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Introduction

Gambling carries a great deal of risk, mostly due to the fact that gamblers

can bet on different aspects of each game. This is done by casinos on purpose

as most gamblers are not aware of the numerical and mathematical aspects (i.e.

probabilities) behind every type of game leading them to make wrong choices in

good faith. However, if some of these decisions have been taken a priori, using

well constructed strategies, the probability of having a profit will be significantly

higher. For example, if the gambler chooses too much capital to wager in a high

risk bet, he could potentially lose all of his capital after a few number of rounds.

On the other hand, if he chooses to wager in a low-risk bet using too little capital,

he could potentially make his capital grow at a lower rate than it would if he

had bet a larger amount of his capital. Therefore, the gambler needs a strategy

to better manage his capital and determine the right amount of capital to wage

in each bet. This amount, as well as having to be large enough to make his or

her capital increase substantially overtime, cannot be too large in order to avoid

ruining in a few number of rounds.

The Kelly Criterion is a key instrument to construct a suitable strategy when the

game appears favorable for the gambler. Such a strategy was proposed for the first

time by the scientist John Larry Kelly Jr. who worked for Bell Labs in 1956 (see

[3]). Kelly developed a method for betting in different types of games, such as

sports games, as shown in Chapter 3, and investing in stock market, as shown in
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Chapter 4. However, this strategy cannot be used in every game as it is valid for

positive expectation betting games only, or, in the analogous versions in finance,

for investments with excess risk-adjusted expected rates of return.

First we need to identify the underlying mathematical aspects of all types of games,

in order to be able to discern between fair and unfair games, Section 1.1, and un-

derstand how such frameworks behaves when such games are repeated n times.

Once these situations are identified, the gambler or the investor can manage to

exploit such features by deciding the right amount of his capital to bet: this is the

problem that we consider and try to solve here.

The aim of the Kelly Criterion works is to maximize what is called a utility func-

tion, that we will refer to as g(f). Such a function is defined as the long term

capital growth rate that the gambler gets if he bets a specific fraction f of its

capital in each repetition of the game. By maximizing the utility function over the

possible fractions f , the gambler can find the optimal fraction of capital to wager

in the bet, that we will refer to as f ∗. In Section 2.1.1 we show that the value of f

that maximizes the utility function g(f) in a bet with V : 1 odds is f ∗ = p(V +1)−1
V

.

The most important consequences of using the Kelly Criterion are that this strat-

egy will allow the gambler to better manage his money, and that he will signifi-

cantly lower the risk of catastrophic failure, since he does not bet all the capital

he has at each and every round. These consequences are shown in Section 2.3

through simulations: we show that the use of a betting fraction f = 1, implies

a catastrophic failure in a few rounds, while the profit increases by playing the

optimal fraction f ∗ more than any other case with fraction f ̸= f ∗. In particu-

lar we show also the difference between betting a fraction f1 with g(f1) > 0 and

betting a fraction f2 with g(f2) < 0. In the first case we observe an exponential

increasing behaviour of our fortune in the long run, while in the second case our

capital decreases exponentially fast in the long run.
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In Chapter 3 we will apply this strategy to two different types of sports bet: horse

racing and football. We will discuss how the optimal fraction is applied to these

different environments and how we have to integrate our strategy when there are

more than two outcomes in a game, and the gambler can make several bets in

the same round, as in Section 3.1. In addition we will also give a brief study,

made by Thorpe in [12] on the effects of correlation to our general framework and

an experiment he carried out. In Section 3.3 instead we show how the optimal

fraction predicted by the Kelly Criterion, rewritten in terms of quotes, depends

on the difference between the quotation of a bookmaker and our estimate on the

winning probability.

In Chapter 4 we will go over the application of the Kelly Criterion to the stock

market. It is possible in fact to implement this strategy also in investments after

having adapted our utility function to the new framework. For example a stock

does not have fixed outcome as sports betting. On the other hand, the former has

a certain range, or ranges, where the price may rise or decrease. For this reason in

Section 4.3 we generalize the previous results given in Section 4.3 to a continuous

framework. Finally, we will produce evidence of our above-mentioned findings,

with the example in Section 4.3.1.
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Chapter 1

Preliminaries

1.1 Fair and unfair games

In this chapter we give the preliminary definitions and results that we will use

in the future chapters. Let us consider the following three different games:

• We throw a dice many times, we win 1 euro if the outcome is even or loose

2 euros if the outcome is odd.

• We have an unfair coin, with probability p = 0.53 of getting head and prob-

ability q = 0.47 of getting tail. We win 2 euros if the outcome of the coin

toss is head or loose 2 euros if the result is tail.

• We have a deck of 40 cards; we win 5 euro if the suit of the card picked is

red, or we loose 5 euros if the suit of the card drawn is black.

We define Xt as our capital at the t-th repetition of the game. After the first

round of the first game we have:

X1 =


1 · 1

2 , if we win,

(−2) · 1
2 if we loose.
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So the expectation of our capital after one round is

E[X1] = 1 · 1
2 + (−2) · 1

2 = 1
2 − 1 = −1

2 , (1.1)

Since the expectation of our capital at round one (1.1) is negative, the first game

is unfavorable for us. In general, games with negative expectation of the game are

called subfair games.

Let us now consider the capital in the first round of the second game. We have:

X1 =


0.53 · 2, if we win,

0.47 · (−2) if we loose,

And so its expectation is:

E[X1] = 2 · 0.53 + (−2) · 0.47 = 0.12 (1.2)

Since the expectation of our capital at round one (1.2) is positive, the second

game is favorable for us. In general, games with positive expectations are called

superfair games.

Let us now consider the capital in the first round of the third game.

X1 =


20
40 · 5, if we win

20
40 · (−5) if we loose

In this category of games the expectations for the capital at the n-th round are

zero, as shown by (1.3):

E[X1] = 5 · 20
40 + (−5) · 20

40 = 0 (1.3)

Since the expectation of our capital at round one (1.3) is zero, the third game is

either in favour nor against us.

In general, games with expectations equal to zero are called fair games.
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1.2 Convergence of sequences of random vari-

able

Suppose that we have an infinite sequence of random variables X1, X2, ..., Xn, ...

and we also define X to be a random variable.

We define, as n → ∞, the almost sure limit as the random variable towards which,

with probability 1, the sequence {Xn}n∈N converges to:

P
(

lim
n→∞

Xn = X
)

= 1.

We will write in this case Xn
a.p.−−→ X.

It could happen that the sequence {Xn}n∈N has no almost sure limit. In such cases

it is possible to consider weaker types of covergences that is the convergence in

probability and in distribution.

We say that, as n → ∞, the sequence {Xn}n∈N converges to X ’in probability’ if

∀ε > 0, lim
n→∞

P (|Xn − X| > ε) = 0

Let FX n and FX be the distribution functions of Xn and X, respectively. We say

that, as n → ∞, the sequence {Xn}n∈N converges to X ’in distribution’ if, for any

point t ∈ R in which FX is continuous, we have

lim
n→∞

FX n(t) = FX(t).

The following result, known as Law of Large Numbers, gives relevant information

on the limit of proper sequences of random variables.

Law of Large Numbers : Let {Xn}n∈N, be a sequence of independent identically

distributed random variables, and suppose that E[Xn] = µ < ∞ and V ar(Xn) =
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σ2 < ∞ for any n ∈ N. For any n ∈ N we define Sn := ∑n
i=1 Xi. Then Sn

n

a.s.−−→ µ.

The above result can be generalized also to the case in which µ = ∞.

1.3 Betting System

Suppose to repeat a game many times and denote by Xn the gambler’s profit

per unit bet at the n-th repetition of the game. Assume also that the outcome of

each repetition is independent on the other ones. A betting system consists of a

sequence of bet sizes {Bn}n∈N, where Bn represents the amount bet at the n-th

repetition of the game. Moreover Bn depends only on the results of the previous

rounds, that is X1, X2, ..., XN−1.

More precisely

B1 = b1 > 0,

Bn = bn · (X1, X2, ..., Xn−1) ≥ 0 for n ≥ 2,

Bn = bn(X1, X2, ..., Xn−1) ≥ 0 for n ≥ 2,

where b1 is a constant and bn is a nonrandom function of n − 1 variables for each

n ≥ 2.

