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Aim of the Thesis

The structure of the thesis will be in the following manner. A general introduction to differential
equations will be given including classification of differential equations, some examples of
differential equations, as well as the most important theorems/proofs connected to differential
equations. Furthermore, the intuition behind Cauchy sequences, Cauchy sequences of functions,
uniform and pointwise convergence of sequences of functions will be thoroughly explained.
Next, the intuition behind the concept of optimization will be given. The Euler-Lagrange
differential equation will then be thoroughly investigated and will be applied to solve the
infamous Brachistochrone problem, which is an example of a control theory problem.
Additionally, this thesis will explore some special cases of the Euler-Lagrange differential
equation as well as integral and non-integral constraints.The Hamiltonian will also be discussed
and its physical interpretation will be analyzed. Lastly, the thesis will provide some concluding
remarks, concerning some applications of the Euler-Lagrange differential equation to Computer
Science, for example Machine Learning.

Chapters 1 and 6 are based on the book “Mathematics for Economists”, written by Carl P Simon
and Lawrence E.Blume, while chapters 7 through 12 are based on the book “ Calculus of
Variations and Optimal Control Theory: A Concise Introduction” written by Daniel Liberzon. All
the graphs and visual representations included in this thesis were realized by the author using the
Geogebra software as well as other open-source graphing software.
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PART 1
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Chapter 1: Background theory of differential
equations

In its most basic form, a differential equation is a relationship between a function, which can be
of one variable or of more than one variable, and its derivatives. Once we solve a differential
equation, the solution will be a function. In the first case, when dealing with differential
equations, we speak of Ordinary Differential Equations, and in the latter case, we speak of Partial
Differential equations. This thesis will examine Ordinary Differential Equations.

Differential equations are powerful mathematical tools that can be used to model real life
phenomena. Differential equations have a wide variety of applications throughout different
fields of study. More specifically, they have applications in Physics, Chemistry, Economics,
Epidemiology, etc. As an example, consider the following differential equation

The differential equation  describes a situation in which the derivative of the quantity at time
is proportional to the quantity  itself.

The  general form of an Ordinary Differential equation is given by

Where is the independent variable.  Moreover, let’s define𝑡

Now consider the following expression:
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If an Ordinary Differential Equation can be written as in the expression above, then we say that
the Ordinary Differential Equation is in normal form.

The ordinary differential equation can be transformed in a more convenient way as follows:

Let’s pay close attention to the following equation:

Moreover, notice that

Hence, we have obtained that

If we denote



9

This representation is very useful because it shows an Ordinary Differential equation of any
order written in normal form can be reduced to a system of first order Ordinary Differential
Equations, which in most cases is easier to solve.

Now that we have introduced the most general form of a differential equation in , let’s define
the different types of differential equations, including some simple examples of each category as
well.

Differential equations can be autonomous or non-autonomous, first order or higher order, linear,
non-linear, homogeneous, non-homogeneous.

An autonomous  differential equation is a differential equation of the form

whose left hand side is independent of the variable t. The equation below is an example of  a first
order autonomous differential equation.

To solve it we can use the separation of variables technique, since the differential equation is
separable. An Ordinary Differential Equation is separable if it can be written in the form



10

In this case, we obtain:

In order to get rid of the derivative operators, we take the indefinite integral of both sides of the
expression. We are implicitly using the Fundamental Theorem of Calculus that states that
integration is the inverse operation to differentiation:

To solve for the variable “y”, we take the inverse of the natural logarithm of both sides:

The solution to the differential equation is just a scaled version of the exponential function
.
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So far, we have obtained general solutions to differential equations. If we want to obtain a
particular solution to a differential equation, we need to specify some initial condition. This is
called a Cauchy problem. More specifically,

defines a Cauchy problem. We use the initial value condition to figure out a particular solution to
the ODE.

Non-autonomous differential equations are different from autonomous differential equations
since the right hand side of the differential equation can depend both on y and t. Let’s consider a
more challenging example:

The above differential equation is non-autonomous because the right hand side depends
explicitly on .𝑡

To solve this differential equation, we can apply a simple substitution, namely:

Next, we can differentiate the above expression with respect to :𝑡
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Next, let’s substitute into the original differential equation:

Since the above differential equation is separable, we can algebraically manipulate it to have
each one of the variables on one side:

Like in the previous example, we can take the indefinite integral of both sides to get rid of the
differentials:

The integral on the right hand side is immediate to solve. However, the integral on the left hand
side is not as straightforward. Let’s first solve the integral on the left hand side and then we can
put all the pieces together to solve the differential equation.

We proceed by  writing the denominator of the fraction in vertex intercept form:

We can now apply the substitution:
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(Equation 1.1)

We will now apply a trigonometric substitution:

Recall that:

Hence, the integral above simplifies to:
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Substituting back we obtain:

And since

We can figure out the solution to the differential equation:

Equation 1 is equivalent to:

(equation 1.2)
Which can be written as

Let’s now figure out the value of the  constant C using the initial value condition:
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Finally, plugging the value of the constant C into equation 1.2, we obtain the solution to the
non-autonomous differential equation:

Anyways, linear ODEs deserve particular attention because they can often be solved explicitly.

A first order linear differential equation takes the form:
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It is Homogeneous if

And non-homogeneous otherwise. Additionally, It is said to have constant coefficients if all the
terms are constants and do not depend on .𝑎

0
 ,  𝑎

1
 ,  ...  ,  𝑎

𝑛
𝑡

We already saw a First Order homogeneous linear differential equation with constant coefficients
in example 1.

A second order linear homogeneous differential equation with constant coefficients takes the
form:

To solve a second order linear homogeneous differential equation, we can proceed in the
following manner:

Plugging these values into the differential equation we  obtain:

The equation
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Is called the characteristic equation of the differential equation. Dependending on the
discriminant of the quadratic polynomial on the left hand side, we can understand the nature of
the roots of the equation:

The ODE has a solution in all three cases and it takes different forms. An example of the last
case will be provided  below.

Let’s consider an example:

The discriminant of the characteristic equation is given by:

The characteristic equation can be factored in the following way:

Hence, the general solution takes form:
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The last class of differential equations that will be discussed in this thesis is the
non-homogeneous second order differential equations with constant coefficients. The most
general form of a non-homogeneous second order differential equation with constant coefficients
is:

The term is called the “forcing term” . It turns out that there is a theorem that explains how
to construct the solution to the  non-homogeneous second order differential equations with
constant coefficients; it will not be proved in this thesis. The statement of the theorem given here
is based on Theorem  24.4 from the book Mathematics for economists by Carl P Simon and
Lawrence E.Blume.

The theorem above is powerful since it is saying that we only need to find a particular solution to
the non-homogeneous  differential equation and the general solution to the homogeneous one,
which is an easy take. To find a particular solution, the method of undetermined coefficients is
usually employed. Let’s consider a simple example:
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We begin by solving the homogeneous form of this differential equation. Using the same method
as in example 3, the solution to the homogeneous differential equation is given by:

Now, we need to find a particular solution. We proceed in the following manner:

After we substitute the expressions  that we found above into the original differential equation,
we obtain:

We can now match the terms on the right and left hand side:

Hence, a particular solution is given by:
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The general solution of the nonhomogeneous ODE is given by:
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Chapter 2: Picard-Lindelöf general statement of the
Theorem

In this section of the thesis, we will explore what the Picard-Lindelöf theorem states, as well as
the significance of this theorem. The statement of the theorem is the following:

The first part of the Picard-Lindelöf theorem, namely

Is essentially the definition of a Lipschitz function. Let’s consider an example of a Lipschitz
function:

Hence, the function satisfies the Lipschitz condition on with𝑓 𝐷 𝐿 =  2

The Picard-Lindelöf theorem is important since it provides a specific condition under which we
are sure to find a unique solution to our Cauchy problem. Even though when we will explore the
Brachistochrone problem, we will consider a curve that is fixed at two points, and the
Picard-Lindelöf theorem considers only one boundary condition, the Picard-Lindelöf theorem is
still an important pillar in Calculus of Variations.
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The complete proof of this theorem will be given in a later chapter of this thesis. To prove the
Picard-Lindelöf theorem, several mathematical tools are now introduced, beginning with Cauchy
Sequences, Cauchy Sequences of functions, as well as pointwise and uniform convergence of
sequences of functions.
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Chapter 3: Intuition behind Cauchy sequences

Now that we have introduced the basic background theory behind differential equations, we are
ready to move on to exploring the Picard-Lindelof theorem which provides a condition that
guarantees that there exists a solution to a Cauchy problem. However, before exploring the
Picard-Lindelof theorem and the Euler-Lagrange differential equation,  it is imperative to
understand the concept of Cauchy sequences. Let’s begin by exploring the concept of a Cauchy
sequence.

