
LUISS Guido Carli University

Einaudi Institute for Economics and Finance

Department of Economics and Finance

The Italian Productivity Puzzle:
Firm Distortions and Growth

Chair of Applied Microeconomics

Supervisor:

Professor Fabiano Schivardi

Co-supervisor:

Professor Matteo Paradisi

Student:

Luca Lorenzini

Academic Year 2021/2022





Acknowledgements

I would like to thank my supervisor, Professor Fabiano Schivardi, for his mentoring, patience,

and guidance. The present thesis brings along his time and support without which it could not

have been written. I also owe special thanks to Professors Claudio Michelacci, Facundo Piguillem,

Andrea Pozzi, and Liangjie Wu for their helpful comments and ideas. I thank my cohort friends

for their support and useful discussions. This aside, I am solely responsible for any errors and for

the opinions expressed.

I dedicate this thesis and graduation to my Grandfather.



The Italian Productivity Puzzle:

Firm Distortions and Growth

Luca Lorenzini

RoME - Master in Economics

Abstract

Italian productivity growth has slowed down since the mid-90s, turning negative in the

2000s. To explain this breakdown, this thesis explores the role of firm-level technology adop-

tion. Using data from the universe of Italian incorporated companies, I document an increase

in the correlation between productivity and firm-level profit-reducing distortions. Over time,

more productive firms are increasingly subject to profit distortions. This implies that incen-

tives to engage in productivity-enhancing activities have progressively declined, as correlated

distortions reduce the returns of such activities. I present a reverse causality test support-

ing the hypothesis that the correlation productivity-distortions has a causal effect on firm

growth by reducing incentives to innovate. To quantify the impact on aggregate productivity, I

build a general equilibrium model calibrated to the Italian pre-productivity breakdown. I find

that Italy’s aggregate productivity would have been 6% higher if the correlation productivity-

distortions had remained at its 1997 level. Furthermore, firm life-cycle growth decreases by

8% relative to the baseline. I show that the key driving mechanism behind the trend is a

steady increase in the correlation with cost-of-capital distortions, which started in 1995 and

ended in 2015. The broader message is that an important component of a country’s aggregate

productivity growth can be explained by trends in the elasticity of productivity distortion that

hampers firms’ technology adoption.
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1 Introduction

In the mid-1990s, Italian total factor productivity (TFP) growth experienced a severe slowdown,

turning negative in the 2000s. TFP measures how efficiently given amounts of capital and labor are

used to produce value-added. Economists are particularly concerned about TFP growth because

productivity lies at the heart of long-term growth and rising living standards. Thus, it is crucial to

understand what is at the root of this productivity breakdown.

Figure 1 shows the trend in manufacturing productivity, where TFP measurement is less controver-

sial than in services due to better accounting of the capital stock. Italian TFP is characterized by a

dramatic slowdown compared to other European countries, where productivity grew steadily up to

the Great Financial Crisis. What is particularly worrisome and puzzling about the 1995 productiv-

ity breakdown is that, unlike in prior crises, TFP growth did not recover, turning negative in the

2000s. What are the main drivers of this trend? Aggregate TFP is nothing else than a weighted

average of firm-level TFP. Thus, aggregate TFP depends on firm TFP along two dimensions. First,

for a given amount of factors used by each firm, aggregate TFP grows when firm-level TFP grows.

Second, for given firms’ TFP levels, aggregate TFP depends on the allocation of factors across

firms.

Figure 1: TFP in manufacturing for Italy, Germany, and France (2005=100).
Source: Calligaris et al. (2018)
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This paper will focus on the first channel to tackle the Italian productivity puzzle. The

main research question asks what could explain the absence of a recovery after the 1995 growth

breakdown. Building on the endogenous growth literature, I investigate whether changes in market

imperfections could have disincentivized firms from investing in productivity growth. Under the

assumption that firm-level productivity is driven by the firm’s R&D investments in process efficiency,

at least part of the trend in aggregate productivity could be explained by changes in firms’ stimulus

to innovation.

Hsieh and Klenow (2009) develop a monopolistic competition model that allows for measuring

frictions that enter the firm-level profit function. These frictions enter the profit function as revenue

and capital taxes and capture any firm-level cost that distorts the competitive market prices. The

idea is simple and builds on the distinction between physical TFP (from now on process efficiency

or TFP) and revenue TFP (from now on TFPR) introduced by Foster et al. (2008). TFPR is

proven to be proportional to the geometric average between marginal revenues of inputs. Absent

frictions, the marginal revenue of inputs should be equalized across firms since factors move from

low to high marginal revenue product firms. Hence, TFPR provides a measure of the total amount

of frictions faced by the firm. Hsieh and Klenow (2014) build a general equilibrium endogenous

growth model able to explain differences in aggregate productivity among India, Mexico, and the

United States. Their model is based on the concept that frictions may disincentivize growth. The

intuition is that the correlation between frictions and productivity may be different across countries

suggesting differences in firms’ incentives to invest in process efficiency. When highly productive

firms in India and Mexico confront greater taxes and factor costs than in the United States, the

marginal return to innovation is smaller, and firms invest less to boost productivity.

With these concepts in mind, I study the evolution of distortions and TFP at the firm level by

using the universe of Italian incorporated companies over the period 1993-to 2018. As preliminary

evidence, I find strong reductions in the firm-level productivity growth at every age profile. I

simulate TFP life-cycle compounding firms’ growth rates averaged by age. The idea is to simulate

how firms would evolve in their productivity keeping constant the economic conditions determining
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the growth rates. I find that in the years 2006-2014 firms experienced a 20% (relative to pre-2000)

decrease in their TFP growth over their simulated lifecycle. Moreover, I find that firms’ TFP

growth has experienced a partial recovery in the years after 2015. To shed light on this preliminary

result, I introduce the framework of Hsieh and Klenow (2009) and Hsieh and Klenow (2014) and

find strong evidence of an increase in the correlation between productivity and distortions. Relative

to 1997, the measured elasticity of productivity distortion has experienced an increase of almost

18%, reaching a peak of 0.46 in 2009. In 2009, a 1% increase in productivity is associated with a

0.46 % increase in average distortions.

Can higher elasticity of productivity distortion explain lower TFP growth rates? To answer

this question, I provide some reduced-form regressions trying to provide some empirical evidence

about the impact of the elasticity of productivity distortion on growth. I argue that my results

support the idea that the elasticity of productivity distortion has a causal impact on growth by

lowering the marginal return to innovation. First, I find a negative correlation between firm-level

productivity growth and the estimated sector-year elasticity of productivity distortion. One stan-

dard deviation increase in the elasticity is associated with a 0.95% reduction in future productivity.

Of course, this is not evidence of causality since there might be reverse causality or spurious corre-

lation. Therefore, I analyse the mechanism through which the elasticity of productivity distortion

impacts TFP growth. I provide evidence of a negative correlation between firm-level intangible

assets growth and the estimated elasticity of productivity distortion. One standard deviation in

the elasticity of productivity distortion is associated with a 3.33% reduction in the three-year in-

tangible assets growth. Since intangible assets growth, including branding, marketing etc., may

capture something else than investments in process innovation, and since there might still be re-

verse causality, I provide a further test of reverse causality based on the intuition of Rajan and

Zingales (1998) and Pagano and Schivardi (2003). I classify sectors according to an exogenous

measure of R&D intensity to proxy for sector-specific investment opportunities. If the elasticity

of productivity distortion has a causal impact on productivity growth through firms’ incentives to

innovate, I should find that its impact is stronger in sectors characterized by higher investment
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opportunities. Therefore, I consider whether the impact of the estimated elasticity of productivity

distortion varies systematically with R&D sectoral intensity. If this were to be the case, reverse

causality should be ruled out. Indeed, under reverse causality or spurious correlation, we would

expect a homogeneous relationship between elasticity and growth that does not vary according to

R&D intensity. The negative impact of one standard deviation increase in the elasticity of produc-

tivity distortion on firm-level productivity growth in a sector-year which is one standard deviation

above the mean of R&D intensity is 0.48 percentage points stronger. The differential on the three-

year intangible assets growth is 3 percentage points.

My empirical results indicate that the negative relationship between the estimated elasticity of

productivity distortion and firm-level productivity growth increases with R&D intensity. This is

consistent with a causal relationship between the elasticity of productivity distortion and growth

working through firms’ incentives to innovate. By looking at the interaction, rather than direct,

effects I am restricting the range of alternative explanations for the relationship between the elas-

ticity of productivity distortion and firm-level TFP growth. Hence, I am providing more consistent

evidence of causality.

Next, I quantify the impact that the 18% rise in the elasticity of productivity distortion had

on aggregate productivity and firm-level growth rates by building a general equilibrium endoge-

nous growth model of heterogeneous firms. I calibrate a closed economy version of Atkeson and

Burstein (2010) to the Italian pre-breakdown economy. Since there is no capital, frictions enter

the profit function as revenue taxes creating a wedge in the firm profits. In the model, I assume

distortions to be a function of the firm productivity, calibrated according to the different values

of the estimated elasticity of productivity distortion. I focus on three main mechanisms through

which the elasticity of productivity distortion impacts aggregate productivity. First, with higher

elasticity, the marginal return to innovation is lower and post-entry investments in process inno-

vation decrease. Hence, firm TFP growth will slowdown over the lifecycle. Second, with higher

elasticity, the allocation of factors is distorted and less productive firms receive more weight than

they would in an undistorted economy. Third, lower lifecycle growth reduces the competition posed
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by incumbents on less productive firms, reducing selection.

Results indicate that with the 2009 level of frictions aggregate productivity is 6% lower than it

would be if frictions had remained at the 1997 level. Moreover, incumbents’ TFP is reduced by

8%. This accounts for almost half the drop in the simulated TFP lifecycle obtained compounding

growth rates averaged by age.

I conclude the analysis by describing the key mechanisms driving the trend in the elasticity

of productivity distortion. I find that the main driver behind the rise in the elasticity has been

the increase in the correlation between productivity and capital distortions. The trend experienced

a change of direction after 2015. Although only suggestive evidence, this reverse pattern suggests

that Industria 4.0, a policy aimed at reducing the costs of investments in tangible assets that are

categorized as particularly innovative, has been an effective tool to contrast the worrisome trend

in the correlation between capital distortions and productivity. Further research may provide new

evidence on the causes of the trend observed in the elasticity of productivity capital distortion.

Moreover, it may provide more accurate evidence on the impact that policies such as Industria 4.0

have on distortions and incentives to innovate.

This paper is related to a number of studies that have used distortions, misallocation, and

the framework of Hsieh and Klenow (2009) and Hsieh and Klenow (2014) in various contexts, such

as Restuccia and Rogerson (2008), Bellone, Mallen-Pisano, et al. (2013), Bollard et al. (2013),

Bento and Restuccia (2017), Gopinath et al. (2017), Calligaris et al. (2018). The contribution of

this paper to this line of research is twofold. On one hand, I apply the methodology of Hsieh and

Klenow (2014), so far used only to explain inter-countries differences, within the same country. I

show how the trend in the elasticity of productivity distortion may provide some useful explanations

for a worrisome phenomenon such as the Italian productivity puzzle. I believe that several of these

implications may apply to other economies facing their own productivity puzzle, providing some

useful policy advice. On the other hand, to my knowledge, this is the first paper that provides

empirical evidence consistent with the causal impact of the elasticity of productivity distortion on

firm-level growth.
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The paper is also related to a number of studies that analysed the Italian productivity slowdown,

such as Navaretti et al. (2011), Bugamelli, Schivardi, et al. (2010), Bugamelli, Cannari, et al. (2012),

Benigno and Fornaro (2014), Michelacci and Schivardi (2013), Lippi and Schivardi (2014), Calli-

garis et al. (2016), Pellegrino and Zingales (2017), Schivardi and Schmitz (2020). In addition to

this literature, to my knowledge, this paper is the first that investigates firm-level incentives for

technology adoption to explain the Italian productivity puzzle.

The rest of the paper is organized as follows. In section 2, I describe the dataset used for

the analysis. In section 3, I provide motivating evidence documenting the negative trend in firm

productivity growth. Section 4 documents the relationship between frictions and productivity.

Section 5 contains the growth regression analysis and its results. Section 6 describes the model,

the algorithm used to simulate it, and the results delivered. Section 7 provides the evidence on the

drivers behind the rising trend in the elasticity of productivity distortion and concludes.
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2 Data description

To measure the firm-level productivity growth I need data that are representative of the entire

population of Italian businesses. Otherwise, results may be driven by some idiosyncrasies correlated

with the restricted sample firms’ characteristics. My analysis focuses on firms in the manufacturing

sector because TFP measures are more reliable than services due to better accounting of inputs.

