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Introduction

Climate change is one of the most significant challenges facing humanity this century. The

extent of the environmental impact of climate change is still uncertain, but recent scientific

evidence is increasingly worrying and many governments are taking decisive action. A

transition to a low-carbon economy is therefore unavoidable. A concrete approach to this

change requires the activation of a wide range of financial instruments and innovations of

various kinds that will have significant implications for all players in the economic scenario:

markets, companies, intermediaries and investors. Climate change and global warming are

addressed by stricter regulation by governments (e.g., carbon pricing mechanisms), new

emerging technologies and changes in consumer behavior. For this reason, global investors

are increasingly concerned about the implications of climate change, particularly on the

pricing of financial assets and the allocation of their investment portfolios. There has even

been speculation that exposure to climate risk could threaten global financial stability.

The most important and decisive climate agreement is undoubtedly the Paris Agreement,

which has set ambitious goals: keeping the global average temperature increase well below

2°C and continuing action to limit this increase to 1.5°C compared to pre-industrial levels;

increasing adaptive capacity to the adverse e↵ects of climate change by promoting climate

resilience and low greenhouse gas emission development; making financial flows consistent

with a pathway towards low greenhouse gas emission and climate-resilient development.

European countries and the United States have committed themselves to progressively re-

ducing greenhouse gas emissions to achieve these goals. In addition, the European Union

(EU), which is undoubtedly one of the most active players in this field, has also adopted am-

bitious legislation in various sectors by setting binding emission targets for critical sectors of

the economy to reduce greenhouse gas emissions substantially. In line with the Paris Agree-
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ment, the EU has endorsed a net reduction in greenhouse gas emissions of at least 55% by

2030 compared to 1990 levels to achieve a climate-neutral EU by 2050. It will benefit people

and the environment and limit global warming (Jäger-Waldau et al. (2020)). Therefore, it is

clear that every company should strive to substantially reduce its greenhouse gas emissions

out of respect for the planet and safeguard its long-term survival. Given the introduction

of stricter policies to catalyze the transition to a low-carbon economy, companies that do

not comply could attract punitive taxation; their financing costs could rise, thus reducing

their ability to repay debts (Ersoy and Musluoglu (2021)). As a result, a company with a

higher carbon footprint is more exposed to transition risk: it may have a higher credit risk

both now and in the future, especially if it does not have a credible plan to transition to a

low-carbon economy and fails to adapt promptly.

While the relationship between climate risk exposure and stock prices is receiving growing

attention in the literature, the impact on corporate bonds appears relatively underexplored

(Kleimeier and Viehs (2016)). Our work contributes to the existing literature by investi-

gating the relationship between exposure to climate change and firm credit risk. For this

purpose, we consider the constituents of the Eurostoxx 50 index, a market capitalization-

weighted stock index designed to represent the 50 largest companies in the Eurozone, over

the period 2007-2021. There are several di↵erent approaches to estimating credit risk. One

of these is the Structural models in which the company’s default depends on its financial

and capital structure (e.g., Merton and Black & Cox models). In our paper, as a credit risk

measure, we decided to use the Distance to Default computed according to the Black & Cox

model, which considers the assumption that default can occur when the firm’s value falls

below a specific time-dependent barrier. On the other hand, Climate risk is measured as

the amount of Greenhouse Gas (GHG) emissions in three di↵erent categories: Scope1, i.e.,

direct emissions, Scope2, i.e., indirect emissions from energy consumption, and Scope3, i.e.,

all other indirect emissions caused by the entire value chain.

In our econometric framework, we partition the sample according to the company’s level

of emissions into non-homogeneous terciles. The descriptive statistics reveal the influence of

GHG emissions on the distance to default: the firms in the first tercile (lesser emissions) have

a higher distance to default than firms in the third tercile (higher emissions). Using a panel
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least squares regression was found a ceteris paribus, significant and negative relationship

between the Black & Cox Distance to Default and the level of GHG emissions. Subsequently,

through a di↵erence-in-di↵erence model, we consider the impact of the Paris Agreement as

an exogenous policy shock attempt to ascribe greater causality to some of our findings, given

the financial markets’ concern about exposure to stricter climate policies. However, after the

Paris agreement, high emitting companies significantly shortened their distance to default

compared to low emitters. Despite this confirmation, we performed further investigations to

avoid our results being driven by energy and extractive companies in the sample, endogeneity

and serial correlation issues. Nevertheless, the results confirmed a significant and negative

relationship between the distance to default and the level of GHG emissions.

The remainder of this paper is organized as follows: Chapter 1 reviews the central studies

in literature based on the relationship between environmental and financial performance and

the hypotheses to be tested; Chapter 2 focuses on the methodology to estimate credit risk,

the range of quantitative metrics to quantify climate risk and the sample; Chapter 3 presents

the empirical analysis which illustrates the relationship between Black & Cox Distance to

Default and the level of GHG emissions; Chapter 4 discusses a methodological and empirical

comparison between our econometric framework and the benchmark Capasso et al. (2020).
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Chapter 1

Literature and Hypotheses

1.1 Literature

Public opinion, governments, business leaders and institutional investors worldwide have

been awakened to the urgency of fighting for climate change. An increasing number of aca-

demic research studies are focusing on climate-related risks. Economic actors are increasingly

aware that the consequences of climate change are upon us and represent a current and rel-

evant danger to the global economy and the financial sector. As a result, more than 100

countries (accounting for almost 50% of the world’s GDP) are committing to climate change

targets (Kalesnik et al. (2021)).

Carney (2015) claims that climate change risk can impact financial stability in three

di↵erent modes: physical risks, i.e., extreme weather and climate events that a↵ect the

value of financial assets; liability risks, arising from increased compensation paid to economic

agents a↵ected by climate change; transition risks, deriving from the adjustment of asset

prices towards a low-carbon economy. The latter are materializing where new regulations

creates obligations to move towards a lower-carbon economy, e.g., the imposition of a price

on greenhouse gas emissions. This tendency brought to the fact that a growing number of

countries are decreasing their emissions and maneuvering private investments into cleaner

options (Bento and Gianfrate (2020); Aldy and Gianfrate (2019)). Therefore, all high-carbon

assets could be subject to penalizing regulation, thus changing investors’ perception of its

future profitability and creditworthiness (Koten (2018)). So, investors are faced with the
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challenge of finding the best mode to consider climate risk in their investment decisions.

