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1) INTRODUCTION 

Options are financial instruments with a centennial history. The first examples of such contracts can 

be traced back to the 14th century with conditional sales where the insurer agreed to purchase ship 

or cargo if it failed to arrive (a sort of put option). In the 1400s the Cerchi bank of Florence was 

already involved in the trading of call options. 

An option is a financial contract which gives the owner the right to buy or sell the underlying asset 

at a pre-specified price (strike price K) on a specified date t. The underlying asset might simply be a 

stock or even an index, currency or commodity. Regardless of the nature of the underlying asset, the 

price of the option is affected by the price changes of the underlying asset. We can distinguish two 

different types of options: 

- CALL OPTION: it gives the owner the right to buy the underlying asset at the pre-specified 

price k. The payoff of a call option with maturity t, strike price k can be expressed as max (S_t - 

k,0) where S_t is the price of the option at time t. 

- PUT OPTION: it gives the owner the right to sell the underlying asset at the pre-specified price 

k. The payoff of a put option can be written as max (k-S_t,0). 

A further distinction can be made between European-style and American-style options where the 

former can only be exercised at the expiration date whereas the latter can be exercised at any time 

until the expiration date. A third famous type of options is represented by the Asian ones which are 

an example of path-dependent options: a path dependent option is an option whose payoff is 

affected by how the price of the underlying asset at maturity was reached, in other words the price 

path of the underlying asset. More specifically, the payoff of an Asian option depends on the 

average price of the underlying asset over a pre-specified period of time during the lifetime of the 

option. Regardless of the kind of option that we are considering (American, European, Asian etc.) 



we want to come up with a “fair” prediction for the option’s initial price, fair in the sense that it 

does not introduce any arbitrage possibility. 

One of the first and most important studies in the field that is worth citing is represented by 

Bachelier’s Thesis in which Louis Bachelier came up with concepts that are fundamental for the 

problem of option pricing such as: 

- price increments are independent and normally distributed (so the price process is Brownian 

motion as the diffusion limit of a random walk), by applying the CLT. 

- the importance of recognizing and taking into account the concept of arbitrage. 

The work was later cited and used by Doob who is generally considered the “father” of martingales. 

2) DETAILED OVERVIEW OF UNDERLYING MATHEMATICAL CONCEPTS 

In this section, i will go through a detailed presentation of all the underlying mathematical concepts 

that will be cited in subsequent sections.  

1) PROBABILITY SPACE  

A probability space can be thought of as a mathematical model for the phenomenon of interest. 

Choosing a suitable model is a fundamental step as it allows us to compute all the relevant 

quantities such as mean and variance besides the dependence structure among the various variables 

involved.  

A probability space is a triplet (Ω,F,P) where: 

1) Ω is the set of possible outcomes. In our case Ω will be a path space since we want to model the 

price evolution of some asset’s price. (options’s underlying asset) 

2) F is a collection of subsets of Ω which we would like to measure. F is also referred to as ‘the 

information’. This collection contains Ω and is required to be closed for countable unions and 

complement 



3) P is the probability. If A is an event, P(A) expresses the chances of A to happen. The properties of 

P are:  

• P : F → [0, 1] 

• P(Ω) = 1 (normalization property) 

• P is countably additive: if (An)n is a sequence of disjoint events, then the probability of the 

sequence is equal to the sum of each event’s probability. 

P(⊔nAn) = sum over n P(An)  

P(A
c
) = 1 − P(A) where A

c 
is the complement Ω \ A of the event A. 

If two events are not disjoint: 

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) 

2) RANDOM VARIABLES 

A random variable on (Ω,F) is a function on Ω which takes values in R:  

X: Ω→R  

and is F-measurable, meaning that the counter-image of any half line (−∞,x] is an event:  

{X ≤x}∈F  

for all x∈R  

If we only need a sub-collection of events, we can define a sub-sigma-algebra G of F if it contains 

Ω (the set of possible outcomes) and is closed for countable unions of events and complement. A 

sub-sigma algebra is a collection of events which is a sigma-algebra in its turn. If a random variable 

X verifies the following condition: 

{X≤x}∈G  

for all x∈R,  



we say that X is G-measurable. 

Lastly, the sigma-algebra generated by a random variable X is  

σ(X):=σ({X ≤x}|x∈R)  

and it is a sub-sigma algebra of F.  Any event which can be written in terms of X, for example: 

{a≤ X ≤b}  

belongs to σ(X). 

3)  FILTRATION 

A filtration is an increasing collection of sub-σ-algebras Ft of F such that: 

 Ft1 
⊆ Ft2 

if t1 < t2 

t is a time parameter, which may be discrete or continuous.  

If t1 is fixed ( for example 3 months from now) then Ft1 
contains all the information about what 

may happen in [0, t1]. If t2 = 6 months from now, then Ft2 
describes what may happen in [0,t2]. As 

any event happened by time t1 may be seen as an event happened before t2, Ft2 
is a bigger 

collection of events than Ft1
.  

In Finance, a finite time horizon T is often fixed. We may choose T as the longest maturity of the 

derivatives in our portfolio. If we assume FT = F (information set), we then have a filtered 

probability space identified by the triplets (Ω, (Ft)t≤T , P) which is also called a stochastic basis.  

4) STOCHASTIC PROCESS 



Given a stochastic basis identified by the triplets (Ω, (Ft)t≤T , P), a real-valued stochastic process S 

= (S(t))t is simply a collection of real valued random variables,  measurable functions from (Ω, FT ) 

to R (or to R
d 

for d-dimensional processes). 

A process S is said to be random, non-anticipative and Ft -measurable if the following conditions 

hold  

1. for any fixed time t, S(t) : Ω → R 

2. for all fixed real x, the set {S(t) ≤ x} belongs to Ft. 