The firm-level data comes from the CERVED database. The CERVED database contains detailed

balance sheet information for all incorporated businesses and accounts for 70% of manufacturing VA

from national accounts. Moreover, the trend rate follows very closely the national one. Thus, the

CERVED database should provide a representative sample of the entire population of incorporated

businesses1. The dataset is a panel ranging from 1993 to 2018. The variables I use from the

CERVED database are the wage bill, value-added, firm identifier, firm book value of the stock of

capital, and firm book value of the stock of intangible capital. Firms are grouped into three-digit

ATECO 2002 sector which allows distinguishing detailed categories. To give an idea of the level of

detail, examples of these categories are: Production, processing and storage of meat and products

meat-based; Pack of leather clothing; Manufacture of Paper and Cardboard etc. As a measure of

labor input, I use the cost of labor which allows adjusting for firms’ differences in hours worked

per worker and workers’ skills. Capital is measured using the book value of fixed capital net of

depreciation. I take firms’ value-added (VA from now onward) as a measure of the firm’s total

revenue since it does not consider intermediate inputs. Moreover, VA share is used as a weight for

the firm within the industry or as a weight for the industry itself (respectively, as a share of industry

value-added or manufacturing total value-added). I drop observations with negative VA, labor cost

or capital that are considered outliers. Firms older than forty years are grouped into one single age

category for ease of exposition. The final sample consists of 2,358,318 firm-year observations over

a sample period ranging from 1993 to 2018.

Table 1 reports descriptive statistics for the key variables in levels for the pooled sample. The

average firm employs 15.4% of its total assets in intangible assets. The median firm employs 4.5%

1CERVED is the greatest information provider about Italian business enterprises. For more detailed information
visit https://www.cerved.com/

8



of its total assets in intangible.

Table 1: Summary statistics of Balance Sheet variables

Variable Obs Mean Std. Dev. Min Max P5 P50 P95
intangible stock 2358318 378.979 12574.91 0 3913149 0 9 486
capital 2358318 1577.253 15440.11 1 4879570 6 173 5168
intangible share 2358318 .154 .225 0 1 0 .045 .693
value added 2358318 1744.485 18886.38 1 1.27e+07 36 393 5238
labor cost 2358318 1100.577 8244.307 1 2173448 20 273 3402
Firm value added share 2358318 .001 .011 0 1 0 0 .004
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3 Motivating evidence

In this section, I impose some structure to the data to acquire information on firm-level productivity

measures. The final goal is to infer some possible explanations for the low aggregate TFP growth

observed in the manufacturing sector. An economy’s aggregate TFP growth depends crucially on

how TFP grows at the firm level. Following the R&D-based endogenous growth literature, firm-level

TFP grows when firms invest resources in improving their process efficiency. For instance, process

efficiency upgrades when adopting better technologies or management practices. Therefore, I start

my analysis by asking the data whether an anemic firm-level TFP growth could provide a possible

explanation for the observed pattern in aggregate productivity.

Consider a standard model of monopolistic competition with heterogeneous firms (closed-

economy version of Melitz (2003)). Suppose that aggregate output at time t is obtained by a

constant elasticity of substitution aggregate of the operating firms output:

Ys =

(
Ns∑
i=1

Y
ρ−1
ρ

s,i

) ρ
ρ−1

(3.1)

Where s indexes the sector, i indexes the firm, Ns is the number of operating firms in sector s, Ya,i

is the firm level VA, and ρ is the elasticity of substitution across varieties (greater than one). Just

for ease of exposition, I dropped the time index. Suppose that the aggregate output is produced

in a competitive market. Under these assumptions, each firm receives a demand for their variety

equals to:

Ys,i = Ys(
Ps

Ps,i
)ρ (3.2)

Where Y is aggregate output and P is the Dixit-Stiglitz aggregate price:

Ps = (

Ns∑
i=1

P 1−ρ
s,i )

1
1−ρ (3.3)

Assume, further, that each firm is a monopolistic competitor choosing inputs to maximaze revenues
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according to a Cobb-Douglas production function with constant return to scale:

Ys,i = As,iK
αs
s,iL

1−αs
s,i (3.4)

Where Ys,i is firm output, Ks,i is firm employed capital, Ls,i is the employed labor, and As,i is

firm specific process efficiency or total factor productivity. Under these mild assumptions, it is

possible to infer price and quantities from revenue by inverting the demand function that each firm

is receiving. After some algebra, TFP can be obtained as follows:

As,i = κs
(Ps,iYs,i)

ρ
ρ−1

Kαs
s,i (wLs,i)1−αs

(3.5)

Where κs = w1−αs (PsYs)
−1
ρ−1

Ps
is a scalar common to each firm in the industry s. Equation (3.5)

requires only mild assumptions on demand, technology and final good cost minimization behavior.

Note that the scalar κs is not observed. Hence, the levels of process efficiency are not observable

with the available data. I will come back to this issue later on. Furthermore, to compute firm-level

TFP I need to make an assumption on the parameter ρ regulating the elasticity of substitution

across varieties. The quantitative results of this analysis are sensitive to the assumed value of

ρ. I assume a conservative value of ρ equal to three as in Calligaris et al. (2018) and Hsieh and

Klenow (2009). Nevertheless, results are robust to different values of ρ. I set the elasticity of

output with respect to labor 1−αs to match the labor share of total value added in the industry s

in the baseline year of the analysis. This measure is equivalent to taking a weighted average of the

firm-level labor cost share of VA, where weights are given by the firm share of sectoral VA. Capital

share is then set as one minus the computed labor share. I report results where the TFP variable

is trimmed but the results are robust to outliers because qualitatively identical when trimming the

tails of its distribution at different percentages. Results are robust both by taking different years

as the baseline for the calculation of αs and by taking an unweighted mean of firm labor cost share

of VA to obtain αs.
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3.1 TFP by Age

As first motivating evidence, figure 2 plots the cross-sectional relationship between firm (log) TFP,

relative to the entrant TFP, and age taken in different points in time. In particular, entrant TFP

(TFP0,t,s) is computed as the mean TFP of firms younger than three years old by year and sector,

assuming κs,t = 1. Then, relative TFP is obtained by dividing firm-level TFP (obtained assuming

κs,t = 1) by TFP0,t,s. Since the unobservable component κs,t is a sectoral-time scalar, when taking

the relative TFP , κs,t will cancel out. Thus, relative productivity is unaffected by setting κs,t = 1

for each sector s and time t and relative TFP can be obtained from available data. To make results

robust to outliers, I trimmed the 1% tails of the distribution of relative TFP 2. Then, I take the

sectoral-year median of relative TFP by age obtaining TFPa,s,t. To remove the sector dimension, I

take a weighted average of the industry TFPa,s,t, where weights are given by the sectoral VA share.

As a result, I am obtaining the yearly cross-sectional relationship between relative TFP and age.

Then, to plot the figure, I take the log of the weighted average of relative TFP and I normalize

the entrant (age zero) productivity to one. For ease of exposition, I am reporting three periods

averaging within three bins of years. This is useful also to clean for cyclical components and noise.

The first period is the pre-productivity puzzle, the years 1993 and 1994. The second is the period

2000-2005, and the third the period 2013-2017.

Figure 2 highlights that the difference between incumbents’ TFP and entrants’ TFP has

become weaker in time. In particular, the TFP by age profile imputed to 1993 and 1994 suggests

that the log average productivity of old firms was 2.5 times the log productivity of entrants. In

the first years of 2000, this relationship flattened and average log productivity was 2.2 times the

entrant productivity. In the more recent years of the sample, the ratio between incumbents’ log

productivity and entrants’ log productivity has become particularly worrisome since old firms are

only 1.8 times more productive than entrants. Relative to the entrants, old firms in years before

the productivity puzzle were 40% more productive in log scale than old firms in more recent years.

To interpret this evidence some words of caution are needed. The relationship between relative

2The presented results are robust to the different levels of trimming and to not trimming at all
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TFP and age in the cross-section depends on three elements. First, it depends positively on how

incumbents have grown in their productivity in the past. Second, it depends negatively on entrant

average productivity. Third, it depends positively on the selection of survivors. The fiercer the

selection, the higher the relative productivity of the average incumbent. Hence, the reported figure

for each period contains information on past growth as well as information on current selection

and entrant average productivity. In particular, the TFP-age profile in the years pre-1995 contains

information on how firms used to grow before the Italian productivity puzzle. In economic models

following the structure of Hopenhayn (1992) or Chaney (2008), selection is driven by aggregate

productivity. In particular, if aggregate productivity is lower, competition is less fierce and the

selection on productivity is weaker to re-establish the free-entry zero-discounted profits condition

(expected in Hopenhayn (1992)). Hence, since the period after 1995 is characterized by stagnation

in aggregate productivity, the differential in the average TFP by age observed in the graph is likely

to be due to a decline in firm-level growth rates rather than due to the selection of incumbents or

entrants. In what follows, I will explore deeper this channel.

Figure 2: Firm productivity by Age in the Cross-Section
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3.2 Growth rate by age

In this section, I compute the growth rate of firms productivity relative to the sector mean or

median. Again, since TFP is taken relative to a sectoral common measure the constant κs,t can be

set to one since it cancels out. Analysing the TFP relative to the mean or median is useful for two

main reasons. On one hand, by taking the relative TFP, I am cleaning from aggregate shocks. By

taking the growth rate of the relative TFP, I am computing the growth rate that is attributable to

a firm’s specific characteristics and efforts rather than to aggregate shocks. This will be particularly

interesting for the purpose of this analysis. On the other hand, by taking the growth relative to

the median, I am also cleaning for the cyclicality of measured TFP that are due to business cycle

fluctuations. After business cycle shocks, capital and labor are not free to adjust to re-establish

the firm profit maximization. Hence, plain measures of TFP may depend significantly on business

cycle fluctuations and may not provide accurate pieces of evidence.

Denoting by ˜Ai,s,a,t =
Ai,s,a,t

As,a,t
the relative TFP, where As,a,t denotes the sectoral median or

mean TFP , firm i growth rate can be obtained from the following formula:

gri,s,a,t,t+1 =
˜Ai,s,a+1,t+1 − ˜Ai,s,a,t

| ˜Ai,s,a,t |
(3.6)

Table 2 reports summary statistics for the new variables, after trimming the 5% tails of its distri-

bution. To interpret the variable in percentage terms, growth rates must be multiplied by 100. For

instance, the average Growth rate of TFP relative to the sectoral mean is 4.5%.

Table 2: Summary statistics of growth variables

Variable Obs Mean Std. Dev. Min Max P5 P50 P95
Growth TFP relative to mean 1892093 .045 .352 -.613 1.292 -.463 0 .739
Growth TFP relative to median 1892094 .042 .347 -.611 1.25 -.463 0 .725

Now the questions that I want to address are the following: is there a problem in how process

efficiency is evolving over the firm age profile? Can firm-level growth rate explain why the relative

TFP -age slope has decreased after 1995 as shown in Figure 2?
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To answer these questions I follow this approach. I take simple averages of growth rate by age to

simulate a life-cycle somewhat similar to the one reported in Figure 2. That is, I follow synthetic

cohorts over time normalizing entrant productivity to one and constructing TFP of following ages by

exploiting average growth rates. The idea is to simulate how firms would evolve in their productivity

keeping constant the economic conditions determining the growth rate of the year when the growth

is computed. I now explain this methodology in more detail.

To simulate TFP growth over the lifecycle, I follow this simple schedule:

1. I take the median of gri,s,a,t,t+1 growth by year, age and sector building a variable growths,a,t,t+1
3

2. I take the weighted average of growths,a,t,t+1 by year and age obtaining growtha,t,t+1. As

weights, I used the usual value added sectoral shares

3. I Create simulated lifecycle for each year t from 1993 to 2018 normalizing z of the entrant

to 1 and using Aa+1 = (1 + growtha,t,t+1) ∗ Aa to compute next age TFP . To simplify the

exposition, I take an average by bin of years4. Lastly, I take the logarithm of the simulated

TFP by age to obtain Figure 3

Figure 3 highlights that the growth rate of firms over the age profile has decreased over time.

