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Aim of the Thesis

The structure of the thesis will be in the following manner. A general introduction to differential
equations will be given including classification of differential equations, some examples of
differential equations, as well as the most important theorems/proofs connected to differential
equations. Furthermore, the intuition behind Cauchy sequences, Cauchy sequences of functions,
uniform and pointwise convergence of sequences of functions will be thoroughly explained.
Next, the intuition behind the concept of optimization will be given. The Euler-Lagrange
differential equation will then be thoroughly investigated and will be applied to solve the
infamous Brachistochrone problem, which is an example of a control theory problem.
Additionally, this thesis will explore some special cases of the Euler-Lagrange differential
equation as well as integral and non-integral constraints. The Hamiltonian will also be discussed
and its physical interpretation will be analyzed. Lastly, the thesis will provide some concluding
remarks, concerning some applications of the Euler-Lagrange differential equation to Computer
Science, for example Machine Learning.

Chapters 1 and 6 are based on the book “Mathematics for Economists”, written by Carl P Simon
and Lawrence E.Blume, while chapters 7 through 12 are based on the book * Calculus of
Variations and Optimal Control Theory: A Concise Introduction” written by Daniel Liberzon. All
the graphs and visual representations included in this thesis were realized by the author using the
Geogebra software as well as other open-source graphing software.
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Chapter 1: Background theory of differential
equations

In its most basic form, a differential equation is a relationship between a function, which can be
of one variable or of more than one variable, and its derivatives. Once we solve a differential
equation, the solution will be a function. In the first case, when dealing with differential
equations, we speak of Ordinary Differential Equations, and in the latter case, we speak of Partial
Differential equations. This thesis will examine Ordinary Differential Equations.

Differential equations are powerful mathematical tools that can be used to model real life

phenomena. Differential equations have a wide variety of applications throughout different

fields of study. More specifically, they have applications in Physics, Chemistry, Economics,
Epidemiology, etc. As an example, consider the following differential equation

y'(t) = a-y(t) wherea € R

The differential equation describes a situation in which the derivative of the quantity ¥ at time t
is proportional to the quantity itself.

The general form of an Ordinary Differential equation is given by
(L y(0, y' (0, .o,y D (D, y(W(9) =0

Where t is the independent variable. Moreover, let’s define

y: Domain(y) € R — R as being the solution to the differential equation.

y() | wherej =1, 2,3, ..., n are the derivatives of j'th order.

f: domain(f) ¢ R"*2 — R where the number n is the order of the ordinary differential
Now consider the following expression:

y™ (0 =f(t, y(0, y'(0 .y (0, ..., y*- (D)

f: Domain(f) ¢ R - R



If an Ordinary Differential Equation can be written as in the expression above, then we say that
the Ordinary Differential Equation is in normal form.

The ordinary differential equation can be transformed in a more convenient way as follows:
Define:

y, (0 =y(v
y,( =y'()
y; (0 =y" (0

y,(0 =y Dy

Y, (0 =y (Y

Let’s pay close attention to the following equation:

v, (D =y (0

The equation above is equal to the original differential equation, namely:
vy (0 =y =t y(0.y® .y, ...y V()

Y. (0 =y = £ty (0, y,(0 . .oy (D)

Moreover, notice that

forj=1, ..., n we have yj(t) =yU-D(t) = y'j(t) =y (1)
Hence, we have obtained that

Yoe (O =y () =f(t y (0, y,(0), ...y (D) =y ' (D

If we denote



y,(D

¥,(0 -
y(t) = 2 and F as being a vector function, we can express the original differential equation as follows:

y, (D

y'(0 =F(y()
This representation is very useful because it shows an Ordinary Differential equation of any
order written in normal form can be reduced to a system of first order Ordinary Differential
Equations, which in most cases is easier to solve.
Now that we have introduced the most general form of a differential equation in R”, let’s define

the different types of differential equations, including some simple examples of each category as
well.

Differential equations can be autonomous or non-autonomous, first order or higher order, linear,
non-linear, homogeneous, non-homogeneous.

An autonomous differential equation is a differential equation of the form
(L y(0, y' (0, .,y D (D, y(W(n) =0

whose left hand side is independent of the variable t. The equation below is an example of a first
order autonomous differential equation.

y'( =1(y)
EXAMPLE 1 (autonomous differential equation)

Consider the ODE given by y'=y

To solve it we can use the separation of variables technique, since the differential equation is
separable. An Ordinary Differential Equation is separable if it can be written in the form
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y'(t) = f(t,y)

The right hand side namely f( t,y) must be factored in the form f(t,y) = g(t) - h(y)

where g and h are known functions.

In this case, we obtain:

dy

— =y h(y)=yandg(t =1
dt

dy = y-dt

1

—dy = dt

y

In order to get rid of the derivative operators, we take the indefinite integral of both sides of the
expression. We are implicitly using the Fundamental Theorem of Calculus that states that
integration is the inverse operation to differentiation:

1
/—dy=fdt
y

In(y) =t+ ¢ , wherec € R

To solve for the variable “y”, we take the inverse of the natural logarithm of both sides:
eln(y) — ottc

y =el- e

Since e€ is another constant, let's denote e€ as C, , in which C | € R

19
— t
y=C,-e

The solution to the differential equation is just a scaled version of the exponential function
y=e’
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So far, we have obtained general solutions to differential equations. If we want to obtain a
particular solution to a differential equation, we need to specify some initial condition. This is
called a Cauchy problem. More specifically,

y'(t) =1(ty)
¥(t) = %

defines a Cauchy problem. We use the initial value condition to figure out a particular solution to
the ODE.

Non-autonomous differential equations are different from autonomous differential equations
since the right hand side of the differential equation can depend both on y and t. Let’s consider a
more challenging example:

EXAMPLE 2 ( non— autonomous differential equation)

Consider the following differential equation:
d 2
(P (x
dt t t
y(1) =2

The above differential equation is non-autonomous because the right hand side depends
explicitly on t.

To solve this differential equation, we can apply a simple substitution, namely:

Let\p=l >y=ty
t

Next, we can differentiate the above expression with respect to t:

y dy
[ A + t- —
a v dt
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Next, let’s substitute into the original differential equation:

d
WAt =4yl
dt

Since the above differential equation is separable, we can algebraically manipulate it to have
each one of the variables on one side:

d
t- v _ 44 y2- 2y
dt
1 1
— dy=—dt
y2-2y+4 t

Notice that w2 — 2y + 4 # 0 when dividing by zero. This implies that we may not be able to solve
Y Y ghoy P y

the ODE for t= 0. Nevertheless, we may expect to find some interval around the inital t=1 on which

the ODE can be solved.

Like in the previous example, we can take the indefinite integral of both sides to get rid of the
differentials:

1 1
f—d\p =/— dt ( Equation 1)
y2-2y+4 t

The integral on the right hand side is immediate to solve. However, the integral on the left hand
side is not as straightforward. Let’s first solve the integral on the left hand side and then we can
put all the pieces together to solve the differential equation.

We proceed by writing the denominator of the fraction in vertex intercept form:

1 1
oy = /—d\p
/w2—2\|1+4 (y=—1)2+3

We can now apply the substitution:



f ! d let (y—1) du 1
———dy etu=(y-1) ,— =
(w=1)2+/32 7

f ! du
ul4 \/Ez

(Equation 1.1)

We will now apply a trigonometric substitution:

d
0= arctan 4 so thatu = /3 - tan( 0) ,—u = /3 -sec?(0)
3 do
1
Then, / du =
u2+ /372

1
= / ﬁ sec2(0) do

3-tan2(0) + 3

1 / 1
=— [ ——— . /3 -sec?(0) do
3 1+ tan2( 0) \/7

Recall that:
1+ tan2( 0) = sec?(0)

Hence, the integral above simplifies to:

1/ 1
— [ ———— /3 sec2(0) do =
34 sec?(0) \/7 e

=@/‘d9

=—- 0+ ¢ withcle R

\/g 1

13
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Substituting back we obtain:

And since

We can figure out the solution to the differential equation:

Equation 1 is equivalent to:

e R

1 -1
-arctan( hd )+ c, = In(t) + ¢, such thatcl . C,

3
\/_ (equation 1.2)

Which can be written as

1 y— 1 .
—-arctanT =In(t) +C withC e R
3

Let’s now figure out the value of the constant C using the initial value condition:



Recall that y = Y and that y( 1) =2, thus
t

=

el

-

o

=

S
o
|

(S

):ln(l)+C

1

6-\/§:

Finally, plugging the value of the constant C into equation 1.2, we obtain the solution to the
non-autonomous differential equation:

Y

t
—— .arctan| ——— | = In(t) + ——

Ve Ve o3

t
arctan| ———— | = ﬁ-ln(t) +L
6

e 7
t— = [an(\/g. ln(t) + %J
y(t) n
—-—1=4/3t 3.In(t) + —
SR U
y(t) n
— =1+ 3.t 3.1 (1) + —
! {7
y(t) = t- [1+ ﬁ [ar{\/g. In(t) + %J}

Anyways, linear ODEs deserve particular attention because they can often be solved explicitly.

A first order linear differential equation takes the form:
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ay(0 - y(D + a, (D -y () + ...+ a (0 -y™ (1) =b(1)

It is Homogeneous if

b(t) =0, Vt

And non-homogeneous otherwise. Additionally, It is said to have constant coefficients if all the
terms a , a , .., @ are constants and do not depend on t.

We already saw a First Order homogeneous linear differential equation with constant coefficients
in example 1.

A second order linear homogeneous differential equation with constant coefficients takes the
form:

d?y dy .
a-——+b-— + cy =0 witha,b,c e R
dt? dt

To solve a second order linear homogeneous differential equation, we can proceed in the
following manner:

2

d d
Assume as in the first order case that y = e is a solution. Then, Ty =re' and 2y
t dt

= r2ert

Plugging these values into the differential equation we obtain:
a-r2-e+br-e4c.et =0

et (ar2+ br+ c) =0

Since e''is always different than zero, this implies that ar?+ br4+c¢ = 0

The equation

ar’+br+c =0
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Is called the characteristic equation of the differential equation. Dependending on the
discriminant of the quadratic polynomial on the left hand side, we can understand the nature of
the roots of the equation:

The ODE has a solution in all three cases and it takes different forms. An example of the last
case will be provided below.

If b2— 4ac < O there are two complex roots
If b2— 4ac = 0 there is one multiple root

If b2— 4ac > 0 there are two real and distinct roots

Let’s consider an example:

EXAMPLE 3 (second — order linear homogeneous differential equation with constant coefficients)

dyz dy
de2 dt

r2—r—2 = 0 is the characteristic equation

The discriminant of the characteristic equation is given by:

1-4-(=2) =9 >0

Hence, the characteristic equation has two real roots

The characteristic equation can be factored in the following way:

r2—r—=2=0

(r—=2)-(r+1) =0
Then, the two roots are:
r=2,r= -1

Hence, the general solution takes form:
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y= C e+ C,e ' with C/, C, € R

1

The last class of differential equations that will be discussed in this thesis is the
non-homogeneous second order differential equations with constant coefficients. The most
general form of a non-homogeneous second order differential equation with constant coefficients
is:

d’y . dy . .
a- —2+b- E+c-y = g(t) witha,b,c € R and g: Domain(g) C R - R
dt

The term &(7) is called the “forcing term” . It turns out that there is a theorem that explains how
to construct the solution to the non-homogeneous second order differential equations with
constant coefficients; it will not be proved in this thesis. The statement of the theorem given here
is based on Theorem 24.4 from the book Mathematics for economists by Carl P Simon and
Lawrence E.Blume.

