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Introduction

Climate change is an important topic nowadays since the effects are becoming stronger and clearer to

society. If no action is taken to reduce the increase in temperature and lower Green House Gasses (GHG)

emissions1 consequences will be at best costly for the economy, at worst disastrous for human society. From

the economic side what is expected from institutions and companies is that they should incorporate climate

risk as a new risk in their risk management models and check whether and for how much, they are exposed

to this risk. Climate risk could also be embedded in already common stated risks such as credit risk, market

risk, reputational risk etc. A concrete example of the impact of climate risk for a company is for example

the PG&E (Pacific Gas and Electric) case. PG&E is an american company that provides electricity and gas

to households in the region of California. California since last few years has been subject to high increase

in temperature that caused several fires. PG&E has been defined –by the Wall street Journal– as the first

corporation subject to climate bankruptcy. Basically, PG&E declared bankruptcy after being hit with what

was then estimated to be 30$ billion in liabilities tied to tragic wildfires in 2017 and 2018, which took 86

lives. Heat waves, and so wildfires, increased in number due to increasing temperature within the country.

The company did not consider climatic risks -physical risk that are risk linked to one time event ie. floods,

fires or permanent change in the temperature- in its models, so company’s capital was not enough to repay

clients when the event happened.

Climate risk is also important for financial institutions. Banks that for instance, lend to corporations that

operate in ”brown” sectors, meaning industries that produce high GHG emissions, are as a consequence,

affected by climate risk. This is because those companies can be subject to policy measures e.g. products

cannot be used in specific places due to their emission intensity –so called transition risk–, that lead to an

increase in the price of their products or in a lower demand for those products (as more costly for company’s

customers). The decrease in demand cause company’s PDs (Probability of defaults) to increase. Higher

PDs, affect the bank’s capital ratio directly. If the financial sector is affected so is the real economy.

In my thesis, however, I want to check to what extent climate risk, in particular physical risk, affect monetary

policy. From the ECB Strategy Review published in September 2021, is highlighted that monetary policy

is impacted by climate change as a result of climate impact on macro economy and financial markets that

1GHG emissions are compound gases that trap heat or longwave radiation in the atmosphere.Their presence in the atmo-

sphere makes the Earth’s surface warmer an example are CO2 or N20 (Nitrous dioxide)
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are the transmission channels of monetary policy. Two aspects are important to consider. The first aspect

concerns the possible implications of climate change and mitigation policies for the ability of central banks to

fulfill their price stability mandate. The second aspect concerns the extent to which central banks themselves

can play a supporting role in mitigating the risks associated with climate change, while staying within their

mandate. The way through which climate change could affect monetary policy is then by impacting the

transmission channel of monetary policy. As to what concerns the impact that climate has on financial

markets as we have seen in the example before, one issue could be bank’s capital ratio that should be

increased accordingly to bank’s exposures to ”brown” sectors ie.sectors with high GHG emissions. A second

issue could be that climate brings to a sudden re-pricing of climate-related assets or to re-evaluate – in

negative- the collaterals that banks own for their loans. A change in value in banks’ collaterals could lead

to capital and liquidity shortage that weaken banks’ ability to channel funds to the real economy. If the

financial system is weakened the transmission of monetary policy is impaired. Another thing, that can

happen, more due to macroeconomic shocks, is effects on market interest rates. If climate-related factors

were to cause the interest rates to fall further, the policy rate could hit the lower bound more often thus

limiting the monetary policy space for conventional tools. Reasons why the interest rate could fall are that

climate change causing macroeconomic shocks on the demand or supply side, by reducing consumption from

the demand side or production from the supply side can push interest rates downward. Moreover, another

effect caused by climate related variables is that they could correct the identification of shocks relevant for the

medium-term inflation outlook. This would make it more difficult to assess the monetary policy stance and

potentially increase the prevalence of output and price stabilization trade-offs for central banks that focus

on price stability. Uncertainty surrounding the magnitude of the effects of climate change and the horizon

over which they will play out in the economy will further complicate the assessment of appropriate monetary

policy actions. Uncertainty may also destabilize the expectation-formation process of economic agents, in

particular with regard to inflation expectations. The credibility of the central bank may be compromised if

the time horizon is extended too far into the future and inflation targets are missed too often. In this case,

clear communication about the policy intention of the central bank will be essential to mitigate credibility

losses. Moreover, it is worth mentioning that the effects of physical risk, meaning extreme climate event ie.

flood, earthquakes, or permanent change in temperature and transition risks meaning policy measures taken

to let a smooth transition from high emission world to a low-carbon emissions one, could be asymmetric

and heterogeneous across countries or regions, complicating even more the behavior of a central bank.

So, to sum up, the interest rate channel, the credit channel, the asset price channel, the exchange rate

channel and the expectation channel can all be affected by climate change variables. Moreover, they can be

affected differently according to the physical or transition risk.

I use factor models to check these theories, more in particular FAVAR model, that in the climatic econo-

metrics literature was never used before to assess the impact of climate change. FAVAR model is actually

an extension of Dynamic Factor Models and Vector Autoregressive models Kilian and Lütkepohl (2017),
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Stock and Watson (2016). Factor models are useful in this case because they allow to summarize a wide

concept expressed by several variables within just one or few factors of interest, moreover FAVAR over-

comes the limit of VAR models ie. omitted variables bias and small-scale studies. Actually I used VAR

to check, just for a few variables, as a preliminary assessment, whether climate can have a direct impact

on monetary policy. I hereby used a VAR(2) model with variables EU GDP, ECB Refinancing rate and

GHG emission to compute the impulse response of a shock in GHG emission. The results I have obtained

perfectly match with theory meaning that the impulse response of the ECB Refinancing Rate is close to zero

pointing out that no direct climate effect exist on monetary policy. Historically, in fact, the ECB has never

tailored monetary policy to address a climate-related event. I provide details of this study in the last chapter.

Starting from this result, as I showed that no direct impact of climate exist on monetary policy, rep-

resented by ECB Refinancing Rate, I check then the impact of climate change in a variety of economic

variables, that represent transmission channels for monetary policy. To do so I adopt a FAVAR model.

The FAVAR model I use is based on Bernanke et al. (2005) model, where the authors measured monetary

policy shock on a vast economic panel. Actually as I am checking for a different shocks I re-calibrate the

model to conduct my analysis. I create two different panels one for economic variables and another one for

climate variables.

The economic panel is formed by GDP at EU aggregate and of major european countries, Crop Prices

(Soft Wheat) of major European countries and European inflation (HCPI) at EU aggregate level and of

major European countries. The climatic panel is instead formed by mainly EU GHG emissions and EU CO2

emissions in kilotonnes. All the data I use are historical with annual frequency starting from 1990 to 2019

and extracted from Eurostat and the World Bank Database.

From these two panels I extract two factor of interests one summarizing the economic panel the other one

summarizing the climatic panel. Starting values for the factors have been computed by PCA (Principal

Components Analysis) further updates of the factors have been estimated using Carter and Kohn (1994)

algorithm which relies on Bayesian estimation Mira and Sargent (2003).

The outcome of my study is that the economic panel GDPs, HCPI and Prices so as interest rates are

impacted negatively by a shock in the climatic factor, but it is difficult to understand whether the shock is

demand or supply driven. Determining the overall balance of supply and demand shocks may differ between

individual events. Moreover the effect of the shock seems to be statistically significant only in the short

term. Similar results have been found previously by Ciccarelli and Marotta (2021) that studied the impact

of physical and transition risks using a VAR(2) on GDP, HPCI and prices. As a consequence conclusions

on the effect on monetary policy cannot be yet drawn. Further investigations are needed, both by changing

the model and use for instance mixed-frequency VAR model or re-conduct this study when more data will

be available so time series will be longer.

The thesis is dived as follows: factors models literature review (Chapter I), description of VAR and FAVAR
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model according to Bernanke et al. (2005) (Chapter II), a focus on Bayesian Estimation of FAVAR model

(Chapter III), empirical application (Chapter IV).
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Chapter 1

Literature Review of factor models

1.1 Introduction

Due to the fact that climate change is a broad concept represented by different time series ie. variables,

I decided to analyze its impact on economic variables, through factor models. By identifying just one

factor that summarizes a bigger climatic dataset –so not to lose information– make it easier to model the

phenomenon and conduct analyses. Generally speaking, factor models have been used widely in recent

year due to the increasing volume of available financial and economic data, that pushed econometricians to

develop or adapt methods that efficiently summarise the information contained in large databases within few

factors of interest. More in particular, as stated in the introduction I use a FAVAR model in my application

that is an extension of dynamic factor models and VAR (Vector Autoregressive) firstly applied in early 2000s.

Within this chapter I provide a review of factor models, that are the basis for FAVAR, specifically Static

Factor Models (SFMs) referring to the studies of Choi (2012), approximate static factor models, Dynamic

Factor Models based on the review done by Stock and Watson (2016), the estimation methodology of Doz

et al. (2011). Within the last paragraph, I briefly discuss how to determine the number of factors for DFMs

according to the papers of Bai and Ng (2002), Bai and Ng (2007) and Amengual and Watson (2007) that

provide a re-elaboration of the information criteriab (IC) proposed by Bai and Ng (2007).

1.1.1 Static Factor Models

In this type of model, a small number of unobservable variables k provides a linear explanation of a small

number of observed N variables so that the number of factors is such that a single factor can generally

explain most of the variance, that is, k = 1. The classical static factor model assumes the form:

Xt = ΛFt + ξt,
2 (1.1.1)

2In which the factors ft do not possess their own dynamic and the relationship between the factors and variables is linear

with constant weight over time. This model can be estimated either by assuming that the variables are IID or by assuming
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where Xt = (x1t, ..., xNt)
′ each xit ∼ (0,

∑
x) i.i.d is a vector of N observed variables, Ft = (f1t, ...fkt)

′

each Ft is a k-dimensional vector of unobserved common factors, and k is typically much smaller than N.

Accordingly Λ is a N × k matrix of factor loading. Finally, ξt ∼ (0,Σξ) i.i.d is a N-dimensional vector of

idiosyncratic components. As we can see from the equation, these type of models establish the relation

between factors and observed variables Xt. The series xit and fit are assumed to be stationary, to have

finite variance and to be standardised. Meaning that we have the following assumptions:

• The factors Ft, are centered E(Ft) = 0, and are mutually orthogonal for all t, that is: ∀t, E(FjtF
′
jt) = 0

for j ̸= j′. Consequently, the variance-covariance matrix of Ft, ΣF = E(FtF
′
t ) is a diagonal matrix.

• The idiosyncratic process ξt and ξ′t are mutually orthogonal for all i ̸= i′, with E(ξt) = 0 So, the

variance-covariance matrix is a diagonal matrix

• The factors Ft and the idiosyncratic noise ξt are not correlated so we have that E(Ftξt) = 0

• The variables are assumed to be independent and identically distributed over time so that t ̸= t′,

E(Ft, F
′
t ) = 0 and E(ξtξ

′
t) = 0

This model has a problem of identification. In fact, if we take any nonsingular kxk matrix Q and defining

F ∗
t = QFt and Λ∗ = ΛQ−1 we end up in having ΛFt = Λ∗F ∗

t . Exact identification of the model can

be ensured by choosing Λ such that Λ′Λ = Ik holds and choosing the factors such that Σf is a diagonal

matrix with elements in decreasing order. According to that we need to impose at least k2 restrictions

(order condition) to remove the indeterminacy. Order conditions can be applied to the factors that can be

estimated by PCA (Principal Components Analysis) meaning that the components explaining the majority

of the variance (Principal Components) of the model will be considered as factors. Referring to Bai and

Wang (2014), we can say that three commonly applied normalizations are PC1, PC2 and PC3 (where PC

stands for Principal Components):

• PC1= 1
T F

′F = Ik,Λ
′Λ is diagonal with distinct entries

• PC2: 1
T F

′F = Ik the upper k x k block is lower triangular with nonzero diagonal entries

• PC3: the upper kxk block of Λ is given by Ik.

PC1 is often imposed when the maximum likelihood estimation is used in classical factor analysis. PC2

can be applied to reduce the system to a recursive system of simultaneous equations, because by blocking

the factors’ loadings, then the system can be estimates as a SUR. PC3 is linked with the measurement

error problem such that the first observable variable x1t is equal to the first factor f1t plus a measurement

error e1t and so on. Each of the above set of normalizations yields to a k2 restrictions meeting the order

that there is a time dynamic withing the variables, so point 4 is abandoned.
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condition for identification. In our discussion we will take as restrictions as it is common to do in classical

factor analysis, PC1. This means that we will choose the factor loading matrix such that it has orthonormal

columns, implying that:

Λ′Λ = Ik, (1.1.2)

or to choose uncorrelated factors with variances normalized to 1,

Ft ∼ (0, Ik), (1.1.3)

in the latter case, as Ft and ξt are not correlated as in assumption four above and the factors are orthogonal

we obtain that:

Σx = ΛΛ′ +Σξ. (1.1.4)

such normalizations are useful, but they are not sufficient for uniquely identifying the model. Because if

we normalize the factors as said ft ∼ (0, Ik), Λ is still not unique without further restrictions. This can be

seen by choosing an orthogonal matrix Q and defining Λ∗ = ΛQ. Thereby we arrive at the decomposition,

ΣX = Λ∗Λ∗′+Σξ Exact identification of the static factor model can be ensured by choosing both restrictions

on factors and factor loadings. Λ such that Λ′Λ = Ik holds and choosing the factors such that ΣF is a diagonal

matrix with distinct diagonal elements in decreasing order so by imposing two condition both on the loading

matrix and on the factors. By elements in decreasing order within the ΣF it is meant that the first factor

has the largest variance and, hence, explains the largest part of the variance of xt etc. The requirement that

the variances of the factors have to be distinct means that the columns of Λ cannot simply be reordered.

Further identification restrictions for the model are pointed out in Bai and Ng (2013).

1.1.2 Estimating Static factor models

Starting from the assumptions and restrictions applied in the paragraph above i.e. that the factor loadings

were known and normalized such that Λ′Λ = Ik, a natural estimator for the factors would be obtained by

left multiplying (1.1.1) with Λ′ and dropping the idiosyncratic term, Ft = Λ′Xt.

However, in practice the factor loadings are typically unknown. Despite this, to estimate the factors

we still want to minimize the sum of the squared idiosyncratic errors. Minimizing the variance of the

idiosyncratic components amounts to maximize the part of the variance of the observed variables explained

by the common factors. In other words, we may estimate the factor loading and factors by minimizing the

sum of squared errors,

arg min
Λ,FT

T−1
T∑

t=1

(Xt − ΛFt)
′(Xt − ΛFt). (1.1.5)

Given the problem above of having two unknowns, we can find a solution by doing PCA so:

1. Find the r largest eigenvalues λ1 > λ2... etc. of ΣX = T−1
∑T

t=1 XtX
′
t and the corresponding or-

thonormal eigenvectors
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2. Choose Λ̂ = [λ1, λ2...]

