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Part 1. Introduction 

1.1 Topic, research problems and delimitations 

 

From a practical point of view, scientists are interested in models for making high quality forecasts. In 

other words, the quality of the forecast often has key importance in a model. This fact encourages researchers 

to look for new models for prediction. From 70s years of XX century, the using of quantile regressions allowed 

to explore whole distribution of the research data more thoroughly and obtain more accurate forecasts for 

different quantiles. Further transition from frequentists to Bayesian approach in regressions made it possible 

to improve the prediction properties of the model because Bayes models allow to control the prior distributions 

of estimates. Theoretical papers provide scientists with clear motivation to choose model based on preliminary 

analysis of the data and describe advantages of quantile models and Bayes regression models. Nevertheless, 

in every particular case researchers have never known beforehand what model would perform better forecast 

on the data.  

The aim of the thesis is experimentally identify the best forecasts in terms of RMSE between quantile 

regression models based on traditional and Bayes approach.  

It should be emphasised that it is an experimental work. It means that research is based on experiments 

with generated samples from 6 types of data distributions (normal with small variance, normal with large 

variance, geometric, gamma, log-normal and student distribution). These types of distribution were chosen for 

analysis because they are the most widespread ones in economic field. For instance, prices or rent payments 

(as in Baba and Shimizu (2022)) may often be log-normally distributed and shocks in economy may be 

normally distributed. What is more, it is known that quality of forecast may vary with distribution of the data. 

Several different distributions are considered in this paper in order to understand how final results and 

conclusions may change when distribution type of data is changed.  

This paper considers three following research questions: 

1. Does the Bayesian quantile regression model make forecasts with lower RMSE than the quantile 

regression in the classical formulation? 

2. How change results based on generated sample from different types of distributions? 

3. How do results on generated data correlate to estimates on real data? 

Several hypotheses follow from the analysis of literature and research questions: 

1. Share of best forecasts based on OLS regression are larger for samples with normal distribution. 

2. Share of best forecasts based on Bayes models are the largest one in general case. 

3. Shares of best forecast for OLS, quantile model and Bayes quantile model positively correlates between 

distributions of similar shape. 
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The delimitations of the paper are as follows. Firstly, this research is based only on linear forecasts. There 

are also examples of nonlinear quantiles regression models in the literature, however, research questions of 

this paper can be explored on linear models that is computationally more convenient for the investigation. 

Secondly, there are various kinds of metrics to assess the predictive power of models. In this study, RMSE is 

used as one of the basic and universal measure. Thirdly, to estimate the quality of forecast, the predicted values 

are analysed. The real and estimated coefficient of regression line are not compared, because it has already 

discussed in literature, for instance, in Alhamzawi and Yu (2013). Finally, as real data, Boston Housing data 

is used - it is widely known and explored in literature. The original idea of this research is connected to the 

method of comparing models, but not in the data itself. Going beyond these limitations can be a continuation 

of this study and makes it more valuable, but now it remains outside the scope of this study. 

1.2. Structure of the paper 

 

The structure of the thesis is as follows. In the second part the advantages of quantile regressions are 

discussed comparing to OLS regressions. Firstly, quantile regression allows to better explore the tales of the 

distribution. Secondly, such models are less sensitive to the influence if outliers in the data. Finally, quantile 

regressions are quite widespread and used in large number of research in different field from medicine to 

economics and time series. Key areas of implementing of quantile regressions are summarised in the table at 

the end of the second part. 

In the third part the characteristics of Bayes quantile models are considered in comparison with 

classical quantile regression and OLS models. The methodology and key points in estimating of the Bayes 

models are briefly discussed. Key advantages of Bayes approach are summarised at the end of the third part 

and some crucial characteristics of model estimation process in our experiments are provided. 

The foundation and the methodology of experiments are presented in the fourth part. Experiment is 

based on the sample of size 100 from 6 different distribution types. Then these samples are splitting on train 

and test sub-samples. For each sample three types of models (OLS, quantile regression and Bayes quantile 

regression) are estimating. Then forecasts are built on the test sub-sample and RMSE for each forecast are 

calculating. All in all, 500 experiment series were performed for each type of six generated distribution to 

notice tendencies beyond RMSE estimates. OLS model is used like baseline that quantile regression and Bayes 

quantile regression models are compared with. Furthermore, the same methodology is implented on Boston 

Housing data that contain prices and characteristics of 506 houses in living area of Boston. It is quite popular 

in the literature and was firstly published in 1978. The preliminary analysis of the data, selection of regressors 

and regression equation are also discussed in the fourth part. The difference of experiments on generated and 

real data is the fact that the models on real data are built based on economic grounds and analysis of economic 

relationships between variables. 
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The fifth part presents results of experiments on both generated and real data. The best model in each 

experiment is identified based on RMSE. It is revealed that share cases when each model is better is supposed 

to be stable as the number of experiments grow. 95% CI are calculated for shares when OLS, quantile 

regression and Bayes quantile regression are first-, second- and third-best model in terms of RMSE. The 

tendencies beyond the estimates of RMSE are summarised at the end of the fifth part. 

Finally, the conclusion emphasises key finding of this research. Firstly, the short discussion considers 

confirmation or rejected the hypotheses mentioned above. Secondly, the further potential steps expanding this 

study are briefly discussed. 
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Part 2. Quantile regression models 
 

This part is structured as follows. First, the motivation for the transition to quantile regressions as a 

new class of models is discussed. Secondly, the advantages of this approach in practice and fields of 

implementation of quantile regression are considered. Thirdly, methodological formulation of quantile 

regression problem is described. Finally, the role of quantile regressions in this study is described as concusion 

to this part. 

2.1 Motivation of quantile approach 

 

Quantile regressions became widespread in the scientific literature after an article by Koenker and 

Knight (1978) in the Econometrica journal1, published by The Econometric Society2. The authors showed that 

the same general approach that used in conventional linear regression can be implemented for different 

quantiles of distribution of independent variable. The term “regression quantiles” was proposed by them and, 

that is more importantly, they suggested new estimator of such type of regression. It had an incredible impact 

on research in cases, where errors are distributed non-normally and assumption of Gauss-Markov theorem are 

violated. In cases, where the errors are distributed normally, the result of evaluating the quantile regression 

models turns out to be similar to the usual linear regression. This part is structured as follows. First, the 

motivation for the transition to quantile regressions as a new class of models will be discussed. Secondly, it 

will be demonstrated how important this approach is in practice and in which areas we can be most valuable. 

Thirdly, methodological features of quantile regressions will be described. Finally, the role of quantile 

regressions in this study is described. 

The motivation for the introduction of quantile regressions is based on the following characteristics. 

First of all, the usual regressions (least squares) do not work well with outliers. What is more, both estimates 

and mean forecast in OLS is sensitive to outliers. Outliers can significantly affect the results of the model, so 

researchers often simply exclude outliers at the preliminary analysis stage. Nevertheless, if outliers would not 

bias the model results, we would prefer to leave them in the data sample. In other words, if it supposed to be 

a data generation process behind the observed data, then outliers are part of this process. Moreover, the 

problem of outliers lead scientists to make a forecast based on the median (not on mean prognoze), as in the 

work of Gannoun et al. (2003). The median approach can be generalized to different quantiles. Secondly, the 

assumption of the normality of errors as a consequence of the central limit theorem and the law of large 

numbers often looks too strict on real data. Errors as a random factor are not observable. Consequently, the 

requirements of the Gauss-Markov theorem turn out to be difficult to implement in practice. Thirdly, the 

quantile approach shows itself better in models when the data generation process behind the sample may have 

 
1 https://www.jstor.org/journal/econometrica - Econometrica journal page on JSTOR 
2 https://www.jstor.org/publisher/econosoc - The Econometric society page on JSTOR 

https://www.jstor.org/journal/econometrica
https://www.jstor.org/publisher/econosoc
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an unknown distribution, especially non-normal. What is more, quantile regression can be formulated with 

various types of constrains (for more details see, for example, Koenker and Ng (2005)). Nevertheless, quantile 

regressions are based on a similar minimization problem, as OLS. Quantile regressions are also sensitive to 

the number of observations, and if there are not enough observations, they revealed poor results. Detailed 

example of comparison of estimates in OLS and quantile regression model on infant birthweight data is 

provided in Hallock and Koenker (2001). All the advantages of quantile regressions described above are used 

in a variety of empirical studies, which we will discuss further. 

2.2 Methodology of quantile regression 

 

 The quantile regression model is formalised as follows. The methodology of estimating is briefly 

presented in this paper similar to Benoit and Van den Poel (2017). 

The main logics is similar to classic regression. The linear model is: 

𝑦𝑖 = 𝑥𝑖
𝜏𝛽 + 𝜖𝑖, 

where 𝜖𝑖 is error term and τ is a given quantile and β is vector of coefficients. The solution for β is as following: 

�̂�𝜏 = argmin
𝛽

∑ 𝜌𝜏(𝑦𝑖 − 𝑥𝑖
𝜏𝛽)𝑛

𝑖=1 , 

where 0 < 𝜌𝜏 <1 corresponding to any particular quantile. In general, using this method, �̂�𝜏 for any quantile 

can be estimated. For instance, median forecast can be calculated using �̂�0.5. Similarly, predictions for a set of 

quantiles can be evaluated. Symmetric sets of quantiles can be evaluated to receive mean forecast based on 

quantile regression model like simple mean of estimated quantiles forecasts. In our experiments set of quantiles 

[0.01, 0.99] is used in order to compare results with OLS model that created mean forecast by default. In 

literature (for example, Benoit and Van den Poel (2017)) quality of median and mean forecasts are compared, 

but this question is beyond the scope of this research. 

In this research, quantile regression models are estimated automatically using package “quantreg” in 

R programming environment. The programming code is attached in Appendix 1. 

