑋H + 𝐵𝑋z)𝑣𝑎𝑟(𝑋H)

 

 

= 𝑎�
𝑣𝑎𝑟(𝑋H)

𝑎z𝑣𝑎𝑟(𝑋H) + 𝐵z𝑣𝑎𝑟(𝑋z)
 

 

𝑎 = 𝜌�
𝑉𝑎𝑟(𝑋z)
𝑉𝑎𝑟(𝑋H)

	; 𝐵 = �𝑉𝑎𝑟(𝑋z)(1 − 𝜌z) 

 

Thus, thanks to the independence assumption between X1 and X2 and the variance preservation 

between X2 and the linear combination Y, we obtain: 

 

𝑌 = 𝜌
𝜎��
𝜎��

𝑋H + 𝜎���1 − 𝜌z𝑋z 

 

For the sake of completeness even if not used in this paper, which directly focuses on log 

currency returns and risk reversal quotes, to price European options from the computed log returns it 

is used the fast Fourier inversion method. Indeed, Carr and Wu (2004) explain how the problem of 
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computing the generalized Fourier transform of a time-changed Levy process under the risk neutral 

measure Q can be simplified by finding the Laplace transform of the random time change under a 

complex valued measure. The Laplace transform depends on the characteristic exponent, which is 

provided by the Levy-Khintchine theorem. The latter specifies a drift term, a constant variance and 

the so called Levy density, which determines the arrival rate of jump. Accordingly, to change measure 

, it is applied the Girsanov’s Theorem in order to obtain the activity rate process under the new 

complex measure. Having obtained in closed form the generalized Fourier transforms, Carr et al. 

(2007) compute the option values by applying the fast Fourier inversion on the transform. 
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4.3.2 Optimization procedures 
 

Having set the log return formula, I converted each observation to the respective price level 

and compared it to the observed market quote. To optimize such comparison, I implemented the 

Generalized Reduced Gradient non-linear optimization method. It receives the objective function and 

releases the local optimum solution by setting the first order partial derivative equal to zero. One 

drawback of convergence algorithms is that they are highly dependent on initial conditions, thus the 

solution might not be a global optimum. However it is one of the fastest approaches and by setting 

the right initial framework, made up of the unknown parameters, it can provide better solutions than 

more robust methods like the evolutionary, which is based on natural selection theory and is more 

likely to find a global optimum. Using appropriate initial guesses for the unknown parameters, the 

GRG algorithm searches for values that minimize the sum of squared residuals relative to market bid 

prices, while setting the cross-sectional average error to zero. Throughout the loop the initial guesses 

are set according to the observed trend in market quotes, thus there could be some degree of 

autocorrelation in the final outcome. 

 

Additionally, I measured the performance of the model through the maximum likelihood 

estimation. The latter concerns the maximization of a likelihood function by changing the unknown 

parameters of the model. Being in an environment with stochastic skewness I decided to base the 

procedure on the estimation of the conditional variance through the EWMA scheme. The latter 

belongs to the generalized autoregressive conditional heteroskedastic models (GARCH), being a 

conditional varying volatility model. Indeed, one-period log-returns are assumed to be Gaussian with 

zero mean and time-varying conditional variance: 

 

𝑟(𝑡, 𝑡 + ∆)|𝐹K	~	𝑁(0, 𝜎z(𝑡, 𝑡 + ∆)) 

 

  Moreover, the variance term is assumed to be a weighted average of past squared returns, 

given a smoothing parameter lambda comprised between 0 and 1. All said allows for: changing 

volatility by assigning larger weights to more recent observations; autocorrelation in squared returns 

and thus volatility clustering and excess kurtosis through the following form: 

 

𝜎z(𝑡, 𝑡 + ∆) = (1 − 𝜆)A𝜆�𝑟z(𝑡 − (𝑗 + 1)∆, 𝑡 − 𝑗∆)
3

�G7
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Thanks to this structure, the model is also able to capture sudden market shocks, as opposed 

to the sample variance procedure which weighs equally each past observation. The latter equation 

can be decomposed to obtain the daily EWMA estimate. In order to do that, it is needed to subtract 

from both sides the past period variance term multiplied by the smoothing parameter: 