The lowest simulated life-cycle is the one associated with the years 2006-2013. On the other hand,

the highest growth is observed in the years before 2000. In the most recent years (2014-2018), the

simulated TFP life-cycle growth shows a partial recovery. Compared to the simulated life-cycle of

years pre-2000, firms’ in the years 2006-2014 experienced a 30% decrease in their (log) TFP growth

over their life-cycle.

3For the construction of the presented figure, gri,s,a,t,t+1 has been computed taking the growth of TFP relative
to the median. The qualitative results are robust to taking it relative to the mean rather than the median for the

construction of ˜Ai,a,s,t and to trimming (1% or 5%) or not the tails of the relative TFP distribution. Moreover,
the results presented are qualitatively identical if instead of the median of gri,s,a,t,t+1 I take the mean to build
grs,a,t,t+1 and to trimming or not the tail of the distribution of the firm-level growthi,s,a,t,t+1

4The results are robust to changing the extremes of the bin of years.
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Figure 3: Synthetic firm TFP lifecycle

4 Productivity and wedges

In this section, I apply the structure of Hsieh and Klenow (2009) and Hsieh and Klenow (2014)

to the data to gauge some insights on possible explanations that could motivate the decline in

firm-level TFP growth observed in the 00s. The model is specified as follows. Suppose aggregate

output is a CES of the output of each firm:

Y =

(∑
a

Na∑
i=1

Y
ρ−1
ρ

ai

) ρ
ρ−1

where i is index for the firm, a the firm’s age, N the number of firms for a specific age a, Ya,i is the

output of the firm, and ρ > 1 is the elasticity of substitution between varieties. I am suppressing

the subscript for sector and year for ease of exposition.

Each firm is a monopolistic competitor which chooses its labor and capital inputs to maximize its
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current profits, affected by firm-specific frictions:

πa,i = (1− τY,a,i)Pa,iYa,i − (1 + τL,a,i)wLa,i − (1 + τK,a,i)Rka,i (4.1)

Here, τY ai, τKai and τLai are respectively firm-specific revenue distortions, capital distortions and

labor distortions. These frictions are not specific and may arise for an undefined number of reasons.

These frictions capture every cost that the firm is facing that distorts the competitive market prices

of labor, capital, and firm product. Just to spell some examples, these wedges may capture trans-

portation costs, taxes, managerial costs, bureaucracy, trade costs, subsidized credit etc. Assume

further that the production function of the firm is a Cobb-Douglas characterized by constant return

to scale:

Ya,i = Aa,iK
α
a,iL

1−α
a,i

where Aa,i is firm-specific TFP. It is possible to solve the model to obtain equilibrium revenue,

labor, and capital-labor ratio:

Pa,iYa,i ∝ (
Aa,i

TFP

TFPR

TFPRa,i
)ρ−1 (4.2)

La,i ∝ (
Aa,i

TFP
)ρ−1(

TFPR

TFPRa,i
)ρ(

1 + τL,a,i

1 + τK,a,i
)αρL (4.3)

Ka,i

La,i
=

α

1− α
.
w

R
.
1 + τL,a,i

1 + τK,a,i
(4.4)

where L is the total workforce, N the total number of operating firms, TFP = (
∑N

i=1(As,a,i
TFPRs

TFPRs,a,i
)ρ−1)

1
ρ−1

is the sectoral aggregate TFP , TFPRa,i is revenue productivity, and TFPRs =
ρ

ρ−1 (
MRPKs

αs
)αs(MRPLs

1−αs
)1−αs

is the average value of TFPRa,i
5. It is possible to prove that TFPRa,i is proportional to the geo-

5To obtain these quantities from the data I use the equations from Hsieh and Klenow (2009):

MRPKs,a,i ≡ (αs)
ρ− 1

ρ

Ps,iYs,i

ks,i
= R

1 + τK,s,i

1− τY,s,i
;MRPLs,a,i ≡ (1− αs)

ρ− 1

ρ

Ps,iYs,i

Ls,i
= w

1

1− τY,s,i

MRPKs ≡
R∑Ns

i=1

(1−τY,s,i)

1+τK,s,i

Ps,iYs,i

PsYs

;MRPLs ≡
1∑Ns

i=1(1− τY,s,i)
Ps,iYs,i

PsYs
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metric average of the marginal revenue product of capital and labor:

TFPRa,i

TFPR
∝ (

Pa,iYa,i

Ka,i
)α(

Pa,iYa,i

La,i
)1−α ∝ (1 + τK,a,i)

α(1 + τL,a,i)
1−α

1− τY,a,i
(4.5)

It is easy to observe that revenue and employment are an increasing function of A and a decreasing

function of TFPR. Then, by using data on PY, K, L and α it is possible to measure firm relative

productivity TFP, revenue productivity (TFPR), aggregate TFP, and average revenue productivity

TFPR. See Hsieh and Klenow (2009) who derived these properties for additional details.

Now, let’s come back to our initial question: why after the start of the productivity growth

breakdown of 95’ the Italian economy did not observe a recovery as in all previous recessions?

Why, instead, aggregate productivity growth becomes negative in the 00s? What could potentially

explain this phenomenon? Based on the R&D endogenous growth literature, something may have

changed in firms’ incentives to boost their productivity. To answer these questions, I explored the

correlation between TFP and firms’ distortions. The hypothesis to test is whether this correlation

has changed over time reducing firms’ incentives to innovate. The main idea is that, if frictions are

correlated with productivity, marginal return to innovation is lower and firms have lower incentives

in investing in innovation (Hsieh and Klenow (2014), Bento and Restuccia (2017)). If the correlation

has increased relative to the years before the productivity decline, incentives to innovate have

worsened over time. If we are willing to assume an endogenous growth model for firm-level process

efficiency, this pattern might explain some of the worrisome results outlined in the previous section.

To answer this question I perform the following regression year by year:

log(
TFPRi,a,s,t

TFPRt,s

) = αs +
∑
s

µs,t[1(S = s) · log(TFPi,a,s,t

TFPts

)] + ϵi,a,s,t (4.6)

Where log(
TFPRt,s,i

TFPRt,s
) is the relative TFPR; αs the sector fixed effect; log(TFPtsi

TFPts
) the relative TFP ;

and finally µs,t are the sector-year elasticity of firms’ distortion with respect to productivity6. The

sector-fixed effects control for time-invariant sector characteristics that can influence the correla-

6Results are robust to different specifications. In particular, the results are basically identical performing these
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tion between TFPR and productivity. Performing the regression year by year controls for common

shocks to all firms in a given year. Moreover, this allows for time-varying sectoral fixed effects,

controlling for common shocks to all firms belonging to the same sector. We are interested in the

coefficients µ̂s,t which measure the extent of correlation between relative productivity and relative

distortions to test whether something has changed in the correlation productivity-distortions. Fig-

ure 4 plots the evolution of the weighted average of the coefficients µ̂s,t, where weights are given

by the usual value added share of industry s, with their confidence intervals. The time-series of the

elasticity of productivity distortion highlights an increasing pattern starting from the year 2000.

The elasticity has increased from 0.39 in 1995-97 to a peak of 0.46 in 2009. This rise corresponds

to a 17.9% increase of the elasticity of productivity distortion relative to the baseline level of 1997.

Figure 4: Trend in the elasticity of productivity distortion

two following regressions instead:

(1 + τK,a,i)
α

1− τY,a,i
= αs +

∑
s

µs,t[1(S = s) · log(
TFPi,a,s,t

TFPts

)] + ϵi,a,s,t (4.7)

or

log(
TFPRi,a,s,t

TFPRt,s

) = αs + γt + µt[1(T = t) · log(
TFPi,a,s,t

TFPts

)] + ϵi,a,s,t (4.8)

where γt is the year fixed effect to control for aggregate shocks
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To assess the statistical significance of this trend, I performed a z-test of statistical difference

from the year 1997. Figure 5 reports the z-test statistics whose critical value for a 95% significance

level (1.96) is represented by the red horizontal line. From t > 2000 the difference between the

elasticity of productivity distortion in year t is statistically different from the one computed in the

year 1997.

Figure 5: Test for the statistical significance of the differences in the elasticity of productivity
distortion
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5 Econometric specifications

The rise in the correlation between frictions and productivity highlighted in Figure 4 could provide

a possible explanation for the trend in the growth rate of firms’ productivity observed in Section

3. In this section, I introduce a more formal way of presenting the results from Figure 3. I run a

series of firm-level regressions in reduced form, following the intuition of the mechanism explained

in Section 4. The main purposes of this empirical exercise are twofold. On one hand, I want to

confirm and test the statistical significance of the motivating evidence in Section 3.2. On the other,

I can uncover whether the rise in the elasticity of productivity distortion can explain some of the

growth rate variations found in the data. Lastly, I provide a reverse causality robustness check by

testing the causal channel through which µs,t impacts the growth rates.

5.1 Growth rate analysis

The key prediction of the mechanism described in section 4 is that, for the same firm, it is less

convenient to invest in process innovation in 2009 relative to 1997. This might happen because the

marginal return to innovation is lower in years characterized by higher elasticity of productivity

distortions. Hence, it is not enough to plot plain growth rates as in figure 3 to introduce the

reasoning behind the estimated rise in µt,s. Indeed, without controlling for firms’ characteristics,

growth rates might not be comparable and variations might be driven by different mechanisms.

Therefore, I perform a series of reduced-form regressions controlling for sectoral fixed effects, so

that I net out the average growth rate at the sectoral level. This ensures that the results are not

driven by the particular growth performance of any sector over the sample period. Furthermore, I

control for firms’ characteristics such as relative TFP, intangible share of total assets, age, and size.

Relative TFP is included to control for different propensities to grow. The propensity to innovate

is thought to be higher for firms with higher productivity (Melitz (2003)) and for firms with higher

revenues (Bustos (2011)). Then, I control for the firm’s intangible share of total assets to control for

technology adoption at the firm level. Also, I control for the firm’s age to control for heterogeneity
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over the age profile. Lastly, I control for firm value-added share of sectoral value-added as a proxy

for firm size. Pagano and Schivardi (2003) finds that a larger firm size fosters productivity growth

because it allows firms to take advantage of all the increasing returns associated with R&D. Hence,

I want to control for the negative trend in firms’ sizes found by Amatori et al. (2011) that might

explain the negative trend in productivity growth. The final regression is the following:

growthi,a,s,t,t+k = αs + γT + ωzi,a,s,t + α1sizei,a,s,t + α2Ii,a,s,t + ϵi,a,s,t (5.1)

Where z is the log of TFP relative to sector TFP computed as in section 4, growthi,a,s,t,t+k =

zi,a,s,t+k − zi,a,s,t is the growth rate in the relative TFP imputed from year t to year t + k, αs is

the sector fixed effect, and γT are fixed effect associated with bin of years T. I divided the sample

in four bins of years, same as before, where T1 = 1993− 1999, T2 = 2000− 2005, T3 = 2006− 2014,

and T4 = 2015− 2018. size is firm size proxied by its value added share of sector value added, and

I is firm’s intangible share of total assets.

To assess whether the increase in the correlation between distortions and TFP can explain, at

least partially, the negative trend characterizing productivity growth in more recent years, I include

the estimated µ̂t,s from regression (4.8) in regression (5.1):

growthi,a,s,t,t+k = αs+γT +ωzi,a,s,t+α1sizei,a,s,t+α2Ii,a,s,t+α3agei,a,s,t+ω2µ̂t,s+ ϵi,a,s,t (5.2)

Under the assumption that any changes in µ is perceived by firms as unexpected, the estimated

µ̂s,t is the elasticity of productivity distortion that firms use when forming their expectations. In

particular, I assume that firms have perfect foresight and are continuously surprised by shocks to

µt,s, perceived as unexpected and permanent. The increase in the correlation between distortions

and productivity has two different effects on growth. On one hand, it might lower the marginal

return to innovation disincentivizing growth. This is the theory that I want to test. On the
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other, correlated frictions increase the misallocation of factors of production and more productive

firms employ less inputs than they should in an undistorted economy (Hsieh and Klenow (2009)).