3. Express the factor estimate as F̂t = Λ̂′Xt.

The estimator Λ̂ is the so-called principal components estimator of Λ. Given ortogonality of the eigenvec-

tors, it satisfies Λ′Λ = Ik. Then the factors are the principal components and Σ̂F = T−1
∑T

t=1 FtF
′
t =

diag(λ1, λ2, ...). The eigenvalues are the empirical variances of the factors with λ1 representing the variance

of the principal component with the largest distribution to the variance of the data etc. Proof is showed

in Appendix I. The PC estimator is the Maximum Likelihood estimator if the observations xit come from

a normal distribution and the idiosyncratic components have equal variances such that Σξ = σ2IN . In

that case, the factors and idiosyncratic components are normally distributed according to Ft ∼ N(0,ΣF )

and ξt ∼ N(0, σ2IN ). If the variances of the idiosyncratic components are heterogeneous,instead, the log-

likelihood is:

logl(Λ, FT ,Σξ) = c− T

2
log(det(Σξ))−

1

2
tr(

T∑
t=1

(Xt − ΛFt)(Xt − ΛFt)
′Σ−1

ξ ). (1.1.6)

Where c is a constant. Since Λ has N×k parameters and F has T ×k parameters, the number of parameters

to be estimated is very large. This leads to a loss in efficiency. The thing is that if N is small, but T is large,

then it can be shown that the likelihood function diverges to infinity by a certain choice of parameters, so

a global maximum does not exist.3

This log likelihood function is therefore unbounded in general, hence, does not have a global maximum.

Thus, standard ML estimation cannot be used. The likelihood function has local maxima, however, allowing

us to consider local maxima in the neighborhood of the true parameter vector. If an estimator of Σξ

is available, the factor loadings and factors may be estimated by a feasible GLS method based on the

minimization problem:

arg min
Λ,FT

T−1
T∑

t=1

(Xt − ΛFt)
′Σ̃ξ

−1
(Xt − ΛFt). (1.1.7)

1.1.3 Approximate Static Factor Models

So far, we have considered what can be called an exact static factor model in which the idiosyncratic com-

ponents are clearly separated from each other and from the factors. For economic data such an assumption

may be too strict. An alternative approach is to work with a approximate factor models that allows for the

3According to Anderson T.W (2003). If we express the log-likelihood function like

L = 1

[2π)p
∏p

i=1 Φij ]
N
2

∏p
i=1 exp−

(
1
2

∑
α = 1

N (xiα−µi−
∑m

j=1 λijf
2
ja)

Φii

)
Where xα = (x1α, . . . xpα)′ is an observation on Xα given by Xα = fα+µ+Uα with fα being a nonstochastic vector satisfying∑N

α=1 fα = 0. It can be shown that if µ1 = 0 , λ1, 1 = 1, λ1,j = 0 with j ̸=1, f1,a = x1,a. Then (xiα −µi −
∑m

j=1 λijfja)
2 = 0

and Φii does not appear in the exponent but appears only in the constant. This means that Φii → 0,L → ∞. So, it has no

global maxima.
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possibility that the idiosyncratic component has some correlation across series, so maybe data derived from

the same survey might have correlated measurement error. In this case we talk about approximate factor

model. In the approximate factor model

Σx = ΛΣFΛ
′ +Σξ, (1.1.8)

where Σξ is not necessarily a diagonal matrix. Assuming that the common factors are normalized to have

variance one, Chamberlain (1983) define approximate factor model by the conditional that Σx has only k

unbounded eigenvalues when N →∞, where N is the number of variables considered by the researcher. The

common factors are defined by the requirement that there exists a sequence of N×k matrices Λ and positive

definite covariances Σv such that: Σx = ΛΛ′ + Σξ and the maximum eigenvalue of Σξ is bounded when

N → ∞ . Thus, the relative variance share of each idiosyncratic component is small, when the number of

variables is large. Chamberlain (1983) apply this model to a financial market with many assets. Obviously,

in that case identification of the model becomes more difficult and conditions different from those stated

earlier are required. In fact, is is even possible that Σξ, has a factor decomposition that needs to be clearly

separated from the common factor part captured by ΛΛ′, at least asymptotically.

1.2 The Dynamic Factor Models (DFMs)

The DFMs represent the evolution of a vector of N observed time series, Xt, in terms of a reduced num-

ber of unobserved common factors which evolve over time, plus uncorrelated disturbances which represent

measurement error and/or idiosyncratic dynamics of the individual series. There are two ways to write the

model. The dynamic form of DFM that represents the dependence of Xt on lags of the factors explicitly,

while the static form represents those dynamics implicitly. The two forms lead to different estimation meth-

ods. What makes the DFM stand out for macroeconometric application is that the complex comovements

of a potentially large number of observable series are summarized by a small number of common factors,

which drive the common fluctuations of all the series.

1.2.1 Dynamic form of DFM

The dynamic form of DFM is obtained if the factors, ft explaining the variables Xt are also allowed to enter

in lagged form. The DFM, in fact, expresses a Nx1 vector Xt of observed time series as depending on a

reduced number of unobserved or latent factors ft and a mean-zero idiosyncratic component et, where both

the latent factors and idiosyncratic terms are in general serially correlated. The DFM is:

Xt = Λf
0ft + Λf

1f(t−1) + . . .Λf
q∗ft−q∗ + vt. (1.2.1)

Assuming the same DGP (data generating process) for ft and vt this model can be written in lag operator

notation as:

Xt = Λ(L)ft + et. (1.2.2)
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Φ(L)ft = ηt, A(L)vt = ut. (1.2.3)

With:

Λ(L) = Λf
0 + Λf

1L+ ...+ Λf
q∗L

q∗,

Φ(L) = Ir − Φ1L− ...− ΦsL
s,

A(L) = diag [a1(L), ...., aN (L)] .

Where the lag polynomial matrices Λ(L) and Φ(L) are N x q4 and q × q, respectively, and ηt is the

q × 1 vector of (serially uncorrelated) mean-zero innovation to the factors. The idiosyncratic disturbances

are assumed to be uncorrelated with the factor innovations at all leads and lags, that is, E[etη
′
t−k] = 0 ∀ k.

In general, though, et can be serially correlated. The ith row of Λ(L), the lag polynomial Λi(L), is called

the dynamic factor loading for the ith series, Xit. The term Λi(L)ft is the common component of the ith

series. The idiosyncratic component in (1.2.1) can be serially correlated. If so, equation (1.2.1) and (1.2.3)

are misspecified because they cannot be clearly estimated. In this case another method of estimation must

be used, like FGLS giving a process to the idiosyncratic component. One possibility could be to assume that

the idiosyncratic component, follows the univariate autoregression, et = δi(L)eit−1 + vit where vit is serially

uncorrelated. To estimate DFMs there are two possibilities. The first one is based on estimate directly the

dynamic form of the model which follow a Dynamic PCA approach described by Forni et al. (2000). The

other method is to rewrite the dynamic model in static form and estimate it with standard PCA. As so, I

will present how to rewrite the DFM in a static form that as showed in the Appendix the two forms are

equivalent.

1.2.2 Static Form of DFMs

The static form of the DFM rewrites the dynamic form of a DFM model to depend on r static factors Ft.

Rewriting the model in this way makes it likely to be estimated by standard principal components analysis

and least squares estimators. Let Ft = (f ′
t , f

′
t−1, . . . f

′
t−p)

′ denote a k x 1 vector of so-called “static” factors

in contrast to the ft that will be the dynamic factors called also primitive factors. Let Λ = (Λf
0 ,Λ

f
1 , . . . ,Λ

f
p),

where Λf
p is the N x q matrix of coefficients on the hth lag in Λ(L). Similarly, let Γ(L) be the matrix

consisting of 1s, 0s and elements of Φ(L) in equation (1.2.3) such that the vector autoregression is rewritten

in terms of Ft. So, the DFM can be rewritten like:

Xt = ΛFt + et, (1.2.4)

Ft = Γ(L)Ft−1 +Gηt, (1.2.5)

where equation (1.2.4) is the evolution of the dynamic factor in equation (1.2.3). G= [Iq 0qx(k−q)]
′

because it is the identity used to express Φ in (1.2.3) in first-order form.

4q is the number of unobserved factors

13



As an example, consider there is a single dynamic factor ft (so q=1), that all Xit depend only on the current

and first lagged values of ft, and that the equation for ft in (1.2.4) has two lags, so ft = Γ1ft−1+Γ2ft−2+ηt.

Then the correspondence between the dynamic and static forms for Xit is:

Xit = Λ0ft + Λ1ft−1 + eit =
[
Λ0 Λ1

] ft

ft−1

+ eit.

Ft =

 ft

ft−1

 =

 Γ1 Γ2

1 0

 ft−1

ft−2

+

 1

0

 ηt = ΓFt−1 +Gηt. (1.2.6)

The first expression writes out the equation for Xit in the dynamic form Λi = [Λ0Λ1] is the ith row of Λ,

and the second expression is the equation for Xit in the static form.

Estimation of DFMs. In order to estimate the model, it is useful to left-multiply equation (1.2.4) by

A(L) which is a lag operator (Kilian and Lütkepohl (2017)). So the model become:

A(L)Xt = ΛFt + ut, (1.2.7)

Ft = ΓFt−1 +Gηt, (1.2.8)

Using similar notation as before, Ft = (f ′
t , . . . , f

′
t−q)

′, Λ = [Λ0,Λ1, . . .Λ
f
q ], ut = A(L)et

and

Γ =



Γ1 Γ2 . . . Γq Γq−1

Ir 0 ... 0 0

0 Ir ... 0 0

... ... ... 0 0

0 0 ... Ir 0


and G=



Iq

0

0

...

0


.

Taking as given the number of lags and the number of factors and assuming A(L) and Σu to be diagonal,

we can proceed to the estimation of this model (1.2.7). Firstly, it is recommended that the variables are

first standardized such that they have zero mean and variance one. Following Stock and Watson (2005), the

dynamic form of the DFM can be estimated as follows:

1. Construct an initial estimate Ã(L) of A(L) = diag[a1(L), . . . aN (L)] for example by regressing the

individual variables on their lags. (AR)

2. Compute the PC estimator Λ̂, of Λ, from the model Ã(L) Xt = ΛFt + ũt where Ã(L)Xt assumes the

role of Xt in the equation of the static factor model and estimate the factors as F̂t = Λ̂′Ã(L)xt.

3. Estimate A(L)Xt = ΛF̂t + ût by single-equation LS for each equation to update the estimate of A(L).

4. Iterate Steps 2 e 3.
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Using a single-equation LS in step 3 is justified by the assumption that Σu is diagonal. If the assump-

tion is correct, estimation efficiency can be improved by using a FGLS because the regressor in the

different equations of the system are not identical.

Once the estimated factors F̂t are available, the coefficient Γ matrix in the transistion equation and

the underlying dynamic factors ft in model (1.2.8) can be estimated as well. The estimation of Γ is

complex because in practice we can only estimate some linear transformation of the static factors Ft.

The four-step estimator of the DFM discussed above uses a statistical normalization that may not

result in the primitive dynamic factors ft. Thus, estimating Γ by regressing F̂t on (Ft−1) produces

an estimator Γ∗ of some linear transformation of Γ. This issue may be addressed by implementing a

second-stage estimator which determines the r linearly independent primitive factors ft underlying Ft .

Let Ŵ be the matrix of eigenvectors corresponding to the r largest eigenvalue of the residual covariance

matrix Σ̂ϵ = T−1Σtϵ̂tϵ̂t
′ . Where, ϵ̂t = F̂t − Γ̂∗ ˆFt−1, and Γ∗ is the estimator obtained by regressing F̂t

on F̂t−1. Then η̂t = Ŵ ′ϵ̂t and the primitive factors ft can be estimated as f̂t = Ŵ ′F̂t. If estimates

of Γ1, . . .Γq+1 are required, they may be obtained by regressing f̂t on f̂t−1, . . . f̂t−q−1. Finally, the

covariance matrix of ηt can be estimated in the usual way using the residual covariance estimator

based on the latter regression. It is also possible to estimate all DFM parameters simultaneously by

ML estimation under the assumption that Xt is Gaussian. The Gaussian likelihood may be evaluated

with the Kalman filter because the model is in a state space form. If we drop the assumption of Σu

being diagonal, we end up in the GDFM (Generalized Dynamic Factor Models) for the estimation of

this model look at Kilian and Lütkepohl (2017).

Anyway, this model is called the static form of the DFM because the relation between the observed

Xt and the dynamic factors is contemporaneous. No lagged ft appear in equation 1.2.4 it is implicit,

but the factors are dynamic.

1.3 Determining the number of Factors in DFM

1.3.1 Determining the number of factors in Static form of DFM

Another problem encountered within factor models –that until now we took as given– is deciding

how many factors are needed to explain our observable variables. According to the notation I used

for static form of DFM, this means deciding k (number of factors) that explain our matrix Xt. In

classical static factor models (the one a paragraph 2.1.1), criteria such as choosing as many factors

as are necessary to explain a prespecified fraction of the overall variance are commonly used. More

precisely, this means including additional common factors until the sum of the variances of the common

factors exceeds a prespecified fraction of the sum of the eigenvalues of the sample covariance matrix.
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Sometimes also a scree plot can be used. A scree plot displays the marginal contribution of the kth

principal component to the average R2 of the N regression of Xt against k principal components. This

marginal contribution is the average additional explanatory value of the kth factor. When there are

no missing data, the scree plot is a plot of the ordered eigenvalues of Σ̂X , normalized by the sum of

the eigenvalues. Instead, Bai and Ng (2002), still for static form of DFMs, proposed using information

criteria to select the optimal number of static factors k when N and T tend to infinity. Bai and Ng

(2002) propose information criteria (IC) based on the quality of adjustment of the model to the data

measures by the variance V (j, F ) such that:

V (j, F ) = (NT )−1
T∑

t=1

(Xt − Λ̂Ft)
′(Xt − Λ̂Ft). (1.3.1)

Where j is a given number of factors. Thus, if the number of factors j increases, the variance of

the factors increases mechanically and the sum of the squares of the residuals decreases in turn. Bai

and Ng (2002) suggest introducing a penalty function in the criterion to be optimized and propose

three different Information Criteria (IC), corresponding to different penalty functions all based on the

generic:

IC(r) = log Vj(Λ̂t, F̂ ) + rg(N,T ). (1.3.2)

Where Vj(Λ̂t, F̂t) is the least-squares objective function evaluated at the PCs (Principal Components)

(Λ̂t, F̂t), and where g(N,T) is a penalty factor:

g(N,T ) =

[
N + T

NT

]
log[min(N,T )].

such that as N,T → ∞, g(N,T ) → 0 and min(N,T )g(N,T ) → ∞ . Bai and Ng (2002) provide

conditions under which the value of r that minimizes an information criterion, with g(N,T) satisfying

these conditions, is consistent for the true value of r. A commonly used penalty function among the

three presented is the Bai and Ng (2002) penalty is:

ICp2 = (R) = log V (R) +R

(
N + T

NT

)
log(min(N,T )).

