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Introduction 

This paper’s aim is to apply machine learning methods to predict stocks’ risk premium. The content 

of this paper is one of the most debated topics in finance: assets pricing. The question is how to predict 

effectively and accurately stocks’ excess returns. The idea behind this paper is that stock price can be 

forecasted by proven economically significant features. These features are both price indicators and firm-

level characteristics. This paper uses machine learning methods to investigate which characteristics have 

more predictive power for stock returns. Asset pricing theories are the product of decades of studies, 

consequently the candidate economic variables are very large in number. Dimensionality reduction is one 

of the machine learning applications. In that way, less weight is given to less significant predictors, or they 

can be even deleted and not taken into consideration. Until now, the relationship between selected variables 

and risk premium was assumed to be linear. Machine learning methods not only consider non-linear patterns 

but can also implement interaction between predictors. All these reasons are behind the choice of combining 

finance and machine learning. The benchmark for this thesis is Gu et al. (2020) paper called “Empirical 

Asset Pricing via Machine Learning”. 

 

The paper structure provides first a literature review, which will resume the pillars in asset pricing 

field.  The second chapter will be a broad introduction of the machine learning techniques used in this 

paper. The analysis includes the following methods: CAPM, FamaFrench three-factor model, simple linear 

regression, penalized approach, Principal Component Regression (PCR) and Gradient Boosted Regression 

Trees (GBRT). The third part will be the empirical analysis where all those models would be applied to a 

dataset of US market listed firms, from 2006 to 2020. The last part consists in a final resume of the empirical 

results and consequent conclusions.  

 

The results of our analysis show that among all implemented models, Gradient Boosted Trees is by 

far the best model. This conclusion reflects Gu er al. (2020) results. In fact, without considering Neural 

Networks, their best performing model was GBRT, outperforming Ordinary Least Squares, penalized 

approaches, PCR and Bagging Trees. For what concerns variable importance, the results reflect once again 

Gu et al. findings. In fact, in our analysis, size factors (mvel1 and mve0) result to be the most influential 

variables. The set of other relevant variables, indeed, as in Gu’s paper, include momentum variables, 

illiquidity, bid-ask spread and return volatility. 

 

1 Literature Review 

The first pillar of asset pricing literature is the Capital Assets Pricing Model (CAPM). It was 

elaborated by William Sharpe and John Lintner (1965), and it is still widely used. The main advantage of 

CAPM is that it expresses an immediate relation between risk and return, and an easy way to forecast the 
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return. Its simplicity represents at the same time its greatest drawback. In fact, CAPM performs relatively 

poorly empirically, and it is the consequence of theoretical flaws and difficulty in implementing a valid set. 

The main assumptions of CAPM, added by Sharp and Lintner to Markowitz model, are ‘complete 

agreement’ (i.e., investors agree on asset return distribution) and ‘unlimited borrowing and lending at risk-

free rate’.  

 

According to Fama and French (2004), ‘unrestricted risk-free borrowing and lending is an 

unrealistic assumption’. In 1996 they proposed an alternative to the Capital Asset Pricing Model. More 

precisely, Fama-French three factor model can be considered an integration of CAPM. Fama and French 

starting point were previous studies that showed a connection between return and firm-level characteristics. 

Patterns that were not explained by CAPM were called ‘anomalies’. So, another model called ‘Fama-French 

three factor model’ was elaborated. Practically, they added two new factors to better picture the market 

behaviour. In fact, the first factor (the market one), is the same factor that is used in CAPM. The other two 

factors are the size factor, also called Small Minus Big (SMB), and the value factor, also called High Minus 

Low (HML). The first one reflects the ability of some small company to outperform larger ones. The second 

factor expresses the tendency of value stock to perform better than growth stock. This model showed better 

performance than the CAPM and the Arbitrage pricing theory. The literature after this publication debated 

a lot about the economic meaning of the Fama-French factors (for example, Chung, Y. Peter et al. 2006). 

While it was clear that market factor was a proxy for risk, the interpretation of the other factors was not 

clear. Fama and French claimed that those factors represent firm distress. Rolph (2003) claimed that the 

factors are a proxy for leverage, while several other papers, like for example Berk (1995), suggested that 

the predictive power of size and value factors is spurious. An alternative explanation is proposed by Chung, 

Johnson and Still (2006), who claimed that SMB and HML are proxy for the part of risk not captured by 

the market factor.  

 

The following literature was about finding other anomalies and other factors that can explain them. 

The cross-sectional studies focused on proving financial indicators as valid predictors for risk premium. An 

example could be Cooper et al. (2008) paper that proves the relation between asset growth and expected 

return. Another mention must be made to Jagadeesh and Titman (1993) because, for the first time, they 

introduced price momentum for US stock prices. This step is very important because price momentum is 

proven to be one of the most significant predictors for excess return. There are many other works in the 

literature that increased the predictors set. In that sense, Lewellen (2011) took a good picture of the cross-

sectional analysis situation, providing answers to the question on ‘whether the characteristics can actually 

be used, either individually or in combination, to estimate expected stock returns in real time’. He also 

proves the validity of cross-sectional stock returns prediction.  
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For what concerns the financial applications of machine learning technique the literature is not as 

extensive as one could imagine. The machine learning application is often limited to just one method, and 

it is difficult to find a paper that can draw the big picture. On the contrary, the shrinkage methods are the 

most investigated in the literature because they offer the immediate answer to the dimensionality reduction 

problem. For example, Freyberger (2020) uses adaptive group lasso to investigate the additional 

contribution of each variable for the prediction of expected return. Even though his model performs better 

than the traditional one (i.e., Fama-MacBeth regression), the resulting implementation is still sensible to 

outliers. Also, Kozak (2020) and Rapach et al. (2013) apply Lasso on the financial framework. The resulting 

model is not more complex of the traditional ones (four or five factors), but it performs better out of sample 

testing. Another perspective to the dimensionality reduction problem consists in the Principal Component 

Analysis. PCA consists basically in rotating the data space in order to reduce the dimension. This possibility 

is investigated by Giglio and Xiu (2021): their approach ‘approach uses principal components of test asset 

returns to recover the factor space and additional regressions to obtain the risk premium of the observed 

factor’. Their model is considered a two-factors cross-sectional model, where the factors are the two 

Principal Components. In that way, all the selected predictors are ‘weighted’ and included in the prediction, 

overcoming the ‘omitted predictors’ problem. Coqueret and Guida (2018), instead, used regression trees to 

‘determine which firm characteristics are most likely to drive future returns.’ Their predictor set was made 

by 30 attributes and one related to momentum seemed to be ‘by far’ the most impactful. Hastie er al. (2009) 

proved that ensemble methods tend to perform better than individual algorithms (i.e., random forest 

outperform regression tree). According to general machine literature ‘random forest is one of the most 

automatic algorithms’. In this paper, random forest would be deeply investigated.  