2.3 Role of quantile regression in empirical research 

 

Quantile regression as a modification of OLS, due to its advantages, attracted a number of researchers 

in various scientific fields from biology and medicine to education. 

Cole and Green (1992) used data on triceps skinfold in Gambian girls and women, and body weight in 

U.S.A. girls. The authors extend the quantile regression approach by the example of nonlinear models of the 

dependence of triceps skinfold in Gambian girls and women, and body weight in U.S.A. girls on age. Their 

study uses reference centile curves as a way to track anomalies in the data. Such curves usually represent the 
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dependence of the parameter of interest (for example, weight or muscle mass, body fat percentage, etc.) 

depending on age. In this approach, it is impossible to throw out outliers, because the task is to detect them. 

Koenker and Selling (2001) use quantile regressions to analyse the survival of medflies. The authors 

use a two-sample treatment-control model. The indicator that the size of the pupa had an important influence 

for survival for the smallest 10% and had a negative influence at the upper end of the distribution. This is a 

very clear example of how the same variable can affect differently depending on which part of the distribution 

of the variable of interest scientists are considering. 

Quantile regressions also turn out to be convenient on time series data. In Gannoun et al. (2003) it is 

shown that quantile regression attracts the attention of researchers of data that are distributed asymmetrically, 

for example, income or real estate price. The study is based on nonlinear autoregressive models based on time 

series. An illustrative example of the use of quantile regressions on time series data is also contained in 

Koenker and Xiao (2006). The paper also examines abnormally distributed data – the American unemployment 

rate and U.S. gasoline prices. The authors call the quantile model on time data the quantile autoregression 

model (QAR). The authors believe that the QAR model has the potential to become a separate area of time 

series research. The authors are conducting a Monte Carlo experiment to explore the possibilities of QAR and 

focus on the model with iid errors. 

There are many examples in the literature of the application of quantile regressions to the analysis of 

modern crises of recent years. For instance, the work of Mahdi, E., & Al-Abdulla, A. (2022) explores the 

relationship between bitcoin and gold prices and news indices that characterize the perception of crises, such 

as Panic, Sentiment, Infodemic, and Media Coverage (talking about the RavenPack news-based index3). The 

authors discovered that despite the similar nature - both gold and bitcoin are used to hedge risks, the impact 

of news indices on demand and prices of commodities is asymmetric. The authors reveal the disadvantages of 

quantile regressions. They turn out to be less effective than the quantile-on-quantile approach. The reason is 

that positive and negative shocks affect the market with different intensity. 

Examples of implementation of quantile regressions in economics and finance can be found in Yu, Lu 

and Stander (2003). Examples of other scientific fields than economics and finance are listed in the table 1. 

The book of Fitzenberger, Koenker and Machado (2001) can be used as a textbook on implementation of 

quantile models. All in all, empirical research revel that empirically every research problem and data set 

require its own approach. With all the advantages of quantile regressions, it is impossible to say in advance 

which model will work better on the data. 

Table 1. Fields of application of quantile regressions. 

Science field Pieces of research Findings concerning quantile regression 

 
3 https://www.ravenpack.com/ - more information about RavenPack company turning news, social media, transcripts, filings, and 

other texts in valuable insights for business. 

https://www.ravenpack.com/
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Medicine Cole and Green (1992) Outliers are significant in medical, 

biological or survival analysis. They cannot 

be filtered from the data as in other field 

because the influence of such outliers is 

often the main research interest in such 

papers. Quantile regression gives scientists 

opportunity nor discard the outliers and 

explore their influence on the tails of 

distributions. 

Survival analysis Koenker and Geling (2001) 

Ecological 

studies/biology 

Pandey and Nguyen (1999) 

Cade and Guo (2000) 

Allen et al. (2001) 

McClain and Rex (2001) 

Knight and Ackerly (2002) 

Brown and Peet (2003) 

Time series 

Gannoun et al. (2003) 

Lipsitz et al. (1997) 

Koenker and Xiao (2006) 

Quantile regression allows to determine 

(non)stationarity of the data generating 

process through analysis of asymmetric 

dynamics in time series, for instance, prices 

or unemployment. Unit root condition is 

implementing In other words, quantile 

regression helps to detect unit root because 

unit root condition can be fulfilled for some 

quantiles and rejected for others.  

Education 
Buchinsky (1998) 

Cade and Noon (2003) 

Developing an education development 

strategy, it is necessary to take into account 

that the same measures may have different 

effects for the most successful, average, or 

less successful pupils. Quantile regression 

can strengthen policy conclusions through 

investigation of these effects. 

Impact of COVID-19 

Crisis 
Mahdi and Al-Abdulla (2022) 

Impact of COVID-19 was different for 

various quantiles of dependent variable (it 

may be both survival rate and returns of the 

assets). Quantile regression allows to 

estimate this impact that sometimes are 

opposite for highest 10% and lowest 10% of 

the distribution. 

Source: literature review of the author 
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Part 3. Quantile models based on Bayes approach 
 

 In literature, Bayes approach is a competitor to the frequentists’ methods as the first one allows to 

control the prior distribution of parameters of the model. Bayes approach in regression modelling came from 

the classical Bayes formula: 

𝑃(𝜃|𝐷) =
𝑃(𝐷|𝜃)∗𝑃(𝜃)

𝑃(𝐷)
, 

where P(θ) is a prior distribution of a parameter of the model – hypothetic or based on preliminary analysis of 

data (in case of regression model it may be a prior distribution of a coefficient); 

P(θ|D) — a posterior probability of the parameter of the model – it is what the model should estimate; 

P(D|θ) — likelihood; 

P(D) — the total probability of occurrence of the data (evidence). 

 The example of regression model in Bayes formulation is provided below. 

 The typical regression model can be formulated based on Bayes formula: 

𝑦𝑖|𝑥𝑖 = 𝑎 + 𝑏 𝑥𝑖 + 𝜀𝑖, 

where 𝜀𝑖 – error term, i.i.d., 𝜀𝑖~ N(0, σ2) and data sample consist of independent pairs of observations (x1,y1)., 

… , (xn, yn). 

𝑦𝑖|𝑥𝑖 , 𝑎, 𝑏, σ2~𝑁(𝑎 + 𝑏 𝑥𝑖, σ2) 

For convenience, the same formulation of the model is written down in a more convenient form (in 

particular, τ=
1

σ2). 

In this case likelihood is formulated as follows: 

𝑦𝑖|𝜇𝑖, 𝜏 ~ 𝑁(𝜇𝑖, 𝜏) 

and priors may be formulated as 

𝑎 ~ 𝑁(𝜇𝑎, 𝜏𝑎) 

𝑏 ~ 𝑁(𝜇𝑏, 𝜏𝑏) 

𝜏 ~ 𝐺𝑎𝑚𝑚𝑎(𝑎𝜏, 𝑏𝜏) 

Regression coefficients a and b can take both positive and negative values, so the normal distribution 

is chosen as a prior for them, the variation estimated in terms of τ takes values greater than 0, so the Gamma 

distribution is chosen as a prior for it. Defined all the parameters as above, we have formulated the Bayesian 

linear regression problem. It is easy to use analogous logic to multiple quantiles and receive Bayes quantile 

model. 
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If we use the matrix form for simplicity, then Bayes quantile regression may look in the following 

form: 

𝑄𝑦𝑖

 (𝑥|𝑝) = 𝑥𝑖
′𝛽𝑝, 

where 0<p<1, and 𝑄𝑦𝑖

 (. ) = 𝐹𝑦𝑖

−1(. ) – inverse of the cumulative distribution function of a variable yi, on 

condition of xi. 

 

The quality of the model varies according to type of prior used. From on hand, by default, the non-

informative prior can be used. It is normal prior with zero mean and large variance. From the other hand, 

according to Alhamzawi and Yu (2013), the best forecast in Bayes quantile model can be received using not 

general prior but special prior for every quantile. The authors created a series of experiments similar to 

experiments in this research. Nevertheless, the use coefficients comparison for evaluating quality of the model 

(as the distribution types was controlled in their research, they compared real coefficients with estimates in 

particular model). On the contrary, in our research the quality of the model is estimated based on forecast 

quality. In experiments in this thesis the non-informative priors are used. As it reveals in the results section, 

Bayes model can compete with OLS and quantile model even without formulating of informative priors. Also, 

sometimes scientists’ knowledge about prior distribution of the real model is not enough or absent at all. 

Bayesian quantile regression methods are widely discussed in Lancaster and Jae Jun (2010). It is 

important to it is important to take into account several parameters. Firstly, since distributions are used in the 

model and the final answer is a posteriori distribution, and not a point estimate as in the standard model. Gibbs 

sampler is used to find a solution (for details see Alhamzawi and Yu (2013)). Finding a solution (posterior 

distribution) takes place through several iterations. The number of iterations has crucial influence and is 

usually quite large. In experiments in this research 1000 number of iterations is used. Since the algorithm does 

not converge to the correct solution immediately, part of the first iterations must be discarded (this part of the 

series is called “burning-in”). Usually, a quarter or half of the iterations are discarded. In these experiments 

500 iterations are “burning-in”. 

In conclusion, Bayes approach has several advantages comparing to classical frequentist approach. 

Firstly, it can effectively work on small data samples. Secondly, Bayes models can be implemented based on 

different distribution. Bayes models are less sensitive to outliers and the requirement of normality compared 

with classical regressions. 

 Estimation of Bayes quantile regression is available in R programming environment with packages 

“bqr” (see Alhamzawi and Ali (2020)) and “bayesQR” (see Benoit and Van den Poel (2017) for details). The 

last one was used during experiments in this research. 
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Part. 4. Experimental comparison of the models 
 

This part presents methodological approach. Firstly, it describes how experiments were organised step 

by step on generated data sample from different distributions. Secondly, it describes the same experiment on 

real data with preliminary analysis of the Boston Housing data.  

4.1 Methodology of experiments 

  

 The series of experiments were based on sample generated from 6 types of data distributions (normal 

with small variance, normal with large variance, geometric, gamma, log-normal and student distribution). 

