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Abstract

This thesis evaluate the two Dynamic Factor Models (DFMs) introduced by Stock and Wat-

son (2002a) (SW henceforth) and Forni, Hallin, Lippi, and Reichlin (2005) (FHLR henceforth) in

an empirical exercise on Euro Area macroeconomic monthly data spanning the period from 1997 to

2018. An in-sample analysis of the estimated factors underlines the importance that the expectational

variables have in explaining the comovement of macroeconomic series and that the Great Recession

has structurally changed the explanatory power of the factors. The forecasting exercise shows that

the DFMs outperform the univariate predictions for Industrial Production, Inflation and Unemploy-

ment rate but more on real variables rather than nominals and more during the recession periods.

Following the nesting procedure of SW and FHLR introduced by D’Agostino and Giannone (2012),

we provide evidence of the fact that imposing the structure of the DFMs in the forecasting equation

improves the predictive performance on real variables and it is the main driver of the difference in the

accuracy of the two models while the efficient weighting scheme associated with GPCs has a minor

impact. Lastly we show that the size and the selection of the variables to include in the panel affects

the performance. Removing the variables that are mainly idiosyncratic or variables that have too

cross-correlated idiosyncratic errors can improve the accuracy of the predictions.

∗I thank Marco Lippi and Alessandro Giovannelli for their patient guidance and for having shared their data with me.

Without them this work would never be possible. I also acknowledge the insightful comments that I have received by EIEF

faculty during the Thesis Control Sessions.
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1 Introduction

Economists and forecasters nowadays can rely on a huge number of economic time series. It seems

reasonable that focusing only on a few key indicators can produce a substantial loss of useful information

and, potentially, suboptimal forecasts. However, standard multivariate forecasting methods (e.g. Vector

AutoRegression, VAR) can deal only with time series of low cross-sectional dimension and they cannot be

identified in situations where the number of the time series is of the same order or even larger than the

length of the time series. Hence, VARs are not appropriate in this framework of large-dimensional data.

As a solution to this problem, the literature has given large space to the class of models called dynamic

factor models (DFMs), because of their ability to model simultaneously and consistently datasets in which

the number of series exceeds the number of time series observations.

Indeed, the main idea of the DFMs is that a small number of factors can capture the bulk of the

variation of the series by exploiting their comovements while the remaining part is a mean-zero idiosyncratic

disturbance. Therefore, the macroeconomic series that are empirically characterized by strong comovement

are a natural field of application for these factor models.

Dynamic factor models were originally proposed by Geweke (1977) as a time-series extension of factor

models previously developed for cross-sectional data. This justifies the term “dynamic” in the name to

underline the time dimension of the data. In early influential work, Sargent, Sims, et al. (1977) shows that

two dynamic factors can explain a large fraction of the variance of important U.S. quarterly macroeconomic

variables, including output, employment, and prices. This central empirical finding that a few factors can

explain a large fraction of the variance of many macroeconomic series is confirmed by many following

studies; see for example Stock and Watson (2002a) and D’Agostino and Giannone (2012).

The DFMs literature is very rich and many different models have been presented in the last thirty

years. Following Stock and Watson (2011), we can mention three main classes of models that differ by

their assumptions and, consequently, by the estimation method of the factors.

The first class assumes the cross-section dimension to be finite and the idiosyncratic term to be cross-

sectionally uncorrelated. The Kalman filter is used to compute the Gaussian likelihood, the parameters

are estimated by maximum likelihood and then the Kalman filter and smoother are used to obtain efficient

estimates of the factors (see Quah, Sargent, et al. (1993) for example).

The second class moves to an infinite dimension model allowing for some weak cross-correlation of

the idiosyncratic term. Therefore, it considers a non-parametric estimation. The factors are estimated by

cross-sectional average of the data, typically principal components or related methods such as generalized

principal components. The motivation of this estimation approach is that weighted averages of the id-
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iosyncratic disturbances (under some assumptions) converge to zero by the weak law of large numbers, so

that only linear combinations of the factors remain and the space of the factors is consistently estimated

as the cross-section and time dimensions go to infinity. Examples of these models are introduced by Stock

and Watson (2002a) and Forni, Hallin, Lippi, and Reichlin (2005).

The third class of models merges the statistical efficiency of the state space approach with the ro-

bustness and convenience of the principal components approach. The estimation procedure occurs in two

steps. First, the factors are estimated by principal components or generalized principal components. In

the second step, these estimated factors are used to estimate the unknown parameters of the state space

representation. See Giannone et al. (2008) for more details on the estimation methodology.

In this work we focus on the second class of models, precisely on the two most popular DFMs. The

first model is described by Stock and Watson (2002a) (SW henceforth) and uses principal components

(PCs) to estimate the factors. The second model considered is introduced by Forni, Hallin, Lippi, and

Reichlin (2005) (FHLR henceforth) and uses a two-step procedure of dynamic principal components and

generalized principal components (GPCs) to estimate the factors.

Even if the literature has focused on the forecasting properties of the DFMs, many applications go

beyond prediction exercises. Forni, Giannone, et al. (2009) and Forni, Gambetti, et al. (2020) use the

DFMs in structural analysis for example. In this framework, the dynamic factor structure is very useful

to correct for measurement error and solve the non-fundamentelness problem that is sometimes present in

structural VARs. See in particular Forni, Gambetti, et al. (2020) for the so-called Common Component

Structural VARs. Other interesting applications relate these models to structural factor-augmented vector

autoregressions (see Bernanke et al. (2005)), DSGEs (see Boivin and Giannoni (2006)) but also instrumental

variables (see Kapetanios and Marcellino (2010)). See Stock and Watson (2011) for a very detailed recap

of the literature on DFMs.

In this thesis we briefly describe the two models and how to nest them in the same framework

underlying the main differences. Next, we compare the two models in an empirical exercise with both in-

sample and out-of-sample analysis using a large monthly dataset of macroeconomic and financial time series

for the Euro Area economy from 1997 to 2018. This exercise aims to interpret the factors and evaluate the

forecasting performance of the DFMs and how it is affected by the business cycle, the estimation design

and the features of the dataset. The three variables of interest are industrial production, inflation and

unemployment rate. The predictions span from one to twelve months ahead.

The literature comparing the predictive performance of SW and FHLR is prolific but it has reached

a mixed conclusion. In a Monte Carlo study, Forni, Hallin, Lippi, and Reichlin (2005) show that FHLR is

more precise than SW when there are persistent dynamics in the factors and in the idiosyncratic errors.
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Using the US dataset proposed by Stock and Watson (2002b), Boivin and Ng (2005) find that SW generally

outperforms FHLR while D’Agostino and Giannone (2012) find that there is not an evident difference

between the performance of the two models. Moreover, moving to the Euro Area, Albano (2016) and

Forni, Giovannelli, et al. (2018) find that FHLR is the best model even if in the period before the Great

Recession started in Europe in 2008 the DFMs perform poorly with respect to the standard univariate

autoregressive predictions. Schumacher (2007) using a panel of German data finds that FHLR is more

accurate for GDP forecasts. See Eickmeier and Ziegler (2008) for a large meta-analysis of 46 forecasting

exercises using DFMs.

Our main results are that the DFMs outperform the univariate model for all the variables of interest

but in particular for IP and UR. The DFMs are not only more precise during the recession periods but

also in the years after, especially for the unemployment rate. The relative performance of the DFMs

is mixed but the key element that explains the different performance of FHLR and SW is the different

forecasting equation while the use of generalized principal components is of minor impact and mainly on

short-horizon predictions. The predictions are affected by the size and the selection of the series present in

the panel. Removing the variables that are mainly idiosyncratic or variables that have too cross-correlated

idiosyncratic errors can improve the accuracy of the predictions, particularly for SW.

This work contributes to the vast literature on dynamic factors models along different dimensions.

From a technical perspective, it introduces a new dataset of Euro Area data, larger than the standard

panel used for the US studies.

Looking at the empirical exercise, first of all, it extends the in-sample analysis of McCracken and

Ng (2015) to the Euro Area data introducing also a dynamic analysis of the factors over time.

Secondly, it enters into the debated question about the relative performance of the two most popular

DFMs (SW and FHLR) applying the nesting method described in D’Agostino and Giannone (2012) for

the first time to European and more recent data (after 2000). Moreover, it also includes to the variable of

interest the unemployment rate moving the debate on the relative performance of the models to a different

dimension.

Finally, it extends the work on the role of data selection introduced by Boivin and Ng (2006) to EA

data and considers also the FHLR predictor while instead the cited paper considers only the SW model.

The work is organized as follows. In Section 2 we briefly overview the theory behind the DFMs

and their identification assumptions. We also review the theoretical structure of SW and FHLR models

underlying the differences and nesting the two models. In Section 3 we introduce our empirical exercise

and report the results of the in-sample analysis of the factors, we compare the forecasting performance of

the DFMs to the univariate forecasts and of SW and FHLR. In the last part of the section, we consider the
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effect of data selection on the predictions and we try to address two possible related concerns. Section 4

concludes and raise some question for future research. Some additional material such as figures and tables

related to the empirical exercise in Section 3 is gathered in the Appendix.

2 Dynamic Factor Models: Theory

Consider a sample of dimensions (N, T ) of a covariance stationary process YN
t = (y1,t, . . . , yN,t, where

N is of the same order of T or even greater. We are interested in forecasting some elements of YN
t h

period ahead. A very simple idea could be to linearly project the series on the space spanned by the

entire set of variables up to time t. However, under the assumption that N ≈ T , this linear projection is

unfeasible (curse of dimensionality). If we assume that actually most of the variation is explained by a

few unobservable common factors, say r ≪ N , then a possible solution is to consider a Dynamic Factor

Model (DFM). Call XN
t = (xit, . . . , xNt) the standardized version of YN

t . Following Forni, Hallin, Lippi,

and Reichlin (2000), in a DFM framework we assume that the standardized series xit can be decomposed

into:

xit = χit + ξit = bi1(L)u1t + bi2(L)u2t + · · · + biq(L)uqt + ξit, (2.1)

where χit is the common component, ξit the idiosyncratic component, bij(L), j = 1, . . . , q linear filters in

the lag operator L of order s and ut = (u1t, . . . , uqt) a q-dimensional vector of orthonormal white noises

that we call common shocks. The two components, χit and ξit, are unobservable.

Crucially, we assume that ξit is orthogonal to us with s ∈ Z so that the idiosyncratic term is orthogonal

to the common shocks at any leads and lags.

Standard assumption in factors model, as in Sargent, Sims, et al. (1977), is that the idiosyncratic

component is cross-sectionally orthogonal and, consequently, the covariance matrix of the idiosyncratic

term is diagonal. The specification is known as an exact factor structure. As pointed out by Chamberlain

and Rothschild (1983) and followed by Forni, Hallin, Lippi, and Reichlin (2000), Stock and Watson (2002a)

and many studies on DFMs, this assumption is likely to be violated in the real world. We can partially

relax this assumption by introducing a so-called approximate factor structure, in which the idiosyncratic

term is allowed to be “weakly” cross-correlated. The meaning of “weakly” will be clear very soon when we

are going to define more precisely the asymptotic assumptions that allow the identification of the model.

A very common assumption for DFMs is that it can be written as

xit = ai(L)ft + ξit, (2.2)
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where ft is a q × 1 vector of dynamic factors that follows a VAR scheme of the form N(L)ut. Letting

Ft = (f ′
t , . . . , f ′

t−s)′ and Ai = (ai1, . . . , ais) we can write (2.2) as

xit = AiFt + ξit, (2.3)

where r = q(s + 1) common factors have only a contemporaneous effect on the observed series. For this

reason (2.3) is typically called static representation and Ft static factors while we refer to (2.2) as dynamic

representation given that the factors are loaded with their lags.

Regardless of the name, the static representation (2.3) incorporates the dynamic nature of the model.

The spectral density of the common component has rank q, the number of the dynamic factors, indeed.

However, the class of DFMs that have a static representation is larger than the class described by

(2.2). Indeed, there exist models that have a static representation even if they cannot be represented as in

(2.2). Consider for example a model with static representation

xit = a1F1t + a2F2t + ξit,

where the static factors are

F1t = (1 − α1L)−1ut, F2t = (1 − α2L)−1ut.

Clearly this model cannot be expressed as in (2.2) but it has a static representation. Therefore, let

generically express the static representation of a DFM in the following way:

xit = λi1F1t + λi2F2t + · · · + λirFrt + ξit = ΛiFt + ξit. (2.4)

Denote by Γx
N the variance-covariance matrix of XN

t and by Γχ
N and Γξ

N the variance-covariance

matrix of the common component and the idiosyncratic component. Analogously, we can define the

spectral density of the observed series, the common component and the idiosyncratic component as Σx
N(θ),

Σχ
N(θ) and Σξ

N(θ), where θ ∈ [−π, π] is the frequency. Note that, under the orthogonality assumption of

the two components, both the variance-covariance and the spectral density of XN
t can be decomposed into

the sum of the equivalent matrices for the two components, i.e.

Γx
N = Γχ

N + Γξ
N , and Σx

N(θ) = Σχ
N(θ) + Σξ

N(θ), ∀θ ∈ [−π, π].

Now we can formally state the theorem proved by Chamberlain and Rothschild (1983) and the
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assumptions that guarantee the identification of the model as described in (2.4).

Under the restriction that the space spanned by the factors is finite-dimensional, the assumptions

are:

Assumptions

1. For all N ∈ N the vector XN
t is covariance stationary.

2. Let µx
Nj be the j-th eigenvalue of Γx

N and µ̄x
j = supN∈N µx

Nj. There exists a positive r such that

µ̄x
r = ∞ and µ̄x

r+1 < ∞.

Theorem (Chamberlain and Rothschild (1983))

Given the Assumptions above, Xt = (xit, i ∈ N) can be represented as in (2.4) where Ft is a stationary

r-dimensional vector. Moreover,

1. ξit satisfies Assumption 1 and µ̄ξ
1 < ∞ where µ̄ξ

1 = supN∈N µξ
N1.

2. χit satisfies Assumption 1, µ̄χ
r = ∞ and µ̄χ

r+j = 0 for all j > 0 where analogously µ̄χ
j = supN∈N µχ

Nj.

3. The idiosyncratic term and the static factors are uncorrelated at any time t ∈ Z.

4. The number of static factors, the common and the idiosyncratic component for all the series are

uniquely identified.

Also the converse is true, i.e. if Xt can be represented as in (2.3) with χit and ξit satisfying the points 1-3

of the Theorem, then Xt satisfies Assumption 1-2 above.

The finite-dimension restriction can be relaxed, so that the model cannot be represented as in (2.4)

but only as in (2.1). A theorem similar to the one presented allowing for infinite-dimension space spanned

by (χ1t, . . . , χNt) is proved by Forni, Hallin, Lippi, and Reichlin (2001) and the estimation of the model

presented in Forni, Hallin, Lippi, and Zaffaroni (2015). However, in the two DFMs that we present in this

work, the finite-dimension restriction remains binding. The empirical exercise presented in the following

sections already faces a large number of possible specifications using only SW and FHLR, so we decided

to focus only on finite-dimensional models leaving a similar exploration of more computationally intense

models to future research1.
1To have an idea of the forecasting performance of the infinite-dimensional model introduced by Forni, Hallin, Lippi, and

Zaffaroni (2015) see the results on US data in Forni, Giovannelli, et al. (2018) and the equivalent exercise on Euro Area data
in Albano (2016). Results in some Monte Carlo experiments are presented in Forni, Hallin, Lippi, and Zaffaroni (2017).
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In the framework described, we are going to estimate the factors taking linear combinations of the

x’s, in particular principal components (PCs) as in Stock and Watson (2002a) and generalized principal

components (GPCs) as in Forni, Hallin, Lippi, and Reichlin (2005).