We denote by Fn the gambler’s fortune after n rounds in the betting system pre-

viously defined. Then

Fn = Fn−1 + Bn · Xn,

for n ≥ 1, and hence

Fn = F0 +
n∑

i=1
Bi · Xi,

for n ≥ 1, where F0 is a positive constant representing the gambler’s initial fortune.

We assume that the gambler cannot bet more than he has, that is Bn ≤ Fn−1 for

n ≥ 1.

Since the game is superfair, the gambler can maximize the expected profit by
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making the largest bet possible at each round, that is Bn = Fn−1 for n ≥ 1. But

then

Fn = Fn−1 + Bn · Xn = Fn−1 + Fn−1 · Xn = Fn−1 · (1 + Xn) (1.4)

and hence, by iteration we get for n ≥ 1

Fn = Fn−1 · (1 + Xn) = Fn−2 · (1 + Xn−1) · (1 + Xn) =

= Fn−2 ·
n∏

i=n−1
(1 + Xi) =

= F0 ·
n∏

i=1
(1 + Xi).

So if there exists an index j ∈ 1, ..., n such that Xj = −1, then 1 + Xj = 0 and

hence Fn = 0. This means that if at any of the first n rounds the gambler loses

the amount of his bet, then he is ruined. So

P(Fn = 0) = P(∃ j ∈ {1, ..., n} such that Xj = −1) =

= 1 − P(∀ j ∈ {1, ..., n} we have Xj ̸= −1) indep.=
indep.= 1 −

n∏
i=1

P(Xi ̸= −1) id.distrib.= 1 − P(X ̸= −1)n =

= 1 − [1 − P(X = −1)]n −→
n→+∞

= 1,

where X is a random variable distributed as Xi. Hence maximizing the expected

profit may result in a disadvantageous betting system. We will analyze again this

case in Section 2.1.1.
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Chapter 2

Kelly Criterion in Superfair

Games

Gambling includes many problems, and one of the most crucial one is finding

superfair games, together with knowing how to perfectly manage its own portfolio.

Since all casinos’ games are subfair, superfair games has to be found in alternative

environments, as sport betting or financial investment. For this type of games, an

optimization of the portfolio has been analyzed by Kelly in 19561.

Let’s analyze one of the first scenarios in which we could find ourselves: imagine

that we face an infinitely wealthy opponent, in a superfair game with 1:1 odds2.

Since we know that this is a superfair game, we could decide to bet all our fortune

in each round: this decision is based on the assumption that the fortune you have

at the t-th round, in case of winning, depends on the quantity you bet (kt) times a

factor that is how much the opponent will pay you in the case your bet is winning

(a).

1The Bell System Technical Journal, July 1956, ’A new interpretation of information rate’
2The same reasoning used to optimize the portfolio can be extended also to the case in which

we find ourselves in a bet with K:1 odds

7



If we take this assumption and we maximize the product

kt · a,

we know that, since a is a fixed number, we are left with maximizing kt that is our

capital: maximizing this function implies betting all of our capital.

As we bet all the capital in the first round, our function Xt, that describes our

capital at round t-th, will satisfy

X1 =


X0 + a · X0, if we win,

0, if we loose.

This strategy, although realistic, is not the best strategy for the gambler, since in

case of lost his capital is zero after the first round, as we can observe in the above

function3.

A different strategy could be betting just a fraction of our capital round by

round: we define f as the fraction of the capital that we at each round, and we

define Xt, again as the function that represents our capital at round t 4:

X1 =


X0 + f · X0 = X0(1 + f), if we win

X0 − f · X0 = X0 (1 − f), if we loose
(2.1)

Let’s consider now the case where the gambler is allowed to make more than one

bets in the same round and that the odds never change during the series of bets

played, this type of betting system is called fixed odds betting.

Suppose that the gambler plays a series of N ∈ N bets and denote by WN ∈ N
3See Section 1.3
4We can observe that if f = 1, and so we bet the whole capital in each round, we find the

same result above mentioned.

8



the number of wins and LN ∈ N the number of losses, so that WN + LN = N. By

iteration, the equation for X1 found before (2.1), we can see in a similar manner

that, if the gambler won WN bets and lost LN bets, then his current capital at the

end of the N bets is

XN = X0 · (1 + f)WN · (1 − f)LN (2.2)

We can observe in (2.2) that the only variable under the control of the gambler

is f , since X0 refers to the capital at time zero and WN and LN are the number

of times the player respectively wins and looses the bets.

Our aim is to find the value of f , that we will call f ∗, that maximizes XN in the

long run.

2.1 Finding f ∗

2.1.1 The expected value approach

Let us consider equation (2.2): WN and LN are binomial random variables,

since we have defined the, as the number of times we win or loose a bet that has

no push. In particular, WN ∼ Bin(N, p), while LN ∼ Bin(N, q), where q = 1−p5.

Let us compute the expectation of XN recalling that WN + LN = N

E[XN ] =
N∑

w=0
X0 · P(WN = w) · (1 + f)W · (1 − f)N−w

Since WN ∼ Bin(N, p), we get

E[XN ] = X0

N∑
w=0

·
(

N

w

)
pw · qN−w · (1 + f)w · (1 − f)N−w

5The formal definition of the probability density of a Binomial random variable with N trials

and p probability X ∼ Bin(N, p) is reported here P(X = k) =
(

N
k

)
· pk · (1 − p)N−k.
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= X0

N∑
w=0

·
(

N

w

)
· (p · (1 + f))w · (q · (1 − f))N−w. (2.3)

Recall that

(a + b)N =
N∑

m=0

(
N

m

)
· am · bN−m

Hence, we can rewrite (2.3) as

E[XN ] = X0 · (p · (1 + f) + q · (1 − f))N

= X0 · (f · (2 · p − 1) + 1)N . (2.4)

We are left to maximize this function:

• we could maximize X0, this implies that the more we bet, the more we win;

as discussed above it is a possible solution but it is not very interesting in

our line of research;

• since the game is superfair, p > 1
2 and hence f · (2p − 1) + 1 > 1. So the

function f · (2p − 1) + 1 increases with N, p, f .

Then the only way to maximize XN is to choose f = f ∗ = 1.

We already found this solution before and we know that this is not what a rationale

gambler would adopt as a strategy, since it will lead to ruin in the long run with

probability p = 1.

2.1.2 The log utility approach

If we want to determine the value of f ∗, we firstly have to find a function g(f)

that we could maximize.

In particular, this utility function should however satisfy some properties:

• the function should be non-linear, since it must have some stationary points

in some f ∈ (0, 1),
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• the function must be continuous in the interval (0, 1), since the gambler.

cannot bet either less or more than his capital.

First we define αN as the geometric capital growth rate of α for an N series of

bets, that is:

αN = N

√
XN

X0
.

Applying the natural logarithm to both sides, we have

ln (αN) = 1
N

· ln
(

XN

X0

)
(2.5)

Using (2.2), the right hand side of equation (2.5) can be rewritten as

XN

X0
= (1 + f)WN · (1 − f)LN ⇐⇒

ln
(

XN

X0

)
= WN · ln (1 + f) + LN · ln (1 − f) ⇐⇒

ln (αN) = 1
N

ln
(

XN

X0

)
= WN

N
· ln (1 + f) + LN

N
· ln (1 − f) . (2.6)

and, with a very large N , by the Law of Large Numbers 6 we get

g(f) = ln (α) = lim
N→∞

ln (αN) = lim
N→∞

1
N

· ln
(

XN

X0

)
=

= lim
N→∞

WN

N
· ln (1 + f) + lim

N→∞

LN

N
· ln (1 − f) =

= p · ln (1 + f) + q · ln (1 − f). (2.7)

Note that maximizing g(f), we maximize Xn in the long run. Let us look for

stationary points of g(f)

g′(f) = p

1 + f
− q

1 − f
= 0 ⇐⇒

p − q = f(p + q) ⇐⇒ p − q = f(p + (1 − p)) ⇐⇒
6See Section 1.2

11



f = f ∗ = p − q = 2p − 1. (2.8)

The next step is to find and analyze the second derivative of g(f) and, more

specifically, to prove that f ∗ is the maximum of g(f).