Table 2 reveals how distributions were organised. In the first step, variable x was set as sample of size 100 out 

of uniform distribution in the range from 1 to 10. In the second step, variables z1, z2, … z6 were set as samples 

of size 100 from 6 types of distributions. In the third step, variables y1, y2, … y6 was set as yi=2+5*x+zi, where 

i=1,6̅̅ ̅̅ . Finally, 6 data frames of x and yi were created. 

Table 2. Data generating process for experiments 

Steps Results Comments 

1 
x ~ U(1,10), size of sample N=100 x was set as sample of size 100 out of uniform 

distribution in the range from 1 to 10 

2 

z1 ~ N(0, 2), size of sample N=100 z1 was set as normal distribution with small 

variance (with mean=0 and σ2 = 2) 

z2 ~ N(0, 10), size of sample N=100 z2 was set as normal distribution with large 

variance (with mean=0 and σ2 = 10) 

z2 ~ Geom(0.1), size of sample N=100 z3 was set as geometric distribution with 

parameter 0.1 

z2 ~ Г(1, 0.01), size of sample N=100 z4 was set as gamma distribution with 

parameters 1 and 0.01 

z2 ~ lnN(1, 1), size of sample N=100 z5 was set as log-normal distribution with 

mean=1 and σ2 = 1 

z2 ~ t(1000), size of sample N=100 z6 was set as student distribution with degrees 

of freedom equal to 1000 

3 yi=2+5*x+zi, where i=1,6̅̅ ̅̅  data generating process 

4 [
𝑥1 ⋯ 𝑦𝑖

1

⋮ ⋱ ⋮
𝑥100 ⋯ 𝑦𝑖

100
] , where i=1,6̅̅ ̅̅  

creating a data frame of x and y as matrix 

[Nx2] 

Source: calculations of the author 
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The general scheme of experiment is as follows (depicted at picture 1). After distributions were chosen 

as shown in table 2 and the sample of size 100 was generated from every distribution, in the first step, samples 

were randomly divided into train and test sets according to 80%/20% rule. In second step, three models (OLS, 

quantile regression and Bayes quantile regression model) were estimated based on train set. In third step, a 

mean forecast for each model was estimated based on train set. Finally, values of RMSE were calculated for 

each model and the best model was chose according to minimum RMSE. Steps from 1 to 3 is one iteration or 

one experiment. 

Pic. 1. The plan of experiment 

 

Source: analysis of the author 

In order to explore the change of results with increasing number of iterations, experiment was repeated 

500 times. In other words, each sample was split into train and test sets randomly 500 times. After each 

iteration the best, second-best and third-best model were identified according to the RMSE. Finally, shares of 

iteration when the model is the best were calculated respectively for each model. Results of the experiments 

are discussed in the next part of the thesis. 

4.2 Preliminary analysis of the Boston Housing data 

 

The difference in experiments on generated and real data is the fact that model on Boston Housing data 

has its economic grounds. The same methodology was used for experiments both on generated and real data. 

Before implementing the experiments, preliminary analysis was carried out. Despite the fact that Alhamzawi 

and Yu (2013) conducted experiments with quantile regression and Bayes models on full Boston Housing 

data4, in this research several key regressors are selected from the data and problems of multicollinearity and 

heteroskedasticity are considered. 

 
4 The description of the Boston housing data with full range of variables is presented in the Appendix 2. 
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To begin with, the correlation among variables was explored (Pic. 2, a) to solve multicollinearity 

problem. The dependent variable is medv - median value of owner-occupied homes in USD 1000's. 

Multicollinearity in regression models appears when there is linear relation between independent variables. 

Strong correlation (>0.8) was detected between variables rad and tax, indus and nox, and indus and lstat. 

Consequently, these variables were deleted from the data set. Pic 2.b revealed that there are no strongly 

correlated independent variables in the data. 

Pic. 2. Correlation matrices for Boston Housing data. 

a) b) 

  

Source: calculations of the author 

The distribution of the dependent variable medv is non-normal (presented in Pic. 3). As generated 

samples of different distribution types were used in the experiments, the variable medv was not filtered and 

normalised, and was implemented in the models as it is.  

Pic. 3. The distribution of the dependent variable medv. 

 

Source: calculations of the author 

The dependences among numeric variables (all except chas) in forms of scatterplots are depicted in 

Pic. 4. The rightmost column is the most crucial one as it presented the relationships among dependent variable 

medv and regressors. All in all, both correlation and scatter plots show that there are reasons to include all 

depicted regressors in the model. Moreover, the quality of the model will be briefly discussed after model 

estimation. The expected signs of the coefficients were also considered (see table 3). It is important that the 

economic mechanism beyond the relationship between variables is quite clear and has economic grounds. 
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Pic. 4. The scatter plot of all numeric variables, included in models. 

 
Source: calculations of the author 

Table 3. Expected signs of the coefficient 

№ 
Independent 

variable 

Expected 

sign of the 

coefficient 

Short description of 

the variable 

Mechanics of relationships to medv - median 

value of owner-occupied homes in $1000's 

1 crim - crime rate 
The higher crime rate, the less secure the area, the 

lower the value of the accommodation 

2 zn +/- 

proportion of 

residential land 

zoned for lots 

The relationship may be twofold. 

From one hand, the more supply of the lots, the less 

the price of each lot. From the other hand, the lager 

number of lots, the more popular area for living, the 

higher the value of the house. 

3 chas + 
river dummy 

variable 

The location on the banks of the river may increase 

the value of the house due to aesthetic affairs 

4 rm + number of rooms 

The more rooms in the house, the more convenient 

the apartment, the higher the value of the 

accommodation 

5 age +/- 
proportion of units 

built prior to 1940 

The relationship may be twofold. 

From one hand, the older the area, the more 

developed the infrastructure, than the higher the 

value of the house. From the other hand, the older 

the house, the more additional costs due to 

repairing, the lower the value of the house. 

6 dis - 
distances to 

employment centres 

The farer the place from the employment centres, 

the higher additional cost of travelling, and the 

lower the value of the house 

7 ptratio - pupil-teacher ratio 

The lower number of teachers per pupil in the area, 

the less convenient the area for families who living 

the house due to additional cost for valuable 

education, the lower the value of the house 

7 b - proportion of blacks 

The higher proportion of blacks, the more problems 

on national grounds may be, the lower the value of 

the living place 
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 The following regression equation was estimated with three models – OLS, quantile regression and 

Bayes quantile regression: 

𝑚𝑒𝑑𝑣𝑖 = 𝑏0 + 𝑏1 ∗ 𝑐𝑟𝑖𝑚𝑖 + 𝑏2 ∗  𝑧𝑛𝑖 +  𝑏3 ∗ 𝑐ℎ𝑎𝑠𝑖 + 𝑏4 ∗ 𝑎𝑔𝑒𝑖 + 𝑏5 ∗ 𝑟𝑚𝑖 + 𝑏6 ∗ 𝑑𝑖𝑠𝑖 + 𝑏7 ∗ 𝑝𝑡𝑟𝑎𝑡𝑖𝑜𝑖 +

𝑏8 ∗ 𝑏𝑖 + 𝜖𝑖, 

where 𝜖𝑖 is error term, i.i.d., and 𝑏0, … , 𝑏8 are coefficients of regression. 

The regression has simple linear form. The reason for this is the fact, that no strong quadratic or other 

forms of relationships were identified with scatterplots during preliminary analysis. The second reason is 

that without additional analysis of the housing market in the second half of the XX century it is difficult to 

identify any other form of relationships due to economic ground. All in all, for the matter of simplicity, the 

linear form of regression is used in this research. The novelty of this research, as it was mentioned above, is 

not in the data or regression model, but in experimental comparison of the models. Both the post-estimation 

model analysis and results of such comparison are discussed in part 5. 
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Part 5. Results of experiments 

5.1 Results on generated data 

 

Results of the experiment are revealed in table 4. Shares of iterations where the corresponding model 

is the best and second-best in terms of RMSE are presented by columns for three models – linear model (OLS), 

quantile regression model (QR) and Bayes quantile regression model (BQR). The shares are depicted with 

95% confidence intervals (CI), calculated according to the basic classical formula: 

�̂� − 1.96 ∗ √
𝑝∗(1−𝑝)

𝑛𝑢𝑚
< 𝑝 < �̂� + 1.96 ∗ √

𝑝∗(1−𝑝)

𝑛𝑢𝑚
, 

where �̂� is estimated share, num=500 is a number of iterations in the experiment, and 1.96 is z-score for 95% 

CI. The results in terms of RMSE are highlighted in bold for those models that have the largest shares of 

forecasts. RMSE estimates for three models were compared with so called Z-test, testing the equality of shares 

in two groups, as follows: 

Z statistics=  
𝑝1−𝑝2

𝐷(𝑝1−𝑝2)
=

𝑝1−𝑝2
𝑚1+𝑚2
𝑛1+𝑛2

(1−
𝑚1+𝑚2
𝑛1+𝑛2

)
𝑛1+𝑛2
𝑛1𝑛2

, 

where n1 and n2 are sizes of samples that the shares are calculated on. n1 and n2 are equal to 500 in these 

experiments. m1 and m2 are number of iterations where the corresponding model is the best in terms of RMSE, 

�̂�1 and �̂�2 are estimated shares. 

Z-statisics has standard normal distribution, so two hypotheses can be checked as follows: 

H0: �̂�1 = �̂�2, there is no statistical difference between two shares at level of significance 0.05. 

Ha: �̂�1 ≠ �̂�2, there is statistical difference between two shares at level of significance 0.05. 

Consequently, in cases, when the confidence intervals overlap and statistically there are no differences 

at level 0.05, the RMSE of several models are highlighted in bold. In other words, in these cases H0 cannot be 

rejected at level 0.05 in favour of Ha. 