Furthermore, a process S can be thought of as a function of two variables, time t and outcome ω:  

S = S(t)(ω) = S(t, ω)  

1. when t = t
∗ 

is fixed, the result is the random variable S(t
∗
) = S(t

∗
,·), the t

∗
-marginal of the 

process S;  

2. when ω = ω
∗ 

is fixed, the result is a function of time S(·,ω
∗
) : [0,T] → R which is called a 

path of the process. 

Giving a formal definition of a stochastic process is fundamental because, as we will see in later 

sections, in particular in the Black-Scholes option-pricing model, the log-returns of the stock price 

S are modeled as a Brownian motion, which is one of the most famous stochastic processes. The 

Brownian motion paths are continuous functions ω on [0, T ], and therefore Ω in this case is the 

space of continuous paths on [0, T ].  

5) DISTRIBUTION OF A PROCESS 

The cumulative distribution function of the process S(t) can be written as: 

P(St ≤ x)  



We also need to define a joint distribution for those cases in which we want to monitor a process at 

two or more stages (dates t1, t2 etc), for example path dependent options whose payoff depends on 

how the price of the underlying asset at maturity was reached. The joint distribution can be 

computed as follows: 

P(S(t1) ≤ x1, S(t2) ≤ x2)  

as the sets {S(t1) ≤ x1}∩{S(t2) ≤ x2}, for any xi belonging to Ft2 
⊆ FT = F.  

6) EXPECTATION 

The expected value or mean of a random variable X can be defined as the average of its realizations 

X(ω), weighted by the probability of happening. If X is discrete: 

E[X] = sum over i
 
xiP(X = xi) 

If X is a continuous random variable with density pX 

P(x < X ≤ x + dx) = pX (x)dx and 

E[X] = integral of xpX(x)dx  

Expectation is a linear operation thus the expectation of a linear combination of random variables is 

the linear combination of the expectations:  

E[aX + bY ] = aE[X] + bE[Y ]  

An important consequence is that we do not need to joint distribution of two random variables X,Y 

if we want to compute the expectation of a linear combination of them. However, the knowledge of 

the joint distribution is essential if we want to compute quantities which involve both random 

variables, for example E[XY]. 

If X is a continuous random variable and Y is a function of X, say 



Y = g(X) 

as far as pricing an option is concerned, it is important to be able to compute the expectation of Y 

given the distribution of X. For example, if we want to fairly price a call option with payoff 

function g(x) = max(X-K,0) where X is the price of the stock at time T, the price Y = g(X) can be 

computed and expressed as an expectation. 

If X has a density, it is not necessarily true that Y has a density too. However, If g is invertible and 

differentiable, with g
′ 
̸= 0, then Y has a density given by the formula:  

pY (y) = pX (g
−1

(y))* 1/|g
′
(g
−1

(y))| 

If Y has a density, its expectation, when g is regular and invertible can be written as: 

integral of y pX(g^-1 (y)) * 1/

|g’(g^-1(y))|  dy

 

Substituting x = g^-1(y) leads to the following formula for the expectation: 

E[Y ] = E[g(X)] = integral of g(x) pX (x)dx  

This formula is very important because it is always valid, even in those cases in which Y doesn’t 

have a density. 

7) INDEPENDENCE 

Two random variables X, Y are said to be independent if taken any couple of intervals I1, I2 the 

probability of the intersection X ∈ I1, Y ∈ I2 is equal to the the product of the probabilities. 

Formally,  

P(X ∈I1,Y ∈I2)=P(X ∈I1) * P(Y ∈I2) 



If the two random variables X,Y have a joint density (X,Y), independence can be expressed using 

the following two conditions: 

1. the marginals X and Y have probability densities pX , pY  

2. the joint density is the product of the marginal densities:  

If X, Y are independent, then: 

p(x, y) = pX (x) * pY (y)  

Another important implication is that, if two random variables are independent, the expectation of 

their product can be expressed as the product of the expectations: 

E[XY ] = E[X] * E[Y ]  

and therefore they are uncorrelated: 

E[(X-E[X])*(Y-E[Y])] = 0 

Independence implies uncorrelation but the opposite is not true except in the Gaussian context 

where the two notions of independence and uncorrelation are equivalent. 

8) CONDITIONAL EXPECTATION 

The conditional expectation of a random variable can be defined as the average of all outcomes 

(weighted by the probability of happening), given some extra knowledge/information that we have. 

The result of this operation is not a number but a random variable whose value is known at the time 

the extra information is revealed. It is possible to identify four properties of the conditional 

expectation: 

• E[E[Y |X]] = E[Y]  



• additivity: E[Y1 +Y2 |X] = E[Y1 |X]+E[Y2 |X]  

• E[f(X)Y | X] = f(X)E[Y | X], meaning that random variables which are known when X is 

known can be treated like constants and taken out of the expectation. 

 

• If two variables (X,Y) are independent then the conditional expectation of one with respect 

to the other is constant, and coincides with the mean: 

E[Y |X]=E[Y] or E[X|Y]=E[X]  

All the above properties can and should be expressed in terms of filtered space since, as we already 

said, in the world of Finance, it is quite a common practice to fix a finite time horizon T and look at 

the information available at any time t where t <= T. As we know, a filtered space is identified by 

the triplet (Ω, (Ft)t≤T , P). If we consider two dates t1, t2 with t1<t2, the conditional expectation of 

Y given the information available at time t1 is nothing more than a random variable which 

represents the best prediction of Y considering the information that we possess at t1. We can express 

the conditional expectation properties in terms of filtered space as follows:  

• E[E[Y |Ft1
]]=E[Y] 

• if Y is known by time t1, then E[Y |Ft1
]=Y 

• additivity: E[Y +W |Ft1
]=E[Y |Ft1

]+E[W |Ft1
]  

• If Z is known at time t1 it can be treated as a constant and taken out of the expectation: 

E[ZY | Ft1
] = ZE[Y | Ft1

]  



• If Y is independent of Ft1 
, then E[Y |Ft1

] = E[Y]. 