Mathematically, a sequence is a Cauchy sequence if by definition:𝑥
𝑛{ }

𝑛 ∈ 𝑁 ⊂ 𝑅

Let’s try to gain some more intuition behind a Cauchy sequence.
Let’s consider an example of a Cauchy sequence. Consider the metric space defined by

in which denotes the Euclidean metric. Moreover, consider the following  sequence:𝑑

The sequence maps each input to its reciprocal. Figure 1 provides a visual representation of this
sequence:
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(Figure 1)
Notice that the sequence seems to converge to zero, since the terms keep on getting closer to
zero. Let’s show that this sequence is Cauchy. Let .  We want to find an such that afterϵ > 0 𝑁
this point the distance between any two point is less than .ϵ

Figure 2 provides a visual representation. The red line represents the distance.
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(Figure 2)

This means that

Hence, if  we pick for example , this means that . If we pickϵ =  0. 015 𝑁 >  66. 6667
, this means that beyond the terms , the distance between any two numbers must be𝑁 =  67 1

67

less than .  For example, .ϵ =  0. 015 𝑑( 1
90 ,  1

70 ) =  − 0. 003175| | =  0. 003175 <  0. 015

Figure 3 provides some more visual support. The value is depicted by the red line.𝑑( 1
90 ,  1

70 )

(Figure 3)
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Additionally, Cauchy sequences of numbers have a very interesting property. The theorem states
that  if a sequence is Cauchy, this implies that it is convergent. The proof will be discussed
below.

The first part of the proof will be to show that every  sequence has a monotone subsequence.

The sequence above is an increasing subsequence.

The second part of the proof will be to show that a Cauchy sequence is necessarily bounded.
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So far, we have shown that a Cauchy sequence is bounded, which further implies that all its
monotone subsequences are convergent (we have proved  above that it must have at least one
convergent subsequence). Moreover, a sequence being Cauchy and having a convergent
subsequence implies that the entire sequence is convergent. Let’s prove this last statement:

Finally, this implies that the original sequence converges to .
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Chapter 4: Intuition behind Cauchy sequences of
functions, pointwise convergence and uniform
convergence

In the previous section of this thesis, we explored the concept of a Cauchy sequence. In this
section, we will investigate what it means for a sequence of functions to be Cauchy, and we will
discuss how to show that a Cauchy sequence of continuous functions is convergent.

As a concrete example, consider the function

Notice that as the variable  n approaches infinity, we obtain:

Furthermore, let’s consider another important definition:

What the statement above is saying is that a sequence of functions that are continuous and that
belong to the interval converge to a function if the supremum of the absolute value of the
difference between each of the functions and the converging function goes to zero.
Let’s consider more closely the expression
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The norm of a continuous function is defined as:

Now, we are ready to define what a Cauchy sequence of functions is.

Before moving on to an important proof, let’s consider some examples of sequences of functions
that are pointwise and/or uniform convergent to clarify these ideas.

We begin by checking whether or not the sequence above is pointwise convergent.

We can rewrite the sequence of functions in the following form:

We will now compute the considering two different cases:
𝑛 ∞
lim
→

 𝑓
𝑛
(𝑥)
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Hence, we have figured out that if and the . Thus,𝑓
𝑛
(0) =  𝑛 𝑥 = 0

𝑛 ∞
lim
→

𝑓
𝑛
(0)  =  +  ∞

the sequence does not converge pointwise for every since it diverges to if𝑓
𝑛
(𝑥) +  ∞

.𝑥 = 0 

Since the sequence of functions does not converge pointwise for every , we know𝑓
𝑛
(𝑥)

that it does not converge uniformly on .

For example,  consider the following expression

The sequence does not converge uniformly on .

Let’s consider another example:

We begin by investigating the pointwise convergence of like in the previous example.𝑓
𝑛
(𝑥)

We begin by considering an  arbitrary . This means that such that∃ 𝑛
0
 ∈  

. Thus, we know that . Hence, we can state𝑥 ∈  [𝑛
0
 ,  𝑛

0
 + 1] ∀ 𝑛 ≥  𝑛

0
 + 1 𝑓

𝑛
(𝑥) =  0 

that . Hence, this proves that converges  pointwise to
𝑛 ∞
lim
→

 𝑓
𝑛
 (𝑥) =  0  =  𝑓

0
 (𝑥) 𝑓

𝑛
 (𝑥)

on .𝑓
0
 (𝑥)
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We will now investigate the uniform convergence of the function in . We will begin by𝑓
𝑛
 (𝑥)

assuming that converges uniformly to on . Then, given that ,𝑓
𝑛
 (𝑥) 𝑓

0
 (𝑥) ϵ =  1

2 ∃ 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒
, such that  for every and every , we have that 𝑛

0
 ∈  𝑛 ≥  𝑛

0

- .|𝑓
𝑛
 (𝑥) 𝑓

0
 (𝑥)| = 𝑓

𝑛
 (𝑥)  <  1

2

Now, let’s take an arbitrary and an . This implies that𝑛 ≥  𝑛
0

𝑥 ∈  [𝑛,  𝑛 + 1 )

- . This is a contradiction, which proves that the sequence|𝑓
𝑛
 (𝑥) 𝑓

0
 (𝑥)| = 𝑓

𝑛
 (𝑥) =  1 <  1

2  
of functions does not converge uniformly on the set .𝑓

𝑛
(𝑥)

Lastly, in this section  of the thesis, we will prove the following theorem
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We can manipulate the above expression to obtain:

Another very important result is to show that the limit function is also continuous. The𝑓(𝑡)
proof of this result depends on uniform convergence and not on the sequence of functions being
Cauchy.
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This concludes the proof of the theorem that states how a Cauchy set of continuous functions
implies that they are uniformly convergent.
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Chapter 5: Complete proof of the Picard-Lindelöf
theorem

Up until this point,  we gained an intuition behind differential equations, optimization, Cauchy
sequences  and Cauchy sequences of functions as well as the notions of Pointwise and Uniform
convergence. The last step before moving on to the Euler-Lagrange differential equation is to
understand the Picard-Lindelof theorem that provides specific conditions in which our Cauchy
problem (initial value problem) has a unique solution in  a specified domain. This theorem is
useful because it has connections with many Calculus of Variations problems, for example the
Brachistochrone problem. The Brachistochrone problem consists of a functional that we are
trying to optimize as well as two initial boundary constraints; the Brachistochrone problem is an
example of an initial value problem.

The optimization that we want to solve can be expressed in the following manner:

The problem that we want to solve above is known as a Cauchy problem.