The table 4 reveals several conclusions. Firstly, Bayes quantile regression model has the largest share 

of the best forecasts for 4 types of distributions (for normal distribution both Bayes quantile model and 

standard quantile model are the best as 95% CI overlap). Secondly, some results look similar for group of 

distribution. For instance, the Bayes quantile model has the largest share of the best model for geometric and 

log-normal distributions, and the quantile regression model has largest share of the second-best forecasts for 

these distributions. OLS model has the largest share of the best forecasts for gamma and student distributions, 

and quantile regression model has the largest share of second-best forecasts for these distributions. Finally, 

there is no distributions in this experiment for which Bayes quantile model has the largest share of second-

best forecasts.  
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Abovementioned results partially confirm key hypotheses of this research that is shown in table 5. First 

hypothesis is rejected. OLS model does not have the largest share of the best forecasts for samples from normal 

distribution. Second hypothesis is confirmed. Bayes quantile model has the largest share of the best forecasts 

for 4 out 6 types of distributions. Third hypothesis is rejected. As it can be seen in Table 6, the shape of error 

distribution and data plots cannot determine what model will have the largest share of the best or second-best 

forecasts. The more formal analysis of distribution shape is needed. 

It should be emphasized that shape of distribution and data plots can be different. To begin with, from 

statistical point of view the sample size equal to 100 data points is not large. As data samples were drop 

randomly from general distributions, the samples can be different if we repeat the experiment. The larger size 

of samples the more stable results would be. In this research samples of such size are used because in economic 

research sometimes the number of observations in analysis is not too large. For instance, research on country-

level data or region-level data in particular country. Repeating the same experiments on larger samples may 

be the continuation of this research, but for now it is beyond the scope of this paper. Moreover, 100 

observations are enough to notice main features of the distribution. Normal distribution has bell-shape. Log-

normal, geometric and gamma (with parameters that used in this research) distributions are shifted to the left. 

Student distribution is similar to normal with more noticeable tails. What is more, we did not want the 

experiment to be considered successful only for a large number of observations. All in all. even for n=100 the 

characteristic features of distributions are noticeable, so such size of samples was used in the experiment. 

Table 4. Results of experiments based on generated data samples 

Distribution 

type 

Share of iteration where the model is the 

best in terms of RMSE 

Share of iteration where the model is the 

second-best in terms of RMSE 

OLS QR BQR OLS QR BQR 

Normal 

distribution 

with small 

variance 

14.4% 

±3.1% 

40.4% 

±4.3% 

45.2% 

±4.4% 

72.8% 

±3.9% 

23.0% 

±3.7% 

4.2% 

±1.8% 

Normal 

distribution 

with high 

variance 

11.6% 

±2.8% 

40.4% 

±4.3% 

48.0% 

±4.4% 

73.0% 

±3.9% 

18.8% 

±3.4% 

8.2% 

±2.4% 

Gamma 

distribution 

 

54.8% 

±4.4% 

9.0% 

±2.5% 

26.2% 

±4.2% 

8.4% 

±2.4% 

86.4% 

±3.0% 

5.2% 

±1.9% 

Geometric 

distribution 

 

32.8% 

±4.1% 

20.4% 

±3.5% 

46.8% 

±4.4% 

20.2% 

±3.5% 

77.4% 

±3.7% 

2.4% 

±1.3% 

Student 

distribution 

52.0% 

±4.4% 

39.0% 

±4.3% 

9.0% 

±2.5% 

40.6% 

±4.3% 

59.0% 

±4.3% 

0.04% 

±0.6% 

Log-normal 

distribution 

 

28.4% 

±4.0% 

27.4% 

±3.9% 

44.2% 

±4.4% 

36.8% 

±4.2% 

51.2% 

±4.4% 

12.0% 

±2.8% 

Source: calculations of the author 
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Table 5. Confirmation of key hypotheses of this research by experiments results. 

№ Hypothesis 
How results of the experience are related to 

hypotheses 

1 

Share of best forecasts based on OLS 

regression are larger for samples with 

normal distribution. 

Results do not confirm this hypothesis. 

OLS model has the largest share of the second-best 

forecasts for normal distributions with small and 

large variance. Nevertheless, OLS model has the 

largest share of the best forecasts only for gamma 

and student distributions. 

2 
Share of best forecasts based on Bayes 

models are the largest one in general case. 

Results confirm this hypothesis. 

Bayes quantile regression model has the largest share 

of the best forecasts for 4 out of 6 types of 

distributions. 

3 

Shares of best forecast for OLS, quantile 

model and Bayes quantile model positively 

correlates between distributions of similar 

shape. 

Results do not confirm this hypothesis. 

The shape of the distribution or plots of the data do 

not allow to determine what model will make better 

forecast in majority of cases (see Table 6). Student 

and normal distribution may be similar (what 

generally depends on the distribution parameters), 

but nevertheless, experiments results for them are 

different. 

Source: analysis of the author 

Table 6. Plots of the generated data for experiments. 

Distribution 

type 

Plots of random generated samples of size 

n=100 
Plots of zi, where i=1,6̅̅ ̅̅  according to 

distribution type (error distribution) 

Normal 

distribution 

with low 

variance 

 
 

Normal 

distribution 

with high 

variance 

 
 

Gamma 

distribution 
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Geometric 

distribution 

 
 

Student 

distribution 

 
 

Log-normal 

distribution 

 
 

Source: calculations of the author 

5.2 Results on real data 

  

 The logic of choosing the regression for the regression equation was described in part 4. Here the post-

evaluation analysis is presented only for OLS model, because it is enough for confirmation of economic 

grounds of the regression equation that was estimated. 

 The regression equation estimated by OLS has the following form: 

𝑚𝑒𝑑𝑣𝑖 = −5.520 − 0.142 ∗ 𝑐𝑟𝑖𝑚𝑖 + 0.031 ∗ 𝑧𝑛𝑖 +  3.22 ∗ 𝑐ℎ𝑎𝑠𝑖 − 0.077 ∗ 𝑎𝑔𝑒𝑖 + 6.947 ∗ 𝑟𝑚𝑖 − 0.973 

∗ 𝑑𝑖𝑠𝑖 − 0.852 ∗ 𝑝𝑡𝑟𝑎𝑡𝑖𝑜𝑖 + 0.016 ∗ 𝑏𝑖 

The model has appropriate quality. All coefficients except coefficient before zn (proxy land lots for 

sale) are statistically significant at confidence level 0.05. All coefficients except coefficient before b (proxy of 

share of black population) have signs as it were expected and discussed in part 4. Adjusted R-squared is equal 

to 0.65 that means that the model explains properly 65% of dispersion in the data. F-statistics is equal to 117 

and has p-value<0.0001.  

Nevertheless, the analysis of residuals (Pic. 5) shows that data sample contains several outliers and 

emphasise that dependent variable does not distribute normally. Firstly, residuals plot revealed that residuals 

are not distributed like white noise (Pic. 5, a). Secondly, the residuals are not distributed normally (Pic. 5, b). 

Thirdly, the density residuals plot revels a long right tail (Pic. 5, c). All these findings shows that OLS in 



 

20 

estimated form is not the best model. One can expect that in conducted experiments forecast based on OLS 

model will have poor quality in terms of RMSE. Nevertheless, all in all, the simple OLS model shows that 

there are potentially real strong relationships between dependent variable and regressors and the regression 

equation may have economic grounds beyond it. It is enough base for the experiments, and their results can 

be considered further. 

Pic. 5. Analysis of residuals of OLS model. 

 

a) Residuals plot b) Normal Q-Q plot 

 

 
c) Density residuals plot 

 
Source: calculations of the author 

 

The results of experiments on Boston Housing data are depicted in table 7. Bayes quantile regression 

has the largest share of best forecasts, and quantile regression has the second-best largest of forecasts. What is 

more, OLS model has the lowest share of best forecasts that was partly noticed during analysis of residuals 

quality for linear model. Generally, this pattern looks similar with results that were received on generated 

sample from geometric distribution. Nevertheless, without additional analysis it is impossible to make 

conclusions on how similar these two results are. All in all, Bayes quantile regression model shows the best 

results in terms of forecasting. 
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Table 7. Results of experiments on real data. 

 
Share of iteration where the model is the 

best in terms of RMSE 

Share of iteration where the model is 

the second-best in terms of RMSE 

Data OLS QR BQR OLS QR BQR 

Boston 

Housing 

Data 

14.5% 

±3.1% 

37.1% 

±4.2% 

48.4% 

±4.4% 

28.0% 

±3.9% 

68.9% 

±4.1% 

3.1% 

±1.5% 

Source: calculations of the author 

 

5.3 Discussion of the results 
 

 The results on generated and on real data is shortly discussed below. The results revealed that Bayes 

quantile regression created better forecast in these experiments. Such result was expected due to 

methodological advantages that Bayes models have over OLS and quantile regression (these advantages were 

discussed in part 3).  Quantile regression is in the majority of cases is second-best model in terms of forecast 

in these experiments. Such result was also expected due to methodological advantages of quantile model over 

OLS. Moreover, even for sample with normal distributions of errors, OLS has not the best forecast in these 

experiments. One can have a question how resistant these results may be. 

 The stability of abovementioned results can be checked with increasing number of iterations in the 

experiments and due to more wide range of distributions that may be used in the analysis. We expect that these 

results will be stable with increasing number of iterations due to at least two following reasons. First reason is 

the fact that for majority of distribution types, that we used, the best model can be uniquely identified because 

corresponding confidence intervals do not overlap. The second reason is that when the same experiments were 

conducted for smaller number of iterations firstly, the proportion of share best and second-best models were 

approximately the same. It was generally only one difference - the confidence intervals overlapped in case of 

100 iteration for majority of experiments. All in all, the same methodology can be implemented on larger 

number of data points, with larger number of iterations and for more distribution types in order to explore the 

stability of results, but these questions now are beyond of the scope of this thesis. 
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Part 6. Conclusion 
 

 In this thesis the series of experiments were held in order to experimentally identify the best forecasts 

in terms of RMSE between quantile regression models based on traditional and Bayes approach. OLS model 

was used as a baseline. The same methodology was implemented both for samples of generated data and on 

Boston Housing data. 