Last but not least, we should mention the “Tower Law” also known as law of iterated expectations 

or smoothing theorem. The “Tower Law” tells us that if we want to predict Y at time t0 we can first 

compute the best prediction for Y at time t1 (E[Y|Ft1]) and then compute the best prediction at time 

t0 (this is why the law is called law of iterated expectations). 

The general assumption that we make is that F0 (the set of information available at time t0) is 

nothing more than the set of all possible outcomes (Ω). At time t0, we know nothing about future 

realizations of the random variable hence all the variables known at this time are treated as 

constants. 

9) MARTINGALE PROCESS 

An adapted process M is said to be a martingale if: 

 E[M(t) | Fs] = M(s)  

for all 0≤s<t≤T. 

A martingale represents the formalization of a fair game in which the current entry price M(s) is 

equal to the conditional expectation of the future payoff M(t) given the information available at 

time s (we assume that s < t). 

One of the most famous martingale processes is the Brownian Motion. 

10) BROWNIAN MOTION 

A process W = (W (t))t≤T is said to be a (standard) Brownian Motion on a filtered space identified 

by the triplet (Ω, (Ft)t∈[0,T ], P) if the following conditions hold: 



1. W(0)=0  

2. W is adapted to the filtration  

3. for any s < t, the increment W (t) − W (s) is independent of Fs, and has distribution N(0,t−s)  

4. the paths W (·, ω) are continuous  

It follows that:  

• Marginal distributions are Gaussian. For any t, W (t) can be written as W (t) − W (0) since 

w(0) = 0 and it has distribution N(0,t).  

• For any u ≤ s < t the variables W(u),W(t)−W(s) are independent, and therefore jointly 

Gaussian. This reasoning can be extended to any number of increments. 

Proof: A Brownian Motion is a Martingale process. 

We fix two arbitrary dates s < t and write W(t) as W(t) − W(s) + W(s). It follows that: 

E[W(t) | Fs]  (we rewrite W(t) as W(t) + W(s) - W(s)) =  

E[W(t) − W(s) + W(s) | Fs]  (E[W(s)|Fs] = W(s) and the increment W(t)-W(s) is independent of Fs) 

= 

W(s) + E[W(t) − W(s)]  W(t)-W(s) is N (0, t-s) =  

W(s)  

It is possible to apply different transformations to the standard Brownian motion. 

10.2) LINEAR BROWNIAN MOTION 



It’s a linear transformation of the standard Brownian motion. A Brownian motion with drift b and 

volatility σ > 0 is the process  

B(t) = bt + σW (t) 

10.3) GEOMETRIC BROWNIAN MOTION 

We consider a Brownian motion with drift b and volatility σ. Recalling that B(t) = bt + σW(t) it is 

possible to apply an exponential transformation to this linear Brownian motion therefore coming up 

with a process Y such that: 

Y (t) = exp(B(t)) = exp(bt + σW (t)) 

This process is known as geometric Brownian Motion. Marginal distributions are lognormal, 

meaning that the logarithm of marginal distributions is normally distributed. 

11) MARKOV PROCESS 

A Markov process S is an adapted process such that, for every deterministic function g = g(x), and 

for any arbitrary dates s < t, the conditional expectation of g(S(t)) satisfies  

E[g(S(t)) | Fs] = E[g(S(t)) | S(s)] = h(S(s)) with h being an appropriate function that depends on g 

and the distribution of the process 

The formula can be explained as follows: to predict the future value of S at time t (namely g(S(t))) 

we only need the information available at s with s < t. The information available in the interval [0,s) 

is not necessary for the purpose. 

12) ITO’S LEMMA 

In stochastic calculus, we need to extend the traditional rules that we apply to compute derivatives 

and integrals when dealing with non-stochastic calculus. Suppose that we have a function of x u(x) 

and that we want to express the differential du in terms of the differential dx. We consider the 

Taylor expansion of u(x) about some value x bar. 



u(x) = u(x bar) + u’(x bar) (x- x bar) + 1/2 u’’(x bar) (x- x bar)^2 + … 

x - x bar can be expressed as ∆x. 

In terms of differential we have: 

du = u’(x bar) dx + 1/2 u’’(x bar) dx^2 + … 

In standard non-stochastic calculus, we compute a differential simply by keeping the first-order 

terms. For small changes in the variable, second-order and higher terms are 

negligible compared to the first-order terms and the change in u is proportional to the change in x. 

In stochastic calculus, we must also keep second-order terms. This leads to Ito’s formula: 

du = u’ dx + 1/2 u’’ dx^2 

If we use z to denote the Brownian motion and t to denote time, we can compute Ito’s formula using 

the following rules: 

d(z)^2 = dt 

dzdt = 0 

d(t)^2 = 0 

In general, we consider a function F(t, x). The Markov process defined by F(t,W(t)) has dynamics 

given by the stochastic differential equation: 

 

dF(t,W(t))= (Ft(t,W(t))+1/2Fxx(t,W(t)))dt+Fx(t,W(t))dW(t)   

where thee green term above is known as Ito’s term. 

12.2) ITO’S PROCESS 

An Ito process, also called diffusion, is any adapted process Y whose dynamics may be described 

by the function:  

dY (t) = α(t)dt + β(t)dW (t)  



where α and β are adapted processes which are called the coefficients of the stochastic differential 

equation mentioned in the Ito’s lemma. The first coefficient, α, is called the drift although in 

Finance the fraction a(t)/Y(t) is referred to as “the drift”. The second coefficient, β, is the diffusion 

coefficient.  