In particular, Calligaris et al. (2018) find that the level of financial frictions is higher for more

innovative firms. Hassan et al. (2017) find that during the last fifteen years bank credit in Italy

may have constrained the long-term investments of firms. Hence, the firm-level current level of

frictions may be an omitted variable that could create some bias. The increase in the elasticity

distortion might be associated with a decline in firm-level growth because firms with higher growth

prospects received higher frictions. This is a story where firms are passive subjects and cannot

grow not because they don’t want to, but rather because they are constrained. In particular, credit

constraints might play the role of a barrier to growth as found by Aghion et al. (2007). Then, to

isolate the impact of the rise in µs,t working solely through firms’ incentives to innovate, I control for

the current level of frictions by including relative TFPR in the regression. In particular, I perform

the following two regressions:

growthi,a,s,t,t+k = αs+γT+ω1zi,a,s,t+α1sizei,a,s,t+α2Ii,a,s,t+α3agei,a,s,t+ω3log(
TFPRi,a,s,t

TFPRt,s

)+ϵi,a,s,t

(5.3)

growthi,a,s,t,t+k = αs+γT+ω1zi,a,s,t+α1sizei,a,s,t+α2Ii,a,s,t+α3agei,a,s,t+ω2µ̂t,s+ω3log(
TFPRi,a,s,t

TFPRt,s

)+ϵi,a,s,t

(5.4)

Lastly, I perform regression (5.4) controlling for year fixed effects rather than bin of years fixed

effects. In this way, I can control for yearly common shocks in productivity growth.
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5.2 Mechanism analysis

The key intuition behind the rise in the elasticity of productivity distortion as a possible explanation

for the pattern in the growth rate observed in figure 3 is that a higher correlation between distortions

and productivity makes the marginal return to innovation lower. As a consequence, years and

sectors with higher µ̂s,t should be associated with lower investments in process innovation. To

provide some evidence about this mechanism, I exploit the variable reporting the firm i stock of

intangible assets. Intangible assets are associated with R&D, and patents. Hence, they should

provide reasonable statistics to measure innovation and technology adoption. Indeed, Battisti et

al. (2015) show that intangible assets are positively associated with both TFP and technology

adoption at the firm level. As above, I keep the coefficients µ̂t,s estimated from regression (4.8) to

be included in different shapes of the following regression:

yi,s,t,t+k = αs+γt+ω1zi,a,s,t+α1sizei,a,s,t+α2Ii,a,s,t+α3agei,a,s,t+ω2µ̂t,s+ω3log(
TFPRi,a,s,t

TFPRt,s

)+ϵi,a,s,t

(5.5)

Where yi,s,t,t+k is growth in intangible stock computed from year t to year t+k; αs sector fixed effect

to control for time-invariant sectoral characteristics; γt year fixed effect controlling for aggregate

shocks to intangible assets growth. I take the growth with a horizon of k = 1, 2, 3 with the

hypothesis that investments and efforts made in year t could take some time to be registered in the

balance sheet intangible assets. The other variables are included in the regression to control for

firm characteristics as controls with the same logic of equation (5.1).

5.3 Main results

Table 3 reports summary statistics for the newly constructed variables log of relative TFP growth

and intangible assets growth. The tails have been trimmed at the 1% level. To interpret the growth

rate as percentage, values must be multiplied by 100. For instance, the average one-year intangible

assets growth is 24.6%.
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Table 3: Summary statistics for growth variables

Variable Obs Mean Std. Dev. Min Max P5 P50 P95
log of relative TFP growth 2060279 -.013 .488 -2.237 1.926 -.841 .006 .742
one-year intangible growth 1663399 .246 1.792 -1 19.667 -1 -.125 2.5
two-year intangible growth 1496661 .784 3.803 -1 40 -1 -.2 6
three-year intangible growth 1349006 1.346 5.587 -1 58 -1 -.228 9.07

In Table 4 I examine the trend in the log of TFP growth rate by performing the regressions

discussed in section 5.1. For ease of exposition, I report the growth rate associated with year k = 1.

Nonetheless, the results are robust to different years k for the computation of the growth rate. Col-

umn (1) reports the results of the regression without controlling for misallocation and µ̂s,t. Column

(1) confirms the same results of figure (3). Moreover, the coefficients on control variables follow

what the literature discussed above finds. Relative TFP has a negative coefficient by construction,

because growth is inversely proportional to current TFP. The coefficient on the intangible share,

measuring firm-level technological adoption, is positive, suggesting that more technological firms

are associated with higher growth rates. Interpreting column (1) coefficients, a 1% increase in in-

tangible share is associated with a 0.035% increase in TFPt+1. As in Pagano and Schivardi (2003),

firm size is positively associated with firm growth. A 1% increase in value-added share of sectoral

value added is associated with a 1.89% increase in TFPt+1. The coefficient on age, although sta-

tistically significant, is not economically significant. The bin of years γ1 (1993-1999) is the baseline

level and γT are interpreted as deviations from the baseline years. All bins of years’ fixed effects

are statistically significant. Results of figure (3) are confirmed. In particular, there is a negative

trend in the log of the TFP growth rate which is worsening over time. The years 2000-2005 are

associated with a 0.08% reduction in future firm-level TFP. Years 2006-2014 with a 1.3% reduction

and years 2015-2018 with a 2.4%. Column (2) includes estimated µ̂s,t alone, column (3) includes

relative TFPR alone, column (4) includes both relative TFPR and µ̂s,t. Lastly, column (5) controls

for year fixed effect rather than bins of year fixed effect. The coefficients on relative TFPR and

µ̂s,t are statistically and economically significant. The coefficient on (log) relative TFPR measuring

the elasticity of future productivity with respect to current relative TFPR is negative. Interpreting

column (4), A 1% increase in relative TFPR is associated with a drop of 0.156% in one-year ahead
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TFP. Once I factor in dispersion in relative TFPR, I find that one standard deviation in relative

TFPR is associated with an 11% reduction in future TFP.

The coefficient of major interest is the coefficient associated with µ̂s,t. It is negative in all specifica-

tions. From column (4), a 1% increase in µ̂s,t is associated with a 0.2% reduction in next year TFP.

Once I factor in dispersion in µ̂s,t, I find that one standard deviation in µ̂s,t (0.045) is associated

with 0.95% reduction in next year TFP . Once it is included, µ̂s,t increases positively the trend

observed in γT , especially in years associated with the period 2006-2014. These are the years when

the correlation between productivity and distortions reaches its peak. After the introduction of

both TFPR and µ̂s,t, the trend in γT becomes positive, and the years 2006-2014 are the ones asso-

ciated with the highest growth. This means that the rise in the correlation documented by figure

(4.8), together with the rise in the frictions documented by Calligaris et al. (2018), can explain the

negative trend in the firm-level TFP growth observed after 2000.

In Table 5, I examine the results of regression (5.5). I report only results of k = 3, but results

are robust to different values of k. Again, coefficients on control variables are as expected from

the literature. Relative TFP is positively associated with investments in intangible assets. This is

consistent with the idea that the propensity to innovate is higher for firms with higher productivity.

The coefficient on relative TFPR is positive, consistent with the results from Calligaris et al. (2018)

who find that distortions are higher for more innovative firms. Size and age are negatively associated

with investments in intangibles, suggesting that older and bigger firms are less prone to innovate

as found by Hansen (1992) and Balasubramanian and Lee (2008). Interpreting results from column

(4), which is the more complete specification, I find that a 1% increase in relative TFP is associated

with a 0.065% increase in investments growth, a 1% increase in relative TFPR is associated with

a 0.67% increase in intangible growth, a 1% increase in value-added share is associated with a

reduction of 1.7% in intangible growth, a one year older firm is associated with a reduction of 1.6%

in the investment growth rate. Of course, here I am not claiming causality of these variables since

there might be omitted variables, reverse causality, and other forms of spurious correlation. Here,

I am just using these variables as controls to capture the impact of µ̂s,t.

26



(1) (2) (3) (4) (5)
VARIABLES TFP growth TFP growth TFP growth TFP growth TFP growth

(log) relative tfp -0.116*** -0.116*** -0.0518*** -0.0517*** -0.0520***
(0.000488) (0.000489) (0.000544) (0.000544) (0.000561)

intangible share 0.0350*** 0.0349*** 0.109*** 0.108*** 0.110***
(0.00182) (0.00182) (0.00187) (0.00187) (0.00192)

size 1.896*** 1.894*** 0.607*** 0.605*** 0.612***
(0.0737) (0.0736) (0.0433) (0.0432) (0.0447)

age 0.000799*** 0.000811*** -0.00140*** -0.00139*** -0.00139***
(3.13e-05) (3.13e-05) (3.23e-05) (3.23e-05) (3.35e-05)

(log) relative tfpr -0.155*** -0.155*** -0.156***
(0.000932) (0.000932) (0.000960)

µ̂ -0.223*** -0.211*** -0.124***
(0.0167) (0.0165) (0.0196)

γ1 (base) (base) (base) (base)

γ2 -0.00792*** -0.00499*** 0.00153 0.00431***
(0.000992) (0.00102) (0.000981) (0.00101)

γ3 -0.0134*** -0.00309** 0.0102*** 0.0200***
(0.000912) (0.00120) (0.000909) (0.00119)

γ4 -0.0237*** -0.0177*** 0.00806*** 0.0137***
(0.00106) (0.00116) (0.00105) (0.00115)

Year F.E. NO NO NO NO YES

Sectoral F.E. YES YES YES YES YES

Constant -0.491*** -0.405*** -0.187*** -0.105*** -0.162***
(0.00252) (0.00694) (0.00277) (0.00693) (0.00870)

Observations 2,060,279 2,060,279 2,060,279 2,060,279 1,971,665
R-squared 0.050 0.050 0.068 0.068 0.070

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 4: Firm level growth and elasticity of productivity distortion

27



The coefficient associated with µ̂s,t has a point estimate of -0.74 and is statistically significant

at the 1% level. A 1% increase in the elasticity of productivity distortion µ̂s,t is associated with a

0.74% reduction in intangible growth computed within three years. One standard deviation in µ̂s,t

is associated with a 3.33% reduction in three-year intangible growth.

To interpret the negative coefficients corresponding to µ̂s,t in the productivity and intangible

growth regressions some words of caution are needed. In particular, it is difficult to establish the

direction of causality and hence results cannot be taken as evidence of causality. This is because

the explanatory variable of interest µ̂s,t might be just a leading indicator of productivity growth

(rather than a causal factor). Furthermore, intangible assets growth may capture something else

than investments in process innovation since it includes branding, marketing etc. Hence, the mech-

anism outlined above needs some further evidence to establish a causal pattern in the relationship

between the elasticity of productivity distortion and productivity growth.

In the next section, I provide a causality robustness check that provides consistent evidence re-

garding the causal channel between µ̂s,t and productivity growth. Moreover, the test confirms that

the correlation between intangible growth and µ̂s,t is capturing R&D expenditure providing further

evidence that sustains causality running from the elasticity of productivity distortion µ to process

innovation.

5.4 Causality robustness check

In this section, I tackle the problem of reverse causality and provide a check for the causal inter-

pretation of the negative coefficients associated with µ̂s,t. In particular, to interpret the negative

coefficient associated with µ̂s,t as causal, it is necessary to identify the mechanism through which

the elasticity affects productivity growth. In the previous section, I provided evidence of a negative

correlation between intangible assets growth and µ. Yet, some further analysis is needed, due to

spurious correlation.

To tackle these issues, I follow the methodology of and Rajan and Zingales (1998) and Pagano
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(1) (2) (3) (4)
VARIABLES Intangible growth Intangible growth Intangible growth Intangible growth

(3-years) (3-years) (3-years) (3-years)

(log) relative tfp 0.345*** 0.346*** 0.0642*** 0.0647***
(0.00520) (0.00521) (0.00678) (0.00678)

intangible share -3.890*** -3.890*** -4.359*** -4.359***
(0.0186) (0.0186) (0.0209) (0.0209)

size -7.014*** -7.021*** -1.707*** -1.715***
(0.443) (0.443) (0.368) (0.368)

age -0.0246*** -0.0245*** -0.0157*** -0.0157***
(0.000480) (0.000480) (0.000486) (0.000486)

(log) relative tfpr 0.670*** 0.670***
(0.0122) (0.0122)

µ̂ -0.881*** -0.739***
(0.266) (0.266)

Year F.E. YES YES YES YES

Sectoral F.E. YES YES YES YES

Constant 3.567*** 3.931*** 2.344*** 2.650***
(0.0414) (0.117) (0.0447) (0.118)

Observations 1,287,929 1,287,929 1,287,929 1,287,929
R-squared 0.025 0.025 0.027 0.027

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 5: Firm level intangible assets growth and elasticity of productivity distortion
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and Schivardi (2003). This methodology consists in defining some sectoral characteristics that allow

ranking the importance of the elasticity of productivity distortion for productivity growth. Two

properties are required for this characteristic: i) it should be a channel through which the elasticity

influences intangible growth ii) it should be characterized by some sectoral variability. The idea

is that if I find that µ̂s,t has a different effect on productivity growth through this characteristic,

then I may conclude that the negative coefficient found above cannot be generated by some spu-

rious correlation. In the presence of reverse causality or spurious correlations, we should expect a

homogeneous relation between productivity growth and µ̂s,t, rather than a relationship that varies

according to this characteristic.