 The main results on generated data can be summarised in three key point as follows. Firstly, 

Bayes quantile regression model has the largest share of the best forecasts for 4 types of distributions (for 

normal distribution both Bayes quantile model and standard quantile model are the best as 95% CI overlap). 

Secondly, some results look similar for group of distribution. For instance, the Bayes quantile model has the 

largest share of the best model for geometric and log-normal distributions, and the quantile regression model 

has largest share of the second-best forecasts for these distributions. Thirdly, OLS model has the largest share 

of the best forecasts for gamma and student distributions, and quantile regression model has the largest share 

of second-best forecasts for these distributions. 

The results of experiments on real data reveals that Bayes quantile model has the largest share of best 

forecasts, and quantile regression has the second-best largest of forecasts. What is more, OLS model has the 

lowest share of best forecasts that was partly noticed during analysis of residuals quality for linear model. 

Generally, this pattern looks similar with results that were received on generated sample from geometric 

distribution. All in all, Bayes quantile regression model shows the best results in terms of forecasting both on 

generated and real data. 

Abovementioned results partially confirm key hypotheses of this research. First hypothesis is rejected 

since OLS model does not have the largest share of the best forecasts for samples from normal distribution. 

Second hypothesis is confirmed, because Bayes quantile model has the largest share of the best forecasts for 

4 out 6 types of distributions. Third hypothesis is rejected as the shape of error distribution and data plots 

cannot determine what model will have the largest share of the best or second-best forecasts. The more formal 

analysis of distribution shape is needed to connect distribution type and results of the experiments. 

In conclusion, the results of presented experiments shows that clear theoretical advantages of the model 

do not strictly determine its best results on data. Any theory, no matter how straightforward it is, should be 

confirmed during implementation on data. Real data do not often used to estimate 1 500 models as it was done 

in these experiments. When larger number of experiments are needed for stable conclusions, generated 

samples from distributions with control of parameters can be used like it was done in this paper. We hope that 

this research will be able to find its own place in wide discussion of advantages of quantile models based on 

classical and Bayes approaches.  
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Appendix 1. Implementation of the experiment in R programming environment. 

 

#Uploading packages that used in the analysis: 

suppressPackageStartupMessages(library(mlbench)) 

suppressPackageStartupMessages(library(rstanarm)) 

suppressPackageStartupMessages(library(bayestestR)) 

suppressPackageStartupMessages(library(bayesplot)) 

suppressPackageStartupMessages(library(insight)) 

suppressPackageStartupMessages(library(broom)) 

suppressPackageStartupMessages(library(bayesQR)) 

suppressPackageStartupMessages(library(quantreg)) 

suppressPackageStartupMessages(library(mvtnorm)) 

suppressPackageStartupMessages(library(dplyr)) 

suppressPackageStartupMessages(library(expss)) 

suppressPackageStartupMessages(library(plyr)) 

#set.seed(0) for repeating the results 

nexp=500 #number of experiments 

num=100 #number of observations in the data samples 

#creating data frames of generated samples 

x <- runif(num, 1, 10) 

y <- 2 + 5 * x + rgamma(num, 1, 0.01) # my_data2.csv 

y <- 2 + 5 * x + rgeom(num, 0.1) # my_data4.csv+ 

y <- 2 + 5 * x + rt(num, 1000, 200) # my_data8.csv+ 

y <- 2 + 5 * x + rlnorm(num, 1, 1) # my_data5.csv+ 

y <- 2 + 5 * x + rnorm(num, 0, 10) # my_data7.csv 

y <- 2 + 5 * x + rnorm(num, 0, 2) # my_data1.csv+ 

df <- data.frame(x, y) 

plot(df) 

#results table is as follows 

res <-data.frame(RMSE=c(1:nexp),RMSE_qr=c(1:nexp),RMSE_bqr=c(1:nexp)) 

#loop for each iteration 

for(g in 1: nexp){  

#set.seed(123) for repeating the results 

#generate train and test samples as follows: 

train.index = sample(1:nrow(df), nrow(df)*0.8)  

train = df[train.index, ] 

test = df[-train.index, ] 

#estimation of OLS model 
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model_freq<-lm(y~x, data=train) 

b0=coef(model_freq)[1] 

b1=coef(model_freq)[2] 

#forecast in OLS model 

test$y_hat=b0+b1*test$x 

test$tech=(test$y_hat-test$y)^2 

RMSE=sqrt(sum(test$tech)/length(test$tech)) #RMSE in OLS model 

#formulation of quantile regression model 

b=0.01 

b_start=0+b 

b_end=1-b 

q=seq(b_start, b_end, by = b) 

n=length(q) 

if (ncol(df)>2) df[3:ncol(df)]<-list(NULL) # technical thing to filter initial the data 

df1 = as.data.frame(matrix(0, nrow = 2, ncol = n)) #technical table for coefficients 

#loop for estimation of quantile regression model 

for(i in 1:n){ 

df1[,i] <- coef(rq(y~x,data=train, tau=q[i]))  

} 

if (ncol(test)>2) test[3:ncol(test)]<-list(NULL) # technical thing to filter the initial the data 

#loop for forecasting in quantile regression model 

for(i in 1:n){ 

  test[,2+i] <- df1[1,i] + df1[2,i] * test$x 

} 

d=ncol(test)+1 

test[,d]<-0 

#loop for forecasting in quantile regression model 

for (j in 1:nrow(test)) { 

for(i in 1:n) { 

  test[j,d] <- test[j,d] + test[j,2+i] 

} 

} 

n1=n+2 

test<-mutate(test, y_qr = rowMeans(test[,3:n1])) 

test$tech1=(test$y_qr-test$y)^2 

RMSE_qr=sqrt(sum(test$tech1)/length(test$tech1)) #RMSE in quantile regression model 

if (ncol(df)>2) df[3:ncol(df)]<-list(NULL) # technical thing to filter initial the data 
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df2 = as.data.frame(matrix(0, nrow = 2, ncol = n)) # technical table for coefficients 

# loop for estimation of Bayes quantile model 

for(i in 1:n){ 

s<-summary(bayesQR(y~x,data=train, quantile=q[i],ndraw=1000,seed=111),burnin=500) 

s1<-s[[1]]$betadraw 

df2[1,i]<- s1[1,1] 

df2[2,i]<- s1[2,1] 

} 

if (ncol(test)>2) test[3:ncol(test)]<-list(NULL) # technical thing to filter the initial data 

# loop for forecasting in Bayes quantile model 

for(i in 1:n){ 

  test[,2+i] <- df2[1,i] + df2[2,i] * test$x 

} 

n1=n+2 

test<-mutate(test, y_bqr = rowMeans(test[,3:n1])) 

test$tech1=(test$y_bqr-test$y)^2 

RMSE_bqr=sqrt(sum(test$tech1)/length(test$tech1)) # RMSE in Bayes quantile model 

# organising the table of results 

res[g,3]=RMSE_bqr 

res[g,1]=RMSE 

res[g,2]=RMSE_qr 

} 
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Appendix 2. Description of Boston Housing data 

 

Boston Housing data contains 506 observations of 14 variables as follows. Unit of observation is a house 

in living area of Boston. Data was collected and firstly published in 1978. 

№ Variable Description 

1 crim per capita crime rate by town 

2 zn proportion of residential land zoned for lots over 

25,000 sq.ft 

3 indus proportion of non-retail business acres per town 

4 chas Charles River dummy variable (1 if tract bounds 

river; 0 otherwise) 

5 nox nitric oxides concentration (parts per 10 million) 

6 rm average number of rooms per dwelling 

7 age proportion of owner-occupied units built prior to 

1940 

8 dis weighted distances to five Boston employment 

centres 

9 rad index of accessibility to radial highways 

10 tax full-value property-tax rate per $10,000 

11 ptratio pupil-teacher ratio by town 

12 b 1000(Bk - 0.63)^2 where Bk is the proportion of 

blacks by town 

13 lstat % lower status of the population 

14 medv Median value of owner-occupied homes in 

$1000's 

 

Source: https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html 
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Summary 

 

Introduction 

The aim of the thesis is experimentally identify the best forecasts in terms of RMSE between quantile 

regression models based on traditional and Bayes approach.  

This paper considers three following research questions: 

• Does the Bayesian quantile regression model make forecasts with lower RMSE than the quantile 

regression in the classical formulation? 

• How change results based on generated sample from different types of distributions? 

• How do results on generated data correlate to estimates on real data? 

Several hypotheses follow from the analysis of literature and research questions: 

• Share of best forecasts based on OLS regression are larger for samples with normal distribution. 

• Share of best forecasts based on Bayes models are the largest one in general case. 

• Shares of best forecast for OLS, quantile model and Bayes quantile model positively correlates between 

distributions of similar shape. 

The delimitations of the paper are as follows. Firstly, this research is based only on linear forecasts. There 

are also examples of nonlinear quantiles regression models in the literature, however, research questions of 

this paper can be explored on linear models that is computationally more convenient for the investigation. 

Secondly, there are various kinds of metrics to assess the predictive power of models. In this study, RMSE is 

used as one of the basic and universal measure. Thirdly, to estimate the quality of forecast, the predicted values 

are analysed. The real and estimated coefficient of regression line are not compared, because it has already 

discussed in literature, for instance, in Alhamzawi and Yu (2013). Finally, as real data, Boston Housing data 

is used - it is widely known and explored in literature. The original idea of this research is connected to the 

method of comparing models, but not in the data itself. Going beyond these limitations can be a continuation 

of this study and makes it more valuable, but now it remains outside the scope of this study. 