The increase in academic studies on the relationship between a company’s sustainability

and financial performance should provide su�cient insights into an excellent solution to this

challenge. However, more than 85% of the studies investigating this relationship are related

to equities, although bonds have a market share of almost 40% of sustainable investments

in Europe (Gianfrate and Lorenzato (2018)). In detail, most academics have focused on

the specific binding between climate-related transition risk and equity returns. This line

of research establishes that equity market investors tend to demand higher returns from

companies with higher levels of greenhouse gas emissions (Bolton and Kacperczyk (2020)).

Empirical research on the relationship between climate-related transition risk and credit

risk is much more limited and most of it has only considered environmental scores provided

by rating agencies or retrospective environmental metrics such as GHG emissions (Seltzer

et al. (2022); Ginglinger and Moreau (2019)). This branch of literature detects that firms

with higher GHG emissions or worse environmental scores have a higher credit risk measured

by bond credit ratings, CDS spreads, or distance to default (Barth et al. (2022)). Stell-

ner et al. (2015) empirically demonstrate how higher corporate social responsibility (CSR)

performance translates into lower credit risk, as measured by zero-volatility spreads, the

so-called z-spread. Attig et al. (2013) analyze the relationship between corporate ratings

and ESG (Environmental Social Governance) scores, finding that a better environmental

score is associated with a better rating. Höck et al. (2020) investigate how a company’s

environmental sustainability a↵ects its credit risk premium, showing that companies with

higher environmental sustainability have lower credit spreads. It is the first study to use

credit default swap (CDS) spreads to measure credit risk and investigate the relationship

between its environmental sustainability score and credit risk, covering all industries except

financial. Bauer and Hann (2010) show that poor environmental performances are associ-

ated with worse credit ratings and higher spreads for corporate bonds. Safiullah et al. (2021)

analyze how carbon emissions have a negative and economically significant impact on credit

ratings in the US market. Although some of these studies take ESG ratings as a measure of

environmental performance, there are important warnings about using these scores: they are

often inconsistent over time and incomparable across companies and sectors, showing a very
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low correlation between di↵erent providers. Therefore, ESG scores may not be an adequate

proxy for transition risk (Berg et al. (2019); Billio et al. (2022); Schnabel (2020)). GHG

emissions are likely to be a better proxy. They can be e↵ectively exploited under informed

methodological choices that acknowledge and address caveats on the availability, reliability,

and comparability of such data. (Busch et al. (2022); Radu et al. (2020); Breitenfellner et al.

(2021)).

Similar to our study, Capasso et al. (2020) show the negative relationship between the

Merton Distance to Default, a widely used market-based measure of firm credit risk, and

the firm’s carbon emissions. We contribute to the literature by investigating whether firm’s

climate-related risks, expressed as the level of GHG emissions (in the specification of Scope1,

Scope2 and Scope3), are associated with Black & Cox Distance to Default, a measure of

creditworthiness.

1.2 Hypotheses

This paper explains how the need to transition to a low-carbon economy influences firm

credit risk by looking in-depth at the relationship between a firm’s exposure to climate

risks and the distance to default. For this reason, the following two crucial variables are

considered: the credit risk, measured through the distance to default computed according

to the Black & Cox model; the carbon footprint, expressed with the natural logarithm of

emissions.

Due to higher carbon taxes or more expensive carbon allowances in emissions trading

schemes, companies with larger carbon footprints are more exposed to progressively stricter

climate regulations. It implies that their future cash flow is more likely to be a↵ected

than companies with smaller carbon footprints. Companies with smaller expected cash

earnings entail lower corporate asset values and, lesser perceived ability to repay debt, lower

creditworthiness. In line with this, the following assumption is stated (Carbone et al. (2021)):

H1: There is a positive relationship between a firm’s exposure to transition risk and

credit risk.

Then we test the relationship between carbon footprint exposure and credit risk after an
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unexpected event on global climate policies, the Paris Agreement. After this event, the

most ambitious and decisive climate agreement that brought an abrupt tightening of global

climate policies, we expected that credit risk would increase for companies with higher

emissions. The choice of December 2016 of the Paris Agreement as an unexpected turning

point in global climate regulation is consistent with several contributions in the literature

(pricing of climate policy risk) and its ratification date (4/11/2016). Our further hypothesis

is:

H2. Firms with larger carbon footprints increase their credit risk more than firms with

smaller carbon footprints following the Paris Agreement.
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Chapter 2

Methodology

2.1 The Measure of Credit Risk

Credit risk is the possibility of a loss resulting from a borrower’s failure to repay a loan

or meet contractual obligations. The Basel Committee defines credit risk as ”the risk that

a borrower will default on any type of debt by failing to make required payments” (Bis

(2000)).

In a business context, default occurs if the value of the issuer’s total assets is less than

the value of its debt obligations, and the issuer is unable to make the required payments.

There are several di↵erent approaches to assessing and estimating the probability of default

and credit risk. One of these is Structural models, which have the common feature that the

company’s default depends on its financial and capital structure. The Merton and the Black

& Cox models fall within this category.

The Merton model assumes that default can occur only at the maturity of the debt. On

the other hand, the Black & Cox model argues that it can occur between the present time

and the maturity of the debt. According to the latter, a company defaults if the value of

the assets falls below a time-dependent barrier.

In the following subsections, both models are analyzed, highlighting their di↵erences,

and in Chapter 4, the empirical analysis using the Black & Cox model is performed.
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2.1.1 Merton Distance to Default

The Merton Distance to Default is a market-based measure of corporate default risk, which

is inspired by the Merton bond pricing model. In this model’s specification is applied the

option pricing theory developed by Black and Scholes to the risk of insolvency: the firm’s

equity is like a call option on the firm’s assets with a strike price equal to the face value of

a firm’s zero-coupon bond debt maturing in T. The restrictive assumptions of the Merton

model are as follows: perfect and frictionless market; short-selling of the underlying, as of the

derivative instruments is allowed; companies debt structure have only one form of liability

which is a zero-coupon bond with maturity in T; the company cannot issue additional debt,

enter into a repurchase agreement or pay dividends; there is perfect divisibility of all financial

assets; arbitrage opportunities are not permitted; Modigliani-Miller theorem is respected,

the firm’s value does not depend on its financial structure (Merton (1974)).