SECTION 3: OPTION PRICING MODELS 

3.1) BLACK-SCHOLES MODEL 

The Black-Scholes model is a model for the relative pricing of financial derivatives: derivatives (in 

our case of interest options) are priced relatively to the price dynamics of the underlying financial 

instruments. We have two basic financial instruments in the BS model: a risk-less bond B which 

constantly pays an interest rate r >= 0 and a risky stock S which must satisfy the stochastic 

differential equation and the following conditions known as Cauchy problem: 

dS(t) = µS(t)dt + σS(t)dW (t)  

S(0) = S0 

where S0 is the initial market price and µ and σ are constants known as drift and volatility 

respectively (we already found this concepts in the definition of a Brownian motion). The Cauchy 

problem has a unique solution that is: 

 
S(t) = S0 * e

(µ−1/2σ^2 
 
)t+σW (t)  

and the marginal S(t) satisfies 

ln S(t)/S0 ∼  N((µ−1/2σ^2
 
)t,σ^2t)  

This condition can be formalized as follows: the stock log-return follows a normal distribution and 

the mean and the variance of the stock log-return grow linearly with time. As we already 

mentioned, the BS model, besides satisfying the SDE, must also satisfy the Cauchy problem. But 

what do the parameters of drift and volatility represent in this model? In Finance, it is a common 



practice to use the standard deviation as measure of volatility ( standard deviation of the stock 

returns for example). Hence, the volatility σ is nothing more than the standard deviation of the 

annual stock leg-return. On the other hand, the meaning of the parameter µ is not so 

straightforward. We can deduct it from the following known expression for the expected value of 

the stock price as a function of t: 

E[S(t)] = S0e
µt 

It follows that the drift is the exponential growth of the average stock price. As we already said in 

the “Introduction” part of the Thesis, we want to come up with an option’s price that is fair. In 

Finance, we say that a pricing is fair if and only if it does not introduce any arbitrage possibility. An 

arbitrage can be defined as a risk-less profit opportunity that the investor can take advantage of 

when a miss-pricing of financial instruments has occurred. In the BS model that we just described, 

we may think of two possible arbitrage opportunities: 

- if µ >= r, the exponential growth of the average stock-price is greater or equal than the constant 

interest rate r paid by the bond. An arbitrage may be built by short-selling the bond and 

purchasing the stock.
 

- if µ < r, the constant interest rate paid by the risk-less bond is greater than the growth of the 

average stock price. We may come up with an arbitrage opportunity by short-selling the stock 

and purchasing the bond.
 



However, we can safely conclude that the BS model is arbitrage free since neither of these two 

strategies leads to an arbitrage. The reason is the following: while the bond B increases 

deterministically at rate r, the stock increases at rate µ on average. It follows that the marginal S(t) 

(which is lognormal) can be below S0*e^rt even if µ > r and it can be above S0*e^rt even if µ < r. 

The concepts of arbitrage and self-financing strategy are fundamental and thus deserve a thorough 

explanation. We start with the notion of self-financing strategy and then we move to arbitrage since 

the latter is nothing more than an example of the former broader class. 

A portfolio strategy in general is a couple of adapted processes (H,K) where H(t) identifies the 

number of stocks held at time t and B(t) is the number of bonds held. The portfolio value is given 

by: 

V(t) = H(t)S(t) + B(t)K(t) 

The simplest example of portfolio strategy is represented by buy-and-hold. This strategy is 

represented by the couple (K0,H0), meaning that the number of stocks and bonds held by the 

investor are fixed at time 0 and do not change till maturity. However, the BS model that we just 

described is a continuous-time option pricing model in the sense that the trading occurs along a 

finite time grid and not only at the start date 0 and the final date T. The notion of self-financing 



strategy is strictly related with the concept of wealth. To implement any strategy we need an initial 

wealth w0: 

w0 = V(0) = K0 + H0S0 

and for the following steps t1, t2: 

w1 = lim t->t1- V (t) = K0B(t1) + H0S(t1)  

w2 = V (t1) = K(t1)B(t1) + H(t1)S(t1)  

If w1 = w2 at the date t1 and all the following trading dates, we say that the portfolio is self-

financing, we do not need to inject or consume any extra money. At any trading date tn we just re-

shuffle and re-allocate money between stocks and bonds.  

More formally, the portfolio value V must satisfy a global stochastic differential equation (we 

already found this concept when we mentioned that the stock S must satisfy an equation of this 

kind) on the continuous time interval [0,T]: 

dV (t) = K(t)dB(t) + H(t)dS(t)  

where H(t) and K(t) are the the number of stocks and bonds held at time t. Furthermore, any self-

financing portfolio is a diffusion. We recall that an Ito process, also called diffusion, is any adapted 

process Y whose dynamics may be described by the function:  

dY (t) = α(t)dt + β(t)dW (t)  

where α and β are coefficients of the stochastic differential equation. The first coefficient, α, is 

called the drift  and the second coefficient, β, is the diffusion coefficient. In our case Y(t) = V(t), α = 

K(t) and β = H(t). 



Introducing the concept of self-financing strategy/portfolio is extremely important because it makes 

the notion of arbitrage easier to grasp. An arbitrage is nothing more than a self-financing strategy 

V(0), H such that: 

• V(0)=0  

• V(T)≥0 and P(V(T)>0)>0  

This kind of strategy starts with zero money and leads to a non-negative wealth, positive with 

positive probability. There is the possibility to gain with positive probability at no cost and without 

any risk. If such an opportunity existed, all investors would try to take advantage of it and prices 

would not be at equilibrium because of the demand-supply shifts. Prices would continue to fluctuate 

until any risk-less profit opportunity disappears. This the reasoning behind NA (short for non-

arbitrage) models. One of the most famous examples of such kind of models is the Cox-Ross-

Rubinstein model, also known as binomial option pricing model.  