 

The deep learning applicability was discussed, among the others, by Heaton et al. (2016). The paper 

explores the applicability of deep learning hierarchical models to financial problems, highlighting the point 

that deep learning can ‘detect and exploit interactions in the data that are, at least currently, invisible to any 

existing financial economic theory.’ The newest neural network application (i.e., Autoencoder) is proposed 

by Gu et al. (2021). Even though neural networks perfectly fit some kind of financial application, they are 

not widely used in this field. This is because finance require a deep understanding of the decision-making 

process, and neural networks lack of interpretability. Hidden layers weight inputs in a not human 

understandable form, and this is a great limitation. 

 

Finally, Gu et al. (2020) is the paper which compares all the above cited techniques and offers a 

complete picture of the link between asset pricing and machine learning. The common takeaways of almost 

all those articles are: 

•  The perfect match between machine learning and stock return prediction, in terms of dimensionality 

reduction, variable selection, variable importance and avoiding overfitting. 
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• The importance in stock return prediction of variables such as price momentum, volatility and 

liquidity. 

 

2 Methodology 

This section describes the collection of methods used in our analysis. Each subsection would be 

dedicated to a specific method, and each method would be characterized firstly by the description of the 

statistical model, secondly by the objective function for parameter estimation, and thirdly by the 

computational algorithm. The statistical model part would consist in the delineation of a general function 

for risk premium prediction. The second part, i.e., the one about parametrization, is essential to deal with 

the risk of overfitting the model, in order to improve out of sample performance. In fact, every objective 

function shares the same base goal: minimizing mean square prediction errors (MSE). The Mean Squared 

Errors formula is the following: 

 
𝑀𝑆𝐸 =

∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛
, 

 

(1) 

   

 

where n is the number of observations, yi is the observed value and ŷi is the corresponding predicted value. 

Modification about the objective function can be made, for example, with respect to robustification against 

outliers or parametrization penalties. The rationale for the third part, i.e., the part about the specific 

algorithm, lies in the fact that there are many variants of every machine learning technique, and its aim is 

to let the reader know which one would be used in the analysis. The asset’s excess return (or risk premium) 

is described as an additive prediction error model. This means that every prediction is intended as the 

expected return plus the error: 

 𝑟𝑖,𝑡+1 = 𝐸𝑡(𝑟𝑖,𝑡+1) + 𝜖𝑖,𝑡+1 , 
 

(2) 

 

where, 

 𝐸𝑟(𝑟𝑖,𝑡+1) = 𝑔 ∗ (𝑧𝑖,𝑡). 
 

(3) 

 

 

This notation means that the excess return prediction is isolated as a function of a set of predictors, i.e., z. 

In this formula i stands for the stock index and t for the year. A crucial assumption is that the return depends 

on this function g that does not change over time or across different stocks. In other words, the prediction 

is independent from time and stocks, but it is made just according to the stock predictors. This is a 

significative difference with respect to cross-sectional model that re-estimates the model over a time period 

or estimates a model for each stock. 
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2.1 Sample splitting and tuning 

The common sample splitting procedure consists in splitting the whole data space into two subsets: 

training set and test set. Machine learning algorithms, indeed, require a further step. In fact, when a great 

number of both observations and predictors occurs, it is necessary to create a new subset, the validation 

one. In order to fully understand this step, we have to introduce the concept of ‘hyperparameter’ (or, 

equivalently ‘tuning parameters’). Hyperparameters are the specific parameters of each machine learning 

algorithm and control their complexity. They can be for example the penalization parameters in lasso, the 

number of layers in a neural network, the number of leaves in a tree or the number of trees in a random 

forest. Their ‘tuning’ is essentially the biggest defence against noise (i.e., random or systematic error) and 

overfitting. So, as it was said before, the standard machine learning procedure consists in dividing the whole 

sample into three disjoint subsets: training, validation and test set. The first one is used to estimate the 

model and the parameters. The second one is used to ‘validate’ those parameters which means that 

predictions are made on the validation set using the model built in the training set. Then the objective 

function is evaluated on forecast errors and iteratively re-estimated changing hyperparameters in order to 

optimize the function. The parameters are chosen based on the performance on the validation set but are 

estimated just by the training set. The idea is to simulate an out of sample test with the aim of making the 

parameters tuning reliable and robust. Clearly, the validation set does not represent anymore an out of 

sample test since it is used to tune the parameters. Since that, the third subset, the ‘test set’, is used to test 

the predictive performance of the model.  

 

The forecast evaluation literature provides three different splitting methods: the ‘fixed’ scheme, the 

‘rolling’ scheme and the ‘recursive’ scheme. The ‘fixed’ scheme simply consists in splitting, generally 

randomly, into the three different subsets. It maintains each set composition constant. The ‘rolling’ 

approach consists in iteratively shifting the set compositions in order to include always more recent data. 

The ‘recursive’ performance evaluation scheme gradually increases training and validation sets. Practically, 

it works just as the ‘rolling’ scheme, without keeping the number of observations in the sets constant but 

increasing it gradually. Other papers about this topic use the last two schemes (i.e., ‘rolling’ and recursive’) 

or sometimes even a hybrid of them (Gu et al. 2020). The great drawback is that they are computationally 

very expensive. Since pros does not overcome this great disadvantage, the chosen performance evaluation 

scheme would be the ‘fixed’ one. 

 

2.2 Capital Asset Pricing Model 

The first model would be the first pillar of asset pricing theory. In the literature the rationale behind 

this model is exhaustively explained. So, some practical annotations will follow. The CAPM formula is the 

following: 
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 𝑅𝑖 = 𝑅𝑓 + 𝛽𝑖 ∗ (𝑅𝑚 − 𝑅𝑓) 
 

(4) 

 

where Ri is the risk premium, Rf the risk-free rate and Rm the market return. βi  is the coefficient regression 

obtained, and represents, economically, stock sensitivity to market change. A βi  greater than 0 means that 

stock return follows market behaviour, while a negative βi means that the risk premium has an opposite 

behaviour with respect to the market. Standard & Poor index (S&P 500 index) is almost always used as a 

proxy for market behaviour. 