On the Probability space (⌦,F,P), the firm’s assets value Vt is assumed to follow a geo-

metric Brownian motion hence its dynamics are based on the following stochastic di↵erential

equation:

dVt

Vt
= µdt+ �vdzt, with V0 > 0 (2.1.1)

Where µ is the firm’s value drift rate (the expected annual rate of return on the firm’s

assets); �v is the volatility of firm value; zt is a standard Wiener process. It follows that the

logarithm of the asset value is normally distributed and at time T is:

lnVT ⇠ N

✓
lnVt +

✓
µ� �2

v

2

◆
T, �2

vT

◆
(2.1.2)

The assumptions of the Merton model state that the firm debt consists of a single bond

with face value L and maturity T. The Cash-flow for shareholders at time T is (V T - L)+

that is the residual value of the firm’s asset once the debt is repaid. The probability of

default evaluated at time t (Pt) is the probability that the market value of the firm’s assets

VT will be less or equal to the book value of the firm’s liabilities L at the time of maturity

(T):

Pt = Pr(VT 6 L) and Pt = Pr(ln(VT )� ln(L) 6 0) (2.1.3)
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Under these assumptions, the firm’s equity is a call option on the underlying value of the

firm with a strike price equal to the face value of the firm’s debt at time to maturity T.

According to Black-Scholes-Merton Formula, the value of a firm’s equity as a function of the

value of the firm can be written as follows:

Et = Vt�(d1)� Le�rT�(d2) (2.1.4)

Where Et is the market value of the firm’s equity at time t; L is the face value of the firm’s

debt; r is the risk-free rate; � is the cumulative standard normal distribution function; d1

and d2 are respectively given by:

d1 =
ln(Vt

L ) + (r + �2
v
2 )T

�v

p
T

(2.1.5)

d2 = d1 � �v

p
T (2.1.6)

The Merton model makes use of two critical equations: the first is the Black-Scholes-Merton

equation (2.1.4); the second relates the volatility of the firm’s value to that of its equity by

estimating from Ito’s lemma that the value of firm’s equity is a function of the value of the

firm and time as follows

�E =
Vt

Et

@E
@V

�v (2.1.7)

In the Black-Scholes-Merton model, it can be shown that @E
@V

= �(d1), so the equation (2.7)

can be written as:

�E =
Vt

Et
�(d1)�v (2.1.8)

The Merton model uses these two nonlinear equations, (2.1.4) and (2.1.8), to translate the

value and volatility of a firm’s equity into an implied probability of default: the value of

the firm’s equity is easy to observe in the marketplace by multiplying the firm’s shares

outstanding by its current stock price, while the value of the firm is not directly observable;

similarly, the volatility of equity (�E) can be estimated, but the volatility of the firm (�V )
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must be inferred. We proceed as follows: the first step is to estimate �E from historical data;

the second step is the choice of the forecasting horizon and taking the book value of the

firm’s total liabilities to be the face value of the firm’s debt; the third step is to collect values

of the risk-free rate and the market equity of the firm; the last and the most significant step

is to solve Equation (2.1.4) for values of V and �V . Once this numerical solution is obtained,

the distance to default, meaning the number of standard deviations that the firm’s asset

value is away from the default, is computed as follows

DDM =
ln(Vt

F ) + (µ� �2
v
2 )T

�2
v
p

T

(2.1.9)

and the corresponding implied probability of default is

Pt = ⇡M = �(�DDM) (2.1.10)

Finding Vt and �v are used an iterative procedure starting from an approximation of the

asset value. Then the Black and Scholes method is applied to obtain successive estimates of

Vt and �v until they converge. Moreover, if the assumptions of the Merton model hold, it is

a very accurate default forecast (Bharath and Shumway (2008)).

2.1.2 Black & Cox Distance to Default

The Merton model is far from realistic: the non-stationary structure of the debt leads to

the termination of operations on a fixed date, and default can only happen on that date.

However, the so-called first-passage models extend the Merton framework by allowing default

to happen at intermediate times. Precursors in the definition of such models are, e.g., Black

and Cox (1976) who introduce the possibility of default before the maturity of a ZCB. Over

the years, many academics have tried to implement the Black & Cox model by redefining

the threshold structure di↵erently or creating closed formulas for calculating the probability

of default for first-passage-time models.

The assumptions underlying the Black & Cox model are: investors price takers; short

sales permitted; markets perfect and free of taxation and transaction costs; firms with an

outstanding debt with face value K at maturity T.
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On the Probability space (⌦,F,Q), the firm’s assets value At of a firm’s assets follows a ge-

ometric Brownian motion hence its dynamics is based on the following stochastic di↵erential

equation:

dAt

At
= µdt+ �vdzt, with A0 > 0 (2.1.11)

Where µ is the firm’s value drift rate; �v is the volatility of firm value; zt is a standard

Wiener process.

Black & Cox assume that default occurs the first time the value of the firm’s assets falls

below a time-dependent barrier K(t). It is explained by the bondholders’ right to exercise

a safety covenant that allows them to liquidate the firm if its value falls below a specified

threshold K(t). Therefore, the default time is given by:

⌧ = inf{t > 0 : At < K(t)} (2.1.12)

For the time-dependent barrier, we observe that if K(t) > K, bondholders are always com-

pletely covered, which is certainly unrealistic. On the other hand, one should have KT 

K for a consistent definition of default. Our choice is to take an increasing time-dependent

barrier as follows:

K(t) = K0e
kt with K0  Ke�kT (2.1.13)

By considering default as a random variable, the issuer can be declared insolvent at any

time between the placement and the maturity of the debt itself. It constitutes a guarantee

for the holders of the securities, as they can implement actions to recover their credit when

the company’s situation is not yet wholly compromised.