Using this criterion we can estimate the number of static factors, which determines the dimension of

Ft. When N=T, this penalty simplifies to two times the BIC penalty, T−1 log(T ).

1.3.2 Determine the number of factors in Dynamic for of DFMs

In the context of dynamic factor models, the number of dynamic shocks q can be determined using the

Bai and Ng (2007) information criterion (IC). This criterion is obtained by considering the k estimated

static factors as given and then estimating a VAR model of order p on these factors, where the order p
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is selected using the BIC criterion. Next, a spectral decomposition of the variance-covariance matrix

of the estimated residuals of the VAR model, denoted Σϵ of dimension (k × k), is calculated.5

Let ρ1 ≥ ρ2 ≥ ρ3. . . be the eigenvalues obtained from a PC analysis of the estimated residual covariance

matrix of ϵtand define

D̂1(k) =

(
ρ2r+1∑R
i=1 ρ

2
i

)1/2

, (1.3.3)

and

D̂2(k) =

(∑R
i=r+1 ρi2∑R
i=1 ρi2

)1/2

. (1.3.4)

Based on these quantities Bai and Ng (2007) propose to estimate the number of primitive dynamic

factors as

k̂ = min ∈ r
∣∣D̂1(r) <

1

min(N
1
2−δ, T

1
2−δ)

, (1.3.5)

Or:

k̂ = min ∈ r
∣∣D̂2(r) <

1

min(N
1
2−δ, T

1
2−δ)

. (1.3.6)

Where δ is a small number between 0 and 1/2 . In a simulation study they used δ = 1
4 . In practice,

these different criteria are used at three stages:

(a) One of the Bai and Ng (2002) criteria is used to determine the optimal number of factors

k ∈ [1, rmax] in a static context.

(b) VAR(p) is estimated on these k estimated factors and the order p of the VAR is selected to

minimize the BIC criterion.

(c) The Bai and Ng (2007) criteria are applied to the variance-covariance matrix or correlation matrix

of the residuals ϵt of the VAR(p) to obtain the optimal number of dynamic factors q.

Until now I have briefly discussed dynamic factor models with their representation and estimation.

Extentions of DFMs are VAR and FAVARmodels that I use to address my research question. According

to that I present the features of these two types of models in the next chapter.

5They utilize the fact that the error term in the transition equation in the static form (1.2.4) Gηt, has covariance matrix

GΣηG′ of rank r and devise a procedure for determining that rank. Starting from estimates F̂t of the static factors, they

propose to fit a VAR model to the F̂t . In our current framework that VAR model is of order one because we have assumed

qs. Thus, fitting F̂t = Γ ˆFt−1 + ϵt.
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Chapter 2

VAR and FAVAR Models

2.1 VAR Model

VAR are models used to capture the relationship between multiple quantities as they change over time.

VAR is a type of stochastic process model. They generalize the single-variable autoregressive model

(AR) by allowing for multivariate time series. More in particular, VAR models are characterized by

their order (as AR), which refers to the number of earlier time periods the model will use. Usually, it

is indicated as VAR of p order or VAR(p).VAR models are linked to DFM because as we can see from

equation (1.2.8) or (1.2.4) those are VAR equations for factors, factors Ft are regressed on their lags.

VAR stands for Vector Autoregressive. The generic equation of the model is:

Yt = c+A1Yt−1 +A2Yt−2 + ...+ApYt−p + et. (2.1.1)

6

Where c is the intercept of the model, Ai is the time-invariant (kxk) matrix of coefficient and et is

a k-vector of error terms. Xt is a vector of observed time-series. The error terms in the basic model

satisfy three conditions:

• E(et) = 0

• E(ete
′
t) = Ω meaning that the variance-covariance matrix is a kxk positive-semidefinite matrix

• E(ete
′
t−k) = 0 for any non-zero k. There is no correlation across time. In particular, there is no

serial correlation in individual error terms.

The process of choosing the maximum lag p in the VAR model requires special attention because

inference is dependent on correctness of the selected lag order. VAR models were used to value, for

6If we adapt this equation to factor models we should have Ft = c+A1Ft−1+A2Ft−2+...+ApFt−p+et where Ft = [f1t, ..fkt]

and k is the number of factors
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example, shocks on inflation Sims (1993), on prices Sims (1992) etc. Actually Sims (1992) showed the

limits of VAR model because in his study he found out that after a restrictive monetary policy taken

by the central bank, the impulse response for prices was initially positive that is counter intuitive if

analyzed based on Keynesian macroeconomic approach. This result is the so called “price puzzles”.

Mainly this problem is due to the fact that VAR model has a huge, omitted variables bias. VAR is good

if there are few factors to consider otherwise there could be problems of missing some of the important

factors that instead could explain a bigger slice of variance-covariance matrix of the model. Another

problem in VAR were restrictions needed to identify the parameters. To solve these issues, based on

Geweke (1977) thesis, dynamic factor analysis seemed to help VAR models. Even if the number of

common shocks is small in DFMs, as we have seen above, it still gives better results compared to a

conventional VAR analysis with a small or moderate number of variables – VAR would fail to span the

space of the structural shocks to the dynamic factors –. The new methods for estimating and analyzing

dynamic factor models, combined with the empirical evidence that perhaps only a few dynamic factors

are needed to explain the comovement of macroeconomic variables, has motivated research on how to

best integrate factor methods into VAR and SVAR analysis (as we will see in the following paragraph

FAVAR model of BBE is an example).

2.2 FAVAR Model

Bernanke et al. (2005) to overcome the limits of VAR model thought about a factor augmented vector

autoregressive model (FAVAR). They have been the first to present and apply this model in their

paper in which they value the impact of monetary policy shocks on three observed variables (Ys) ie.

inflation, interest rates and GDP so as on a background panel of 120 economic variables, from which

they extract the factor of interests. Their aim of their paper is to augment the VAR model with these

extracted factors, in order to summarize a wider economic concept so to overcome the omitted variable

bias of VAR. In the following paragraph I explain in more detail how FAVAR work and I also provide

reference to FAVAR estimation’s method by Bai et al. (2016), Bai (2003).

Generally speaking, one way to obtain FAVAR model is to augment the set of observed variables Yt in

a given VAR model by unobserved or latent factors, Ft extracted from a panel of observed variables

Xt that does not include Yt. According to the representation of Bernanke et al. (2005), consider an

observed variable Yt of dimensions N x 1, and still Ft be a Kx1 vector of unobserved factors, where K

is “small”. Then the FAVAR model, assuming now the joint dynamics of (Ft, Yt) is given by: Ft

Yt

 = Φ(L)

 Ft−1

Yt−1

+ vt. (2.2.1)

Where Φ(L) is a conformable lag polynomial of finite order d, which may contain a priori restrictions
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as in the structural VAR literature Amisano and Giannini (2012). The error term vt is mean zero

with covariance matrix Q. This equation cannot be estimated directly because the factors Ft are

unobservable. However, if we interpret the factors as we said before ie. described by many economic

or climatic variables, we can infer something about the factors from the observation of a variety of

economic and climatic time series contained in another panel. For concreteness, suppose that we have

a number of background panel time series denoted by M x 1 vector Xt that represent this variety of

economic and climatic time series. More precisely in my analysis, Xt is further divided in two parts:

X1 and X2. X1 is the economic panel composed by 18 variables, and X2 is the climatic one composed

by 11 variables. M is the number of time series in the panel Xt and M is “large” in particular, it

is assumed to be much greater than the number of factors (K + N << M)7. We assume that the

informational time series in Xt are related to the unobservable factors Ft and the observable variables

Yt
8 by:

X ′
t = ΛfF ′

t + ΛyY ′
t + e′t. (2.2.2)

This is a static form of a Dynamic Factor Model because Xt depends on the current and not lagged

values of the factors. Where Λf is an N x K matrix of factor loadings and Λy is a NxM and the Nx1

et error terms are mean zero and will be assumed either weakly correlated or uncorrelated, depending

on whether estimation is by PC or likelihood methods. This equation captures the idea that both Yt

and Ft, which in general can be correlated, represent pervasive forces that drive the common dynamics

of Xt. Conditional on the Yt, the Xt are thus noisy measures of the underlying unobserved factors

Ft. The implication of equation (2.2.2) that Xt depends only on the current and not lagged values

of the factors is not restrictive in practice, as Ft, can be interprets as including arbitrary lags of the

fundamental factors, thus as a dynamic factor model.

Here we can see that the part concerning the factor specification is closely linked to DFMs as factors

are estimated in the same way. Nonetheless the extracted factors are combined in a VAR. FAVAR,

then is an extention of both VAR and DFMs. This approach is often intended to address the infor-

mational deficiencies of conventional small-scale VAR models because FAVAR allows to approximate

the responses of many more variables to a given structural shock that is not possible in conventional

VAR. Specifically with FAVAR it is possible to compute the impulse response for the panel Xt and for

the Yt not only for the Yt as in VAR. In my research question, as stated in the introduction, I want

to address the impact that climate has on a variety of economic variables that cannot be included all

in a VAR model. Moreover, climate is represented by different variables so using just one factor to

summarize this concept makes it easier to conduct the analysis so FAVAR could be a good model for

the analysis.

7Just a reminder N is the number of observed time series in Yt
8I use this notation to unify notation to the one used in the previous paragraph and in Chapter I for DFMs
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2.2.1 Estimation of FAVAR model PCA approach

To estimate the FAVAR model I will present, as Bernanke et al. (2005) did in their paper, the two-step

approach (Stock and Watson approach) and the Bayesian approach applied through Gibbs sampling

used in the MATLAB code. Starting with the first approach, it is based on a two-step principal

components methodology, which provides a non-parametric way of uncovering the space spanned by

the common components Ct = (Ft, Yt)
′. Common components indicated as Ct, are called like this

because are the regressors for each equation xi = λffit+λyyit+et in system (1.2.1) as Xt = [x1t...xit],

Ft = [f1t...fit] and Yt = [y1t...yit]. In the first step, the common components, Ct, are estimated using

the first K+N (where K is the number of factors of Ft, instead N is the number of observed variables

Yt) principal components of Xt as to obtain F̂t. Notice that even if Yt is observed, so we do not have to

estimate it, in the first step the PCA is conducted by using the true number of factors ie. the number of

observed plus the number of unobserved factors. F̂t is then obtained as the part of the space covered by

Ĉt that is not covered by Yt. In the second step, the FAVAR equation (2.2.1) is estimated by standard

methods ie. OLS, with of course Ft replaced by F̂t. This procedure has the advantages of being

computationally simple to implement and as discussed by Stock and Watson (2002), it also imposes

few distributional assumptions and allows for some degree of cross correlation in the idiosyncratic

error term et. However, this two-step approach implies the presence of “generated regressors” in

the second step, because we do use factors estimated by PCA to estimate the coefficients. To end

the estimation and obtain accurate confidence intervals on the impulse response function a bootstrap

method implemented by Kilian (1998) or Berkowitz and Kilian (2000) is used.

2.2.2 Identification of the model

As we have said for DFMs, it is also necessary for FAVAR model, to decide the restrictions to identify

the factors and the associated loadings. We can use the same restriction pointed out in Chapter I,

proposed by Bai and Wang (2014) for DFMs as the factor equation is in DFM form. In two-step

estimation by principal components, the factors are obtained entirely from the observation equation

(2.2.1). In this case we can choose either to restrict loadings by Λf ′Λf/N = I or restrict the factors

by F ′F/T = I. Either approach delivers the same common component FΛf ′ and the same factor

space. Here we impose the factor restriction, obtaining F̂t =
√
T Ẑ, where the Ẑ are the eigenvectors

corresponding to the K largest eigenvalues of XX ′ sorted in descending order. This approach identifies

the factors against any rotations. The estimated system ((2.2.1)) -((2.2.2)) can be used to draw out

the dynamic responses of not only the “main” variables Yt but of any series contained in Xt. Hence the

“reasonableness” of a particular identification can be checked against the behavior of many variables,

not just 3 or 4. Second, one might also consider constructing the impulse response functions of factors

(or linear combinations of the factors) that can be shown to stand in for a broad concept.
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Chapter 3

Bayesian Estimation of FAVAR

model

3.1 Bayesian notation

Another way to estimate FAVAR model, is to use Bayesian techniques. The upgrade in using these

techniques is that a more precise estimate of the factors can be obtained. In a nutshell, using Bayesian

techniques allow the state vector of factors, Ft = [F1t, ..Fkt], to be updated as soon as new information

is available. I now explain in more detail this statement. First of all, Bayesian statistics is based

on a few concepts that can be expressed analytically. Differently to frequentist analysis, where the

objective is to try to infer the parameters θ (mean, variance etc.) of an observed distribution of data

by actually making assumption on the distribution of the parameters, bayesian statistics focuses on

finding the distribution of the vector of parameters. According to that, Bayesian statistics is based on

two concepts: prior and posterior distribution. Bayesian analysis allows the researcher to incorporate

his prior beliefs about the parameters vector θ, these will constitute the prior distribution. These

beliefs and so priors, are based on past experience. For past experience it is meant information the

researcher has about the parameters or experience he has developed by studying other similar datasets

etc. The key point is that these prior beliefs can be expressed with a probability distribution. Suppose

we have a set of data y = (y′1, . . . y
′
T ), Bayesian treats the data as given and the parameter of interest

θ, as unknown. Firstly, without looking at the distribution of the data, they lay down a probability

distribution (priors). After stating that, the researcher collects data on y and writes down the likeli-

hood function of the data. This phase is identical to the one done by classical econometrician. The last

phase is that the Bayesian researcher, conditioned to the information on the data he has now observed,

develops the posterior distribution. This distribution is proportional to the prior distribution times
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the likelihood function.

g(θ
∣∣y) ∝ L(y

∣∣θ)P (θ), (3.1.1)

Where, P (θ) is the pdf of the prior beliefs of the researcher, L(y
∣∣θ) is the Loglikelihood and g(θ

∣∣y) is
the posterior distribution. According to Bayesian approach after we reach the posterior distribution we

might be interested in the moments of this distribution. This is the part related to point estimation.

Often moments of the posterior distribution are of interest such as E(θ
∣∣y). The posterior mean is often

used as a point estimator for θ if the posterior distribution is Gaussian or symmetric. Otherwise we

can use the mode or median of the distribution. Broadly speaking the researcher is often interested in

expected value of functions of θ. If we are interested in figuring out a point estimate of some function

h(θ) that may be vector-valued or a scalar, we minimize the expected loss of h(θ) based on some loss

function. Denoting this loss function by L(h∗, h(θ)), the point estimate, say ĥ is chosen such that:

ĥ∗ = argminh∗

∫
L(h∗, h(θ))g(θ

∣∣y)dθ. (3.1.2)

Where h∗ denotes an element of the range of h(θ). For example, if the loss function is quadratic

and the first two moments of the posterior distribution exist, the point estimate corresponds to the

posterior mean. Changing the loss function if it is no more quadratic for example, then we will get a

different estimator that could be the mode or median.