THEOREM ( non— homogeneous differential equation with constant coefficients)

e represent a particular solution to the non— homogeneous differential equation .
Ltyp(t) P t a particul lution to th homog differential equation ( 3)

Moreover, lety (t) be the general solution to the homogeneous differential equation

d2y dy .
a-——+b-—+4c-y=0with a,b,c eR.
dt2 dt

Then, the general solution to the non — homogeneous differential equation is given by

¥(0 = yo(0) +y,(0

The theorem above is powerful since it is saying that we only need to find a particular solution to
the non-homogeneous differential equation and the general solution to the homogeneous one,
which is an easy take. To find a particular solution, the method of undetermined coefficients is
usually employed. Let’s consider a simple example:

EXAMPLE 4 ( second order non — homogeneous differential equation)

a2 d
Solve —Y —2. 3 _3y o2

dt? dt
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We begin by solving the homogeneous form of this differential equation. Using the same method
as in example 3, the solution to the homogeneous differential equation is given by:

y(t) = Cl-e3t + Cz-e_t, suchthatC1 , C2 e R

Now, we need to find a particular solution. We proceed in the following manner:

Define yp = At?’+ Bt+ C suchthat A,B,C € R and yp denotes a particular solution. Then,

dy
— P _JAt+B
dt
d2y
P —92A
de?

After we substitute the expressions that we found above into the original differential equation,
we obtain:

2A — 2. (2At+B) —3-( A2+ Bt+ C) = 9t2

2A — 4At— 2B — 3At?— 3Bt— 3C = 9t?

2A—2B + t- (—4A—3B) +t2.(=3A) —3C = 9t?
We can now match the terms on the right and left hand side:
-3A=9 - A=-3

—4A-3B=0 - B=4

14
2A-2B-3C=0 - C=— —

3

Hence, a particular solution is given by:



Y
Y, = + 3
The general solution of the nonhomogeneous ODE is given by:

3t -t 2 14
y(t)=C1~e +C2-e —3t+4t—?

20
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Chapter 2: Picard-Lindelof general statement of the
Theorem

In this section of the thesis, we will explore what the Picard-Lindelof theorem states, as well as
the significance of this theorem. The statement of the theorem is the following:

THEOREM
If f: [IO— a, r,+ a] X [yo— b,y,+ b] —= R is continuous and such that

V(t,y).(t,2) € [to—a, t0+a] X [)‘O—b , yo+b] we have |f(r,y) —f(t,:)l <L- |y—:| Vit e[ro—a, to+a]

y'(o)y= [t y(1)) _ . :
then 3 @ such that _ has a unique solution in the interval [ro— a,it,+ ﬁ]
y(t5)= ¥4

The first part of the Picard-Lindel6f theorem, namely

I [to— a, t,+ a] X [)‘0— b,y,+ b] — R is continuous and such that

V(t,y),(t,z) € [to—a, zo+a] X [)‘O—b , yo+b] we have |f(t,y) —f(r,:)l < L- |y—;| Vit e[to—a, to+a]

Is essentially the definition of a Lipschitz function. Let’s consider an example of a Lipschitz
function:

EXAMPLE ( Lipschitz Function)

Consider D= R? and define f (t,y) = t>+2y . For every (t,y), (t,z) € D consider

IF (ty) —F (1,2 | = |2+ 29— (124 22) | = = |2y—2z] = 2- |y — ]

Hence, the function f satisfies the Lipschitz condition on D with L = 2

The Picard-Lindel6f theorem is important since it provides a specific condition under which we
are sure to find a unique solution to our Cauchy problem. Even though when we will explore the
Brachistochrone problem, we will consider a curve that is fixed at two points, and the
Picard-Lindel6f theorem considers only one boundary condition, the Picard-Lindel6f theorem is
still an important pillar in Calculus of Variations.
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The complete proof of this theorem will be given in a later chapter of this thesis. To prove the
Picard-Lindelof theorem, several mathematical tools are now introduced, beginning with Cauchy
Sequences, Cauchy Sequences of functions, as well as pointwise and uniform convergence of
sequences of functions.
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Chapter 3: Intuition behind Cauchy sequences

Now that we have introduced the basic background theory behind differential equations, we are
ready to move on to exploring the Picard-Lindelof theorem which provides a condition that
guarantees that there exists a solution to a Cauchy problem. However, before exploring the
Picard-Lindelof theorem and the Euler-Lagrange differential equation, it is imperative to
understand the concept of Cauchy sequences. Let’s begin by exploring the concept of a Cauchy
sequence.

Mathematically, a sequence {xn} is a Cauchy sequence if by definition:
neNCR

DEFINITION

Ve>0, 3 NsuchthatVm,n > N, |xm—xn| <e

Let’s try to gain some more intuition behind a Cauchy sequence.
Let’s consider an example of a Cauchy sequence. Consider the metric space defined by

(R, d) in which d denotes the Euclidean metric. Moreover, consider the following sequence:

The sequence maps each input to its reciprocal. Figure 1 provides a visual representation of this
sequence:
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05

0.4

03

0.2

0.1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

=01

-0.2

(Figure 1)

Notice that the sequence seems to converge to zero, since the terms keep on getting closer to
zero. Let’s show that this sequence is Cauchy. Let e > 0. We want to find an N such that after
this point the distance between any two point is less than €.

1
If we pick an arbitrary point denoted by N we know that the distance between any two points

1 .
af ter N cannot be greater than zero, since 0 is the inf imum of the sequence .

Figure 2 provides a visual representation. The red line represents the distance.



o 005 f 01 0.15 02

This means that

Hence, if we pick for example € = 0.015, this means that N > 66. 6667. If we pick

(Figure 2)
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N = 67, this means that beyond the terms 6—17, the distance between any two numbers must be
less than € = 0.015. For example, d(, ==) = |— 0.003175] = 0.003175 < 0.015.

Figure 3 provides some more visual support. The value d (9—10, 7—10) is depicted by the red line.

1 1
(%#0) (%(D (ﬁ’())
G H F

P
@
.0

0.01 0.011 0.0129 0.013' 0.014 0.016 0|

(Figure 3)
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Additionally, Cauchy sequences of numbers have a very interesting property. The theorem states

that if a sequence is Cauchy, this implies that it is convergent. The proof will be discussed
below.

The first part of the proof will be to show that every sequence has a monotone subsequence.
By definition, a number N € N is a peak for {x } if m > N implies that x < x .

What this is saying is that any term of the sequence af ter the peak term of the sequence must be smaller

than the peak term.

Given a sequence {xﬂ} , either it has inf initely many peaks or finitely many peaks. If there
are inf initely many peaks denoted by N, N, , N, , ... this implies that the sequence

Xy » Xy 5 Xy IS amonotone subsequence .

On the other hand, if the sequence {x } has a finite number of peaks, then there must be the last

peak; denote it by N, .

More specifically, 3 n . Hence, n

> N, suchthatx <x
k n X

1

1 is not a peak.

N 1

This further implies that 3 n, > n  suchtharx > x

2 1

2

We can iterate this process to find thatx < x <x < ..
| 2 3

The sequence above is an increasing subsequence.

The second part of the proof will be to show that a Cauchy sequence is necessarily bounded.

Let {x,} be a Cauchy sequence and let ¢ = 1. Then, 3 N such thatVm, n > N |xm— x,| <1

In particular, Vn > N |x”—xN| < 1. Moreover, denote by M = max { |x1| , |x2| e |xN | |xN|+ 1};

if n < N, we can state that |JC”| <M< M+1
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If n > N, then |x”| :|x”—xN+xN| < |x”—xN| + |xN| using the Triangle Inequality

By assumption that {x } is a Cauchy sequence, we know that |x”— xN| < 1. From bef ore, we also

know that |x < MVn

vl

Hence, this implies that |x”| <M, Vn >0, thusthe sequence {x }is bounded.

So far, we have shown that a Cauchy sequence is bounded, which further implies that all its
monotone subsequences are convergent (we have proved above that it must have at least one
convergent subsequence). Moreover, a sequence being Cauchy and having a convergent
subsequence implies that the entire sequence is convergent. Let’s prove this last statement:

We can af firm that if a sequence {x”}l

1

is Cauchy, it has a convergent subsequence {x” } .
1
Let us denote by x its limit, so that lim X =X

J= e

It is important to first fix € >0.

Since the sequence {xn } converges to x, this implies by definition that 3 J, such thatVj > J
j .
J

€
|X -X | <—
m n 2
~ e &
Next,VanaX{N,n},|x—x| < |X—X|+ X —X[< —+— = ¢
J n n J n; 2 2

Finally, this implies that the original sequence {X“} converges to x.
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Chapter 4: Intuition behind Cauchy sequences of
functions, pointwise convergence and uniform
convergence

In the previous section of this thesis, we explored the concept of a Cauchy sequence. In this
section, we will investigate what it means for a sequence of functions to be Cauchy, and we will
discuss how to show that a Cauchy sequence of continuous functions is convergent.

Let's def ine I as being an interval and C = C (I, R) = {continuous functions f :I — R}

Moreover, consider a sequence {f ) C C, that is a set of functions indexed by n such that f . € C(I, Ry Vn
ne N
DEFINITION
{r,} converges pointwise to a function f if f (1) — f(1) Vi € 1
ne N

As a concrete example, consider the function

t
f () =2t+ E

Notice that as the variable n approaches infinity, we obtain:

n— oo
f () ——2 Viel

Theref ore, f (1) converges pointwise to f (1) =2t, Vi€ |

Furthermore, let’s consider another important definition:

DEFINITION

A sequence of functions {f } C C, converges unif ormly fo a function [ if sup |f”(t) -f(n] -0

rel

What the statement above is saying is that a sequence of functions that are continuous and that
belong to the interval converge to a function if the supremum of the absolute value of the
difference between each of the functions and the converging function goes to zero.

Let’s consider more closely the expression
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sup fn(t) —-f(t)| = O
tel

The norm of a continuous function is defined as:

|[f||°o = sup |f (1) |, theref ore the quantity d(f,g) = “f —g"oo = sup bf(t) —g(D) | which is a

te I tel

distance on C.

Now, we are ready to define what a Cauchy sequence of functions is.

A sequence {f } of continuous functions is a Cauchy sequence if Ve > 0, 3 N € N, such that

n— ), must be less than € provided m and

Ym,n> N, "fm—f”" < e. In other words the norm of f

n are big enough.

The term “f m—f”" _ < ecan be re — written as a‘(f m—f”) <e.

Before moving on to an important proof, let’s consider some examples of sequences of functions
that are pointwise and/or uniform convergent to clarify these ideas.

EXAMPLE 5 ( pointwise and uniform convergence)
Discuss the pointwise and uniform convergence of fn( x)=n-e-(™? vxe R
We begin by checking whether or not the sequence above is pointwise convergent.

We can rewrite the sequence of functions in the following form:

f(x) = :

e (nx) 2

We will now compute the lim fn(x) considering two different cases:
n— oo

lim £ (x) = 0.4 x#0

n— oo +oo,ifx=0
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Hence, we have figured out that fn(O) = n ifx = 0 andthe lim fn(O) = + oo.Thus,

n—> oo

the sequence f n(x) does not converge pointwise for every x€ R since it diverges to + oo if

x=0.