 

𝜎z(𝑡, 𝑡 + ∆) − 	𝜆𝜎z(𝑡 − ∆, 𝑡) = 

(1 − 𝜆)(	A𝜆�𝑟z(𝑡 − (𝑗 + 1)∆, 𝑡 − 𝑗∆)
3

�G7

− 𝜆A𝜆�𝑟z(𝑡 − (𝑗 + 2)∆, 𝑡 − (𝑗 + 1)∆)
3

�G7

 

= (1 − 𝜆)(	𝜆7𝑟z(𝑡 − ∆, 𝑡) + ∑ 𝜆�𝑟z(𝑡 − (𝑗 + 1)∆, 𝑡 − 𝑗∆)3
�GH − 𝜆∑ 𝜆�𝑟z(𝑡 − (𝑗 + 1)∆, 𝑡 − 𝑗∆)3

�GH ) 

= (1 − 𝜆)𝑟z(𝑡 − ∆, 𝑡) 

 

It has been empirically proved that, for daily observations, the smoothing parameter lambda 

should be approximately equal to 0.94, whilst the initial variance term can be inserted into the set of 

unknown parameters. Finally, the sample likelihood of  ¡𝑟7, … , 𝑟(-gH)∆£ is given by the following 

productory: 

 

ℒ{} =§𝑓(𝑟�∆|𝐹�; 𝜆, 𝜎7z)
-gH

�G7

 

 

Where the term inside the productory is the conditional density of the log returns based on the 

information set at each point in time and the two unknown parameters. Finally the log likelihood has 

the following form and can be quickly maximized through an optimization algorithm: 

 

𝑙𝑜𝑔ℒ{} = A ln	(
1

�2𝜋𝜎�∆z
𝑒
gHz«

y¬∆
~¬
­
�

)
-gH

�G7

 

=A(−
1
2 ln

(2𝜋) −
1
2 ln,𝜎�∆

z 0 −
1
2®

𝑟�∆
𝜎�∆
¯
z

)
-gH

�G7
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4.4 Results and Interpretations 
 

The above calibration procedure has been applied to spot exchange rate levels and 1M risk 

reversal quotes to reflect the performance of such alternative jump diffusion model in reflecting price 

levels characterized by a non-deterministic skew process. To improve the reliability of results I 

focused the attention on 2021 daily observations, being this year characterized by a global recovery 

from the pandemic and thus the focus of investors towards the development of the yield curve, to go 

hand in hand with policy divergence between central banks. The latter has seen many exchange rates 

being strongly correlated with interest rates differential, from which the resurgence of carry trade 

strategies. In particular I have chosen to calibrate the model to USDJPY and GBPUSD exchange rates 

and risk reversal quotes, having the former been highly dependent on yield differential and box spread 

(difference between the steepness of each country’s yield curve) and the latter been shaped by 

stagflation worries and risk aversion shifts.  

Given the features of the chosen optimization algorithms, detailed in the calibration section, 

the starting values of the unknown set of variables can affect the overall optimization result. Because 

of the latter, many trials for each exchange rate and risk reversal have led to the conclusion that the 

most important parameters to be set are: the correlation coefficient between the Brownian motion 

attached to the jump component’s diffusion term and the Brownian motion related to the square root 

process of the activity rate, or stochastic time change; and the alpha coefficient related to the jump 

process’s frequency. In particular the two correlation coefficients enable the model to generate 

positive and negative skewness across the whole time series, and are found to be necessary despite 

the presence of the two directional jumps. The alpha coefficient instead determines the likelihood of 

a jump throughout the time series, and it has been constrained within the 1-2 range, in order to favor 

a high frequency jump specification, as found in Carr (2007).  