The intuition behind assumptions 1-2 is that we want the common component to survive to the

aggregation while the idiosyncratic component should tend to zero in variance. Assumption 2, indeed,

implies that the common component is pervasive in the sense that it is ruled out the possibility that some

elements in Ft are loaded only by a finite number of x’s.

Point 1 of the theorem gives a precise meaning to the “weak” cross-covariance that is allowed in the

approximate factor structure.

In the following sections, in order to avoid a too-heavy notation the dependence on N of Xt, Γx and

all other quantities is not made explicit even if clearly still present.

2.1 SW model

The first DFM that we consider in our empirical exercise is introduced by Stock and Watson (2002a).

In this case, the static representation takes the form

xit = λi1F1t + λi2F2t + · · · + λirFrt + ξit = ΛFt + ξit,

where Λ and Ft are estimated using the first r principal components of the standardized series.

Define as Dr the diagonal matrix whose diagonal elements are the r largest eigenvalues of Γ̂0 =

T −1 ∑T
t=1 XtX′

t, the sample cross-covariance matrix, and Vr the N × r matrix whose columns are the

corresponding r eigenvectors. Our estimated static factors are then:

F̂t = V ′
r Xt, (2.5)

and the estimated covariance matrix of the common component is:

Γ̂χ
0 = VrDrV

′
r . (2.6)

The estimated F̂t are then used as predictors in the following forecasting equation:

ŷSW
i,t+h|t = α̂ihF̂t + β̂ih(L)yit, (2.7)
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i.e. the projection of yi,t+h on the space spanned by (F̂t, yit, yi,t−1, . . . )2. The equation (2.7) is estimated

by simple ordinary least squares (OLS) regression. The presence of lagged values of the series can be

explained by the idea that they can capture possible autocorrelation of the idiosyncratic term. Note that,

as underlined by D’Agostino and Giannone (2012), (2.7) does not incorporate the dynamic structure of the

model that is instead embedded in the FHLR approach. We address in more detail this difference in the

forecasting equation in Section 2.3.

2.2 FHLR model

The model introduced by Forni, Hallin, Lippi, and Reichlin (2005) moves to a frequency domain

approach as in Forni, Hallin, Lippi, and Reichlin (2000) but the space spanned by the factors is still

assumed to be finite. The procedure originally proposed by Forni, Hallin, Lippi, and Reichlin (2000) uses

the dynamic principal component to obtain a consistent estimator of the common component. However,

this method creates serious issues for forecasting because it is based on two-sided filters whose performance

deteriorates at the margins of the sample. Forni, Hallin, Lippi, and Reichlin (2005) propose a two-step

approach to overcome this problem:

1. Estimate the covariance matrix of the two orthogonal components as in Forni, Hallin, Lippi, and

Reichlin (2000) using a frequency domain method;

2. Given the two covariance matrices estimate the factors using the generalized principal components.

In the first step from the sample autocovariance of order k, namely Γ̂x
k = (T − k)−1 ∑T −k

t=1 XtX′
t−k, we

can obtain a consistent estimator of the spectral density:

Σ̂x(θ) = 1
2π

m∑
k=−m

wkΓ̂x
ke−iθk, (2.8)

where wk = 1 − |k|
m+1 , k = −m, . . . , m is a triangular window of length m. In this way, we can estimate

the spectra at 2m + 1 equally spaced frequencies in [−π, π]. Let Dq(θ) be a diagonal matrix having on the

diagonal the q largest eigenvalues of Σ̂x(θ) and Vq(θ) the N ×q matrix whose columns are the corresponding

eigenvectors. Then, if Xt is driven by q dynamic factors we can estimate the spectral density of the common
2In this case we are considering only a contemporaneous dependence on the factors. This forecasting method is known as

Diffusion Index - Autoregressive (DI-AR). Theoretically it could be possible to consider also the lagged values of the factors,
but it is shown by Stock and Watson (2002a) and other empirical works (see for example Forni, Giovannelli, et al. (2018))
that the effect on forecasting performance is null or even negative. Moreover, we show that in many case even the lagged
value of the series are not beneficial and so the optimal method is a simple Diffusion Index (DI). Similar results are found by
Albano (2016); D’Agostino and Giannone (2012); Forni, Giovannelli, et al. (2018).
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component as:

Σ̂χ(θ) = Vq(θ)Dq(θ)Vq(θ)′. (2.9)

The estimated spectral density of the idiosyncratic component can be computed residually as:

Σ̂ξ(θ) = Σ̂x(θ) − Σ̂χ(θ).

In order to get Γ̂χ
k and Γ̂ξ

k, we use the inverse discrete Fourier transforms

Γ̂χ
k = 2π

2m + 1

m∑
h=−m

Σ̂χ(θh)e−iθhk

Γ̂ξ
k = 2π

2m + 1

m∑
h=−m

Σ̂ξ(θh)e−iθhk,

with θh = 2π
2m+1h, h = −m, . . . , m.

In the second step, from the estimated covariances we obtain a linear combination of the x’s that

theoretically should be more efficient than the standard principal components used in SW model. In this

case, the optimal weights of the r linear combination are the first r generalized eigenvectors, the columns

of the N × r matrix Vrg, associated with the first r generalized eigenvalues,i.e. the elements in the diagonal

matrix Drg. The generalized eigenvectors are recursively defined by the GPC problem:

Γ̂χ
0 Vrg = Γ̂ξ

0VrgDrg s.t. V ′
rgΓ̂ξ

0Vrg = Ir. (2.10)

The estimated static factors in FHLR are then the first r generalized principal components, i.e.

F̂G
t = V ′

rgXt. (2.11)

In the empirical exercise, it is important to underline that, following Forni, Hallin, Lippi, and Reich-

lin (2005), we force to zero the off-diagonal terms of the estimated Γ̂ξ
0 because it is ill-conditioned when N

is large compared to T as it is in our data. Simulations show that this procedure improves significantly the

forecasting performance not affecting the consistency of the estimator. Indeed, Forni, Hallin, Lippi, and

Reichlin (2005) prove that replacing Γ̂ξ
0 with any symmetric positive semi-definite matrix with bounded

eigenvalues does not affect the consistency results.

Generally, it can be shown that the generalized principal components of Xt are equal to the standard

principal components of the transformed vector X̃t = (Γ̂ξ
0)−1/2Xt. Given the forced diagonal structure of Γ̂ξ

0,

the generalized principal components are equal to the standard principal components of the series weighted
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by the inverse of the estimated idiosyncratic variance. In this way, we give more weight to variables that

are well explained by the common factors and less importance to the series that are mainly idiosyncratic.

It is now clear why the FHLR method should provide a more efficient weighting scheme in the estimation

of the static factors.

The FHLR approach is different from SW also in the forecasting projection, because it takes into

account explicitly the dynamic structure imposed by the model, using the estimated Γ̂χ
0 that conveys

information contained in the whole covariance sequence {Γ̂x
k, k ∈ Z}. In this case, following Forni, Hallin,

Lippi, and Reichlin (2005) we predict the series only using forecasts of the common component. There is

some attempt of idiosyncratic forecast in the literature (see D’Agostino and Giannone (2012) for example)

but the results suggest that the idiosyncratic term is unpredictable. The forecast of the common component

h step ahead is, in vector, the projection:

χ̂t+h|t = Proj(χi,t+h|F̂G
t ) = Γ̂χ

hVrg(V ′
rgΓ̂x

0Vrg)−1V ′
rgXt. (2.12)

Given the prediction of the common component, we compute the prediction of the series i h step ahead,

namely ŷF HLR
i,t+h|t , reattributing the mean and the variance as the factors estimation is computed on the

standardized data Xt, i.e.

ŷF HLR
i,t+h|t = σ̂iχ̂t+h|t + µ̂i.

2.3 SW vs FHLR: Nesting the models

In order to properly compare the two different DFMs is useful to nest the two models. For this reason,

we follow the nesting of the two approaches described in D’Agostino and Giannone (2012) and here briefly

presented. In particular, note that FHLR introduces two main new elements:

1. The use of the GPC instead of PC and, consequently, the weighting scheme according to the signal-

to-noise ratio;

2. FHLR performs a constrained (CON) projection using the estimated autocovariance of the two com-

ponents while SW uses an unconstrained (UNC) OLS regression.

Therefore we can define two hybrid models that incorporate only one single difference as described

by the following scheme:

UNC CON
PC SW PC/CON
GPC GPC/UNC FHLR
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In this way, if we want to evaluate the effect on the forecasting performance of the weighting scheme

associated with the generalized principal components we can compare PC/UNC (alias SW) and GPC/UNC

(or equivalently PC/CON and GPC/CON). If instead we are interested in understanding what is the

impact of the constrained projection, we can compare the predictive performance of PC/CON (alias SW)

and PC/UNC (or equivalently of GPC/CON and GPC/UNC).

The GPC/UNC is computed by replacing the static factors estimated by the principal components

F̂t with the equivalent factors estimated using the generalized principal components F̂G
t in (2.7). The

forecasting equation becomes:

ŷ
GP C/UNC
i,t+h|t = α̂ihF̂G

t + β̂ih(L)yit, (2.13)

where the coefficients are estimated by OLS.

The PC/CON model, instead, is obtained by replacing in (2.12) the matrix Vrg with the matrix Vr

whose columns are the first r standard eigenvectors of Γ̂x
0 . The projected common component is then

χ̂
P C/CON
t+h|t = Γ̂χ

hVr(V ′
r Γ̂x

0Vr)−1V ′
r Xt. (2.14)

It follows that the predicted series is

ŷ
P C/CON
i,t+h|t = σ̂iχ̂

P C/CON
t+h|t + µ̂i.

Note that as the number of common shocks q increases, the dynamic structure restriction in (2.12) becomes

less stringent; if as an extreme exercise we assume q = n and we use a rectangular window, i.e. wk =

1, k = −m, . . . , m, the estimated autocovariance of the common component coincides with the sample

autocovariance matrix and the equation (2.14) coincides with the OLS regression (without lagged values of

the predicted series) in (2.7). In Section 3.3.2 we compare the predictive performance of these four nested

models trying to understand which of the two new elements drives the difference (when evident) between

the performance of SW and FHLR.

3 The empirical exercise

In this section we introduce an empirical exercise with the DFMs introduced above. The exercise

includes both an in-sample and out-of-sample analysis.

The aim of the in-sample analysis is to interpret the estimated factors and also how they evolve over

time. The out-of-sample exercise, instead, firstly compares the forecasting performance of the DFMs with
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a univariate predictor and then among themselves using the nesting procedure in Section 2.3. In the last

part of the out-of-sample exercise, we evaluate the effect of the size and features of the panel used in the

exercise on the predictive performance of the two models.

3.1 Data description

The dataset employed in this empirical exercise is composed of 309 macroeconomic monthly series

spanning the period from January 1997 to December 2018. Data, therefore, include both the Great

Recession originated from the 2007 US financial crisis and its spillover effect in the Euro Area from the

second quarter of 2008 to the second quarter of 2009. It also includes the so-called Euro Area Sovereign

Debt crisis in 2012 while the COVID-19 pandemic period is left out.

The series refer both to the Euro Area (EA 19) and to the four main European economies: France,

Germany, Italy and Spain. The selected variables can also be grouped by their measurement domain:

Building Permits & Civil Engineering (BP), Consumer Survey based Confidence Indicators (CS), Harmo-

nized Consumer Price Indices (CPI), Harmonized Unemployment Rates (UR), Industrial Production (IP),

Industry & Construction Surveys (ICS), Money & Interest Rates (MIR), Producer Price Index (PPI),

Service Surveys (SS) and Turnover & Retail Sales (TRS).

Figure 3.1 displays the composition of the dataset along the two dimensions just presented. The

distribution of the series is quite heterogeneous both across countries and categories. Industrial Production

and Industry & Construction surveys are the most present in particular for Germany and France while the

latter is almost absent for Italy. In the Appendix the entire set of variables with their denomination is

listed in Table A.1.

To our knowledge, this is the first attempt to use SW and FHLR on this dataset which is also fairly

large as compared to the US dataset considered by Stock and Watson (2002b) and Forni, Hallin, Lippi,

and Reichlin (2005), 150 series, but also to the EA dataset used by Albano (2016); Forni, Giovannelli,

et al. (2018), 176 series. On the contrary, the time dimension is quite small. This issue is addressed in

Section 3.3 when we describe the design of the forecasting exercise.

In order to achieve stationarity, as required by the DFMs estimation, the series are taken in first dif-

ference (some survey variables), first difference of the logarithm (mainly real variables and unemployment)

and second difference of the logarithm (mainly nominal variables). Once transformed, we reject the unit

root presence in the Augmented Dickey-Fuller test for all the series considered. To have a more detailed

frame of what is the filter applied to each series, see in the Appendix Table A.1. As usual in the DFMs

framework, no treatment for outliers is applied.

The main motivation behind the factor representation is the strong comovement among macroeco-
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Figure 3.1: Dataset Composition by area and measurement domain

nomic series that is empirically observed. This provides empirical evidence in favor of the idea that a

small number of shocks drive the entire economy. At first glance, the comovement in our dataset is evident

from the share of the variance explained by the estimated factors. Formally, the explained variance is

computed for the static factors as the ratio trace Dr/ trace Γ̂x
0 while for the dynamic factors as the ratio

trace Γ̂χ
0 / trace Γ̂x

0 where Γ̂χ
0 is computed using the first q dynamic principal components as described in

Section 2.2. These two measures are reported in Table 3.1 for q and r ranging from 1 to 10.

Table 3.1 shows that a small number of factors is able to capture almost the bulk of the variance of

the entire set of variables. In particular, two dynamic factors and ten static factors can explain almost half

of the total variance.

Dynamic factors account for at least the same variance explained by the static factors by construction;

however, it seems clear that there is evidence of a dynamic structure in the dataset. Remember that

r = q(s + 1), so given that q = 2 and r = 10 factors explained the same amount of variance then it should

be s ∼ 5 suggesting some dynamics.

Table 3.1: Variance explained by the estimated factors
1 2 3 4 5 6 7 8 9 10

q dynamic factors 0.34 0.48 0.59 0.67 0.74 0.80 0.84 0.88 0.90 0.92
r static factors 0.14 0.22 0.28 0.31 0.34 0.37 0.39 0.41 0.43 0.45

3.2 In-sample Analysis

The first aim of our empirical exercise is to analyze in-sample the estimated factors trying to under-

stand which series are better explained by the factors and how this depends on the business cycle.
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For this in-sample analysis we fix r = 5 in SW model and q = 3, r = 5 in FHLR given that they are

exactly in the middle of the set of specifications that we are going to consider in the forecasting exercise,

i.e. r = 1, . . . , 10 and q = 1, . . . , 5. Moreover, they also result to be the best specifications available or

close to them in many situations in the following forecasting exercise.

As in McCracken and Ng (2015), the main statistic that we want to consider is the explanatory power

of each factor, namely R2
i (k) for i = 1, . . . , N and k = 1, . . . , r. Once estimated the r factors by SW or

FHLR, we regress each factor k on each series i to obtain the explanatory power R2
i (k). Averaging on the

series we compute the average explanatory power of each factor, i.e. R2(k) = N−1 ∑N
i=1 R2

i (k).