The structure of the thesis is as follows. In the second part the advantages of quantile regressions are 

discussed comparing to OLS regressions. Firstly, quantile regression allows to better explore the tales of the 

distribution. Secondly, such models are less sensitive to the influence if outliers in the data. Finally, quantile 

regressions are quite widespread and used in large number of research in different field from medicine to 

economics and time series. 

In the third part the characteristics of Bayes quantile models are considered in comparison with 

classical quantile regression and OLS models. The methodology and key points in estimating of the Bayes 
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models are briefly discussed. Key advantages of Bayes approach are summarised at the end of the third part 

and some crucial characteristics of model estimation process in our experiments are provided. 

The foundation and the methodology of experiments are presented in the fourth part. Experiment is 

based on the sample of size 100 from 6 different distribution types. Then these samples are splitting on train 

and test sub-samples. For each sample three types of models (OLS, quantile regression and Bayes quantile 

regression) are estimating. Then forecasts are built on the test sub-sample and RMSE for each forecast are 

calculating. All in all, 500 experiment series were performed for each type of six generated distribution to 

notice tendencies beyond RMSE estimates. OLS model is used like baseline that quantile regression and Bayes 

quantile regression models are compared with. Furthermore, the same methodology is implemented on Boston 

Housing data that contain prices and characteristics of 506 houses in living area of Boston. It is quite popular 

in the literature and was firstly published in 1978. The preliminary analysis of the data, selection of regressors 

and regression equation are also discussed in the fourth part. The difference of experiments on generated and 

real data is the fact that the models on real data are built based on economic grounds and analysis of economic 

relationships between variables. 

The fifth part presents results of experiments on both generated and real data. The best model in each 

experiment is identified based on RMSE. It is revealed that share cases when each model is better is supposed 

to be stable as the number of experiments grow. 95% CI are calculated for shares when OLS, quantile 

regression and Bayes quantile regression are first-, second- and third-best model in terms of RMSE. The 

tendencies beyond the estimates of RMSE are summarised at the end of the fifth part. 

Finally, the conclusion emphasises key finding of this research. Firstly, the short discussion considers 

confirmation or rejected the hypotheses mentioned above. Secondly, the further potential steps expanding this 

study are briefly discussed. 

Methodology 

Quantile regressions became widespread in the scientific literature after an article by Koenker and 

Bassett (1978) in the Econometrica journal5, published by The Econometric Society6. The authors showed that 

the same general approach that used in conventional linear regression can be implemented for different 

quantiles of distribution of independent variable. The term “regression quantiles” was proposed by them and, 

that is more importantly, they suggested new estimator of such type of regression. It had an incredible impact 

on research in cases, where errors are distributed non-normally and assumption of Gauss-Markov theorem are 

violated. In cases, where the errors are distributed normally, the result of evaluating the quantile regression 

models turns out to be similar to the usual linear regression. This part will be structured as follows. First, the 

motivation for the transition to quantile regressions as a new class of models will be discussed. Secondly, it 

 
5 https://www.jstor.org/journal/econometrica - Econometrica journal page on JSTOR 
6 https://www.jstor.org/publisher/econosoc - The Econometric society page on JSTOR 

https://www.jstor.org/journal/econometrica
https://www.jstor.org/publisher/econosoc
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will be demonstrated how important this approach is in practice and in which areas we can be most valuable. 

Thirdly, methodological features of quantile regressions will be described. Finally, the role of quantile 

regressions in this study is described in conclusion. 

The motivation for the introduction of quantile regressions is based on the following characteristics. 

First of all, the usual regressions (least squares) do not work well with outliers. What is more, both estimates 

and mean forecast in OLS is sensitive to outliers. Outliers can significantly affect the results of the model, so 

researchers often simply exclude outliers at the preliminary analysis stage. Nevertheless, if outliers would not 

bias the model results, we would prefer to leave them in the data sample. In other words, if it supposed to be 

a data generation process behind the observed data, then outliers are part of this process. Moreover, the 

problem of outliers lead scientists to make a forecast based on the median (not on mean prognoze), as in the 

work of Gannoun et al. (2003). The median approach can be generalized to different quantiles. Secondly, the 

assumption of the normality of errors as a consequence of the central limit theorem and the law of large 

numbers often looks too strict on real data. Errors as a random factor are not observable. Consequently, the 

requirements of the Gauss-Markov theorem turn out to be difficult to implement in practice. Thirdly, the 

quantile approach shows itself better in models when the data generation process behind the sample may have 

an unknown distribution, especially non-normal. Nevertheless, quantile regressions are based on a similar 

minimization problem, as OLS. Quantile regressions are also sensitive to the number of observations, and if 

there are not enough observations, they revealed poor results. All the advantages of quantile regressions 

described above are used in a variety of empirical studies, which we will discuss further. 

 The quantile regression model is formalised as follows. The methodology of estimating is briefly 

presented in this paper similar to Benoit and Van den Poel (2017). 

The main logics is similar to classic regression. The linear model is: 

𝑦𝑖 = 𝑥𝑖
𝜏𝛽 + 𝜖𝑖, 

where 𝜖𝑖 is error term and τ is a given quantile and β is vector of coefficients. The solution for β is as following: 

�̂�𝜏 = argmin
𝛽

∑ 𝜌𝜏(𝑦𝑖 − 𝑥𝑖
𝜏𝛽)𝑛

𝑖=1 , 

where 0 < 𝜌𝜏 <1 corresponding to any particular quantile. In general, using this method, �̂�𝜏 for any quantile 

can be estimated. For instance, median forecast can be calculated using �̂�0.5. Similarly, predictions for a set of 

quantiles can be evaluated. Symmetric sets of quantiles can be evaluated to receive mean forecast based on 

quantile regression model like simple mean of estimated quantiles forecasts. In our experiments set of quantiles 

[0.01, 0.99] is used in order to compare results with OLS model that created mean forecast by default. In 

literature (for example, Benoit and Van den Poel (2017)) quality of median and mean forecasts are compared, 

but this question is beyond the scope of this research. 
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In this research, quantile regression models are estimated automatically using package “quantreg” in 

R programming environment. 

Cole and Green (1992) used data on triceps skinfold in Gambian girls and women, and body weight in 

U.S.A. girls. The authors extend the quantile regression approach by the example of nonlinear models of the 

dependence of triceps skinfold in Gambian girls and women, and body weight in U.S.A. girls on age. Their 

study uses reference centile curves as a way to track anomalies in the data. Such curves usually represent the 

dependence of the parameter of interest (for example, weight or muscle mass, body fat percentage, etc.) 

depending on age. In this approach, it is impossible to throw out outliers, because the task is to detect them. 

Koenker and Selling (2001) use quantile regressions to analyse the survival of medflies. The authors 

use a two-sample treatment-control model. The indicator that the size of the pupa had an important influence 

for survival for the smallest 10% and had a negative influence at the upper end of the distribution. This is a 

very clear example of how the same variable can affect differently depending on which part of the distribution 

of the variable of interest scientists are considering. 

Quantile regressions also turn out to be convenient on time series data. In Gannoun et al. (2003) it is 

shown that quantile regression attracts the attention of researchers of data that are distributed asymmetrically, 

for example, income or real estate price. The study is based on nonlinear autoregressive models based on time 

series. An illustrative example of the use of quantile regressions on time series data is also contained in 

Koenker and Xiao (2006). The paper also examines abnormally distributed data – the American unemployment 

rate and U.S. gasoline prices. The authors call the quantile model on time data the quantile autoregression 

model (QAR). The authors believe that the QAR model has the potential to become a separate area of time 

series research. The authors are conducting a Monte Carlo experiment to explore the possibilities of QAR and 

focus on the model with iid errors. 

There are many examples in the literature of the application of quantile regressions to the analysis of 

modern crises of recent years. For instance, the work of Mahdi, E., & Al-Abdulla, A. (2022) explores the 

relationship between bitcoin and gold prices and news indices that characterize the perception of crises, such 

as Panic, Sentiment, Infodemic, and Media Coverage (talking about the RavenPack news-based index7). The 

authors discovered that despite the similar nature - both gold and bitcoin are used to hedge risks, the impact 

of news indices on demand and prices of commodities is asymmetric. The authors reveal the disadvantages of 

quantile regressions. They turn out to be less effective than the quantile-on-quantile approach. The reason is 

that positive and negative shocks affect the market with different intensity. 

 
7 https://www.ravenpack.com/ - more information about RavenPack company turning news, social media, transcripts, filings, and 

other texts in valuable insights for business. 

https://www.ravenpack.com/
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 In literature, Bayes approach is a competitor to the frequentists’ methods as the first one allows to 

control the prior distribution of parameters of the model. Bayes approach in regression modelling came from 

the classical Bayes formula: 

𝑃(𝜃|𝐷) =
𝑃(𝐷|𝜃)∗𝑃(𝜃)

𝑃(𝐷)
, 

where P(θ) is a prior distribution of a parameter of the model – hypothetic or based on preliminary analysis of 

data (in case of regression model it may be a prior distribution of a coefficient); 

P(θ|D) — a posterior probability of the parameter of the model – it is what the model should estimate; 

P(D|θ) — likelihood; 

P(D) — the total probability of occurrence of the data (evidence). 

 The example of regression model in Bayes formulation is provided below. 

 The typical regression model can be formulated based on Bayes formula: 

𝑦𝑖|𝑥𝑖 = 𝑎 + 𝑏 𝑥𝑖 + 𝜀𝑖, 

where 𝜀𝑖 – error term, i.i.d., 𝜀𝑖~ N(0, σ2) and data sample consist of independent pairs of observations (x1,y1)., 

… , (xn, yn). 

𝑦𝑖|𝑥𝑖 , 𝑎, 𝑏, σ2~𝑁(𝑎 + 𝑏 𝑥𝑖, σ2) 

For convenience, the same formulation of the model is written down in a more convenient form (in 

particular, τ=
1

σ2). 