Building on the idea that the elasticity of productivity distortion discourages process innovation,

I choose as a channel the R&D sectoral intensity. R&D sectoral intensity is chosen to identify

investment opportunities for firms’ technological progress in process innovation. Ceteris paribus,

the impact of higher µs,t on productivity growth should be higher in sectors that are characterized

by higher investments opportunity and that are more dependent on R&D expenditure. For this

variable to be valid, I need an exogenous classification of R&D intensity because, of course, the

level of elasticity of productivity distortion may influence the R&D sectoral intensity if there is a

causality running between the two. The U.S. provides the best economic environment to obtain this

categorization. Under the assumption that U.S. markets are undistorted and frictionless, analysing

the U.S. sectoral share of R&D expenditure allows identifying sectors that are characterized by

higher investment opportunities and that are heavily R&D dependent 7. As an indicator of R&D

intensity, I use the R&D sectoral expenditure as a share of the total assets. These data are obtained

from the EU Klems database (Van Ark and Jäger (2017)) which provides data up to 2015 and hence

covers the sample period. To adjust for shocks to the sectoral R&D intensity, I choose yearly R&D

intensity and hence a characteristic that moves year by year. Table (6) reports the industry val-

ues for R&D intensity in ascending order corresponding to the year 2000. The R&D intensity is

as expected and corresponds roughly to the classification in Pagano and Schivardi (2003). More

traditional industries such as Textile and Food and Beverage are characterized by a lower R&D

7To confirm the assumption that the U.S. provides a friction-less benchmark, the level of correlation between
productivity and frictions is close to zero (0.09) as obtained by Hsieh and Klenow (2014).
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share of total assets. On the other hand, more dynamic industries such as the Chemical industry

and Manufacture of medical equipment industry are characterized by higher R&D intensity. In

particular, the R&D share of total assets in 2000 in the Chemical industry is roughly nine times

the R&D intensity in 2000 in the Textile industry.

To check for a causal interpretation of the coefficient reported above, I insert in both regressions 5.4

and 5.5 the interaction term between R&D sectoral share and µ̂s,t and R&D sectoral share alone

to control for sector specific shocks to investment opportunities:

growthi,s,t,t+1 = αs + γT +Xi,s,tβ + ω2µ̂t,s + θµ̂t,sRDt,s + θ1RDt,s + ϵi,a,s,t (5.6)

yi,s,t,t+k = αs + γT +Xi,s,tβ + ω2µ̂t,s + θµ̂t,sRDt,s + θ1RDt,s + ϵi,a,s,t (5.7)

Where RDt,s represents sectoral R&D intensity and Xi,s,t a row vector containing the control vari-

ables discussed above. As dependent variable, growthi,s,t,t+1 represents the one-year productivity

growth while yi,s,t,t+k the k-th year intangible assets growth. If the sectoral classification is correct

and if the elasticity causal channel to productivity growth goes through R&D expenditure, θ̂ should

be negative and significant. The intuition is that firms that are in industries more dependent on

R&D expenditure, should grow less for higher values of their elasticity of productivity distortion.

The results are reported in table 7. For ease of exposition, I do not report coefficients asso-

ciated with control variables. All regressions control for both sector and year fixed effects. The

regression is performed including both µ̂, R&D sectoral intensity, and their interaction µ̂ · RD.

The coefficient on the interaction term is negative and always significant except for the one-year

intangible growth regression. The coefficient associated with µ̂ alone is not always statistically

significant but the point estimate remains almost always negative. The point estimate on R&D

sectoral intensity is always positive suggesting that firms belonging to sectors that receive a positive

shock to investment opportunities are growing more in their productivity.

These results are consistent with the idea of a causal impact of the elasticity of productivity

distortion on growth through firms’ incentives to innovate. Factoring in the dispersion in R&D in-
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Industry R&D Intensity

Textile and clothing industries .0439146

Food, Beverage, Tobacco Industry .0549412

Metallurgy .0589634

Publishing, Printing and reproduction
of registered media

.0699923

Industry of wood and wood products .0699923

Manufacture of manufacturing prod-
ucts of non-metallic minerals

.1008618

Manufacture of coke, oil refineries,
treatment of nuclear fuels

.1297282

Manufacture of machines and mechani-
cal equipment

.2047813

Manufacture of motor vehicles, trailers
and semi-trailers

.3016075

Manufacture of medical equipment, op-
tical instruments and watches

.3053274

Other manufacturing industries .3057021

Manufacture of chemical products and
synthetic and artificial fibers

.4618686

Table 6: R&D intensity in the U.S economy in 2000
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(1) (2) (3) (4)
VARIABLES Productivity growth 3-year int. growth 2-year int. growth 1-year int. growth

µ̂ 0.0367 -0.0777 -0.269 -0.257**
(0.0269) (0.351) (0.232) (0.107)

RD intensity 0.460*** 2.350*** 0.942** 0.157
(0.0464) (0.628) (0.417) (0.193)

Interaction -0.817*** -5.172*** -2.348** -0.555
(0.104) (1.403) (0.929) (0.429)

Year F.E. YES YES YES YES

Sectoral F.E. YES YES YES YES

Controls YES YES YES YES

Constant -0.240*** 3.598*** 2.219*** 0.781***
(0.0119) (0.154) (0.102) (0.0468)

Observations 1,724,561 1,242,301 1,318,612 1,404,268
R-squared 0.070 0.025 0.019 0.010

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 7: R&D interaction

tensity and µ̂, the impact of a one standard deviation increase (0.045) in µ̂ on productivity growth

in a sector-year which is one standard deviation (0.13) above the mean of R&D intensity is 0.48

percentage points (-0.82*0.13*0.045) stronger. On the other hand, the differential on the three-year

intangible assets growth is 3 percentage points.

The reported results are consistent evidence of a causal impact of the elasticity of productivity

distortion on firm-level TFP growth. In the next section, I introduce a general equilibrium model

characterized by heterogeneous firms to quantify the impact of the rise in the elasticity of produc-

tivity distortion on aggregate output, productivity and firm-level growth rates.
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6 The Model

Consider a general equilibrium model of heterogeneous firms as a closed economy version of Melitz (2003),

Hopenhayn (1992). Consider a model where productivity growth endogenously according to the

investment decision undertaken by the firm. The model is a closed economy version of Atkeson and

Burstein (2010) where I introduce frictions as in Hsieh and Klenow (2014) and Bento and Restuc-

cia (2017). I am interested in assessing the impact of the rise in the correlation between TFP and

distortions on aggregate productivity. Moreover, I want to uncover how much of the lower TFP

growth by age reported in Figure 3 can be explained by the model. The main idea is that the

correlation of friction-TFP has increased over time, decreasing the marginal return to innovation,

and lowering firms’ incentives to invest in productivity growth.

6.1 Environment

Time is discrete and indexed by t=0,1,... There is a single country with a representative household

endowed with L = 1 units of labor. There is a single final producer in a competitive market. It

produces output Y assembling goods of different varieties according to a CES production function.

The Final good can be used either for consumption or innovative activities. There is a representative

firm in a competitive market producing the research good employing as inputs the final good Y

and labor. There is a continuum of firms differentiated by their productivity levels z, producing

intermediate goods. There are two types of innovative activities. The first, product innovation

entertains the creation of new firms. There is an unbounded pool of entrants who are free to

enter by paying an amount ne of the research good. Productivity is unknown before entry and

is drawn from a distribution G after paying the sunk cost as in Hopenhayn (1992). Hence, free

entry (together with the pool of entrants being unbounded) ensures that the ex-ante zero profit

condition holds in expectation. The second innovative activity is called process innovation. In

each period after entry, firms invest to further increase their productivity by paying H units of the
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research good. Therefore, productivity levels z are endogenously determined by firms’ investment

decisions. Since there is no capital, firms face only revenue distortions that may be correlated to

productivity level z and that work as a tax rate on revenue. Firms face a fixed operating cost

nf which will give rise to endogenous exit. Furthermore, firms receive a severe shock to their

operations with probability δ, constant across productivity levels, which will force the firm to exit.

I study the steady-state of the economy where firms take prices as given. Free entry will ensure

that the expected value of entry is driven to zero. Since there is an endogenous and exogenous exit,

in a steady-state there will be ongoing entry and exit. Then, I will consider how the rise of the

elasticity of productivity distortion affects aggregate productivity, consumption, investments, and

firms’ growth rate. I begin by describing the model in more detail. From now on, I will denote with

lower-cases firm-level variables and with upper-cases aggregate variables.

Preferences Households in the economy have preferences of the form
∑∞

t=0 β
tlog(Ct), where

Ct is consumption of the final good at time t. Each Household faces an intertemporal budget

constraint of the form:
∞∑
t=0

Qt(PtCt −WtL) ≤ W (6.1)

Where Qt are intertemporal prices, Wt is the wage at time t, Pt is the price of the final good, Ct is

household consumption, and W is the initial stock of assets held by the household. I assume that

the Household owns the firms.

Intermediate Goods Firms. Intermediate goods are differentiated products each one pro-

duced by a heterogeneous firm indexed by z, indicating its productivity. Intermediate Firms employ

only labor to produce output according to a CRS production technology:

yt(z) = exp(z)lt(z) (6.2)

The output yt(z) can be used in the production of the final good Y. Call pt(z) the price of the

intermediate good produced by the firm characterized by z.
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Final Good. The final good is produced with a constant return to scale production technol-

ogy:

Yt = [

∫
yt(z)

ρ−1
ρ dMt(z)]

ρ
ρ−1 (6.3)

Where Mt(z) denotes the measure of operating firms characterized by a productivity less than or

equal to z. The final good is produced in a competitive market, where the firms choose inputs yt(z)

to minimize costs taking as given Pt, pt(z), Mt, and subject to (6.3). The final good can be used

either for consumption of the representative household or for research activities. Call Xt the units

of the final good used in research activities. Feasibility, then, requires that Ct +Xt ≤ Yt.

Research Good. The research good is produced with a constant return to scale function F,

employing as inputs Xt units of final good and Lr units of labor.

Ym,t = X1−λ
t Lλ

m,t (6.4)

Where subscript Ym denotes research good output and Lm the labor employed in the research

sector. Denote by Wm,t the price of the research good at time t. The research sector is competitive.

This implies that the equilibrium price of the research good will be a function of the final good Pt

and wage Wt.

Evolution of firms. Productivity at the firm level evolves endogenously over time, depending

on the level of investments in productivity improvements undertaken within the firm. At the

beginning of each period t, each firm has an exogenous probability δ of exiting and corresponding

1−δ of surviving. A surviving firm can decide to invest to increase its productivity as in Atkeson and

Burstein (2010). In particular, a firm decides the probability q of choosing a step s up versus down in

its productivity z. Hence, the firm’s next period productivity will be either z+s, with productivity

q, or z− s, with probability 1− q. To choose the probability q, the firm must invest H(z,q) units of

the research good. As function H, I choose the same as in Atkeson and Burstein (2010) and Hsieh

and Klenow (2014):

H(z, p) = hexp(z(ρ− 1))exp(bq) (6.5)
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Lastly, to keep operating the firms must invest nf units of research good as a fixed cost of operations.

The fixed cost nf will give rise to endogenous exit with a cutoff level of productivity zt under which

the value of the firm is negative and the firm is better off exiting. Call Vt(z) the firm value function.

Since the Firm can choose whether to operate or exit, its value function is:

Vt(z) = max[0;V o
t (z)] (6.6)

Where V o
t (z) are the present discounted profits of the firm choosing to operate and satisfy the

following Bellman equation:

V o
t (z) = max

q∈[01]
πt(z)− (nf +H(z; q))Wm,t + (1− δ)

Qt+1

Qt
[qVt+1(z + s) + (1− q)Vt+1(z − s)] (6.7)

Denote by qt(z) the optimal choice of investment in improving productivity, and call it process

innovation decision of the firm. Note that if the time period is small, the binomial productiv-

ity process described above approximates a geometric Brownian motion in continuous time as in

Luttmer (2007) and Piguillem and Rubini (2019).