The first passage time with default barrier can now be reduced to the first passage time

for Brownian motion with drift as follows (Grasselli and Hurd (2010)):

{At < K(t)} =

⇢
zt + ��1

✓
r � �2

2
� k

◆
t  ��1log

✓
K0

A0

◆�
(2.1.14)

We obtain that the risk-neutral probability of default occurring before time t  T is
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Q[0  ⌧ < t] = Q


min
st

✓
As

K(s)

◆
 1

�
= Q


min
st

Xs  ��1log

✓
K0

A0

◆�
(2.1.15)

Where Xt = zt + mt, m = ��1(r - �2/2� k)

Considering that

Mm
t = min

st
Xs (2.1.16)

denote the minimum process for a Brownian Motion with drift (Xt = zt + mt), the joint

probability distribution for (Mm
t , Xt) is expressible in terms of the following important

function:

FP (d;m, t) = �


d�mtp

t

�
� e2md�


�d�mtp

t

�
with d � 0 (2.1.17)

Where d = ��1log(K0/A0) < 0

Thus, we obtain the probability of default computed according to the Black & Cox model

as follows

Q[min
st

(Xt)  d] = Q[0  ⌧ < t] = 1� FP (�d;�m, t) = ⇡BC (2.1.18)

In our econometric framework, we consider as a measure of credit risk the Black & Cox

Distance to Default (DDBC) given by the following formula:

DDBC = ���1(⇡BC) (2.1.19)

2.2 Dataset and Variables

Our sample comprises the Euro Stoxx 50 index constituents, a market capitalization-weighted

stock blue-chip index designed to represent the 50 largest companies in the Eurozone. In

detail, the index contains constituents from nine Eurozone countries: Belgium, Finland,
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France, Germany, Ireland, Italy, Luxembourg, the Netherlands and Spain. It is managed

and authorized by STOXX Limited, owned by Deutsche Börse AG.

We partition the sample by the level of CO2 emissions into non-homogeneous terciles:

the first tercile (Tercile 1) contains companies with the lowest level of carbon emissions; the

second (Tercile 2) contains companies with a medium level of carbon emissions; the third

(Tercile 3) contains the companies with the highest level of carbon emissions.

We had considered the period from 2007 to 2021, including the time before and after the

Paris Agreement (ratified in November 2016). It allowed us to analyze potential changes in

climate change and market prices. The data are collected from Bloomberg and expressed in

US dollars. The frequency of all the variables is semi-annually.

2.2.1 The Measure of firms’ climate transition risk

This paper aims to test the relationship between distance to default and exposure to climate

change. In the previous section, we deepened the distance to default. Here, we analyze the

carbon footprint measure, which can be measured alternatively as the amount of Greenhouse

Gas (GHG) emissions expressed in thousands of metric tonnes of carbon dioxide equivalent

or the carbon intensity, i.e., the ratio between GHG emissions and the company’s revenues.

This paper focuses on the first measure as the critical environmental metric.

The International Standard Organization (ISO) has updated the ISO 14064 standard on

GHG emissions. According to it, standard GHG inventory accounting is carried out within

three di↵erent categories of greenhouse emissions: Scope1, i.e., direct emissions, Scope2, i.e.,

indirect emissions from energy consumption, and Scope3, i.e., all other indirect emissions

caused by the entire value chain.

In our empirical analysis, the emissions were considered as follows: the first measure

refers to direct emissions (Scope1); the second to the sum of direct and indirect emissions

from energy consumption (Scope1+2); and the third to the sum of the previous measure (the

second) and the indirect emissions caused by the entire value chain (Scope1+2+3). So, we

can both assess the Scope2 impact on Scope1 and that of Scope3 on Scope1+2, highlighting

the e↵ect of concurrent emissions instead of a single measurement.
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2.2.2 Control Variables

To relate the Black & Cox Distance to Default and carbon footprint, we consider the Control

Variables identified in the existing literature about corporate features that influence credit

risk. In our analysis, we considered the following control variables.

The Debt Ratio, measured as the amount of leverage used by a company in terms of total

debts to total assets. It varies widely across industries and tells us that capital intensive

companies tend to have much higher debt ratios than others (Zmijewski (1984)).

Profitability, measured as the Operating Margin given by the ratio between operating in-

come and sales. It is important because it provides relevant information on the probability

of a firm going bankrupt (Tudela and Young (2003)).

The Retained Earnings Ratio, i.e., the ratio between retained earnings and total assets, is

important because it could be used as an equity bu↵er to deal with potential unexpected

growth opportunities and shocks (Zeitun and Tian (2007)).

The Size, i.e., the natural logarithm of total assets: larger firms are expected to have a lower

default probability than smaller firms.

The volatility of asset value: for companies, greater volatility means greater risk and, there-

fore, greater vulnerability.

The Working Capital Ratio, i.e., the ratio between working capital and total assets, which

measures short-term liquidity.
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Chapter 3

Empirical Analysis

To underline how Black & Cox Distance to Default and Carbon emissions are related, an

initial investigation of the data is obtained by partitioning the sample into terciles by the

level of CO2 emissions. Subsequently, we compute the distance to default for each tercile

according to the Black & Cox model above mentioned, obtaining the following results: the

mean and median of the distance to default are respectively 9.3614 and 9.3257 for companies

in the first tercile that is the one with the lowest average level of carbon emissions, 4.2322

and 4.3791 for companies in the second tercile and finally 2.4500 and 2.6124 for companies

in the third tercile, the one with the highest average level of carbon emissions.

Table 3.1: Results of the Mean and Median of the Black & Cox Default Distance for the

index Eurostoxx 50 in the period 2007-2021.

VARIABLE TERCILE 1 TERCILE 2 TERCILE 3

MEAN 9.3614 4.2322 2.4500

MEDIAN 9.3257 4.3791 2.6124

Table 3.1 shows that the higher the firm’s carbon footprint, the smaller its distance to

default. In addition, a t-test is run: the values for each tercile state that the null hypothesis

of no di↵erence between the averages is rejected with 1% confidence level. Figure 3.1 shows

the negative correlation between carbon emissions and Black & Cox Distance to Default,

18



which is consistent and approximately linear.