3.1.1 Simulating the posterior distribution

Bayesian inference as we have said till now, is based on finding the posterior distribution. In non-

trivial cases, the closed form for the posterior distribution is not available. This means that we do

not know the shape of our ending distribution. To get it, it is necessary to use numerical methods

to simulate. Usually, the objective is to generate random draws for the parameter vector θ1, . . . θn

from the posterior distribution of the parameters or some function of these parameters such as the

impulse response associated with a VAR model. Suppose we are interested in the expectation of h(θ)

which may be a vector or a scalar function. Laws of large numbers suggest that we can obtain a good

approximation to this quantity by drawing at random θ1, . . . θn from the posterior distribution and

noting that
1

n

n∑
i=1

h(θi|y) →a.s E(h(θ
∣∣y)) = ∫

h(θ|y)g(θ
∣∣y)dθ. (3.1.3)

Where a.s stands for almost surely convergence. A sequence of random variables is said to converge

almost surely when, Xn (w) → X(w) not on ω as for pointwise convergence, but on an event B with

probability P(B)=1. Where omega is the support. Both the bounded convergence theorem and the

monotone convergence holds in almost surely convergence. The approximation precision increases with
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the number n of random draws. Of course, simulating the posterior distribution when it is not known

or nonstandard is not easy.

3.1.2 Markow Chain Monte Carlo (MCMC)

The usual method to start sampling is Monte Carlo simulation, but Monte Carlo simulation can

only be used if we can sample from a distribution in a i.i.d fashion. Meaning we are dealing with

a not so difficult distribution or a distribution in closed form. If we cannot do this, meaning we do

not have a well-defined distribution, for the posterior one in this case, we have to change our way to

estimate and use something more complex that is the MCMC. MCMC stands for Markov Chain Monte

Carlo, and it constructs a sequence of correlated samples let’s say Y1, Y2, . . . that explore the region of

high probability by making a sequence of incremental movements. Even though the samples are not

independent, it turns out that under very general conditions, sample averages 1
N

∑N
i=1 h(Xi) can be

used to approximate expectations E[h(X)] just as in the case of simple Monte Carlo approximation

and by ergodic theorem, these approximations are guaranteed to converge to the true value. Suppose

we are interest in knowing the expected value of a certain function f(x) with respect to a certain

distribution π.

µ = Eπ[f(x)]. (3.1.4)

This is usually expressed as: ∫
f(x)π(x)dx. (3.1.5)

Supposing that we cannot derive this integral analytically nor sampling in a i.i.d fashion from π, then

we have to use another method to estimate the integral that is MCMC. To use MCMC we need to

ensure that π is a unique, limiting and stationary distribution and also the Markov Chain must be

irreducible such that the ergodic system holds.7

For stationary distribution it is meant that taken any non-singular matrix T if multiplied by the

probability distribution function it gives back the same pdf. For irreducibility it is meant that for

any pair a,b there is some π such that P (Xt = b
∣∣X0 = a) > 0 meaning that starting from any kind

of value at time 0 we arrive at point b with a probability greater than 0. After building as such a

distribution we can now start sampling with Monte Carlo. We will then obtain a parameter estimate

µ̂n = 1
n

∑n
i=1 f(Xi) To check whether this estimate is good for µ, we have to use an indicator

V (f, P ) = lim
n→∞

[nV arπµ̂n] = σ2
∞∑

k=−∞

ρk. (3.1.6)

That is the variance basically. σ2 = V arπf(x) and ρk = Covπ[
F (X0,f(Xk)

σ2 ]. Basically the “pity”

of using the MCMC methods instead of the classic Monte Carlo is that we have a higher variance

7A Markov chain is said to be ergodic if there exists a positive integer T0 such that for all pairs of states i,j in the Markov

chain, if it is started at time 0 in state I then for all t > T0, the probability of being in state j at time t is greater than 0.
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in our estimate because of the term ρk. This is within the functioning of the Markov Chain, that

estimates correlated samples. The draws of the parameter vector are not independent, but serially

dependent -we pay more variance-. Laws of large numbers and central limit theorems for dependent

samples can be used to justify the use of such samples. Thus, longer samples may be necessary to

have a more precise inference. This is the price we pay to have the impossibility of sampling in a i.i.d

fashion from the distribution. If the chain of MC runs long enough, the distribution converges to the

posterior distribution of the parameters. In fact, for the construction of approximately independent

samples from the joint posteriors, econometricians may want to work only with every mth sampled

vector, where m is a sufficiently large number (to reduce correlation among series). Moreover, a large

number of initial sample values are usually discarded (burns-in) to ensure a close approximation of

the posterior because we go faster to the support of the posterior distribution. There are basically

two ways of simulating MCMC method. One is the Metropolis-Hastings algorithm. Practically, a

draw is accepted with probability one if it increases the posterior. Otherwise, it is accepted with a

probability less than 1, the precise value of which depends on how much lower the current posterior

value is compared with the previous draw. The other way is the Gibbs sampler which will be used in

the MATLAB application.

3.1.3 Gibbs Sampler

The Gibbs sampler is within the MCMC methods more in particular it can be adopted if the parameter

vector can be partitioned. This can be done to simplify the estimation of the posterior distribution

because sometimes computing the integral for the posterior distribution can be a difficult process.

If the conditional posterior of one of the sub-vectors, given the remaining elements, has a known,

conventional distribution from which it can be possible to start sampling, it can lead to a simpler

drawn procedure. To illustrate the Gibbs sampling, consider the simplest case where θ our vector of

parameters of interest, can be partitioned as

θ = (θ′1, θ
′
2)

′ (3.1.7)

such that g(θ1
∣∣θ2, y) and g(θ2

∣∣θ1, y) correspond to known distributions that can be simulated easily.

The Gibbs sampler happens when the random variable we observe, let’s say y = (y1, . . . yd), lives in

a d-dimentional space and rather than update all coordinates together we update one coordinate at

a time and then cycle those coordinates i.e. first we update y1 then y2 then y3 etc. given the other

information we estimate θ1,1
∣∣θ2,0 then θ2,1

∣∣θ1,1 etc. and then we go back to the first one till convergence

is reached. This is called the fixed scan Gibbs sampler. There is also the random scan Gibbs sampler

in which the cycle among the coordinates does not follow an ordinate method but rather is random

meaning that we can associate some probability to the coordinates we want to update i.e let’s say we

want to update coordinate y1 more often than coordinate y2 because maybe it is more important, then
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we can attribute a greater probability to that coordinate to be updated, so that it will be sampled more

often than the others. If we opt for random Gibbs sampler, we can find ourselves in the situation in

which we do not know which of the coordinates is better to re-sample more, so maybe at the beginning

can be convenient to do a fixed scan Gibbs sampler, learn what are the most important coordinates

and then try and do a random Gibbs sampler. The functioning of the Gibbs sampler is always the

same, though. We update the ith coordinate by taking its proposal distribution and we assume that

it is the full conditional distribution for that coordinate. The full conditional distribution is equal to

the marginal target distribution conditioned on all the other coordinates:

q(yi, ) = π(yi
∣∣y−i) = full conditionals. (3.1.8)

Where -i indicates j : j ̸= i. A Gibbs sampler has the advantage that these full conditionals always

lead to probability of one (because divided by the “normalized constant”), so there is no need to

calibrate the proposal, but on the other hand those full conditionals are needed to be computed and

they need to be sampled on a i.i.d fashion. If we cannot derive the full conditional distribution we

might use a Metropolis-Hastings 9 function within Gibbs for those distributions that we cannot derive

a prior. Meaning we will derive the full conditionals of the distributions we can derive and for the

other we could use Metropolis-Hastings. Anyway, to explain better the Gibbs concept, it can be useful

to present an easy example. Suppose we have a single observation y = (y1, y2) from a bivariate normal

distribution of mean unknown θ = (θ1, θ2) and variance unknown

Σ =

 1 ρ

ρ 1

 (3.1.9)

Suppose we do stabilize a prior distribution, the uniform distribution on θ, so the posterior distribution

obtained as we said in the paragraph above, proportional to the prior distribution times the likelihood

function, is a normal distribution: θ1

θ2

 |y ∼ N

 y1

y2

 ,

 1 ρ

ρ 1

 (3.1.10)

In this example we have a closed form for our target distribution, meaning that we already know where

we will arrive (posterior distribution), and we do know everything about this distribution. To check

if the algorithm works, though we can simulate a Gibbs sampler and check, by starting from different

9The Metropolis-Hastings Algorithm can be used as an alternative when none of the other way to simulate could work.

Basically, it works that given a probability acceptance level given by: α = min[1,
Π(y)q(x,y)
Π(x)q(x,y)

] and a proposal distribution (q in

our case), that is a distribution for the posterior given my prior, then, by starting with different x0 we will accept the distribution

generated by our xith value, if the probability is equal to α otherwise xi = xi−1. More formally, Metropolis-Hastings is based

on a conditional density, η(θ|θi−1). For a given θi−1, a candidate θ+ is drawn from the distribution corresponding to η(θ|θi−1),

and θi = θ+ is chosen with probability: min[

(g(θ+|y)

η(θ+|θi−1)

(g(θi−1|y)

η(θi−1|θ+)

, 1] otherwise θi = θi−1.
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values of θ0 = initialvalues if, by simulating the posterior distribution will be stable at the support

and reach expected value of θ which is the mean of the true distribution. To set up the Gibbs sampling

we have to derive the full conditionals distribution. In this case as we are dealing with a bivariate

Gaussian, we do know that also the marginal distribution will be Gaussian and so as the conditionals.

We obtain:

θ1
∣∣θ2, y ∼ N(y1 + ρ

(
θ2 − y2), 1− ρ2

)
, (3.1.11)

θ2
∣∣θ1, y ∼ N

(
y2 + ρ(θ1 − y1), 1− ρ2

)
. (3.1.12)

As we said before, Gibbs sampler works that we do estimate one parameter at a time keeping the

others as given. We will first estimate θ1 given θ2 and the data (which will be the last value of θ2) then

we will estimate θ2, given the data and the value just estimated for θ1 and start over for N times which

is the number of simulations we want to run. To decide the number of times we do have to iterate

our cycle, there is a convergence criterion developed by Rosenthal et al. (2001) that computes the

“magic number” 0.234 which is a value that the convergence ratio should reach to have a pretty close

distribution to the true one. For convergence ratio it is meant π(y)
π(x) which is the distribution at which

we are trying to go (π(y)) divided by the distribution at which “we are” with the current number of

simulation π(x). If this ratio is close to 0.234 it means that our posterior is good. Going back to

our example, if we suppose that the observation is y = (0, 0) and ρ = 0, 8 for frequentist statistics

the maximum likelihood estimator for θ would have been the mean of the distributions and as in this

example we do have only one observation so it would end up 0 for θ1 and 0 for θ2. For Bayesian

approach the estimator of theta would have been the expected value of the posterior distribution and

in this special case of Gaussian, it is also 0 for θ1 and 0 for θ2. So, in this case the two statistics

branches (Frequentist and Bayesian) coincide.

This easy example summarizes the logic behind the Gibbs sample, but to apply the Gibbs sample

on a more general situation we need to generalize the formula. Suppose we do not have only one

observation, but we do have a sample of observed variable Y1, . . . Yd (as we will have in the case study

I will present later) still distributed as a Gaussian distribution, in this case suppose we do not know

nor the mean nor the variance matrix. Then we do have to establish some priors both on the mean

and on the variance coefficient. Basically, the mean and the variance-covariance matrix will represent

our parameters of interest. We can say that the prior distribution for the mean parameter is Gaussian

instead the prior distribution for the variance is a Gamma (because the variance-covariance matrix is

Positive Definite). So, we have our observed sample:

Y1, . . . Yd iid N(µ, σ2 = γ−1) Priors:

µ ∼ N(µ∗, σ
2
∗)τ =

1

σ2
∼ G(α∗, β∗). (3.1.13)

Posteriors:

p(µ, τ
∣∣y1, . . . , yd)L(µ, τ ; y)p(µ, τ) ∝ τ (

d
2+α∗−1)eβ∗τe

−(τSd)

2 − (µ−µ∗)2

(2σ2
∗) . (3.1.14)
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here we have a layered Gibbs sampling because we do want to find the posterior distribution of y but

the parameters of y have their own distributions, so α and β, µ∗ and σ2 are defined “hyperparameters”

Sd = Σd
i=1(yi − µ)2 the posteriors is proportional to the likelihood times the priors.

To start sample we have to define the full conditionals:

(µ
∣∣γ, y1, . . . , yd) ∼ N

(
(dȳτ + µ∗τ∗)

(dτ + τ∗)
, (dτ + τ∗)

−1

)
, (3.1.15)

(τ
∣∣µ, y1, . . . , yd) ∼ G

(
α∗ +

d

2
, β∗ +

Sd

2

)
. (3.1.16)

These two conditionals have been computed from the inverse formula of Bayes by dividing the joint

distribution by the marginal distribution of each of the parameters respectively that is quite a difficult

iter to follow. Actually, in this case is still possible to compute, but there are other cases in which this

procedure can lead to unfeasible integrals and cannot be computed. Defined the full conditionals we

have to iterate the algorithm and the cycle is always the same. We start at certain initial values µ0

and τ0 then we find, given τ0, µ1, then given µ1 we find τ1 etc. etc. for N times. To thin the sampling

scheme and not use all the storage when running the algorithm, it could be useful to retain only fewer

results from the MCMC simulation. To decide the “step” to use to thin the results (and save every K

times) we have to refer to the ACF graph. Basically, we will plot the ACF of the distribution of the

parameters and take the worst ACF (meaning the highest lag after which the distribution goes down

to zero) and use it as a lag. For example, if in the ACF the lag after which the series stabilize is 15,

we will take a step equal to 15, meaning that we will save results as: the first one, then the 15th, then

the 30th and so on.

3.1.4 Gibbs sampling for state-space model

To actually apply Bayesian methods to my FAVAR model later on, it is needed to understand how

Gibbs sampling changes and works within state-space models. For illustration purpose suppose we are

dealing with this model state-space model:

Yt = Hβt +Azt + et, (3.1.17)

V ar(et) = R, (3.1.18)

βt = µ+ Fβt−1 + vt, (3.1.19)

V ar(vt) = Q. (3.1.20)

The first equation is the observation equation, the second equation is instead the transition equation.