The second derivative of g(f) is

g′′(f) = −p

(f + 1)2 − q

(f − 1)2

and is negative for all f. Since g(f) is continuous in [0, 1), g(0) = 0 and limf→1− g(f) =

−∞ then f ∗ is a local maximum of the function g(f).

The value of the function in the local maximum is

g(f ∗) = ln (2) + p · ln (p) + q · ln (q).

Therefore

• if p < 1
2 , then the global maximum is f = 0, since we know that f ∗ =

2p − 1 < 0,7

• if p > 1
2 , then the global maximum is f = f ∗ = 2p − 1 with (f ∗ ∈ (0, 1)).

So we have seen that, when playing a series of bets where the odds are in the

gambler’s favor, the gambler can either bet everything he has on each single coin

toss risking the lost of all his capital, if he loses just one round, or he can use the

so called Kelly Criterion and get the optimal fraction of capital to bet at every

bet in the series, avoiding the risk of ruin.

Note that, by using the Kelly Criterion and not maximizing the expected value,

gambler’s short term gain is lowered while his long term gain is increased.

7As stated also before in our analysis this case is not taken into consideration in this disser-

tation since we are analyzing only superfair games.
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2.2 Bets with V:1 odds

Until now our focus has always been towards games with 1 : 1 odds, that is

with games that basically double your initial bet. Of course these games are not

the only possible games that one could encounter in his betting experience and

reality can be much more complex than the situations presented here.

Now let us generalize to the case of the payoff V to an entry price of 1 that is bets

with V : 1 odds.

We rewrite equation (2.2) with the following equation:

XN = X0 · (1 + V · f)WN · (1 − V · f)LN (2.9)

We can also rewrite equation (2.4) as

E[XN ] = X0 · (p · (1 + V · f) + q · (1 − V · f))N (2.10)

Note that, in particular

E[X1] = X0 · (p · (1 + V · f) + q · (1 − f)) > X0

⇐⇒ X0 · (p + p · V · f + q − q · f) > X0

⇐⇒ X0 · (p + q) + X0 · f · (p · V − q) > X0

⇐⇒ X0 + X0 · f · (p · V − q) > X0

⇐⇒ 1 + f · (p · V − q) > 1

⇐⇒ f · (p · V − q) > 0 ⇐⇒ f ∈ (0, 1)

(p · V − q) > 0 ⇐⇒

⇐⇒ p >
1

1 + V
⇐⇒ E[X1] = p · V − (1 − p) > 0. (2.11)

13



So for all p > 1
1+V

, the expected capital at time 1 is bigger than the initial capital

and the game is superfair.

If 0 < p < 1
1+V

the expected value is negative meaning that the gambler is actually

losing capital and therefore he should not place a bet in this particular game. This

generalizes the assumption p > 0.5 made in the game of 1 : 1 odds.

As shown in (2.7), we define the utility function g(f) by

g(f) = lim
N→∞

ln (α) = lim
N→∞

1
N

· ln
(

XN

X0

)
= (2.12)

= p · ln (1 + V · f) + q · ln (1 − f).

To compute f ∗ we use the first derivative of g(f)

g′(f) = V p

1 + V · f
− q

1 − f
= 0 ,

that implies

f ∗ = p · (V + 1) − 1
V

. (2.13)

As before, the next step is to show that f ∗ is the maximum of g(f) in the interval

[0, 1). The second derivative of g(f) is

g′′(f) = −q

(f − 1)2 + −V 2 · p

(V · f + 1)2 < 0.

Again, since the second derivative is negative f ∗ must be a maximum of the func-

tion. In particular, since g(f) is continuous in [0, 1) and g′′(f) < 0, f ∗ is a global

maximum of the function. Moreover by the conditions p > 1
V +1 and p < 1 we get

f ∗ >
1

V +1 · (V + 1) − 1
V

= 0,

f ∗ <
1 · (V + 1) − 1

V
= 1,
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and hence f ∗ ∈ (0, 1).

Now it is possible to get the maximum geometric capital growth rate when using

f ∗ in a game of odds V : 1. Recall that

α = exp(p · (ln(1 + V · f) + q · (ln(1 − f)) = (1 + V · f)p + (1 − g)q

and hence by substituting f ∗ we get

α∗ = (p · (V + 1))p ·
(

V − p · (V + 1) + 1
V

)q

,

that can be further simplified to

α∗ = (p · (V + 1))p ·
(

q · (V + 1)
V

)q

. (2.14)

A natural question that arises is what does it happen if the gambler chooses to

use a fraction of the capital fC < f ∗ or fC > f ∗? Since g(0) = 0, g(f) is

continuous and concave with maximum in f ∗ and limf→1− g(f) = −∞, then there

exists f(0) ∈ (f ∗, 1) such that g(f0) = 0. In particular g(f) > 0 if and only if

0 < f < f0.

So, for a fraction f ∈ (0, f0) , we have g(f) > 0 and hence XN will converge to

+∞ almost surely. However, since g(f ∗) > g(f), the rate of growth of XN will be

slower then the one obtained with f = f ∗.

2.3 Simulations

Consider the following bet: at each round if we bet b we win bV with probability

p and we lose b with probability 1 − p. Note that this game is superfair if the

expected gain is positive, that is if

bV · p − b · (1 − p) > 0 ⇒ (V + 1)p > 1 .
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Moreover, as shown in (2.13), the optimal fraction to bet is given by

f ∗ = p(V + 1) − 1
V

.

We have realized two programs with MATLAB to compare the same bet chang-

ing the value of the parameters. More precisely, in the first program we compare

our fortune, for different values of p, after n = 50 repetition of the same bet. In

the second program instead, fixed the values of V and p, we compare our fortune

changing the fraction to bet. In both the programs we fix V = 2 and the initial

fortune X0 = 1. Moreover we repeat the first bet for n = 50 and the second one

for n = 300 times.

2.3.1 Comparison changing p

Below we have written the code in MATLAB of the first program. Once fixed

the value of p ∈ {0.5, 0.65, 0.80, 0.95}, we realize two dynamics: in the first one we

bet each time the optimal fraction fstar, while in the second one we bet everything

we have in each bet, as these are the optimal values found in Sections 2.1.1 and

2.1.2. The first dynamic is represented by the vector G, while the second one by

the vector T.

V=2; %V is the possible gain for one unit bet

X0 =1; %X0 is the initial capital

n=50; %n is the number of repetitions of the bet

A= linspace (0,n,n+1);

k=0;

for p =0.5:0.15:0.95 %p is the probability of winning a bet

k=k+1;
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G= zeros (n+1);

T= zeros (n+1);

G(1)= X0;

T(1)= X0;

fstar =((V+1)*p -1)/V; %ftsar is the optimal fraction

for i=1:n

if rand (1) <=p

G(i+1)=G(i)*(1+ fstar*V);

T(i+1)=T(i)*(1+V);

else

G(i+1)=G(i)*(1 - fstar );

T(i +1)=0;

end

end

subplot (2,2,k)

plot(A,G,’b’,A,T,’m’)

hold on

end

The plot in Figure 2.1 represents the output of the described program. The blue

curve is the evolution of our fortune betting each time the optimal fraction, while

the magenta curve is the evolution of our fortune betting each time everything

we have. The left-top and the right -top plots are realized for p = 0.5 and p =

0.65, respectively, while the left-bottom and the right-bottom plots are realized for

p = 0.8 and p = 0.95, respectively. As we have already said in the entire chapter

and as we can see from the plots, betting everything at each round is not a good

strategy since we lose everything in a few number of rounds (even if the winning

probability at each round is 0.95).
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2.3.2 Comparison changing the fraction to bet

Below we have written the code in MATLAB of the second program. Even in

this case we have fixed p = 0.5. With such a choice, we can easily find the value

f0 ∈ (0, 1) such that g(f0) = 0, where g is the rate function given in (2.12). Indeed

in this case we have

1
2 ln(1 + 2f) + 1

2 ln(1 − f) = 0 ⇒ (1 + 2f)(1 − f) = 1 ⇒ f0 = 0.5 . (2.15)

Moreover, by (2.13), in this case f ∗ = 0.25. In the program below we realize four

dynamics:

• F represents the evolution of our fortune betting each time a fraction f =

0.35 > f ∗ = 0.25. Note also that f = 0.30 < f0 = 0.5;

• H represents the evolution of our fortune betting each time a fraction f =

0.15 < f ∗ = 0.25;
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• G represents the evolution of our fortune betting each time a fraction f ∗ =

0.25;

• R represents the evolution of our fortune betting each time a fraction f =

0.6 > f0 = 0.5 > f ∗ = 0.25.

p=0.5; %p is the probability of winning a bet

V=2; %V is the possible gain for one unit bet

X0 =1; % X0 is the initial capital

n=300; %n is the number of repetitions of the bet

fstar =((V+1)*p -1)/V; %fstar is the optimal fraction

f =0.35;

h =0.15;

r=0.6;

F=zeros (n+1);

H=zeros (n+1);

G=zeros (n+1);

R=zeros (n+1);

F(1)= X0;

H(1)= X0;

G(1)= X0;

R(1)= X0;

A= linspace (0,n,n+1);

for i=1:n

if rand (1) <=p
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F(i+1)=F(i )*(1+ f*V);

H(i+1)=H(i )*(1+ h*V);

G(i+1)=G(i )*(1+ fstar*V);

R(i+1)=R(i )*(1+ r*V);

else

F(i+1)=F(i)*(1 -f);

H(i+1)=H(i)*(1 -h);

G(i+1)=G(i)*(1 - fstar );

R(i+1)=R(i)*(1 -r);

end

end

figure (1) % referred to as figure 2.2

plot(A,F,’r’,A,G,’b’,A,H,’g’)

figure (2) % referred to as figure 2.3

plot(A,R,’k’)

The plot in Figure 2.2 and in Figure 2.3 represents the output of the described

program:

• the blue curve in Figure 2.2 represents the dynamic G (with fraction f ∗),

• the green curve in Figure 2.2 represents the dynamic H (with fraction f < f ∗),

• the red curve in Figure 2.2 represents the dynamic F (with fraction f ∈

(f ∗, f0)),

• the black curve in Figure 2.3 represents the dynamic R (with fraction f >

f0 > f ∗).
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Fig. 2.2

Fig. 2.3

21



As we have studied in this chapter and as the plot shows, betting the optimal frac-

tion maximize our fortune in the long run. It is relevant to observe the difference

between betting a fraction f such that the rate g(f) is positive (that is the curves

blue, green and red) and betting a fraction f such that the rate g(f) is negative

(that is the black curve). Indeed in this last case, the evolution of our fortune is

dramatically worst than the ones in the other cases. This is a consequence of the

fact that a negative rate means an exponential decrease of the fortune in the long

run.
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Chapter 3

Kelly Criterion in Sports Betting

Strategies

Horse racing is just one of the activities among sports betting in which we can

apply the Kelly Criterion. What’s more, it can be used also in card games like

Blackjack.

In the first section of this chapter we will mainly focus on the Horse Racing Game,

but the same techniques can be applied to other sports bets with similar structure.

In the second section we will instead focus on the general analysis made by Thorp

in [12] on sports bets. Finally we will discuss an application of the Kelly criterion

in football.

3.1 Horse Racing

In Horse Racing a gambler can make several different types of bets: one can

decide to bet on which horse may win the race, or finish second or third, as well as

simultaneous bets of the above described types. Furthermore, all these bets have

in common that the gambler has to choose on which horse/s to place his bet/s
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where each horse has a different probability of finishing in a certain place.

In this section we will analyze the case of a gambler betting simultaneously on

all the horses in a race. The gambler will divide all his capital on bets on all the

horses, and a bet on each horse is a bet that the horse will win the race.

Suppose a gambler wants to divide all his capital on three bets on different

horses called, for the sake of this example, A, B and C. The bets will be on the

winning horse, and the gambler will place all the three different bets on the three

different horses winning the race.

Each horse has a different probability of winning the race pA, pB, pC ∈ [0, 1], where

pA + pB + pC = 1, and the gambler knows the probabilities of success of each

horse. Also, the fraction of capital he bets on each horse is fA, fB, fC ∈ [0, 1],

where fA + fB + fC = 1.

The probabilities of each horse winning do not change between races, and the odds

of the game are 1 to 1.

For example, if the gambler plays a single race and horse B wins the race, then

of course horses A and C lose and the gambler’s capital at time 1 1 at time one

becomes

X1 = X0 · (1 + fB − fA − fC)

The gambler gains the amount of capital he bet on horse B and loses the amount

of capital he bet on horses A and C.

Next, assume he bets on two consecutive races, in the first race horse A won and

in the second race horse C won, capital is now

X2 = X1 · (1 − fA − fB + fC) = X0 · (1 + fA − fB − fC) · (1 − fA − fB + fC).

Suppose now that the gambler is playing a series of N ∈ N races and define

• W A
N ∈ N as the amount of wins for horse A,

1Described by the function Xt previously defined, see Section2.1.1
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• W B
N ∈ N as the amount of wins for horse B,

• W C
N ∈ N as the amount of wins for horse C;

hence W A
N + W B

N + W C
N = N . Using the equation for the capital at time 2, we can

easily manipulate it to get that the gambler’s capital after N bets is given by

XN = X0 ·(1+fA −fB −fC)W A
N ·(1−fA +fB −fC)W B

N ·(1−fA −fB +fC)W C
N . (3.1)

Now is up to the gambler to decide how to optimally divide his capital in three

parts for the three bets. One way he could accomplish this is under the Kelly

principle, but first we have to determine a utility function to which we will apply

the natural logarithm.

We define G(f) as the logarithmic capital growth function of a series of N bets,

in particular

G(fA, fB, fC) = ln
(

XN

X0

)
= W A

N · ln (1 + fA − fB − fC)+

+ W B
N · ln (1 − fA + fB − fC) + W C

N · ln (1 − fA − fB + fC) .

Let us divide now G(f) by N and use equation (2.5)

ln αN = 1
N

G(f) = 1
N

· ln
(

XN

X0

)
= W A

N

N
· ln (1 + fA − fB − fC)+

+ W B
N

N
· ln (1 − fA + fB − fC) + W C

N

N
· ln (1 − fA − fB + fC) .

Taking N large and applying the Law of Large Numbers (see Chapter1.2) we get

g(fA, fB, fC) = ln (αN) = pA · ln (1 + fA − fB − fC)+

+ pB · ln (1 − fA + fB − fC) + pC · ln (1 − fA − fB + fC) .

This equation represents the utility function of the capital in a horse race after

a very large number of bets. The aim now is to calculate the maximum of this

function: this maximization problem can be defined as a constrained nonlinear

25



multi-variable optimization problem. More precisely we have to maximize the

function

g(fA, fB, fC) = ln (αN) = pA · ln (1 + fA − fB − fC)+

+ pB · ln (1 − fA + fB − fC) + pC · ln (1 − fA − fB + fC) ,

subject to the constraints

h(fA, fB, fC) = fA + fB + fC − 1 = 0

fA ≥ 0, fB ≥ 0, fC ≥ 0 .

It is possible to get the optimal betting ratios (f ∗
A, f ∗

B, f ∗
C) analytically by inserting

the equality constraint fA = 1 − fB − fC into the function g. Hence we have to

maximize

g(fB, fC) = pA · ln (2 · (1 − fB − fC)) + pB · ln (2 · fB) + pC · ln (2 · fC)

over the domain

∆ = {fB, fC ∈ R2 : fB + fC ≤ 1, 0 ≤ fB, 0 ≤ fC} .

A picture of the domain ∆ is given in Figure 3.1.

To find the critical point of this function we calculate the partial derivatives

and we put them equal to zero. So we have

∂

∂fB

g(fB, fC) = 2 · pA

2 · fB + 2 · fC − 2 + pB

fB

∂

∂fC

g(fB, fC) = 2 · pA

2 · fB + 2 · fC − 2 + pC

fC

and hence the critical point is

(f ∗
B, f ∗

C) = (pB, pC) , (3.2)

that implies f ∗
A = pA. So the optimal betting ratios are the probabilities of each

horse winning the race. Now we are left to prove that the optimal betting ratios
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Fig. 3.1: The domain ∆, where in the coordinate axes there are fB and fC .