The role of frictions. I model frictions as in Hsieh and Klenow (2014). Since in the model

there is no capital, frictions enter the profit function as a revenue distortion working as a revenue

tax. Nonetheless, as described in the previous section, frictions are general and not well defined

and can be interpreted in many different ways. Distortions create a wedge in firms’ profits. They

enter firms’ profit function in the following way:

π(z) = (1− τ)p(z)y(z)−Wl(z) (6.8)

I assume τ to depend on firm-level productivity as follows:

(1− τ) = exp(−µtz) (6.9)

Where the parameter µt is calibrated according to the evolution of the elasticity of a firm’s distortion
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with respect to its productivity. The correlation of revenue taxes with productivity acts as a

disincentive for firm’s TFP growth by dampening the positive relationship between profits and

productivity.

Industry dynamics. To create a new business, firms must invest a sunk cost ne units in the

research good. Investments of ne units of the research good in period t yield a new firm in period

t + 1. The new firm will be characterized by a productivity level z drawn from a distribution G.

Firms are not subject to exogenous exit in the entering period. Free entry requires:

Wm,tne =
Qt+1

Qt

∫
Vt+1(z)dG (6.10)

Denote by Me,t the measure of new firms entering in period t to start producing in period t+1. I

Refer to the creation of new businesses as product innovation since this is the mechanism through

which new varieties are created. Then, the evolution of firms over time is determined by the

exogenous probability of exit δ, the investment decision of firms, and the measure of new created

firms Me,t−1 as follows:

Mt+1(z
′) = (G(z′)−G(zt+1))Met+(1− δ)[

∫ z′−s

zt+1−s

qt(z)dMt(z)+

∫ z′+s

zt+1+s

(1− qt(z))dMt(z)] (6.11)

Feasibility. There are three feasibility conditions that need to be satisfied. Feasibility for

the final good requires:

Ct +Xt = Yt (6.12)

The feasibility constraint for labor requires:

∫
lt(z)dMt(z) + Lm,t = L (6.13)

38



Lastly, the feasibility constraint on the research good requires:

Metce +

∫
(cf +H(zqt(z)))dMt(z) = F (Xt, Lm,t) (6.14)

To close the model, I assume also that the Household owns the firms that initially existed, hence:

W =

∫
V0dM0(z) (6.15)

Equilibrium Definition. An equilibrium in this economy is a collection of sequences of

prices and wages {Qt;Pt;Wt;Wmt; pt(z)}; Quantities {Yt;Ct;Xt;Lmt; yt(z); lt(z)}; Firm values and

investments decisions {Vt(z);V
o
t (z); πt(z);Xt(z); qt(z)}; Measures of operating and entering firms

{Mt(z);Met}; such that: the representative household maximizes her utility subject to her budget

constraint; intermediate good producers are maximizing within periods profits; final good producer

is maximizing profits; zero profit condition for entry holds in expectation; all feasibility constraints

are satisfied with equality. A steady-state of the model is an equilibrium in which all of the variables

are constant. I will omit time subscripts when discussing the steady-state.

6.2 Characterizing Equilibrium

After describing in the previous section the general setup of the model, I now describe its equilibrium

conditions. I will focus on the equilibrium conditions of a steady-state and I will describe the

algorithm to solve for allocations and prices. The wage W is chosen as the numéraire and is

normalized to one.

Household Maximization. Standard arguments on household maximization yield:

PtCt = βtQ0C0

Qt
(6.16)
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Final Good. The final good is produced by competitive firms with the CES function de-

scribed in equation (6.3). Standard arguments give that the equilibrium prices must satisfy:

Pt = [

∫
pt(z)

1−ρdMt(z)]
1

1−ρ (6.17)

and quantities

yt(z) = Yt(
pt(z)

Pt
)−ρ (6.18)

Intermediate firm-static problem. The firm problem can be splitted in a static problem

and in a dynamic problem. In the static problem, firms choose labor in order to maximize profits

(1 − τ(z))p(z)y(z) − l(z), subject to the demand (6.18), production function (6.2), and elasticity

of productivity distortion (6.9). All firms choose a constant markup over marginal cost, hence

equilibrium prices are:

p(z) =
ρ

ρ− 1

1

(1− τ(z))exp(z)
=

ρ

ρ− 1
exp(z(µ− 1)) (6.19)

The production employment of the intermediate firm is given by:

l(z) = (1− τ(z))ρYtP
ρ
t exp(z(ρ− 1))(

ρ− 1

ρ
)ρ = YtP

ρ
t exp(z(ρ− 1− µρ))(

ρ− 1

ρ
)ρ (6.20)

Equation (6.20) implies that there is a simple relationship between productivity z and firm size

measured as employment. A firm’s size is completely determined by its productivity: a more

productive firm will employ more labor. Also, note that the friction τ(z) implies that for a higher µ

this relation is dampened. Furthermore, since productivity depends endogenously on the investment

decision of the firm, the firm innovation-decision qt(z) will determine the dynamics of firm size.

Firms profits are given by:

π(z) = πdexp(z(ρ− 1− µρ))− nfWm.t (6.21)
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Where πd = P ρYt
(ρ−1)ρ−1

ρρ is a common component to all firms. Profits are completely determined

by the productivity level z and, again, the elasticity of productivity distortion µ dampens this

relationship.

Lastly, by substituting the equation for the firm-level price into 6.17, the final good price index can

be written as a function of firm-level productivity:

Pt =
ρ

ρ− 1
[

∫
exp(z)(µ− 1)(1− ρ)dMt(z)]

1
1−ρ (6.22)

Firm Dynamic Problem. The firm dynamic problem is characterized by two decisions that

the firm can undertake. On one hand, the firm decides whether to keep operating or exit. This

decision is made on the present discounted value of profits associated with the firm productivity

level z. If the value of profits is negative the firm decides to exit. Otherwise, the firm decides to

keep operating. Hence, firm value Vt(z) is:

Vt(z) = max[0;V o
t (z)] (6.23)

Where V o
t (z) are the present discounted profits of the firm choosing to operate. On the other hand,

when the firm operates, the firm decides the process innovation decision. This is a dynamic decision

as it impacts tomorrow’s profits. Thus, the value of operating profits is:

V o
t (z) = max

q∈[01]
πt(z)− (cf +H(z, p))Wm,t + (1− δ)

Qt+1

Qt
[qVt+1(z + s) + (1− q)Vt+1(z − s)] (6.24)

Note that in steady state the time subfix can be dropped and Qt+1

Qt
equals 1

R . The process innovation

decision, if interior, must satisfy the following first order condition in a steady state equilibrium:

FOC :
∂H(z, p)

∂q
Wm,t = (1− δ)

1

R
[Vt+1(z + s)− Vt+1(z − s)] (6.25)
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Research Good. Research good cost minimization in a competitive market implies:

1

Pt
=

λ

1− λ

Xt

Lmt
(6.26)

and

Wm,t =
P 1−λ
t

λλ(1− λ)1−λ
(6.27)

Product Innovation. The free entry condition implies the zero profit condition in expecta-

tion steady state:

neWm,t =
1

R

∫
V (z)dG(z) (6.28)

The measure of the operating firm will evolve according to (6.11).

Aggregate Output. By combining the equilibrium expression for the firm output with the

CES production function, the following expression is obtained:

P−1
t =

ρ− 1

ρ
(

∫
(exp(z)(1− τ(z)))ρ−1)dMt(z))

1
ρ−1 =

ρ− 1

ρ
(

∫
exp(z(1− µ)(ρ− 1))dMt(z))

1
ρ−1

(6.29)

Labor market clearing implies:

Lt,Y = (
ρ− 1

ρ
)ρP ρ

t Yt

∫
exp(z(ρ−1))(1−τ(z))ρdMt(z) = (

ρ− 1

ρ
)ρP ρ

t Yt

∫
exp(z(ρ−1−µρ))dMt(z)

(6.30)

Where LY is labor employed in production. Defining the revenue weighted average tax rate as

(1− τ) =
∫ p(z)y(z)(1−τ(z))

PtYt
dMt(z) and combining expression 6.29 and 6.30 aggregate output can be

expressed as:

Yt

Lt
= [

∫
exp(z(ρ− 1))(

1− τ(z)

1− τ
)ρ−1dMt(z)]

1
ρ−1

Lt,Y

L
(6.31)

Lastly, note that from the labor market clearing condition (6.30), an expression for the real wage

is obtained:

1

Pt
=

ρ− 1

ρ

Yt(1− τ)

Lt,Y
(6.32)
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6.3 Computational steps

I now describe how one can solve for the steady-state allocations and prices in the quantitative

model. I drop the time subscript since I will describe the steady-state. I normalize wage W to one.

I take 1997 as the baseline year. I will discuss how to calibrate parameters in the following section.

The elasticity of revenue distortion µ will be set at the 1997 level (µ = 0.39). The counterfactual in

which we are interested is the model where all parameters are fixed at the 1997 level rather than µ.

µ is calibrated at its 2005 (0.42) and its peak level of 2009 (0.46). These years correspond to levels

that lasted for some years and hence evaluating a steady-state is a more appropriate assumption.

The main intuition behind the counterfactual is that the rising τ by TFP slopes observed in the

period 2000-2009 lowered the marginal return to innovation with respect to the pre-2000 years. To

solve the quantitative model, I followed this schedule:

1. Create a grid of productivity levels z of equally spaced points where the distance between two

consecutive is given by the calibrated s. Low and high truncation of the grid are chosen so

that z always belongs to the grid.

2. From the Bellman equation 6.34 evaluated in steady state, define ω(z) = V (z)
Wm

. Now 6.34 can

written as:

ω(z) = max[0;ωo(z)] (6.33)

ωo(z) = max
q∈[01]

πd

Wm
exp(z(ρ−1−µρ))−nf−hexp(z)exp(bq(z))+(1−δ)

1

R
[qω(z+s)+(1−q)ω(z−s)]

(6.34)

3. Fix the constant in the profit function πd

Wm
, compute the re-scaled value function ω(z) associ-

ated with πd

Wm
, and iterate on the constant πd

Wm
until the free-entry condition is satisfied with

equality. The value function is obtained through value function iteration and using the policy

function (6.25) re-scaled. The expected value of entry is obtained by simulating N = 10000

draws of z from the entrant distribution N(0, σe) and taking the mean of these N draws. The

simulation of the draws from the entrant distribution has to be done before iterating on πd

Wm
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so that the draws do not change when iterating on the constant part of firms’ profits.

4. Compute the steady-state productivity measure of operating firms by simulating the law of

motion (6.11) normalized by the measuring of entering firms Me for 5000 years:

Mt+1(z
′)

Me
= (G(z′)−G(z)) + (1− δ)[

∫ z′−s

z−s

q(z)
dMt(z)

Me
+

∫ z′+s

zt+1+s

(1− q(z))
dMt(z)

Me
] (6.35)

5. Define and compute the following two indices for aggregate productivity and aggregate prices:

Z̃ =

∫
exp(z(1− µ)(ρ− 1))

dM(z)

Me
(6.36)

P̃ =

∫
((

ρ

ρ− 1
)exp(z(µ− 1)))1−ρ dM(z)

Me
(6.37)

6. Solve for the remaining 6 unknowns (LY ; Y ; C; X; Me; P ) using the following 6 equations:

(a) Y = (MeZ̃)
1

ρ−1LY (Aggregate Output)

(b) 1
P = ρ−1

ρ
Y (1−τ)

LY
(Labor market clearing)

(c) λ
1−λ

X
LR

= 1
P (Research Good cost minimization)

(d) ΥMe = Lλ
RX

1−λ where Υ = ne +
∫
[nf + hexp(z)exp(bq(z))]dM(z)

Me
(research good feasi-

bility)

(e) πd

Wm
= κP ρ+λ−1Y where κ = (ρ−1)ρ−1

ρρ λλ(1− λ)1−λ (combining definition of πd and Wm

as a function of W)

(f) C +X = Y (Final good feasibility)

7. For the counterfactual, repeat the same procedure calibrating all parameters as in the bench-

mark year 1997 except for the tax rate. The tax rate is set as a function of z according to the

estimated elasticity of productivity distortion in 2005 and 2009.
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6.4 Calibration

I now discuss how the model is parameterized to match and reproduce data from the baseline

year (Italy in 1997). As in Atkeson and Burstein (2010), I choose six periods by year so that the

investment decision is done every two months while keeping the entry period to one year. The

log TFP entrant distribution G is parameterized as a normal distribution N(0, σe), where σe is

calibrated according to the standard deviation of firms younger than three years old in the baseline

year. The steady-state cost of capital R is chosen as in Hsieh and Klenow (2014) to 10%. This is

meant to account for an annual interest rate of 5% and an annual depreciation rate of 5%. Since

this is a steady-state, β is a function of R. I normalize the total labor force to L = 1. The elasticity

of substitution across varieties is calibrated as in Hsieh and Klenow (2014) to ρ = 3. The wage is

normalized to one. Due to the scarcity of information on the value of λ, I calibrate λ = 0.5 in the

benchmark and I perform sensitivity analysis by changing its values. Now, consider the parameters

shaping the law of motion of firm productivity z: (s, δ, ne, nf , h, and b). The exogenous death rate

δ is set to match the share of failing firms whose productivity is above the median. The intuition

is that these firms did not fail due to their productivity but due to some other shock, exogenous in

the model. The step size characterizing the grid is of particular importance. I calibrate s to match

the standard deviation in the employment growth rate of Italian firms found by Hall et al. (2008).