Since the sequence of functions f n(x) does not converge pointwise for every xe R, we know

that it does not converge uniformly on R.

For example, consider the following expression

lim  sup —f(x)| = lim sup —0l= lim |n|=+4+00 ifx#0
(nx)? (nx) 2
n—o xe R\{0} 1€ n—o xe RI1C n— oo
. n .
lim sup T~ ‘ = lim sup |n— 00 | which is undef ined if x =0
n—-o xe R e(“") n—-o xec R

The sequence does not converge uniformly on R.

Let’s consider another example:

EXAMPLE 6 ( pointwise and unif orm convergence)

) o ) I, forx € [n,n+ 1)
Discuss the pointwise and unif orm convergence of f LX) =
0, otherwise

We begin by investigating the pointwise convergence of fn(x) like in the previous example.

We begin by considering an arbitrary x€ R. This means that 3 n, € N such that

x€ [n,n_ + 1].Thus,Vn > n, + 1 we know that fn(x) = 0. Hence, we can state

0’ "0
that lim fn x) =0 =f 0 (x). Hence, this proves that fn (x) converges pointwise to
n— o

fo(x)on R.
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We will now investigate the uniform convergence of the function fn (x) in R. We will begin by

assuming that fn (x) converges uniformly to f 0 (x) on R. Then, given that € = % , 3 aunique

n, € N, such that for everyn > n, and every xe R, we have that

If, @f, 0 =f,00 < 7.

Now, let’s take an arbitrary n > n, andanx € [n, n + 1). This implies that

2
of functions f n(x) does not converge uniformly on the set R.

| fn x)-f 0 )] = fn x) =1K L Thisisa contradiction, which proves that the sequence

Lastly, in this section of the thesis, we will prove the following theorem

THEOREM

A Cauchy set of continuous f unctions implies that they are unif ormly convergent

PROOF

We begin by fixing € > 0. Find a N such that Vm, n > N, ”fm—fn" <e€
(o6

Next, we fixat € I. This implies that fm( 1) —fn( t) | < sup |fm( s) —fn(s) .

se I
The reason that the lef t hand side is less than or equal to the right hand side is because t is [ ixed
on the left hand side. However, on the right hand side we are taking the largest possible

quantity as s varies in I.

The expression above implies that fm( t) — fn(t) | < sup |fm( s) — fn( s) |= ||fm— fn” <e
sel e

This implies that the sequence {f (D Vs a Cauchy sequence in R.

{f (1) } must be convergent to some limit since it is a Cauchy sequence, and we know that

Cauchy sequences of real numbers are convergent. The limit depends on t. Let's denote it by f (1) .

Recall that f (t) is a number. This shows that f converges to f pointwise.
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Now we must prove that f , converges 1o | also unif ormly and not only pointwise .

Moreover, we know that sup |f (1) —f (1) | = sup [ lim |f (D =f (D) |]

rel rel Lm— o

because fm( t) converges to f(t) as m— oo since fn( t) converges pointwise to f( t)

We can manipulate the above expression to obtain:

sup [f(t) —f (0] = sup[ lim |f () —f (1) |] = lim (sup(lfm(t) —f (1) |))

tel tel [m— o0 m-— oo tel

Recall thatVm,n > N, lfm(t) —fn(t)l <e¢

This implies that sup If (1) —f”( 1) | = lim ( sup ( bfm( 1) —f”( 1) |)) < e, which in wrn implies that

tel m— oo tel

sup |f () =/ (0| =0

tel

To understand this last implication, consider a new sequence W =sup lF () —f”( 1) |. For this
rel

sequence to converge to zero, it means that Ye > 0, 3 N such that ¥n > N, w —0|l=|y|<e
n n

which is exactly what was shown above.

Another very important result is to show that the limit function f(t) is also continuous. The
proof of this result depends on uniform convergence and not on the sequence of functions being
Cauchy.

To prove that f (t) is continuous, we have to show that Ve > 0, 3 6 > 0 such that |l— al <6

implies that |f (1) — f (a) | <& forevery fixeda € 1.
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We begin by fixing € > 0. From bef ore, since [ (1) converges to f (t) unif ormly as n — oo , this
€
means that there exists an N such that Vn > N, "f —f || < ?

Each f , (1) is a continuous [function because we started out with a f amily of continuous f unctions

on the interval 1. Fix now any n > N, this implies that 36 such that
€
i—al <5~ |, (0 7 ()| <=
In addition, notice that |f (1) = f (a) | < |f(t) —f”(t)| + |f”(t) —f”(m| + |f”(a) —f(a)| (Inequatity 1)

where we added and subtracted f (t) and [ (a) and applied the triangle inequality .

We can observe that lf(f) —f,(0 | = "f _f”"oo since "f —fa

= sup lf —fnl, and by the same

® el

reason we can state that lf”(a) —f(a) | < "f —f”"
o0

Af ter substituting all the elements highlighted in red above in place of inequality 1, we obtain the following:
If (o =fCar| < |[f (o —f (| + P”(r) L -1 ,,(c'f)|+|f”(a)—f(a)|
o =fls =7 +—+ =7
£ £ e
1) — <—4+—4 —
lF (o) —f(a)| < 3 ; 3
lF (o) =f(a)| < e

This concludes the proof of the theorem that states how a Cauchy set of continuous functions
implies that they are uniformly convergent.
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Chapter 5: Complete proof of the Picard-Lindelof
theorem

Up until this point, we gained an intuition behind differential equations, optimization, Cauchy
sequences and Cauchy sequences of functions as well as the notions of Pointwise and Uniform
convergence. The last step before moving on to the Euler-Lagrange differential equation is to
understand the Picard-Lindelof theorem that provides specific conditions in which our Cauchy
problem (initial value problem) has a unique solution in a specified domain. This theorem is
useful because it has connections with many Calculus of Variations problems, for example the
Brachistochrone problem. The Brachistochrone problem consists of a functional that we are
trying to optimize as well as two initial boundary constraints; the Brachistochrone problem is an
example of an initial value problem.

The optimization that we want to solve can be expressed in the following manner:

y' () =1(t y(t))

¥(to) = Yo
The problem that we want to solve above is known as a Cauchy problem.
Let’s now consider a function f on a domain:
f: [ro— i, t,+ a]x [yo—b LYot b] >R

[t —Zz,t+21]=l and[yo—b,y0+b] =B

The function y solves the Cauchy problem, depicted above, if and only if it is differentiable and

t
y(t) = Yo + / f(s, y(s)) ds, V tin some interval around to

Ly

The reason is because if we plug t, into the expression above, the integral term equals zero and

we are left with y(to) =Y,

Let’s define the function:
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r:c(l, B) -» C(I. B)
t
F(go)(t)=y0+ff(s, p(s)) ds
‘o

The notation given by C(1, B) | denotes that Gamma belongs to the set of continuous functions

on the specified domain.
We want to look foray € C(I, R) such that I'(y) = y . This is called a fixed point for the function I

The reason is because if we are able to find such a function y, this would solve the initial Cauchy
problem.

Recall that a function f is Lipschitz in B, uniformly in ¢, if

|f(t, Z1) —f(t, 22)| < L- |zl—z1| . Vz,z,€ BandVite I

Moreover, we now proceed in the following way:

Take ¢ ., ¢, € C(I, R) and consider

t

||r((p1)—r(¢2)||w=sup f (F(5.0,()) = F(5.0,())) ds

te I l()

t

< sup/ f (5:00()) = F(s.0,(9) ) | ds

te ] IO

Since f is Lipschitz, we know that

(o) =10 = 0 L]0y - 0n0|as
* tel 1

< sup - L-sup |(/)1(s) —(/)z(s) |-(t—t0)

tel sel



36

The reason is because the

sup |, (5) = @,(s)
sel

represents the largest possible value that the term #1(5) = #2(5) can take. If we multiply it by
t—t, (length of the interval) we are computing an upper bound for the area

t
f |01() = 9,() | ds
To

Since |t— t0| < d, we obtain that

||F((/’1)—F((/’z)|| < ﬁ-L-"(pl—(pz"00 ( Equation 5)

[eo]

At this point, fix §, € C(I, R).Define§l=F(§0), &,= F(fl), cee §n=F(§n_l)

The goal is to build a sequence {fn} of functions in €(1, R)
N

ne

Eo= & = |r(e,) (0 =g, ) (0
el
- ||r(fn)_r(‘fn—1)||00
From equation ( 1), we know that
SR Iy L

=L (e, ) = (5,

(]
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By applying the same logic, we know that

<a-L-a-L: gn—l_én—2||oo

(e8]

§n+1_§

n

IA

(a-1)2

én—l_gn—2||oo

= (a-L)2 ||r(§n_2) —I(¢, ) ||°o
If we continue applying the same procedure n times, we finally obtain:

¢ ¢

n+l Sn
IS

< (a-Lyn-

51—50”00 ( Equation 5.1)

Now, assume that m > n and consider

||§m_§"||oo = ||§m_§m—l+§m—l _gm—2+§m—2 + ..t 5n+1_§n .

< ||§m_§m—1||oo + ||§m—1_§m—2||oo + . F 5n+1_5n .

Using what we figured out in ( Equation 5.1) , we obtain:

c.-c < l@nmte@ e (5-L)”]-||§1—50"m

The expression on the right hand side can be re — written in the [ ollowing way:

m—n-—1

[(a-L)”"1+(a-L)’”‘2+...+(E-L)”]-"afl—afO" :(5-L)”-||§l—§0" L) (a-Ly
c o £

To better understand why, consider the following example:

Assume m=5, n=2
2
[(a-L)*+(a-L)3+ (a-L)2] = (a-L)?2 Z

Hence, we have figured out that:
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m—n—1

_§n|| (ﬁ-L)”l-”dfl—éO” ' Z (a-L)/ < (a- L)” |§ —50” Z (a-LyJ
0 i=0

because ti-L > 0

m

oo
The series on the right hand side is in fact a geometric series. A geometric series Z ri converges
j=0

1 1
. In our case, the series converges to ———— if |a-L| <1, thatisif 0 <&-L <1
-7 1-(a-L)

to

Hence, if 0 < d-L <1 then

le..- < (a1

1 0” 1-(a-L)

Note @ - L < 1 implied that lim (@-L)"= 0. More specifically, Ve , AN such that

n— o

(l-(a-L))-e
>N, (a-L)" < . Hence, Vm, n > "cf

”51_ é:0" - B

This implies that {£ |} is Cauchy which f urther implies that it is convergent.

< ¢ (Equation 5.2)

m

At this point, we denote by & as the limit of the & 's , namely lim & =&

n— oo

Following the def inition of & , we can write £ = F( 5”_1) .Hence, lim ¢ =¢ = lim F( 5”_1) .

n— oo n— oo

Recall the following property:

If H: R—>Ris a function and x — x, then lim H(xn) = H( lim x ):H(x) if H is continuous

n— oo — 0

We will now extend this definition concerning functionals.