Figure 3.1: Distance to default by levels of emissions’ terciles for the index Eurostoxx 50 in

the period 2007-2021. Y-axis: Black & Cox Distance to Default. X-axis: firm-level transition

risk metric proxied by Scope1+2+3 emissions.

Before starting with the regression analysis, we perform the Wooldridge test to check the

presence of heteroskedasticity and serial correlation. The results confirmed the presence of

serial correlation at a confidence level of 1% for each tercile.

We proceed with the regression analysis and implement several robustness checks to rule

out the possibility that our results are driven by regulatory changes in high-emitting sectors

(energy and extractive) and possible reverse causality, endogeneity and serial correlation

issues.
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3.1 Results of regression analysis

Our baseline model examines the direct relationship between GHG Emissions and firms’

distance to default using the following specification:

DDt = ↵ + �Xt + �Yt + ✏t (3.1.1)

Where DDt is the Black & Cox Distance to Default of firm in year t; Xt is the carbon

footprint measured as the amount of CO2 emissions in the following specifications Scope1,

Scope1+2, Scope1+2+3; Yt is the set of control variables described in the previous chapter.

Table 3.2 shows the regression results for each tercile.

Table 3.2: Results of the multivariate analysis with pooled cross-sections OLS of the calcu-

lated Black & Cox Distance to Default for the index Eurostoxx 50 in the period 2007-2021.

Notation of the significance levels: *p < 0.1; **p < 0.05; ***p < 0.01.

VARIABLE �TERCILE1 �TERCILE2 �TERCILE3

Constant -1.3178 2.1116 36.8579

Scope1 -1.6665*** -1.7421*** -0.3512**

Scope1+2 -4.6034*** -3.0467*** -0.3437**

Scope1+2+3 -0.9728** -0.8749* -1.4014**

Debt Ratio -0.6965 -1.4207 -0.0114

Operating Margin 0.7944 1.7437 1.2590

Retained Earnings Ratio -5.1601 -0.0942 -0.2021

Size 0.1810 0.1706 -0.1614

Volatility -0.0506 -0.0192 -0.0049

Working Capital Ratio 7.0312 1.0143 1.6290

R2 0.7768 0.8279 0.9414

Adjusted R2 0.7025 0.7705 0.9218

From Table 3.2, it can be observed that all regressions have good explanatory power and
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the natural logarithm of carbon emissions has a very significant negative relationship with

the distance to default. The negative coe�cients found for Scope1, Scope1+2 and Scope1+2+3

emission intensities suggest that market participants consider firms with lower emissions to

be less exposed to credit risk because they are associated with a higher distance to default.

In addition, a similarity can be seen in tercile 1 and tercile 2, in which the negative

coe�cient of Scope1+2 almost triples in absolute value in the first tercile and doubles in the

second compared to the coe�cient of Scope1; this shows that for low and medium emission

firms, Scope2 has a great impact on the emissions. Furthermore, the coe�cient of Scope1+2+3

is so weak that it falls below the absolute value of the Scope1 coe�cient, despite the influence

of Scope2. For tercile 3, the negative coe�cient relative to Scope1+2 is almost equal to that

of Scope1. Moreover, the absolute value of the coe�cient of Scope1+2+3 more than triples;

this shows that for high-emission companies, Scope3 emissions have a substantial impact.

All the control variables used are indicators of companies’ bankruptcy. The relation

between the distance to default and the debt ratio is negative and significant; indeed, the

higher the debt ratio, the higher the probability that a firm will not survive in the future.

The operating margin is positively linked with distance to default because the higher the

company’s profitability, the higher the distance of default. Reduced volatility of the firm

value implies lower risk premiums: lower volatility increases the value of the assets and leads

to a rise in the distance to default. Our regression model shows a negative and significant

relationship between volatility and distance to default as proof of this. Finally, the working

capital ratio, meaning the ability of a company to pay back creditors in the short term, has

a positive and significant link with distance to default. Based on the previous observation,

companies with positive working capital should not have problems paying their debts; hence,

they should have a larger distance to default.

Companies that generate more GHG emissions are more exposed to potential regulatory

costs, thus showing less distance to default than companies with lower emissions. This is

the reason for which the level of emissions is part of the non-financial data that investors

should consider when making economic and financial decisions.
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3.2 The impact of the Paris Agreement

A firm’s exposure to climate-related transition risk depends on its environmental perfor-

mance and government policy as an acknowledged risk driver for the climate-related tran-

sition. To verify this, we consider the hypothesis stated above, i.e., H2: following the Paris

Agreement, firms with a larger carbon footprint increase their credit risk more than firms

with a smaller carbon footprint.

Our analysis considers the Paris Agreement an unexpected exogenous event that may

have shifted the assessment of credit rating agencies and market participants’ perception of

climate-related transition risk (Monasterolo and De Angelis (2018)). It may also shed light

on the relationship between carbon footprint and distance to default and the importance that

financial markets assign to corporate exposure to climate risks. Hence, if carbon footprint

influences firms’ creditworthiness, we expect firms with a larger carbon footprint at the time

of the Paris Agreement show less Distance to Default as financial markets are concerned

about exposure to more stringent climate policies. To test this, we construct a Dummy

variable (Post Event) that takes value one for 2016 or later and zero otherwise. We thus

estimated a second regression using a di↵erence-in-di↵erence model for tercile 3 (higher

emissions). Except for the interaction variable between emissions and the Paris Agreement,

the others are equal to the previous regression model:

DDt = ↵ + �1Xt + �2(Xt ⇤ PostEvent) + �Yt + ✏t (3.2.1)

The main coe�cient of interest in the regression (3.2.1) is �2, i.e., the interaction coe�-

cient, which tries to capture the e↵ect of climate agreements on the distance to default of

the relative firms with higher GHG emissions. Table 3.3 shows the results of the regression

model.