BINOMIAL OPTION PRICING MODEL 

In the binomial option pricing model, the stock price follows a simple, stationary binomial process. 

At each moment in time, the price can either go up or down by a given percentage (we have an “up” 

factor u and a “down” factor d). When the stock price follows such a process and when there exists 

a risk-free asset (bond that constantly pays an interest rate r), options written on the stock can be 

easily priced. Furthermore, under certain pre-specified conditions, the binomial process converges 

to a lognormal process and thus the binomial formula converges to the Black-Scholes formula. The 

model is arbitrage free iff: 

d < 1+r < u 

NO-ARBITRAGE FROM A MATEMATICAL VIEWPOINT 

The NA concept shall be formalized using mathematical notation. Given a finite time filtered 

probability space identified by the triplet (Ω, (Fti 
)i=0...n, P) and a market model (B,S), where S is 

the risky asset and B is the risk-less bond, NA is equivalent to the existence of a probability Q on 

FT with the following two properties:  

1. Q(A)=0 if and only if P(A)=0 [Q is equivalent to P, notation Q∼P]  



2. the discounted stock price process S^ 
 
= S/B

 
is a Q-martingale, 

E
Q

[S(t)/B(t)|Fs] = S(s)/B(s)
 

Such Q, which is not necessarily unique, is called an equivalent martingale measure (EMM) for S
^
. 

The second condition can be restated as follows: the current price for S is equal to the Q-

expectation of discounted future values: 

S(s) = E
Q

[B(s)*S(t)/B(t)
 
| Fs] = E

Q
[e
−r(t−s)

S(t) | Fs] 

when s = 0:  

S(0) = E
Q

[e
−rt

S(t)] 

In Finance, the existence and use of martingale methods is bound to the fundamental theorem of 

asset pricing. According to this theorem, the NA condition implies the existence of at least one 

equivalent martingale measure Q. If we want to launch a derivative (for example a European-style 

option that cannot be exercised at intermediate dates) written on the stock S, with payoff Ψ and 

maturity T, we should place the derivative on the market with a fair price P . Fair price means that 

the extended market (B, (S, P )) must also verify NA, in the sense that there exists no arbitrage 

strategy (K, H, J ) based on the stock-bond-derivative triplet and the latter has price P. Obviously, at 

the maturity T P(T) = Ψ. The solution is to set: 

P
^
(t):= P(t)/B(t) =E

Q
[ Ψ/B(T)|Ft] 

If the price P verifies the above condition, the probability Q, which is an equivalent martingale 

measure for S
^
, is an EMM also for the discounted P^

 
thanks to its definition above and to the 

terminal condition P(T) = Ψ. This implies that Q is an equivalent martingale measure for the bi-

dimensional process (S,T). As a consequence, the fundamental theorem of asset pricing can be 



reversed and also stated as follows: the existence of at least one equivalent martingale measure 

implies no arbitrage. A fair price is: 

P (0) = E
Q

[e
−rT 

Ψ]  

This expression tells us that prices must be computed as Q-expectations of discounted payoffs. 

- Q VS P 

Given the reasoning that we just made, we may be tempted to think that Q and P are two sides of 

the same coin. This is completely wrong as Q may be very different from P. We should think of Q 

just as a pricing probability tool. Thus, if we want to answer questions like: 

- What is the probability that a call option with maturity T and strike price K has a positive 

payoff? 

- What utility should were expect from wn (terminal wealth) of a given strategy? 

- How can we choose between different portfolios of securities and how can we optimize the 

composition of the chosen portfolio? 

All this questions must be addressed under P and not under Q by: 

- computing P(S(t)>K) 

- computing E[U(V(T))] where U is a utility function and E is a P-expectation 

- choosing the portfolio according to a performance criterion such as Markowitz’s mean-variance 

criterion (choose portfolios that lie on the efficient frontier, the set of portfolios which offer the 

highest expected return given a level of risk expressed as standard deviation of returns) 

- ARBITRAGE IN GENERAL MARKETS 

The way in which we just presented the concept of arbitrage is valid for markets open on a finite 

number of dates (such as the binomial option pricing model). For general markets (open on discrete 

but infinite dates or continuous-time models such as Black-Scholes) we must add one condition. In 

general markets, an arbitrage strategy is a self-financing strategy such that: 



• V(0)=0  

• there exists a constant c>0 such that V(t)≥−c for all t∈(0,T). C here is a finite credit line which 

must be respected during the trading, and it may depend on H. 

• V(T)≥0 and P(V(T)>0)>0 

Not only arbitrage strategies, but also certain limits of self-financing strategies, which are 

‘asymptotic arbitrages’ and are called Free Lunches with Vanishing Risk (FLVR) shall be excluded 

to get a consistent fair-pricing rule. The fundamental theorem of asset pricing can be restated as 

follows: 

Existence of a Q equivalent martingale measures⇔ no Free Lunches with Vanishing Risk 

(NFLVR) ⇒ NA  

The pricing tool based on Q equivalent martingale measure is very powerful. Suppose that we want 

to price a European-style option with payoff Ψ, maturity T. If:  

P (t) = E
Q

[e
−r(T −t)

Ψ | Ft] 

the extended model identified by the triplet (B,S,P) verifies NFLVR and also the weaker condition 

of NA. As we were saying, this pricing approach is very powerful since it applies to all market 

models and to all kinds of options, even those with no early exercise feature including path-

dependent ones (options whose payoff is affected by how the price of the underlying asset at 

maturity was reached, the price path of the underlying asset) like Asian options whose payoff 

depends on the average price of the underlying asset over a pre-specified period of time during the 

lifetime of the option. 