 

2.3 Simple Linear Model 

The second model analysed is the “simple linear regression” one. This is the simplest among all the 

models presented in this paper. Given that we are able to represent all the data points as a scatterplot, the 

underlying idea of the model is to ‘build a line’ that reflects the tendency of all those points. More 

mathematically, the idea is to find the line that minimizes the distance with respect to all the points in the 

dataspace. The linear model states that the conditional expectation can be approximated as a linear function 

of the predictor vector,  

 

 𝑔(𝑧𝑖.𝑡; 𝜃) = 𝑧′𝑖,𝑡𝜃, 
 

(5) 

 

where g is the function, z is the stock and θ is the parameter vector. As the model’s name suggests, this 

method considers only linear effects and interactions between variables.  

 

The objective function would be the Standard Least Squares function (or ‘l2’). This function is used 

to approximate the solution of overdetermined systems (i.e., systems with more equations than variables) 

and consists in minimizing the residual sum of squares (considering the residuals as the difference between 

the prediction and the observed value),  

 

 𝐿(𝜃) =
1

𝑁𝑇
∑ ∑ (𝑟𝑖,𝑡+1 − 𝑔(𝑧𝑖,𝑡+1; 𝜃))2𝑇

𝑖=1
𝑁
𝑖=1 , 

 

(6) 

 

it is predictable that the performance of this model would be poor. This is due to the number of dimensions 

(i.e., predictors) that the problem involves. Given that, the simple linear regression is a reference point for 

highlighting the progress made with other models. Same clever implementations of this model can be made, 

such for example modifying the objective functions (giving weights to variables in order to give more 

weight to the ones more statistically or economically valid) or penalizing the presence of many predictors. 

The last case is the so called ‘penalized approach’. 
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2.4 Penalized approach  

The dimensionality problem can be solved by reducing the number of predictors. This is the 

underlying idea behind penalized approaches. As aforementioned, the signal to noise ratio is relatively low 

in this kind of problem, which means that, at a certain level, the model tends to add noisy information rather 

than significative one. An optimal starting point could be reducing the number of predictors. The literature 

in that sense offers an immediate solution: the penalized linear approach. The base step consists once again 

in estimating a straight line which minimizes the RSS. The statistical model would be the same one of the 

previous paragraphs (i.e., the baseline considering only linear interactions). The great difference is 

represented by penalty appended to the standard loss function: 

 

 ℒ(𝜃; ∙) = ℒ(𝜃) + 𝜙(𝜃; ∙), 
 

(7) 

 

where φ(θ;·), is the penalty function. The most common shrinkage methods are three: Ridge regression, 

LASSO (Least Absolute Shrinkage and Selection Operator) regression and Elastic Net. Ridge regression 

shrinks the regression coefficients so predictors with less significant contributions will have a coefficient 

close to zero. The penalty term of Ridge regression is called ‘l2 norm’, and basically is the sum of squared 

coefficients, 

 

 ℒ =
1

𝑁
∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑁

𝑖=1 +  𝜆 ∑ |𝜃𝑖|
𝑁
𝑖=1 , 

 

(8) 

 

The critical part is ‘tuning’ λ. with λ equal to zero the model would be the OLS but as λ increases the effect 

of penalty grows until the coefficients get close to zero. Ridge selection would include all predictors into 

the final model. Lasso regression, indeed, would shrink some coefficients to exactly zero. Its penalty term 

is called ‘l1 norm’ and practically is the sum of the absolute value of the coefficients, 

 

 ℒ =
1

𝑁
∑(𝑦𝑖̂ − 𝑦𝑖)2

𝑁

𝑖=1

+  𝜆 ∑ 𝜃𝑖
2

𝑁

𝑖=1

. 
 

(9) 

 

The essential part is again ‘tuning’ the λ coefficient. The greatest advantage of Lasso regression is that the 

result is easier to interpret but it usually works better when there is a great difference among the regression 

coefficients. On the other hand, Ridge works better when the coefficients are almost of the same size. The 

third method is the so-called ‘Elastic Net’. Elastic Net is a model which is penalized by both l1 and l2 norm. 

So, it can be considered a hybrid model with respect to the other two. The product of this penalization is 

that some coefficients are shrunken close to zero (Ridge part) and other exactly to zero (Lasso part). The 

penalty term in this case would be: 
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 𝜙(𝜃, 𝜆, 𝜌) = 𝜆(1 − 𝜌) ∑|𝜃𝑗|

𝑃

𝑗=1

+
1

2
𝜆𝜌 ∑ 𝜃𝑗

2

𝑃

𝑗=1

. 
 

(10) 

 

If ρ=0 the penalty term would be the l1 norm (i.e., Lasso regression), if, instead, ρ=1 we are in the case of 

Ridge regression. For every value different from 1 and 0 the model would be the hybrid one. In that case, 

two hyperparameter should be tuned: ρ and λ. 

 

2.5 Principal Component Regression 

Choosing a subset of predictors set is just a way to reduce dimensionality problems. Another way 

to do it is creating new predictors as linear combinations of the given ones. This is the essence of Principal 

Component Regressions. The rationale for PCR is that penalized approaches are prone to find local optima 

rather than global ones. What is more, they are not able to detect systematic noise, which is quite frequent 

in economic data. PCR is a two-step method. The first step is the so-called Principal Component Analysis 

(PCA) which explores statistical correlations among elements of a given dataset. It aims to find data 

representation that retains the maximum non redundant and uncorrelated information. This process is 

basically a rotation of the dataspace that allows us to delete redundant information. 

 

 

Figure 1 

Principal Component Analysis Example 

The figure above represents an example of PCA functioning. The initial dataset has two dimensions while the final one has 

just one dimension. It is easy to notice that PCA just rotates the axes. 

 

 

In the figure above it is possible to observe a simple example of PCA. The two dimensions in the first graph 

become one dimension (i.e., the x-axes) in the second plot. This dimension is the principal component that 

explains the maximum variance (in this case the whole variance) of the dataset. So, PCA outputs are those 

linear combinations of predictors called Principal Components. It is important to underline that PCA does 

not apply to dimension reduction itself, but just recombine variables. The second step, the Principal 
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Component Regression (PCR), reduces the dimensionality. PCR regularizes the problem by eliminating 

low variance components. So, the regression is re-arranged as follows:  

 

 𝑅 = (𝑍Ω𝐾)𝜃𝐾 + 𝐸̃, 
 

(11) 

 

Z is the predictors’ vector, while ΩK is a matrix containing weights combinations, so Z ΩK is the dimension 

reduced version of the original dataset. PCR chooses the matrix’s weights recursively in order to solve the 

following equation:  

 
𝑤𝑗 = arg max 𝑉𝑎𝑟(𝑍𝑤)  𝑠. 𝑡. 𝑤′𝑤 = 1,     𝐶𝑜𝑣(𝑍𝑤, 𝑍𝑤𝑙), 𝑙 =

1,2 … , 𝑗 − 1, 
(12) 

 

Clearly, PCR search for linear combinations of Z which most explains predictor set variance. The objective 

function clearly shows that weights selection is not bounded by forecasting at all. The emphasis is just on 

selecting components with higher variance. The solution for the above written equation is obtained via 

singular value decomposition, making the algorithm extremely computationally efficient. 