In this case likelihood is formulated as follows: 

𝑦𝑖|𝜇𝑖, 𝜏 ~ 𝑁(𝜇𝑖, 𝜏) 

and priors may be formulated as 

𝑎 ~ 𝑁(𝜇𝑎, 𝜏𝑎) 

𝑏 ~ 𝑁(𝜇𝑏, 𝜏𝑏) 

𝜏 ~ 𝐺𝑎𝑚𝑚𝑎(𝑎𝜏, 𝑏𝜏) 

Regression coefficients a and b can take both positive and negative values, so the normal distribution 

is chosen as a prior for them, the variation estimated in terms of τ takes values greater than 0, so the Gamma 

distribution is chosen as a prior for it. Defined all the parameters as above, we have formulated the Bayesian 

linear regression problem. It is easy to use analogous logic to multiple quantiles and receive Bayes quantile 

model. 
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If we use the matrix form for simplicity, then Bayes quantile regression may look in the following 

form: 

𝑄𝑦𝑖

 (𝑥|𝑝) = 𝑥𝑖
′𝛽𝑝, 

where 0<p<1, and 𝑄𝑦𝑖

 (. ) = 𝐹𝑦𝑖

−1(. ) – inverse of the cumulative distribution function of a variable yi, on 

condition of xi. 

 

The quality of the model varies according to type of prior used. From on hand, by default, the non-

informative prior can be used. It is normal prior with zero mean and large variance. From the other hand, 

according to Alhamzawi and Yu (2013), the best forecast in Bayes quantile model can be received using not 

general prior but special prior for every quantile. The authors created a series of experiments similar to 

experiments in this research. Nevertheless, the use coefficients comparison for evaluating quality of the model 

(as the distribution types was controlled in their research, they compared real coefficients with estimates in 

particular model). On the contrary, in our research the quality of the model is estimated based on forecast 

quality. In experiments in this thesis the non-informative priors are used. As it reveals in the results section, 

Bayes model can compete with OLS and quantile model even without formulating of informative priors. Also, 

sometimes scientists’ knowledge about prior distribution of the real model is not enough or absent at all. 

Bayesian quantile regression methods are widely discussed in Lancaster and Jae Jun (2010). It is 

important to it is important to take into account several parameters. Firstly, since distributions are used in the 

model and the final answer is a posteriori distribution, and not a point estimate as in the standard model. Gibbs 

sampler is used to find a solution (for details see Alhamzawi and Yu (2013)). Finding a solution (posterior 

distribution) takes place through several iterations. The number of iterations has crucial influence and is 

usually quite large. In experiments in this research 1000 number of iterations is used. Since the algorithm does 

not converge to the correct solution immediately, part of the first iterations must be discarded (this part of the 

series is called “burning-in”). Usually, a quarter or half of the iterations are discarded. In these experiments 

500 iterations are “burning-in”. 

In conclusion, Bayes approach has several advantages comparing to classical frequentist approach. 

Firstly, it can effectively work on small data samples. Secondly, Bayes models can be implemented based on 

different distribution. Bayes models are less sensitive to outliers and the requirement of normality compared 

with classical regressions. 

 Estimation of Bayes quantile regression is available in R programming environment with packages 

“bqr” (see Alhamzawi and Ali (2020)) and “bayesQR” (see Benoit and Van den Poel (2017) for details). The 

last one was used during experiments in this research. 
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Data 

 The series of experiments were based on sample generated from 6 types of data distributions (normal 

with small variance, normal with large variance, geometric, gamma, log-normal and student distribution). In 

the first step, variable x was set as sample of size 100 out of uniform distribution in the range from 1 to 10. In 

the second step, variables z1, z2, … z6 were set as samples of size 100 from 6 types of distributions. In the third 

step, variables y1, y2, … y6 was set as yi=2+5*x+zi, where i=1,6̅̅ ̅̅ . Finally, 6 data frames of x and yi were created. 

The general scheme of experiment is as follows (depicted at picture 1). tabs were chosen and the sample 

of size 100 was generated from every distribution, in the first step, samples were randomly divided into train 

and test sets according to 80%/20% rule. In second step, three models (OLS, quantile regression and Bayes 

quantile regression model) were estimated based on train set. In third step, a mean forecast for each model was 

estimated based on train set. Finally, values of RMSE were calculated for each model and the best model was 

chose according to minimum RMSE. Steps from 1 to 3 is one iteration or one experiment. 

Pic. 1. The plan of experiment 

 

Source: analysis of the author 

In order to explore the change of results with increasing number of iterations, experiment was repeated 

500 times. In other words, each sample was split into train and test sets randomly 500 times. After each 

iteration the best, second-best and third-best model were identified according to the RMSE. Finally, shares of 

iteration when the model is the best were calculated respectively for each model. Results of the experiments 

are discussed in the next part of the thesis. 

The difference in experiments on generated and real data is the fact that model on Boston Housing data 

has its economic grounds. The same methodology was used for experiments both on generated and real data. 

Before implementing the experiments, preliminary analysis was carried out. Despite the fact that Alhamzawi 

and Yu (2013) conducted experiments with quantile regression and Bayes models on full Boston Housing 
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data8, in this research several key regressors are selected from the data and problems of multicollinearity and 

heteroskedasticity are considered. 

To begin with, the correlation among variables was explored to solve multicollinearity problem. The 

dependent variable is medv - median value of owner-occupied homes in USD 1000's. Multicollinearity in 

regression models appears when there is linear relation between independent variables. Strong correlation 

(>0.8) was detected between variables rad and tax, indus and nox, and indus and lstat. Consequently, these 

variables were deleted from the data set. There are no strongly correlated independent variables in the data. 

The distribution of the dependent variable medv is non-normal. As generated samples of different 

distribution types were used in the experiments, the variable medv was not filtered and normalised, and was 

implemented in the models as it is.  

All in all, both correlation and scatter plots show that there are reasons to include all depicted regressors 

in the model. Moreover, the quality of the model will be briefly discussed after model estimation. The expected 

signs of the coefficients were also considered. It is important that the economic mechanism beyond the 

relationship between variables is quite clear and has economic grounds. 

 The following regression equation was estimated with three models – OLS, quantile regression and 

Bayes quantile regression: 

𝑚𝑒𝑑𝑣𝑖 = 𝑏0 + 𝑏1 ∗ 𝑐𝑟𝑖𝑚𝑖 + 𝑏2 ∗  𝑧𝑛𝑖 +  𝑏3 ∗ 𝑐ℎ𝑎𝑠𝑖 + 𝑏4 ∗ 𝑎𝑔𝑒𝑖 + 𝑏5 ∗ 𝑟𝑚𝑖 + 𝑏6 ∗ 𝑑𝑖𝑠𝑖 + 𝑏7 ∗ 𝑝𝑡𝑟𝑎𝑡𝑖𝑜𝑖 +

𝑏8 ∗ 𝑏𝑖 + 𝜖𝑖, 

where 𝜖𝑖 is error term, i.i.d., and 𝑏0, … , 𝑏8 are coefficients of regression. 

The regression has simple linear form. The reason for this is the fact, that no strong quadratic or other 

forms of relationships were identified with scatterplots during preliminary analysis. The second reason is 

that without additional analysis of the housing market in the second half of the XX century it is difficult to 

identify any other form of relationships due to economic ground. All in all, for the matter of simplicity, the 

linear form of regression is used in this research. The novelty of this research, as it was mentioned above, is 

not in the data or regression model, but in experimental comparison of the models. Both the post-estimation 

model analysis and results of such comparison are discussed in next part. 

Results 

Results of the experiment are revealed in table 1. Shares of iterations where the corresponding model 

is the best and second-best in terms of RMSE are presented by columns for three models – linear model (OLS), 

quantile regression model (QR) and Bayes quantile regression model (BQR). The shares are depicted with 

95% confidence intervals (CI), calculated according to the basic classical formula: 

 
8 The description of the Boston housing data with full range of variables is presented in the Appendix 2. 
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�̂� − 1.96 ∗ √
𝑝∗(1−𝑝)

𝑛𝑢𝑚
< 𝑝 < �̂� + 1.96 ∗ √

𝑝∗(1−𝑝)

𝑛𝑢𝑚
, 

where �̂� is estimated share, num=500 is a number of iterations in the experiment, and 1.96 is z-score for 95% 

CI. The results in terms of RMSE are highlighted in bold for those models that have the largest shares of 

forecasts. RMSE estimates for three models were compared with so called Z-test, testing the equality of shares 

in two groups, as follows: 

Z statistics=  
𝑝1−𝑝2

𝐷(𝑝1−𝑝2)
=

𝑝1−𝑝2
𝑚1+𝑚2
𝑛1+𝑛2

(1−
𝑚1+𝑚2
𝑛1+𝑛2

)
𝑛1+𝑛2
𝑛1𝑛2

, 

where n1 and n2 are sizes of samples that the shares are calculated on. n1 and n2 are equal to 500 in these 

experiments. m1 and m2 are number of iterations where the corresponding model is the best in terms of RMSE, 

�̂�1 and �̂�2 are estimated shares. 

Z-statisics has standard normal distribution, so two hypotheses can be checked as follows: 

H0: �̂�1 = �̂�2, there is no statistical difference between two shares at level of significance 0.05. 

Ha: �̂�1 ≠ �̂�2, there is statistical difference between two shares at level of significance 0.05. 

Consequently, in cases, when the confidence intervals overlap and statistically there are no differences 

at level 0.05, the RMSE of several models are highlighted in bold. In other words, in these cases H0 cannot be 

rejected at level 0.05 in favour of Ha. 