(f ∗
B, f ∗

C) are the global maximum of the function g(fB, fC).

The domain ∆ is closed and bounded and g(fB, fC) is continuous over the interior

of ∆. Since

lim
fB→1,fC=0

(g(fB, fC)) = −∞ , lim
fC→1,fB=0

(g(fB, fC)) = −∞ ,

lim
fC→1,fB=0

(g(fB, 1 − fB)) = −∞ ,

we get that the maximum of g(fB, fC) must be in the interior of ∆.

We need to apply the second derivative test on the critical point found to know if

the optimal betting ratios is relative maximum, relative minimum or saddle point.

Since
∂

∂2fB

g(pB, pC) = − 4 · pA

(2 · pB + 2 · pC − 2)2 − 1
pB

,

∂

∂2fC

g(pB, pC) = − 4 · pA

(2 · pB + 2 · pC − 2)2 − 1
pC

,

∂

∂fB∂fC

g(pB, pC) = − 4 · pA

(2 · pB + 2 · pC − 2)2 ,
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then

D = ∂

∂2fB

g(pB, pC) · ∂

∂2fC

g(pB, pC) −
(

∂

∂fB∂fC

g(pB, pC)
)2

=

= 4 · pA

(2 · pB + 2 · pC)2 · pB

+ 4 · pA

(2 · pB + 2 · pC)2 · pC

+ 1
pB · pC

.

So D > 0 and ∂
∂2fB

g(fB, fC) > 0. Therefore the critical point in (3.2) is a relative

maximum. Note also that, since pB, pC ∈ (0, 1), then the critical point is in the

interior of the domain ∆.

The final step is to prove the relative maximum is the global maximum.

First we will find the value of the function g(fB, fC) on the the boundary of the

domain ∆ and at the relative maximum.

Note that

exp (g(fB, fC)) = exp (pA · ln (2 · (1 − fB − fC)) + pB · ln (2 · fB) + pC · ln (2 · fC)) =

= exp (pA · ln (2 · fA)) · exp (pB · ln (2 · fB)) exp (pC · ln (2 · fC)) =

= exp (ln (2 · fA)pA) · exp (ln (2 · fB)pB ) · exp (ln (2 · fC)pC )

= (2 · fA)pA · (2 · fB)pB · (2 · fC)pC = 2 · fpA
A · fpB

B · fpC
C .

and (recalling that fA = 1 − fB − fC)

• when fB = 0, we get exp (g(0, fC)) = 0,

• when fC = 0, we get exp(g(fB, 0)) = 0,

• when fC = 1−fB, we have fA = 0 and hence we get exp (g(fB, fC = 1 − fB)) =

0.

The value of the utility function at the relative maximum is exp (g(fB, fC)) =

2 · ppA
A · ppB

B · ppC
C > 0. So the global maximum cannot be on the boundary of .
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Moreover using Weierstrass’s Extreme Value Theorem, 2 for the function eg, the

global maximum value of the function g(fB, fC) is on the relative maximum point.

This means that (f ∗
B, f ∗

C) is the point of maximum of the function g(fB, fC).

In conclusion, by using (3.2), the optimal betting ratios can easily be calculated

for this type of game.

A final point of interest is for what values of (pA, pB, pC) should the gambler play

the game. By inserting the critical point in (3.1) into the function g, we get

pA · ln (2 · pA) + pB · ln (2 · pB) + pC · ln (2 · pC) > 0 . (3.3)

We say that the gambler should play the game if (3.3) is satisfied. Indeed, if such

a constraint holds for a selected (pA, pB, pC), then the gambler’s fortune geometric

growth rate will be positive and he should bet in the Horse Racing game.

3.2 Thorp’s analysis on sports betting

Edward O. Thorp in [12] exhibits an application of the Kelly criterion system

to bets on different sports during realized in 1993. The result hereby presented in

Figure 3.2 is of significant interest and confirms the hypothesis made throughout

this dissertation: “After 101 days of bets, our $50,000 bankroll had a profit of

$123,000, about $68,000 from Type 1 sports and about $55,000 from Type 2 sport.

The expected returns are shown as about $62,000 for Type 1 and about $27,000

for Type 2. One might assign the additional $34,000 actually won to luck, but

this is likely to be at most partly true because our expectation estimates from the

model were deliberately chosen to be conservative”3.

Being a risk averse bettor, made him under-bet the f ∗ he found for the bets.
2Weierstrass’s Extreme Value Theorem: A continuous function in a closed bounded

domain has a global maximum and a global minimum.
3Sixth section, Sports Betting, in [12], page 18, lines 36-39.
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Fig. 3.2: This is 101 days of bets during the end of 1993 and the beginning of 1994

He explains that “The reason [of the under-betting] is that using too large an f ∗

and over-betting is much more severely penalized than using too small an f ∗ and

under-betting”4. Since they have looked for bets where p−q = 0.06, where p is the

probability of winning and q = 1−p is the probability of loosing, Thorp says: “Our

typical expectation was about 6% so our total bets[. . .] were about $2,000,000 or

about $20,000 per day. We typically placed from five to fifteen bets a day and

bets ranged from a few hundred dollars to several thousand each, increasing as our

bankroll grew.”5.

Thorp then goes on explaining two examples, that I here present, used to dis-

cuss the difference between multiple bets on the same event, when these bets are

independent, Example 16, and when they are dependent, Example 27.

4Sixth section, Sports Betting, in [12], page 18, lines 41-43.
5Sixth section, Sports Betting, in [12], page 19, lines 5-6.
6Subsection Example 6.1 in [12], page 19.
7Subsection Example 6.2 in [12], page 20.
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Example 1

Suppose we bet simultaneously on two independent favorable coins with betting

fractions f1 and f2 and with success probabilities p1 and p2, respectively. Then

the expected growth rate is given by

g(f1, f2) = p1p2 ln (1 + f1 + f2) + p1q2 ln (1 + f1 − f2)

+ q1p2 ln (1 − f1 + f2) + q1q2 ln (1 − f1 − f2) .
(3.4)

To find the optimal f ∗
1 and f ∗

2 we solve the system of equations ∂
∂f1

g(f1, f2) = 0

and ∂
∂f2

g(f1, f2) = 0. This leads to the conditions

f1 + f2 = p1p2 − q1q2

p1p2 + q1q2
:= c , f1 − f2 = p1q2 − q1p2

p1q2 + q1p2
:= d , (3.5)

that imply

f ∗
1 = (c + d)/2 , f ∗

2 = (c − d)/2 .

These equations pass the symmetry check: interchanging the indexes 1 and 2

throughout maps the equation set into itself.

An alternate form is instructive. Let mi = pi − qi, for i = 1, 2, so that pi =

(1+mi)/2 and qi = (1−mi)/2. Substituting these relations in (3.5) and simplifying,

we get

c = m1 + m2

1 + m1m2
, d = m1 − m2

1 − m1m2
,

f ∗
1 = m1 · (1 − m2

2)
1 − m2

1m
2
2

, f ∗
2 = m2 · (1 − m2

2)
1 − m2

1m
2
2

,

which shows clearly the factors by which the f ∗
i are each reduced from m∗

i . Since

m1, m2 are typically small, the reduction factors are typically very close to 1.

In the special case p1 = p2 = p, we have d = 0 and m = p − q. Then we get

f ∗ = f ∗
1 = f ∗

2 = c/2 = (p − q)
(2(p2 + q2)) = m/(1 + m)
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as the optimal fraction to bet on each coin simultaneously. Note that if we do

the single bet sequentially, the optimal fraction to bet is f ∗ = m. So playing

simultaneously reduces the optimal fraction to bet.

Generally simultaneous sports bets are on different games and typically not

numerous so they were approximately independent and the appropriate fractions

were only moderately less than the corresponding single bet fractions. However

one could ask himself if is this always true for independent simultaneous bets?

Simultaneous bets on blackjack hands at different tables are independent but at

the same table they have a pairwise correlation that has been estimated at 0.5

(see [2]). This should substantially reduce the Kelly fraction per hand. The

blackjack literature discusses approximations to these problems. On the other

hand, correlations between the returns on securities can range from nearly −1

to nearly 1. An extreme correlation often can be exploited to great advantage

through the techniques of "hedging". The risk averse investor may be able to

acquire combinations of securities where the expectations add and the risks tend

to cancel. The optimal betting fraction may be very large.