Table 3.2 presents the ten variables mostly explained by the first five factors estimated by SW, i.e.

the 10 variables with the highest R2
i (k) for k = 1, . . . , 5. The factors are estimated using the entire sample.

The same table can be found in the Appendix for the first five factors estimated by FHLR, see Table A.2.

The first factor in both cases, captures mostly the variation in survey variables, in particular variables

related to the personal outlook in industrial production. It is not surprising then that the first factor seems

to trace the business cycle very well, see Fig. A.1 in the Appendix. As in McCracken and Ng (2015), we

also consider as a rough business cycle indicator the cumulative sum of the first factor, i.e. F̂cum
t = ∑t

h=1 F̂j.

There are indeed some examples of business cycle indexes based on DFMs even with a more elaborated

methodology. It is worth mentioning on this topic Eurocoin as introduced by Altissimo et al. (2001).

Note that the first factor is by construction the most informative in the sense that explained the

largest share of variance (almost 14%), so it is interesting to point out that these expectational variables

explain a substantial share of variation of the macroeconomic series.

In SW, the second factor is still related to surveys while factors 3 and 4 are mainly related to prices

and factor 5 to real activities. In FHLR, instead, the second and third factors are mainly real factors while

the fifth is a nominal factor. Factor 4 is more mixed. R2
i (4) are very low, indeed.

Table 3.2: Explanatory power Factors 1-5 SW
R2

i (1) Variable R2
i (2) Variable R2

i (3) Variable R2
i (4) Variable R2

i (5) Variable
0.562 ICS-23 0.493 SS-305 0.349 CPI-213 0.297 CPI-218 0.243 IP-148
0.561 ICS-48 0.456 ICS-28 0.310 CPI-204 0.263 CPI-235 0.230 IP-165
0.545 ICS-26 0.455 SS-307 0.306 CPI-234 0.260 CPI-220 0.226 IP-144
0.536 IP-109 0.453 ICS-44 0.267 CPI-216 0.235 IP-167 0.224 IP-164
0.534 ICS-45 0.446 SS-308 0.224 IP-163 0.221 CPI-221 0.223 IP-145
R2(1) = 0.139 R2(2) = 0.083 R2(3) = 0.054 R2(4) = 0.036 R2(5) = 0.032

In order to understand how the factors change over time, we consider the following exercise. We

estimate the model recursively from January 2004 up to December 2018 extending the estimation sample

month by month. At each period we compute our measure of the explanatory power of the factors. The

results are shown in the heatmaps in Figure 3.2 and Figure A.2 in the Appendix. On the x-axis there
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is the estimation period, on the y-axis the series, grouped by category; the color is assigned according to

R2
it(k), k = 1, . . . , 5 where t is the estimation period so that the sample used for the estimation is [1, t].

Figure 3.2 and Figure A.2 show that there is indeed some dependence over the business cycle. The

Great Recession in 2008-2009 seems to be a permanent shock in the explanatory power of the factors. The

high correlation with expectational variables stands only after 2009. It is interesting to note that when the

factors are computed using the FHLR approach, see Figure A.2, the Great Recession shock seems to be

transitory, at least for the first two factors. In Factor 3 the permanency of the shock is most evident. In

both approaches, the third factor starts as an expectational factor and then changes into a mainly nominal

factor in SW and a more mixed factor in FHLR.

Factors 4 and 5 in FHLR show also a shock in 2011-2012 after the Debt Crisis and it is also clear

here that these factors have a more mixed nature. In the Appendix the same Figures are reported also for

the factors loadings, see Figures A.3 and A.4. See the Appendix also for more details on how the loadings

are defined.

Lastly, we want to directly compare the factors estimated according to the two different DFMs

considered. In order to do so, using the same recursive exercise, we compute the correlation across the

same factors in the two approaches, namely ρkt = corr(F̂kt, F̂G
kt), k = 1, . . . , 5 and t denotes the estimation

period. Remember that here F̂kt and F̂G
kt have dimension t × 1 given the recursive scheme.

Figure 3.3 displays the correlations in a heatmap with an interpretation similar to 3.2, but now on

the y-axis there are the five factors. From the plot it is evident that the first three factors are highly

correlated, in particular after the Great Recession where the correlation is close to 1. The last two factors,

instead, are substantially different after 2009. The last factors, indeed, are almost orthogonal in the period

between the two crises.

3.3 Forecasting exercise

The aim of this section is to evaluate the performance of the two DFMs in forecasting Industrial

Production (IP), Consumer Price Index (CPI) and Unemployment rate (UR) at different horizons. The

forecasting period is from February 2007 up to the end of the sample, December 2018. For the predictions

we use a rolling window of ten years3 so that at time t we use the sample [t − 119, t] to predict the series h

step ahead with h = 1, 3, 6, 12 months. This means that we start with the ten years sample from March4

1997 to February 2007 to predict March 2007, May 2007, August 2007 and February 2008. The last
3We repeat the same exercise also with a rolling window of 5 years in order to assess how the window size affects the

predictions. See Section 3.3.1.
4Note that the first two months of the sample are lost because prices are transformed in second difference of the logarithm

to achieve stationarity.
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Figure 3.2: R2
it(k), k = 1, . . . , 5, SW Factors

estimation period is December 2017 given that the sample ends in December 2018, 12 months after.

It is common in the literature to divide the sample into a pre-sample and a sample-proper. The first
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Figure 3.3: ρkt, k = 1, . . . , 5, SW vs FHLR: Factors correlation

one is used to calibrate the model, so choosing the optimal parameters, and then in the latter only the best

specifications of each model are estimated and compared. This is the golden rule to properly compare two

different models. See as an example Forni, Giovannelli, et al. (2018). However, this methodology requires

a fairly large sample. This is not our case. For this reason, we have decided to use the entire sample

available as sample-proper. As in D’Agostino and Giannone (2012), we present a battery of specifications

always keeping in mind that if only a particular specification of a model is better than a specification of

another model it is not a conclusive result on the relative performance of the models, indeed. It may be

possible that the optimal parameters would have been disregarded ex-ante in the calibration and so it

would not have been the specification used to evaluate the performance of the model relative to the others.

Nonetheless, we still think that this forecasting exercise is informative, in particular if the predictions are

similar for a set of parameters (at least a subset of the space) and/or the relative performance of different

specifications is quite uniform over the sample period. Figure A.5 in the Appendix seems to be quite

reassuring on this.

We consider only direct forecasting at each horizon h and not iterating one-step-ahead as stated in

(2.7),(2.12),(2.13) and (2.14).

In the exercise we also compute as a benchmark the predictions of the univariate autoregressive (AR)

model that are given by the forecasting equation ŷAR
i,t+h|t = β̂ih(L)yit, where the coefficients are estimated

by OLS.

Let define the target of our predictions as the level of the EA log of industrial production index

and of the harmonized unemployment rate and the EA first difference of the logarithm of the harmonized

CPI, i.e. EA monthly inflation. These definitions are aligned with the literature, see D’Agostino and

Giannone (2012) and Forni, Giovannelli, et al. (2018).
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Note that the literature has focused mainly on IP and CPI. We decided to include also UR because

we think it may be of great interest to properly evaluate the predictive performance on this crucial monthly

macroeconomic series.

As the three variables are treated in Yt to achieve stationarity, we need some transformations to

obtain the forecasting target. Let in general xt be a time series and yt = log xt − log xt−1 be the first

difference of the logs and zt = log xt − 2 log xt−1 + log xt−2 = yt − yt−1 be the second difference of the logs

and recursively also the first difference of the log first difference. Note that xt+h = yt+1 + · · · + yt+h + xt

and that yt+h = zt+1 + · · · + zt+h + yt. It is clear that we can compute the target prediction by summing

the forecasts of the stationary variables from 1 up to h step ahead. Therefore, define the target5 at time

t + h generically as Zi,t+h = Yi,t+1 + · · · + Yi,t+h. For the three variables of interest the target is then:

Zi,t+h =


log IPt+h − log IPt for i=IP

(1 − L) log CPIt+h − (1 − L) log CPIt for i=CPI

log URt+h − log URt. for i=UR

(3.1)

For all the variables the forecast is:

Ẑi,t+h|t = Ŷi,t+1|t + · · · + Ŷi,t+h|t, (3.2)

and the prediction error of the model m, normalized for the horizon’s length is:

FEm
ith = 1

h

(
Zi,t+h − Ẑi,t+h|t

)
= 1

h

(
(Yi,t+1 − Ŷi,t+1|t) + · · · + (Yi,t+h − Ŷi,t+h|t)

)
. (3.3)

Note that for the models with an unconstrained regression as forecasting equation we can also directly

regress the target at time t + h Zi,t+h = on the factors F̂t and the lagged values of the target. This is

the option described in Stock and Watson (2002b). Empirically, it seems that this procedure tends to

outperform the theoretical predictions obtained using cumulated forecasts as in (3.2). In the Appendix,

Figures A.6, A.7 and A.8 compare the two methods and show that the cumulated prediction is outperformed

for all the variables considered. For each model m we can now define the Mean Square Forecast Error

(MSFE) as

MSFEm
ih = 1

(T1 − h) − T0 + 1

T1−h∑
t=T0

(FEm
ith)2 , (3.4)

where T0 and T1 are the first and last dates of the forecasts. The optimal specification of each model is
5Note that here we are not including the level at time t in the target because it is clearly known at time t and it simplifies

in the forecasting error.
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determined according to the MSFE. In particular we consider the average MSFE across all horizons. In

order to compare two different models m1 and m2 we use the ratio of their MSFEs, known as Relative

Mean Square Forecast Error (RMSFE), i.e.

RMSFE
m1/m2
ih = MSFEm1

ih

MSFEm2
ih

.

If the RMSFE is below one it means that m1 outperforms m2 on the series i at the horizon h, if it is above

the unit the opposite is true.

In the figures, instead, to evaluate the performance over time we introduce two other measures:

the cumulative sum of the squared forecasting errors (CSSFE) and the cumulative sum of the squared

forecasting errors differences (CSSFED) between models m1 and m2, defined at time t respectively as∑t
τ=T0 (FEm

iτh)2 and ∑t
τ=T0 (FEm1

iτh)2 − (FEm2
iτh)2.

At any point in time, a CSSFED above zero means that the model m2 outperforms the m1 model,

while positive (negative) changes in the slope of the CSSFED suggest that there is an increase (decrease)

in the relative performance of the m2 model with respect to the m1 model.

The exercise has the following structure. Firstly, we compare the DFMs to a standard autoregressive

(AR) model, then we properly compare SW and FHLR using the nesting procedure explained in Section

2.3. In this way we want to assess the benefit (if there is) of each of the two novelty elements introduced

by FHLR.

3.3.1 DFMs vs AR

We report the results for a fairly large space of the parameters and compare the performance of the

two DFMs with respect to the benchmark AR using the RMSFE on the entire sample, the cumulative

FE2 and CSSFED with respect to AR. We also test against the null of global equal performance of two

predictors with the Diebold-Mariano test (see Diebold and Mariano (1995)). The p-values for both the full

sample (2007-2018) and post Great Recession (2010-2018) are reported in Table A.9 in the Appendix.

For SW model we allow the number of static factors r to vary from 1 to 10 and find out that the

best specification, according to the MSFE, is r = 5 for both IP and CPI and r = 6 for UR. As previously

stressed, Figure A.5 provides two important elements of evidence that the identified best specifications can

be informative about the performance of the model: i) the model is quite robust (at least on short-horizon

predictions) to the number of factors given that the values close to the optimal r tend to have very similar

performance, ii) the cumulative FE2 of the optimal r often not only stochastically dominates the others

but also tends to have a parallel or even flatter trend on the entire sample. Given this evidence we are
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fairly confident that these specifications can be representative of the relative performance of the models.

See in the Appendix Table A.3 for more details on the RMSFE with different choice of the parameters.

Following the forecasting equation in (2.7), we introduce also p lagged values in the regression. The

degree p of the polynomial β̂ih(L) is chosen using the Bayesian information criterion (BIC) in the range

from 0 to 6. The so-called DI-AR forecast, however, very slightly outperformed the DI, i.e. p = 0, only

for CPI at short horizon while having a substantial negative effect on the other variables. As in previous

examples in the literature, see Albano (2016); Forni, Giovannelli, et al. (2018), it seems that, once controlled

for the factors, the remaining variation is unpredictable. This suggests that the idiosyncratic component

is unforecastable and that only the common component can be predicted; a similar result is found in

D’Agostino and Giannone (2012) also for the FHLR method.

For FHLR we consider a wide range of parameter specifications. The number q of dynamic factors

ranges from 1 to 5 while the number r of static factors from q to 10. The Bartlett lag window for the

estimation of the spectral density of the observed series Σ̂x(θ) is fixed6 at B = 35 in order to avoid a

too-heavy computational cost for a method that is per se more elaborated than SW. The dimensionality of

the parameters space is already considerable indeed. At each period, for each target variable, 40 different

combinations of q and r and 480 projections are considered. The best specification is q = 3 and r = 10

for IP, q = 5 and r = 5 for CPI and q = 3 and r = 6 for UR. In the Appendix the RMSFE for all the

specifications is reported in Table A.5. The order of the univariate AR model is decided following the BIC

criterion at each period. Tables A.3 and A.5 in the Appendix show that averaging over the horizon the

two DFMs clearly outperform the standard AR almost independently of the specification considered. The

difference is substantial for IP and UR while more reduced for CPI.

The Diebold-Mariano test leads to the same conclusions. The null of equal performance with AR is

rejected for FHLR at the 5% significance level for IP and UR at all the horizons but IP at h = 12 and

h = 6, the latter case is rejected however at the 10% significance level. Regarding CPI we can reject the

equal performance at the 10% significance level only at h = 1, 3. Focusing on SW, instead, we can reject

the null at the 10% significance level for IP at h = 1, 3, 6 and UR at all horizons. We cannot reject the

equal forecasting performance on CPI between AR and SW at any horizon. See Panel A of Table A.9, for

more details on the p-values.

Given that the performance of the models on the entire sample can be considerably affected by the

Great Recession, we evaluate the models also restricting the attention to the period following the first

recession. Even on this subsample, for IP and UR at h = 1 both DFMs outperform the AR at the 1%
6See Albano (2016) and Forni, Giovannelli, et al. (2018) for a detailed analysis of the impact of different window size using

Euro Area data.
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significance level. At h = 12 FHLR is more precise than AR at the 5% significance level while SW only at

the 10%.

Figures 3.4, 3.5 and 3.6 display at each horizon the target predictions, the cumulative FE2 and the

CSSFED with the benchmark AR of the best specifications for AR, SW and FHLR. These figures allow

to understand how the predictive performance evolves over time and how is affected by the business cycle.

The shaded areas represent the recessionary periods according to CEPR.

As expected, we observe a clear jump during the Great Recession for all the variables at almost all

the horizons. For the AR the jump is substantially greater than for the DFMs in the prediction error

of IP and UR while the difference with the DFMs is lower for CPI. On the contrary, the EA Debt crisis

started in 2011, i.e. the second shaded area does not affect dramatically the performance of the models.

The cumulative FE2 is quite smooth for the three variables and keeps almost a constant trend after the

first recession up to the end of the sample, i.e. January 2018 for the 1-step ahead forecast up to December

2018 for the 12-step ahead.

Let summarize the main results that we obtain by the graphical inspection for the three variables in

the following way:

IP. It seems that the clear improvement of the DFMs over the AR is driven by the different per-

formance during the Great Recession. The CSSFED of the two factors model with respect to the AR is

indeed almost flat after the first recession. At h = 1, however, the DFMs outperform the AR also after

2010.