22



Table 3.3: Results of the multivariate analysis with a di↵erence-in-di↵erence model of the

calculated Black & Cox Distance to Default for the index Eurostoxx 50 in the period 2007-

2021. Notation of the significance levels: *p < 0.1; **p < 0.05; ***p < 0.01.

VARIABLE �TERCILE3

Constant 30.8469

Scope1 -0.4554*

Interaction Variable of Scope1 -0.0427**

Scope1+2 -0.4838*

Interaction Variable of Scope1+2 -0.0438**

Scope1+2+3 -1.4552***

Interaction Variable of Scope1+2+3 -0.0364**

Debt Ratio -0.1389

Operating Margin 1.2246

Retained Earnings Ratio -0.3109

Size -0.0881

Volatility -0.0030

Working Capital Ratio 1.0108

R2 0.9582

Adjusted R2 0.9415

The relationship between emissions and distance to default is tested for the sample before

(2007-2015) and after (2016-2021) the Paris Agreement. The interaction coe�cient between

GHG emissions and the Paris Agreement has a statistically negative coe�cient at a signifi-

cant level of 5% for each case. This result indicates that there has been a further reduction

in the distance to default for firms with higher emission levels since the strengthening of

climate policies in the Paris Agreement. Hypothesis 2 is confirmed: companies with a larger

carbon footprint, following the Paris Agreement, increase their credit risk more than com-

panies with a lesser carbon footprint. Indeed, the di↵erence between the distance to default

23



calculated before and after the Paris Agreement is higher for companies with a larger carbon

footprint, as shown in Table 3.4.

Table 3.4: This table shows that if the Paris Agreement is taken into account, the companies

with higher GHG emissions decrease their distance to default more than companies with

lesser GHG emissions. �(DD) is the di↵erence between the distance to default calculated

before and after the Paris Agreement in the period 2007-2021 for the constituents of the

index Eurostoxx 50.

VARIABLE TERCILE 1 TERCILE 2 TERCILE 3

�(DD) 0.0354 0.1749 1.1789

3.3 Robustness checks

Despite the confirmation through the analysis based on the Paris Agreement, we perform

further investigations to discard reverse causality issues.

The first check we made is whether our results are driven by regulatory developments

aimed at energy and extractive companies; therefore, we perform a regression analysis ex-

cluding all energy and extractive companies (only present in tercile 3) using the specification

of regression (3.1.1):

DDt = ↵ + �Xt + �Yt + ✏t (3.3.1)
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We report the regression results in Table 3.5 .

Table 3.5: This table shows the results of the multivariate analysis with pooled cross-

sections OLS excluding firms operating in the energy and extractive industries for the index

Eurostoxx 50 in the period 2007-2021. Notation of the significance levels: *p < 0.1; **p <

0.05; ***p < 0.01.

VARIABLE �TERCILE3

Constant 27.5496

Scope1 -0.2834*

Scope1+2 -0.2444*

Scope1+2+3 -0.5288*

Debt Ratio -0.0346

Operating Margin 1.1976

Retained Earnings Ratio 0.0645

Size -0.1622

Volatility -0.0285

Working Capital Ratio 0.0012

R2 0.9104

Adjusted R2 0.8805

A similar trend to that of Table 3.2 can be observed by analyzing the emission coe�cients

for each tercile. Therefore we discard the possibility that our results are driven by energy

and extractive companies. Consistent with Table 3.5, carbon footprint appears to influence

distance to default even outside these sectors.

The second check is to avoid the results from endogeneity problems. Therefore, we test

variable changes over time in the following regression that should be less vulnerable to the

endogeneity bias.
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�(DDt) = ↵ + �1�(Xt) + ��(Yt) + ✏t (3.3.2)

Table 3.6 shows the results of this regression model.

Table 3.6: This table shows a multivariate analysis regression based on changes in the

variable for the index Eurostoxx 50 in the period 2007-2021. Notation of the significance

levels: *p < 0.1; **p < 0.05; ***p < 0.01.

VARIABLE �TERCILE1 �TERCILE2 �TERCILE3

Constant 0.0146 0.1814 -0.1016

�(Scope1) -1.3808*** -1.2088*** -0.9690***

�(Scope1+2) -3.9265*** -2.0572*** -1.0120***

�(Scope1+2+3) -0.6374*** -1.1049*** -1.4489***

�(DebtRatio) -0.4837 -0.0398 -0.8101

�(OperatingMargin) 0.7040 1.8443 0.8655

�(RetainedEarningsRatio) -2.9441 -0.0734 -0.2173

�(Size) -0.1189 -0.1531 0.2211

�(V olatility) -0.0321 -0.0328 -0.0042

�(WorkingCapitalRatio) 14.2410 1.2324 0.9545

R2 0.6189 0.8172 0.8638

Adjusted R2 0.4856 0.7532 0.8162

From the estimated regression, we can infer that changes in the distance to default are

negatively related to changes in carbon emissions at a significant level of 1% for each case.

Similarly to the previous check, the results of Table 3.6 confirm that changes in the distance

to default between 2007 and 2021 are significantly and negatively related to changes in the

level of carbon emissions; therefore, we discard the possibility that endogeneity issues drive

our results.

Finally, to further address the issue of serial correlation, we add the lags of the dependent

variable in our base regression model. We have considered the previous year’s Black & Cox
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Distance to Default DDt�1, the Black & Cox Distance to Default of 2 years before DDt�2

and the Black & Cox Distance to Default of 3 years before DDt�3. The specification of the

regression is as follows:

DDt = ↵ + !DDLAG + �Xt + �Yt + ✏t (3.3.3)

Where DDLAG is a matrix composed by the lags of the dependent variable: DDt�1, DDt�2

and DDt�3. We report the regression results in Table 3.7.