DEFINITION:

An operator A: C(I, R) = C(1, R) is continuous if Ve >0, 36 > 0 such that

lf —¢ll , <o implies |ACf) —A( | <e.Vf.g

The operator A in some ways varies the distance between f and g in a predictable manner.
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Lastly, if f — f in C(1, R) and A is continuous. Then, Ve > 0, 3 6 such that
”f”—f" < & implies "A(f”) —A(f) || < e. This means that 3 N such that¥n > N, ”f”—f” <

Finally, consider (equation 5) given by

||F((p1)—F(q02)|| < 5-L-||401—g02||°o ( Equation 5)

(o]

Ve>0,we choose § <
a-L

We have proven that if f is Lipschitz, I" has a fixed point that must be a solution to the initial
value problem given by

y' (0 =1(t, y(t))
y(to) =Y

Recall that the function f at the beginning of this proof was defined in the following way:
f: [to— a,t,+ Zz]x [yo— b,y,+ b] > R

[to—a,z0+a] el and[yo—b,y0+b] € B

Knowing that f is Lipschitz, we automatically have a corresponding Lipschitz constant L. We
figured out that for the geometric series to converge, we need @- L < 1. To have this condition

satisfied we may need to restrict the domain of f. We restrict I to [t0 —a,t, + a] so that

1
a <—
L

Since we want /(@) € C(I,B) | w e need that
I'(p)(t) € B,Vt

which is equivalent to
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[FCo) () —yo| < b

Moreover, f being Lipschitz implies that f is continuous. The Domain(f) = [ X B. Since the

Domain of f'is a closed and bounded set (it is a rectangle), we know by the Weierstrass theorem
that f has a maximum on I X B. Let’s denote this maximum by

M= max f
IXB

t t
We have ff(s, w(s))ds | < f |7 (s, go(s))ldng-(t—to) <b
lO lO

b
Theref ore, we need to choose a such that a < 5 for the the inequality to hold

Putting everything together, we need that
. { 1 b N}
a<min\{—,—, d
L m
This result implies that we can solve

y'(t)=f(t, (1)), y( 1‘0) =t on the modif ied interval [IO— a,t,+a ] which is usually smaller
than [IO— ﬁ,t0+ a].



PART 2
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Chapter 6: Optimization intuition

In this chapter of the thesis, we will explore the general idea of the concept of optimization
which is a central pillar to understand the idea of Calculus of Variations. When the terms
“minimize” or “maximize” are used, this is a clear indication that we are dealing with some sort
of optimization problem. The idea of optimizing a function can be generalized to any
multivariable function, and not solely to single variable functions. Partial derivatives are
employed when trying to optimize multivariable functions analogously to how optimization is
conducted for single variable functions.

We will briefly explore the concept of unconstrained optimization for functions of several
variables and explain some important results and definitions. Next, we will move on to
Constrained Optimization dealing with First Order Conditions. Lastly, we will analyze the
Lagrange Multiplier method applied to optimization problems.

The definition of a maximum and minimum for functions of several variables is analogous to
functions of a single variable. Before moving on to these definitions, let’s explore the meaning of

the BT (x) notation.

DEFINITION ( Br( X) notation)

B (X)={x€e Uld(x,Xx) <r} wherer >0

The above def inition denotes a ball centered at X having radius r > 0

DEFINITION ( Maximum and Minimum of multivariable functions)

F:U— R is a function of n variables that has a domain U C R" :
(1) An element ¥ € U is a maximum of Fif F(X) > F(x),Vxe U
(2) An element X € U is a strict maximum of F if F(X) > F(x),V x € U such that X# x

(3) An element & € U is a local maximum of F if there exists a ball B ( £) encompassing £, such that

F(®) 2 F(x),Vxe B (%) n U.

(4) An element X € U is a strict local maximum of F if there exists a ball B ( X)

encompassing X , such that F(X) > F(x), VY x € Br( X) N U such that x #X
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For a point to be a local and/or strict minimum, the same definition given above applies, with the
inequality sign reversed.

What condition three is stating is that a point is a local max for a function if there are no nearby
points in which the function takes on a larger value. It is important to clarify that the words
“nearby points” denote a neighborhood around the candidate point for being a local max. The
neighborhood is typically chosen to be a ball having radius . Mathematically, a neighborhood is
defined in the following way:

DEFINITION ( neighborhood)

A neighborhood of a point X is any set V such that 3 r > 0 in which B (x) eV

Additionally, let’s gain some intuition regarding what a saddle point is.

DEFINITION ( Saddle point)

If f:R" - Rwheren > 2, apoint ¥ € R" js a saddle point if ¥ neighborhood of point ¥ with r >0

there exist points

(1) x, belonging to R" as well as to the neighborhood of x, such thatf(xo) < f(%)

(2) x' belonging to R" as well as to the neighborhood of x' such that f (x') > f(X)

A saddle point is a critical point in which, along a certain direction, the function attains a
minimum, while along another direction, the function attains a maximum. Let’s look at some
visuals:

. 2 2 .
The function f(x,y) = x — y has asaddle point at (0, 0). Figure 4 provides a visual
representation.



44

(Figure 4)

(Figure 5)

Notice that the function at (0, 0) has a saddle point. In fact, the second order partial derivatives

evaluated at that point have opposite signs, and this phenomenon will be discussed in detail later
on in the thesis.

Moreover, when discussing Unconstrained Optimization for multivariable functions, it is critical
to generalize the First Order and Second Order conditions, applied to single variable functions, to
multivariable ones. Before moving to the theorem, let’s briefly look at the definition of what an
interior point is, since this concept will be incorporated in the theorem.
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DEFINITION ( interior point)

A point X is an interior point of set U, if 3 r > 0 such that B (X) C U

THEOREM

F:U— RYis a C! function that has as its domain a set U C R".

Then, if Xis is a local maximum or minimum for F on the domain U, and X is an interior point of U,

this implies that:

oF
—()=0,Yi=1,2,....n

dxi

Now that we have explored the First Order Condition for functions of n variables, we can
explore the Second Order Conditions. But, before moving on, it is crucial to describe a very
important theorem called the Schwarz Theorem. This theorem provides a condition that
guarantees that the Hessian matrix is symmetric.

THEOREM ( Schwarz mixed partial derivatives theorem)

A function F: 0 — R is defined on a set 0 C R" . If x is an interior point of 0

and F has continuous second order partial derivatives at x, then

Vijje {LL2,3, ....n}, F_ _(x) =F_ (x)
ivj i

Let’s now explore the Second Order Conditions.
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Given a function of n variables, the Hessian matrix is a symmetric matrix that encapsulates
all the second order partial derivatives of the function. More specifically, the Hessian matrix evaluated

at a generic point x is defined as:

[ 02F(x) 02F(x) |
ox2 T ox ox,
H(F(x)) = : ) :
02F(x) 02F(x)
dx 0x 6x]2l

DEFINITION ( C! functions)
C! denotes the class of all dif f erentiable f unctions whose derivative is also continuous
DEFINITION ( C? functions)

C? denotes the class of all functions that are twice continuous and dif f erentiable

Let’s consider an example:

EXAMPLE 7 ( Hessian Matrix)
Consider the function F:R? — R , such that F( x,y) = x2+ yx3

Compute the Hessian Matrix of F( x,y) .

From the Schwarz theorem, since function F(x, y) is a polynomial, we know that its second
order partial derivatives are continuous, hence the Hessian matrix will be symmetric.

We begin by computing the first order, second order and mixed partial derivatives of the
function:
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oF 0°F

— = 2x+ 3yx? = 2+ 6xy

0x 0x?

oF 3 0°F

— =X —=0

oy dy?

0°F

= 3x?

0xdy

The Hessian is given by:
2+ 6xy 3x2
H(F(x)) =
3x?2 0

The Hessian matrix is significant because by classifying the Hessian matrix of a multivariable
function evaluated at a critical point, we can understand the nature of this critical point, that is if
the point corresponds to a local max, min or a saddle point.

We will always assume that the Hessian matrix is symmetric.

THEOREM ( sufficient conditon)
Let F:-U—R! be a szunction. Its domain U C R". Moreover, X is a critical point which

oF
impliesrhala—(k‘)=0, Vi=1,2, ....n.

X,
i

We can make the f ollowing statements:
(1) If H(F(X)) is negative def inite, then X is a strict local max.
(2) If H(F(X)) is positive def inite, then X is a strict local min.

(3) If H(F(X)) is indef inite, then X is neither a local max nor a local min. X is a

saddle point .
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The theorem that we stated above concerning the sufficient conditions for a critical point to be a
local maximum, minimum or saddle point can be reformulated in another more convenient way,
using properties of symmetric matrices. This new formulation of the theorem is based on
Theorem 17.3 from the book “Mathematics for Economists" by Carl P.Simon and Lawrence
E.Blume. Before moving on to the theorem, let’s explore two important definitions.

DEFINITION ( Principal Minor)

A principal minor of order k is the submatrix that results af ter deleting any n — k rows and their

corresponding columns f rom an nX n matrix A .

DEFINITION ( Leading Principal Minor)

A leading principal minor of order k of an n X n matrix A results af ter deleting the last n — k rows

and their corresponding columns .

Now, we are ready to explore the theorem below.

THEOREM ( Sufficient condition reformulated)

Let F:U— R! be a C? function that has a domain U C R" which is an open set.

oF [ . ~
Given that 0—( X) =0, Vvi=1, 2, ..., n andif all the leading principal minors of H( F( X))
X,
1
alternate in sign (—, +, —), then X is a strict local max.

On the other hand, if all the leading principal minors of H( ﬁ) are positive, this implies that X is a strict local

minimum.

If there are some non — zero leading principal minors of H( i) that violate the sign patterns of before, this

implies that X is a saddle point.
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Like for functions of single variables, we can generalize the second order necessary conditions
for multivariable functions. Below, we will explore the necessary conditions and then we will
provide a concrete example.

THEOREM ( necessary conditions)

F:U— R!isa C2 function having n variables as input. Moreover, X is an interior point

of U, and U C R~

~. . .. ) oF( X )
(1) If x is a local minimum of F, then this implies that ( ) =0,VvVi=1, ..., n andall
dxi
the principal minors of the H( F( 3(\) ) are > 0.
- _ o oF( ) _
(2) If xis alocal maximum of F, then this implies that 5 =0,Vi=1, ..., n
X,
1

and all the principal minors of the H( F( 3(\)) of odd order are are <0 and all principal minors of

even order are > 0.
Let’s look at a concrete example with some visuals:
EXAMPLE 8 ( Unconstrained optimization)
Consider the function F( x,y) = x3— y3+ 9xy

Find and classify its critical points

We begin by computing its first order and second order partial derivatives:

0F(X,y)

=3x2+9
0x Y

0F(x,y)

=—3y2+ 9x
ady
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We then set both partial derivatives equal to zero. Since the partial derivatives are continuous
because F(x, y) is a polynomial, this means the function F(x, y) is differentiable, and therefore,
the tangent plane is well defined at the points in which the partial derivatives are equal to zero.