CPI. The results are more controversial. As stressed before, the large amount of information intro-

duced with the DFMs does not improve the forecastability significantly. The cumulative FE2 of both the

two DFMs and AR are very close and change slope in the sample period several times. This means that

no model clearly outperforms the other uniformly on the entire sample. The CSSFED crosses the zero-line

and changes the slope at different points over the forecasting period. At the longest horizon, where the

CSSFED is smoother, AR performs better after the Great Recession up to 2015 when the performance

starts to slightly deteriorate with respect to SW.

UR. Both the DFMs outperform the benchmark AR at all the horizons. At the shortest and the

longest horizon the CSSFED is increasing in the entire sample, meaning that the DFMs uniformly outper-

form the AR and in particular in the last five years. At h = 3, 6, instead, the better performance of DMFs

is driven by the Great Recession, given that after the recession the CSSFED is almost flat as for IP.

This exercise provides evidence that the DFMs perform better during the recession periods. One

possible interpretation is that downturn periods are characterized by increased comovements, a situation

in which factor-based forecasts are likely to be more accurate.
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Moreover, there is also evidence that the DFMs improve the forecasting performance more on real

variables rather than nominal. This is a frequent result in the literature, see for example Forni, Gio-

vannelli, et al. (2018) where instead relaxing the finite-dimension constrain on the factor space helps the

predictability of nominal variables.

Lastly, we want to analyze the effect of the size of the rolling window on the forecasting performance.

There is empirical evidence that the predictive performance is sensitive to the size of the window. If a

time series is affected by structural breaks it may be possible that a shorter window size improves the

performance because it considers only more recent observations. See, for example, Inoue et al. (2017) for

a more detailed presentation. Following this idea, we repeat the same forecasting exercise using a 5-years

rolling window. These specifications of the DFMs are called from now on SW-5y and FHLR-5y. The results

are presented in Tables A.4 and A.6 and in Figures A.9,A.10 and A.11 in the Appendix. In the last two

columns of Table A.9 the p-values of the Diebold-Mariano test against the null of equal performance of the

two window sizes are reported.

The main result is that the shorter window, averaging over the horizons, produces worse predictions

on the entire sample uniformly for all the specifications and even for the AR model. Considering the best

specifications, the prediction accuracy of the two windows is significantly different at 10% significance level

for SW on IP at h = 6, CPI at h = 1 and UR at h = 6, 12 while for FHLR on IP at h = 3, CPI at

h = 3, 6, 12 and UR at h = 3, 6, 12.

The shortest window produces less accurate forecasts during the Recession periods, especially using

SW and on CPI. However, focusing only on the post Great Recession period the 5-years window still

produces significantly worse predictions in the same cases except CPI for SW and UR for FHLR at h = 1

where instead the shortest window is beneficial. The CSSFED of the 5-years with respect to the 10-years

window is in many cases monotonically decreasing after the Great Recession for all the variables except

the shortest horizon and CPI. It is worth noting that the relative better performance that we observe for

these particular cases in the last five years reflects exactly the idea that the shorter window allows the

predictions to be less influenced by structural break occurred in the past such as the Great Recession.

Moreover, Figures A.9, A.10 and A.11 clearly show that the performance of the shortest window

deteriorates with respect to the 10-years window as the horizon increases. This result should not be

surprising given that at longer horizon the shortness of the estimation sample may be a limit. In particular,

as noted above if we consider the shortest horizon h = 1, the cumulative FEs2 are very close for all the

variables and in some time intervals after the Great Recession the CSSFED is even increasing. Table A.11

confirms these conclusions. The correlation of the forecasts decreases with the horizon, in particular for

FHLR. The predictions tend to be highly correlated for IP and even more for UR but lower for CPI.
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3.3.2 SW vs FHLR: Nested models

At first glance, it is interesting to note that the two models produce almost collinear predictions for

IP and UR at all horizons but h = 12. The correlation of CPI’s forecasts is instead lower and decreasing

with the horizon. This is a first evidence of the fact that the effect of the frequency-domain approach

emerges in particular as we increase the horizon. One possible explanation is that FHLR captures better

the long-run variation exploiting the dynamic structure of the panel. However, as stressed before, in order

to properly compare the two DFMs we nest the two models. In this way, we are able to isolate the effect

of the different features of the two models and find a rationale for dissimilar performance.

This section follows the nesting procedure described in Section 2.3 and evaluates the performance of

the two factor models and of the two hybrid models GPC/UNC and PC/CON for the optimal specification

of FHLR found in Section 3.3.1. This means r = 10, 5, 6 and q = 3, 5, 3 respectively for IP, CPI and UR.

Even when these are not the best choices for SW, i.e in the case of IP and CPI7, however, Table A.3 shows

that the RMSFE is very close to the best specification available.

Table 3.3 reports the average RMSFE for the four models. Interestingly, the two hybrid models

perform slightly better on average at least for IP and UR. Figures 3.7, 3.8 and 3.9 report the cumulative

FE2 at each horizon for the four models and the CSSFED using as benchmark SW. The main results are

as follows:

IP. FHLR outperforms SW on 1-step ahead forecast, in particular in the period 2010-2014 driven

by the use of the generalized principal components. GPC/UNC has the best performance indeed. At the

other horizons, instead, the key element is the constrained forecasting equation. It seems that using the

covariance of the common component estimated by imposing rank q on the spectral density increases the

predictability of IP at longer horizons. The generalized principal components, instead, do not improve the

forecasting performance. FHLR is more precise than SW at h = 6, 12 while the opposite is true for h = 3.

At h = 12 the more accuracy in the predictions of the constrained forecasting equation is evident starting

from the second recession.

CPI. At h = 1 which model performs better is quite unclear and the results are driven by very small

sub-samples. The relative performance changes over time. SW basically outperforms FHLR up to the end

of the second recession, in the following period the latter is more accurate. In this case what feature drives

the relative performance is not evident.

At longer horizons the CSSFED is smoother and the situation is clearer. SW outperforms FHLR at

h = 6, 12 while the opposite is true for h = 3. The relative accuracy is substantially affected by the Great
7Note that here we are also setting p = 0, i.e. no lags of the series in the forecasting equation. CPI’s best specification

includes the lags. However, the effect on the RMSFE of p = 0 is marginal.
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Recession. Even for CPI, on longer horizons the key element that explains the difference in the performance

of the two factors models is the constraint in the forecasting equation. In this case, however, the effect is

negative at h = 6, 12 even if at h = 12 FHLR is slightly catching up with SW after the crisis. This result

is coherent with the idea that the structure of a DFM is more appropriate for real variables rather than

prices.

UR. The difference between the two models increases with the horizon. At h = 1 SW performs better

than FHLR while at the other horizons SW is outperformed even if it is more accurate during the second

recession. However, in the last five years the generalized principal components drive the FHLR’s better

predictions at all the horizons. UR confirms that the most influential feature of FHLR is the constrained

forecasting equation. The third column of Table A.9 shows that UR is the only variable for which at

h = 6, 12 we can reject the null of equal performance on the entire sample at the 10% of significance

level. Moreover, confirming the results of Figure 3.9, excluding the Great Recession, FHLR significantly

outperforms SW at h = 1, 3 at the 5% of significance level.

Therefore, it seems that independently of the variable considered as we increase the horizon as more

the role of the constrained rank of the common component spectral density becomes important and drives

the different performance of FHLR and SW. The weighting scheme introduced using the GPC, instead, is

more important at the shortest horizon even if the effect seems to be of second order with respect to the

constrained forecasting equation.

As pointed out by D’Agostino and Giannone (2012), this indicates that simple principal components

approximate the factor space quite well and efficiency improvements achieved by weighting for the signal-

to-noise ratio do not have a major impact on the forecasting accuracy.

Table 3.3: RMSFE with respect to AR for the best specifications of each model.
SW PC/CON GPC/UNC FHLR

IP 0.611 0.607 0.602 0.621
CPI 0.918 0.915 0.919 0.923
UR 0.626 0.585 0.585 0.635
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3.4 The role of data selection

In the last part of this empirical exercise, we want to focus on how the size and the composition of

the dataset affect the factor estimates and, consequently, the forecasting performance of the two factor

models.

In the DFMs’ setting, Boivin and Ng (2006) shed light on the idea that not all the data improve

the forecasting performance of the models. It may also be the case that adding more series to the panel

decreases the accuracy of the predictions. This problem can be quite relevant in the framework of factor

models where the series to introduce in the large dataset are drawn arbitrarily by the user from a small

set of categories as in our case.

At first glance, the asymptotic properties of the estimators suggest the factor estimates are more

efficient the larger is the cross-section N . Indeed, a very simple intuition about the large sample properties

of the factor estimates can be seen from a model with one factor and identical loadings normalized to 1,

i.e. xit = Ft + ξit. Aggregating over the panel of cross-sectional dimension we get F̂ N
t = Ft + ∑N

i=1 ξit; it

follows that Var(F̂ N
t ) = Var(∑N

i=1 ξit). Suppose that the ξit are iid with variance σ2, then Var(F̂ N
t ) = σ2/N

that would decrease with N increasing the efficiency as we increase the dimension of the data.

However, whether or not more data yield more efficient estimates depend very much on the properties

of the additional series. Consider the special case when a researcher unintentionally includes the N series

m times. The total number of the series is now mN , but N sets of m idiosyncratic errors are perfectly

correlated. When the errors are iid, it can be shown that Var(F̂ N
t ) = σ2/N which is independent of m,

but depends only on N . The efficiency gain associated with the duplicated data is zero because the second

version of the data does not enlarge the information set. Moreover it can be shown that in cases of series

that have errors so strongly correlated with others, adding them can even be detrimental and decrease the

efficiency of the factor estimates. So, the intuition is that it is not the amount of data that matters but

the new information that each series encompasses.

To get a first idea, let us consider this simple exercise reported in Boivin and Ng (2006). Think of

ordering the series within a category by the importance of its common component, and putting together a

dataset comprising of high-ranked series from each category. Now expand this dataset by adding the lower-

ranked, say “noisy” series. Two effects occur simultaneously. The average size of the common component

falls as more series are added, and the possibility of correlated errors increases as more series (even more

“noisy”) from the same category are included. This may lead to a situation where more data might not be

desirable.

Therefore, following Boivin and Ng (2006) we have just presented two problems that may lead factors

extracted by more series to be less useful for forecasting:
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1. The presence of noisy series in the panel.

2. Substantial cross-correlation in the idiosyncratic term.

In the first case, the presence of the noisy series reduces the variation explained by the common

component. As we have seen in Section 2 one of the identification assumptions of the DFMs is that the

common component should be pervasive. Therefore, including mainly noisy series we implicitly reduce the

importance of the common component that is the core element to forecast.

The second problem relates to the assumption of weakly cross-correlated idiosyncratic terms. If the

idiosyncratic terms of the series seem to be highly correlated, then it may be possible that the correlation

is not so “weak”, i.e. the asymptotic assumption on the eigenvalues of the idiosyncratic covariance may be

violated.

With these ideas in mind, we consider two new datasets, each of which tries to address one of the

two problems. In the next paragraph we first explain how these new panels are built. Next, we compare

the forecasting performance of the two selected datasets to the original one. In this way we show how the

accuracy of the predictions of the two DFMs is affected by the selection of the variables.

3.4.1 Noisy series and Cross-correlation in the idiosyncratic term

Let define as commonality ratio of a series the share of total variance explained by variation in the

common component, namely Var(χit)/Var(xit). Therefore, we can identify as noisy series those that present

a very low level of commonality ratio, i.e. that are mainly explained by the idiosyncratic error.

Figure A.12 presents the distribution of the share of variance accounted by the idiosyncratic term

that is, given the orthogonality of the two components, the complementary of the commonality ratio of

the series. As the number of dynamic factors increases, the variance left unexplained decreases and the

distribution shifts to the left. If we consider q = 3 factors, there is no series explained by the idiosyncratic

term for more than 80% and almost 75% of the series has a commonality ratio above 50%. To be more

precise, the first quartile of the commonality ratio is 0.49. Following Van Nieuwenhuyze (2006), we use the

first quartile as a cut-off and drop all the series below. This procedure defines a new dataset that includes

the 75% best-explained series and therefore contains 233 variables.

In the rest of the paragraph, we detect with NS the models obtained by the dataset that deals with

the presence of too noisy series; hence we can define SW-NS and FHLR-NS as the predictions obtained

using SW and FHLR on this dataset.

The second new dataset tries to address the problem of substantial cross-correlation in the idiosyn-

cratic term. The method used to select the series in this case is in the spirit (even if slightly modified)
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of the so-called “Rule 1” introduced by Boivin and Ng (2006). For this reason we tag with Rule1 the

predictions of the models estimated using this new dataset.

Let define the highest idiosyncratic cross-correlation of variable j as

τ ⋆
j = max

i ̸=j
|τij| (3.5)

where |τij| is the cross-correlation, in modulus, of the idiosyncratic term of the variables i and j.

Figure A.13 plots in a heatmap the correlation matrix of the idiosyncratic error estimated assuming

r = 5 static factors. Following Boivin and Ng (2006), we estimate the idiosyncratic covariance matrix

from the residuals sample covariance using SW approach. In theory, a different solution could be to

obtain Γ̂ξ directly from the spectral density but, as mentioned above in Section 2.2, the estimation of the

off-diagonal element of Γ̂ξ is ill-conditioned8. It is quite evident that our concern about the idiosyncratic

cross-correlation could be well-founded. Indeed, there are some clusters of cross-correlation off-the-diagonal

mainly within the categories. This means that, as likely to be, the correlation among series within the

categories may go beyond the correlation induced by the common component. This is also an empirical

evidence of how unrealistic is the assumption of diagonal idiosyncratic covariance matrix typical of the strict

factor structure. Note that, in the framework of approximate factor structure, i.e. under the assumption

of weakly correlated idiosyncratic errors, these clusters of highly correlated are not an issue per se but

only if asymptotically they lead the eigenvalues of the idiosyncratic covariance to infinity. This is clearly

untestable and the finite-sample properties are unclear.

For this reason, Boivin and Ng (2006) using the so-called “Rule 1” build a new dataset removing for

each series j the series with cross-correlation of the idiosyncratic term τ ⋆
j . In this way the authors reduce

the dataset from 147 series to 71. Applying this rule to the dataset we drop 206, leaving us with 103 series.

We decided to consider a softer version of Rule 1. The procedure works as follows:

1. Sort (in descending order) the series by commonality ratio;

2. Starting from the top, remove sequentially from the list of variables the series with maximum cross-

correlation of the idiosyncratic term.

Therefore, once a variable has been deleted because it is the residually most cross-correlated with a

series with higher commonality, its own most correlated series is not deleted. The intuition behind this

modification of Rule1 is that once the problematic series is no longer in the panel there is no need to remove

also a series that is no more highly idiosyncratically correlated with a series in the panel.
8A third possibility could be to use the sample covariance matrix of residuals of FHLR. However, both these two alternatives

did not produce substantially different results. This motivates us to focus here on the method already applied in the literature.
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Using this method the final dataset contains 179 series, so we have 76 more series than resulting from

the standard Rule 1.

For SW, the results of the best specifications are presented in Figures 3.10, 3.11 and 3.12 while

for FHLR the figures are in the Appendix, see A.14, A.15 and A.16. The RMSFEs for all the possible

combinations of parameters of the two models are in Tables A.7 and A.8 in the Appendix.

The first result is that the new datasets produce almost collinear predictions for all the variables

at all the horizons except FHLR on the dataset produced by Rule1 where the correlation is around 0.8.