Let’s  now consider a function on a domain:𝑓 

The reason is because if we plug into the expression above, the integral term equals zero and𝑡
0

we are left with .𝑦(𝑡
0
) =  𝑦

0

Let’s define the function:
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The notation given by , denotes that Gamma belongs to the set of continuous functions
on the specified domain.

The reason is because if we are able to find such a function , this would solve the initial Cauchy𝑦
problem.

Recall that a function is Lipschitz in , uniformly in , if𝑓 𝐵 𝑡

Moreover, we now proceed in the following way:
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The reason is because the

represents the largest possible value that the term can take. If we multiply it by
(length of the interval)  we are computing an upper bound for the area𝑡 − 𝑡

0
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If  we continue applying the same procedure times, we finally obtain:𝑛

To better understand why, consider the following  example:

Hence, we have figured out that:
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Recall the following property:

We  will now extend this definition concerning functionals.

The operator in some ways varies the distance between and in a predictable manner.𝐴 𝑓 𝑔
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Finally, consider (equation 5) given by

We have proven that if is Lipschitz, has a fixed point that must be a solution to the initial𝑓 Γ
value problem given by

Recall that the function at the beginning of this proof was defined in the following way:𝑓

Knowing that is Lipschitz, we automatically have a corresponding Lipschitz constant . We𝑓 𝐿
figured out that for the geometric series to converge, we need . To have this condition

satisfied we may need to restrict the domain of . We restrict to so that𝑓 𝐼 [𝑡
0

− 𝑎 , 𝑡
0

+ 𝑎] 

Since we want , w e need that

which is equivalent to
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Moreover, being Lipschitz implies that is continuous. The . Since the𝑓 𝑓 𝐷𝑜𝑚𝑎𝑖𝑛(𝑓) =  𝐼 × 𝐵
Domain of f is a closed and bounded set (it is a rectangle), we know by the Weierstrass theorem
that has a maximum on . Let’s denote this maximum by𝑓 𝐼 × 𝐵

Putting everything together, we need that

This result implies that we can solve
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PART 2
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Chapter 6: Optimization intuition
In this chapter of the thesis, we will explore the general idea of the concept of optimization
which is a central pillar to understand the idea of Calculus of Variations. When  the terms
“minimize” or “maximize” are used, this is a clear indication that we are dealing with some sort
of optimization problem. The idea of optimizing a function can be generalized to any
multivariable function, and not solely to single variable functions. Partial derivatives are
employed when trying to optimize multivariable functions analogously to how optimization is
conducted for single variable functions.

We  will briefly explore the concept of unconstrained optimization for functions of several
variables and explain some important results and definitions. Next, we will move on to
Constrained Optimization dealing with First Order Conditions. Lastly, we will analyze the
Lagrange Multiplier method applied to optimization problems.

The definition of a maximum and minimum for functions of several variables is analogous to
functions of a single variable. Before moving on to these definitions, let’s explore the meaning of
the notation.𝐵

𝑟
 (𝑥)
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For a point to be a local and/or strict minimum, the same definition given above applies, with the
inequality sign reversed.

What condition three is stating is that a point is a local max for a function if there are no nearby
points in which the function takes on a larger value. It is important to clarify that the words
“nearby points” denote a neighborhood around the candidate point for being a local max. The
neighborhood is typically chosen to be a ball having radius . Mathematically, a neighborhood is𝑟
defined in the following way:

Additionally, let’s gain some intuition regarding what a saddle point is.

A saddle point is a critical point in which, along a certain direction, the function attains a
minimum, while along another direction, the function attains a maximum. Let’s look at some
visuals:

The function has  a saddle point at . Figure 4 provides a visual𝑓(𝑥, 𝑦) =  𝑥2 − 𝑦2 (0, 0)
representation.
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(Figure 4)

(Figure 5)

Notice that the function at has a saddle point. In fact, the second order partial derivatives(0, 0)
evaluated at that point have opposite signs, and this phenomenon will be discussed in detail later
on in the thesis.

Moreover, when discussing Unconstrained Optimization for multivariable functions, it is critical
to generalize the First Order and Second Order conditions, applied to single variable functions, to
multivariable ones. Before moving to the theorem, let’s briefly look at the definition of what an
interior point is, since this concept will be incorporated in the theorem.
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Now that we have explored the First Order Condition for functions of variables, we can𝑛
explore the Second Order Conditions. But, before moving on, it is crucial to describe a very
important theorem called the Schwarz Theorem. This theorem provides a condition that
guarantees that the Hessian matrix is symmetric.

Let’s now explore  the Second Order  Conditions.
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Let’s consider an example:

From the Schwarz theorem, since function is a polynomial, we know that its second𝐹(𝑥, 𝑦)
order partial derivatives are continuous, hence the Hessian matrix will be symmetric.

We begin by computing the first order, second order and mixed partial derivatives of the
function:
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The Hessian is given by:

The Hessian matrix is significant because by classifying the  Hessian matrix of a multivariable
function evaluated at a critical point, we can understand the nature of this critical point, that is if
the point corresponds to a local max, min or a saddle point.

We will always assume that the Hessian matrix is symmetric.
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The theorem that we stated above concerning the sufficient conditions for a critical point to be a
local maximum, minimum or saddle point can be reformulated in another more convenient way,
using properties of symmetric matrices. This new formulation of the theorem is based on
Theorem 17.3 from the book “Mathematics for Economists'' by Carl P.Simon and Lawrence
E.Blume. Before moving on to the theorem, let’s explore two important definitions.

Now, we  are  ready to explore the theorem below.
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Like for functions of single variables, we can generalize the second order necessary conditions
for multivariable functions. Below, we will explore the necessary conditions and then we will
provide a concrete example.

Let’s look at a concrete example with some visuals:

We begin by computing its  first order and second order partial derivatives:
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We then set both partial derivatives equal to zero. Since the partial derivatives are continuous
because is a polynomial, this means the function is differentiable, and therefore, 𝐹(𝑥, 𝑦)  𝐹(𝑥, 𝑦)
the tangent plane is well defined at the points in which the partial derivatives are equal to zero.

We then try to solve equations 6 and 6.1:

After we substitute (equation 6) into (equation 6.1) for the variable , we obtain:𝑦

To find the corresponding coordinates, we substitute both values of that we found above into𝑦 𝑥
equation 6:
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We must now compute the Hessian matrix evaluated at both candidate points in order to classify
both candidate points:

We can now construct the Hessian matrix:

Let’s evaluate the Hessian at the critical points that we computed above:

Let’s apply the theorem containing the sufficient conditions. We have to compute the leading
principal minors which are different from the principal minors:
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Since the second leading principal minor violates the sign pattern ,  by the sufficient(−, +, −,  ...)
condition theorem, is a saddle point.(0, 0)

Moreover, let’s do the same for the other point:

By the sufficient condition theorem, since all leading principal minors are positive, this means
that is a local minimum.(3, − 3)

Moreover, is not a global minimum because of the following observation:(3, − 3)
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(Figure 6)

Figure 6 provides a visual representation of the function. Points A and B are plotted which
correspond to a saddle point and local minimum respectively.

So far we have explored the concept of unconstrained optimization for functions of several
variables. The last part of this section of the thesis, concerning optimization, will explore the
concept of Lagrange Multipliers applied to a Constrained optimization problem subject to one or
more equality constraints.

Before moving on to the concept of Lagrange Multipliers, we will briefly define what a level
curve for a function is.