 

2.6 Decision Trees and Random Forest 

Until now, all the models taken into consideration do not account for interactions among predictors. A 

feasible alternative could be creating a new predictor matrix by multiplying the predictor set time itself. 

Clearly, it would be extremely expensive from the computational perspective. Random trees are machine 

learning algorithms that incorporate multiway predictor interactions. Trees are nonparametric models and 

the idea behind them is completely different from the regression logic. Trees aim is to divide the dataspace 

into ‘areas’ which contain observations that have a similar behaviour. A tree is formed by repeating a series 

of steps. At each step is performed one ‘split’. According to the attribute selection method (‘splitting 

criterion’) observations are divided into two ‘bins’ with respect to one attribute. The most common splitting 

methods are three: Information Gain, Information Ratio and Gini Gain. The Information Gain is computed 

as follows: 

• Firstly, for each observation is evaluated the expected information needed to classify it, as the sum 

of the probability to belong to a certain class times the log probability 

 

 𝐼𝑛𝑓𝑜(𝐷) = − ∑ 𝑝𝑖𝑙𝑜𝑔2

𝑚

𝑖=1

(𝑝𝑖). 
 

(13) 

 

• Secondly, for each class of attributes (i.e., each variable), called A, is calculated the expected 

information gained from portioning for that specific class 
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 𝐼𝑛𝑓𝑜𝐴(𝐷) = ∑
|𝐷𝑗|

|𝐷|
∗ 𝐼𝑛𝑓𝑜(𝐷𝑗)

𝑣

𝑗=1

. 
 

(14) 

 

• The last step consists in subtracting the total information needed, by the information given by any 

class. The result is the so-called Gain. The attribute that grants the highest Gain is the one selected 

for the split 

 Gain(A)= info(D)-𝑖𝑛𝑓𝑜𝐴(𝐷). 
 

(15) 

 

Gain ratio approach is a normalization of the Information Gain method. In fact, it takes into consideration 

the total number of observations. A ‘split info’ factor is introduced, and each gain is divided by this term 

 

 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) = − ∑
|𝐷𝑗|

|𝐷|
∗ 𝑙𝑜𝑔2 (

|𝐷𝑗|

|𝐷|
)

𝑣

𝑗=1

. 
 

(16) 

 

So, the algorithm does not consider anymore just the absolute gain but the relative one. The Gain Ratio is 

given by  

 𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =
𝐺𝑎𝑖𝑛(𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐴)
. 

 

(17) 

 

The last method is the Gini Gain. It evaluates the ‘impurity’ of each class as  

 

 𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑖
2𝑚

𝑖=1 , 
 

(18) 

 

where pi is the probability of each observation to belong to each class. A class gain then is given by the 

weighted sum of the impurity of each of the two subset created, since Gini Gain works just for binary splits. 

Then, as in the previous models, it is selected the attribute as the one which maximizes the difference 

between total gain and attribute specific gain. Given that in the literature Gini impurity index method is 

considered the best, it will be the one used in our analysis.  

 

After choosing  the splitting criteria, the algorithm keeps splitting the observations until one of this 

three criteria is met: all the remaining obervations belong to the same class, there are no attributes remaining 

or there are no observations remaining.  
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Figure 2  

Regression Tree Example 

The example shows a tree that takes into consideration only two variables and according to them splits the dataset. 

 

The figure above is an example of a regression tree. The two variables taken into account in the example 

are Volume and Momentum. The first varibale which is considered is the Volume (i.e., the one which 

maximize Gini impurity index). The space is divided into two parts: observations whose volume is greater 

or equal than 12 (6909 observations) and the ones with volume smaller  than 12. The two subsequent splits 

are made by Momentum. The second subgroup is so divided into three other parts: observations with price 

momentum equal to or greater than 0.995 (10402 observations), observations with momentum smaller than 

0.985 (9295 observations) and the one with momentum in between 0.985 and 0.995 (604 observations). 

The whole data space is so divided in four parts. Firms with greater return, in this specific example, are the 

ones with a price momentum between 0.985 and 0.995 (i.e., a return of 7.5475). This is a good example to 

understand how regression trees work practically.  

 

The main advantages of decision trees are : the interpretability of the model, the possibility to 

include both numerical and categorical variables, the robustness and the low computational effort required. 

The main great disadvantage is that decisions trees are prone to overfitting. An idea could be to post-prune 

the tree. In order to do that, a cost function is build to find the sub-tree that minimize it. 

 

The recent literature in that field shows clearly that the best methods are the ones that involves 

‘ensemble’ regularizations. It means putting toghether forecasts from many differet trees. Most common 

‘ensemble’ methods are Gradient Boosted Trees and ‘bagging’ trees. GBRT are a set of shallow trees whose 

forecasts are combined together. The idea is that combining ‘weak learners’ (shallow trees) is more robust 

and less complex than reling just on a single big tree. To be more detalied, GBRT fits a shallow tree 

(e.g.,depth L=1) , and then use the residuals to fit an equally shallow tree. This time the forecast component 

is shruken by a factor ν (between 0 and 1), in order to avoid residuals overfitting. At each step this process 

is repeated until the number of total trees is B. The output is a set of shallow tree with three hyperparameters 

(L, B, ν) , chosen thorugh the validation set. Also ‘bagging’ trees aggregates different trees predictions. 
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While GBRT are based on a set of ‘weak learners’, random forests build B different trees, which are deep 

and overfitted. The difference between those trees is the dataset. In fact, at the beginning of the process, B 

bootstrapped sample of data are built, and each one is used by a different tree. Each tree contributes to the 

final output, since the predicted value would be the average of all the results. Since there is the concrete 

risk of creating highly correlated tree, Random Forest algorithm decorrelates it using the ‘dropout’ method. 

It consists in considering only a random subset of variables at each split. In this way, few trees will not split 

on ‘dominant’ variables, granting a more widespread range of solutions. Also for Random Forest the 

hyperparameters would be three: trees depth (L), number of predictors for each split (n) and number of 

bootstrap sample (B). 