There are several conclusions. Firstly, Bayes quantile regression model has the largest share of the best 

forecasts for 4 types of distributions (for normal distribution both Bayes quantile model and standard quantile 

model are the best as 95% CI overlap). Secondly, some results look similar for group of distribution. For 

instance, the Bayes quantile model has the largest share of the best model for geometric and log-normal 

distributions, and the quantile regression model has largest share of the second-best forecasts for these 

distributions. OLS model has the largest share of the best forecasts for gamma and student distributions, and 

quantile regression model has the largest share of second-best forecasts for these distributions. Finally, there 

is no distributions in this experiment for which Bayes quantile model has the largest share of second-best 

forecasts.  

Abovementioned results partially confirm key hypotheses of this research. First hypothesis is rejected. 

OLS model does not have the largest share of the best forecasts for samples from normal distribution. Second 

hypothesis is confirmed. Bayes quantile model has the largest share of the best forecasts for 4 out 6 types of 

distributions. Third hypothesis is rejected. The shape of error distribution and data plots cannot determine what 

model will have the largest share of the best or second-best forecasts. The more formal analysis of distribution 

shape is needed. 
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It should be emphasized that shape of distribution and data plots can be different. To begin with, from 

statistical point of view the sample size equal to 100 data points is not large. As data samples were drop 

randomly from general distributions, the samples can be different if we repeat the experiment. The larger size 

of samples the more stable results would be. In this research samples of such size are used because in economic 

research sometimes the number of observations in analysis is not too large. For instance, research on country-

level data or region-level data in particular country. Repeating the same experiments on larger samples may 

be the continuation of this research, but for now it is beyond the scope of this paper. Moreover, 100 

observations are enough to notice main features of the distribution. Normal distribution has bell-shape. Log-

normal, geometric and gamma (with parameters that used in this research) distributions are shifted to the left. 

Student distribution is similar to normal with more noticeable tails. What is more, we did not want the 

experiment to be considered successful only for a large number of observations. All in all. even for n=100 the 

characteristic features of distributions are noticeable, so such size of samples was used in the experiment. 

Table 1. Results of experiments based on generated data samples 

Distribution 

type 

Share of iteration where the model is the 

best in terms of RMSE 

Share of iteration where the model is the 

second-best in terms of RMSE 

OLS QR BQR OLS QR BQR 

Normal 

distribution 

with small 

variance 

14.4% 

±3.1% 

40.4% 

±4.3% 

45.2% 

±4.4% 

72.8% 

±3.9% 

23.0% 

±3.7% 

4.2% 

±1.8% 

Normal 

distribution 

with high 

variance 

11.6% 

±2.8% 

40.4% 

±4.3% 

48.0% 

±4.4% 

73.0% 

±3.9% 

18.8% 

±3.4% 

8.2% 

±2.4% 

Gamma 

distribution 

 

54.8% 

±4.4% 

9.0% 

±2.5% 

26.2% 

±4.2% 

8.4% 

±2.4% 

86.4% 

±3.0% 

5.2% 

±1.9% 

Geometric 

distribution 

 

32.8% 

±4.1% 

20.4% 

±3.5% 

46.8% 

±4.4% 

20.2% 

±3.5% 

77.4% 

±3.7% 

2.4% 

±1.3% 

Student 

distribution 

52.0% 

±4.4% 

39.0% 

±4.3% 

9.0% 

±2.5% 

40.6% 

±4.3% 

59.0% 

±4.3% 

0.04% 

±0.6% 

Log-normal 

distribution 

 

28.4% 

±4.0% 

27.4% 

±3.9% 

44.2% 

±4.4% 

36.8% 

±4.2% 

51.2% 

±4.4% 

12.0% 

±2.8% 

Source: calculations of the author 

 The logic of choosing the regression for the regression equation was described above. Here the post-

evaluation analysis is presented only for OLS model, because it is enough for confirmation of economic 

grounds of the regression equation that was estimated. 

 The regression equation estimated by OLS has the following form: 
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𝑚𝑒𝑑𝑣𝑖 = −5.520 − 0.142 ∗ 𝑐𝑟𝑖𝑚𝑖 + 0.031 ∗ 𝑧𝑛𝑖 +  3.22 ∗ 𝑐ℎ𝑎𝑠𝑖 − 0.077 ∗ 𝑎𝑔𝑒𝑖 + 6.947 ∗ 𝑟𝑚𝑖 − 0.973 

∗ 𝑑𝑖𝑠𝑖 − 0.852 ∗ 𝑝𝑡𝑟𝑎𝑡𝑖𝑜𝑖 + 0.016 ∗ 𝑏𝑖 

The model has appropriate quality. All coefficients except coefficient before zn (proxy land lots for 

sale) are statistically significant at confidence level 0.05. All coefficients except coefficient before b (proxy of 

share of black population) have signs as it were expected and discussed in part 4. Adjusted R-squared is equal 

to 0.65 that means that the model explains properly 65% of dispersion in the data. F-statistics is equal to 117 

and has p-value<0.0001.  

Nevertheless, the analysis of residuals shows that data sample contains several outliers and emphasise 

that dependent variable does not distribute normally. Firstly, residuals plot revealed that residuals are not 

distributed like white noise. Secondly, the residuals are not distributed normally. Thirdly, the density residuals 

plot revels a long right tail. All these findings shows that OLS in estimated form is not the best model. One 

can expect that in conducted experiments forecast based on OLS model will have poor quality in terms of 

RMSE. Nevertheless, all in all, the simple OLS model shows that there are potentially real strong relationships 

between dependent variable and regressors and the regression equation may have economic grounds beyond 

it. It is enough base for the experiments, and their results can be considered further. 

The results of experiments on Boston Housing data are depicted in table 2. Bayes quantile regression 

has the largest share of best forecasts, and quantile regression has the second-best largest of forecasts. What is 

more, OLS model has the lowest share of best forecasts that was partly noticed during analysis of residuals 

quality for linear model. Generally, this pattern looks similar with results that were received on generated 

sample from geometric distribution. Nevertheless, without additional analysis it is impossible to make 

conclusions on how similar these two results are. All in all, Bayes quantile regression model shows the best 

results in terms of forecasting. 

Table 2. Results of experiments on real data. 

 
Share of iteration where the model is the 

best in terms of RMSE 

Share of iteration where the model is 

the second-best in terms of RMSE 

Data OLS QR BQR OLS QR BQR 

Boston 

Housing 

Data 

14.5% 

±3.1% 

37.1% 

±4.2% 

48.4% 

±4.4% 

28.0% 

±3.9% 

68.9% 

±4.1% 

3.1% 

±1.5% 

Source: calculations of the author 

 The results on generated and on real data is shortly discussed below. The results revealed that Bayes 

quantile regression created better forecast in these experiments. Such result was expected due to 

methodological advantages that Bayes models have over OLS and quantile regression. Quantile regression is 

in the majority of cases is second-best model in terms of forecast in these experiments. Such result was also 

expected due to methodological advantages of quantile model over OLS. Moreover, even for sample with 
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normal distributions of errors, OLS has not the best forecast in these experiments. One can have a question 

how resistant these results may be. 

 The stability of abovementioned results can be checked with increasing number of iterations in the 

experiments and due to more wide range of distributions that may be used in the analysis. We expect that these 

results will be stable with increasing number of iterations due to at least two following reasons. First reason is 

the fact that for majority of distribution types, that we used, the best model can be uniquely identified because 

corresponding confidence intervals do not overlap. The second reason is that when the same experiments were 

conducted for smaller number of iterations firstly, the proportion of share best and second-best models were 

approximately the same. It was generally only one difference - the confidence intervals overlapped in case of 

100 iteration for majority of experiments. All in all, the same methodology can be implemented on larger 

number of data points, with larger number of iterations and for more distribution types in order to explore the 

stability of results, but these questions now are beyond of the scope of this thesis. 

Conclusion 

 In this thesis the series of experiments were held in order to experimentally identify the best forecasts 

in terms of RMSE between quantile regression models based on traditional and Bayes approach. OLS model 

was used as a baseline. The same methodology was implemented both for samples of generated data and on 

Boston Housing data. 

 The main results on generated data can be summarised in three key point as follows. Firstly, 

Bayes quantile regression model has the largest share of the best forecasts for 4 types of distributions (for 

normal distribution both Bayes quantile model and standard quantile model are the best as 95% CI overlap). 

Secondly, some results look similar for group of distribution. For instance, the Bayes quantile model has the 

largest share of the best model for geometric and log-normal distributions, and the quantile regression model 

has largest share of the second-best forecasts for these distributions. Thirdly, OLS model has the largest share 

of the best forecasts for gamma and student distributions, and quantile regression model has the largest share 

of second-best forecasts for these distributions. 

The results of experiments on real data reveals that Bayes quantile model has the largest share of best 

forecasts, and quantile regression has the second-best largest of forecasts. What is more, OLS model has the 

lowest share of best forecasts that was partly noticed during analysis of residuals quality for linear model. 

Generally, this pattern looks similar with results that were received on generated sample from geometric 

distribution. All in all, Bayes quantile regression model shows the best results in terms of forecasting both on 

generated and real data. 

Abovementioned results partially confirm key hypotheses of this research. First hypothesis is rejected 

since OLS model does not have the largest share of the best forecasts for samples from normal distribution. 

Second hypothesis is confirmed, because Bayes quantile model has the largest share of the best forecasts for 
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4 out 6 types of distributions. Third hypothesis is rejected as the shape of error distribution and data plots 

cannot determine what model will have the largest share of the best or second-best forecasts. The more formal 

analysis of distribution shape is needed to connect distribution type and results of the experiments. 

In conclusion, the results of presented experiments shows that clear theoretical advantages of the model 

do not strictly determine its best results on data. Any theory, no matter how straightforward it is, should be 

confirmed during implementation on data. Real data do not often used to estimate 1 500 models as it was done 

in these experiments. When larger number of experiments are needed for stable conclusions, generated 

samples from distributions with control of parameters can be used like it was done in this paper. We hope that 

this research will be able to find its own place in wide discussion of advantages of quantile models based on 

classical and Bayes approaches. 
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