Now, consider the following problem:
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The general idea is that we want to find a specific point such that the level curve of at𝑓

is tangent to the curve given by . Thanks to this tangency condition at ,𝐶
1
𝑥

1
+ 𝐶

2
𝑥

2
=   𝐷

the gradient of the function is equal to the gradient of the constraint function𝑓(𝑥
1
,  𝑥

2
)

. More specifically, assuming that𝐶
1
𝑥

1
+ 𝐶

2
𝑥

2
=   𝐷

we can write the following:

The statement above is equivalent to the following equation:

The parameter is  called the Lagrange Multiplier.µ 

Since we are trying to solve for three unknown quantities, namely we  need another𝑥
1
 , 𝑥

2
 ,  µ 

equation. Such equation is given by the constraint itself:
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The three equations above can be encapsulated into the so-called Lagrangian equation. We define
a Lagrangian function

in the following way:

and we solve

Solving the initial constrained optimization problem with an equality constraint is  equivalent to
maximizing the Lagrangian function by setting each one of its partial derivatives equal to zero,
as if it was an unconstrained optimization problem that we covered in the previous section.

In the above discussion, it is crucial that at least one of the two partial derivatives

are different from zero. The condition is called a Constraint qualification. The reason is
because at a critical point, we want the constraint function and the level curve of to be tangent𝑓
to each other. If both partial derivatives of the constraint function at that point are zero, then this
implies that the constraint function is not a curve.

Let’s now consider a concrete example in which we apply the Lagrange Multipliers Theorem:
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We can solve this constrained optimization problem by applying the Lagrange Multiplier
theorem;

Moreover, substituting (equation 6.2) into the original constraint function, we obtain the
following:
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This implies that the  candidate points are:

The points that maximize the function subject to the constraint are:

Now, let’s gain some intuition regarding what we just computed.

(Figure 7)

Figure 7 provides a graph of the constraint function.

We are essentially asking, out of all possible level curves of the function , which level𝑓(𝑥
1
,  𝑥

2
)

curve is tangent to the constraint function depicted in Figure 7.
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(Figure 8)

Figure 8 depicts several level curves of the function drawn in yellow and red.𝑓(𝑥
1
,  𝑥

2
)

Moreover, the constraint function is drawn in black (black dotted lines) and the function
is depicted in blue.𝑓(𝑥

1
,  𝑥

2
)

We found that the level curve associated to the points is given by:(2, 2),  (− 2, − 2)

(Figure 9)
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In Figure 9 we have drawn in red the level curve associated to the points and(2, 2),  (− 2, − 2)
in black, the constraint function. We also plotted the points denoted by A and(2, 2),  (− 2, − 2)
B respectively.

(Figure 10)

In Figure 10, It is evident that the gradient vector of the constraint function at the point ,𝐴 (2, 2)
drawn in red,  is a scalar multiple of the gradient vector of the level curve of ) at the𝑓(𝑥

1
,  𝑥

2

point , drawn in green.𝐴 (2, 2)

In some cases, we can deal with constrained optimization problems with more than one equality
constraint. More specifically:
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We must also generalize the constraint qualification involving constrained optimization subject
to one equality constraint.
In the case that we are dealing with just one equality constraint, the constraint qualification is
met if there are some first order partial derivatives of the constraint function evaluated at the
critical point that are different from zero. In this case, we have to generalize this condition using
the Jacobian matrix. First, we will briefly define the Jacobian matrix.

Now, we can resume our discussion above, since we have defined the Jacobian matrix.
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We are ready to explore the theorem that explains how to apply the techniques of Lagrange
Multipliers to a constrained optimization problem with more than one constraint function:
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Chapter 7: First and Second Variation of a functional
In this chapter of the thesis, we will explore the concept of a functional. Next, we will derive the
First Variation as  well as the Second Variation of a functional using an interesting approach
based on a Taylor Series approximation. Lastly, we will explore Legendre’s necessary condition
for a weak minimum based on the Second Variation of a functional.

In the previous sections of this thesis, we gained an intuition behind the concept of optimization
involving a real-valued function in , and  we tried to find points that maximized or minimized
the function subject to some constraints. Now, we will move towards a new idea, that is trying to
find a function belonging to a space of functions, that minimizes a functional. More specifically,

denotes a vector space containing functions. is an arbitrary function in .𝑉 𝑦 ∈  𝑉 𝑉

We call a functional , a real valued function defined on , that is𝑉

When dealing with optimization of real-valued functions, we know that we can approximate a
multivariable function by generalizing the concept of a Taylor expansion to . We essentially
pick a point, and then we try to approximate the function locally evaluated at that point. We
essentially take increments and add them to the function evaluated at that initial point in a
neighborhood around that point. To take increments we need a distance.

In this case, how do we define the concept of distance for functions ? We will first define the
concept of a norm because the norm gives us a distance which allows us to define local maxima
and minima, and enables us to analyze concepts like convergence and continuity.

In other words, the norm must obey the four properties described above. The definition of the
norm given above makes sense only if is a vector space. Given a norm on we can define𝑉 𝑉
the distance between any two elements as𝑦, 𝑧 ∈  𝑉

We can now define what it means for a function to minimize a functional defined on a𝑦 ∈  𝑉
vector space . We need to have a clear definition of the concept of distance, which we have𝑉
given above, to define concepts like local maxima and minima of functionals. With a norm,
hence a distance, we can also define balls around points:



63

What the definition above is saying is that if we consider a ball of radius , and analyze allϵ

functions in that neighborhood, is smaller than or equal to𝑦 𝐽(𝑦⋆) 𝐽(𝑦).  

We can now move on to deriving the First Variation of a functional.

The method that will be used has a direct parallelism with the derivation of the first Order
necessary condition concerning unconstrained optimization of a real valued function on . We
propose here a particular proof of the Sufficient Condition theorem given on page 43 to
showcase how this same logical reasoning can be applied to obtain the First Variation of a
functional.

We begin by fixing a domain . Moreover, we also assume that:

We  consider being an arbitrary vector, and we assume that

We are essentially starting at the point , and then we are moving along the vector with
increments equal to .α

When is fixed, we define the following:
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Notice that is differentiable because is differentiable. We now begin by constructing  the𝑔 𝑓
Taylor expansion centered around for the function :α =  0 𝑔(α)

We know that is a minimum of , hence this implies that . This means that𝑓 0
is a minimum of .𝑔

We make the claim that because we said that is a minimum of . To prove this0 𝑔
statement we can proceed as follows.

Suppose that . This means that

Hence, from equation 7, we know that

If has an opposite sign to , we obtain the following:α

This is a contradiction since we said that is a minimum for . Hence, . At this𝑓
point, we need to express the result that we obtained above in terms of the function . If we𝑓
apply the chain rule from Vector Calculus, we obtain:
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Since is an arbitrary vector, this implies that . Now that we have seen this𝑑
technique, we  will apply the same logic to arrive at the First Variation of a Functional.

The first variation

can be seen as the derivative of in the direction of at . Indeed, if we define𝐽 η 𝑦

Now, let be  a local minimum for over . Consider also the function𝑦⋆ ∈  𝑉 𝐴 ⊂  𝑉

The Taylor expansion for centered at is given by:ϕ(α) α =  0

Since we said that is a minimum for over , and since𝑦⋆ ∈  𝑉 𝐴 ⊂  𝑉
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we have that is a minimum of . We make the claim, like in the previous computation that 0 Φ
. Analogously like before, we can proceed as follows:ϕ'(0) =  0 

Suppose that . This means that

Hence, from equation C, we know that

If has an opposite sign to , we get the following:α

This is a contradiction since we said that is a minimum for . Hence,0 Φ

To better understand why the above result is true, notice that the Taylor Expansion for

can be written as:𝐽(𝑦⋆ + αη)

We have thus proved the result.