 

2.7 Performance Evaluation 

Assessing predictive performance of each model would be the last part of our analysis. The two 

perfomance indicator would be out of sample R2 and out of sample Root Mean Square Error (RMSE). R-

squared is a statistical measure of dependent variable variance proportion explained by the independent 

variables. It explains to what extent a predictive model is able to explain the objective variable (i.e., risk 

premium). Practically, R2 is calculated as 1 minus the ratio between unexplained variation and total 

variation. The unxeplained variation corresponds to the sum of the residual. So, the formula would be the 

following:  

 

 𝑅𝑂𝑂𝑆
2 = 1 −

∑ (𝑟𝑖,𝑡+1−𝑟𝑖,𝑡+1 )̂ 2
(𝑖,𝑡)∈𝒯3

∑ 𝑟𝑖,𝑡+1
2

(𝑖,𝑡)∈𝒯3

, 
 

(19) 

 

This is a standard R-squared. The only key notation that  has to be made regards 𝒯3 . It stands for test set 

and it has the role of highlighting the fact that this statistic is computed out of sample, given that the model 

are built with training and validation set. Clearly, the higher R2 the better is the model.  

Root Mean Square Error, indeed, is a simple sum of errors. They are squared in order to avoid that a negative 

error can reduce the index. The formula is the following: 

 

 𝑅𝑀𝑆𝐸 = √∑
(𝑦̂ − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

. 
 

(20) 

 

In addition to measures that evaluate each model performance, a pairwise comparison method would be 

useful. In that sense Diebold Mariano test perfectly fits the problem. This test (Diebold-Mariano 1995) was 

introduced to compare models forecast performance. Several years later, Diebold himself, provided a 

meaningful description of his model: ‘The need for formal tests for comparing predictive accuracy is surely 
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obvious. We’ve all seen hundreds of predictive horse races, with one or the other declared the “winner” 

(usually the new horse in the stable), but with no consideration given to the statistical significance of the 

victory. Such predictive comparisons are incomplete and hence unsatisfying. That is, in any particular 

realization, one or the other horse must emerge victorious, but one wants to know whether the victory is 

statistically significant. That is, one wants to know whether a victory “in sample” was merely good luck, 

or truly indicative of a difference in population’ (Diebold 2015). Practically speaking, it tests the equal 

accuracy hypothesis: 

 

 𝐻0: 𝐸[ℒ(𝑒1)] = 𝐸[ℒ(𝑒2)], 
 

(21) 

 

where ℒ is the loss function1, 𝑒1is the first model error and 𝑒2is the second model error. The alternative 

hypothesis, indeed, is: 

 

 𝐻1: 𝐸[ℒ(𝑒1)] ≠ 𝐸[ℒ(𝑒2)]. 
 

(22) 

 

Given that the test is built over loss differential (i.e., difference between the two loss functions), called 𝑑 

,the null hypothesis can be rewritten as: 

 

 𝐻0: 𝐸[𝑑] = 0, 
 

(23) 

 

It follows that Diebold Mariano statistic is: 

 

 
𝐷𝑀 =

𝑑

√2𝜋𝑓𝑑
̂ (0)

𝑇

,  

(24) 

 

where 2𝜋𝑓𝑑̂(0) is an estimator of the asymptotic variance √𝑇𝑑. Diebold Mariano statistic converges to a 

normal distribution, so the threshold to reject null hypothesis, with 95% of confidence, is |𝐷𝑀|> 1.96. In 

the other case, |𝐷𝑀|≤ 1.96, H0 cannot be rejected. 

 
1 Most common loss functions are two: squared-error loss function and absolute-error loss function. Both functions are symmetric to the 

origin point. Squared-error loss function penalizes more larger errors. 
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Figure 3 

Normal Distribution 

The figure above describes the normal distribution to which the Diebold Mariano statistic converge. The distribution is divided 

into 3 different areas: A,B,C. A and C areas correspond to |𝐷𝑀|> 1.96, so rejection of null hypothesis (two models have 

different accuracy). The other case is represented by B area2.  

 

2.8 Variables Importance 

Our analysis goal is not only finding the best model for excess return prediction, but also find which 

covariates contribute the most to the model. This concept is called variable importance. There are several 

measures of variable importance, but the one that is going to be evaluated is associated with the ‘varImp’ 

function in R. This function uses two different methods for linear regression (i.e., Simple OLS, LASSO, 

Elastic Net, PCR) and ensemble methods (i.e., Gradient Boosted Trees and Bagging Trees). Variable 

importance in linear regression is given by the absolute value of parameter specific ‘t-statistic’. It is the 

result of the so called ‘t-test’. It is a significance test performed to check the relationship between each 

predictor and the response variable. Firstly, the aforementioned ‘t-statistic’ is computed as follows: 

 

 𝑡 =
𝛽

𝑆𝐸𝛽
 

, 

(25) 

 

In this case β is the predictor coefficient and SE the associated standard error. Then, if the t-statistic is 

smaller than some threshold, the null hypothesis (i.e., the coefficient slope is equal to zero) is rejected. So, 

variable importance in regression models is determined in this way. For what concerns ensemble method, 

 
2 Image source Chen, Hao, Qiulan Wan, and Yurong Wang. 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind 

Power Forecasting Models" Energies 7, no. 7: 4185-4198. https://doi.org/10.3390/en7074185 
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the situation is slightly different. For each tree, accuracy is recorded in terms of mean square errors, on out 

of sample date (i.e., out-of-bag), and then the same process is repeated after deleting one variable from the 

tree. After that the differences between the MSE obtained from each tree are averaged and normalized by 

the standard error (as the coefficient in t-statistic). The higher is the average normalized difference, the 

higher is the variable importance. 

 

3 Empirical Analysis 

As aforementioned, the empirical analysis consists in applying all the descripted machine learning 

techniques to a dataset containing US equity listed firms. The paper outcome would be twofold. At first, 

looking at the predictive performance of each model, it is evaluated the model out of sample R2, the Root 

Mean Square Error (RMSE) and the Diebold-Mariano pairwise test statistic. Afterwards, variable 

importance will be taken into consideration. This is because we do not only want to seek for the best model, 

but we also want to understand it. Variables importance would give us the measure of economic significance 

of each predictor. 

3.1 Data Description 

The dataset contains American listed firms, from 2006 to 2020, with an average of almost 6,000 

observations per month, and 70,000 per year. The total observations are 1,000,000. No restriction on stock 

price was imposed, in order to obtain a heterogeneous sample with both high-priced and low-priced stocks. 

In fact, the minimum price is 1.28$ while the maximum value is 83.02$.  