This discussion suggests us that there is a link between pricing and hedging. If we have a derivative 

Ψ with maturity T that can be replicated/perfectly hedged, there exists a self financing portfolio V 

(composed of stocks and bonds) such that. 

V(T) = Ψ 



In words, the payoff of the replicating self-financing portfolio must equal the payoff of the 

derivative. It follows that there exists a unique way of pricing the derivative without introducing 

arbitrage in the market represented by the triplet (stock, bond, derivative) that is: 

P (t) = V (t)  

All replicable derivatives can be reproduced using portfolios of stocks and bonds. The number of 

stocks used for the replication argument is usually referred to as the “delta” of the derivative. Of 

course, the approach based on martingale methods and the replicating/hedging method must yield 

the same result. This leads us to the definition of complete market: 

A market is complete if and only if all the derivatives are replicable. 

The market is complete in the sense that any derivative has a unique fair price which corresponds to 

the value of the replicating portfolio. The notion of “completeness” is important since the Cox-

Ross-Rubinstein model and the Black-scholes model are both complete market models. These 

models are based on a number of assumptions. In reality, markets are incomplete in the sense that it 

is impossible to replicate derivatives accounting for all the risk involved in the process. 

The notion of “completeness” leads us to the definition of the second fundamental theorem of 

arbitrage pricing: 

If the market model verifies NFLVR then the following two conditions are equivalent: 

- the market is complete 

- there exists a unique equivalent martingale measure for S^ 

APPLICATION OF MARTINGALE METHOD TO THE BLACK-SCHOLES MODEL 

As we said, the Black-Scholes model is a complete market model: any derivative has a unique fair 

price which equals the value of the replicating portfolio. This amounts to say that there exists a 

unique Q equivalent martingale measure for S^, according to the second fundamental theorem of 

arbitrage pricing. We want to prove mathematically the uniqueness of Q for S^, the discounted 

stock price. We can do it in the following way: 

Since 



dS = µSdt + σSdW,  

then S^ = S/B has dynamics given by 

dS^
 
= (µ − r)S

^
dt + σS

^
dW  

We now introduce the new concept of market price of risk lambda.  

lambda = µ - r / σ  

The market price of risk expresses the excess return with respect to the risk-free rate of return on 

the bond r (µ - r) per unit of volatility. It is reminiscent of the Sharpe Ratio (the ratio of the stock 

excess return with respect to the risk-free borrowing and lending rate per unit of standard deviation 

of the stock return). We set: 

W
∗
(t) = W(t) + λt  

and 

dW
∗ 

= dW + λdt  

The stochastic differential equation for S^ can be read as 

dS^ = σS
^
dW

∗ 
 

If there exists a pricing probability Q ∼ P such that W* were a Brownian-motion, we can conclude 

that Q is a martingale probability for the discounted stock price S^. The Girsanov Theorem ensures 

the uniqueness of Q and provides a link between Q and P. According to the second fundamental 

theorem of arbitrage pricing, we know that the market model is complete and that any derivative 

with no early-exercise feature can be replicated.  

The Girsanov Theorem provides a random variable which is the density of Q with respect to P: 

dQ/dP = exp(−λW(T) −1/2λ^2T
 
) > 0 



The strict positivity ensures the equivalence of Q and P. This density function allows us to compute 

the Q probabilities as “deformed” P probabilities. 

Q(A) = E
Q

[IA] = E[dQ/dPIA] 

IA is multiplied by the “deformation” density function dQ/dP prior to taking the P-expectation. S^, 

the discounted stock price, becomes a martingale geometric Brownian-motion under Q since: 

S
^
(t) = exp(−σ

2
t/2 + σW 

∗
(t))  

which is equal to saying that 

dS = rSdt + σSdW
∗ 

 

The drift of the stock price S under Q is nothing more than the risk-less rate r. This means that 

under Q the stock is a geometric Brownian-motion with the same volatility but grows at the risk-

free rate constantly paid by the bond. This is why Q is called a risk-free probability measure. Even 

if the investor was risk-averse, he would behave as if she was risk-neutral when pricing. 

UNIQUE FAIR PRICING OF A DERIVATIVE UNDER THE BLACK-SCHOLES MODEL 

If the derivative has maturity T and is of the Markovian form g(S(T)) then the price today is: 

P (0) = e
−rT 

E
Q

[g(S(T ))] = e
−rT 

E
Q

[g(S0 exp((r − σ
2
/2)T + σW 

∗
(T )))] 

The following integral has to be solved: 

P(0)= e^-rT * integral of  g(S0exp((r−σ^2 /2)T +σ T^1/2x))e^-x^2/(2pi)^1/2dx 

The integral may be impossible to solve analytically. However, it is possible to resort to simulation. 

If  

P (t) = E
Q

[e
−r(T −t)

g(S(T )) | Ft]  



The idea is to write 

S(T)=S(t)exp((r−σ
2
/2)(T −t)+σ(W

∗
(T)−W

∗
(t))),  

In this way, the dependence of  the Markovian function from the past is contained in S(t) whereas 

the lengthy term at the exponent is independent of the information set Ft. Solving the integral leads 

to a resulting price process of the following form: 

G(t, S(t))  

that is a Markovian function of S. 

FINAL RESULTS FOR THE BLACK-SCHOLES MODEL 

The final formula for the price C(0) of a call with maturity T and strike price K is: 

C(0) = S0Φ(d1) − Ke
−rT 

Φ(d2)  

where Φ is the standard Gaussian CDF. 

d1 = (lnS0/K
 
+(r+1/2σ^2)T)/σT^1/2 

d2=d1−σT^1/2 

In general, at any intermediate date t < T: 

C(t, S(t)) = S(t)Φ(d1(t)) − Ke
−rτ 
Φ(d2(t))  

where τ = T − t and di(t), i = 1, 2 are  

d1(t) = (lnS(t)/K
 
+ (r +1/2σ^2)τ)/σT^1/2 



d2(t) = d1(t) − σT^1/2 

The price of the corresponding put option can be derived through direct calculations, as for the call 

option or more easily through the put-call parity which expresses the relationship between the price 

of a call-option and a put-option written on the same stock S and with the same maturity T and the 

same strike price K: 

Ct - Pt = St * Ke^-r(T-t) 

which is true for all t < T. 