As shown in the performance table the parameters can be quite different between crosses, but 

more interestingly between the exchange rate level and its related risk reversal quote. The former can 

be seen by the difference in the left jump mean and related correlation coefficient with the activity 

rate. Indeed for the chosen time period, but more generally for the Japanese yen against the US dollar, 

there has been a solid appreciation of the greenback, sustained by a positive market sentiment, an 

hawkish Fed and a rebound of the Japanese market, which has a negative relationship with the 

currency. For all the said, the model turns towards a more positive skew process, even if a lower 

number of negative jumps is still significant during risk-off periods, such as the resurgence of 

hospitalizations and covid-19 cases. On the other side, the British pound against the US dollar has 

shown a more mixed performance during the year, being the cross not as much related to fixed income 
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movements as the previous exchange rate. Indeed the model does not seem able to capture the initial 

spikes in the level, despite the increase of the initial correlation coefficients or jump mean. However 

the overall performance of the model is significantly positive and, taking into consideration the fact 

that this exchange rate does not perfectly relate with the overnight rates spread, it is evident how the 

two directional jump components can play a role in explaining the more choppy movement of the 

pound against the dollar. Moving towards option quotes, the calibration of the model turns out to 

deliver a higher jump frequency factor, standard deviation and jump mean. The latter has been fully 

expected given that risk reversal quotes, and computed log returns, tend to have a more stochastic 

trend as opposed to the underlying spot levels. In particular, through the optimization algorithm, the 

alpha coefficient tends to the upper limit of 2, in order to maximize the frequency of each directional 

jump. The jump means are also greater than their spot level’s counterparts to reflect the magnitude 

of each jump.  

Overall, the two optimization methods deliver very similar set of parameters, which proves 

the reliability of one approach against the other and, more interestingly, the importance of a 

conditional variance model in order to maximize the likelihood of forex log returns. The average error 

term approximates to -0.49/0.02 and -0.08/0.10 volatility points for the USDJPY/GBPUSD levels 

and risk reversal quotes respectively. The latter are expressed in relative terms, thus it explains the 

difference between the two exchange rate levels’ errors, being the first quoted around 110 and the 

second around 1.35.  

Such findings demonstrate the reliability of the used jump diffusion model defined by two 

distinctive Levy processes in modelling short-term spot and option markets quotes when 

characterized by a non-deterministic skew process. Moreover, similarities between the two markets 

in terms of skewness can be found through the connection between significant risk reversal swings 

and spot level spikes, to be more interestingly found in the yen against the dollar price quotes. Indeed, 

the latter has been historically characterized by investors preference towards downside protection 

(negative risk reversal) in view of an appreciation of the yen, backed by a loss in risk appetite. 

However the subsequent reversal moves have been firstly characterized by an increase in the implied 

volatility of USD call options, sometimes reflected in a change of sign in the implied volatilities 

spread, followed by a less steep yet more durable dollar appreciation. 
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5 Conclusions 
 

In this paper I calibrated a jump diffusion model described by two separated Levy processes 

to discern between up and down jumps in order to estimate log returns from currency spot levels and 

one-month risk reversal quotes. Literature on similar models and studies focused on skewness have 

pointed out the importance of skewness and kurtosis for both risk management and trading purposes. 

In particular in the currency option market, unlike the equity counterpart, quotes and related returns 

tend to have a more dynamic degree of skewness, to be reflected in investors preference for one 

currency against the other. Conversely, with regards to equity options, the so-called “crunch 

premium” makes the price of put option contracts almost systematically more expensive than call 

options’ with the same level of moneyness, making the volatility smile more similar to a “smirk”. 

Accordingly, whereas the level of kurtosis can be useful to control the magnitude of tail risk and so 

forth, skewness can be assumed negative for most equity options analysis. The main features of Carr’s 

model are indeed tailored to the currency market and enable the process to generate stochastic 

skewness both in the short and long-run. Such development has been obtained with the presence of a 

stochastic time change factor, or activity rate, described by a square root process. The long-run 

skewness comes from a fixed correlation coefficient between the activity rate’s diffusion term and 

the jump process’ so that a positive coefficient for the up jump can generate positive skewness and 

vice versa for the opposite directional jump. Another important factor is the frequency parameter 

attached to the jump’s density, which is constrained to express the highest possible frequency of 

jumps throughout the time series. However, the latter is found to be relatively higher for more volatile 

trends, to be observed in risk reversal quotes compared to spot levels, but also in GBPUSD against 