3x2+9y =0 (equation 6)

—3y24+9x = 0 (equation 6.1)

We then try to solve equations 6 and 6.1:

1
gy = - 3x2 - y= — ;xz by manipulating ( equation 6)

9x = 3y? - 3x = y?2 by manipulating ( equation 6.1)

After we substitute (equation 6) into (equation 6.1) for the variable y, we obtain:

1
3x =—x*4
9
27x— x4 =0

x-(27-x3) =0

The two possible solutions are: x= 0, x= 3

To find the corresponding y coordinates, we substitute both values of x that we found above into
equation 6:
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1
Ifx=0, y= —?(0)2=0

1
Ifx=3, y= —g-(9)= -3

The candidate points are ( 0,0) and ( 3, — 3)

We must now compute the Hessian matrix evaluated at both candidate points in order to classify
both candidate points:

02F(X,y)

0x2

02F(x,y)
ay2

0 2F( X,Y)
dyodx

We can now construct the Hessian matrix:

6x 9
H(F(X))=[ ]
9 -6y

Let’s evaluate the Hessian at the critical points that we computed above:
09
H(F(0,0)) =
90

Let’s apply the theorem containing the sufficient conditions. We have to compute the leading
principal minors which are different from the principal minors:



52

Leading principal minor 1= 0

Leading principal minor,=0—-9-9 = — 81

Since the second leading principal minor violates the sign pattern (—, +, —, ...), by the sufficient
condition theorem, (0, 0) is a saddle point.

Moreover, let’s do the same for the other point:

18 9
H(F(3,—3))=[ ]
9 18

Leading principal minor | = 18

Leading principal minor, = 182— 81 = 243

By the sufficient condition theorem, since all leading principal minors are positive, this means
that (3, — 3) is a local minimum.

Moreover, (3, — 3) is not a global minimum because of the following observation:

If we pick a path x= 0 along F(x,y) and take the limit as y — co , we would get:

lim F(0,y) = —y?= — o

yYy—
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(Figure 6)

Figure 6 provides a visual representation of the function. Points A and B are plotted which
correspond to a saddle point and local minimum respectively.

So far we have explored the concept of unconstrained optimization for functions of several
variables. The last part of this section of the thesis, concerning optimization, will explore the
concept of Lagrange Multipliers applied to a Constrained optimization problem subject to one or
more equality constraints.

Before moving on to the concept of Lagrange Multipliers, we will briefly define what a level
curve for a function is.

DEFINITION ( level curve)
Let f: R" — R . The level curves of f are defined as the curves having equation

f(xl,xz, ...,xn)z k where k € R.

Now, consider the following problem:

Maximize f(xl, X ) subject to h(xl, x2) = D, where Cl, C2 ,De R

2



The general idea is that we want to find a specific point x* such that the level curve of f at
x*=(x*.y*) € Domain(f)

is tangent to the curve given by C A C X, = D . Thanks to this tangency condition at x ™ ,
the gradient of the function f (xl, x 2) is equal to the gradient of the constraint function

C Xt C X, = D. More specifically, assuming that

of(x*) on(x*)

: +0
0X2 ax2
we can write the following:
()f(x ) dh(xw)
()x1 dxl
of(x*)  an(x*)
0X ox

— =0
6xl a dxl
of (x*) on(x*)
—u- =0
0x2 0x2

The parameter pis called the Lagrange Multiplier.

Since we are trying to solve for three unknown quantities, namely X, X,, L we need another

equation. Such equation is given by the constraint itself:

54
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of(x*) oh( x*)
_— u. = 0
axl 0xl
af(x*) 0h(x*)
_— u. = 0
ax2 ax2

h(xl, xz)—D=O

The three equations above can be encapsulated into the so-called Lagrangian equation. We define
a Lagrangian function

L: Domain(f) xR - R

in the following way:

and we solve VL =0

Solving the initial constrained optimization problem with an equality constraint is equivalent to
maximizing the Lagrangian function by setting each one of its partial derivatives equal to zero,
as if it was an unconstrained optimization problem that we covered in the previous section.

In the above discussion, it is crucial that at least one of the two partial derivatives

oh(x*)  on(x*)

dxl 0x2

are different from zero. The condition is called a Constraint qualification. The reason is
because at a critical point, we want the constraint function and the level curve of f to be tangent
to each other. If both partial derivatives of the constraint function at that point are zero, then this
implies that the constraint function is not a curve.

Let’s now consider a concrete example in which we apply the Lagrange Multipliers Theorem:



EXAMPLE 10 ( Lagrange Multipliers — constrained optimization)
Maximize f(xl, XZ) = X%- X, X X+ x% subject to h(X1’ Xz) = X%+ X% =38

We can solve this constrained optimization problem by applying the Lagrange Multiplier
theorem;

Vf=p-Vh

df(xl,xz) dh(xl,xz)
ox, ox,

0f(xl,x2) ah(xl,xz)
ox, | ox,

2-x1+ X2=7\-2-X1

X, + 2. X, =} 2- X,
We will try to eliminate the parameter .:

2-x1 + X, X1+2'X2

2-x1 2-x2

DX . 2 _ 2 X .
2X1X2+X2 X1+2X1X2

X, = + X ( equation 6.2)

Moreover, substituting (equation 6.2) into the original constraint function, we obtain the
following:



This implies that the candidate points are:

(2,2) (2,-2)

Substituting these points into the function f ( X5 X 2) we obtain:

(_2’_2)

(-2,2)

(2,2,12) (2,-2,4) (—-2,2,4) (-2,-2,12)

The points that maximize the function subject to the constraint are:

Now, let’s gain some intuition regarding what we just computed.

(2,2,12) and (=2, — 2, 12)

(Figure 7)

Figure 7 provides a graph of the constraint function.
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We are essentially asking, out of all possible level curves of the function f (xl, xz), which level

curve is tangent to the constraint function depicted in Figure 7.



(Figure 8)

Figure 8 depicts several level curves of the function f (xl, xz) drawn in yellow and red.

Moreover, the constraint function is drawn in black (black dotted lines) and the function
f(x " xz) is depicted in blue.

We found that the level curve associated to the points (2, 2), (— 2, — 2) is given by:

2 . 2
x1+x1 x2+x2 12

(Figure 9)
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In Figure 9 we have drawn in red the level curve associated to the points (2, 2), (— 2,— 2) and
in black, the constraint function. We also plotted the points (2, 2), (— 2, — 2) denoted by A and
B respectively.

(Figure 10)

In Figure 10, It is evident that the gradient vector of the constraint function at the point 4 (2, 2),
drawn in red, is a scalar multiple of the gradient vector of the level curve of f(x X 2) at the

point A (2, 2), drawn in green.

In some cases, we can deal with constrained optimization problems with more than one equality
constraint. More specifically:

Given a function f ( X, X ., xn) we want to maximize it subject to a constraint set defined

N
by9h: {xe (xl, ,xn)|h1(x) :al,hz(x) =a,, ... ,hm(x):aH1 }
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We must also generalize the constraint qualification involving constrained optimization subject
to one equality constraint.

In the case that we are dealing with just one equality constraint, the constraint qualification is
met if there are some first order partial derivatives of the constraint function evaluated at the
critical point that are different from zero. In this case, we have to generalize this condition using
the Jacobian matrix. First, we will briefly define the Jacobian matrix.

DEFINITION (Jacobian Matrix)

If we consider a function F: R" — R" such that n,m € N and if each of the function's

[first order partial derivatives exist in a neighborhood of x € R", then the Jacobian of F

is def ined as the matrix J . (F(x))

oF,
whose (i,j) entryisJ.. = (x)
Y ox,
j
[ OF, oF T
(x) ... ... (x)
0x1 axn
More specif ically, J  (F(x)) =
oF oF
(x) ... ... (x)
0x1 axn

1t is crucial to notice that F takes a point x € R" and outputs a vector F(x) € R .

Now, we can resume our discussion above, since we have defined the Jacobian matrix.
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If the constraints are m > 1, we need to introduce the Jacobian matrix:

[ 0h, oh, ]

——(xF) e e ——(x7)
xl xn
oh oh

2 * 2 *

. — 2 (xF) e e —=(xP)
J(h(x7)) = de dxn
dhm 6hm

(x*) - (x")
8x1 Gxn

The constraint functions (h , hm) satisfy the nondegenerate constraint qualification at x ™ if

12

the rank of J(h(x*)) is m .

We are ready to explore the theorem that explains how to apply the techniques of Lagrange
Multipliers to a constrained optimization problem with more than one constraint function:

THEOREM ( Lagrange Multipliers with m equality constraints)
fandh , h,, .., h are C! functions taking on n variables as input.

Moreover, we want to maximixe f (x) on the set

0,={xe (x,.....x)|h (D=a; . hy(x) =ay. ....h (N=a, }

Additionally, we know that x* € 8, and that x" is a local maximum or minimum of f subject to 0, -

x* also satisfies the nondegenerate constraint qualif ication that we explained above . This implies
that 3 Mf, cov s f) such that(x;‘ R ,u;‘ s ,u;l) = (x*,,u*) is a critical point of

the Lagrangian function.

Recall that L(x, p) = f (x) =p,-[hy (0) =a,| = .. = - [h, (0) —a,]
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Chapter 7: First and Second Variation of a functional

In this chapter of the thesis, we will explore the concept of a functional. Next, we will derive the
First Variation as well as the Second Variation of a functional using an interesting approach
based on a Taylor Series approximation. Lastly, we will explore Legendre’s necessary condition
for a weak minimum based on the Second Variation of a functional.

In the previous sections of this thesis, we gained an intuition behind the concept of optimization
involving a real-valued function in R”, and we tried to find points that maximized or minimized
the function subject to some constraints. Now, we will move towards a new idea, that is trying to
find a function belonging to a space of functions, that minimizes a functional. More specifically,
IV denotes a vector space containing functions. y € V is an arbitrary function in V.

We call a functional J, a real valued function defined on V, that is
J:V->NR

When dealing with optimization of real-valued functions, we know that we can approximate a
multivariable function by generalizing the concept of a Taylor expansion to R”. We essentially
pick a point, and then we try to approximate the function locally evaluated at that point. We
essentially take increments and add them to the function evaluated at that initial point in a
neighborhood around that point. To take increments we need a distance.

In this case, how do we define the concept of distance for functions ? We will first define the
concept of a norm because the norm gives us a distance which allows us to define local maxima
and minima, and enables us to analyze concepts like convergence and continuity.

DEFINITION ( Norm on the space V)
A norm on V is a f unction ” ”:V — R, such that

(D) Iyl >0if y# 0
(2) bl =0if y=0.

(3 -yl =11 Il vie R Vye v
(4 lly+z] < Iyl + Nzl Vyze v

In other words, the norm must obey the four properties described above. The definition of the

norm given above makes sense only if V is a vector space. Given a norm ” : " on I/ we can define
the distance between any two elements y,z € V as

v~

We can now define what it means for a function y € V to minimize a functional J defined on a
vector space V. We need to have a clear definition of the concept of distance, which we have
given above, to define concepts like local maxima and minima of functionals. With a norm,
hence a distance, we can also define balls around points:
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Forr > 0andy € V, wedefine B (y) = {z € V| ||z—y|| <r}

DEFINITION

V is a vector space of f uncions having norm || || .

Moreover, J is a functional on V. A functiony™ € V is alocal min forJ if 3 & >0

such that ¥y € Bg(y*) ,we have that J(y™*) < J(y)

What the definition above is saying is that if we consider a ball of radius €, and analyze all

functions y in that neighborhood, | (y*) is smaller than or equal to J(y).

We can now move on to deriving the First Variation of a functional.

The method that will be used has a direct parallelism with the derivation of the first Order
necessary condition concerning unconstrained optimization of a real valued function on R”. We
propose here a particular proof of the Sufficient Condition theorem given on page 43 to
showcase how this same logical reasoning can be applied to obtain the First Variation of a
functional.