4) THE IMPORTANCE OF SIMULATION 

If the payoff of the option is given by a very complex expression, for example in the path-

dependent case, the only feasible way to price it is to resort to simulation.  

Why should we use simulation? 

First of all, we start by defining what a simulation is. It is the imitation of a real-world process or 

system. It is often a mathematical model of a process. Simulations, just like any other mathematical 

model, usually make assumptions about the behavior of the system being modeled. The model is 

constructed in such a way that inputs can be changed over a set of values and this allows a complete 

picture of the possible outcomes. 

The main advantage of simulation is that it transfers work to a computer. Models with greater 

complexity can be handled, making far less assumptions. A more faithful representation of reality is 

also possible, going beyond the results that can be achieved through mere mathematical analysis. 

Simulation can also be used in order to perform the so-called “stress testing”: determining what 

would happen under extreme circumstances. It is a very powerful tool since the scenarios that we 

are interested in are so rare that we do not have substantial experience of. 

There are different steps involved in the construction of a simulation. Some of the most important 

are: 

- Formulation of the problem 



- Definition of the objectives 

- Choose a model and write computer code for it 

- Verify, validate the model and run the simulation 

- Analyze the output and present the results in a qualitatively-informative way 

MONTECARLO SIMULATION METHOD 

The Montecarlo simulation method is a computer technique based on performing numerous 

experiments with random numbers. It can be applied in many fields of research and it doesn’t need 

a special knowledge of probability theory. The only information needed is the relationship between 

the output and input quantities:  

    y = f(x) or y = f(x1,x2,x3,…) 

and the knowledge of probability distributions of the input variables. The method repeats trials with 

computer-generated random numbers processed by the relevant mathematical operations. The input 

variables x1, x2, …, xn are assigned random values each time but their distributions must correspond 

to the probability distribution of each variable. The output quantity y is calculated as a function of 

these values. The distribution of y may be represented using graphical tools such as histograms. 

The generated values can be used for example to determine the average value or the probability that 

y will be lower or higher than a chosen value y*. 

AN APPLICATION OF THE MONTECARLO METHOD: PRICING AN ASIAN OPTION 

An asian option has value determined not by the closing price of the underlying asset but on the 

average price of the asset over a time interval. For example, an Asian call option on an asset with 

price process S(t) pays an amount equal to max(0,Sk bar − K) at maturity where Sk bar = 1/k sum 

from i = 1 to k of S(iT/k) is the average asset price over k equally spaced time points over the 

interval (0,T). If the price process S(t) follows a geometric Brownian motion then Sk bar is the sum 

of log-normally distributed random variables and the distribution of such sum is very difficult to 

express analytically. This is why we resort to pricing the Asian option using simulation. The 



geometric average has a distribution which can be easily obtained. The geometric mean of n values 

X1,...,Xn is (X1X2...Xn)
1/n 

=exp{1/n sum from i = 1 to n of ln(Xi)} and if the random variables 

are log-normally distributed this amounts to adding the normally distributed random variables 

ln(Xi) in the exponent. The sum in the exponent is normally distributed hence the geometric 

average will have a lognormal distribution. On the other hand, pricing an arithmetic-average Asian 

option is much more difficult than the geometric counterpart and a closed-form formula has not 

been derived yet. 

In order to price Asian options, we need to agree on a specific risk-neutral model which will be the 

Black-Scholes one that we already discussed. The Montecarlo method is a robust, yet 

computationally demanding approach to pricing arithmetic-average Asian options. It consists of: 

- using random number generators to generate outcomes for a random variable with known 

distribution. 

- applying the LLN, estimating the unknown expected value with the average of the generated 

outcomes. 

- increase the sample size in order to determine a confidence interval for the estimate. 

Montecarlo simulation is very flexible, allowing for complex stock movements and path-

dependency which are otherwise extremely hard to handle by analytical methods. However, there is 

also a bad part of the story. Simulation methods are known for their slow speed of convergence. 

Relying on the LLN and estimating the unknown expected value by the average of generated 

outcomes implies the standard deviation of the estimate to be proportional to n^-0.5. This means 

that for each additional decimal digit precision, we need to increase the sample size by 100. As a 

consequence, the Montecarlo simulation method is infeasible beyond the 4-6 decimal digits of 

precision. To reduce the magnitude of this issue, we need to resort to variance reduction techniques 

to reduce the variance of the estimate. Some well known techniques are antithetic variates, control 

variates and quasi Montecarlo simulation. I will focus on the antithetic variates technique. 

ANTITHETIC VARIATES TECHNIQUE 



The basic Montecarlo method consists of taking the arithmetic-mean as unbiased estimator of the 

unknown expected value. The antithetic variates method allows us to try and reduce the variance of 

the estimator. The idea is using each generated random number twice, creating two trajectories 

(outcomes) which are negatively correlated (antithetic). It is usually a good idea to find a step in the 

simulation when we deal with symmetrically distributed random variates and then mirror them 

about their expected value, For example, in the case of log-return sequences, we can take the 

negative of the log-returns in order to generated a “mirrored” trajectory. As long as the original and 

antithetic payouts have a negative covariance, the variance of the estimator will be reduced with 

respect to the basic method and the estimator remains unbiased. Furthermore, since we use each 

random number twice, we are only generating n/2 outcomes instead of n, making the antithetic 

variates method twice as efficient as the basic method. 