USDJPY spot levels. One added feature, to differentiate from the starting model, is the difference in 

absolute terms between up and down jump means. Being the case study focused on only one year of 

daily observations, I decided to optimize the two jump means independently between each other, so 

that the USDJPY price estimation process favored a more positive skew process, reflected by USD-

OTM calls approaching the extremes versus JPY-OTM calls. Indeed, throughout the year, one-month 

and three-month risk reversals even changed sign on a couple of occasions, leading the greenback 

towards a strong appreciation against the yen, which has been one of the worst performers of the year 

within the G10 FX space. The model can be further improved through optimization procedures more 

tailored to the specific securities and could be used to model longer time series or even shorter, intra-

day price trends. It is however of paramount importance the understanding of stochastic skewness 

within currency option prices, to be economically linked to currency risk premia through fundamental 

factors such as monetary policy, geo-politics and other macro differences between countries. 
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6 Appendix  
 
Calibration results 
The four charts depict the differences in terms of observed market quotes trends and the related 

performance of the model. The dotted line describes the performance of the model, whilst the straight 

line indicates the observed market quotes. Finally, the vertical lines indicate the position of the right 

and left jumps. Moreover, the two performance tables show the optimization parameters for the two 

optimization approaches, namely the GRG algorithm and the Maximum Likelihood estimation. 
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symbol spot 25 1M RR spot 25 1M RR

Optimization GRG GRG GRG GRG

Arrival rate lambda 1.37 1.52 0.67 1.52

speed of reversion k 0.45% 0.43% 0.48% 0.43%

Std Dev Of Time change vi 0.15% 1.83% 0.17% 1.73%

Std Dev of Levy density v 9.8% 27.3% 9.0% 19.7%

alpha α 1.15 1.82 1.57 1.60

Jump Mean Left JL -0.11 -21.16 -0.30 -23.42

Jump Mean Right JR 0.49% 2.23% 0.47% 2.27%

Std Dev Of Jump Value σ 0.93% 10.38% 0.96% 10.47%

correlation coefficient R pR 0.67 0.69 0.20 0.69

correlation coefficient L pL -0.21 -0.32 -0.73 -0.40

average error ε -0.15 0.01 -0.22 0.01

USDJPY GBPUSD
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symbol spot 25 1M RR spot 25 1M RR
Optimization ML ML ML ML
Arrival rate lambda 1.35 1.53 0.69 1.55
speed of reversion k 0.48% 0.44% 0.46% 0.38%
Std Dev Of Time change vi 0.17% 1.85% 0.21% 1.66%
Std Dev of Levy density v 8.7% 25.4% 8.9% 18.7%
alpha a 1.21 1.93 1.59 1.71
Jump Mean Left JL 0.00 -0.02 0.00 -0.03
Jump Mean Right JR 0.45% 2.59% 0.45% 2.57%
Std Dev Of Jump Value σ 0.89% 11.43% 0.99% 10.62%
correlation coefficient R pR 0.56 0.72 0.34 0.55
correlation coefficient L pL -0.24 -0.38 -0.81 -0.28

initial volatility (EWMA) 0.015 0.0167 0.0123 0.0155

GBPUSDUSDJPY
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Summary 
In this paper I calibrate a jump diffusion model to dynamically extract log returns from 

exchange rate levels and one-month risk reversal quotes. The model is made up of a deterministic 

part representing the spread between overnight interest rates of the two countries and a stochastic part 

divided in two Levy processes to discern between up and down jumps. The estimation period covers 

2021’s daily observations and is mainly described by economic recovery, covid-19 spikes and risk 

sentiment swings reflected in both currency spot and options short-term trends. 

Currency returns have been historically described by a leptokurtic distribution (fat tails), 

together with some degree of asymmetry mostly connected with fundamental factors such as 

monetary policy or economic growth. Several studies have indeed incorporated skewness and other 

higher moments factors into their risk premia analysis, suggesting that currency, and not only, returns 

can be significantly explained by such distribution anomalies. For instance, Iseringhausen (2021) 

develops a model for time-varying skewness and finds out that idiosyncratic skewness related to 

currency returns varies significantly over time and is negatively related to the carry trade strategy, 

which entails going long high interest rates currencies and short lower-yielding currencies. 