Table 3.7: Results of the multivariate analysis including the lags of the dependent variable

with pooled cross sections OLS of the calculated Black & Cox Distance to Default for the

index Eurostoxx 50 in the period 2007-2021. Notation of the significance levels: *p < 0.1;

**p < 0.05; ***p < 0.01.

VARIABLE �TERCILE1 �TERCILE2 �TERCILE3

Constant 24.0504 14.3378 35.1394

DDt�1 0.0992 -0.0655 0.1238

DDt�2 0.1059 -0.1603 0.1270

DDt�3 0.0037 -0.0869 0.0336

Scope1 -1.3294** -2.0155*** -1.0058***

Scope1+2 -3.5476*** -3.0570*** -1.0548***

Scope1+2+3 -0.7009** -0.4857** -1.6013***

Debt Ratio -1.1652 -1.1350 -0.2970

Operating Margin 0.6289 1.7861 1.0456

Retained Earnings Ratio -1.9578 -0.2254 -0.3235

Size 0.0282 0.0297 -0.1045

Volatility -0.0407 -0.0321 -0.0102

Working Capital Ratio 14.3216 0.6378 1.0212

R2 0.8759 0.8751 0.9693

Adjusted R2 0.8069 0.8058 0.9523
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Table 3.7 shows that by adding the distance to default from previous years as an ex-

planatory variable, the R2 of the regressions of tercile 1 and tercile 3 increases significantly,

undoubtedly because the distance to default presents a positive serial correlation in each

tercile. However, the statistical significance of the emission coe�cients remains intact as

they remain negatively associated with the dependent variable. These results confirm that

distance to default is significantly and negatively related to the level of carbon emissions;

therefore, we discard the possibility that serial correlation issues drive our results.
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Chapter 4

Comparison with the Benchmark

We have chosen as benchmark the paper Capasso et al. (2020) which investigates the rela-

tionship between a firm’s exposure to climate risks, expressed as the level of direct GHG

emissions (in the specification Scope1), and the Merton Distance to Default, a measure of

creditworthiness. One of the limitations of this analysis is the exclusive focus on Scope1

emissions; Scope2 and Scope3 emissions should be considered as well. The other is that

Merton model is far from reality because it considers that default can only occur at the

maturity of the debt. We contribute to this gap by investigating both a methodological and

econometric extension.

4.1 Methodological extension

Assuming default can only occur at debt maturity is an unrealistic scenario; this is the

reason for which we decided to estimate the distance to default according to the Black &

Cox model. It considers an assumption more relevant to reality in which default can occur

when the firm’s value falls below a specific time-dependent barrier K(t). Table 4.1 reports

the di↵erence between Black & Cox and Merton models in terms of Distance to Default,

Probability of Default and Equity Value.
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Table 4.1: This table shows the di↵erence between Black & Cox and Merton models in terms

of Distance to Default, Probability of Default and Equity value for the index Eurostoxx 50

in the period 2007-2021.

VARIABLE TERCILE 1 TERCILE 2 TERCILE 3

Merton Distance to Default 13.1291 8.1198 3.1831

Black & Cox Distance to Default 9.3614 4.2322 2.4500

Merton Probability of Default 1.6728*10�7 0.0008 0.0106

Black & Cox Probability of Default 1.1654*10�6 0.0056 0.0425

Merton Equity 1.9808*105 0.4795*105 1.0162*105

Black & Cox Equity 1.6745*105 0.4503*105 0.8695*105

Table 4.1 shows that the Probability of Default calculated according to the Black & Cox

model is higher than that computed with Merton model because penalizing that default

there may be before maturity. Consequently, the distance to default calculated according to

the first model is smaller than that calculated with the second. In the Black & Cox model,

the payo↵ for shareholders is equivalent to the payo↵ of a call option and can be priced with

the closed-form Black-Scholes expression used for Merton model. According to the results,

the equity computed in the Black & Cox model is smaller than that obtained in the Merton

model, consistent with the fact that the relative default probability obtained through the

former model is greater than that of the latter. It stems because when the default is admitted

before maturity, the probability of default increases, and so does shareholders’ pressure.

The coe�cients relating distance to default and GHG Emissions are negative and sig-

nificant in both cases. However, using the Black & Cox model, the R2 of the regressions is

slightly higher.
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4.2 Econometric extension

In our empirical analysis, we consider three di↵erent emission categories: the first measure

refers to direct emissions (Scope1); the second to the sum of direct and indirect emissions

from energy consumption (Scope1+2); and the third to the sum of the previous measure (the

second) and the indirect emissions caused by the entire value chain (Scope1+2+3). Innova-

tively concerning studies in the literature, we can assess the impact of Scope2 on Scope1 and

that of Scope3 on Scope1+2, highlighting the e↵ect of concurrent emissions instead of single

measurements. Table 4.2 reports the results obtained through the base regression model

(3.3.1) with Black & Cox Distance to Default as the dependent variable and the natural

logarithm of emissions as the independent variable.

Table 4.2: Results of the multivariate analysis with pooled cross-sections OLS to show the

intensity of coe�cients that relate each category of the emissions and the Black & Cox

Distance to Default for the index Eurostoxx 50 in the period 2007-2021.

VARIABLE TERCILE 1 TERCILE 2 TERCILE 3

Scope1 -1.6665 -1.7421 -0.3512

Scope1+2 -4.6034 -3.0467 -0.3437

Scope1+2+3 -0.9728 -0.8749 -1.4014

By analyzing the coe�cients, one can see a similarity in tercile 1 and tercile 2, in which

the negative coe�cient of Scope1+2 almost triples in absolute value in the first tercile and

doubles in the second compared to the coe�cient of Scope1; this shows that for low and

medium emission firms, Scope2 has a great impact on the emissions. Furthermore, the

coe�cient of Scope1+2+3 is so weak that it falls below the value of the Scope1 coe�cient in

absolute value, despite the influence of Scope2. On the other hand, for tercile 3, the negative

coe�cient relative to Scope1+2 is almost equal to that of Scope1. Moreover, the absolute

value of the coe�cient of Scope1+2+3 more than triples; this shows that for companies of
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tercile 3, Scope3 has a substantial impact on emissions. It shows how the results have

changed considering the three macro-categories of emissions. If we had only looked at the

Scope1 emissions, we would have drawn di↵erent conclusions in terms of coe�cient intensity.
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Conclusion

This paper examines how climate-related transition risk and government climate policies

influence firms’ credit risk. Stricter enforcement of existing environmental laws is expected

shortly, which could lead to soaring costs and an impact on issuers’ creditworthiness.