In the observation equation the unknown parameters are: the elements of H that are non-zero or not

given in the data, A and the non-zero elements of R. In the transition equation instead, the unknown

parameters are: µ, F and Q. Moreover also βt is an unknown state variable. The fact that βt is also
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unknown, would have make the system more complex, but if we treat βt as observed, the observation

and the transition equation go down to two linear regressions. Having said that the general Gibbs

procedure for this model is:

(a) Conditional on βt, we estimate H, R from the posterior distribution (for the observation equation)

(b) Conditional on βt, we estimate µ, F and Q for the posterior distribution

(c) Conditional on the parameters of the state-space: H, R, µ, F and Q sample the state variable βt

from its conditional posterior distribution.

(d) Iterate step 1 to 3 until convergence.

The new step for this kind of Gibbs sampling, is Step 3 because we need to sample from a state variable

posterior distribution. First of all, it is necessary to estimate betat and then infer its distribution.

3.1.5 βt Posterior Distribution

Defining the time series of β:

Bt = [β1β2. . . βt]
′, (3.1.21)

So that

BT−1 = [β1β2. . . βT−1]
′. (3.1.22)

We use multi-move Gibbs sampling that basically allow us to simulate the whole vector of betas

all together. Multi-move Gibbs sampling comes from the theory behind Gibbs sampling in Markow

switching models10 in which we need to estimate the whole vector of latent variable. The main differ-

ence between Single-move Gibbs sampling (that is the classic one) and multi-move is that:

• Single-move Gibbs sampling: generate each βt

from: f(βt

∣∣(β̃ ̸=t), H,Q,R, F, µ, Yt)

• Multi-move Gibbs Sampling: generate the whole block of Bt

from: f(Bt

∣∣H,Q,R, F, µ, Yt)

We are interested in knowing the posterior distribution p(Bt

∣∣H,Q,R, F, µ, Yt) that we can shortly in-

dicate by p(BT |ΦT ) so the joint distribution of all the betas. ΦT represent all the available information

at time T. The joint probability distribution p(BT |ΦT ), can be split into a sequence of conditional

distributions:

10Di Persio and Frigo (2016)
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p(BT

∣∣ΦT ) = p(BT |ΦT )p(BT−1

∣∣BT ,ΦT ) =

p(BT

∣∣ΦT )p(βT−1

∣∣βT ,ΦT )p(BT−2

∣∣βT−1,ΦT ).

As shown in Kim and Nelson (1999), this expression can be simplified since βT follow a first order AR or

Markov process. Thanks to that, given ΦT and βT−1, in the term p(BT−2|βT , βT−1,ΦT ), βT contains

no additional information not contained in βT−1 so, this term can be re-written as p(BT−2|T−1,ΦT )

so in general the posterior distribution can be summed up as:

p(BT |ΦT ) = p(BT |ΦT )Π
T−1
t=1 p(βt|βt+1,Φt).

So, we do not need to know information far more than one period ahead because we are dealing with

a Markov Chain. This is typical of state space, because as we are in that state space it will give us all

the information we need to conduct our estimates. Practically it means that if we go ahead in time

like taking b100 to estimate b99, b100 is a number extracted from the distribution found with Gibbs

sampling. So, all we do is, condition on that number we work out the probability distribution and the

available information at one time ahead. This methodology is the Carter and Kohn (1994). Assuming

that the disturbance errors of the state-space model are normally distributed we have:

BT |ΦT
∼ N(βT |T , PT |T ),

Bt|Φt,βt+1
∼ N(βt|t,βt+1

, Pt|t,βt+1
).

Where:

βt|t,βt+1
= E[βt|Φt, βt+1] = E[βt|βt|t, βt+1].

Pt|t,βt+1
= cov[βtΦt, βt+1] = cov[βt

∣∣βt|t, βt+1].

Now this representation of the problem that we have said till now, is based on the Carter and Kohn

(1994) algorithm that derive an appropriate recursion that, updates the estimates conditioned on some

known value of βt+1 that is the next value of βt previously estiamted.

βt|t,βt+1
= βt|t −Kt|t+1(βt+1 − Fβt|t − µ). (3.1.23)

Where K is the “Kalman gain”. The Carter and Kohn algorithm relies heavily on the Kalman smoother

definition, and the values computed with the Kalman Filter. Before moving forward with the expla-

nation of the Carter Kohn algorithm, then it is necessary to point out what it is meant with Kalman

filter and Kalman smoother. The Kalman Filter is a recursive algorithm, that provides an estimate

of the state variable at each point in time, given the information up to that time period. Basically,

the Kalman Filter allow us to estimate the entire state space starting by few initial values. To use the
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Kalman filter though, we need estimates on the other parameters of the model, that in our case are

H, R, µ, F and Q. These estimates are available from the Gibbs sampling from previous draw of the

Gibbs sampler. The Kalman filter can be constructed with the following equations:

βt|t−1 = µ+ Fβt−1|t−1,

Pt|t−1 = FPt−1|t−1F
′ +Q,

ηt|t−1 = Yt −Hβtβ|t−1 −Azt,

Ft|t−1 = HPt|t−1H
′ +R,

βt|t = βt|t−1 +Kηt|t−1,

Pt|t = Pt|t−1 −KHPt|t−1.

Where K = Pt|t−1H
′F−1

t|t−1. The first and the second equation are the “prediction” equation meaning

that they are a first preliminary estimate of those two quantities. The first equation finds βt|t−1

meaning the beta one period ahead, having information up to time t-1 using the transition equation.

The equation in fact, can be found by taking the expected value of the transition equation. The

second equation of the filter instead finds the variance Pt|t−1 given the information at time t− 1 and

can be found by taking the variance of βt. The third and the fourth equations instead consist of the

prediction error and the variance of the prediction error, these two quantities are needed to update

the estimate of the betas and the variance matrix in the last two equations that are the updating

equations. Basically, the prediction error is the error that comes from the estimates of beta one period

ahead using the information up to one period before. The parameter K is the so called “Kalman gain”

and it is the weight associated to the prediction error. That means that, if the information contained

in the prediction error is not so impactful for the betas already estimated, then the weight will be

low. So, the prediction error does not bring too much new information for the already estimated beta.

Now, the problem of the Kalman Filter is that the estimate of the parameter only happens with the

information up to time t − 1. So, when we are estimating we are not considering the information

generated after. In practice, this means that, if we want to estimate βt+1 we are using information up

to time t+1 so in the estimate of βt+1 we use all the available information, but the estimate of βt we

do not because, βt has been estimated by only using information up to time t. To solve this “issue” the

estimates could be updated by “smoothing them”. Smoothing means use all the information happened

before and after time t to get a more precise estimate of βt. This means that there will be future

values η
i
∣∣t−1

that will bring some news, that can help estimate more correctly βt. So, it becomes:

βt|T = E(βt

∣∣Φt−1, . . . ηt|t−1, ηT
∣∣t−1

) Where T > t and Φt−1 represent all the available information

ad time t-1. To get a quicker way of updating the value of beta using and assuming that the future
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innovations are uncorrelated, we can say that:

βt|T = βt|t +

T∑
j=t

ΣβtηjΣ
−1
jj

ηj|t−1. (3.1.24)

That means that the estimate of βt|T (so given the future information T) is equal to the value of beta

estimated with information up to time t plus a prediction error given by the “news” brought by the

future innovations. Recalling that:

βt|t = E(βt|t|Φt−1, ηt|t−1). (3.1.25)

This is called fixed interval smoother, because we are using always the same set of information T and

it is used to estimate all βt. Now, we do have another set of information, though, so we can say, we do

have an estimate of β
T
∣∣T using all the information, how can I let the smoother work better? We do

have a new prediction error that answer to the question: what would have been the value of βT |T−1

meaning the value at the next time given the information up to a period before? The prediction error

of this estimate is then equal to:

ζT |T−1 = βT |T − FβT−1|T−1 − µ. (3.1.26)

That is the difference between βT |T estimated with all the information minus FβT−1|T−1 that is the

parameter estimated at time T − 1 with the information up to time T − 1. Finding these residuals,

allow us to use them to update the estimate of βT−1|T so we do have that:

βT−1|T = βT−1|T−1 + σβζΣ
−1
ζζ ζT |T−1. (3.1.27)

Where:

Σζζ = var[ζT
∣∣βT−1],

Σβζ = cov[βT−1, ζT |ΦT−1],

Σζζ = var(βT − FβT−1|T−1 − µ) =

var(F(βT−1 − βT−1|T−1) + et) = FPT−1|T−1F
′ +Q.

Σβζ = E[(βT−1 − βT−1|T−1)(βT − FβT−1|T−1 − µ)′] = E[(βT−1 − βT−1|T−1)(βT − βT−1|T−1)
′F ′] =

PT−1|T−1F
′.

So, plugging this information in the update equation of beta we do obtain that the update is the result

of the Kalman Filter plus the state variances

βT−1|T = βT−1|T−1 + PT−1|T−1F
′P−1

T |T−1(βT |T − FβT−1|T−1 − µ). (3.1.28)
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Applying it recursively gives:

βt|T = βt|t + Pt|tF
′P−1

t+1|t(βt+1|T − Fβt|t − µ) = βt|t −Kt|T (βt+1|T − Fβt|t − µ). (3.1.29)

Where K is the “Kalman gain”. Having said that, going back to our equation 3.3.24, we can now

explain the alternative update system thought by Carter and Kohn. In equation 3.3.24 βt|t and Pt|t

are computed from the Kalman filter as explained above. Then, the update is done as the Kalman

smoother, but what changes is the prediction error, because this time we are conditioning not on Φt

but on βt+1. In this case the prediction error is:

ζt+1|t = βt+1 − Fβt|t − µ. (3.1.30)

As the innovation in predicted βt+1|t where we have some realized βt+1 drawn from its probability

distribution. Carter Kohn smoother comprises updates to the conditional expectation that use this

news

E[βt

∣∣Φt, βt+1] = E[βt

∣∣Φt] + ΣβζΣ
−1
ζζ ζt+1|t =

βt|t +ΣβζΣ
−1
ζζ ζt+1|tvar[βt

∣∣Φt, βt+1] = var[βt

∣∣Φt]− ΣβζΣ
−1
ζζ Σζβ =

Pt|t − ΣβζΣ
−1
ζζ Σζβ = Pt|t,βt+1.

Where βt|t and Pt|t are estimated with the Kalman Filter. We obtain that:

Σζζ = var[βt+1 − Fβt|t − µ] = var[Fβt + µ+ vt+1 − Fβt|t − µ]

=var[F(βt − βt|t) + vt+1] = FPt|tF
′ +Q

Σβζ = E[(βt − β
t
∣∣t)(βt+1 − Fβt|t − µ)′] =

E[(βt − βt|t)(F (βt − βt|t) + vt+1)
′] = Pt|tF

′.

So using the definition to update the estimates of beta we do have:

βt|t,βt+1
= βt|t + Pt|tF

′(FPt|tF
′ +Q)−1(βt+1 − Fβt|t − µ) =

=βt|t −Kt|t(βt+1 − Fβt|t − µ).

Where:

Kt|t+1 = −Pt|tF
′(FPt|tF

′ +Q)−1. (3.1.31)

Like the Kalman smoother, this uses the filter’s estimate of Pt|t and updates βt using the error in predicting

βt+1 not the data yt. It’s the beta prediction to run backward not the data. In the end we have:

βt|t,βt+1
∼ N(βt|t,βt+1

, Pt|t,βt+1
). (3.1.32)

One problem with the Carter and Kohn (1994) algorithm is that if the matrix Q is singular, which is

not uncommon, it means that we have more states than shocks, the algorithm must be changed as stated in
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Kim and Nelson (1999) treating only those states that are shocked as observed. Now going back to where

we started, our aim was to find the conditional distribution of the parameters of our model and apply Gibbs

sampling. Thanks to the Kalman Smoother we do have the estimates of the betas, we can take them as

parameters to develop the distribution of the other parameters. So, stating that θ = [H,R,Q, F, µ] the steps

to follow are:

• Step 1 Conditioned on θ and y we generate BT = (βT , βT−1, . . . β1) the state vectors of βT , we do need

conditional distribution for all the betas

• Step 2 Conditioned on the BT we do estimate θ

• Step 3 Iterate till convergence

3.1.6 Applied methods on FAVAR model for climate variables

Applying now what we have said to the FAVAR model, we obtain the Bayesian approach of estimating

FAVAR. I used this technique in my analysis. The FAVAR model for my analysis can be written in state-

space form:

Xt = biF1t + biYt + γiF2t + vi,t, (3.1.33)

Zt = ct +

P∑
j=1

BjZt−j + et, (3.1.34)

Zt = [F2t, Yt, F1t], (3.1.35)

V AR(vi,t) = R, V AR(et) = Q. (3.1.36)

Where, Xt is a T x M matrix containing a panel of macroeconomic and economic variables, specifically

Xt = [X1, X2] where X1 is the economic panel, X2 is the climatic panel. While Yt is N × 1 vector of

observed variables composed by Int.Ratet that actually denotes the 3M European Money Market Interest

Rate, so Yt = [Int.Ratet] and F1t and F2t are unobserved factors which summarize the information in the

data Xi,t. F1t is the economic factor extracted from X1, F2t is the climatic factor extracted from X2.

Zt = [F2t, Yt, F1t] is the vector containing both the unobserved and the observed variables, to use a shorter

notation. The first equation is the observation equation of the model, while the second equation is the

transition equation. To make a parallelism with Bernanke et al. (2005) they consider a shock to the interest

rate in the transition equation and calculate the impulse response of each variable in their panel Xi,t. I

instead assume a shock to the climatic factor F2 and as them I compute the impulse responses of the whole

panel Xi,t and of Yt. I assume that the lag length in the transition equation equals 2 and there are 2

unobserved factors as previously stated Ft = [F1t, F2t]. For a matter of convenience and to link to notation

in (3.1.17)–(3.1.20), I further summarize the state space model by writing it in this form:

Xt = Hβt + ϵt, (3.1.37)
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βt = µ+ Fβt−1 + et, (3.1.38)

Where the first equation is the observation equation composed by:

Xt is the total panel, H = [bi, γi] the loadings matrix in the form:

H =



1 0 γ13 0 0 0

0 1 γ23 0 0 0

b31 b32 γ33 0 0 0

... ... ... ... ... ...

bNN1 bNN2 γNN3 0 0 0


(3.1.39)

The first block is an identity (KxK) where K is the number of factors, to lock rotation and solve the

problem of identification of the model due to generated regressors.

NN is the number of time series in the total panel, and γi is different from 0 only for fast moving variables11.

βt = [F2t, Int.Ratet, F1t, F2t−1, Int.Ratet−1, Ft−1]
′
, where F1t is the economic factor, and F2t is the climate

factor. While the second equation is the transition equation or VAR(2) equation where:

βt = [F2t, Int.Ratet, F1t, F2t−1, Int.Ratet−1, Ft−1]
′
,

and

βt−1 = [F2t−1, Int.Ratet−1, F1t−1, F2t−2, Int.Ratet−2, F1t−2]
′
,

that represent a VAR(2).