This is evidence that the series dropped are globally not particularly informative given that there is not

a substantial loss of information. This happens even if the series show globally strong comovement as in

our dataset where the first quartile of the commonality ratio is 0.5 and no series has a commonality below

20%.

Focusing on the forecasting performance, the main result is that on the entire sample using the best

specification available Rule1 dataset slightly outperformed the baseline for IP and UR using SW while

FHLR predictions are almost equally accurate. Regarding NS dataset, the performance is similar in all the

cases but UR using SW where it is slightly better.

These two corrections do not help the performance on CPI forecasts. Hence it seems that the worse

performance of DFMs on nominal variables cannot be explained by the two concerns exposed in this

paragraph.

Dividing by the variable of interest, the results can be summarized in the following way:

IP. The Rule1 dataset performs better during the Great Recession at h = 6, 12 but after that CSSFED

with respect to SW is almost flat meaning that the two datasets produce almost equally accurate forecasts.

For FHLR, instead, the improvement is concentrated in the period between the two recessions and for h = 12

we can reject the null of equal performance on the entire sample at the 10% significance level. See Table

A.10 for the p-values of the Diebold-Mariano test on the new datasets. NS dataset, instead, outperforms

the original dataset only for SW predictions at h = 3 at the 10% significance level while producing results

similar to the benchmark at all other horizons. NS dataset does not improve FHLR performance that

is negatively affected in particular in the period between the recessions because, differently from Rule1

dataset as noted above, it poorly captures the rebound of IP after the Great Recession.

CPI. The relative performance of the three datasets is strongly influenced by the Great Recession

where it is very volatile for SW. The three datasets produce not significantly different performance of both

SW and FHLR predictors on the entire sample. If we focus on the post Great Recession period, instead,

Rule1 dataset outperforms the original dataset using SW on the two longest horizons. At h = 12 also

NS performs very well but only in the period 2010-2014. Using FHLR prediction, however, the two new

35



datasets improve the performance in the first recession for h = 3, 6, 12 while remaining similar to the

original dataset in the rest of the sample. At h = 1 NS is outperformed up to 2015 but in the last three

years the CSSFED increases very rapidly.

UR. In this case, for both SW and FHLR, NS dataset helps the predictability in the last four years.

Using SW the same is also true for Rule1 dataset except h = 1. This pattern allows to reject the equal

performance of the original dataset and NS dataset at the 5% significance level for both SW and FHLR

method at h = 1, 3. Rule1 dataset, instead, improves the performance only using SW, significantly in the

post-recession period at h = 3, 6, while it is dominated by the original dataset with FHLR method.

Table 3.4 recaps the RMSFE for the best specification of the two models using the original dataset

and the two created datasets. Therefore, the table shows in a nutshell that looking at the best specification

the two new datasets improve the performance more of SW than FHLR and in particular for UR.

Table 3.4: RMSFE with respect to AR for the best specifications of each model.
SW SW-Rule1 SW-NS FHLR FHLR-Rule1 FHLR-NS

IP 0.608 0.600 0.610 0.621 0.622 0.624
CPI 0.914 0.920 0.926 0.923 0.917 0.921
UR 0.626 0.605 0.597 0.635 0.643 0.629
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4 Conclusions

This thesis has compared SW, FHLR and AR in an empirical exercise for EA data including the

Great Recession, the Debt Crisis and the following period.

The in-sample analysis of the estimated factors has underlined the importance that the expectational

variables have in explaining the comovement of macroeconomic series. Moreover, it has also emerged that

the Great Recession has structurally changed the explanatory power of the factors suggesting structural

change in the comovements of the main macroeconomic variables.

The out-of-sample analysis has led to some relevant conclusions about the forecasting ability of the

dynamic factor models.

The DFMs outperform the univariate predictions for IP, CPI and UR but more on real variables rather

than nominal. This result is confirmed by the effect of the constrained forecasting equation as disentangled

in the comparison of the two DFMs using the nesting procedure. Embedding the structure of a DFM even

in the forecasting equation improve the predictive performance on real variables suggesting that the DFM

could be a good representation for real variables. This exercise provides evidence that the DFMs perform

better during the recession periods. One possible interpretation is that downturn periods are characterized

by strong comovements, that is indeed the key element exploited by factor-based forecasts. Therefore, it

should not be surprising that DFMs are in this case more accurate. For this reason, it would be of great

interest to evaluate the forecasting performance of the DFMs also for the recent recession caused by the

COVID-19 pandemic. Another important element for future research could be to compare the DFMs not

only with the AR model but also to other data-intensive models such as random forest, supporting vector

machines and neural networks regressors. Indeed, there is an emerging literature on forecasting/nowcasting

macroeconomic variables using machine-learning algorithms.

Regarding the relative performance of SW and FHLR, nesting the models, we observe that inde-

pendently of the variable considered as we increase the horizon as more the role of the constrained rank

of the common component spectral density becomes important and drives the different performance of

FHLR and SW. The weighting scheme introduced using the generalized principal components, instead, is

more important at the shortest horizon even if the effect seems to be of second order with respect to the

constrained forecasting equation. This indicates that standard PCs already provide a good approximation

of the space spanned by the factors and the efficient weighting scheme based on the signal-to-noise ratio

associated with the generalized PCs does not have a major impact on the forecasting accuracy.

The predictive performance of the models is affected by the size and the features of the panel used to

estimate the factors. Removing the variables that are mainly idiosyncratic or variables that have too cross-
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correlated idiosyncratic errors can improve the accuracy of the predictions, particularly for SW predictions

and for UR.
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A Appendix

List of the series

Categories are coded in the following way:

1. Industry & Construction Surveys (ICS),

2. Consumer Survey based Confidence Indicators (CS),

3. Building Permits & Civil Engineering (BP),

4. Industrial Production (IP),

5. Money & Interest Rates (MIR),

6. Harmonized Consumer Price Indices (CPI),

7. Producer Price Index (PPI),

8. Turnover & Retail Sales (TRS)

9. Harmonized Unemployment Rates (UR),

10. Service Surveys (SS).

Let Wt be the raw data. The filter code defines the following transformation function:

Yt =



Wt if Filter code = 1

(1 − L)Wt if Filter code = 2

(1 − L)2Wt if Filter code = 3

log Wt if Filter code = 4

(1 − L) log Wt if Filter code = 5

(1 − L)2 log Wt if Filter code = 6

Table A.1: List of series
Name Category Area Filter code

1 IND SVY: EMPLOYMENT EXPECTATIONS ICS Euro Zone 2

2 IND SVY: EXPORT ORDER-BOOK LEVELS ICS Euro Zone 2

3 IND SVY: ORDER-BOOK LEVELS ICS Euro Zone 2

4 IND SVY: MFG - SELLING PRICE EXPECTATIONS ICS Euro Zone 2

5 IND SVY: PRODUCTION EXPECTATIONS ICS Euro Zone 2

6 IND SVY: PRODUCTION TREND ICS Euro Zone 1

7 IND SVY: MFG - STOCKS OF FINISHED PRODUCTS ICS Euro Zone 2

8 CONSTR. SVY: PRICE EXPECTATIONS ICS Euro Zone 2
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9 IND SVY: EXPORT ORDER BOOK POSITION ICS Euro Zone 2

10 IND SVY: PRODUCTION TRENDS IN RECENT MTH. ICS Euro Zone 1

11 IND SVY: SELLING PRC. EXPECT. MTH. AHEAD ICS Euro Zone 2

12 RET. SVY: EMPLOYMENT ICS Euro Zone 1

13 RET. SVY: ORDERS PLACED WITH SUPPLIERS ICS Euro Zone 1

14 CONSTR. SVY: SYNTHETIC BUS. INDICATOR ICS France 2

15 BUS. SVY: CONSTR. SECTOR - CAPACITY UTILISATION RATE ICS France 2

16 CONSTR. SVY: ACTIVITY EXPECTATIONS ICS France 1

17 CONSTR. SVY: PRICE EXPECTATIONS ICS France 1

18 CONSTR. SVY: UNABLE TO INCREASE CAPACITY ICS France 2

19 CONSTR. SVY: WORKFORCE CHANGES ICS France 1

20 CONSTR. SVY: WORKFORCE FORECAST CHANGES ICS France 2

21 SVY: MFG OUTPUT - ORDER BOOK & DEMAND ICS France 2

22 SVY: MFG OUTPUT - ORDER BOOK & FOREIGN DEMAND ICS France 2

23 SVY: MFG OUTPUT - PERSONAL OUTLOOK ICS France 1

24 SVY: AUTO IND - ORDER BOOK & DEMAND ICS France 1

25 SVY: AUTO IND - PERSONAL OUTLOOK ICS France 1

26 SVY: BASIC & FAB MET PDT EX MACH & EQ - PERSONAL OUTLOOK ICS France 1

27 SVY: ELE & ELEC EQ, MACH EQ - ORDER BOOK & DEMAND ICS France 2

28 SVY: ELE & ELEC EQ, MACH EQ - ORDER BOOK & FOREIGN DEMAND ICS France 1

29 SVY: ELE & ELEC EQ, MACH EQ - PERSONAL OUTLOOK ICS France 1

30 SVY: MFG OUTPUT - PRICE OUTLOOK ICS France 1

31 SVY: MFG OF CHEMICALS & CHEMICAL PDT - ORDER BOOK & DEMAND ICS France 1

32 SVY: MFG OF CHEMICALS & CHEMICAL PDT - PERSONAL OUTLOOK ICS France 1

33 SVY: MFG OF FOOD PR & BEVERAGES - ORDER BOOK & DEMAND ICS France 1

34 SVY: MFG OF FOOD PR & BEVERAGES - ORDER BOOK & FOREIGN DEMAND ICS France 1

35 SVY: MFG OF TRSP EQ - FINISHED GOODS INVENTORIES ICS France 1

36 SVY: MFG OF TRSP EQ - ORDER BOOK & DEMAND ICS France 1

37 SVY: MFG OF TRSP EQ - ORDER BOOK & FOREIGN DEMAND ICS France 1

38 SVY: MFG OF TRSP EQ - PERSONAL OUTLOOK ICS France 1

39 SVY: OTH MFG, MACH & EQ RPR & INSTAL - ORD BOOK & DEMAND ICS France 1

40 SVY: OTH MFG, MACH & EQ RPR & INSTAL - ORD BOOK & FGN DEMAND ICS France 1

41 SVY: OTH MFG, MACH & EQ RPR & INSTAL - PERSONAL OUTLOOK ICS France 1

42 SVY: OTHER MFG - ORDER BOOK & DEMAND ICS France 2

43 SVY: RUBBER, PLASTIC & NON MET PDT - ORDER BOOK & DEMAND ICS France 2

44 SVY: RUBBER, PLASTIC & NON MET PDT - ORDER BOOK & FGN DEMAND ICS France 1

45 SVY: RUBBER, PLASTIC & NON MET PDT - PERSONAL OUTLOOK ICS France 1

46 SVY: TOTAL IND - ORDER BOOK & DEMAND ICS France 2

47 SVY: TOTAL IND - ORDER BOOK & FOREIGN DEMAND ICS France 2

48 SVY: TOTAL IND - PERSONAL OUTLOOK ICS France 1

49 SVY: TOTAL IND - PRICE OUTLOOK ICS France 1

50 SVY: WOOD & PAPER, PRINT & MEDIA - ORD BOOK & FGN DEMAND ICS France 2

51 TRD. &IND: BUS SIT ICS Germany 2

52 TRD. &IND: BUS EXPECT IN 6MO ICS Germany 2

53 TRD. &IND: BUS SIT ICS Germany 2

54 TRD. &IND: BUS CLIMATE ICS Germany 2

55 CNSTR IND: BUS CLIMATE ICS Germany 2

56 MFG: BUS CLIMATE ICS Germany 2

57 MFG: BUS CLIMATE ICS Germany 2

58 MFG CONS GDS: BUS CLIMATE ICS Germany 2

59 MFG (EXCL FBT): BUS CLIMATE ICS Germany 2

60 WHSLE (INCL MV): BUS CLIMATE ICS Germany 2

61 MFG: BUS SIT ICS Germany 2

62 MFG: BUS SIT ICS Germany 2

63 MFG (EXCL FBT): BUS SIT ICS Germany 2

64 MFG (EXCL FBT): BUS SIT ICS Germany 2

65 CNSTR IND: BUS EXPECT IN 6MO ICS Germany 2

66 CNSTR IND: BUS EXPECT IN 6MO ICS Germany 2

67 MFG: BUS EXPECT IN 6MO ICS Germany 2

68 MFG: BUS EXPECT IN 6MO ICS Germany 2

69 MFG CONS GDS: BUS EXPECT IN 6MO ICS Germany 2

70 MFG (EXCL FBT): BUS EXPECT IN 6MO ICS Germany 2

71 MFG (EXCL FBT): BUS EXPECT IN 6MO ICS Germany 2

72 RT (INCL MV): BUS EXPECT IN 6MO ICS Germany 2

73 WHSLE (INCL MV): BUS EXPECT IN 6MO ICS Germany 2

74 BUS. CONF. INDICATOR ICS Italy 2
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75 ORDER BOOK LEVEL: IND ICS Spain 2