Example 2

We have two favorable coins as in the previous example but now their outcomes

are not necessarily independent. For simplicity, assume the special case where the

two bets have the same payoff distributions, but with the following joint density

P((X1, X2) = (1, 1)) = c + m , P((X1, X2) = (1, −1)) = b ,

P((X1, X2) = (−1, 1)) = b , P((X1, X2) = (−1, −1)) = c ,
(3.6)

where c, m, b ≥ 0 are such that 2c + m + 2b = 1. Note that the condition 2c + m +

2b = 1 implies

b = (1 − m)/2 − c (3.7)
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and therefore 0 ≤ c ≤ (1 − m)/2.

Note that, since the joint density is symmetric, we have that X1 and X2 are

identically distributed and in particular

P(X1 = 1) = P((X1, X2) = (1, 1)) + P((X1, X2) = (1, −1)) = c + m + b = 1 + m

2 ,

P(X1 = −1) = P((X1, X2) = (−1, 1)) + P((X1, X2) = (−1, −1)) = b + c = 1 − m

2 .

So

E[X1] = E[X2] = 1 · 1 + m

2 − 1 · 1 − m

2 = m ,

E[X2
1 ] = E[X2

2 ] = 1 · 1 + m

2 + 1 · 1 − m

2 = 1 ,

and hence

Var(X1) = Var(X2) = E[X2
2 ] − E[X2]2 = 1 − m2 .

We can also compute the covariance of X1 and X2. Note that

P(X1X2 = 1) = P((X1, X2) = (1, 1)) + P((X1, X2) = (−1, −1)) = 2c + m ,

P(X1X2 = −1) = P((X1, X2) = (−1, 1)) + P((X1, X2) = (1, −1)) = 2b ,

and so

E[X1X2] = 1 · P(X1X2 = 1) − 1 · P(X1X2 = −1) = 2c + m − 2b =
(3.7)

4c + 2m − 1 .

So we have that the covariance of X1 and X2 is

Cov(X1, X2) = E[X1X2] − E[X1]E[X2] = 4c + 2m − 1 − m2 = 4c − (1 − m)2

and hence the correlation coefficient of X1 and X2 is

ρ(X1, X2) = Cov(X1, X2)√
Var(X1)Var(X2)

= 4c − (1 − m)2

1 − m2 . (3.8)
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In this case the expected growth rate is

g(f1, f2) = P((X1, X2) = (1, 1)) · ln (1 + f1 + f2)+

+ P((X1, X2) = (1, −1)) · ln (1 + f1 − f2)

+ P((X1, X2) = (−1, 1)) · ln (1 − f1 + f2)+

+ P((X1, X2) = (−1, −1)) · ln (1 − f1 − f2) ,

that is

g(f1, f2) = (c + m) ln (1 + f1 + f2) + b ln (1 + f1 − f2)+

+ b ln (1 − f1 + f2) + c ln (1 − f1 − f2) .
(3.9)

The symmetry of the function in (3.9) shows that its point of maximum, which

we know to be unique, must have the form (f ∗, f ∗), for some value of f ∗. Hence

we can reduce the maximization problem to a one dimensional problem in which

the function to maximize is obtained from the function g(f1, f2) in (3.9) fixing

f1 = f2 = f . So we have to maximize the function

g(f) = (c + m) · ln (1 + 2f) + c · ln (1 − 2f) . (3.10)

By easy computations we obtain that the point of maximum of g(f) is

f ∗ = m

2(2c + m) .

Note that f ∗ is decreasing in c and, recalling that 0 ≤ c ≤ (1 − m)/2 and (3.8),

we have in particular that

• if c = (1 − m)/2, then ρ(X1, X2) = 1 and f ∗ = m/2;

• if c = 0, then ρ(X1, X2) = −1−m
1+m

and f ∗ = 0.5.

Moreover, when X1 and X2 are uncorrelated, that is ρ(X1, X2) = 0, we have

ρ(X1, X2) = 4c − (1 − m)2

1 − m2 = 0 ⇒ c = (1 − m)2

4

and hence f ∗ = m
1+m2 .
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3.3 Kelly criterion with bookmaker’s quotes: ap-

plication to football

In Section 2.2, we have seen that if we consider a game with V : 1 odds, then

the optimal fraction to bet is

f ∗ = (V + 1)p − 1
V − 1 , (3.11)

where p is the probability of winning the bet. Consider now a bet on a football

match. In this case the relevant instrument that we use to bet are the bookmaker’s

quotes and our estimate of the winning probability. In terms of the notation

introduced above, the quote of the bookmaker is represented by V + 1. Moreover

such a quote is obtained as 1/p̃, where p̃ is the probability of winning estimated

by the bookmaker. Inserting the identity V + 1 = 1/p̃ in (3.11), we get a formula

for f ∗ in terms of only p and p̃, that is

f ∗ = p − p̃

1 − p̃
. (3.12)

So the fraction f ∗ measures how bigger is our prediction of the winning probability

with respect to the one of the bookmaker. In particular our betting trick is to find

“errors” in bookmaker’s quotes and use them to bet a fraction f ∗ of our budget.

Obviously this is possible if only our estimate of the winning probability p is bigger

than the one proposed by the bookmaker, that is p̃.

Let us now apply the above reasoning to the football match of the 2020/2021

Champions League Final between Manchester City and Chelsea. In this match,

the bookmakers are leaning towards the Citizens, obviously underestimating the

chances of the Pensioners. Such a situation would work in our favor.

According to the quotes, the bookmaker estimates the probability that Chelsea

will not lose during the regular time at 51.8% (that is, the quote is 1.93). We
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estimated this outcome at 58% (> 51.8%).

So we can compute f ∗ through (3.12) with p = 0.58 and p̃ = 0.518, or equivalently

through (3.11) with V +1 = 1.93 and p = 0.58. In both the case we get f ∗ = 0.1283,

which means that we will bet 12, 83% of our bankroll.

The success of this method is determined by the ability to calculate the correct

probability of the event outcome. Kelly’s strategy looks like a competition between

a gambler and a bookmaker in the accuracy of determining the success rate of a

particular event.

As stated before, this strategy is used when there is a deal with value-bets, that

is when the bookmaker made a mistake in calculating the probability of a certain

outcome and set wrong quotes.
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Chapter 4

Kelly Criterion for Asset

Allocation and Money

Management

4.1 Stock Market

An other field in which the Kelly Criterion can be applied is the activity of

investing in the stock market. Comparing to the Horse Racing setting discussed in

the previous chapter, in this type of activity the gambler becomes an investor and

the horses he could bet on becomes stocks and stock options. The investor can

buy or sell stock and stock options on the market and each of them has a different

probability of increasing or decreasing its value. For example, a stock worth 50

dollars in October, can increase of 10 percent to the price of 55 dollars or it can

decrease over the same period by 5 percent to 45 dollars in November.

Suppose an investor has the possibility of buying two stocks A and B. Each stock

has a different probability of changing value: stock A, respectively stock B, in-

creases its value with probability pA, respectively pB, and decreases its value with
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probability qA = 1 − pA, respectively qB = 1 − pB. Both stocks can rise or fall

independently of each other.

Let us assume that, when the stock increases in value, the percentage by which it

increases is constant, that it does not change between months, and that at the end

of the month the investor has a capital increase of what he invested into buying

the stock multiplied by a factor of how much the stock’s value increased. Using

the previous example, the investor would have 55 dollars in November because

the stock increased ten percent. In the same way, if the stock increases again the

next month (by 10 percent because the percentage it increases is constant) then he

would have 60, 5 dollars. The same applies if the stock lowers in price. If the stock

rose in value then the investor’s capital is the amount of capital he invested in

the stock multiplied by V ∈ (1, ∞) and if the stock fell in value then the decrease

in capital for the investor is the amount of capital he invested multiplied by the

fraction Z ∈ (0, 1).

This case strongly resembles the case of the general coin toss but in this case it is

defined as a coin toss game of V to Z odds for each stock option. The fraction of

capital he invests on each stocks A and B are, respectively, fA, fB ∈ [0, 1], where

fA + fB = 1.