F is a 6x6 factor loading matrix of the form:

F =



A11 A12 A13 0 0 0

A21 A22 A23 0 0 0

A31 A32 A33 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


(3.1.40)

The variance-covariance matrix for the observation equation is a NN x NN diagonal. Where NN is the

number of time series in the total panel.

V AR(ϵt) = R =



R1 0 0 0 0 0

0 R2 0 0 0 0

0 0 ... 0 0 0

0 0 0 RNN 0 0

0 0 0 0 0 0


(3.1.41)

11The difference between fast-moving variables and slow-moving variables is necessary for running the Gibbs Sample, I explain

and justify what are the fast-moving variables in the following paragraph when I discuss the estimation of the model
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The variance-covariance matrix for the VAR(2) equation is instead a 6X6 in the form:

V AR(et) = Q =



Q11 Q12 Q13 0 0 0

Q21 Q22 Q23 0 0 0

Q31 Q32 Q33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(3.1.42)

Having defined all parameters of the model, to estimate it I will proceed with the estimation:

• Step 1. Set priors and starting values. First of all, I identify the total panel X, define the number

of observation (T) and the number of time series (M). One important thing is that as I want to

extract two factors one for the economic panel and the other one for the climate panel, the PCA to

get an initial value of the factors, will be used separately on X1 (economic panel) and on X2 (climate

panel). The reason behind this is that when I compute the impulse response in the last step, as I am

interested in understanding the reaction of economic variables given a shock in the climate variables,

it is important to have a factor that derives only from climate variables. If PCA was conducted on

the total panel, then it would have not been possible to single out the effect of climate from the effect

of other economic variables. Another important thing to highlight in this phase is that, in order to

run the Gibbs sampler I will treat the climatic variables as slow-moving and the economic variables

as fast-moving because I consider economic variables reacting contemporaneous to the climate shock.

Moving on, the prior for the factor loadings in the observation equation, I assume is normal. Let

Hi = [bij , γi]. Then p(Hi) ∼ N(Hi0,ΣHi). The prior for the diagonal elements of R is an inverse

Gamma and given by p(Rii) ∼ IG(Rii0, VR0). The prior for the VAR parameters µ, F and Q can be

set using any of the priors for VARs for example independent Normal Inverse Wishart prior. Collecting

the VAR coefficients in the matrix B and the non-zero elements of Q in the matrix Ω. This prior can

be represented as p(B) ∼ N(B0,ΣB) and p(Ω) ∼ IW (Ω0, V0). The Kalman filter requires the initial

value of the state vector, first row, βt = [f2t, Int.Ratet, f1t, f2t−1, Int.Ratet−1, ft−1]
′
. Where f2t is the

climatic factor, and f1t is the economic one both found with PCA so we can set β0. Instead, for the

two variance-covariance matrix they can be set equal to the identity matrix to start the algorithm.

• Step 2. Conditional on the factors FT and Rii we have to sample the factor loadings H from their

conditional distributions. For each variable in Xit, they have a normal conditional posterior.

H(Hi|Ft, Rii) ∼ N(H∗
i , V

∗
i ) H

∗
i = (ΣHi

−1
1 + 1

Rii
Z ′
tZt)

−1(Σ−1
Hi

Hi0+
1

Rii
Z ′
tXit) V

∗
i = (Σ−1

Hi
+ 1

Rii
Z ′
tZt)

−1

Those are the Mean and the Variance of a Normal distribution, from the assumption on the prior. Where

Zt = (F2t, Int.ratet, F1t) if the ith series Xit is a fast moving data series which has a contemporaneous

relationship with the climatic factor and Zt = (F2t, Int.Rate) if the ith series Xit is a slow moving

variable which has no contemporaneous relationship with the climatic factor. As we have seen in the
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description of the model in Chapter II, as the factors and the matrix of coefficient are both estimated,

the model is unidentified. According to Bernanke et al. (2005) to solve the identification problem we

fix the top KxK block of bij to an identity matrix, where K is the number of factors. As I have two

factors my identity matrix will be 2 by 2. As showed in the paragraph above.

• Step 3. Conditional on the Factors and the factor loadings H, it is now possible to sample the variance

of the error terms of the observations equation Rii from the inverse Gamma distribution with scale

parameter (Xit − ZtHi)
′(Xit − ZtHi) +Rii0 with degree of freedom T + VR0 where T is the length of

the estimation sample.

• Step 4 Conditional on the factors Ft and the error covariance matrix Ω, the posterior for the VAR

coefficients B = [µ, F ], the coefficients in the transition equation of the model, is normal and given as

H(B|Ft,Ω) ∼ N(B∗, D∗),

where B0,ΣB then the parameters of the VAR will be:

B∗ = (Σ−1
B +Ω−1 ⊗ X̄ ′

tX̄t)
−1(Σ−1

B vec(B0) + Ω−1 ⊗ X̄t
′
X̄t)vec(B̂)),

D∗ = (Σ−1
B +Ω−1 ⊗ X̄ ′

tX̄t)
−1,

Where Xt = [f2t−1, Int.Ratet−1, f1t−1, f2t−2, Int.Ratet−2, f1t−2, 1] and B̂ is the OLS estimate of B,

the loadings of the transition equation.

• Step 5 Conditional on the factors Ft and the VAR coefficients B, the error covariance Ω has a inverse

Wishart posterior with scale matrix (Yt− (Xt)B)′(Yt− (X̄t)B)+Ω0 and the degrees of freedom T +V0.

• Step 6 Given the parameters Hi,R,B and Ω the model can be cast into state-space form and then the

factors Ft can now be sampled by running the Carter and Kohn (1994) algorithm obtain the updates

for the factors, and run it M times with the Gibbs sampling.

• Step 7 At the end I will, through the Cholesky decomposition of the variance-covariance matrix of the

VAR(2), create a normal shock to the parameters of the VAR and obtain the impulse response for the

variables of the total Panel.
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Chapter 4

Empirical Results

4.1 Data description

In my analysis I verify whether climate change can have an impact monetary policy.

I have done a preliminary analysis mentioned in the introduction, to check empirically whether a direct

impact of climate could have an effect on the ECB Refinancing Rate. Historically, central banks have

never tailored monetary policy as a consequence of a climatic event, so expectations are that the ECB

Refinancing rate should not be impacted directly by a climatic shock.

To verify this expectation I calibrated a VAR(2) model in this way:

Y =


GHGEmission

GDPEU

ECBRate

 = A1Yt−1 +A2Yt−2 + ϵt.

I then supposed a shock in GHG emission and computed the impulse response of the model. From the

impulse response I have obtained, (4.1) it is clear that no impact of GHG is on the ECB Refinancing

rate as the impulse response is close to zero. Then, expectations are proved. What can be seen in (4.1)

also is that nor the GDP’s response is significantly different from zero.
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Figure 4.1: Impulse Response of EU GDP, ECB Refinancing Rate to GHG shock

According to that, to further investigate the climate impact, I used FAVAR model to check impulse

responses of a wider panel of economic variables that constitute the transmission channel of monetary

policy.

As stated in previous chapters, I construct, two panels the one composed by economic variables: GDPs,

HCPI and Crop Prices of major euorpean countries (in order Germany, Spain, France, Italy, Nether-

lands) and at european level plus the 3M European money market interest rate. The other one com-

posed by climatic variables: methane CH4 emission, carbon dioxide without land use, GHG including

indirect CO2, GHG emission without land use, Hydrofluorocarbons in kilotonne of CO2, Unspecified

mix of hydrofluorocarbons, nitrous oxide, nitrogen triflouride, perfluorocarbons, sulphurhexafluoride

emission,temperature. All data are annual from 1990 to 2020. It is worth highlighting that finding

climate related data is not an easy task. Climate change is a recent phenomenon moreover registering

its impact is difficult. The granularity of the data is not good. Time series for climate related variables
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such as GHG Emissions starts from 1990 and ends in 2020. To use FAVAR and apply the restriction

mentioned in the previous chapter, all the time series need to be stationary. As all my variables have

both a trend and seasonality component due to the nature of the data, I work then with growth rate

in order to have stationarity in the data. I provide here the Autocorrelation function graphs after the

transformation that shows that time series are stationary and can be used for the analysis.

Figure 4.2: Autocorrelation function at 20 lags of GDPs and HCPIs in panel X1
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Figure 4.3: Autocorrelation function at 20 lags of Crop Prices in panel X1

Also for the climatic panel X2, I worked with growth rate to let them stationary.
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Figure 4.4: Autocorrelation function at 20 lags of Climatic Variables in panel X2

I provide here a statistics summary of the two panels, in percentage terms, of the variables. The tables

below are distinguished according to economic and climatic panel. The economic panel is composed

by 18 variables as stated above (GDPs, HCPIs, Crop Prices, 3M Money Market Interest rate) while

the climatic panel is composed by 11 variables that I named in the paragraph above. For a matter of

space I will rename the variables with short-names.

Table 4.1: This table shows the descriptive statistics for the GDPs of major european countries in panel X1.

Results are in Percentage terms.

EU DE ES FR IT NL

GDP(%) GDP(%) GDP(%) GDP(%) GDP(%) GDP(%)

Observations 25 25 25 25 25 25

Minimum -4.49 -3.96 -9.84 -5.53 -7.77 -3.45

Maximum 6.19 5.03 8.75 5.54 6.05 7.76

Mean 3.07 2.39 3.47 2.59 2.02 3.47

Median 3.60 2.70 3.93 2.95 2.44 3.81

Variance 6.86e-02 4.71e-02 0.21 5.69e-02 9.16e-02 7.06e-02

Stdev 2.60 2.06 4.60 2.30 3.00 2.61

Skewness -1.91 -1.36 -1.17 -1.94 -1.74 -0.71

Kurtosis 399.0 267.0 141.0 509.0 404.1 65.0
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Table 4.2: This table shows the descriptive statistics for European inflation (HCPI) of major countries in

EU belonging to panel X1. Results are in in percentage terms.

EU DE ES FR IT NL

HCPI (%) HCPI (%) HCPI (%) HCPI (%) HPCI (%) HCPI(%)

Observations 25 25 25 25 25 25

Minimum 0.19 0.22 -0.63 0.09 -0.19 0.11

Maximum 3.26 3.21 4.12 3.15 3.55 5.11

Mean 1.64 1.47 2.04 1.47 1.72 1.90

Median 1.91 1.55 2.34 1.75 1.96 1.72

Variance 7.4826e-05 6.0893e-03 2.0497e-02 6.4558e-03 1.0767e-02 1.2386e-02

Stdev 88.0 80.0 146.1 82.0 106.0 113.1

Skewness -33.24 18.23 -66.01 -18.86 -33.46 85.03

Kurtosis -81.1 -48.01 -82.00 -76.04 -71.05 16.03

Table 4.3: This table shows the descriptive statistics for Crop Prices of major European Countries belonging

to panel X1 and of the observed variable in the model (Yt) the European 3M Money Market Interest Rate.

Results must be read in percentage terms.

DE ES FR IT NL EU

Crop P.(%) Crop P.(%) Crop P.(%) Crop P.(%) Crop P.(%) 3M Int.Rate(%)

Observations 25 25 25 25 25 25

Minimum -0.39 -25.17 -25.44 -38.31 -31.37 -0.39

Maximum 0.56 45.38 55.76 43.94 87.19 6.09

Mean 2.62 1.19 23.41 2.41 3.78 2.03

Median 1.9 -1.20 -1.06 3.10 -1.68 2.09

Variance 3.83 2.10 4.56 3.37 5.67 0.04

Stdev 19.6 14.49 96.83 18.75 23.81 1.97

Skewness 82.1 112.1 451.1 22.49 196.5 23.68

Kurtosis 207.8 234.7 2131 100.09 534.4 123.09
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Table 4.4: This table shows the descriptive statistics of climatic variables belonging to panel X2. Results

are in percentage terms.

Methane CH4 CO2 GHG

emissions w/o land use(%) w/o land use(%) with indirect CO2(%)

Observations 25 25 25

Minimum -3.76 -8.24 -7.37

Maximum -7.8000e-02 3.12 2.24

Mean -1.68 -0.91 -1.00

Median -1.81 -0.46 -0.68

Variance 3.83 2.10 4.56

Stdev 19.58 14.49 21.36

Skewness 77.08 105.87 1.0399

Kurtosis 445.43 481.84 312.24

Table 4.5: This table shows the descriptive statistics of the remaining climatic variables belonging to panel

X2. Results are in percentage terms.

GHG HFCs Unspecified mix Nitrous Nitrogen

w/o land use(%) in kilotons CO2(%) of HFCs(%) Oxide(%) Triflouride(%)

Observations 25 25 25 25 25

Minimum -13.28 -86.25 -6.27 -48.13 -33.56

Maximum 2.24 16.77 705.41 1.85 207.05

Mean -1.00 3.82 33.83 -1.51 8.96

Median 0.68 2.94 -2.54 -0.88 -2.83

Variance 3.37 5.67 5.9538e-02 23.19 1.27

Stdev 7.01 157.38 2.44 48.15 11.27

Skewness -30.46 345.33 -53.70 291.42 -8.20

Kurtosis 291.44 1478.96 225.82 1267.57 299.68
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4.2 Interpreting results

Lastly I compute the impulse response of the FAVAR model for the whole panel, Xit and Yt so for the

economic and the climatic variables, plus the observed variable, Yt that is the 3M Money Market Interest

rate.

To discuss the results obtained, I start by saying that the model I use is based on Bernanke et al. (2005)

and I calibrate it using the same assumptions. I use Cholesky decomposition of the variance-covariance

matrix of the VAR(2) to obtain the impulse responses of my variables ordering the variables in the follow-

ing way: first the economic factor, then the interest rate and lastly the climatic factor. In this way I am

indicating that the economic shocks will impact contemporaneously the climatic variables. It is, further im-

portant to highlight that, in this simple set up I do not consider extreme weather events or natural disaster

associated with climate changes. Proxies used for physical risks are more associated with medium-to-long

term effects of global warming, increase in GHG that actually cannot be fully captured by FAVAR. Though

different in timing and immediate severity, both risks are dynamically evolving over time and interacting

with each other in a non-linear way, a characteristic that this linear model cannot capture. The responses I

obtained despite the direction that they take after the shock, show not a persistent and significant impact of

GHG increase in economic variables. Maybe only the money market interest rate has a significant response

in the short term. More in general, even the shock caused to variables that seems to react, won’t last in the

long term.