76 ORDER BOOK LEVEL: FOREIGN - IND ICS Spain 1

77 ORDER BOOK LEVEL: INVESTMENT GOODS ICS Spain 1

78 ORDER BOOK LEVEL: INT. GOODS ICS Spain 1

79 PRODUCTION LEVEL - IND ICS Spain 1

80 CONS. CONFIDENCE INDICATOR CS Euro Zone 2

81 CONS. SVY: ECONOMIC SITUATION LAST 12 MTH. - EMU 11/12 CS Euro Zone 2

82 CONS. SVY: POSSIBLE SAVINGS OPINION CS France 1

83 CONS. SVY: FUTURE FINANCIAL SITUATION CS France 2

84 SVY - HOUSEHOLDS, ECONOMIC SITUATION NEXT 12M CS France 2

85 CONS. CONFIDENCE INDICATOR - GERMANY CS Germany 2

86 CONS. CONFIDENCE INDEX CS Germany 5

87 GFK CONS. CLIMATE SVY - BUS. CYCLE EXPECTATIONS CS Germany 1

88 CONS.S CONFIDENCE INDEX CS Germany 5

89 CONS. CONFIDENCE CLIMATE (BALANCE) CS Germany 2

90 CONS. SVY: ECONOMIC CLIMATE INDEX (N.WEST IT) CS Italy 5

91 CONS. SVY: ECONOMIC CLIMATE INDEX (SOUTHERN IT) CS Italy 5

92 CONS. SVY: GENERAL ECONOMIC SITUATION (BALANCE) CS Italy 2

93 CONS. SVY: PRICES IN NEXT 12 MTHS. - LOWER CS Italy 5

94 CONS. SVY: UNEMPLOYMENT EXPECTATIONS (BALANCE) CS Italy 2

95 CONS. SVY: UNEMPLOYMENT EXPECTATIONS - APPROX. SAME CS Italy 5

96 CONS. SVY: UNEMPLOYMENT EXPECTATIONS - LARGE INCREASE CS Italy 5

97 CONS. SVY: UNEMPLOYMENT EXPECTATIONS - SMALL INCREASE CS Italy 5

98 CONS. SVY: GENERAL ECONOMIC SITUATION (BALANCE) CS Italy 2

99 CONS. SVY: HOUSEHOLD BUDGET - DEPOSITS TO/WITHDRAWALS CS Spain 5

100 CONS. SVY: HOUSEHOLD ECONOMY (CPY) - MUCH WORSE BP France 5

101 CONS. SVY: ITALIAN ECON.IN NEXT 12 MTHS.- MUCH WORSE BP France 5

102 CONS. SVY: MAJOR PURCHASE INTENTIONS - BALANCE BP France 2

103 CONS. SVY: MAJOR PURCHASE INTENTIONS - MUCH LESS BP France 5

104 CONS. SVY: HOUSEHOLDS FIN SITUATION - BALANCE BP France 2

105 INDL. PROD. - EXCLUDING CONSTR. IP Euro Zone 5

106 INDL. PROD. - CAP. GOODS IP Euro Zone 5

107 INDL. PROD. - CONS. NON-DURABLES IP Euro Zone 5

108 INDL. PROD. - CONS. DURABLES IP Euro Zone 5

109 INDL. PROD. - CONS. GOODS IP Euro Zone 5

110 INDL. PROD. IP France 5

111 INDL. PROD. - MFG IP France 5

112 INDL. PROD. - MFG (2010=100) IP France 5

113 INDL. PROD. - MANUF. OF MOTOR VEHICLES, TRAILERS, SEMITRAILERS IP France 5

114 INDL. PROD. - INT. GOODS IP France 5

115 INDL. PROD. - INDL. PROD. - CONSTR. IP France 5

116 INDL. PROD. - MANUF. OF WOOD AND PAPER PRODUCTS IP France 5

117 INDL. PROD. - MANUF. OF COMPUTER, ELECTRONIC AND OPTICAL PROD IP France 5

118 INDL. PROD. - MANUF. OF ELECTRICAL EQUIPMENT IP France 5

119 INDL. PROD. - MANUF. OF MACHINERY AND EQUIPMENT IP France 5

120 INDL. PROD. - MANUF. OF TRANSPORT EQUIPMENT IP France 5

121 INDL. PROD. - OTHER MFG IP France 5

122 INDL. PROD. - MANUF. OF CHEMICALS AND CHEMICAL PRODUCTS IP France 5

123 INDL. PROD. - MANUF. OF RUBBER AND PLASTICS PRODUCTS IP France 5

124 INDL. PROD. - INVESTMENT GOODS IP Italy 5

125 INDL. PROD. IP Italy 5

126 INDL. PROD. IP Italy 5

127 INDL. PROD. - CONS. GOODS - DURABLE IP Italy 5

128 INDL. PROD. - INVESTMENT GOODS IP Italy 5

129 INDL. PROD. - INT. GOODS IP Italy 5

130 INDL. PROD. - CHEMICAL PRODUCTS & SYNTHETIC FIBRES IP Italy 5

131 INDL. PROD. - MACHINES & MECHANICAL APPARATUS IP Italy 5

132 INDL. PROD. - MEANS OF TRANSPORT IP Italy 5

133 INDL. PROD. - METAL & METAL PRODUCTS IP Italy 5

134 INDL. PROD. - RUBBER ITEMS & PLASTIC MATERIALS IP Italy 5

135 INDL. PROD. - WOOD & WOOD PRODUCTS IP Italy 5

136 INDL. PROD. IP Italy 5

137 INDL. PROD. - COMPUTER, ELECTRONIC AND OPTICAL PRODUCTS IP Italy 5

138 INDL. PROD. - BASIC PHARMACEUTICAL PRODUCTS IP Italy 5

139 INDL. PROD. - CONSTR. (SA) IP Germany 5

140 INDL. PROD. - IND INCL CNSTR IP Germany 5
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141 INDL. PROD. - MFG IP Germany 5

142 INDL. PROD. - REBASED TO 1975=100 IP Germany 5

143 INDL. PROD. - CHEMS & CHEM PRDS IP Germany 5

144 INDL. PROD. - IND EXCL CNSTR IP Germany 5

145 INDL. PROD. - IND EXCL ENERGY & CNSTR IP Germany 5

146 INDL. PROD. - MINING & QUAR IP Germany 5

147 INDL. PROD. - CMPTR, ELECCL & OPT PRDS, ELECL EQP IP Germany 5

148 INDL. PROD. - INTERM GOODS IP Germany 5

149 INDL. PROD. - CAP. GOODS IP Germany 5

150 INDL. PROD. - DURABLE CONS GOODS IP Germany 5

151 INDL. PROD. - TEX & WEARING APPAREL IP Germany 5

152 INDL. PROD. - PULP, PAPER&PRDS, PUBSHG&PRINT IP Germany 5

153 INDL. PROD. - CHEM PRDS IP Germany 5

154 INDL. PROD. - RUB&PLAST PRDS IP Germany 5

155 INDL. PROD. - BASIC MTLS IP Germany 5

156 INDL. PROD. - CMPTR, ELECCL & OPT PRDS, ELECL EQP IP Germany 5

157 INDL. PROD. - MOTOR VEHICLES, TRAILERS&SEMI TRAIL IP Germany 5

158 INDL. PROD. - TEX & WEARING APPAREL IP Germany 5

159 INDL. PROD. - PAPER & PRDS, PRINT, REPROD OF RECRD MEDIA IP Germany 5

160 INDL. PROD. - CHEMS & CHEM PRDS IP Germany 5

161 INDL. PROD. - BASIC MTLS, FAB MTL PRDS, EXCL MACH&EQP IP Germany 5

162 INDL. PROD. - REPAIR & INSTALL OF MACH & EQP IP Germany 5

163 INDL. PROD. - MFG EXCL CNSTR & FBT IP Germany 5

164 INDL. PROD. - MINING & IND EXCL FBT IP Germany 5

165 INDL. PROD. - IND EXCL FBT IP Germany 5

166 INDL. PROD. - INTERM & CAP. GOODS IP Germany 5

167 INDL. PROD. - FAB MTL PRDS EXCL MACH & EQP IP Spain 5

168 INDL. PROD. IP Spain 5

169 INDL. PROD. - CONS. GOODS IP Spain 5

170 INDL. PROD. - CAP. GOODS IP Spain 5

171 INDL. PROD. - INT. GOODS IP Spain 5

172 INDL. PROD. - ENERGY IP Spain 5

173 INDL. PROD. - CONS. GOODS, NON-DURABLES IP Spain 5

174 INDL. PROD. - MINING IP Spain 5

175 INDL. PROD. - MFG IND IP Spain 5

176 INDL. PROD. - OTHER MINING & QUARRYING IP Spain 5

177 INDL. PROD. - TEXTILE IP Spain 5

178 INDL. PROD. - CHEMICALS & CHEMICAL PRODUCTS IP Spain 5

179 INDL. PROD. - PLASTIC & RUBBER PRODUCTS IP Spain 5

180 INDL. PROD. - OTHER NON-METAL MINERAL PRODUCTS IP Spain 5

181 INDL. PROD. - METAL PROCESSING IND IP Spain 5

182 INDL. PROD. - METAL PRODUCTS EXCL. MACHINERY IP Spain 5

183 INDL. PROD. - ELECTRICAL EQUIPMENT IP Spain 5

184 INDL. PROD. - AUTOMOBILE IP Spain 5

185 EURO INTERBANK OFFERED RATE - 3-MONTH (MEAN) MIR Euro Zone 5

186 MONEY SUPPLY: LOANS TO OTHER EA RESIDENTS EXCL. GOVT. MIR Euro Zone 5

187 MONEY SUPPLY: M3 MIR Euro Zone 5

188 EURO SHORT TERM REPO RATE MIR France 5

189 DATASTREAM EURO SHARE PRICE INDEX (MTH. AVG.) MIR France 2

190 EURIBOR: 3-MONTH (MTH. AVG.) MIR France 5

191 MFI LOANS TO RESIDENT PRIVATE SECTOR MIR France 5

192 MONEY SUPPLY - M1 MIR France 5

193 MONEY SUPPLY - M3 MIR France 5

194 SHARE PRICE INDEX - SBF 250 MIR Germany 2

195 FIBOR - 3 MONTH (MTH.AVG.) MIR Germany 5

196 MONEY SUPPLY - M3 MIR Germany 5

197 MONEY SUPPLY - M2 MIR Germany 5

198 BANK PRIME LENDING RATE / ECB MARGINAL LENDING FACILITY MIR Germany 5

199 DAX SHARE PRICE INDEX, EP MIR Italy 1

200 INTERBANK DEPOSIT RATE-AVERAGE ON 3-MONTHS DEPOSITS MIR Italy 5

201 OFFICIAL RESERVE ASSETS MIR Spain 5

202 MONEY SUPPLY: M3 - SPANISH MIR Spain 5

203 MADRID S.E - GENERAL INDEX MIR Spain 5

204 HICP - Overall index, Index CPI Euro Zone 6

205 HICP - All-items excluding energy, Index CPI Euro Zone 6

206 HICP - Food incl. alcohol and tobacco, Index CPI Euro Zone 6
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207 HICP - Processed food incl. alcohol and tobacco, Index CPI Euro Zone 6

208 HICP - Unprocessed food, Index CPI Euro Zone 6

209 HICP - Goods, Index CPI Euro Zone 6

210 HICP - Industrial goods, Index CPI Euro Zone 6

211 HICP - Industrial goods excluding energy, Index CPI Euro Zone 6

212 HICP - Services, Index CPI Euro Zone 6

213 HICP - All-items excluding tobacco, Index CPI Euro Zone 6

214 HICP - All-items excluding energy and food, Index CPI Euro Zone 6

215 HICP - All-items excluding energy and unprocessed food, Index CPI Euro Zone 6

216 All-items HICP CPI Germany 6

217 All-items HICP CPI Spain 6

218 All-items HICP CPI France 6

219 All-items HICP CPI Italy 6

220 Goods (overall index excluding services) CPI Germany 6

221 Goods (overall index excluding services) CPI France 6

222 Processed food including alcohol and tobacco CPI Germany 6

223 Processed food including alcohol and tobacco CPI Spain 6

224 Processed food including alcohol and tobacco CPI France 6

225 Processed food including alcohol and tobacco CPI Italy 6

226 Unprocessed food CPI Germany 6

227 Unprocessed food CPI Spain 6

228 Unprocessed food CPI France 6

229 Unprocessed food CPI Italy 6

230 Non-energy industrial goods CPI Germany 6

231 Non-energy industrial goods CPI France 6

232 Services (overall index excluding goods) CPI Germany 6

233 Services (overall index excluding goods) CPI France 6

234 Overall index excluding tobacco CPI Germany 6

235 Overall index excluding tobacco CPI France 6

236 Overall index excluding ENERGY CPI Germany 6

237 Overall index excluding ENERGY CPI France 6

238 Overall index excluding energy and unprocessed food CPI Germany 6

239 Overall index excluding energy and unprocessed food CPI France 6

240 PPI: IND EXCLUDING CONSTR. & ENERGY PPI Euro Zone 6

241 PPI: CAP. GOODS PPI Euro Zone 6

242 PPI: NON-DURABLE CONS. GOODS PPI Euro Zone 6

243 PPI: INT. GOODS PPI Euro Zone 6

244 PPI: NON DOM. - MINING, MFG & QUARRYING PPI Euro Zone 6

245 PPI: NON DOM. MFG PPI Germany 6

246 PPI: INT. GOODS EXCLUDING ENERGY PPI Germany 6

247 PPI: CAP. GOODS PPI Germany 6

248 PPI: CONS. GOODS PPI Germany 6

249 PPI: FUEL PPI Germany 6

250 PPI: INDL. PRODUCTS (EXCL. ENERGY) PPI Germany 6

251 PPI: MACHINERY PPI Germany 6

252 DEFLATED T/O: RET. SALE IN NON-SPCLD STR WITH FOOD, BEV & TOB TRS Germany 5

253 DEFLATED T/O: OTH RET. SALE IN NON-SPCLD STR TRS Germany 5

254 DEFLATED T/O: SALE OF MOTOR VEHICLE PTS & ACCES TRS Germany 5

255 DEFLATED T/O: WHOLESALE OF AGL RAW MATLS & LIVE ANIMALS TRS Germany 5

256 DEFLATED T/O: WHOLESALE OF HOUSEHOLD GOODS TRS Italy 5

257 T/O: RET. TRD, EXC OF MV , MOTORCYLES & FUEL TRS Spain 5

258 T/O: RET. SALE OF CLTH & LEATH GDS IN SPCLD STR TRS Spain 5

259 T/O: RET. SALE OF NON-FOOD PRDS (EXC FUEL) TRS Spain 5

260 T/O: RET. SALE OF INFO, HOUSEHLD & REC EQP IN SPCLD STR TRS Spain 5

261 EK UNEMPLOYMENT: ALL UR Euro Zone 5

262 EK UNEMPLOYMENT: PERSONS OVER 25 YEARS OLD UR Euro Zone 5

263 EK UNEMPLOYMENT: WOMEN UNDER 25 YEARS OLD UR Euro Zone 5

264 EK UNEMPLOYMENT: WOMEN OVER 25 YEARS OLD UR Euro Zone 5

265 EK UNEMPLOYMENT: MEN OVER 25 YEARS OLD UR Euro Zone 5

266 FR HUR ALL PERSONS (ALL AGES) UR France 5

267 FR HUR FEMMES (AGES 15-24) UR France 5

268 FR HUR FEMMES (ALL AGES) UR France 5

269 FR HUR HOMMES (AGES 15-24) UR France 5

270 FR HUR HOMMES (ALL AGES) UR France 5

271 FR HUR ALL PERSONS (AGES 15-24) UR France 5

272 FR HURALL PERSONS(AGES 25 AND OVER) UR France 5
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273 FR HUR FEMALES (AGES 25 AND OVER) UR France 5

274 FR HUR MALES (AGES 25 AND OVER) UR France 5

275 BD HUR ALL PERSONS (ALL AGES) UR Germany 5

276 BD HUR FEMMES (AGES 15-24) UR Germany 5

277 BD HUR FEMMES (ALL AGES) UR Germany 5

278 BD HUR HOMMES (AGES 15-24) UR Germany 5

279 BD HUR HOMMES (ALL AGES) UR Germany 5

280 BD HUR ALL PERSONS (AGES 15-24) UR Germany 5

281 BD HURALL PERSONS(AGES 25 AND OVER) UR Germany 5

282 BD HUR FEMALES (AGES 25 AND OVER) UR Germany 5

283 BD HUR MALES (AGES 25 AND OVER) UR Germany 5

284 IT HUR ALL PERSONS (ALL AGES) UR Italy 5

285 IT HUR FEMMES (ALL AGES) UR Italy 5

286 IT HUR HOMMES (ALL AGES) UR Italy 5

287 IT HUR ALL PERSONS (AGES 15-24) UR Italy 5

288 IT HURALL PERSONS(AGES 25 AND OVER) UR Italy 5

289 ES HUR ALL PERSONS (ALL AGES) UR Spain 5

290 ES HUR FEMMES (AGES 16-24) UR Spain 5

291 ES HUR FEMMES (ALL AGES) UR Spain 5

292 ES HUR HOMMES (AGES 16-24) UR Spain 5

293 ES HUR HOMMES (ALL AGES) UR Spain 5

294 ES HUR ALL PERSONS (AGES 16-24) UR Spain 5

295 ES HURALL PERSONS(AGES 25 AND OVER) UR Spain 5

296 ES HUR FEMALES (AGES 25 AND OVER) UR Spain 5

297 ES HUR MALES (AGES 25 AND OVER) UR Spain 5

298 DE - Service Confidence Indicator SS Germany 2

299 DE Services - Buss. Dev. Past 3 months SS Germany 1

300 DE Services - Evol. Demand Past 3 months SS Germany 2

301 DE Services - Exp. Demand Next 3 months SS Germany 1

302 DE Services - Evol. Employ. Past 3 months SS Germany 2

303 FR - Service Confidence Indicator SS France 2

304 FR Services - Buss. Dev. Past 3 months SS France 1

305 FR Services - Evol. Demand Past 3 months SS France 1

306 FR Services - Exp. Demand Next 3 months SS France 1

307 FR Services - Evol. Employ. Past 3 months SS France 1

308 FR Services - Exp. Employ. Next 3 months SS France 1

309 FR Services - Exp. Prices Next 3 months SS France 1

In-sample analysis

In this section we report the figures of the exercise in Section 3.2 for the squared loadings on the

factors. See Figures A.3 and A.4. The loadings are defined in the following way:

SW. From (2.5) the loadings of the variables on the factor k are defined as the k-th eigenvector, i.e.

the k-th column of the N × r matrix Vr, divided by the square root of N .