OPTION PRICING WITH PYTHON: CLOSED-FORM FORMULAS VS SIMULATION 

In the following Python script, we construct a simulation to derive an approximation for the price of 

a call and put option. We then compare it with the results coming from the application of Black-

Scholes closed formula. The code contains comments to explain how we proceed step by step. 

# We set values for the following parameters 

S = 100 # spot price 

T = 1 # expiration date of the option, 1 year from now 

r = 0.05 # discount rate to price the option 

sigma = 0.15 # volatility (standard deviation) of the stock/general underlying asset 

K = 100 # exercise price 

#We now set a number of iterations for the Montecarlo simulation. The higher the 

number of iterations, the more precise the result but the slower the process. 

# We set a number of simulations equal to 2000. 

n = 2000 

n_trad = 250 # This is the approximate number of trading days in one year 

dt = T/n_trad # We consider a brownian motion for daily prices 

# General brownian motion formula that we apply: S_t+1 = S_t * e^((r-(sigma^2)/2)dt + 

sigma*dt^1/2*r) where (r-(sigma^2)/2)dt is the drift and sigma*dt^1/2 is the time component. 



We call the latter a. The r at the exponent is a standard normal variable having mean 0 and 

standard deviation 1 

import numpy as np 

drift = (r-(sigma**2)/2)* dt 

a = sigma* np.sqrt(dt) 

x = np.random.normal(0,1, (n, n_trad)) 

S_matr = np.zeros((n, n_trad)) # we start from a zero stock price matrix. This is a 5000*250 

matrix filled with zeros. 

S_matr [:,0] += S # at time t = 0 the stock price is 100. On the x axis of the matrix 

we have the number of simulations, on the y-axis we have the number of steps represented by 

the number of trading days 

for i in range (1, n_trad): # We use a loop to repeatedly apply the brownian motion formula. 

    S_matr [:,i] = S_matr[:,i-1] * np.exp(drift + a * x[:, i]) 

C = S_matr[:, -1] - K # payoff of a call option at the final date 

for i in range(len(C)): 

    if C[i] < 0: 

        C[i] = 0 

    else: 

        C[i] = C[i] 

# We remove all negative values since the payoff of a call option cannot be negative 

# We repeat the same process for a put option 

P = K-S_matr[:,-1] 

for i in range(len(P)): 

    if P[i] < 0: 

        P[i] = 0 

    else: 

        P[i] = P[i] 

# we compute the payoff of the options as an average of the values derived from the loops 

call_payoff = np.mean(C)  

put_payoff = np.mean(P) 

# We apply continuous discounting to derive the price of the options today. 

call = call_payoff * np.exp(-r * T) 

put = put_payoff * np.exp(-r * T) 



# We make a comparison with the closed-form expression from Black-Scholes model. 

import scipy.stats as st 

# These are the formulas we already explained in detail in the previous section 

def d1(s, K, r, vol, t):   

    return (np.log(s/K) + (r+(vol**2)/2)*t)/(vol*np.sqrt(t)) 

def d2(s, K, r, vol, t): 

    return d1(s, K, r, vol, t) - vol*np.sqrt(t) 

def callval (s, K, r, vol, t): 

    return s * st.norm.cdf(d1(s, K, r, vol, t)) - K * st.norm.cdf (d2(s, K, r, vol, t))*np.exp(-r*t) 

def putval (s, K, r, vol, t): 

    return -s * st.norm.cdf (-d1(s, K, r, vol, t)) + K * st.norm.cdf(-d2(s, K, r, vol, t)) * np.exp(-r*T) 

# We compute the prices using the same values of the simulations 

call2 = callval(100,100,0.05, 0.15, 1)  

put2 = putval(100,100,0.05,0.15,1) 

FINAL RESULTS 

The price of the call with the simulation method is 8.44 whereas it is 8.59 using BS formula. The 

price of the put with the first method is 3.76 and 3.71 with the second. 

The Montecarlo simulation method provides a fairly accurate approximation although 

its execution time depends on the number of iterations. With a very large number of  

simulations, the method becomes too slow to be competitive. 

CONCLUSIONS 

Determining the price of an option is a very difficult task since there are many parameters involved 

that affect the price: the most important are the price of the underlying asset, time and volatility. 

Any change in one of these three variables will alter the option’s value. Starting with the 

introduction of the relevant mathematical concepts, we then moved to the analysis of three of the 

most famous models for option pricing: Black-Scholes, binomial option pricing and Montecarlo 

simulation. All these models start from some relevant variables (price of the stock, strike price, 

volatility, interest rate, time to maturity) in order to theoretically value an option. They all provide 



an estimation of the option’s fair value. The first two models are based on a series of assumptions. 

Although they both consider a portfolio consisting of two financial instruments (bonds and stocks), 

the Black-Scholes model assumes that the risk free rate that the bond constantly pays and the 

volatility of the underlying asset are constant, the returns of the underlying asset follow a log-

normal distribution and that the option can only be exercised at expiration. On the other hand, the 

fundamental assumption of the binomial model is that at each moment in time the price of the stock 

can either go up (according to an up factor u) or down (according to a down factor d). These 

assumptions allow us to come up with a closed-form expression that can be immediately computed 

given the value of the other parameters. When the payoff of the option is more complicated, 

simulation is the way to go. In the last section, we discussed a practical application of the 

Montecarlo simulation method to Asian options, path dependent options which are more difficult to 

value since their value depends on the average price of the underlying asset over a period of time. 

Finally, we showed that the simulation approach is very powerful especially for large number of 

trials but this comes at the expense of a slow execution speed. Whenever the simplifying 

assumptions hold and an analytical formula is available, it should be preferred since simulation may 

become too slow to be competitive. 
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