However, according to the results, I can say that GDP both at the aggregate (4.9) and country level

(4.6),(4.8),(4.7) has a negative response in the short term, probably within a business cycle 2-8 years. At

first the impact is negative, then it has also a positive rebound. Different thing happens to crop prices, that

reach their peak still in the short term, but with a positive response. Physical risks associated to climate

changes, (as GHG emissions increase) act as a negative supply-side shocks or as a combination of both

negative supply and demand shocks through different channels. That is why prices (4.14),(4.12),(4.15) and

HCPI (4.10),(4.11) response is ambiguous. It depends on the overall balance of supply and demand shocks,

which may differ between individual events. In our case, as crop prices have a positive reaction, this could

be linked to a predominance of supply type of adjustments. The effect of HCPI is also ambiguous as, it

does have a positive impact (4.10),(4.11) and peak still in the short term, also in this case this could be lead

by a supply shock ie. decrease in production. The effect on money market interest rate seems to respond

positive, (4.16) so interest rates stay high at least in the short term. The reaction of Money Market interest

rates in this case, could push a restrictive monetary policy reaction by central banks.

Starting from these results on the economy and trying to understand how monetary policy could be

affected after an increase in GHG emissions is pretty difficult. According to the results I have obtained,

if this shock will happen then, as GDP has a negative impulse response, a move by policy makers could
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be of decreasing interest rates, so that economy could go up again, but of course this should be balanced

with the effect that expansionary monetary policy action can have on inflation. Transmission channels are

also financial markets’, as we said in the introduction, represented in my study by the 3M Money Market

Interest Rate. As the reaction of the EU 3m Money Rate is positive, this could push a reduction in the

aggregate demand as the cost of money demand would be higher. A consequence action also in this case,

if the central bank want to restore equilibrium, the action would be the one of following an expansionary

monetary policy.

These Results can be compared to the study of Ciccarelli and Marotta (2021). The authors in their study

adopted a Structural VAR (SVAR) model to answer three different questions: if the effects of climate-related

shocks were significant enough over a business cycle (2-8 years), if the effect of climate change differs in its

effect on macroeconomy and if the shocks to economic variable were more demand-or supply driven. Their

study is based on verifying whether an increase in GHG emissions and a technological shock (transition

policies to resemble transition risk) can have an impact on Prices and Outputs of major European Coun-

tries. Actually what they proved is that the impact of physical risk is overall negative on outputs and prices,

meaning a decrease in output occurs following a GHG increase and a price increase occurs following a GHG

increase. While the opposite happens for the technological shock. Results are then in line with what I have

obtained with the FAVAR model following a GHG shock for Crop Prices and GDPs, moreover also in their

case the impact was statistically significant only in the short term.

Figure 4.5: Impulse Response of EU GDP in panel X1
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Figure 4.6: Impulse Response of DE GDP in panel X1
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Figure 4.7: Impulse Response of NL GDP in panel X1
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Figure 4.8: Impulse Response of IT GDP in panel X1
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Figure 4.9: Impulse Response of ES GDP in panel X1
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Figure 4.10: Impulse Response of EU HCPI in panel X1
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Figure 4.11: Impulse Response of NL HCPI in panel X1
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Figure 4.12: Impulse Response of DE Crop Prices in panel X1
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Figure 4.13: Impulse Response of ES Crop Prices in panel X1
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Figure 4.14: Impulse Response of FR Crop Prices in panel X1
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Figure 4.15: Impulse Response of NL Crop Prices in panel X1
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3M EU Money Market Interest Rate
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Figure 4.16: Impulse Response of 3M Money Market Interest Rate observable variable in FAVAR Yt

I have done one more check to verify further the impact of climate in the economy. I compute the impulse

response of the extracted factors and the ECB rate. As I take into account only three variables, the model

I used is again a VAR(2) model calibrated in this way:

Yt =


F2

RECB

F1

 = A1Yt−1 +A2Yt−2 + ϵ.

Where A1 and A2 are the loading matrix. I included the factors extracted from the panel Xit so, F1 and

F2 together with the ECB refinancing rate in a VAR(2) and I checked the impulse responses by shocking

the climatic factor F2. What I have obtained is the figure below:
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Figure 4.17: Impulse Response for VAR(2) with Economic and Climatic factor

Also in this case the responses are not significant even though the response of the economic factor to

the climatic factor innovation, seems close to be significant. As said before, the economic factor is the one

extracted from panel X1 that has GDP, Crop Prices and HCPI. As those are completely different variables

that should react differently to climatic shocks, this is the reason why the impulse response is not clearly

going up or down. This results states that economy react to GHG innovation, but it is too early to clearly

state the impact.

Anyway, this analysis is a starting point that can be further developed by using other factors as climate risk

proxies and other model that can capture the dynamic of climate, for example TV-FAVAR even if it will

be challenging with so short time series, or mixed-frequency VAR, due to lack of observation. Moreover,

further trials can also be done with FAVAR model by changing the assumptions.
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Conclusion

In my thesis I developed a novel application of FAVAR within climate change.

My analysis concern with the study of the effect that climate related variables (physical risk, increase

of GHG emissions) have on economic variables (GDPs,Prices,HCPI) and monetary policy represented by

the ECB refinancing rate. The aim is to address and validate the theories about the response of official

rates and monetary policy leeway accounting for climate change. I found that, as stated in the introduction,

monetary policy can only be affected indirectly by climate change, as historically no reaction of the central

banks as been required following a shock in GHG, no clear evidence can be found in this regard. Looking

at the reaction of the other economic variables though, to understand whether monetary policy is affected

is important to first understand if the shock caused by climate is demand or supply side driven. In my

application we saw that for prices and HCPI a shock could have been caused by supply adjustments (shrink

in production) same for GDP (even if in this case also a demand side shock can be argued). In that case as a

shrink in production is thought, central banks can take action to foster production by decreasing the official

interest rate to maintain price stability and foster economy. Even though the effect on inflation should be

regarded too.

The impulse response I have obtained for the panel shows different impact of climate change. My re-

sults can be influenced by the fact that the assumptions I used for the FAVAR model are too strict and

more suitable for short-term shocks rather than climatic shocks that have a long term impact, nonetheless

the granularity of the data is still scarce as time series starts in 1995 till 2020, which are only 25 observations.

However, the study I am doing contribute to the debate about the implication of climate change in the

economy. At this stage it is difficult to validate theories on whether climate has a meaningful impact on

the economy, and it is even more difficult to assess reaction of central banks to this kind of shocks. Climate

is a still open topic, that needs further study. According to other econometric literature on climate see

Ciccarelli and Marotta (2021) and Liam, Sánchez, and Höcherl (Liam et al.) no clear or statistically signif-

icant results have been obtained on aggregate variables such as GDP, Inflation, Prices nor for physical risk

nor for transition risk – also using different models such as simple VAR or SVAR model. By narrowing the
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analysis to specific sectors and specific effects, instead, results can actually be obtained see Christensen et al.

(2021). Authors focused on understanding whether climate, intermittency and demand of wind energy im-

pacted the CO2 emissions. They showed, by using cointegration approach, that accounting for climate has a

mitigating effect on estimated abatement potential of wind power justified by a long-run equilibrium relation.
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Appendix I

4.3 Proof that the PC estimator minimizes the variance para-

graph 1.1.2

It can be shown that the PC estimator efficiently minimize the variance according to Bai and Wang (2014)

we know that (equation above dei min) can be rewritten as:

∑N
i=1

∑T
t=1(xit − λ′

iFt)
2 = minΛ,F

1
NT tr[(X − FΛ′)(X − FΛ′)′]

Where X is a matrix TxN. By developing the trace we obtain:

minΛ,F
1

NT tr[XX ′]− 2 1
NT tr[XΛF ′] + 1

NT tr[FΛ′ΛF ′]

Using the trace derivatives rules we know:

∂tr(XA)
∂X=A

′ ∂tr(XBX′C)
∂X = C ′XB′ + CXB

We obtain:

minΛ,F
1

NT tr[XX ′]− 2 1
NT tr[XΛF ′] + 1

NT tr[FΛ′ΛF ′] = minΛ,F − 2 1
NT tr[ΛF

′X] + 1
NT tr[ΛF

′FΛ′]

Taking the derivative with respect to Λ equal to zero we have:

−2 1
NT X

′F + 2
NT ΛF

′F = 0⇐⇒ Λ′ = X ′F (F ′F )−1 ←→ Λ = (X′F )
T

F ′F
T

−1
= X′F

T

Under the normalization condition:

F ′F
T = IK

By substitution of :

Λ = (X′F )
T in− 2 1

NT tr[ΛF
′X] + 1

NT tr[ΛF
′FΛ′]

obtaining:

minF −
1

NT 2
tr[X ′FF ′X] +

1

N
tr[ΛΛ′] = minF −

1

NT 2
tr[X ′FF ′X] =

maxF tr[X
′FF ′X] = maxF [F

′XXF ] = maxF [F
′CΛC ′F ]
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Where the last equality is true because a symmetric matrix can be decomposed as CΛC ′ with C matric

of eigenvectors and Λ is the ordered diagonal matrix of eigenvalues. This maximization problem is solved

when F is an eigenvector of X ′X, that is C = [C1 : C2] so that F = C1.
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Appendix II

4.4 Proof that the Static form of DFMs is equal to the Dynamic

for of DFMs

We can actually show that the dynamic and the static form can converge:

Xt = ΛFt + ϵt

Ft = ΦFt−1 + vt

Staticform

Xt = Λ1Ft + Λ2Ft−1 + ϵt

Ft = ΦFt−1 + vt

Dynamicform

starting from the dynamic form by substitution we can write:

Xt = Λ1ΦFt−1 + Λ1vt + Λ2Ft−1 + ϵt

suppose Λ1Φ = Λ̃1 then we have:

Λ̃1Ft−1 + Λ2Ft−1 + (ϵt + Λ1vt)

(Λ̃1 + Λ2)Ft−1 + (ϵt + Λ1vt)→ Xt = Λ0Ft−1 + ξt

From the static form, if we substitute the second equation into the first one, we obtain:

Xt = ΛΦFt−1 + Λvt + ϵt that is equal to: Xt = Λ0Ft−1 + ξt

so we have proved that dynamic form of DFM and Static form of DFM can converge.
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Appendix III

4.5 MATLAB Code

The code used for this analysis has been developed by Blake et al. (2012) for Bank of England. I have

adapted it to fit my study.

Figure 4.18: Part I FAVAR Code

Firstly I loaded the data (Paneltot) and the index. According to what said in Chapter 4, the panel

loaded contains both economic and climatic variables, but to study the climatic impact on the economic

variables, it is needed to separate the different variables, this is why I create an Economic X1 panel and

Climatic X2 one, as showed in the figure. Then I continue with the Step I of the estimation. I set the Initial
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Values and I do PCA of the two panels. I obtain pmat and pmat2 that are respectively the economic and

the climatic factor

Figure 4.19: Part II FAVAR Code

After defining the initial values and the number of repetition for the Gibbs sampling, matrix H (fload)

is found. In this matrix I will distinguish between slow-moving variables that will be regressed on

x = [pmat, int] that are the economic factor and the interest rate, while fast moving variables are regressed

on x = [pmat, int, pmat2] that are the economic, the interest rate and the climatic factor. An extra step is

done here to compute the correlation among variables.
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Figure 4.20: Part III FAVAR Code

Figure 4.21: Part IV FAVAR Code

Next step is to initialize the VAR equation. I am conducting a VAR(2) so X3 has two lags as described

in chapter IV. I then check for stability of the VAR.
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Figure 4.22: Part V FAVAR Code

Having all the parameters, I can now start the Carter and Kohn algorithm described in chapter 3. Where

beta2 is the outcome of the algorithm, meaning, the update of beta tt. Initial values for the vector beta are

were saved in the vector beta 0, defined in figure one of the MATLAB Code.

Figure 4.23: Part VI FAVAR Code
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Figure 4.24: Part VII FAVAR Code

Last step is to compute the shock to the VAR(2) equation trough the Cholesky decomposition and to

plot the impulse response.

Figure 4.25: Part VIII FAVAR Code

Here the confidence interval for the impulse response are defined [50, 16, 84].
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Chapter 5

Summary

Climate change is a hot and important topic nowadays consensus is growing that if not stopped it will at

best costly for the economy, at worst disastrous for human society. Proof of this is for example the PG&E

(Pacific Gas and Electric) case, that has been defined by the Wall street Journal as the first corporation

subject to climate bankruptcy. Basically, PG&E declared bankruptcy after being hit with what it was then

estimated to be 30$ billion in liabilities tied to tragic wildfires in 2017 and 2018, which took 86 lives. Heat

waves, and so wildfires, increased in number due to increasing temperature within the country, but the

company did not take this risk into consideration ending up with not having the necessary capital to repay

clients when the event happened.

Another proof of the importance of climate risk, concerns bank’s capital ratios. Banks that for instance

have corporate portfolios with large clients exposed to high emission sectors i.e the motor engine sector, are

subject to transition risk due to emission intensity of their clients. Policy measures that for example, make

petrol and diesel engines less attractive, will reduce demand for cars with these engines leading companies

relying on this technology to higher PDs (Probability of defaults). If a bank is financing clients facing this

issue then its capital ratio will be affected directly. If the financial sector is affected so is the real economy.

Climate change could have a number of implications for the conduct of monetary policy as a result of its

potential impact on the macro economy and financial markets. Two aspects are important to consider. The

first aspect concerns the possible implications of climate change and mitigation policies for the ability of

central banks to fulfill their price stability mandate. The second aspect concerns the extent to which central

banks themselves can play a supporting role in mitigating the risks associated with climate change, while

staying within their mandate. Related to this, an additional question arise with regards to the contributions

that central banks can make to support the green transition. The way through which climate change affects

monetary policy should be by impacting the transmission channel of monetary policy. Climate change can

in fact impact both financial markets or GDP, prices etc. For what concern the financial markets side, what
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could happen is that climate change brings to a sudden re-pricing of climate-related assets or to re-evaluate

– in negative- the collaterals that banks own for their loans. A change in value in banks’ collaterals could

lead to capital and liquidity shortage that weaken banks’ ability to channel funds to the real economy. If

the financial system is weakened the transmission of monetary policy is impaired. Second thing, that can

happen is a dampening in interest rates. If climate-related factors were to cause r to fall further, the policy

rate could hit the ELB more often thus limiting the monetary policy space for conventional tools. Another

effect caused by climate related variables is that they could correct the identification of shocks relevant for

the medium-term inflation outlook. This would make it more difficult to assess the monetary policy stance

and potentially increase the prevalence of output and price stabilization trade-offs for central banks that

focus on price stability. Uncertainty surrounding the magnitude of the effects of climate change and the

horizon over which they will play out in the economy will further complicate the assessment of appropriate

monetary policy actions. Uncertainty may also destabilize the expectation-formation process of economic

agents, in particular with regard to inflation expectations. Moreover, the effects of physical and transition

risks could be asymmetric and heterogeneous complicating even more the behavior of a central bank. So,

to sum up, the interest rate channel, the credit channel, the asset price channel, the exchange rate channel

and the expectation channel can all be affected by climate change variables. Moreover, they can be affected

differently according to the physical or transition risk.