We begin by fixing a domain D c R”. Moreover, we also assume that:

f € Clandx™ is a local min f or the f unction f

We consider d € R” being an arbitrary vector, and we assume that

x"+a-d € D, Va € R that are close to 0

We are essentially starting at the point x * , and then we are moving along the vector d with
increments equal to a.

When d is fixed, we define the following:

gla)=f(x"+a-d
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Notice that g is differentiable because f is differentiable. We now begin by constructing the
Taylor expansion centered around a = 0 for the function g(a):

g(a)=¢(0)+g'(0) -a + w(a) (Equation 7)

w(a)

a

=0

The term w( ) satisf ies lim

a—0

We know that x* is a minimum of f, hence this implies that §(0) = f (x*) . This means that 0
is a minimum of g.

We make the claim that 8'(0) =0 because we said that 0 is a minimum of g. To prove this
statement we can proceed as follows.

Suppose that &' (0) # 0 | This means that

a
Je>0, suchthatV|a| <éeanda #0, ‘ v(@)
a

<|e' | = lw(a) | <|e'(0) -q

Hence, from equation 7, we know that

gla) — g(0) <g'(0)-a+ [g'(0) - a
If a has an opposite sign to &'(0) , we obtain the following:

gla) — g(0) <0 — g(a) <g(0)

This is a contradiction since we said that x* is a minimum for f. Hence, &'(0) =0 _ At this
point, we need to express the result that we obtained above in terms of the function f. If we
apply the chain rule from Vector Calculus, we obtain:
g'(a) = Vf(x*+a-d) -d

When a=0 :

g(0)=Vf(x*)-d =0
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where Vf = (fx s [ )T represents the gradient of f
1 n

2

Since d is an arbitrary vector, this implies that V.f ( x” ) = 0. Now that we have seen this
technique, we will apply the same logic to arrive at the First Variation of a Functional.

DEFINITION ( FIRST VARIATION)

Let J:V — R be a f unctional and y€ V.

A linear f unctional 6J Iy : V. — R is the first variation of J aty if

Vne Vand a € R, we have
J(y+a-17)=J(y)+5J|y(;7)-a+0(06) ( Equation 7.1)

The first variation

oJ |y(l7)

can be seen as the derivative of ] in the direction of ) at y. Indeed, if we define

p(a) —¢(0)

¢(a) =J(y+ an), we have by equation 7.1, that 5J Iy (n)=¢'(0) = lim
a

a—0

theref ore, 6J Iy (n) exists if and only if ¢ is dif ferentiable at 0.

Now, let y* € V be alocal minimum for J over A < V. Consider also the function
Pp(a) = J(y* + a-iy) , for an arbitraryy € V, such thaty* +a-n € A, V a small enough

The Taylor expansion for ¢p(a) centered at a = 0 is given by:
d(a)=¢(0)+¢'(0)-a+ E(a) (Equation 7.2)

§(a)

a

where lim =0

a—0

. . * . .. .
Since we said that y € V is a minimum for 7 over A < V', and since
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$(0) =J(y*)

we have that 0 is a minimum of ®. We make the claim, like in the previous computation that
®'(0) = 0. Analogously like before, we can proceed as follows:

Suppose that ¢'(0) # 0 _ This means that

£(a)

(04

3 e >0, such that ¥ |a| < & and a 7&0,‘ < |¢r'(0)| - |E(a) | < |¢'(0) .a|

Hence, from equation C, we know that

P(a) = $(0) <¢'(0)-a+ [¢'(0) -a
If o has an opposite sign to @' (0) | we get the following:
P(a) — $(0) <0 - ¢(a) <¢(0)
This is a contradiction since we said that 0 is a minimum for ®. Hence, ¢'(0) =0

To better understand why the above result is true, notice that the Taylor Expansion for

Ji (y* + amn) can be written as:

Hy* +a-n)=Jdy")+¢'(0)-a+ o(a)

We have thus proved the result.

THEOREM ( FIRST ORDER NECESSARY CONDITION)

Let y* be a local min f or the f unctional J over AC V. Then, 5] Iy* (n)y =0

Vy € Vsuchthaty*+ a-n € A for a small enough.

We have reached the First Order Necessary Condition. Now that we have seen an interesting
method that uses ideas from Optimization to derive the First Variation and the First Order
Necessary Condition, we will explore the second Variation as well as the Second Order
Necessary Condition.
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DEFINITION ( SECOND VARIATION)

A quadratic form 5%J Iy def ined from the domain V to R, is the Second Variation of J aty

if Vn € Vand a close to 0, we have
J(y+a- ) =J(y) + 6J1 () -a+8%1 (1) a’+ o(a?)
THEOREM ( SECOND ORDER NECESSARY CONDITION)

If y* is alocal min of J over AC V, then Y admissible perturbations n, we have

G2 o () 20

The statement above is analogous to the Second Order necessary Condition concerning
optimization of multivariable real-valued functions, discussed in the previous chapter. More
specifically

521 . (1) 2 0 and V2f(x*) >0

are very similar to each other. At this point, one may think that a second order Sufficient
Condition exists also for functionals, as we have seen in the previous chapter concerning
optimization, that takes the form

527 L« (n) >0

Hence, this implies that y* is a minimum point for /. However, it turns out that is not the case.
The proof of why the statement is false will not be shown in this thesis. The general idea is that

the linear increments | (y* + an) are too few to guarantee that y* is a local minimum.

We are now ready to explore a more explicit formula for the Second Variation of a functional as
well as Legendre’s condition for a weak minimum. Before moving on, we will consider two
examples of computing the First and Second Variation of a functional. These two examples are
based on exercise 1.5 and 1.6 taken from the book * Calculus of Variations and Optimal Control
Theory: A Concise Introduction” written by Daniel Liberzon.



68

EXAMPLE ( First Variation)

Consider the space V = CV ([O, 1], R), let ¢p: R—R be a C! function, and def ine the f unctional

1
JonVbylJ(y)= f ¢(y(x)) dx.
0

1
Show that its f irst variation exists and is given by the f ormula 5JI\_ (n) = f ¢'(v(x)) -n(x) dx
' 0
To solve this exercise, recall that

J(y+a-n)=J(y) + 5JIV(;7)-a+ o(a)

1
In this case J(y + om) is givenby J(y + an) = [ ®(y(x) + an(x)) dx. We will now
0

compute a Taylor expansion for g(a) = J(y + an).
1 1 J
J(y+an) = f $(y(x)) dx + a-/ ¢ (y(x)) - E(yﬂm) dx + o(a)
0 0

where lim o(a) =0
a

a — o0

1 1
J(y+an) = / $(y(x)) dx + a'/ ¢'(y(x)) n(x) dx + o(a)

0 0

J(y+a-n)=J(y) + 6J|y(11) ca+ o(a)

If we match the two terms highlighted in red above, we obtain the following:

1
5J|y(f7)=/ @' (y(x)) -n(x) dx
0

This is the First Variation of the functional /() . We also know that the First Variation exists

because #: R—R is a C! function The Taylor expansion that we computed above is valid
because we know that ¢ is differentiable at 0. Moreover, since

1
g(a)=J(y+a71)=/ d(y(x) +an(x)) dx
0
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we can compute a Taylor expansion for g(a) which is a single variable function, namely
g@) = g(0) + ag'(0). The term

1
g(0) = / ¢(y(x)) dx =J(y)

0

Moreover, the term

1 1
d

g'(0)=d—|a:0f ¢(y(X)+an(x))dx=f ¢'(y(x)) -n(x) dx =3dJ1_ (n)
a 0 ¥

0

By defining g(a) = J(y + an), we were able to compute the Taylor expansion since g(a) is a
function taking as input a € R.

EXAMPLE ( Second Variation)

Consider the space V = C ( [0, 1], R), and define the functional J on V

1
byJ(y)=/ $(y(x)) dx.

0

Assume now that let ¢p: R— R be a C2 function. Derive the second variation of J.

The logic to solve this exercise is exactly the same as the one used in the first example. The only
difference is that the Taylor expansion will include more terms. We have

1
J(y+w1)=/ $(y+an) dx
0

We will now compute the Taylor expansion for g(a) = J(y + an).

1 1 5 1
d = d 2
J(y+0m)=f ¢(y(x)) dx + a-_[ ¢'()‘(x))-d—(y+afv) dv + = f ¢"(>'(x))-(—(y+aﬂ)) dx
o 2 0 da

0 0

1 1 " 1
J(y+an) = f ¢(y(x)) dx + a- _[ ¢'(y(x)) -ndx + O; f ¢ (y(x)) -ntdx
0 0 0
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Recall that J(y+ a- n) = J(y) + 6J Iy (n) -« +52J|V (1) -a’+ o(a?)

If we match the two terms highlighted in red above, we obtain:
1
2 1 " 2
5JIy(f1)=E ¢ (y(x)) -n=(x) dx
0

This is the Second Variation for the functional /. The reason why the Taylor expansion shown
above is valid is exactly the same as the justification given in example 1.

Now, let’s go back to our discussion concerning how to obtain a more explicit expression for the
second variation of a functional.

Recall the following expression

if Vy € Vand o, we have J(y+a- n) = J(y) + 5J|y (n) -« +62J|y () -a?+ o(a?)

(equation 7.3)

The term given by the following
8271, ()

denotes the Second Variation of the functional . Suppose the functional ] takes the following
form

b
J(y) = / L(x, y(x), y'(x))dx

a

where L is the Lagrangian function, and it is given by L(x, y(x), y'(x)). More specifically,
L:RXRXR — R

Moreover, among all C! curves y: [a, b] — R that satisfy y(a) = Y, and y(b) = y,»we

want to find local minima of the functional given by

b
J(y) = / L(x, y(x), y'(x))dx

a

Hence, we must compute both the first and second variation of a functional. We begin by
assuming that L € C3. The left hand side of the above equation can be expressed as:
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b
J(y+a-77)=/ L(x,y(x)+a-n(x),y'(x)+a-n'(x)) dc where L is the Lagrangian

a

We are considering functions n(x) such that n(a) = n(b) = 0. We will now construct a Taylor
expansion of the above expression with respect to the parameter . To keep the notation clear
and less convoluted we will write L instead of L(x, y(x), y'(x)). Additionally, we will denote by
Ly the derivative of L with respect to its second argument evaluated at y(x). The same reasoning

applies for the term Ly, .

b b
J(y+cx-q)=f de+a-f [L‘-i(y(x)+a-17(x))+l,‘,-i(y'(x)+a-q'(x))]dx+
) L, LY da Y da

[e4

_Zbe(i, V] ibei,. oy "
5 W da(y(X)Jra-n(X)) + 5 ) - -da(y(X)+a<n(X))-da(y(X)+a<n(X))

a

a’ ’ d | . d d . 5
+—- [L‘,.‘_-—(y (X)+a-n'"(x)) - 5= (y(x)+a-n(x)) + L. . -——(y'(x)+a-n'(x)) ]a’x
2 ; ¥ da da aE da

+ o(a?)

By computing the derivatives of the above expression and combining like terms, we obtain the
following:

b b

7 b
J(y+a-n)= f Ldx + a- f [Ly-r](x) + Lv‘ -n'(x) ] dx + %f [L;{v'?"g(x) +2'Lw‘ s (x)-n'(x) +Ly‘,v' (' (x)) 2] dx

a a

+ o(a?)