For example, if the investor were to invest in the two stocks in October and in

November the value of stock A rose and the value of stock B fell, then his current

capital would be

X1 = X0 · (VA · fA + ZB · fB)

If in December stock B rose and stock A fell, we have

X2 = X1 · (ZA · fA + VB · fB) = X0 · (VA · fA + ZB · fB) · (ZA · fA + VB · fB).

Suppose now that the investor is investing in stock options for a series of N ∈ N

months and define
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• WL ∈ N as the number of months in which stock A rose in value and B fell

in value;

• LW ∈ N as the number of months in which stock B rose in value and A fell

in value;

• WW ∈ N as the number of months in which stocks A and B rose in value

together;

• LL ∈ N as the number of months in which stocks A and B fell in value

together;

with WL + LW + WW + LL = N .

Then, the equation describing the current capital of the investor at the N -th month

is

XN =X0 · (VA · fA + ZB · fB)W L · (ZA · fA + VB · fB)LW ·

· (VA · fA + VB · fB)W W · (ZA · fA + ZB · fB)LL .

Then we can define the utility function as follows

G(fA, fB) = ln
(

XN

X0

)
= WL · ln (VA · fA + ZB · fB) + LW · ln (ZA · fA + VB · fB)+

+ WW · ln (VA · fA + VB · fB) + LL · ln (ZA · fA + ZB · fB) .

As seen Section 3.1 for the Horse Race, the above function represents the logarith-

mic capital growth function of N discrete series of investments. Dividing by N ,

we get

g(fA, fB) = 1
N

· G(fA, fB) = 1
N

· ln
(

XN

X0

)
= WL

N
· ln (VA · fA + ZB · fB)+

+ LW

N
· ln (ZA · fA + VB · fB) + WW

N
· ln (VA · fA + VB · fB)+

+ LL

N
· ln (ZA · fA + ZB · fB)
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and, by the Law of Large Numbers (see Chapter 1.2), for N large we have

g(fA, fB) = pA · qB · ln (VA · fA + ZB · fB) + qA · pB · ln (ZA · fA + VB · fB)+

+ pA · pB · ln (VA · fA + VB · fB) + qA · qB · ln (ZA · fA + ZB · fB) .

(4.1)

The next step is to find the maximum of the utility function to get the optimal

betting ratios. This problem can be defined as a nonlinear constrained optimiza-

tion problem and it can be solved by MATLAB. The optimization problem is

defined as the maximization of equation (4.3) subject to the equality constraint

h(fA, fB) := fA + fB − 1 = 0 and the bound constraints fA, fB ∈ [0, 1]. It is

also possible to insert the constraint h(fA, fB) = 0 into the objective equation and

attempt to solve it analytically. Equation (4.3) becomes

g(fA) = pA · qB · ln (VA · fA + ZB · (1 − fA))+

+ qA · pB · ln (ZA · fA + VB · (1 − fA))+

+ pA · pB · ln (VA · fA + VB · (1 − fA))+

+ qA · qB · ln (ZA · fA + ZB · (1 − fA)) .

and the domain of g is

∆ = {fA ∈ R : 0 ≤ fA ≤ 1} .

Now we have to find the critical point. The first derivative of the function g(fA)

is

g′(fA) = pA · pB · (VA − VB)
VA · fA + VB · (1 − fA) + pA · qB · (VA − ZB)

VA · fA + ZB · (1 − fA)+

− pB · qA · (VB − ZA)
ZA · fA + VB · (1 − fA) + qA · qB · (ZA − ZB)

ZA · fA + ZB · (1 − fA) .

The equation g′(fA) = 0 is difficult to solve and therefore we will not continue

attempting to find the solution analytically, but rather we will use the MATLAB
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function fmincon whose aim is to find a constrained minimum of a function of

several variables. Note that, since we are interested to the maximum of g, we need

to apply fmincon to the function −g.

4.2 Betting on correlated stocks

To illustrate both the Kelly criterion and the size of the securities markets, we

return to the study of the effects of correlation as in Example 2 in Section 3.2.

Consider the pair of bets U1 and U2, with joint distribution given by

P((U1, U2) = (m1 + 1, m2 + 1)) = a , P((U1, U2) = (m1 − 1, m2 + 1)) = 1
2 − a ,

P((U1, U2) = (m1 + 1, m2 − 1)) = 1
2 − a , P((U1, U2) = (m1 − 1, m2 − 1)) = a ,

(4.2)

where 0 ≤ a ≤ 1
2 and m1, m2 ≥ 0. Since the joint distribution is symmetric, then

U1 − m1 and U2 − m2 are identically distributed. Moreover

P(U1 = m1+1) = P((U1, U2) = (m1+1, m2+1))+P((U1, U2) = (m1+1, m2−1)) = 1
2

and hence P(U1 = m1 −1) = 1−P(U1 = m1 +1) = 1
2 . So E[U1] = m1 and similarly

E[U2] = m2.

To measure the correlation between U1 and U2 we need to compute Cov(U1, U2)

and Var(U1), Var(U2). Note that

E[U2
1 ] = (m1 − 1)2 · 1

2 + (m1 + 1)2 · 1
2 = m2

1 + 1

and similarly E[U2
2 ] = m2

2 + 1. Hence

Var(U1) = E[U2
1 ] − E[U1]2 = m2

1 + 1 − m2
1 = 1
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and similarly Var(U2) = 1. Moreover

E[U1U2] = a[(m1 + 1)(m2 + 1) + (m1 − 1)(m2 − 1)]+

+
(1

2 − a
)

[(m1 − 1)(m2 + 1) + (m1 + 1)(m2 − 1)] =

= 2a(m1m2 + 1) + (1 − 2a)(m1m2 − 1) = m1m2 + 4a − 1 .

So

Cov(U1, U2) = E[U1U2] − E[U1]E[U2] = m1m2 + 4a − 1 − m1m2 = 4a − 1

and hence the correlation coefficient of U1, U2 is

ρ(U1, U2) = Cov(U1, U2)√
Var(U1)Var(U2)

= 4a − 1

that increases from -1 to 1 as a increases from 0 to 1
2 .

Finding a general solution for (f ∗
1 , f ∗

2 ) to the above bet appears algebraically

complicated, but specific solutions are easy to find numerically. Even with reduc-

tion to the special case m1 = m2 = m and the use of symmetry to reduce the

problem to finding f ∗ = f ∗
1 = f ∗

2 , a general solution is still much less simple. By

the way, if we instead consider the instance when a = 0 and m1 =2= m (so that

Cov(U1, U2) = −1), then g(f) = ln (1 + 2mf) which is increasing in f . This pair

of bets is a sure bet and one should bet as much as possible.

This is a simplified version of the classic arbitrage of securities markets: find a

pair of securities which are identical or equivalent and trade at disparate prices 1.

Buy the relatively underpriced security and sell short the relatively overpriced se-

curity, achieving a correlation of −1 and locking in a risk-less profit.

An example occurred in 1983, as reported by Thorp in [12], when his investment

partner bought $330 million worth of old AT&T and sold short $332.5 million
1For the Law of One Price two securities yielding the same dividends should have the same

price.
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worth of issued new AT&T plus the new seven sisters regional telephone compa-

nies. Much of this was done in a single trade as part of what was then the largest

dollar value block trade ever done on the New York Stock Exchange (December 1,

1983).

4.3 Continuous approximation

In applying the Kelly criterion to the securities markets, we meet new analytic

problems. A bet on a security typically has many outcomes rather than just a

few, as in most gambling situations. This leads to the use of continuous instead

of discrete probability distributions. We are led to find f to maximize

g(f) = E[ln (1 + f · X)] =
∫

ln (1 + f · x)dP (x) ,

where P (x) is the probability distribution of the random variable X.

Frequently the problem is to find an optimum portfolio from among n securities,

where n may be a large number. In this case x and f are n-dimension vectors and

f · x is their scalar product. We also have constraints on f = (f1, . . . , fn), since

we always need 1 + f · x > 0 (so that ln (·) is defined) and ∑n
i=1 fi = 1 (or some

c > 0) to normalize to a unit (or to a c > 0) investment.

The maximization problem is generally solvable because g(f) is concave.