This is done ex-ante as in Atkeson and Burstein (2010). I normalize ne to 1 and fix nf to 0.01 as in

Atkeson and Burstein (2010). I can normalize one out of ne, nf , and h because the solution of the

model is invariant to proportional changes in all three parameters. I calibrate, h, and b to match

the productivity growth rate of firms by age from Figure 3. Note that the calibration of the b and

h parameters has to be done in an outer loop while solving the model. I choose a couple (h, b),

then I solve the model as described in Section 6.3 and I update the values of h, b with an adaptive

grid search routine until a level of tolerance is reached.

To summarize, table 8 lists all the parameter values and how they are targeted.
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Parameters Definition Value or Target

ρ Elasticity of substitution between vari-
eties

3 as in Hsieh and Klenow (2014)

R Discount rate Annual real interest rate of 10%

Periods Number of investment decisions by year 6 as in Atkeson and Burstein (2010)

σe Standard deviation of log entrant pro-
ductivity

1.064 to match the standard deviation
in log productivity of firms of age 0-3 in
baseline year

L Total labor force Normalized to 1

λ Labor elasticity in the production func-
tion of research sector

0.5 as in Atkeson and Burstein (2010)
then sensitivity analysis

δ Probability of exogenous death 0.0433 on an annual basis to match the
exit rate of firms above the median pro-
ductivity level in the baseline year

s Step size in the productivity grid and
for the growth of z

0.0636 to match the 0.1558 standard
deviation on an annual basis in the
employment growth rate from Hall et
al. (2008)

nf Fixed operation cost Set to 0.1 as in Atkeson and
Burstein (2010)

ne Fixed sunk cost of entry Normalized to 1

h Level parameter in the R&D cost func-
tion

Set with b to match baseline year pro-
ductivity growth rates by age

b Convexity parameter in the R&D cost
function

Set with h to match baseline year pro-
ductivity growth rates by age

µ Elasticity of productivity distortion Set to match the elasticity of produc-
tivity distortion in different years

Table 8: Calibration of parameters
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6.5 Results

To quantify the impact of the rise in the elasticity of productivity distortion documented in Figure

6.9, I fix the parameters of the innovation cost function and other parameters at the 1993-98 baseline

level. Then, I evaluate the effect of moving from the elasticity of productivity distortion in 1997

to the elasticity of productivity distortion in 2005 and 2009. These are new steady-states where

all parameters are fixed at the baseline level, except for the elasticity of productivity distortion.

As in Hsieh and Klenow (2014), a higher slope of the elasticity of productivity distortion implies

that the marginal return to innovation is lower relative to the baseline year. Figure 6 reports the

TFP lifecycle from the model versus the one obtained for the baseline years in Figure 3. Figure 7

reports the new model firm TFP lifecycle when the elasticity of productivity distortion is set at the

2005 and 2009 levels. Rising revenue tax rates have some success in explaining the lower growth

by age observed in Figure 3. Firms’ TFP lifecycle growth under 2009 elasticity of productivity

distortion is 7.9% lower relative to the baseline level. The elasticity level of 2009 accounts for

almost 50% of the difference in the TFP growth from age 0 to age 40 depicted in Figure 3. Table

9 reports the impact on aggregate productivity and other variables of interest. The rise in the

elasticity of productivity distortion has four effects. First, higher µ discourages innovation. This is

the main focus of this paper and its effect has been shown in Figure 7. Second, a greater correlation

between distortions and productivity generates misallocation of production factors. This effect

lowers aggregate productivity, for given TFP levels, as shown by Hsieh and Klenow (2009) and

Calligaris et al. (2018). Third, the cutoff productivity level z decreases when firms invest less to

boost their productivity to re-establish the free entry condition. Fourth, in the new steady-state,

there is an a priori unknown effect on the demand for the research good. On one hand, fewer

investments in process innovation free up R&D labor. On the other hand, since less productive

firms invest more in innovation to catch up with more productive firms, there is an offsetting force

working through an increase in the demand for the research good through a shift to the left of

the productivity distribution. The net effect of these four channels is a decrease in the aggregate

productivity of 5.97% relative to the baseline level. Consumption decreases by 6.1%. The negative
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effect on the TFP lifecycle is a relative decrease of 7.9%. The cutoff level z has decreased by 56.2%

relative to the baseline level. Lastly, labor employed in the research sector has increased by 1.15%

relative to the baseline year.

Figure 6: TFP lifecycle. Model vs data in baseline years

To summarize, the rise in the correlation between productivity and distortion can explain

almost 50% of the reduction in the cumulative growth over firms age observed in Figure 3. This

works through a reduction of investments in process innovation. The total effect on aggregate

productivity, accounting for other general equilibrium effects, is of 6% reduction relative to the

baseline level.
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Figure 7: TFP lifecycle. Model vs data in the counterfactual

7 Conclusion and Policy discussin

7.1 Drivers and Policy discussion

To shed additional light on the pattern in the correlation between productivity and frictions, I now

perform the same regression as in equation (4.8) but with different dependent variables. Since the

procedure of Hsieh and Klenow (2009) allows to compute both τY,a,s,i and τK,a,s,i, I introduce in

equation (4.8) first only the revenue friction as a dependent variable, then only the capital friction

as a dependent variable. Before describing the results some words of caution are required.

The identification of firm-level distortions is based on the concept of marginal revenue product.

The idea is that absent frictions, the marginal products of factors should be equalized across firms.

In particular, revenue and capital frictions are computed using the following equations:

MRPLs,a,i ≡ (1− αs)
ρ− 1

ρ

Ps,iYs,i

Ls,i
= w

1

1− τY,s,i
(7.1)
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Table 9: Summary of results

Variable 2005 Elasticity (=0.42) 2009 Elasticity (=0.46)

Elasticity of productivity distortion +7.7% +17.95%

Aggregate TFP -2.91% -5.97%

TFP Lifecycle growth -2.12% -7.91%

Consumption -2.94% -6.1%

Cutoff productivity -21.9% -56.2%

Research Labor +0.28% +1.15%

MRPKs,a,i ≡ (αs)
ρ− 1

ρ

Ps,iYs,i

ks,i
= R

1 + τK,s,i

1− τY,s,i
(7.2)

Since the assumed production function is characterized by only two production factors, the

wage distortion 1 + τL,s,i is not identifiable and 1 + τL,s,i is normalized to one. Distortions that

increase the marginal products of capital and labor by the same proportion are captured as output

distortion τY,a,s,i. Examples of such distortions are transportation costs, revenue taxes, and public

output subsidies. Regarding labor and capital distortions, it is possible to identify only distortions

that change the marginal product of capital input relative to the labor input. In particular, when

I measure τk,s,i and τY,s,i I am measuring the distortions relative to labor distortion which is

normalized to one. Suppose that the data reports a rise in the correlation between the measured

τK,s,i and TFP . This may be driven either by a rise in the correlation between capital distortion

and productivity or by a reduction in the correlation between labor distortion and productivity.

Nonetheless, as reported in equation (4.5), relative TFPR is a measure that embodies all three

measures of distortions. As a consequence, if we observe a rise in the correlation between TFP

and TFPR, together with a rise in the correlation between τK,s,i and TFPS,i, this implies that the

pattern in the correlation that we observe is driven by an increase in capital distortions correlation

rather than a decrease in labor distortions correlation. Otherwise, we would not observe an increase
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in the correlation between TFP and TFPR because the average amount of frictions would be

decreasing.

With these caveats in mind, I now perform the regression in equation (4.8) including in the

left hand side either (relative) revenue distortions 1
1−τY,s,i

or (relative) capital distortions 1+ τK,s,i.

The trend in the elasticity of productivity revenue distortion is reported in Figure 8. The trend in

the elasticity of productivity capital distortion is reported in Figure 9.

Figure 8: Trend in the elasticity of productivity revenue distortion

The two reported trends highlight that the rise in the correlation observed in Figure 6.9 be-

tween TFPR and TFP has been driven by an increase in the correlation between capital distortions

and productivity. Furthermore, this trend experiences an interesting reverse pattern corresponding

to the year 2016 when it starts declining with an immediate drop of 4 percentage points. This

result highlights an interesting pattern that could be an object of further research. In light of the

result of Figure 9, policy interventions should aim at reducing the costs of investments in innovative

tangible capital. On one hand, this would reduce the misallocation of production factors that is

found to be higher in more innovative firms (Calligaris et al. (2018)). On the other, this strategy
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Figure 9: Trend in the elasticity of productivity capital distortion

would increase the firms’ incentives to become more productive by reducing the distortions that

more productive firms are facing. The year 2016 corresponds to the year of the introduction of a

policy called Industria 4.0 8. Industria 4.0 should qualify as an effective policy to contrast capital

distortions for three main reasons. First, it aims at reducing the costs of investments in tangible

assets categorized as particularly innovative. Hence, the policy targets the cost of tangible capital

8Industria 4.0 is a plan aimed at facilitating and supporting investments in assets that are functional to the
technological change and digitization of the firm. There are two main incentives.

• Iperammortamento: 250% overestimation of investments in tangible assets qualifying as 4.0 for taxes purposes.

• Superammortamento: 140% overestimation of investments in tangible capital equipment for taxes purposes
(not 4.0). Conditional on having already iperammortamento, firms can benefit from superammortamento for
investments in intangible assets related to investments in the technological and / or digital transformation of
the firm in an Industry 4.0 (software and IT systems).

To qualify for iperammortamento, the investment should be

• capital goods whose operation is controlled by computerized systems and / or managed by means of suitable
sensors and drives. These machines must satisfy: interconnection to the production system of the firm
(interconnection requirement) & a simple and intuitive interface between man and machine & compliance
with the most recent parameters of safety, health and hygiene in the workplace & control by means of CNC
or PLC & interconnection to factory IT systems with remote loading of instructions and/or part programs ;

• Systems for quality and sustainability assurance

• Devices for man-machine interaction and for the improvement of ergonomics and workplace safety in logic 4.0

Examples of goods qualifying for Iperammortamento are: automated warehouses, machines used in production,
robots, benches and workstations equipped with ergonomic solutions capable of adapting them in an automated
manner to the physical characteristics of the operators.
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and may be effective in reducing its associated distortions. Second, tax incentives are spread in

time. By acquiring the good the firm becomes more productive and receives lower taxes in future

periods. Hence, it provides incentives for technology adoption. Third, it is particularly convenient

for more productive and profitable firms because tax benefits from the overestimation of assets are

beneficial only for firms experiencing business profits. Thus, the policy should impact the correla-

tion between capital distortions and productivity. Reforms such as Industria 4.0 have the specific

goal of reducing capital costs and increasing firms’ incentives for technology adoption and Italy

seems to be directed on the right track.

7.2 Conclusion

In this article, I have studied the Italian productivity puzzle focusing on firm-level TFP growth.

First, I documented an anemic growth in productivity over the firms’ life-cycle. Building on the

endogenous growth literature, this finding provides motivating evidence to study trends in market

imperfections that could have reduced firms’ incentives to innovate. Building on the work of Hsieh

and Klenow (2009) and Hsieh and Klenow (2014), I provided strong evidence of an increase in the

correlation between productivity and firm-level distortions that create wedges in the profit func-

tion. This trend may provide a possible explanation for the anemic firm-level productivity growth

observed in the data. The idea is simple: if the correlation between frictions and productivity

has increased, firms’ incentives to innovate decreased relative to the benchmark year. I provided

empirical evidence consistent with this hypothesis. In particular, I documented how the elastic-

ity of productivity distortion affects firms’ growth through its influence on returns to innovation.