Additionally, Brunnermeier et al. (2008) demonstrate that traders’ funding constraints are a 

reasonable explanatory factor for the reduction of investment in high-yielding currencies, which 

explains why traders require a higher premium for holding such currencies, especially during periods 

of liquidity contraction. With regards to fundamental factors analysis, Alina Steshkova (2021) with a 

study based on interest rate differential and real exchange rate, i.e. the two more used risk premia 

factors for currency returns, finds out that interest rate differential is negatively bounded to skewness, 

which again explains the traders’ funding constraint concept. 

 

FX market drivers can be mainly divided into three categories, namely the stochastic 

movement of the exchange rate, captured by the most used Black & Scholes model, then the stochastic 

behavior of volatility, reflected for example in Heston’s and Bates’ models through specific diffusion 

processes, and the observed skewness of the log returns’ risk neutral distribution. The latter is priced 

by the market via the so called risk reversal, which is given by the difference in implied volatility 

between an out-the-money call option and an out-the-money put option contract. Option prices have 

indeed been widely used to describe the distribution of market returns, even if these contracts are able 

to retrieve the risk-neutral probability density function (pdf) and not the actual density of such returns. 

Still, options are forward-looking instruments able to incorporate information that may only be 

relevant much later into the exchange rate’s trend. Garch models, where volatility is assumed to 
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follow a stochastic process, do not update their parameters often enough to reflect major regime 

changes while on the other side, Campa, Chang and Reider (1997) have proven that currency options 

are highly sensitive to market news and thus to sudden changes in the exchange rate level, which 

might affect the overall trend structure. The main advantage of using an option-based approach to 

retrieve market returns is indeed that it does not depend on any specific functional form, which makes 

it a good fit to cope with different environments such as switching regimes, target zones and so forth. 

Empirically, it has been spotted a significant relation between the spot rate level and the degree of 

risk-neutral skewness, suggesting that exchange rate expectations (implied in options) are indeed 

“extrapolative”, hence the connection between a strong currency and high probability of future 

appreciation. 

 

For OTC currency options, there is a specific market aimed at providing an estimate of 

skewness related to the price of two option contracts with symmetric features. More specifically, the 

so called ‘risk reversal’ denotes the difference in price between a call and a put option with the same 

level of moneyness, where the latter expresses the likelihood of such contracts of expiring in-the-

money. This approach, aimed at retrieving skewness, is fairly reliable given that it reflects market 

sentiment and it is not subject to estimation errors, given by smoothing procedures used to compute 

the probability density function. More interestingly, given that over-the-counter options contracts are 

priced in terms of Black and Scholes implied volatility, the difference in premium paid between call 

and put options simply reflects the spread in terms of volatility. It is important to remind that, by the 

Black and Scholes assumptions, the volatility surface across a series of strike prices should be flat, 

making risk reversal quotes approximately zero. Also, with stochastic volatility models like Heston’s 

(1993), a random change in volatility is associated with an increase in the price of contracts far-from-

the-money as opposed to contracts with a relatively higher intrinsic value, thus merely pointing 

towards a change in kurtosis. 

 

These kind of models have unfortunately been unable to generate relevant time variations in 

the risk-neutral skewness attached to returns. The latter is a feature which can be practically 

recognized as deterministic in some kinds of option markets, like equity. In particular, equity options 

returns have been historically described by negatively skewed distributions, on the back of the so 

called “crunch premium” which reflects higher prices related to bottom-side hedges as opposed to 

top-side bets. On the contrary currency option prices, and thus implied volatilities, have historically 

changed in a more asymmetric way, reflecting both fundamentals differences between countries but 

also swings in risk appetite (e.g USD vs JPY). The calibration of a skewed process is indeed not the 
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same as the one used for a process described more generally by fat tails. The degree of kurtosis, 

though essential for tail risk analysis and more, does not assume any difference between the two tails 

of the distribution. Even if volatility has been empirically found to be positively related with 

skewness, the sign of this relation may often differ in the currency market, especially when accounting 

for a shift in the likelihood of appreciation and thus strength of one currency against the other. 