The central research question of this paper is whether GHG emissions a↵ect the firm’s

Black & Cox Distance to Default. The reference sample, the Index Eurostoxx 50, is divided

into terciles according to the company’s level of emissions. The descriptive statistics reveal

the influence of GHG emissions on the distance to default: it is noted that firms in the

first tercile (lesser emissions) have a greater distance to default than firms in the third

tercile (higher emissions). Initially, strong empirical evidence was found that emissions are

negatively associated with distance to default. Subsequently, the distance to default was

shown to decrease following regulatory shocks related to stricter climate policies, such as

the Paris Agreement. In support of our results, several robustness checks were performed to

rule out the possibility that they were driven by regulatory changes in high-emitting sectors

(energy and extractive) and endogeneity and serial correlation issues.

Our contribution to the literature is to highlight how a higher level of emissions leads

to higher credit risk. We have chosen the Black & Cox Distance to Default to quantify

credit risk and three di↵erent emission categories (Scope1, Scope2 and Scope3) to measure

climate risk, highlighting the e↵ect of concurrent emissions instead of a single measurement.

Our results show that corporate creditworthiness is already a↵ected by exposure to climate

risks, so rating agencies should further integrate climate risk exposure into their assessment

of issuers’ creditworthiness. Similarly, banks and credit institutions should consider the

carbon footprint of borrowers to assess the risks they are taking e↵ect, and investors in

corporate bonds should consider the climate risk exposure of issuers. Overall, robust and
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standardized approaches should be introduced to address the need to assess global exposure

to climate risks.

Future work could consider how credit risk indicators reflect companies’ mobilization

e↵orts to move to a low-carbon economy. For instance, metrics related to green investment

and innovation e↵orts, such as R&D investments and green patents, could be considered.
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The low-carbon transition, climate commitments and firm credit risk. Available at

SSRN 3991358.

Carney, M. (2015). Breaking the tragedy of the horizon–climate change and financial sta-

bility. Speech given at Lloyd’s of London 29, 220–230.

Ersoy, H. and C. Musluoglu (2021). Sustainability and banking risks. PressAcademia Pro-

cedia 14 (1), 141–142.

Gianfrate, G. and G. Lorenzato (2018). Stimulating non-bank financial institutions’ partic-

ipation in green investments. Technical report, ADBI Working Paper.

Ginglinger, E. and Q. Moreau (2019). Climate risk and capital structure. Université Paris-
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Abstract

Climate change is one of the most significant challenges facing humanity this century. The

extent of the environmental impact of climate change is still uncertain, but recent scien-

tific evidence is increasingly worrying and many governments are taking decisive action. A

transition to a low-carbon economy is therefore unavoidable. A concrete approach to this

change requires the activation of a wide range of financial instruments and innovations of

various kinds that will have significant implications for all players in the economic scenario:

markets, companies, intermediaries and investors. Climate change and global warming are

addressed by stricter regulation by governments (e.g., carbon pricing mechanisms), new

emerging technologies and changes in consumer behavior. To contain global warming fol-

lowing the Paris Agreement, the most important and decisive climate regulation, European

countries and the US have committed to reducing greenhouse gas (GHG) emissions to zero

in net terms by 2050 (Jäger-Waldau et al. (2020)). It requires companies to reduce their

GHG emissions in the coming years substantially. A company with higher GHG emissions

today is more exposed to transition risk and may have a higher probability of bankruptcy

and thus a higher credit risk both now and in the future, especially if it does not have a

credible plan to transition to a low-carbon economy.

While the relationship between climate risk exposure and stock prices is receiving growing

attention in the literature, the impact on corporate bonds appears relatively underexplored

(Kleimeier and Viehs (2016); Bolton and Kacperczyk (2020)). Empirical research on the

relationship between climate-related transition risk and credit risk has considered environ-

mental scores provided by rating agencies or retrospective environmental metrics such as

GHG emissions (Seltzer et al. (2022); Ginglinger and Moreau (2019)). This branch of liter-

ature detects that firms with higher GHG emissions or worse environmental scores have a
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higher credit risk measured by bond credit ratings, CDS spreads, probability of default or

distance to default (Barth et al. (2022); Bauer and Hann (2010); Capasso et al. (2020)).

Our work contributes to the existing literature by investigating the relationship between

the Distance to Default and firm credit risk. For this purpose, we consider the constituents of

the Eurostoxx 50 index, a market capitalization-weighted stock index designed to represent

the 50 largest companies in the Eurozone, over the period 2007-2021. There are several

di↵erent approaches to estimating credit risk. One of these is the Structural models in

which the company’s default depends on its financial and capital structure (e.g., Merton

and the Black & Cox models). In our paper, as a credit risk measure, we decided to use

the Distance to Default computed according to the Black & Cox model, which considers

the assumption that default can occur when the firm’s value falls below a specific time-

dependent barrier (Black and Cox (1976)). On the other hand, Climate risk is measured

as the amount of Greenhouse Gas (GHG) emissions with three di↵erent categories: Scope1,

i.e., direct emissions, Scope2, i.e., indirect emissions from energy consumption, and Scope3,

i.e., all other indirect emissions caused by the entire value chain.

In our econometric framework, we partition the sample according to the company’s level

of emissions into non-homogeneous terciles. The descriptive statistics reveal the influence

of GHG emissions on the distance to default: the firms in the first tercile (lesser emissions)

have a higher distance to default than firms in the third tercile (higher emissions). Using

a panel least squares regression, we show that there is, ceteris paribus, a significant and

negative relation between Black & Cox Distance to Default and the level of CO2 emissions.

Subsequently, through a di↵erence-in-di↵erence model, we have shown that the distance

to default decreases following regulatory shocks related to the implementation of stricter

climate policies, such as the Paris Agreement. Finally, after the Paris Agreement, the firms

most exposed to climate risk saw their credit risk deteriorate more than firms with lower

emissions. In support of our results, several robustness checks were performed to rule out the

possibility that they were driven by regulatory changes in high-emission sectors (energy and

extractive) and by endogeneity and serial correlation issues. Our results show that corporate

creditworthiness is already a↵ected by exposure to climate risks, so rating agencies should

further integrate climate risk exposure into their assessment of issuers’ creditworthiness.
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