Then, I built a general equilibrium model based on Atkeson and Burstein (2010) and Hsieh and

Klenow (2014), calibrated to the Italian economy in the years before the crisis. The model al-

lowed me to quantify the impact of the rise in the elasticity of productivity distortion on aggregate

productivity and on firms’ TFP life-cycle. Overall, I showed that the rise in the elasticity of pro-

ductivity distortion can explain a large part of the reduction in the firm-level growth rates and

can account for the absence of a recovery after the Italian productivity 1995 slowdown. Lastly, I
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have shed additional light on the trend in the elasticity of productivity distortion by investigating

its components. I have documented that the rise in the elasticity of productivity distortion was

mainly driven by a rise in the correlation between capital distortions and productivity. This trend

experienced a drop in 2016 reversing its pattern. This suggested that policies such as Industria 4.0

are effective tools to contrast rising trends in the elasticity of productivity capital distortion.

The contribution to the literature of my research is twofold. On one hand, I applied a frame-

work previously used to explain inter-countries differences to shed light on an intra-country worri-

some trend. I believe that several of these implications may apply to other economies facing their

own productivity puzzle, and may provide some useful policy advice. On the other hand, to my

knowledge, this is the first paper that provides empirical evidence consistent with the causal im-

pact of the elasticity of productivity distortion on firm-level growth. Hence, I provided important

evidence that contributes to the literature that studies firm-level distortions and growth.

To conclude, my results have important policy implications. Policies and institutional settings

that create market distortions in favor of less productive firms may reduce firms’ incentives to grow

and adversely affect economic outcomes. Examples of these policies are tax breaks, subsidies for

small firms, labor more regulated in larger and more profitable firms, bureaucracy, and thresholds

below which some regulations do not apply. Although there might be reasons to sustain less

productive firms, policy-makers should be aware of the negative consequences that these policies

have on aggregate variables. Therefore, policies should focus on creating an economic environment

which is more beneficial for more productive firms. Policies such as Industria 4.0 seem to be

effective and may provide the ground for future actions.
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Executive Summary

In the mid-1990s, Italian total factor productivity (TFP) growth experienced a severe slowdown,

turning negative in the 2000s. TFP measures how efficiently given amounts of capital and labor are

used to produce value-added. Economists are particularly concerned about TFP growth because

productivity lies at the heart of long-term growth and rising living standards. Thus, it is crucial to

understand what is at the root of this productivity breakdown.

Figure 10 shows the trend in manufacturing productivity, where TFP measurement is less contro-

versial than in services due to better accounting of the capital stock. Italian TFP is characterized

by a dramatic slowdown compared to other European countries, where productivity grew steadily

up to the Great Financial Crisis. What is particularly worrisome and puzzling about the 1995 pro-

ductivity breakdown is that, unlike in prior crises, TFP growth did not recover, turning negative in

the 2000s. What are the main drivers of this trend? Aggregate TFP is nothing else than a weighted

average of firm-level TFP. Thus, aggregate TFP depends on firm TFP along two dimensions. First,

for a given amount of factors used by each firm, aggregate TFP grows when firm-level TFP grows.

Second, for given firms’ TFP levels, aggregate TFP depends on the allocation of factors across

firms.

Figure 10: TFP in manufacturing for Italy, Germany, and France (2005=100).
Source: Calligaris et al. (2018)
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This paper will focus on the first channel to tackle the Italian productivity puzzle. The

main research question asks what could explain the absence of a recovery after the 1995 growth

breakdown. Building on the endogenous growth literature, I investigate whether changes in market

imperfections could have disincentivized firms from investing in productivity growth. Under the

assumption that firm-level productivity is driven by the firm’s R&D investments in process efficiency,

at least part of the trend in aggregate productivity could be explained by changes in firms’ stimulus

to innovation.

Hsieh and Klenow (2009) develop a monopolistic competition model that allows for measuring

frictions that enter the firm-level profit function. These frictions enter the profit function as revenue

and capital taxes and capture any firm-level cost that distorts the competitive market prices. The

idea is simple and builds on the distinction between physical TFP (from now on process efficiency

or TFP) and revenue TFP (from now on TFPR) introduced by Foster et al. (2008). TFPR is

proven to be proportional to the geometric average between marginal revenues of inputs. Absent

frictions, the marginal revenue of inputs should be equalized across firms since factors move from

low to high marginal revenue product firms. Hence, TFPR provides a measure of the total amount

of frictions faced by the firm. Hsieh and Klenow (2014) build a general equilibrium endogenous

growth model able to explain differences in aggregate productivity among India, Mexico, and the

United States. Their model is based on the concept that frictions may disincentivize growth. The

intuition is that the correlation between frictions and productivity may be different across countries

suggesting differences in firms’ incentives to invest in process efficiency. When highly productive

firms in India and Mexico confront greater taxes and factor costs than in the United States, the

marginal return to innovation is smaller, and firms invest less to boost productivity.

With these concepts in mind, I study the evolution of distortions and TFP at the firm level by

using the universe of Italian incorporated companies over the period 1993-to 2018. As preliminary

evidence, I find strong reductions in the firm-level productivity growth at every age profile. I

simulate TFP life-cycle compounding firms’ growth rates averaged by age. The idea is to simulate

how firms would evolve in their productivity keeping constant the economic conditions determining
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the growth rates. I find that in the years 2006-2014 firms experienced a 20% (relative to pre-2000)

decrease in their TFP growth over their simulated lifecycle. Moreover, I find that firms’ TFP

growth has experienced a partial recovery in the years after 2015. To shed light on this preliminary

result, I introduce the framework of Hsieh and Klenow (2009) and Hsieh and Klenow (2014) and

find strong evidence of an increase in the correlation between productivity and distortions. Relative

to 1997, the measured elasticity of productivity distortion has experienced an increase of almost

18%, reaching a peak of 0.46 in 2009. In 2009, a 1% increase in productivity is associated with a

0.46 % increase in average distortions.

Can higher elasticity of productivity distortion explain lower TFP growth rates? To answer

this question, I provide some reduced-form regressions trying to provide some empirical evidence

about the impact of the elasticity of productivity distortion on growth. I argue that my results

support the idea that the elasticity of productivity distortion has a causal impact on growth by

lowering the marginal return to innovation. First, I find a negative correlation between firm-level

productivity growth and the estimated sector-year elasticity of productivity distortion. One stan-

dard deviation increase in the elasticity is associated with a 0.95% reduction in future productivity.

Of course, this is not evidence of causality since there might be reverse causality or spurious corre-

lation. Therefore, I analyse the mechanism through which the elasticity of productivity distortion

impacts TFP growth. I provide evidence of a negative correlation between firm-level intangible

assets growth and the estimated elasticity of productivity distortion. One standard deviation in

the elasticity of productivity distortion is associated with a 3.33% reduction in the three-year in-

tangible assets growth. Since intangible assets growth, including branding, marketing etc., may

capture something else than investments in process innovation, and since there might still be re-

verse causality, I provide a further test of reverse causality based on the intuition of Rajan and

Zingales (1998) and Pagano and Schivardi (2003). I classify sectors according to an exogenous

measure of R&D intensity to proxy for sector-specific investment opportunities. If the elasticity

of productivity distortion has a causal impact on productivity growth through firms’ incentives to

innovate, I should find that its impact is stronger in sectors characterized by higher investment
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opportunities. Therefore, I consider whether the impact of the estimated elasticity of productivity

distortion varies systematically with R&D sectoral intensity. If this were to be the case, reverse

causality should be ruled out. Indeed, under reverse causality or spurious correlation, we would

expect a homogeneous relationship between elasticity and growth that does not vary according to

R&D intensity. The negative impact of one standard deviation increase in the elasticity of produc-

tivity distortion on firm-level productivity growth in a sector-year which is one standard deviation

above the mean of R&D intensity is 0.48 percentage points stronger. The differential on the three-

year intangible assets growth is 3 percentage points.

My empirical results indicate that the negative relationship between the estimated elasticity of

productivity distortion and firm-level productivity growth increases with R&D intensity. This is

consistent with a causal relationship between the elasticity of productivity distortion and growth

working through firms’ incentives to innovate. By looking at the interaction, rather than direct,

effects I am restricting the range of alternative explanations for the relationship between the elas-

ticity of productivity distortion and firm-level TFP growth. Hence, I am providing more consistent

evidence of causality.

Next, I quantify the impact that the 18% rise in the elasticity of productivity distortion had

on aggregate productivity and firm-level growth rates by building a general equilibrium endoge-

nous growth model of heterogeneous firms. I calibrate a closed economy version of Atkeson and

Burstein (2010) to the Italian pre-breakdown economy. Since there is no capital, frictions enter

the profit function as revenue taxes creating a wedge in the firm profits. In the model, I assume

distortions to be a function of the firm productivity, calibrated according to the different values

of the estimated elasticity of productivity distortion. I focus on three main mechanisms through

which the elasticity of productivity distortion impacts aggregate productivity. First, with higher

elasticity, the marginal return to innovation is lower and post-entry investments in process inno-

vation decrease. Hence, firm TFP growth will slowdown over the lifecycle. Second, with higher

elasticity, the allocation of factors is distorted and less productive firms receive more weight than

they would in an undistorted economy. Third, lower lifecycle growth reduces the competition posed
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by incumbents on less productive firms, reducing selection.

Results indicate that with the 2009 level of frictions aggregate productivity is 6% lower than it

would be if frictions had remained at the 1997 level. Moreover, incumbents’ TFP is reduced by

8%. This accounts for almost half the drop in the simulated TFP lifecycle obtained compounding

growth rates averaged by age.

I conclude the analysis by describing the key mechanisms driving the trend in the elasticity

of productivity distortion. I find that the main driver behind the rise in the elasticity has been

the increase in the correlation between productivity and capital distortions. The trend experienced

a change of direction after 2015. Although only suggestive evidence, this reverse pattern suggests

that Industria 4.0, a policy aimed at reducing the costs of investments in tangible assets that are

categorized as particularly innovative, has been an effective tool to contrast the worrisome trend

in the correlation between capital distortions and productivity. Further research may provide new

evidence on the causes of the trend observed in the elasticity of productivity capital distortion.

Moreover, it may provide more accurate evidence on the impact that policies such as Industria 4.0

have on distortions and incentives to innovate.

This paper is related to a number of studies that have used distortions, misallocation, and

the framework of Hsieh and Klenow (2009) and Hsieh and Klenow (2014) in various contexts, such

as Restuccia and Rogerson (2008), Bellone, Mallen-Pisano, et al. (2013), Bollard et al. (2013),

Bento and Restuccia (2017), Gopinath et al. (2017), Calligaris et al. (2018). The contribution of

this paper to this line of research is twofold. On one hand, I apply the methodology of Hsieh and

Klenow (2014), so far used only to explain inter-countries differences, within the same country. I

show how the trend in the elasticity of productivity distortion may provide some useful explanations

for a worrisome phenomenon such as the Italian productivity puzzle. I believe that several of these

implications may apply to other economies facing their own productivity puzzle, providing some

useful policy advice. On the other hand, to my knowledge, this is the first paper that provides

empirical evidence consistent with the causal impact of the elasticity of productivity distortion on

firm-level growth.
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The paper is also related to a number of studies that analysed the Italian productivity slowdown,

such as Navaretti et al. (2011), Bugamelli, Schivardi, et al. (2010), Bugamelli, Cannari, et al. (2012),

Benigno and Fornaro (2014), Michelacci and Schivardi (2013), Lippi and Schivardi (2014), Calli-

garis et al. (2016), Pellegrino and Zingales (2017), Schivardi and Schmitz (2020). In addition to

this literature, to my knowledge, this paper is the first that investigates firm-level incentives for

technology adoption to explain the Italian productivity puzzle.

To conclude, my results have important policy implications. Policies and institutional settings

that create market distortions in favor of less productive firms may reduce firms’ incentives to grow

and adversely affect economic outcomes. Examples of these policies are tax breaks, subsidies for

small firms, labor more regulated in larger and more profitable firms, bureaucracy, and thresholds

below which some regulations do not apply. Although there might be reasons to sustain less

productive firms, policy-makers should be aware of the negative consequences that these policies

have on aggregate variables. Therefore, policies should focus on creating an economic environment

which is more beneficial for more productive firms. Policies such as Industria 4.0 seem to be

effective and may provide the ground for future actions.
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