FHLR. From (2.11) the loadings of the variables on the factor k, obtained using the generalised

principal components, are defined as the k-th generalised eigenvector, i.e. the k-th column of the N × r

matrix Vrg.
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Table A.2: Explanatory power Factors 1-5 FHLR
R2

i (1) Variable R2
i (2) Variable R2

i (3) Variable R2
i (4) Variable R2

i (5) Variable
0.779 ICS-23 0.410 IP-109 0.274 ICS-56 0.262 ICS-30 0.516 CPI-218
0.778 ICS-48 0.397 ICS-56 0.268 IP-148 0.261 ICS-49 0.479 CPI-235
0.742 ICS-45 0.367 IP-147 0.265 IP-163 0.183 UR-289 0.460 CPI-204
0.731 ICS-6 0.358 IP-139 0.260 IP-164 0.170 IP-167 0.440 CPI-221
0.716 ICS-26 0.358 IP-141 0.257 ICS-59 0.166 UR-295 0.437 CPI-220
R2(1) = 0.133 R2(2) = 0.087 R2(3) = 0.053 R2(4) = 0.031 R2(5) = 0.034

Figure A.1: Factor 1 as a simple Business Cycle Index
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Figure A.2: R2
it(k), k = 1, . . . , 5, FHLR Factors
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Figure A.3: Loadings on the k-th factor, k = 1, . . . , 5: SW Factors
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Figure A.4: Loadings on the k-th factor, k = 1, . . . , 5: FHLR Factors
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Forecasting exercise and the role of data selection

RMSFE Tables

Table A.3: RMSFE SW vs AR
p > 0 r=1 2 3 4 5 6 7 8 9 10
IP 0.845 0.841 0.674 0.658 0.656 0.663 0.691 0.727 0.730 0.734
CPI 1.013 1.011 0.987 0.931 0.914 1.019 1.011 1.022 1.044 1.058
UR 0.901 0.814 0.786 0.771 0.756 0.704 0.738 0.718 0.74 0.758
p = 0 r=1 2 3 4 5 6 7 8 9 10
IP 0.807 0.779 0.628 0.610 0.608 0.613 0.631 0.622 0.614 0.611
CPI 1.028 1.028 1.008 0.978 0.918 0.961 0.971 0.977 0.991 0.989
UR 0.883 0.949 0.895 0.884 0.830 0.626 0.629 0.632 0.639 0.647

Note: h = 1, 3, 6, 12 average RMSFE of SW with respect to AR with optimal order given
by BIC. Panel above includes lagged of the series in the forecasting equation, p > 0, panel
below not.

Table A.4: RMSFE SW-5y vs AR
p > 0 r=1 2 3 4 5 6 7 8 9 10 AR-5y
IP 1.034 0.874 0.787 0.772 0.841 0.865 0.878 0.873 0.911 0.991 1.511
CPI 1.124 1.115 1.084 1.232 1.263 1.229 1.339 1.336 1.339 1.500 1.005
UR 0.987 1.108 0.998 1.000 1.150 1.000 0.928 0.957 0.955 0.970 1.362
p = 0 r=1 2 3 4 5 6 7 8 9 10 AR-5y
IP 0.849 0.742 0.685 0.673 0.727 0.734 0.737 0.740 0.753 0.781 1.511
CPI 1.125 1.111 1.090 1.145 1.179 1.103 1.158 1.185 1.194 1.254 1.005
UR 1.040 1.207 1.086 1.027 1.074 1.000 0.909 0.918 0.903 0.943 1.362

Note: h = 1, 3, 6, 12 average RMSFE of SW with respect to AR with optimal order given by BIC.
SW-5y is estimated using a 5-years rolling window, AR with a 10-years one; in this way, this table
can be compared to Table A.3. Panel above includes lagged of the series in the forecasting equation,
p > 0, panel below not.
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Table A.5: RMSFE FHLR vs AR
IP r =1 2 3 4 5 6 7 8 9 10

q =1 0.825 0.808 0.664 0.657 0.657 0.647 0.650 0.652 0.654 0.657
2 - 0.789 0.654 0.660 0.663 0.653 0.654 0.648 0.640 0.642
3 - - 0.638 0.640 0.640 0.634 0.638 0.625 0.624 0.621
4 - - - 0.645 0.644 0.643 0.651 0.639 0.642 0.636
5 - - - - 0.634 0.64 0.647 0.639 0.641 0.626

CPI r =1 2 3 4 5 6 7 8 9 10
q =1 1.024 1.024 1.003 0.985 0.924 0.933 0.942 0.947 0.948 0.956

2 - 1.035 1.021 1.012 0.967 0.942 0.948 0.959 0.967 0.996
3 - - 1.025 1.020 0.971 0.935 0.94 0.937 0.939 0.965
4 - - - 0.998 0.923 0.932 0.945 0.950 0.947 0.974
5 - - - - 0.923 0.939 0.952 0.964 0.958 0.972

UR r =1 2 3 4 5 6 7 8 9 10
q =1 1.007 0.979 0.939 0.919 0.901 0.877 0.88 0.881 0.885 0.878

2 - 0.946 0.884 0.805 0.79 0.670 0.685 0.716 0.722 0.731
3 - - 0.880 0.805 0.789 0.635 0.661 0.686 0.694 0.691
4 - - - 0.808 0.806 0.640 0.667 0.696 0.701 0.707
5 - - - - 0.824 0.642 0.667 0.693 0.707 0.712

Note: h = 1, 3, 6, 12 average RMSFE of FHLR with respect to AR with optimal order
given by BIC.

Table A.6: RMSFE FHLR-5y vs AR
IP r =1 2 3 4 5 6 7 8 9 10

q =1 0.840 0.747 0.689 0.677 0.671 0.673 0.683 0.679 0.698 0.699
2 - 0.738 0.675 0.671 0.658 0.663 0.669 0.684 0.686 0.707
3 - - 0.742 0.715 0.708 0.699 0.706 0.715 0.707 0.714
4 - - - 0.646 0.653 0.660 0.671 0.682 0.701 0.727
5 - - - - 0.708 0.708 0.700 0.699 0.727 0.743

CPI r =1 2 3 4 5 6 7 8 9 10
q =1 1.066 1.063 1.037 1.041 1.025 1.002 0.986 1.012 1.004 1.014

2 - 1.060 1.047 1.067 1.040 0.999 0.997 1.010 1.032 1.017
3 - - 1.104 1.066 1.100 1.082 1.100 1.063 1.048 1.029
4 - - - 1.089 1.102 1.045 1.021 1.037 1.038 1.123
5 - - - - 1.065 1.030 0.972 1.027 1.030 1.038

UR r =1 2 3 4 5 6 7 8 9 10
q =1 1.080 1.075 1.019 0.968 0.911 0.894 0.903 0.906 0.958 0.976

2 - 1.058 0.966 0.896 0.869 0.843 0.828 0.834 0.861 0.896
3 - - 1.014 1.000 1.016 0.963 0.940 0.925 0.921 0.940
4 - - - 0.852 0.835 0.887 0.873 0.900 0.916 0.926
5 - - - - 0.908 0.907 0.900 0.908 0.924 0.933

Note: h = 1, 3, 6, 12 average RMSFE of FHLR-5y with respect to AR with optimal order
given by BIC. FHLR-5y is estimated using a 5-years rolling window, AR with a 10-years
one; in this way, this table can be compared to Table A.5.
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Table A.7: RMSFE FHLR-NS and SW-NS vs AR
IP r =1 2 3 4 5 6 7 8 9 10
q =1 0.828 0.823 0.666 0.662 0.658 0.656 0.652 0.654 0.664 0.674

2 - 0.806 0.653 0.658 0.664 0.656 0.655 0.647 0.639 0.641
3 - - 0.643 0.643 0.652 0.638 0.639 0.628 0.624 0.630
4 - - - 0.65 0.649 0.644 0.643 0.636 0.642 0.647
5 - - - - 0.639 0.642 0.641 0.637 0.638 0.641

SW-NS 0.811 0.788 0.627 0.615 0.610 0.626 0.631 0.626 0.628 0.637
CPI r =1 2 3 4 5 6 7 8 9 10

q =1 1.027 1.027 1.008 0.985 0.921 0.936 0.935 0.954 0.941 0.936
2 - 1.037 1.029 1.017 0.949 0.945 0.961 0.975 0.957 0.957
3 - - 1.033 1.028 0.931 0.945 0.961 0.963 0.969 0.945
4 - - - 0.992 0.923 0.946 0.968 0.975 0.967 0.955
5 - - - - 0.927 0.954 0.974 0.988 0.992 0.963

SW-NS 1.031 1.033 1.016 1.020 0.926 0.967 0.988 1.001 0.996 0.981
UR r =1 2 3 4 5 6 7 8 9 10
q =1 1.008 0.991 0.951 0.929 0.899 0.897 0.898 0.899 0.888 0.891

2 - 0.971 0.901 0.811 0.805 0.665 0.679 0.726 0.737 0.738
3 - - 0.902 0.812 0.796 0.629 0.665 0.703 0.705 0.710
4 - - - 0.828 0.811 0.631 0.660 0.713 0.712 0.719
5 - - - - 0.819 0.631 0.651 0.707 0.708 0.720

SW-NS 0.895 0.968 0.910 0.863 0.828 0.597 0.600 0.666 0.657 0.668
Note: h = 1, 3, 6, 12 average RMSFE of SW-NS, FHLR-NS, SW-Rule1 and FHLR-Rule1
with respect to AR with optimal order given by BIC. SW-NS and FHLR-NS are estimated
removing the first quartile of the data for variance explained by the idiosyncratic term as
described in Section 3.4.1.

56



Table A.8: RMSFE FHLR-Rule1 and SW-Rule1 vs AR
IP r =1 2 3 4 5 6 7 8 9 10

q =1 0.821 0.795 0.656 0.651 0.650 0.645 0.633 0.638 0.645 0.654
2 - 0.783 0.646 0.648 0.655 0.643 0.637 0.640 0.645 0.646
3 - - 0.631 0.632 0.639 0.631 0.632 0.628 0.629 0.622
4 - - - 0.640 0.646 0.63 0.628 0.634 0.641 0.633
5 - - - - 0.642 0.625 0.625 0.638 0.637 0.625

SW-Rule1 0.810 0.770 0.624 0.619 0.610 0.600 0.602 0.618 0.617 0.614
CPI r =1 2 3 4 5 6 7 8 9 10

q =1 1.024 1.017 0.988 0.963 0.936 0.923 0.926 0.917 0.941 0.938
2 - 1.028 1.005 0.962 0.939 0.934 0.94 0.943 0.935 0.958
3 - - 1.008 0.971 0.927 0.937 0.931 0.93 0.926 0.93
4 - - - 0.956 0.921 0.933 0.936 0.938 0.938 0.938
5 - - - - 0.922 0.944 0.938 0.936 0.944 0.954

SW-Rule1 1.024 1.013 0.988 0.953 0.920 0.945 0.951 0.951 0.954 0.964
UR r =1 2 3 4 5 6 7 8 9 10

q =1 1.023 1.008 0.975 0.971 0.947 0.929 0.891 0.879 0.876 0.9
2 - 0.971 0.916 0.848 0.844 0.73 0.692 0.704 0.711 0.717
3 - - 0.902 0.833 0.831 0.643 0.661 0.664 0.682 0.692
4 - - - 0.849 0.835 0.655 0.668 0.672 0.686 0.716
5 - - - - 0.842 0.659 0.661 0.672 0.679 0.717

SW-Rule1 0.927 0.957 0.905 0.905 0.888 0.652 0.644 0.609 0.609 0.605
Note: h = 1, 3, 6, 12 average RMSFE of SW-NS, FHLR-NS, SW-Rule1 and FHLR-Rule1 with
respect to AR with optimal order given by BIC. SW-Rule1 and FHLR-Rule1 are estimated
removing for each series the series with the most correlated idiosyncratic error as described in
Section 3.4.1.
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Table A.9: Diebold-Mariano test: p-values.

Panel A: Full sample (2007:3-2018:12)

IP AR vs SW AR vs FHLR SW vs FHLR SW vs SW-5y FHLR vs FHLR-5y
h=1 0.000 0.000 0.388 0.550 0.459

3 0.051 0.044 0.580 0.739 0.939
6 0.080 0.072 0.380 0.932 0.818

12 0.117 0.117 0.277 0.897 0.778
CPI AR vs SW AR vs FHLR SW vs FHLR SW vs SW-5y FHLR vs FHLR-5y
h=1 0.232 0.061 0.333 0.929 0.604

3 0.488 0.097 0.317 0.895 0.969
6 0.501 0.560 0.559 0.838 0.973

12 0.248 0.693 0.800 0.843 0.982
UR AR vs SW AR vs FHLR SW vs FHLR SW vs SW-5y FHLR vs FHLR-5y
h=1 0.000 0.000 0.747 0.869 0.559

3 0.059 0.041 0.392 0.872 0.991
6 0.073 0.044 0.031 0.935 0.980

12 0.030 0.033 0.067 0.917 0.960

Panel B: Post Great Recession (2010:1-2018:12)

IP AR vs SW AR vs FHLR SW vs FHLR SW vs SW-5y FHLR vs FHLR-5y
h=1 0.002 0.000 0.140 0.602 0.517

3 0.072 0.005 0.061 0.607 0.881
6 0.054 0.024 0.432 0.969 0.717

12 0.240 0.150 0.645 0.827 0.445
CPI AR vs SW AR vs FHLR SW vs FHLR SW vs SW-5y FHLR vs FHLR-5y
h=1 0.298 0.272 0.536 0.648 0.549

3 0.155 0.056 0.583 0.810 0.980
6 0.435 0.143 0.297 0.393 0.989

12 0.661 0.139 0.090 0.390 0.981
UR AR vs SW AR vs FHLR SW vs FHLR SW vs SW-5y FHLR vs FHLR-5y
h=1 0.001 0.000 0.018 0.349 0.096

3 0.280 0.049 0.043 0.650 0.983
6 0.146 0.046 0.128 0.784 0.988

12 0.088 0.048 0.111 0.829 0.976
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Table A.10: Data selection: Diebold-Mariano test: p-values.