Matching term by term with equation 7.3, we obtain the following:

1 b
521 (1) = E'f [L,, 2O +2:L (o) ' () + L, - (n'(x) 2] e

Let’s now use Integration by parts on the term given by
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b
f (2L, () 0" (o) Jdx

a

b
Notice that the term f [2 ~i(x) -n'(x) ] dx can be written as f [ —(?;r(x) )2

a

The reason is because the perturbation n(x) is a function of x. Let’s now apply Integration by
Parts:

d

/b-L -i( (x))2|dx, setting U=L , ,U =—( L T'—i( (x))2, T = 52(x)
TR ) SIS TS Ly _dx( .\-'.\-")’ " ! T

br b
f _Lyy, -%(W(x))Z] dx = [Lyy, : ,f,z(x)]j _ fa %( Lyyu) n2(x) dx

a

b b
[ d d
/ Lyy' ’ E( n(x) ) 2] dx = - f E( L,V,\") : ’72(x> dx

a - a

The reason why the expression highlighted above in red simplified in that way is because

n(a) = n(b)—Oandhence[L n(x)]b—O

Hence, the Second Variation can be written explicitly as:

b
1 d
52~’|y(’7) = ;f [Lyy'ﬂz(x)—a( Ln) 2(x)+L “(n'(x)) ]

a
If wed 0 ) d —— (-1
If we denote 9(x) = ? yryr an k(x) _?' yy o E( yy')

We obtain the following:

b
5271, (n) =/ [0C) - (n' () 24 x(0) - () 2] dx

a
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The functions 6(x) and k(x) are continuous when ¥ € C?,
If y is a minimum for the functional J, then for every C! perturbations n satisf ying n(a) = n(b) =0

b
wehave/ [0(x) - (7'(x)) 2+ x(x) - (n(x))2]dx =0 (equation 7.4)

Moreover, to arrive at Legendre’s condition for a weak minimum, we need to understand the
behavior of the functions 8(x) and k(x). We will not provide the derivation of Legendre’s
condition for a weak minimum, however, we will just include the statement below.

THEOREM ( Legendre's condition for a weak minimum)

Vx €& [a,b] , we must have that Ly,y, (x, y(x), v'(x)) = 0 for equation 7.4 to hold.

Building upon Legendre’s condition for a weak minimum, we arrive at the Second Order
Sufficient Condition. We will not show the proof in this thesis:

THEOREM ( Second Order Sufficient Condition for Optimality)

An extremal y(x) is a strict minimum if Ly, . (x, y(x),y'(x)) >0

Vx e [a, b] and the interval [a, b] contains no conjugate points to a.

As an important remark, we do not discuss completely in this section of the thesis the Second
Order Sufficient Condition for Optimality, but in the specific case in which y is a function of an
interval [a, b], we can still have a formulation as given above.

In the next section of the thesis, we will derive the Euler-Lagrange differential equation, which is
just an explicit formulation of the First Variation of a function J using two different methods.
The rationale of using two different methods to arrive at the same result is to showcase two
different ways of reasoning.
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Chapter 8: The Euler-Lagrange equation derivation
and intuition

There are many different Calculus of Variations problems, for example the Brachistochrone
problem, which will be explored in the succeeding chapter of this thesis, the Catenary problem
explored by Johann Bernouilli, and Dido’s isoperimetric problems. The Euler-Lagrange equation
proves to be a valuable tool in solving some of the aforementioned problems. The
Euler-Lagrange differential equation is an explicit generalization of the First Order Necessary
condition for optimality, discussed in the previous chapter. In this chapter as well as in the
succeeding chapters, we will explain the theory behind minimization problems, but of course, all
the theory can be reformulated concerning maximization problems.

For example, Dido's isoperimetric problem tries to solve the problem depicted in Figure 11:

(Figure 11)

In figure 11, we have drawn in black a curve of fixed length. Moreover, the admissible curves
are graphs of continuous functions

y:[a,b]—> R
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that satisfy y(a) = y(b) = 0.

The problem is to find a positive function y such that the area between the x-axis and the graph
of y 1s maximized. More specifically,

b
J(y) = f y(x)dx

a

is the functional to be maximized, and the constraint is given by

b
/ \/1+(y'(x))2dx=CO whereCOEIR
a

See page 85 for a more thorough explanation concerning why this is the correct way to measure
the length of the curve. In this case, the constraint embedded into this problem requires that all
paths/curves have a constant length.

Another famous Calculus of Variations problem is the Catenary problem.

Figure 12 represents the problem that we are trying to solve

Q —_—— e o — —
N | — === = = = = = = = = = = = = =

(Figure 12)

We have a cable of fixed length, fixed at two points a and b. We want to understand what shape
the cable makes under the influence of gravity, as shown in figure 12.
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The cable takes the shape that minimizes its potential energy. If we model the cable as a function
y(x), then we want to

b b
Minimize](y)z/ m-g-y-+/ 14 (y'(x)) 2 dx subject to the constraint / VI+(y'(x))2dx=C,
a

a

where C; € R and m denotes the mass of the cable and g denotes the acceleration due to gravity

Lastly, the Brachistochrone is another Calculus of Variations problem, which will be discussed in
detail in the next section of this thesis. In the Brachistochrone problem, we are trying to find a
function y(x) that defines a curve fixed at two points A(a, yo) and B(b, yl) , such that the time

for a ball to move from point A to point B along the curve is minimized. Figure 13 provides a
visual representation.

> T

-+

(Figure 13)

The functional that we want to minimize in this case is given by

b . 2
J(y)=f ‘/IP) dx
a 8y

A more thorough derivation of this equation will be given in the succeeding chapter of this
thesis.
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Now that we have seen some basic Calculus of Variation problems, we will move to the
derivation of the Euler-Lagrange differential equation.

Consider the function L(x, y(x), y'(x)) where L: Rx Rx R — R . Among all the possible
curves Y :[a’ b] — R that satisfy the boundary conditions given by y(a) = y 0 and y(b) = Y,

we want to find the specific function y(x) that minimizes the functional given by

b
J(y)=/ L(x, y(x), y'(x)) dx

a

y is a curve that connects the points (a, yo) and (b, yl). L is the Lagrangian and y(x) and y'(x)

denote the position and velocity respectively of a particle moving along the curve.
DERIVATION USING METHOD 1 ( Euler — Lagrange equation)

We begin by considering Y+ @7 where 1) is a perturbation such that ’7-[0’ b] —~RisaC
function, and the parameter o varies in an interval around 0 in R. Moreover, we denote by

L ,L ,L ,L , et

X y XX yx

the partial derivatives of the Lagrangian function L(x, y(x), y'(x)). The curve given by y + an
must satisfy y(a) = Yo and y(b) = Y, which means that n(a) = n(b) = 0. Note that

y(a) =y 0 andy(b) = y , are the boundary conditions of our problem.

Recall that the First Variation satisfies the following expression

Furthermore, since we know an explicit formula for /(¥) , we can write equation 8 as

b
J(y+a-77)=/ L(x, y(x) +a-n(x), y'(x)+a-n'(x)) dx

Now, by using the Multivariable Chain Rule, we write the Taylor expansion for J around a = 0,
obtaining
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b
J(y+a-n)= f [L(x.y. ¥) +L (x,y,¥) -a-n+ L.(x..y)-a-n'+o0(a)]|dx

a

If we match the above expression with the First Variation expression, depicted in equation 8, we
obtain the following:

b
6J|y(17)=/ [Ly(x,y,y')-n +Ly,(x,y,y')~17’]dx
a (equation 8.1)

The above expression is an explicit form of the First Variation of a functional /. However, this is
not particularly convenient since the second term depends on 7' ; we say in this case that the first
variation is in a weak form. We can apply integration by parts on the second term, to turn the
weak form of the First Variation into a strong form.

d (Ly,(x,y,y')) ,Vi=n', V=n

T dx

b
f LV,(x,y,y') -n' dx setting U= L‘:,(x,y,y') , U

a

After applying integration by parts, we obtain:

b b
f L .(x,y,y")-n'dx = [Ly.(x,y,y') n]z - / %( y.(x,y,y'))-r/dx
a

a

b
f Ly Cx,y,y") -0 dx

a

b
_fa %(Ly-(x,y,y'))-ﬂdx
The term
[Ly. (x,y,%") "]Z

evaluates to zero because of the boundary conditions n(a) = n(b) = 0. Hence, after
substituting the above expression highlighted in red into equation 8.1, we obtain:

b
d
_ N N - 1 -
6J|y (n) = f |:Ly(x,y,y) (Ly,(x,y,y ))j| n dx 0, V C! curves that satisfy

a

n(a)=n(b) =0
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If y is optimal, that is it solves our minimization problem, the integral evaluates to 0 since we
proved in a previous section of the thesis that if y is an optimal curve, then

8J1, (1) =0
LEMMA 1

b
If a continuous f unction w:[a,b] — R is such that / w(x) -ndx =0, VC! functions

a

n:[a,b]—»R that satisf iy the initial boundary conditions n(a) = n(b) = 0, then y(x) =0

The proof of Lemma 1 will not be discussed. Hence, this means that for y(x) to be an extremum
for the functional /(¥) | the following equation must hold:

L N N =0
y(x,y,y)—a( Sy =

d
Ly(x,y,y') = E(LY' (x,y,y')) ,Vx e [a,b]

The equation highlighted in red above is the Euler-Lagrange differential equation. It is possible
to extend the equation to cases where y = (yl, Yos wwe yn)T € R”,

Moreover, notice that the right hand side of the Euler-Lagrange differential equation can be
written as

d
—(£yryy) ) = Ly 6ysy) + Ly (63 3+ Ly (63,)") 0y

We just used the Multivariable Chain rule to obtain the above expression. It is interesting to
notice that there are some second order partial derivatives involving L and y, for example the
term

Lyv yv( X, ¥,y ) -y
This observation may seem to suggest that

L,ye C?2

Recall that the weak form of the First Variation given by equation 8.1 is the following
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b
oJ Iy (n) = f [Ly(x,y,y') o+ L (xy,y) ]dx

a
We will now apply Integration by parts to the term given by
L (x,y.y") -n

X

b
/ Ly(x,y,y') ‘ndx settingU =n,U" =n",V :Ly(x,y,y') , V= f Ly(x,y,y') dx

a a

b X b b X
f L (x,y.y") -ndx = [ﬂ- f L (x,y,y") dx] - f [ﬂ’- f L (w,y(w),y'(w)) dw] dx
. o .

a a a
a

Notice that the term in blue above evaluates to 0 because n(a) = n(b) = 0. We just left with
the term highlighted in red above. We can now substitute the term in red into equation 8.1.
Moreover, we changed a bit the notation in the equation highlighted in red above to avoid
confusion with the variable x in the integration limits. We changed the input variables of L from
L(x, y(x), y'(x)) to L(w, y(w), y'(W)).

b b X
oI, (n) = f Ly,(x,y(x),y'(x))-n'dxf[n'-f Ly(w,y(w),y'(w))dw]dx

a a a

b X
os1, (n) = f lLy,(x,y(x),y'(x))-n'—n'-/ Ly(w,y(W),y'(W))dWIdx

a a

a a

b X
5J|y(’?)= f [Ly.(x,y(x),y'(X)) —f Ly(w,y(w),y'(W))dWI-n'dx

Hence, if y(x) is a minimum for the functional /(¥) , we obtain
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b x
/ |:L‘},(x,y(x),y'(x)) —/ Lv(w,y(w),y'(w)) dwi|-77'dx = 0 since 5-J|"_(77) =0

a a

if visa minimum.