We have reached the First Order Necessary Condition. Now that we have seen an interesting
method that uses ideas from Optimization to derive the First Variation and the First Order
Necessary Condition, we will explore the second Variation as  well as the Second Order
Necessary Condition.
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The statement above is analogous to the Second Order  necessary Condition concerning
optimization of multivariable real-valued functions, discussed in the previous chapter. More
specifically

are very similar to each other. At this point, one may think that a second order Sufficient
Condition exists also for functionals, as we have seen in the previous chapter concerning
optimization, that takes the form

Hence, this implies that is a minimum point for . However, it turns out that is not the case.𝑦⋆ 𝐽
The proof of why the statement is false will not be shown in this thesis. The general idea is that

the linear increments are too few to guarantee that is a local minimum.𝐽(𝑦⋆ + αη) 𝑦⋆

We are now ready to explore a more explicit formula for the Second Variation of a functional as
well as Legendre’s condition  for a weak minimum. Before moving on, we will consider two
examples of computing the First and Second Variation of a functional. These two examples are
based on exercise 1.5 and 1.6 taken from the book “ Calculus of Variations and Optimal Control
Theory: A Concise Introduction” written by Daniel Liberzon.
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To solve this exercise, recall that

In this case is given by . We will now𝐽(𝑦 + αη) 𝐽(𝑦 + αη) =  
0

1

∫  Φ(𝑦(𝑥) + αη(𝑥)) 𝑑𝑥

compute a Taylor expansion for .𝑔(α) = 𝐽(𝑦 + αη)

If we match the two terms highlighted in red above, we obtain the following:

This is the First Variation of the functional . We also know that the First Variation exists
because . The Taylor expansion that we computed above is valid
because we know that is differentiable at . Moreover, sinceϕ 0
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we can compute a Taylor expansion for which is a single variable function, namely𝑔(α)
. The term𝑔(α) =  𝑔(0) +  α 𝑔'(0)

Moreover, the term

By defining , we were able to compute the Taylor expansion since is a𝑔(α) =  𝐽(𝑦 + αη) 𝑔(α)
function taking as input .

The logic to solve this exercise is exactly the same as the one used in the first example. The only
difference is that the Taylor expansion will include more terms. We have

We will now compute the Taylor expansion for .𝑔(α) = 𝐽(𝑦 + αη)
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If we match the two terms highlighted in red above, we obtain:

This is the Second Variation for the functional . The reason why the Taylor expansion shown𝐽
above is valid is exactly the same as the justification given in example 1.

Now, let’s go back to our discussion concerning how to obtain a more explicit expression for the
second variation of a functional.

Recall the following expression

(equation 7.3)

The term given by the following

denotes the Second Variation of the functional . Suppose the functional takes the following𝐽
form

where is the Lagrangian function, and it is given by . More specifically,𝐿 𝐿(𝑥,  𝑦(𝑥),  𝑦'(𝑥))

Moreover, among all curves that satisfy and , we   𝑦:  𝑎, 𝑏[ ] → 𝑦(𝑎) =  𝑦
0

𝑦(𝑏) =  𝑦
1

want to find local minima of the functional given by

Hence, we must compute both the first and second variation of a functional. We begin by
assuming that . The left hand side of the above equation can be expressed as:
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We are considering functions such that . We will now construct a Taylorη(𝑥) η(𝑎) =  η(𝑏) =  0
expansion of the above expression with respect to the parameter . To keep the notation clearα
and less convoluted we will write instead of . Additionally, we will denote by𝐿 𝐿(𝑥,  𝑦(𝑥),  𝑦'(𝑥))

the derivative of with respect to its second argument evaluated at . The same reasoning𝐿
𝑦

𝐿 𝑦(𝑥)

applies for the term .𝐿
𝑦'

By computing the derivatives of the above expression and combining like terms, we obtain the
following:

Matching term by term with equation 7.3, we obtain the following:

Let’s now use Integration by parts on the term given by
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The reason is because the perturbation is a function of . Let’s now apply Integration byη(𝑥) 𝑥
Parts:

The reason why the expression highlighted above in red simplified in that way is because

Hence, the Second Variation can be written explicitly as:

We obtain the following:
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The functions and are continuous when .θ(𝑥) κ(𝑥)

Moreover, to arrive at Legendre’s condition for a weak minimum, we need to understand the
behavior of the functions and . We will not provide the derivation of Legendre’sθ(𝑥) κ(𝑥)
condition for a weak minimum, however, we will just include the statement below.

Building upon Legendre’s condition for a weak minimum, we arrive at the Second Order
Sufficient Condition. We will not show the proof in this thesis:

As an important remark, we do not discuss completely in this section of the thesis the Second
Order Sufficient Condition for Optimality, but in the specific case in which is a function of an𝑦
interval , we can still have a formulation as given above.[𝑎, 𝑏]

In the next section of the thesis, we will derive the Euler-Lagrange differential equation, which is
just an explicit formulation of the First Variation of a function using two different methods.
The rationale of using two different methods to arrive  at the same result is to showcase two
different ways of reasoning.
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Chapter 8: The Euler-Lagrange equation derivation
and intuition

There are many different Calculus of Variations problems, for example the Brachistochrone
problem, which will be explored in the succeeding chapter of this thesis, the Catenary problem
explored by Johann Bernouilli, and Dido’s isoperimetric problems. The Euler-Lagrange equation
proves to be a valuable tool in solving some of the aforementioned problems. The
Euler-Lagrange differential equation is an explicit generalization of the First Order Necessary
condition for optimality, discussed in the previous chapter. In this chapter as well as in the
succeeding chapters, we will explain the theory behind minimization problems, but of course, all
the theory can be reformulated concerning maximization problems.

For example, Dido's isoperimetric problem tries to solve the problem depicted in Figure 11:

(Figure 11)

In figure 11, we have drawn in black a curve of fixed length. Moreover, the admissible curves
are graphs of continuous functions
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that satisfy .𝑦(𝑎) =  𝑦(𝑏) =  0

The problem is to find a positive function such that the area between the x-axis and the graph𝑦
of is maximized. More specifically,𝑦

is the functional to be maximized, and the constraint is given by

See page 85 for a more thorough explanation concerning why this is the correct way to measure
the length of the curve. In this case, the constraint embedded into this problem requires that all
paths/curves have a constant length.

Another famous Calculus of Variations problem is the Catenary problem.

Figure 12 represents the problem that we are trying to solve

(Figure 12)

We have a cable of fixed length, fixed at two points and . We want to understand what shape𝑎 𝑏
the cable makes under the influence of gravity, as shown in figure 12.
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The cable takes the shape that minimizes its potential energy. If we model the cable as a function
, then we want to𝑦(𝑥)

Lastly, the Brachistochrone is another Calculus of Variations problem, which will be discussed in
detail in the next section of this thesis. In the Brachistochrone problem, we are trying to find a
function that defines a curve fixed at two points and , such that the time𝑦(𝑥) 𝐴(𝑎,  𝑦

0
) 𝐵(𝑏,  𝑦

1
) 

for a ball to move from point A to point B along the curve is minimized. Figure 13 provides a
visual representation.

(Figure 13)

The functional that we want to minimize in this case is given by

A more thorough derivation of this equation will be given in the succeeding chapter of this
thesis.
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Now that we have seen some basic Calculus of Variation problems, we will move to the
derivation of the Euler-Lagrange differential equation.

Consider the function where . Among all the possible𝐿(𝑥,  𝑦(𝑥),  𝑦'(𝑥))

curves that satisfy the boundary conditions given by and ,𝑦(𝑎) =  𝑦
0

𝑦(𝑏) =  𝑦
1

we want to find the specific function that minimizes the functional given by𝑦(𝑥)

is a curve that connects the points and . is the Lagrangian and and𝑦 (𝑎,  𝑦
0
) (𝑏,  𝑦

1
) 𝐿 𝑦(𝑥) 𝑦'(𝑥)

denote the position and velocity respectively of a particle moving along the curve.