There may be other constraints as well for some or all i such as fi ≥ 0, where

no short selling is allowed, or fi ≤ Mi or fi ≤ mi (limits amount invested in i-th

security), or ∑n
i=1 |fi| ≤ M (limits on total leverage to meet margin regulations or

capital requirements).

Note that in some instances there is not enough of a good bet or investment to

allow betting the full f ∗, predicted by the model, so one is forced to under-bet,

reducing somewhat both the overall growth rate and the risk.

Together with the advantages of understanding correlation, there are other tools
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that can turn in favor of a gambler, or in the case of the securities market, an

investor: continuous approximation.

Let X be a random variable with P (X = m + s) = P (X = m − s) = 0.5. Then

E[X] = m , Var(X) = s2 .

If the initial capital is V0 and we bet a fraction f of V0 with return per unit of X,

the result is

V (f) = V0(1 + (1 − f) · r + fX) = V0(1 + r + f · (X − r))

where r is the rate of return on the remaining capital, e.g., invested in Treasury

bills. Then

g(f) = E[G(f)] = E
[
ln
(

V (f)
V0

)]
= E[ln(1 + r + f(X − r))] =

= 0.5 ln(1 + r + f(m − r + s)) + 0.5 ln(1 + r + f(m − r − s)).

Now subdivide the time interval into n equal independent steps, keeping the same

drift and the same total variance. Thus m, s2 and r are replaced by m/n, s2/n

and r/n, respectively. We have n independent Xi, i = 1, . . . , n, with

P (Xi = m/n + sn−1/2) = P (Xi = m/n − sn−1/2) = 0.5.

Then
Vn(f)

V0
=

n∏
i=1

(1 + (1 − f)r + f · Xi).

Taking E[log(·)] on both sides of the above equation gives g(f). Moreover, ex-

panding the result in a power series, leads to

g(f) = r + f(m − r) − s2f 2/2 + O(n−1/2) (4.3)
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where O(n−1/2) has the property n1/2O(n−1/2) is bounded as n → ∞.

Letting n → ∞ in (4.3) we have

g∞(f) = r + f(m − r) − s2f 2/2 . (4.4)

Note that the point of maximum and the maximum of g∞(f) are given by

f ∗ = m − r

s2 , g∞(f ∗) = (m − r)2

2s2 + r . (4.5)

The limit V = V∞(f) of Vn(f) as n → ∞ corresponds to a log normal diffusion

process, which is a well-known model for securities prices. The security here has

instantaneous drift rate m, variance rate s2, and the risk-less investment of cash

earns at an instantaneous rate r. Then g∞(f) in equation (4.4) is the (instanta-

neous) growth rate of capital with investing our betting fraction f .

There is nothing special about our choice of the random variable X in terms of

restrictions: any bounded random variable with mean E[X] = m and variance

V ar(X) = s2 will lead to the same result.

Note that f no longer needs to be less than or equal to 1 and also the usual prob-

lems that arises from the logarithm function, that is being undefined for negative

arguments, have disappeared. Moreover, f < 0 causes no problems. This simply

corresponds to selling the security short.

If m < r this could be advantageous. Note further that the investor who follows

the policy f must now adjust is investment instantaneously, that means adjusting

in tiny increments whenever there is a small change in V . This idealization ap-

pears in option theory.

Our previous growth functions for finite sized betting steps were approximately

parabolic in a neighborhood of f ∗ and often in a range up to 0 ≤ f ≤ 2f ∗, where

also often 2f ∗ = fc. Now with the limiting case (4.4), g∞(f) is exactly parabolic

and very easy to study.
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Log normality of V (f)
V0

means that log
(

V (f)
V0

)
is N (M, S2) distributed, with mean

M = g∞(f) · t and variance S2 = V ar(G∞(f)) · t for any time t, where

G∞(f) = ln
(

V∞(f)
V0

)
.

This allows to determine, for instance, the expected capital growth and the time

tk required for V (f) to be at least k standard deviations above V0.

First, we can show by our previous methods that V ar(G∞(f)) = s2f 2, hence its

standard deviation is SDev(G∞(f)) = sf . Solving

tkg∞(f) = kt
1/2
k SDev(G∞(f))

we get

tkg∞(f) = kt
1/2
k SDev(G∞(f)) ⇒ t

1/2
k = ksf

g∞(f) ⇒ tk = k2s2f 2

g∞(f)2 . (4.6)

Note that both tk and tkg∞(f) increase as f increases, for 0 ≤ f < f+ where f+

is the positive root of s2f 2/2 − (m − r)f − r = 0 and f+ > 2f ∗.

From general portfolio theory we know that the capital asset pricing model (CAPM)

says that the market portfolio lies on the Markowitz efficient frontier E in the (s, m)

plane at a (generally) unique point P = (s0, m0) such that the line determined by

P and (s = 0, m = r) is tangent to E at P . The slope of this line is the Sharpe

ratio S = (m0 − r0)/s0 and from before we know that g∞(f ∗) = S2/2 + r so the

maximum growth rate g∞(f ∗) depends, for any fixed r, only on the Sharpe ratio.

Again, from before we can state that f ∗ = 1 when m = r + s2, in which case the

Kelly investor will select the market portfolio without borrowing or lending. If

m > r + s2 the Kelly investor will use leverage and if m < r + s2 he will invest

partly in Treasury bills and partly in the market portfolio. Thus the Kelly investor

will dynamically reallocate as f ∗ changes over time because of fluctuations in the

forecast m, r and s2, as well as in the prices of the portfolio securities.
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Since g∞(1) = m − s2/2, we have that the portfolios in the (s, m) plane satisfying

m − s2/2 = C, where C is a constant, all have the same growth rate.

In the continuous approximation, the Kelly investor appears to have the utility

function U(s, m) = m − s2/2. Thus, for any (closed, bounded) set of portfo-

lios, the best portfolios are exactly those in the subset that maximizes the one

parameter family m − s2/2 = C.

4.3.1 The S&P 500 Index Example

Using historical data of easy finding, we make the rough estimates m = 0, 11,

s = 0, 15, r = 0, 06.

The equations we need are the generalizations of (4.5) and (4.6) with f = cf ∗, for

some c > 0. We have

cf ∗ = c(m − r)/s2,

g∞(cf ∗) = ((m − r)2 · (c − c2/2))/s2 + r,

SDev(G∞(cf ∗)) = c(m − r)/s,

tg∞(cf ∗) = k2c2/(c − c2/2 + rs2/(m − r)2) ,

t(k, cf ∗) = k2c2((m − r)2/s2)/((m − r)2/s2)(c − c2/2) + r)2 ,

(4.7)

and, if we define m̃ = m − r, G̃∞ = G∞ − r, g̃∞ = g∞ − r, and we substitute them

into equation (4.7), we get equation (4.6), showing the relation between the two

sets.

From Equations (4.7) with c = 1, we find

f ∗ = 2.22,

g∞(f ∗) = 0.115,

SDev(G∞(f ∗)) = 0.33,

tg∞(f ∗) = 0.96k2,

t = 8.32k2 years.
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Thus, with f ∗ = 2.22, after 8.32 years we have the 84% of probability that

Vn > V0 at the k = 1 standard deviations level of significance. Moreover we

have ln(Vn/V0) = 0.96 so that the median value of Vn/V0 is around e0.96 = 2.61.

With the usual unlevered f = 1, and c = 0.45, using (4.6) we find

g∞(1) = m − s2/2 = 0.09875,

SDev(G∞(f ∗)) = 0.15,

tg∞(1) = 0.23k2,

t(k, 0.45f ∗) = 2.31k2 years.

Writing tg∞ = h(c) in equation (4.6) as

h(c) = k2/(1/c + rs2/((m − r)2c2) − 1/2) ,

we see that the measure of riskiness, h(c), increases, at least up to the point c = 2,

corresponding to 2f ∗. Writing t(k, cf ∗) = t(c) as

t(c) = k2((m − r)2/s2)/((m − r)2/s2)(1 − c/2) + r/c2

shows that t(c) also increases as c increases, at least up to the point c = 2. Thus

for smaller, that is, for a more conservative, f = cf ∗ , c ≤ 2, specified levels of

P (Vn > V0) are reached earlier. For c < 1, this comes with a reduction in growth

rate, which reduction is relatively small for f near f ∗.
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