 

The dataset contains also large predictors set. Chosen predictors are all stock-level characteristics. In 

order to choose stock-level features, the reference point is the cross-section of stock return literature. A 

group of variables can be identified as the one concerning momentum. Momentum was firstly theorized by 

Jegadeesh and Titman (1993). Their paper was the answer to some studies (i.e., De Bondt and Thaler) 

which suggested that poorly performing stocks in a previous period of 3-5 years achieve higher return of 

stocks that performed well in the same period. Jegadeesh and Titman’s claim, indeed, is that stocks with an 

above average return in the previous year, tend to outperform stock whose performances were poorer in the 

same period. So, they defined the so called ‘price momentum’, which consists in averaging the weekly 

stock price over a year and dividing it by the last ten weeks average. Obviously, other momentum measures 

can be obtained by changing the time horizon. In fact, in the dataset are present four momentum variables: 

12-month momentum, 6-month momentum, 1-month momentum and 36-month momentum. Also changes 

in 6-month momentum are considered relevant in explaining stock return. Furthermore, Moskowitz and 

Grinblatt (1999) documented that investing strategies driven by industry momentum performed better in 

terms of profit than momentum driven strategies. Fama and McBeth’s beta and beta squared are part of the 

dataset too. Other variables can be divided into two subgroups: features related to the stock itself, and 



18 
 

features related to the firm. Stock specific predictors are for example the number of share outstanding, 

maximum daily return dividend to price or bid-ask spread. On the other hand, variables such as leverage, 

operating profitability, capital expenditures, R&D or depreciation reflect the firm current state and 

potential. The last relevant variables group is the liquidity one. Chordia, Subrahmanyam and Anshuman 

(2001) find out a surprisingly negative ‘strong cross-sectional relationship between stock returns and the 

variability of dollar trading volume and share turnover’. Among the predictors, share turnover and dollar 

trading are proxies for liquidity, and their volatility (i.e., standard deviation) are used as variables too. The 

last feature of this group is illiquidity. According to Amihud (2002), ‘illiquidity measure here is the average 

across stocks of the daily ratio of absolute stock return to dollar volume’, and he suggests that ‘positively 

affects ex ante stock excess return, suggesting that expected stock excess return partly represents an 

illiquidity premium’. 

 

Each of the mentioned model, as it was said before, are designed to estimate the equation 

 𝐸𝑟(𝑟𝑖,𝑡+1) = 𝑔 ∗ (𝑧𝑖,𝑡) (3). In some model, g*(.) is not forced to be linear and takes into consideration the 

nonlinear interactions. It expands the feature set with some transformations of 𝑧𝑖,𝑡.  

 

The one million observations are divided into three datasets. The largest one is the training set, 

which count for six tenth of the total data (i.e., 600,000 observations). Validation set and test set are equally 

sized (i.e., 200,000 rows each). The splitting criteria are entirely random. 

 

3.2 Cross Section of individual stock  

3.2.1 R2 evaluation 

Table 1 shows machine learning techniques performance with respect to the out of sample R2. Final 

models are five: Ordinary Least Squares with all the covariates in the dataset, Least Absolute Shrinkage 

and Selection Operator (LASSO), Elastic Net, Principal Component Regression (PCR) and Gradient 

Boosted Regression Trees (GBRT). Details about models-specific hyperparameter are provided in the 

appendix. 

 

The first row of Table 1 reports 𝑅𝑂𝑂𝑆
2  for the entire dataset. Ordinary Least Square model has 𝑅𝑂𝑂𝑆

2
  

of about 0.09. This is quite surprising because using all predictors belonging to the predictor set is not so 

rare to obtain a totally meaningless model. In fact, restricting the OLS model, to a three-factor model 

containing just size, value and momentum, performances fall drastically both in terms of 𝑅𝑂𝑂𝑆
2  and RMSE. 

Shrinking coefficients with LASSO and Elastic Net has very different results. LASSO performs slightly 

better than the simple linear regression model (0.09025 versus 0.9019), but with a very singular coefficient 

selection as we will see in the variable importance section. Elastic Net, once validated, tends more to a 
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Ridge model than to a LASSO one, given that the resulting α is 0.23. The two λs, indeed, are very different. 

LASSO lambda is very small (1x10-6) while Elastic Net one is 0.01. Considering all these differences, 

Elastic Net model’s performances are poorer than LASSO ones, with an out of sample R2 of about 0.016.  

 

Table 1 

Monthly out-of-sample stock-level prediction performance (𝑹𝑶𝑶𝑺
𝟐 ) 

 

 Elastic Net GBRT LASSO OLS PCR 

R2 0.0162506 0.4308502 0.0902529 0.0901991 0.0056860 

 

 

 

PCR model performs even worse. The 𝑅𝑂𝑂𝑆
2  is less than the half of Elastic Net performance. 

Dimension reduction algorithms perform better in a redundant environment, with highly correlated 

covariates. This result suggests that predictors are quite uncorrelated. In order to confirm that, variable 

pairwise correlation is further investigated. In fact, Figure 3 represents the dataset correlation plot. 

Exception made for those variables correlated by construction (for example beta and beta squared); the 

graph shows that most of the correlation coefficients are close to zero. This can explain, for example, 

satisfying OLS performance. This is because no multicollinearity (independence of predictors) is one of the 

assumptions of multiple linear regression. 

 
3 LASSO α is always equal to 1, while Ridge’s α is always equal to 0. 
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Figure 3 

Correlation Plot 

The figure above shows the pairwise correlation between predictors. A colour close to blue indicates a correlation 

close to 1, while a colour close to red indicates a correlation close to -1. If there is neither a positive nor a negative 

correlation, the colour would be close to white. Obviously, the correlation matrix is symmetric. 

 

In conclusion, the last model to be evaluated is Gradient Boosted Regression Trees. It is clear that GBRT 

outperforms all the other techniques. This algorithm tends to outperform random forests (see Gu et al. 

2020), and it is far better than the other models taken into consideration. Combining a large number of 

weak learners (i.e., ntree=1000) allows the model to explain most of variance, avoiding the overfitting. 

The conclusions highlighted by Table 1 are that: 

• GBRT outperforms significantly all the other models 

• LASSO and OLS are competitive 

• Elastic Net and PCR performance are poor 

These results are quite different with respect to the ones obtained by Gu et al. (2020). The main 

differences concern OLS and PCR results. In their paper, the OLS out-of-sample R-squared is negative. 

This is due to the fact that their set of predictors was very large. The predictor set used in this paper is the 

result of Gu et al. findings in terms of variable importance and, since that, the environment is more ready 

to feed a simple linear regression. The same reasoning can be made for PCR. A less noisy predictor set 

makes the benefit of PCR way less impactful. LASSO and Elastic Net performances are more aligned 
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with Gu et al. (2020). LASSO is more competitive in both papers, while Elastic Net seems to have poorer 

performance. In conclusion, GBRT outperforms other models by far in both papers. 

In order to validate 𝑅𝑂𝑂𝑆
2  results, it is necessary to investigate other performance measures. 