We  begin by considering where is a perturbation such thatη
function,  and the parameter varies in an interval around in . Moreover, we denote byα 0

the partial derivatives of the Lagrangian function . The curve given by𝐿(𝑥, 𝑦(𝑥),  𝑦'(𝑥)) 𝑦 + αη
must satisfy and which means that .  Note  that𝑦(𝑎) = 𝑦

0
𝑦(𝑏) =  𝑦

1
η(𝑎) = η(𝑏) =  0 

and are the boundary conditions of our problem.𝑦(𝑎) = 𝑦
0

𝑦(𝑏) =  𝑦
1

Recall that the First Variation satisfies the following expression

(equation 8)

Furthermore, since we know an explicit formula for , we  can write equation 8 as

Now, by using the Multivariable Chain Rule, we write the Taylor expansion for around ,𝐽 α = 0
obtaining
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If we match the above expression with the First Variation expression, depicted in equation 8, we
obtain the following:

(equation 8.1)

The above expression is an explicit form of the First Variation of a functional . However, this is
not particularly convenient since the second term depends on ; we say in this case that the first
variation is in a weak form. We can apply integration by parts on the second term, to turn the
weak form of the First Variation into a strong form.

After applying integration by parts, we obtain:

The term

evaluates  to zero because of the boundary conditions . Hence, afterη(𝑎) =  η(𝑏) =  0
substituting the above expression highlighted in red into equation 8.1, we obtain:



79

If is optimal, that is it solves our minimization problem, the integral evaluates to since we𝑦 0
proved in a previous section of the thesis that if is an optimal curve, then𝑦

The proof of Lemma 1 will not be discussed. Hence, this means that for to be an extremum𝑦(𝑥)
for the functional , the following equation must hold:

The equation highlighted in red above is the Euler-Lagrange differential equation. It is possible

to extend the equation to cases where .𝑦 =  (𝑦
1
 ,  𝑦

2
 ,  ...  ,  𝑦

𝑛
)𝑇 

Moreover, notice that the right hand side of the Euler-Lagrange differential equation can be
written as

We just used the Multivariable Chain rule to obtain the above expression. It is interesting to
notice that there are some second order partial derivatives involving and , for example the𝐿 𝑦
term

This observation may seem to suggest that

Recall that the weak form of the First Variation given by equation 8.1 is the following
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We will now apply Integration by parts to the term given by

Notice that the term in blue above evaluates to because . We  just left with0 η(𝑎) =  η(𝑏) =  0
the term highlighted in red above. We can now substitute the term in red into equation 8.1.
Moreover, we changed a  bit the notation in the equation highlighted in red above to avoid
confusion with the variable in the integration limits. We changed the input variables of from𝑥 𝐿

to .𝐿(𝑥,  𝑦(𝑥),  𝑦'(𝑥)) 𝐿(𝑤,  𝑦(𝑤),  𝑦'(𝑤))

Hence, if is a minimum for the functional , we obtain𝑦(𝑥)
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The proof of Lemma 2 will not be discussed in the thesis. Hence, from Lemma 2, we obtain that
along an optimal curve , we have:𝑦(𝑥)

This means that

Hence, for the Euler-Lagrange necessary condition, it is enough to assume that

Now that we have gained a solid intuition behind the first method of deriving the Euler-Lagrange
differential equation,we will look at the same problem discussed above, from a different
perspective, to obtain the same exact solution. The logic behind this second method is exactly the
same as in example 1, however, the way the proof is carried out is slightly different.
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Moreover, we assume that is the optimal path, while is an arbitrary path such that𝑦(𝑥) η(𝑥)

.

denotes a variation of the function where varies in an interval around in .𝑦(𝑥) α 0
Now, consider the following expression

In addition, we require that

This implies that . These are the boundary conditions. Figure 14 provides aη(𝑎) =  η(𝑏) =  0
visual representation.

(Figure 14)

Now, we take the derivative with respect to obtaining𝑥
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Recall that the functional in question is given by

Now, analogously to when we compute the critical points of  real-valued functions, we can
generalize this idea to functionals. More specifically, given that is the optimal curve for𝑦(𝑥)

, this implies that

The reason that we included the condition as is because when approaches , we obtainα →  0 α 0
that

In this case, is constant since it’s the optimal path. On the other hand, is an arbitrary𝑦(𝑥) η(𝑥)
path, but once a particular is chosen, it remains constant. The parameter that changes is thusη(𝑥)

. Hence, we obtainα

By the Leibniz Rule, since the boundaries of integration are constants, we can take the derivative
inside the integral:

Using the Multivariable Chain rule, we obtain:
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The term since does not depend on . Moreover, note that𝑑𝑥
𝑑α  =  0 𝑥 α

Substituting these values into the above integral expression, we get

Recall that as , the variation of  the actual solution approaches the actual solution. Inα →  0
other words

Hence, when , we obtainα =  0

(equation 8.2)

Now, at this point, we can apply the exact same logic used in method 1 to obtain the
Euler-Lagrange differential equation.

In the next chapter we will consider some special cases of the Euler-Lagrange differential
equation.
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Chapter 9: Special cases of the Euler-Lagrange
differential equation

Recall that the Euler-Lagrange differential equation is given by:

This means that remains constant. Hence, the minima are solutions to𝐿
𝑦'

As we will explore recall later on, is called the momentum.𝐿
𝑦'

 (𝑥,  𝑦,  𝑦')

This means that can be written as .𝐿 𝐿(𝑦, 𝑦')

Consider the Euler-Lagrange differential equation again. We will write it this time using a
different notation:

We will now multiply both sides by .𝑦'
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Now let’s compute the total derivative of with respect to .𝐿(𝑦, 𝑦') 𝑥

Now, by equating the two expressions highlighted in red above, we obtain

Since we said initially that does not depend explicitly on , we know that𝐿 𝑥

Hence, the expression highlighted in pink above becomes

which implies that
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We can multiply both sides by to obtain− 1

An equivalent expression for the above equation using a different notation is

As we will discuss later on, the quantity given by

is called the Hamiltonian. Its significance will be thoroughly explained in a later chapter.
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Chapter 10: The Brachistochrone Problem

We will now solve a very famous Calculus of Variations problem called the Brachistochrone
problem using the previously derived Euler-Lagrange differential equation. As a small historical
background to this infamous Calculus of Variations problem, in 1670, Calculus was invented by
Newton and Leibniz independently. Next, in 1696, Bernoulli proposed the so-called
Brachistochrone problem. Later on in 1733 Leonard Euler elaborated on the Brachistochrone
problem. Johann Bernouilli’s aim of posing this problem to the mathematical community was to
“gain the gratitude of the whole scientific community by placing before the finest
mathematicians of his time a problem which will test their methods and the strength of their
intellect.” (Johann Bernouilli)1. Galileo incorrectly stated that the path of fastest descent would
be an arc of a circle. Newton, Jacob Bernouilli, Leibniz and De L’Hôpital proposed solutions to
the problem, and in 1760, Lagrange published an essay concerning new methods of determining
the maxima and minima of indefinite integral formulas. 2 Let’s now begin to analyze the
Brachistochrone problem. Let’s consider figure 15

(figure 15)

The basic idea is that we are given two fixed points A= and B= . Moreover, we(𝑎 ,  𝑦
1
) (𝑏 ,  𝑦

2
)

want to find a specific curve where such that the time for a ball to move from𝑦(𝑥)
point to point is minimized. Moreover, at each infinitesimal point on the curve, there is a𝑎 𝑏
downwards force that acts on the ball, namely the force due to gravity, denoted by . Let’s now𝑔
formulate the Brachistochrone problem in terms of a Calculus of Variations problem.