 

The model used for this analysis aims at calibrating the log currency return and has been built 

on the back of the model proposed by Carr et al. (2007), which differentiates from traditional jump 

diffusion models, i.e. Bates (1996), because of the presence of two Levy processes described by left 

and right skewness respectively. The bottom idea is that the log currency return is described by a 

time-changed Levy process, within a probability space (Ω, ℱ, ℱK, 𝒬) defined through the risk-neutral 

probability measure Q: 

 

																																																𝓈K ≡ ln 4Q
4R
= ,𝑟T − 𝑟U0𝑡 + V𝐿-QX

Y − 𝑇KY[ + (𝐿-Q\
] − 𝑇K])                     (1) 

 

where the domestic and foreign interest rates are assumed to be continuously compounded 

and deterministic, 𝐿Y	𝑎𝑛𝑑	𝐿_ are the two Levy processes, and 𝑇KY	𝑎𝑛𝑑	𝑇K] denote the two stochastic 

time changes. The correlation coefficient is constrained to be different from zero only for the right 

Levy process and its related stochastic time change as well as for the left Levy process and the left 

stochastic time change. 

The Levy components are made up of a pure jump component and a standard Brownian 

motion, according to the following equations: 

 

																																																																	𝐿KY = 	 𝐽KY + 	𝜎𝑊K
Y;		𝐿K] = 𝐽K] + 𝜎𝑊K

]                                          (2) 

 

where the two Brownian motions W as well as the pure jump components J are independent, whilst 

the latter can generate right and left skewness according to the following Levy densities: 

 

																																																															𝑓Y(𝑥) = e𝜆𝑒
gh/j𝑥gkgH,								𝑥 > 0

0,																															𝑥 < 0              , 

																																																												𝑓](𝑥) = e𝜆𝑒
g|h|/j|𝑥|gkgH,								𝑥 < 0

0,																																			𝑥 > 0
                                         (3) 
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Such densities, taken from the CGMY model of Carr et al (2002), enables the right skewed 

jump component to generate only up jumps and vice versa. For simplicity, λ	and	v are the same for 

both jumps. The former can be interpreted as an approximation of the aggregate activity level, whilst 

the latter controls the rate of exponential decay attached to the two densities. The alpha coefficient is 

instead affecting the sample path of the jump process and needs to remain less or equal than 2 to 

maintain finite quadratic variation. In particular the jump process can show finite activity (α<0), 

infinite activity with finite variation (0<α<1), or infinite variation (1<α<2) (Carr (2007)). 

 

The stochastic time change is of the form 𝑇v = ∫ 𝜏�
v
7 𝑑𝑢 for a positive and integrable process  

theta. It is important to note that T is always continuous, whilst theta can have jumps. Indeed the latter 

is commonly known as the “instantaneous activity rate”.  The advantage of such structure is that it 

enables to obtain an affine model, which is then highly tractable. 

 

The activity rate follows a mean-reverting square root process of the following form: 

 

																																																				𝑑𝜏K
� = 𝑘,1 − 𝜏K

�0𝑑𝑡 + 𝜎j�𝜏K
�𝑑𝑍K

�			𝑗 = 𝑅, 𝐿                                       (4) 

 

Where k expresses the speed of reversion, v is the so called ‘vol of vol’ parameter and Z are 

the Brownian motions related to each activity rate. It can be seen that, for normalization matters, I 

imposed the long run mean to be equal to 1 and the two remaining parameters, mean reversion k and 

vol of vol coefficient, to be the same for both left and right processes. From equation (4), the first two 

moments can be found through the decomposition described in the calibration section. The activity 

rate can be indeed seen as a random variable which follows a gaussian distribution with specific mean 

and variance (see the proof below).  Furthermore I let the Brownian motions in the jump process and 

in the activity rate process to be correlated by 𝑝]	𝑎𝑛𝑑	𝑝Y respectively. The latter is only assumed 

within left or right processes and not between the two. By setting 𝑝] negative 𝑎𝑛𝑑	𝑝Y positive  , it is 

possible to generate positive skewness in the short term via the jump component J, and in the long 

term via the positive correlation 𝑝Y, and vice versa on the other side. 