 

3.2.2 Root Mean Square Error Evaluation 

Table 2 shows machine learning techniques performance with respect to the out of sample Root 

Mean Square Error. The machine learning approaches are the same of the previous section. 

 

 

Table 2 

Monthly out-of-sample stock-level prediction performance (𝑹𝑴𝑺𝑬𝑶𝑶𝑺) 
 

 ElasticNet GBRT LASSO OLS PCR 

RMSE 0.1013274 0.0770723 0.0974418 0.0974447 0.1018701 

 

 

 

 

RMSE trend reflects the same behaviour of out of sample R squared. Simple linear regression and 

LASSO errors are almost the same, such as Elastic Net and PCR. For the last pair of models, the 

difference in 𝑅𝑂𝑂𝑆
2  is bigger and more significative than the difference in Root Mean Square Error. As 

said before, GBRT performances are drastically better.  

  

Another perspective to address the problem can be considering models performance at the extreme 

of the dataset. Practically speaking, it would be useful to evaluate models’ performance on the top 
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hundred more expensive stocks and on the hundred least expensive. In fact, next table and plot show 

accuracy for large stocks (the top-100 stocks by price) and small stocks (the bottom-100 stocks by price). 

This is based on model trained with the full dataset (using all stocks), but it is tested among the two 

subsamples. Table 3 shows models RMSE on ‘top’ and ‘bottom’ datasets4. 

 

 

Table 3 

Monthly out-of-sample stock-level prediction performance on top 100 priced stocks and bottom 100 priced stocks 

(𝑹𝑴𝑺𝑬𝑶𝑶𝑺) 
 

 ElasticNet GBRT LASSO OLS 

Top 0.1174750 0.1073919 0.0869042 0.0867748 

Bottom 0.1384307 0.1068528 0.1379131 0.1379151 

 

 

As we can see, models are better at forecasting top shares with respect to bottom ones. Particularly, 

Ordinary Least Square and LASSO perform better on the top subsample than on the whole test set. Elastic 

Net performs worse than on the complete dataset, and the same results hold for GBRT. Furthermore, GBRT 

is the only model which break out greater accuracy on the bottom subset rather than the top one. In this 

case, the difference is not so significant. Given that Gradient Boosted Regression Trees is the best method, 

it will be further investigated with the following tables. Table 4 and 5 contain all values of RMSE and 𝑅𝑂𝑂𝑆
2  

for all the analysed samples (i.e., all, top, bottom). 

 

 

 
4 PCR results are not included in the table since the values are not relevant. 
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Table 4 Table 5 

GBRT performance on all subsamples (RMSE) GBRT performance on all subsamples (𝑹𝑶𝑶𝑺
𝟐 ) 

 

 GBRT 

Bottom 0.1068528 

All 0.07707226 

Top 0.1073919 

 

 GBRT 

Bottom 0.4040442 

All 0.4308502 

Top -0.9659346 

 
 

 

While RMSE table and plot (Table 4) results are not surprising, the out of sample R squared plot (Table 

5) is more interesting. First of all, it is meaningful that 𝑅𝑂𝑂𝑆
2  on the bottom dataset is very close to the 

original model value. Secondly, the anomalous value of top 𝑅𝑂𝑂𝑆
2  needs additional explanations. In fact, 

according to Table 3, models tend to have greater accuracy on top subsample. Values of out of sample R 

squared on the top dataset, indeed, looking at GBRT but also at the other models, are very low. Low 

RMSE and low 𝑅𝑂𝑂𝑆
2  suggested that data are not skewed. Consequently, models’ predictive ability is not 

to be addressed to the predictors ability to explain observations’ variance. 

 

3.2.3 Diebold-Mariano Test  

Last comparison method is the Diebold-Mariano test. Previous accuracy measures addressed 

quantitative techniques’ performances, while, indeed, Diebold-Mariano test addresses statistical 

significance of those results. The null hypothesis chosen is the ‘two-sided’ one, that means that we are 

testing equal accuracy for the two models. Table 6 reports the results of this pairwise comparisons. The 

interpretation is that a positive value means that the column model dominates the row model.  As we can 

see, among those models which have close performance on quantitative methods, LASSO outperforms 

simple linear model, while Elastic Net dominates PCR. As we expected Gradient Boost Regression Trees 

outperforms all the other models. 
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Table 6 

Comparison of out-of-sample prediction using Diebold-Mariano test statistic 

  Lasso  Elastic Net  PCR  GBRT 

Linear model  0.837187  -28.220382  -28.447007  99.379606  

Lasso    -28.83532  -29.06501   100.87528 

Elastic Net      -5.035476  225.395290  

PCR       225.3765 

 

This table shows Diebold-Mariano test statistics comparing the out-of-sample prediction performance among five models. 

Positive values indicate the column model outperforms the row model. Bold font stands for a difference significant at 5% level 

or better for individual tests. 

 

 

3.3 Variable Importance 

 This section consists in analysing individual predictor’s importance as described in section 2.8. 

Figure 4 reports variable importance for the first twenty features of each model.5 

 

Figure 4  

Variable importance for the top-20 most important variables in each model 

 

Linear model variable importance 

 

  

 

Elastic Net variable importance 

 
5 Since PCR predictions are based on Principal Components, variable importance is not relevant considering the scope of the analysis 
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Gbrt variable importance 

  

 

Lasso variable importance 

 

The first thing to notice concerns LASSO model. It is very singular that being so skewed to one variable 

(i.e., illiquidity) leads to better performances with respect to OLS, according to both quantitative and 

statistical significative methods. For what concerns the other models, they are not so ‘democratic’. Linear 

regression and GBRT are skewed to size and factors (i.e., mvel1 and mve0). On the other hand, Elastic 

Net is skewed to bid-ask spread variable. With regards to the ‘secondary variables’, if we can call them 

like that, the ones to be mentioned are illiquidity, momentum variables and bid-ask spread. Illiquidity is 

significant in LASSO, as said before, OLS and GBRT. Momentum variables (i.e., change in momentum, 

12-month momentum, 6-month momentum, industry momentum) are important in OLS, Elastic Net and 

GBRT. Bid-ask spread, in addition to the importance in Elastic Net, is relevant in OLS and GBRT too. A 

mention must be made also for return volatility: it is the second most important variable in Elastic Net 

and it is relevant in GBRT too.  