Knowledge on that, central banks have not yet taken the impact of climate change into account in the

design of their monetary policy strategy. However, some consideration may already be done to redesign

future monetary policy. One problem caused by the climate change is that it shapes economic and financial

trends over horizons that exceed the traditional monetary policy horizon. This means that some of the

climate change shocks may call for the medium-term policy horizon to be lengthened to take account of

the impacts of possibly repeated and correlated climate and/or transition shocks to price stability if, for

example, they lead to trade-offs between inflation and employment. At the same time, the credibility of

the central bank may be compromised if the time horizon is extended too far into the future and inflation

targets are missed too often. In this case, clear communication about the policy intention of the central

bank will be essential to mitigate credibility losses. The challenges for monetary policy are contained if the

transition is orderly and spread over decades. As we have said before, climate change may put downward

pressure on the drivers of r due to shocks on the demand or supply side, by reducing consumption from

the demand side or by reducing production due to extreme weather events for the supply side. In any case

what derives from these shocks is that the ECB will have a lower policy leeway in taking decision, so the

monetary policy could become less effective as already impacted by the climate change.

I use factor models to check these theories, more in particular Factor-augmentend vector autoregressive

(FAVAR) model, that in the climatic econometrics literature was never used before to assess the impact

of climate change. FAVAR model is actually an extension of Dynamic Factor Models and Vector Autore-

gressive models Kilian and Lütkepohl (2017), Stock and Watson (2016). Factor models are useful in this
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case because they allow to summarize a wide concept expressed by several variables within just one or few

factors of interest, moreover FAVAR overcomes the limit of VAR models ie. omitted variables bias and

small-scale studies. Actually I used VAR to check, just for a few variables, as a preliminary assessment,

whether climate can have a direct impact on monetary policy. I hereby used a VAR(2) model with variables

Yt=[EU GDP, ECB Refinancing rate, GHG emission] to compute the impulse response of a shock in GHG

emission. The results I have obtained perfectly match with theory meaning that the the impulse response

of the ECB Refinancing Rate is close to zero pointing out that no direct climate effect exist on monetary

policy. Historically, in fact, the ECB has never tailored monetary policy to address a climate-related event.

I provide details of this study in the last chapter.

Starting from this result, as I showed that no direct impact of climate exist on monetary policy, rep-

resented by ECB Refinancing Rate, I check then the impact of climate change in a variety of economic

variables, that represent transmission channels for monetary policy. To do so I use a FAVAR model.

The FAVAR model I use is based on Bernanke et al. (2005) model, where the authors measured monetary

policy shock on a vast economic panel. Actually as I am checking for a different shocks I re-calibrate the

model to conduct my analysis. I create two different panels one for economic variables and another one for

climatic variables.

The FAVAR model for climate variable has been estimated in this way:

Xt = bi1F2 + bi2Int.Ratet + γiF1 + vi,t (5.0.1)

Zt = ct +

P∑
j=1

BjZt−j + et (5.0.2)

Zt = [F2t, Int.Ratet, F1t] (5.0.3)

V AR(vi,t) = R, V AR(et) = Q (5.0.4)

Xt is the total panel from which I will extract the unobserved factors, then the variable to add to the

estimated factors considered as the only observed variable, is the 3m Money Market EU Interest Rate. Xi,t,

that is composed by Xi,t = [X1, X2] where X1, is the economic panel, and X2 is the climatic panel, is linked

to the unobserved F1t (economic factor), F2t (climatic factor) and observed variable as showed in the first

equation of the system, Int.Ratet. We can further summarize the state space model by writing it in this

form:

Xi,t = Hβt + ϵt (5.0.5)

βt = µ+ Fβt−1 + et (5.0.6)

Where the first equation is the observation equation composed by:
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Xi,t is the total panel, H = [bi, γi] the loadings matrix in the form:

H =



1 0 γ13 0 0 0

0 1 γ23 0 0 0

b31 b32 γ33 0 0 0

... ... ... ... ... ...

bNN1 bNN2 γNN3 0 0 0


(5.0.7)

The first block is an identity (KxK) where K is the number of factors, to lock rotation and solve the

problem of identification of the model due to generated regressors. NN is the number of time series in the total

panel, and γi is different from 0 only for fast moving variables. βt = [F2t, Int.Ratet, F1t, F2t−1, Int.Ratet−1, Ft−1]
′
,

where F1t is the economic factor, and F2t is the climate factor.

While the second equation is the transition equation or VAR(2) equation where:

βt = [F2t, Int.Ratet, F1t, F2t−1, Int.Ratet−1, Ft−1]
′
and

βt−1 = [F2t−1, Int.Ratet−1, F1t−1, F2t−2, Int.Ratet−2, F1t−2]
′
that represent a VAR(2).

F is a 6x6 factor loading matrix of the form:

F =



A11 A12 A13 0 0 0

A21 A22 A23 0 0 0

A31 A32 A33 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


(5.0.8)

The variance-covariance matrix for the observation equation is a NN x NN diagonal. Where NN is the

number of time series in the total panel.

V AR(ϵt) = R =



R1 0 0 0 0 0

0 R2 0 0 0 0

0 0 ... 0 0 0

0 0 0 RNN 0 0

0 0 0 0 0 0


(5.0.9)

The variance-covariance matrix for the VAR(2) equation is instead a 6X6 in the form:

V AR(et) = Q



Q11 Q12 Q13 0 0 0

Q21 Q22 Q23 0 0 0

Q31 Q32 Q33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(5.0.10)
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Having defined all parameters of the model, to estimate it we will follow the same steps described in

chapter III, that I report here applied to my analysis.

• Step 1. Set priors and starting values. First of all, I identify the total panel X and define the number

of observation and the number of time series. One important thing is that as we want to extract

two factors one for the economic panel and the other one for the climate panel, the PCA to get an

initial value of the factors, will be used separately on X1 (economic panel) and on X2 (climate panel).

The reason behind this is that when we will compute the impulse response in the last step, as we are

interested in understanding the reaction of economic variables given a shock in the climate variables,

it is important to have a factor that derives only from climate variables. If PCA was conducted on

the total panel, then it would have not been possible to single out the effect of climate. Another

important thing to highlight in this phase is that, in order to run the Gibbs sampler I will treat the

climatic variables as slow-moving and the economic variables as fast-moving. Moving on, the prior

for the factor loadings in the observation equation, I assume is normal. Let Hi = [bij , γi]. Then

p(Hi) ∼ N(Hi0,ΣHi
). The prior for the diagonal elements of R is an inverse Gamma and given by

p(Rii) ∼ IG(Rii0, VR0). The prior for the VAR parameters µ, F and Q can be set using any of the

priors for VARs for example independent Normal Inverse Wishart prior. Collecting the VAR coefficients

in the matrix B and the non-zero elements of Q in the matrix Ω. This prior can be represented as

p(B) ∼ N(B0,ΣB) and p(Ω) ∼ IW (Ω0, V0). The Kalman filter requires the initial value of the state

vector, first row, βt = [f2t, Int.Ratet, f1t, f2t−1, Int.Ratet−1, ft−1]
′
. Where f2t is the climatic factor, and

f1t is the economic one both found with PCA so we can set β0. Instead, for the two variance-covariance

matrix they can be set equal to the identity matrix to start the algorithm.

• Step 2. Conditional on the factors FT and Rii we have to sample the factor loadings H from their

conditional distributions. For each variable in Xit, they have a normal conditional posterior.

H(Hi|Ft, Rii) ∼ N(H∗
i , V

∗
i ) H

∗
i = (ΣHi

−1
1 + 1

Rii
Z ′
tZt)

−1(Σ−1
Hi

Hi0 +
1

Rii
Z ′
tXit) V

∗
i = (Σ−1

Hi
+ 1

Rii
Z ′
tZt)

−1

Those are the Mean and the Variance of a Normal distribution, from our assumption on the prior. Where

Zt = (F2t, Int.ratet, F1t) if the ith series Xit is a fast moving data series which has a contemporaneous

relationship with the economic factor and Zt = (F2t, Int.Rate) if the ith series Xit is a slow moving

variable which has no contemporaneous relationship with the economic factor. As we have seen in the

description of the model in Chapter II, as the factors and the matrix of coefficient are both estimated,

the model is unidentified. According to Bernanke et al. (2005) to solve the identification problem we fix

the top KxK block of bij to an identity matrix, where K is the number of factors. As we do have two

factors our identity matrix will be 2 by 2. As showed in the paragraph above.

• Step 3. Conditional on the Factors and the factor loadings H it is now possible to sample the variance

of the error terms of the observations equation Rii from the inverse Gamma distribution with scale

parameter (Xit − ZtHi)
′(Xit − ZtHi) + Rii0 with degree of freedom T + VR0 where T is the length of

the estimation sample.
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• Step 4 Conditional on the factors Ft and the error covariance matrix Ω, the posterior for the VAR

coefficients B = [µ, F ], the coefficients in the transition equation of the model, is normal and given as

H(B|Ft,Ω) ∼ N(B∗, D∗)

where B0,ΣB

then the parameters of the VAR will be:

B∗ = (Σ−1
B +Ω−1 ⊗ X̄ ′

tX̄t)
−1(Σ−1

B vec(B0) + Ω−1 ⊗ X̄t
′
X̄t)vec(B̂))

D∗ = (Σ−1
B +Ω−1 ⊗ X̄ ′

tX̄t)
−1

Where Xt = [f2t−1, Int.Ratet−1, f1t−1, f2t−2, Int.Ratet−2, f1t−2, 1] and B̂ is the OLS estimate of B, the

loadings of the transition equation.

• Step 5 Conditional on the factors Ft and the VAR coefficients B, the error covariance Ω has a inverse

Wishart posterior with scale matrix (Yt− (Xt)B)′(Yt− (X̄t)B)+Ω0 and the degrees of freedom T +V0.

• Step 6 Given the parameters Hi,R,B and Ω the model can be cast into state-space form and then the

factors Ft can now be sampled by running the Carter and Kohn (1994) algorithm obtain the updates

for the factors, and run it M times with the Gibbs sampling.

• Step 7 At the end I will, through the Cholesky decomposition of the variance-covariance matrix of the

VAR(2), create a normal shock to the parameters of the VAR and obtain the impulse response for the

variables of the total Panel.

The results I have obtained can be summed up in this way n this simple set up I do not consider extreme

weather events or natural disaster associated with climate changes, in fact proxies used for physical risks are

more associated with medium-to-long term effects of global warming, increase in GHG that cannot be fully

captured by FAVAR. Though different in timing and immediate severity, both risks are dynamically evolving

over time and interacting with each other in a non-linear way, a characteristic that this linear model cannot

capture. The responses I obtained despite the direction that they take after the shock, show not a persistent

and significant impact of GHG increase in economic variables . Maybe only the money market interest rate

has a significant response in the short term. More in general, even the shock caused to variables that seems

to react, won’t last in the long term.

However, to discuss the results I obtain in figure 4.1, I can say that GDP both at the aggregate and country

level, has a negative response in the short term, probably within a business cycle 2-8 years. At first the

impact is negative, then it has also a positive rebound. Different thing happens to crop prices, that reach

their peak still in the short term, but with a positive response. Physical risks associated to climate changes,

(as GHG emissions increase) act as a negative supply-side shocks or as a combination of both negative

supply and demand shocks through different channels. That is why prices and HCPI response is ambiguous.

It depends on the overall balance of supply and demand shocks, which may differ between individual events.

In our case, as crop prices have a positive reaction, this could be linked to a predominance of supply type

of adjustments. The effect of HCPI is also ambiguous as, it does have a positive impact and peak still in

71



the short term, also in this case this could be lead by a supply shock. The effect on money market interest

rate seems to respond positive, so interest rates stay high at least in the short term. The reaction of Money

Market interest rates in this case, could push a restrictive monetary policy reaction by central banks.

Starting from these results on the economy and trying to understand how monetary policy could be af-

fected after an increase in GHG emissions is pretty difficult. Monetary policy is affected by mainly two kind

of risks as we said in Chapter I: macroeconomic ones or financial ones. Historically, despite huge climate

events (i.e Floods, heart-quakes), that caused a reaction by the central bank (i.e. foster consumption), no

clear other climate event pushed a reaction by the central bank. Climate change may only affect monetary

policy through transmission channels, meaning that a shock on GDP or Inflation or Interest rates, caused

by climate related variables, can lead to a move by policy makers. For example in this case, as GDP has

a negative impulse response, a move by policy makers could be of decreasing interest rates, so that econ-

omy could go up again. Transmission channels are also financial markets’ movements influenced by ESG

(Environmental Social and Governance) scores. A change in financial instruments linked with climate could

push in different direction the economy asking a central bank to take action. As the reaction of the EU 3m

Money Rate.

To further test, climate change impact on the economy I have also calibrated a VAR(2) model

Y = [F2, RECB , F1] = c+A1Yt−1 +A2Yt−2. (5.0.11)

where F2 is the climatic factor extracted with PCA and Gibbs Sampling in FAVAR code, and F1 is the

economic factor estimated with PCA and Gibbs in FAVAR code to obtain the following impulse responses.
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Figure 5.1: Impulse Response for VAR(2) with Economic and Climatic factor

Also in this case the responses are not significant even though the response of the economic factor to

the climatic factor innovation, seems close to be significant. As said before, the economic factor is extracted

from a panel that has GDP, Crop Prices and HCPI –that is why the impulse response is not clearly up or

down. This can be due to shocks in the supply side, as we have seen in the crop prices response with FAVAR

(i.e prices increase or GDP decrease). It states that economy react to GHG innovation, but it is too early

to clearly state the impact.

Anyway, this analysis is a starting point that can be further developed by using other factors as climate risk

proxies and other model that can capture the dynamic of climate, for example TV-FAVAR even if it will be

challenging with so short time series, or mixed-frequency VAR, due to lack of observation. Moreover, further

trials can also be done with FAVAR model by changing the assumptions. the results I obtained contribute

to the debate about the implication of climate change in the economy. At this stage it is difficult to validate

theories on whether climate has a meaningful impact on the economy, and it is even more difficult to assess

reaction of central banks to this kind of shocks. Climate is a still open topic, that needs further study.

According to other econometric literature on climate see Ciccarelli and Marotta (2021) and Liam, Sánchez,
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and Höcherl (Liam et al.) no clear or statistically significant results have been obtained on aggregate

variables such as GDP, Inflation, Prices nor for physical risk nor for transition risk – also using different

models such as simple VAR or SVAR model. By narrowing the analysis to specific sectors and specific effects,

instead, results can actually be obtained see Christensen et al. (2021). Authors focused on understanding

whether climate, intermittency and demand of wind energy impacted the CO2 emissions. They showed, by

using cointegration approach, that accounting for climate has a mitigating effect on estimated abatement

potential of wind power justified by a long-run equilibrium relation.
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