2 J J O’Connor and E F Robertson, The Brachistochrone problem

1 J J O’Connor and E F Robertson, The Brachistochrone problem
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Assume that at time the ball is at point A. We want to minimize the total time it takes the𝑡 =  0  
ball to reach point B. Hence, we can use a definite integral, namely

Recall from Kinematics that . This implies that .𝑠𝑝𝑒𝑒𝑑  =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑡𝑖𝑚𝑒 𝑡𝑖𝑚𝑒 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑠𝑝𝑒𝑒𝑑

We can rewrite the integral as

(equation 10)

where represents infinitesimally small lengths of the curve and denotes the velocity of the𝑑𝑆 𝑣
ball. We use the integral since we want to take the sum of all these infinitesimally small
segments of the curve divided by the velocity of the ball at each point on the curve. Using the
Pythagorean Theorem, we know that

We now need to figure out an expression for ( the velocity of the ball at each infinitesimally𝑣
small length of the curve). From the Principle of conservation of energy, we know that when the
ball starts at point it has potential energy, and then the ball gains kinetic energy. By the𝐴
principle of conservation of energy, this implies that
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Notice that denotes the height of the ball at each point on the curve. Substituting the two terms𝑦
highlighted in red above into equation , we obtain:10

The above expression can be rewritten as

Hence, we are trying to minimize the functional depicted above. The function in this case is𝐿

given by = . Notice that it does not depend on . We can use the Beltrami𝐿(𝑦, 𝑦') 1+(𝑦')2

𝑦 𝑥
identity which corresponds to special case 2 of the Euler-Lagrange equation; see page 80.

In this case we obtain

Multiplying both sides by we get𝑦 ,
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Multiplying both sides by gives us1 + (𝑦')2

Finally, after squaring both sides, the expression reduces to

If we denote as , we get1

𝐾2 𝐶
1

Notice that the above differential equation is autonomous and separable.

Now, we will utilize a trigonometric substitution.
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After applying this substitution,  we obtain

Hence, the solutions are given by

To find the values of the constants, we can use the initial boundary conditions depending on the
situation. The two parametric equations that we obtained above
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are the equations that define a Cycloid. Let’s gain some intuition regarding the shape of  a
Cycloid. Figures 16,17,18,19 provide a visual  representation.

(Figure 16)

(Figure 17)
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(Figure 18)

(Figure 19)

From the diagrams above, we can see that a Cycloid is the path traced out by a fixed point on the
circumference of a circle as the circle rolls along a line. Hence, relating back to the
Brachistochrone problem, using techniques from Calculus of Variations, we figured out that the
Cycloid that passes through points and minimizes the time it takes for the ball to(𝑎,  𝑦

1
) (𝑏,  𝑦

2
)

move from to under the  influence of gravity.𝐴 𝐵
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Chapter 11: The Hamiltonian
In the previous chapter of the thesis, we applied the Euler-Lagrange equation (Beltrami identity)
to solve the famous Brachistochrone problem. In this section of the thesis, we will discuss in
more detail the Hamiltonian, the Principle of Least Action as well as the principles of
conservation of energy and momentum. All these fundamental ideas in Physics can be
formulated using the Hamiltonian and the Euler-Lagrange differential equation.

Suppose we are given a minimization problem with Lagrangian . The momentum associated to𝐿
a given is defined as𝑦 = 𝑦(𝑥)

where is the Lagrangian. The Hamiltonian, for our minimization problem, is defined as𝐿

In this case, and are called canonical variables. Let’s now explore Hamilton’s canonical𝑦 𝑃
equations. Let be a minimum for our problem that satisfies the Euler-Lagrange differential𝑦
equation. We know that

Let’s now figure out a similar expression for :𝑑𝑃
𝑑𝑥

The equations highlighted in red above are Hamilton’s canonical equations, therefore, another
necessary condition for having an optimal solution is strictly related to the Hamiltonian. The
condition states that has a stationary point as a function of along the optimal curve .𝐻 𝑦'(𝑥) 𝑦(𝑥)
To better understand this statement, note that
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Moreover, let and let be the optimal curve. We define𝑥 ∈  [𝑎, 𝑏] 𝑦

Additionally, the Hamiltonian is given by

Consider now . One can prove that has a stationary𝐻(𝑧) = 𝐿
𝑦'

 (𝑥, 𝑦, 𝑦') 𝑧 −  𝐿(𝑥, 𝑦, 𝑧)  𝐻(𝑧)
point when , which represents the velocity of the optimal curve at . More𝑧 =  𝑦'(𝑥) 𝑦 𝑥
specifically, .𝑑𝐻

𝑑𝑧  (𝑦'(𝑥)) =  0 

Another interesting idea that emerges is the Principle of  Least Action. Recall Newton’s law that
states that where denotes the resultant force acting on a system, denotes the mass,𝐹 =  𝑚𝑎 𝐹 𝑚
and denotes the acceleration. We can formulate this law as𝑎

(equation )11

where is the mass, = denotes the velocity, and finally represents the𝑚 𝑑𝑞
𝑑𝑡 𝑈 =   𝑈(𝑞)

potential energy.

In addition, is the momentum, and is the force acting on a system. It turns out that − 𝑈
𝑞

there is a very nice connection between Newton’s law of motion given by equation 11

and the Euler-Lagrange equation. To see this interesting connection, we must rewrite the
Euler-Lagrange differential equation in terms of this new notation. More specifically,
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Hence, the Euler-Lagrange equation becomes using this new notation:

(equation 11.1)

The curves are now parameterized with respect to time ( ).  The central question that we now𝑡
want to answer is what Lagragian function makes equation and equation the same. If11 11. 1
in we consider

Equation 11 and equation are the same. To see why notice that11. 1

The term given by

denotes the kinetic energy, while the term given by denotes the potential energy. The𝑈(𝑞)
specific Lagrangian function given by

gives Hamilton’s Least Action Principle.
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More specifically, the paths of mechanical systems are the extremals of the following integral

where denotes the kinetic energy and denotes the potential energy. Hamilton’s Least Action𝑇 𝑈
Principle states that a particle will take the path that minimizes the difference between its kinetic
and potential energies. If we recall the definition of the Hamiltonian,  using the Lagrangian
function given by

we arrive at a  very intuitive physical interpretation of the Hamiltonian.

The Hamiltonian thus represents the total energy in a system. We can apply what we discovered
about the physical interpretation of the Hamiltonian to the two special cases of the
Euler-Lagrange differential equation, to obtain the principles of conservation of energy and
momentum. In each one of the cases discussed below, the Lagrangian function is given by𝐿

The conservation of energy principle is based on the special case 2 of the Euler-Lagrange
differential equation, also known as the Beltrami identity.
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Moreover, the conservation of momentum principle is based on special case 1 of the
Euler-Lagrange differential  equation.

In the next chapter of the thesis we will consider some Calculus of Variations problems dealing
with constraints. We will consider just a few situations and we will provide some intuition
behind how to solve them.
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Chapter 12: Integral, non-integral constraints and
variable end point problems

In this last chapter of the thesis, we will consider three different possible plausible scenarios that
may emerge when dealing with a Calculus of Variations problem. We will begin with variable
end point problems and then we will move on to integral and non-integral constraints.