 

Comparing variable importance outcomes with the ones obtained by Gu et al. (2020) highlights some 

common aspects and some differences. First of all, models’ variable importance is skewed to two or three 

features in both papers. The variables that result to be the most relevant in this paper are mvel1 (Log 

market equity) and mve0 (and market equity at the beginning of the period), while momentum variables 

are the most important in Gu et al.’s paper. Another great difference concerns bid-ask spread, which 
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seems not to be so relevant in Gu et al.’s models. In conclusion, the two overall sets of important 

variables are very similar. In fact, both papers select momentum variables, liquidity variables and size 

variables as the most relevant ones. 

 

Conclusions 

This paper studies the forecasting application of some of the most common Machine Learning 

techniques on the US market, trying to give a contribution to the ‘Empirical Asset Pricing’ debate. The 

thesis scope, as aforementioned, is to find out the best model, amongst the ones investigated and 

implemented, and to analyse the variable importance of each model, in order to highlight a potentially 

meaningful set of predictors. Models’ performances and accuracy are evaluated in terms of 𝑅𝑂𝑂𝑆
2  and 

RMSE, while variable importance is assessed in terms of statistical relevance and marginal accuracy 

(section 2.8). 

 

For what concerns models performance, the model which achieves the best results is Gradient 

Boosted Regression Trees.  In fact, both in terms of 𝑅𝑂𝑂𝑆
2  and RMSE, it outscored all the other models. 

The statistical relevance of this result is certificated by the Diebold Mariano test. The performance is 

close to the one obtained by Gu et al (2020), with an of 𝑅𝑂𝑂𝑆
2  of 0.34 (Gu’s et al. result) versus an of 𝑅𝑂𝑂𝑆

2  

of 0.43. Also considering the other techniques, Ordinary Least Square performs better than expected, 

LASSO outperforms Elastic Net as penalized approach, and PCR performs poorly, given that the 

environment is not so noisy and redundant. 

 

Variable importance results are more interesting and surprising. LASSO, that outscored simple 

linear regression with statistical relevance (Table 6), basically forecasts considering only illiquidity. The 

other models reflect Gu et al (2020) findings. Log market equity (mvel1) and market equity at the 

beginning of the period (mve0) dominates variable importance of both OLS and GBRT. The set of overall 

influential predictors is composed by momentum variables, illiquidity, return volatility and bid-ask 

spread. This last variable represents the real difference with respect to Gu et al (2020). In fact, looking at 

the model implemented by both paper, bid-ask spread is not between the twenty most relevant variables 

for any of them, exception made for GBRT. It is, indeed, relevant for Neural Networks implementation, 

that is the best performing one in Gu et al (2020) paper. 

This paper, such as the other from this topic literature, shows the strong potential connection 

between Machine Learning and Empirical Asset Pricing. This link and its development could be the 

starting point for many interesting research and studies. 
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APPENDIX A 

Table A.1 Summary Statistics 

 

Acronym Variable Min Mean Max Std 

mvel1 Size 15999.1907 2118123.1436 15851782.1603 4008342.2572 

SHROUT Share Outstanding 2762 72000.2726 392976.25 99299.1011 

beta Beta 0.1155 1.0427 2.1457 0.5362 

betasq Beta Squared 0.0192 1.4063 4.6242 1.2393 

chmom Change in 6-month momentum -0.6839 -0.008 0.7161 0.339 

dolvol Dollar trading volume 8.3118 12.9522 17.2168 2.5579 

idiovol Idiosyncratic return volatility 0.0141 0.051 0.1181 0.0283 

indmom Industry momentum -0.3259 0.0669 0.4726 0.2022 

mom1m 1-month momentum -0.2069 0.001 0.2092 0.1008 

mom6m 6-month momentum -0.4424 0.0176 0.5056 0.2316 

mom12m 12-month momentum -0.6005 0.0464 0.8014 0.3459 

mom36m 36-month momentum -0.6802 0.1755 1.3504 0.4943 

mve0 Market value at the start of the period 16054.5 2136057.0726 15900930.3254 4018953.1698 

turn Share turnover  0.1279 1.5739 5.5226 1.4357 

age # Years since first coverage 2 16.6828 44 11.3683 

agr Asset growth -0.5879 -0.0958 0.2173 0.1799 

cashdebt Cash flow to debt -1.1144 -0.0159 0.6927 0.385 

cashpr Cash productivity -33.4053 0.572 33.3886 13.7839 

chcsho Change in shares outstanding  -0.0575 0.0537 0.378 0.0994 
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Table A.1 Summary Statistics 

 

Acronym Variable Min Mean Max Std 

convind Convertible debt indicator 0 0.1023 1 0.2719 

depr Depreciation/PP&E 0.048 0.3217 1.0208 0.2413 

dy Dividend to price 0 0.016 0.0725 0.0198 

ep Earnings to price -0.4181 -0.0237 0.1223 0.1277 

invest Capital expenditures and inventory -0.0558 0.0411 0.2061 0.0589 

lev Leverage 0.0498 1.7818 8.506 2.192 

lgr Growth in long term debt  -0.2575 0.1466 0.9118 0.2652 

operprof Opertating profitability  -0.4547 0.1342 0.5329 0.2114 

orgcap Organizational capital  4e-04 0.0056 0.0145 0.0034 

pchsale_pchrect % change in sale - % change in A/R -0.5845 -0.0285 0.4516 0.2235 

ps Financial statement scores 2 4.7289 7 1.3353 

rd R&D increase 0 0.1471 1 0.3102 

rd_mve R&D to market capitalization 0 0.0586 0.1463 0.0342 

saleinv Sales to inventory 2.9484 31.5801 97.2655 23.5805 

securedind Secure debt indicator 0 0.483 1 0.4483 

sp Sales to price 0.0418 1.0644 3.992 0.988 

cinvest Corporate investment -0.2776 0.1174 0.4258 0.2214 

nincr Number of earnings increases 0 0.8454 3 0.8487 

baspread Bid-ask spread 0.0079 0.0365 0.0957 0.0239 

ill Illiquidity 0 0 0 0 

maxret Maximum daily return 0.0106 0.0557 0.176 0.0441 
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Table A.1 Summary Statistics 

 

Acronym Variable Min Mean Max Std 

retvol Return volatility 0.0056 0.0257 0.0705 0.0174 

std_turn Volatility of liquidity 0.4449 4.888 22.9716 5.765 

zerotrade Zero trading days 0 0.1217 1.9091 0.4451 

bm Book to market 0.0755 1.0006 2.3573 0.6943 

bm_ia Industry-adjusted book to market -3.3817 -0.3992 0.9636 0.9043 
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APPENDIX B 

 

 OLS LASSO Elastic 

Net 

PCR GBRT 

Hyperparameters  λ=1x10-6 

 

λ=1x10-2 

α=0.2 

# Components 

n=1 

Depth=6 

# Trees=1000 

Shrinkage=0.01 

 

  