Panel A: Full sample (2007:3-2018:12)

IP SW vs SW-NS SW vs SW-Rule1 FHLR vs FHLR-NS FHLR vs FHLR-Rule1
h=1 0.700 0.542 0.428 0.683

3 0.062 0.690 0.733 0.909
6 0.397 0.263 0.889 0.138

12 0.797 0.176 0.92 0.094
CPI SW vs SW-NS SW vs SW-Rule1 FHLR vs FHLR-NS FHLR vs FHLR-Rule1
h=1 0.357 0.325 0.461 0.497

3 0.415 0.262 0.529 0.216
6 0.434 0.274 0.388 0.224

12 0.702 0.477 0.313 0.204
UR SW vs SW-NS SW vs SW-Rule1 FHLR vs FHLR-NS FHLR vs FHLR-Rule1
h=1 0.049 0.864 0.397 0.995

3 0.03 0.174 0.032 0.933
6 0.287 0.207 0.131 0.879

12 0.189 0.134 0.211 0.603

Panel B: Post Great Recession (2010:1-2018:12)

IP SW vs SW-NS SW vs SW-Rule1 FHLR vs FHLR-NS FHLR vs FHLR-Rule1
h=1 0.742 0.541 0.446 0.695

3 0.151 0.602 0.779 0.993
6 0.354 0.657 0.773 0.400

12 0.384 0.698 0.811 0.152
CPI SW vs SW-NS SW vs SW-Rule1 FHLR vs FHLR-NS FHLR vs FHLR-Rule1
h=1 0.781 0.399 0.069 0.473

3 0.8 0.493 0.662 0.294
6 0.159 0.092 0.746 0.476

12 0.185 0.084 0.901 0.673
UR SW vs SW-NS SW vs SW-Rule1 FHLR vs FHLR-NS FHLR vs FHLR-Rule1
h=1 0.049 0.646 0.491 0.971

3 0.01 0.028 0.113 0.950
6 0.062 0.076 0.306 0.949

12 0.312 0.375 0.315 0.937

59



Table A.11: Predictions correlation

SW vs SW-5y FHLR vs FHLR-5y SW vs FHLR
h=1 3 6 12 h=1 3 6 12 h=1 3 6 12

IP 0.812 0.948 0.917 0.867 0.848 0.871 0.799 0.654 0.910 0.955 0.921 0.740
CPI 0.505 0.640 0.503 0.537 0.595 0.667 0.628 0.591 0.823 0.720 0.597 0.513
UR 0.937 0.958 0.967 0.726 0.960 0.956 0.916 0.754 0.981 0.961 0.938 0.904

Table A.12: Predictions correlation: NS and Rule1
SW vs SW-NS SW vs SW-Rule1

h=1 3 6 12 h=1 3 6 12
IP 0.991 0.994 0.993 0.986 0.964 0.987 0.976 0.905
CPI 0.818 0.796 0.830 0.857 0.902 0.909 0.947 0.962
UR 0.996 0.995 0.99 0.971 0.982 0.988 0.983 0.950

FHLR vs FHLR-NS FHLR vs FHLR-Rule1
h=1 3 6 12 h=1 3 6 12

IP 0.956 0.984 0.989 0.983 0.954 0.985 0.986 0.971
CPI 0.892 0.920 0.912 0.892 0.832 0.817 0.782 0.802
UR 0.999 0.999 0.998 0.995 0.997 0.996 0.993 0.982

Figures

60



Figure
A

.5:
C

um
ulative

sum
ofthe

squared
forecasting

errors
(F

E
2)

in
SW

w
ith

different
choice

ofthe
num

ber
offactors

r:
IP,C

PI
and

U
R

.

61



Figure
A

.6:
Forecasts

(panelabove)
and

cum
ulative

sum
ofthe

squared
forecasting

errors
(F

E
2,panelbelow

):
IP.

N
ote:

SW
predictions

are
obtained

by
directly

forecasting
the

target
on

the
factors

estim
ated

at
tim

e
t.

“SW
-cum

”
uses

the
cum

ulated
predictions

as
described

in
(3.2).

62



Figure
A

.7:
Forecasts

(panelabove)
and

cum
ulative

sum
ofthe

squared
forecasting

errors
(F

E
2,panelbelow

):
C

PI.
N

ote:
SW

predictions
are

obtained
by

directly
forecasting

the
target

on
the

factors
estim

ated
at

tim
e

t.
“SW

-cum
”

uses
the

cum
ulated

predictions
as

described
in

(3.2).

63



Figure
A

.8:
Forecasts

(panelabove)
and

cum
ulative

sum
ofthe

squared
forecasting

errors
(F

E
2,panelbelow

):
U

R
.

N
ote:

SW
predictions

are
obtained

by
directly

forecasting
the

target
on

the
factors

estim
ated

at
tim

e
t.

“SW
-cum

”
uses

the
cum

ulated
predictions

as
described

in
(3.2).

64



Figure
A

.9:
Forecasts(panelabove),cum

ulative
sum

ofthe
squared

forecasting
errors(F

E
2,centerpanel)and

cum
ulative

F
E

2
differencesw

ith
respect

to
the

relative
10-years

m
odel(C

SSFED
,panelbelow

):
IP.

N
ote:

“SW
-5y”

and
“FH

LR
-5y”

use
a

5-years
w

indow
.

T
he

estim
ation

sam
ple

at
tim

e
t

is
[t−

59,t].

65



Figure
A

.10:
Forecasts

(panel
above),

cum
ulative

sum
of

the
squared

forecasting
errors

(F
E

2,
center

panel)
and

cum
ulative

F
E

2
differences

w
ith

respect
to

the
relative

10-years
m

odel(C
SSFED

,panelbelow
):

C
PI.

N
ote:

“SW
-5y”

and
“FH

LR
-5y”

use
a

5-years
w

indow
.

T
he

estim
ation

sam
ple

at
tim

e
t

is
[t−

59,t].

66



Figure
A

.11:
Forecasts

(panel
above),

cum
ulative

sum
of

the
squared

forecasting
errors

(F
E

2,
center

panel)
and

cum
ulative

F
E

2
differences

w
ith

respect
to

the
relative

10-years
m

odel(C
SSFED

,panelbelow
):

U
R

.
N

ote:
“SW

-5y”
and

“FH
LR

-5y”
use

a
5-years

w
indow

.
T

he
estim

ation
sam

ple
at

tim
e

t
is

[t−
59,t].

67



Figure A.12: Distribution share of variance explained by the idiosyncratic term

Figure A.13: Idiosyncratic cross correlation.
Note: Γ̂ξ

0 is obtained by the sample covariance matrix of the residuals of SW estimated assuming r = 5 static
factors.
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Executive summary

Economists and forecasters nowadays can rely on a huge number of economic time series. It seems
reasonable that focusing only on a few key indicators can produce a substantial loss of useful information
and, potentially, suboptimal forecasts. However, standard multivariate forecasting methods (e.g. Vector
AutoRegression, VAR) can deal only with time series of low cross-sectional dimension and they cannot be
identified in situations where the number of the time series is of the same order or even larger than the
length of the time series. Hence, VARs are not appropriate in this framework of large-dimensional data.

As a solution to this problem, the literature has given large space to the class of models called dynamic
factor models (DFMs), because of their ability to model simultaneously and consistently datasets in which
the number of series exceeds the number of time series observations.

Indeed, the main idea of the DFMs is that a small number of factors can capture the bulk of the
variation of the series by exploiting their comovements while the remaining part is a mean-zero idiosyncratic
disturbance. Therefore, the macroeconomic series that are empirically characterized by strong comovement
are a natural field of application for these factor models.

Generically, in a DFM framework we assume that each series can be decomposed into the sum of two
unobserved component: a common component and an idiosyncratic component. The common component
is driven by a small number of common shocks while the idiosyncratic component is at most “weakly”
correlated cross-sectionally. The assumptions on the idiosyncratic component varies across different class
of DFMs. Crucially, the two component are assumed to be orthogonal at any leads and lags.

Dynamic factor models were originally proposed by Geweke (1977) as a time-series extension of factor
models previously developed for cross-sectional data. This justifies the term “dynamic” in the name to
underline the time dimension of the data. In early influential work, Sargent, Sims, et al. (1977) shows that
two dynamic factors can explain a large fraction of the variance of important U.S. quarterly macroeconomic
variables, including output, employment, and prices. This central empirical finding that a few factors can
explain a large fraction of the variance of many macroeconomic series is confirmed by many following
studies; see for example Stock and Watson (2002a) and D’Agostino and Giannone (2012).

The DFMs literature is very rich and many different models have been presented in the last thirty
years. Following Stock and Watson (2011), we can mention three main classes of models that differ by
their assumptions and, consequently, by the estimation method of the factors.

The first class assumes the cross-section dimension to be finite and the idiosyncratic term to be cross-
sectionally uncorrelated. The Kalman filter is used to compute the Gaussian likelihood, the parameters
are estimated by maximum likelihood and then the Kalman filter and smoother are used to obtain efficient
estimates of the factors (see Quah, Sargent, et al. (1993) for example).

The second class moves to an infinite dimension model allowing for some weak cross-correlation of
the idiosyncratic term. Therefore, it considers a non-parametric estimation. The factors are estimated by
cross-sectional average of the data, typically principal components or related methods such as generalized
principal components. The motivation of this estimation approach is that weighted averages of the id-
iosyncratic disturbances (under some assumptions) converge to zero by the weak law of large numbers, so
that only linear combinations of the factors remain and the space of the factors is consistently estimated
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as the cross-section and time dimensions go to infinity. Examples of these models are introduced by Stock
and Watson (2002a) and Forni, Hallin, Lippi, and Reichlin (2005).

The third class of models merges the statistical efficiency of the state space approach with the ro-
bustness and convenience of the principal components approach. The estimation procedure occurs in two
steps. First, the factors are estimated by principal components or generalized principal components. In
the second step, these estimated factors are used to estimate the unknown parameters of the state space
representation. See Giannone et al. (2008) for more details on the estimation methodology.

In this work we focus on the second class of models, precisely on the two most popular DFMs. The
first model is described by Stock and Watson (2002a) (SW henceforth) and uses principal components
(PCs) to estimate the factors. The second model considered is introduced by Forni, Hallin, Lippi, and
Reichlin (2005) (FHLR henceforth) and uses a two-step procedure of dynamic principal components and
generalized principal components (GPCs) to estimate the factors.

Even if the literature has focused on the forecasting properties of the DFMs, many applications go
beyond prediction exercises. Forni, Giannone, et al. (2009) and Forni, Gambetti, et al. (2020) use the
DFMs in structural analysis for example. In this framework, the dynamic factor structure is very useful
to correct for measurement error and solve the non-fundamentelness problem that is sometimes present in
structural VARs. See in particular Forni, Gambetti, et al. (2020) for the so-called Common Component
Structural VARs. Other interesting applications relate these models to structural factor-augmented vector
autoregressions (see Bernanke et al. (2005)), DSGEs (see Boivin and Giannoni (2006)) but also instrumental
variables (see Kapetanios and Marcellino (2010)). See Stock and Watson (2011) for a very detailed recap
of the literature on DFMs.

The literature comparing the predictive performance of SW and FHLR is prolific but it has reached
a mixed conclusion. In a Monte Carlo study, Forni, Hallin, Lippi, and Reichlin (2005) show that FHLR is
more precise than SW when there are persistent dynamics in the factors and in the idiosyncratic errors.
Using the US dataset proposed by Stock and Watson (2002b), Boivin and Ng (2005) find that SW generally
outperforms FHLR while D’Agostino and Giannone (2012) find that there is not an evident difference
between the performance of the two models. Moreover, moving to the Euro Area, Albano (2016) and
Forni, Giovannelli, et al. (2018) find that FHLR is the best model even if in the period before the Great
Recession started in Europe in 2008 the DFMs perform poorly with respect to the standard univariate
autoregressive predictions. Schumacher (2007) using a panel of German data finds that FHLR is more
accurate for GDP forecasts. See Eickmeier and Ziegler (2008) for a large meta-analysis of 46 forecasting
exercises using DFMs.

In this thesis we briefly describe the two models and how to nest them in the same framework
underlying the two main differences. SW uses principal components to estimate the factors and then a
simple projection of the series h step ahead on the space spanned by the factors and the lagged series as
a forecasting equation. On the contrary, FHLR using a frequency-domain approach obtains an estimate
of the covariance matrices of the two unobserved components. The factors are computed by means of the
generalized principal components and the forecasting equation is constrained imposing in the projection
the estimated decomposition of the covariance matrix. Next, we compare the two models in an empirical
exercise with both in-sample and out-of-sample analysis using a large monthly dataset of macroeconomic
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and financial time series for the Euro Area economy from 1997 to 2018. This exercise aims to interpret
the factors and evaluate the forecasting performance of the DFMs and how it is affected by the business
cycle, the estimation design and the features of the dataset. The three variables of interest are industrial
production, inflation and unemployment rate. The predictions span from one to twelve months ahead.

The in-sample analysis of the estimated factors has underlined the importance that the expectational
variables have in explaining the comovement of macroeconomic series. Moreover, it has also emerged that
the Great Recession has structurally changed the explanatory power of the factors suggesting structural
change in the comovements of the main macroeconomic variables.

The out-of-sample analysis has led to some relevant conclusions about the forecasting ability of the
dynamic factor models.

The DFMs outperform the univariate predictions for IP, CPI and UR but more on real variables rather
than nominal. This result is confirmed by the effect of the constrained forecasting equation as disentangled
in the comparison of the two DFMs using the nesting procedure. Embedding the structure of a DFM even
in the forecasting equation improve the predictive performance on real variables suggesting that the DFM
could be a good representation for real variables. This exercise provides evidence that the DFMs perform
better during the recession periods. One possible interpretation is that downturn periods are characterized
by strong comovements, that is indeed the key element exploited by factor-based forecasts. Therefore, it
should not be surprising that DFMs are in this case more accurate. For this reason, it would be of great
interest to evaluate the forecasting performance of the DFMs also for the recent recession caused by the
COVID-19 pandemic. Another important element for future research could be to compare the DFMs not
only with the AR model but also to other data-intensive models such as random forest, supporting vector
machines and neural networks regressors. Indeed, there is an emerging literature on forecasting/nowcasting
macroeconomic variables using machine-learning algorithms.

Regarding the relative performance of SW and FHLR, nesting the models, we observe that inde-
pendently of the variable considered as we increase the horizon as more the role of the constrained rank
of the common component spectral density becomes important and drives the different performance of
FHLR and SW. The weighting scheme introduced using the generalized principal components, instead, is
more important at the shortest horizon even if the effect seems to be of second order with respect to the
constrained forecasting equation. This indicates that standard PCs already provide a good approximation
of the space spanned by the factors and the efficient weighting scheme based on the signal-to-noise ratio
associated with the generalized PCs does not have a major impact on the forecasting accuracy.

The predictive performance of the models is affected by the size and the features of the panel used to
estimate the factors. Removing the variables that are mainly idiosyncratic or variables that have too cross-
correlated idiosyncratic errors can improve the accuracy of the predictions, particularly for SW predictions
and for UR.

This work contributes to the vast literature on dynamic factors models along different dimensions.
From a technical perspective, it introduces a new dataset of Euro Area data, larger than the standard

panel used for the US studies.
Looking at the empirical exercise, first of all, it extends the in-sample analysis of McCracken and

Ng (2015) to the Euro Area data introducing also a dynamic analysis of the factors over time.
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Secondly, it enters into the debated question about the relative performance of the two most popular
DFMs (SW and FHLR) applying the nesting method described in D’Agostino and Giannone (2012) for
the first time to European and more recent data (after 2000). Moreover, it also includes to the variable of
interest the unemployment rate moving the debate on the relative performance of the models to a different
dimension.

Finally, it extends the work on the role of data selection introduced by Boivin and Ng (2006) to EA
data and considers also the FHLR predictor while instead the cited paper considers only the SW model.
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