So far, we considered, as variations, a class of functions denoted by , which must equal zeroη(𝑥)
at the respective endpoints. More specifically, . We  will now consider aη(𝑎) =  η(𝑏) =  0 
slightly different problem. Consider the functional given by

In this case can take on any value. This means that but is not necessarily𝑦(𝑏) η(𝑎) =  0 η(𝑏)
equal to zero; it can be equal zero,  but it is not restricted to equal zero. Moreover, recall that the
First Variation in its explicit form is given  by

Moreover, we know that if is an extremum for the functional given by , then𝑦

which also means that
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Finally, this implies that

since is arbitrary. The equation highlighted in blue above replaces the boundary conditionη(𝑏)
.𝑦(𝑏) =  𝑦

1

In addition, we may also come across situations in which we have an integral constraint. For
example, the Catenary problem defined by

is an example of a Calculus of Variations problem with an integral constraint. We can  build upon
the general problem of optimizing a functional by introducing a constraint integral:

However, some complications emerge when the curve is an extremal of the constraint function𝑦
. To rule out degenerate cases, it is imperative to assume that is not an extremal of so that𝐶 𝑦 𝐶

there exist nearby curves where takes on values greater than or smaller than .  This is very𝐶 𝐶
0

similar to the non-degeneracy requirement concerning Lagrange multipliers.

Notice that is a function that belongs to the same class as . Now, we assume that is an𝑀 𝐿 𝑦
extremum for . Consider . Notice that for to  be admissible it has to satisfy𝑦 + αη η(𝑥)
the constraint and satisfy that .η(𝑎) = η(𝑏) =  0 

We know that close to . This means that𝐶(𝑦 + αη) =  𝐶
0
 ,  ∀ α 0

If we follow the same steps used to derive the  Euler-Lagrange differential equation, by
following the logic of METHOD 1,  we get
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(equation )12

From the First Order Necessary Condition, we know that for every that satisfy equation η (𝑥)
, we have12

(equation )12. 1

If we pay close attention to equation and equation , we can notice that there is a clear12 12. 1
connection with Lagrange Multipliers. More specifically,

If we rearrange the terms, we obtain the following expression:

The term given by

is called the augmented Lagrangian. Hence, being an extremal for the cost functional𝑦 𝐶(𝑦)
means that
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In the above section, we considered integral constraints since the cost functional was𝐶(𝑦)
written in terms of a definite integral. There are also non-integral, which the name implies, where
the cost functional is not written in terms of a definite integral. The difference between integral
and non-integral constraints is that integral constraints are global in the sense that they apply to
the entire curve, and non-integral constraints are local.

We now consider an equality constraint that has to hold pointwise. That is

. The First Order Necessary condition is very similar to𝑀(𝑥,  𝑦(𝑥),  𝑦'(𝑥)) =  0 ,  ∀ 𝑥  ∈  [𝑎, 𝑏]
the one that we saw above, concerning integral constraints, the only difference is that is
now a function of . The Euler-Lagrange differential equation must hold for𝑥

where .   To rule out degenerate cases, we need to make two  assumptions. We
assume that there are at least degrees of freedom, and that along the curve , or  if2 𝑦 𝑀

𝑦'
 ≠  0

is not present in then . We will not prove it here, but a Lagrange𝑦' 𝑀(𝑥, 𝑦, 𝑦') 𝑀
𝑦
 ≠  0 ∀  𝑥 ,  ∃

Multiplier where . The individual Lagrange Multipliers combined togetherλ⋆ = λ⋆(𝑥)  λ⋆(𝑥)

generate the function . The problem becomes of minimizing .λ⋆

𝑎

𝑏

∫  𝐿 𝑑𝑥 +
𝑎

𝑏

∫  λ(𝑥) 𝑀 𝑑𝑥  

The last type of non-integral constraints that will be explored in this thesis are the Holonomic
constraints. Holonomic constraints refer to cases when the constraint does not depend on ,𝑦'(𝑥)
so they take form .  Let’s consider an interesting example. Consider figure𝑀(𝑥,  𝑦(𝑥)) =  0  
20.

(Figure 20)
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Figure 20 describes a pendulum, having a ball of mass hanging from a string of fixed length .𝑚 𝑙
Moreover, is the angle formed between the string and the vertical -axis. We will applyθ 𝑦
Hamilton’s least action principle to figure out an equation that describes the motion of the ball
subject to the pendulum, such that the difference between the ball’s kinetic and potential energy
is minimized. Before moving on to the example, we must define what Polar Coordinates are.

Now let’s go back to our initial problem. The constraint function is given by
by the Pythagorean Theorem. We can express everything in𝑀(𝑥, 𝑦) =  𝑥2 + 𝑦2 − 𝑙2 =  0

terms of Polar Coordinates. Note that and is a free parameter. Moreover, let’s denote by𝑟 =  𝑙 θ
. The kinetic energy as the mass swings back in forth on the pendulum can beθ =  𝑑θ

𝑑𝑡 𝑚

written as and the potential energy can be expressed as𝑇 =  1
2 𝑚𝑙2 (θ)2 

 𝑈 =  𝑚𝑔(𝐿 − 𝑦)

which is equivalent to . The Lagrangian, by following𝑚𝑔(1 − 𝑦
𝑙 ) =  𝑚𝑔(1 − 𝑐𝑜𝑠(θ))

Hamilton’s Least Action Principle, is given by If we apply𝐿 =   1
2 𝑚𝑙2 − 𝑚𝑔(1 − 𝑐𝑜𝑠(θ))  .  

the Euler-Lagrange differential equation for Polar Coordinates, given by , we𝐿
θ
 =  𝑑

𝑑𝑡 (𝐿
θ
 )

arrive at the famous pendulum equation given by

where represents the acceleration due to gravity, given by , and represents the𝑔 9. 81 𝑚𝑠−2 𝑙
length of the string.
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Conclusions
In conclusion, in this thesis we started with exploring some general theory behind Differential
Equations. We started off with giving the general form of an Ordinary Differential Equation.
Next, we explored Autonomous, separable,  and finally Second Order linear homogeneous and
nonhomogeneous differential equations with constant coefficients. We then gave a brief
definition of what it means for a function to be Lipschitz and we provided the general statement
of the Picard-Lindelöf theorem. Before proving this theorem, we explored some interesting
concepts ranging from Cauchy Sequences, and Cauchy sequences of functions as well as
pointwise and uniform convergence.

We then provided some intuition behind the concept of Optimization for real-valued functions
having variables. We also explored the concept of Lagrange Multipliers. Finally, we explored𝑛
the concept of a Functional,which is the central building block of Calculus of Variations. We then
introduced the First and Second Variation of a functional in both a general and explicit form.. We
then derived the Euler-Lagrange differential equation and applied it to the infamous
Brachistochrone problem. We concluded the thesis by looking at some possible integral and
non-integral constraints.

Calculus of Variations is a very important topic since it has a wide range of applications in
Physics, Chemistry,  etc. Calculus of Variations is analogous to the idea of minimizing or
maximizing a function of real variables. The only difference is that in this case, we are trying to
find a specific curve (function) that optimizes a functional (which is a function of a function).

As we saw in this thesis, Newton’s laws of motion have a clear connection with the
Euler-Lagrange differential equation. For further research, it would be very interesting to explore
the connection between the Euler-Lagrange differential equation and relativistic systems. The
Euler-Lagrange differential equation can be applied in the context of both special and general
relativity. Moreover, since the theory of Relativity by Einstein is based upon Differential
Geometry, this also implies that Lagrangian Mechanics is connected to Differential Geometry.

Much of the theory that was developed in this thesis can also be applied to Computer science,
more specifically, in Machine Learning for example. A Calculus of Variations methodology can
be applied to provide a lower bound for the marginal likelihood function 3. Moreover, Calculus
of Variation techniques can also be applied to image restoration, which is based on minimizing a
specific functional 4. For example, image restoration, which is a ML topic, is often based on
optimizing

5

5 ibid
4 Jeff Calder, The Calculus of Variations
3 Anders Meng, An Introduction to Variation Calculus in Machine Learning
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In this case,

In terms of a Calculus of Variations problem, the Lagrangian is given by:

6

and hence, the Euler-Lagrange method, discussed in this thesis, can be applied to minimize the
functional.

6 ibid
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