 

The above model has been calibrated to different exchange rates and risk reversal quote series, 

to gauge the accuracy of such structure to capture the stochastic behavior of skewness in the FX 

market. Having set the log return formula, I converted each observation to the respective price level 

and compared it to the observed market quote. To optimize such comparison, I implemented the 
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Generalized Reduced Gradient non-linear optimization method. It receives the objective function and 

releases the local optimum solution by setting the first order partial derivative equal to zero. One 

drawback of convergence algorithms is that they are highly dependent on initial conditions, thus the 

solution might not be a global optimum. However it is one of the fastest approaches and by setting 

the right initial framework, made up of the unknown parameters, it can provide better solutions than 

more robust methods like the evolutionary, which is based on natural selection theory and is more 

likely to find a global optimum. Additionally, I measured the performance of the model through the 

maximum likelihood estimation. The latter concerns the maximization of a likelihood function by 

changing the unknown parameters of the model. Being in an environment with stochastic skewness I 

decided to base the procedure on the estimation of the conditional variance through the EWMA 

scheme. The latter belongs to the generalized autoregressive conditional heteroskedastic models 

(GARCH), being a conditional varying volatility model. Indeed, one-period log-returns are assumed 

to be Gaussian with zero mean and time-varying conditional variance. 

Given the features of the chosen optimization algorithms, the starting values of the unknown 

set of variables can affect the overall optimization result. Because of the latter, many trials for each 

exchange rate and risk reversal have led to the conclusion that the most important parameters to be 

set are: the correlation coefficient between the Brownian motion attached to the jump component’s 

diffusion term and the Brownian motion related to the square root process of the activity rate, or 

stochastic time change; and the alpha coefficient related to the jump process’s frequency. In particular 

the two correlation coefficients enable the model to generate positive and negative skewness across 

the whole time series, and are found to be necessary despite the presence of the two directional jumps. 

The alpha coefficient instead determines the likelihood of a jump throughout the time series, and it 

has been constrained within the 1-2 range, in order to favor a high frequency jump specification, as 

found in Carr (2007). Furthermore, being the case study focused on only one year of daily 

observations, I decided to optimize the two jump means independently between each other, so that 

the USDJPY price estimation process favored a more positive skew process, reflected by USD-OTM 

calls approaching the extremes versus JPY-OTM calls. 

Overall, the two optimization methods deliver very similar set of parameters, which proves 

the reliability of one approach against the other and, more interestingly, the importance of a 

conditional variance model in order to maximize the likelihood of forex log returns. The average error 

term approximates to -0.49/0.02 and -0.08/0.10 volatility points for the USDJPY/GBPUSD levels 

and risk reversal quotes respectively. The latter are expressed in relative terms, thus it explains the 

difference between the two exchange rate levels’ errors, being the first quoted around 110 and the 

second around 1.35.  
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Such findings demonstrate the reliability of the used jump diffusion model defined by two 

distinctive Levy processes in modelling short-term spot and option markets quotes when 

characterized by a non-deterministic skew process. Moreover, similarities between the two markets 

in terms of skewness can be found through the connection between significant risk reversal swings 

and spot level spikes, to be more interestingly found in the yen against the dollar price quotes. Indeed, 

the latter has been historically characterized by investors preference towards downside protection 

(negative risk reversal) in view of an appreciation of the yen, backed by a loss in risk appetite. 

However the subsequent reversal moves have been firstly characterized by an increase in the implied 

volatility of USD call options, sometimes reflected in a change of sign in the implied volatilities 

spread, followed by a less steep yet more durable dollar appreciation.  

The model can be further improved through optimization procedures more tailored to the 

specific securities and could be used to model longer time series or even shorter, intra-day price 

trends. It is however of paramount importance the understanding of stochastic skewness within 

currency option prices, to be economically linked to currency risk premia through fundamental factors 

such as monetary policy, geo-politics and other macro differences between countries. 

 
 

 
 

 

 

 