LEMMA 2

b
If a continuous function &:[a,b] — R is such that f E(x)-n'(x) dx =0 , VC! functions
a

n:la,b] - Rwithn(a) =n(b) =0, then £(x) is a constant f unction.

The proof of Lemma 2 will not be discussed in the thesis. Hence, from Lemma 2, we obtain that
along an optimal curve y(x), we have:

L(x, y(x), y'(x)) = f L (w,y(w),y(w)) dw + C, where C € R

a

This means that

d . . |
E( Ly.( X, v,y ) exists and is equal to Ly( X, v,y

Hence, for the Euler-Lagrange necessary condition, it is enough to assume that

ye Cland L € C!

Now that we have gained a solid intuition behind the first method of deriving the Euler-Lagrange
differential equation,we will look at the same problem discussed above, from a different
perspective, to obtain the same exact solution. The logic behind this second method is exactly the
same as in example 1, however, the way the proof is carried out is slightly different.

DERIVATION USING METHOD 2 ( Euler — Lagrange equation)

Like in the previous proof , we are trying to optimize the f ollowing f unctional

b
J(y)=/ L(x,y,y') dx

a
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Moreover, we assume that y(x) is the optimal path, while n(x) is an arbitrary path such that
n:[a,b] - R isCl

y(x) denotes a variation of the function y(x) where a varies in an interval around 0 in R.
Now, consider the following expression

y (0) = y(x) +a-n(x)
In addition, we require that

y(a) =y(a) and y(b) = y(b)

This implies that n(a) = n(b) = 0. These are the boundary conditions. Figure 14 provides a
visual representation.

y()

y(z) (b, y2)

((L, yl)

(Figure 14)

Now, we take the derivative with respect to x obtaining

y' (x) =y (x) +a 7' (x)
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Recall that the functional in question is given by

b
J(y)=/ L(x,y,y') dx

a

Now, analogously to when we compute the critical points of real-valued functions, we can
generalize this idea to functionals. More specifically, given that y(x) is the optimal curve for
J(y) | this implies that

i(J(y)) =0 asa—>0
da

The reason that we included the condition as & — 0 is because when a approaches 0, we obtain
that

y (x) = y(x)

In this case, y(x) is constant since it’s the optimal path. On the other hand, n(x) is an arbitrary
path, but once a particular n(x) is chosen, it remains constant. The parameter that changes is thus
a. Hence, we obtain

d b
— f L(x,§(x),§'(x))dx=0

da a=0
a

By the Leibniz Rule, since the boundaries of integration are constants, we can take the derivative
inside the integral:

da a=0

b
f iI:L(x’;7(36)’5"(95))]| dx =0

Using the Multivariable Chain rule, we obtain:

“lor ax oL dy oL dy'
.E—i— - do T do |a=0
ox dy Y
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The term % = 0 since x does not depend on a. Moreover, note that
dy dy'
_— = d _— !
Tt n(x) an . (x)

Substituting these values into the above integral expression, we get

broor oL
|: '7’]+ 'ﬂ']l _de=0

a Loy dy

Recall that as a — 0, the variation of the actual solution approaches the actual solution. In
other words

Asa—>0,;}=y and;'=y'

Hence, when a = 0, we obtain
b
oL oL
[ [t 2]
a ay ay (equation 8.2)

Now, at this point, we can apply the exact same logic used in method 1 to obtain the
Euler-Lagrange differential equation.

In the next chapter we will consider some special cases of the Euler-Lagrange differential
equation.
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Chapter 9: Special cases of the Euler-Lagrange
differential equation

Recall that the Euler-Lagrange differential equation is given by:

d
Ly(x,y,y') = E(Lz(x,y,y‘)) , Vx e [a,b]

SPECIAL CASE 1

Consider the case when there is no y term in the Lagrangian. The Euler — Lagrange equation

d iL ' =0
reduces to aix( y,(x,y)) =

This means that Ly, remains constant. Hence, the minima are solutions to

Ly,(x, y,y) =C, forC e R

As we will explore recall later on, Ly, (x, ¥, ¥') is called the momentum.

SPECIAL CASE 2 ( Beltrami Identity)

Consider the case when the Lagrangian does not depend explicitly on x.

This means that L can be written as L(y, y").

Consider the Euler-Lagrange differential equation again. We will write it this time using a
different notation:

9LLy.y) i(M)zo

ady dx ay'

We will now multiply both sides by y".



. OL(y.y) d(aL(y,y'>)_
y.i ) e e— — _0

oy = dx ay'

Now let’s compute the total derivative of L(y, y') with respect to x.

"

aL(y.y) _ oL.y) | OL.y) ot IL(y.y)
dx 0x oy ay'

"

dL(y,y") . dL(y,y')  OL(y,y')  9L(y,y)
dy dx ox 0y'

Now, by equating the two expressions highlighted in red above, we obtain

dL(yy) 0L | OLGny) L d (L)
dx ox dy' dx dy'
dL(y,y")  OL(y,y") [OL(y,y') gy 492Gy ]:
dx ox oy' dx dJy'

db(y.y) _oLCxy.y) fd (. 0L(y.y) )| _
dx 0x dx Y ay' B

d
—(L(.v,,v') -y

oL(y,y") | _ dL(y.y")
dx a

0y’ ox

Since we said initially that L does not depend explicitly on x , we know that

oL(y,y")
ox

=0

Hence, the expression highlighted in pink above becomes

OL(y,y") )z 0
dx

( l) '
—_— l )7 )7 _J7 .
av

which implies that

0

86
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=C,forCeR

OL(y,y'
L(y,y')—y"L,y)

dy

We can multiply both sides by — 1 to obtain

OL(y,y'
y,.L'y) — L(y,y') =B, forB e Rwhere B= —-C

dy

An equivalent expression for the above equation using a different notation is

Ly, -y — L=B,forBe R
As we will discuss later on, the quantity given by
Ly,-y' — L=B,forBe R

is called the Hamiltonian. Its significance will be thoroughly explained in a later chapter.
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Chapter 10: The Brachistochrone Problem

We will now solve a very famous Calculus of Variations problem called the Brachistochrone
problem using the previously derived Euler-Lagrange differential equation. As a small historical
background to this infamous Calculus of Variations problem, in 1670, Calculus was invented by
Newton and Leibniz independently. Next, in 1696, Bernoulli proposed the so-called
Brachistochrone problem. Later on in 1733 Leonard Euler elaborated on the Brachistochrone
problem. Johann Bernouilli’s aim of posing this problem to the mathematical community was to
“gain the gratitude of the whole scientific community by placing before the finest
mathematicians of his time a problem which will test their methods and the strength of their
intellect.” (Johann Bernouilli)'. Galileo incorrectly stated that the path of fastest descent would
be an arc of a circle. Newton, Jacob Bernouilli, Leibniz and De L’Hdpital proposed solutions to
the problem, and in 1760, Lagrange published an essay concerning new methods of determining
the maxima and minima of indefinite integral formulas. ? Let’s now begin to analyze the
Brachistochrone problem. Let’s consider figure 15

]

> T

e 1

(figure 15)

The basic idea is that we are given two fixed points A= (a, yl) and B= (b, yz). Moreover, we

want to find a specific curve y(x) where Y- [a, b ] — R such that the time for a ball to move from
point a to point b is minimized. Moreover, at each infinitesimal point on the curve, there is a
downwards force that acts on the ball, namely the force due to gravity, denoted by g . Let’s now
formulate the Brachistochrone problem in terms of a Calculus of Variations problem.

' JJ O’Connor and E F Robertson, The Brachistochrone problem
2 JJ O’Connor and E F Robertson, The Brachistochrone problem
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Assume that at time t = 0 the ball is at point A. We want to minimize the total time it takes the
ball to reach point B. Hence, we can use a definite integral, namely

t
J(y):/ dt
0

distance

Recall from Kinematics that speed = e - This implies that time =

distance
speed

We can rewrite the integral as
b
ds
J(y) = —
a ¥ (equation 10)

where dS represents infinitesimally small lengths of the curve and v denotes the velocity of the
ball. We use the integral since we want to take the sum of all these infinitesimally small
segments of the curve divided by the velocity of the ball at each point on the curve. Using the
Pythagorean Theorem, we know that

(dx) > + (dy) > = (dS) 2

dS =/ (dx)2 + (dy)?

2
dS=\/(dx)2~[l+ (dy) ]
(dx)?

d
as = |1+ (—y)2 dx

dsS =+/1+(y') % dx

We now need to figure out an expression for v( the velocity of the ball at each infinitesimally
small length of the curve). From the Principle of conservation of energy, we know that when the
ball starts at point 4 it has potential energy, and then the ball gains kinetic energy. By the
principle of conservation of energy, this implies that
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Notice that y denotes the height of the ball at each point on the curve. Substituting the two terms
highlighted in red above into equation 10, we obtain:

b '
i - f L2,
a \ <8y

The above expression can be rewritten as
b
1 1+ (y")?2
I(y) = —f 2
A/ 2g a Y

Hence, we are trying to minimize the functional depicted above. The function L in this case is

2
1+(y' . . -
% . Notice that it does not depend on x. We can use the Beltrami

givenby L(y, y")=

identity which corresponds to special case 2 of the Euler-Lagrange equation; see page 80.

L—y' Ly, =K, forK e R

In this case we obtain

1
[1+ ()2 11 -
&_y'.——.(1+(y')2) 22-y':K
y Jy 2

1+ (y")? _ (y")?
y Jy-(1+ (" 2)

=K

Multiplying both sides by \/§ , we get
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. (y)?
Jiront- 9 k5
V1+()?
Multiplying both sides by \/1 + (y')2 gives us

1+ () 2= () 2= KrJy-(1+ (y) ?)

L=Kyy-(1+ () ?)

Finally, after squaring both sides, the expression reduces to
1=k2y-(1+(y)?)

1
—=y(1+ (")
K

If we denote % as C | > We get

Notice that the above differential equation is autonomous and separable.

/dx=/ Y dy
C,—y
/ Yy
x+ C =/ dy
2 c -y

Now, we will utilize a trigonometric substitution.

y = Cl-sinz(H) , dy=2-C1-sin(¢9) -cos(@) db, 0 <?ﬂ<9



After applying this substitution, we obtain

Cl-sin2(9)
x + C2=/ ~2C1-sin(9)-cos(9) do
Cl—Cl-sinz(Q)

C,-sin?(0)

=/ —-2Cl-sin(9)-cos(9) do
Cl-cosz(G)

= /tan( ) - 2C - sin(0) - cos( ) do

=2C, fsinz( 0) do

:2-C1/%-(1—cos(20)) do

=C1/(l—c0s(20)) do

1
=C,- (0— — - sin( 20))
2
Hence, the solutions are given by

1
x=C1~(9——-sin(29)) — C2
2

o
y = Cl-sin2(9) =T'(1—C05(29))

92

To find the values of the constants, we can use the initial boundary conditions depending on the

situation. The two parametric equations that we obtained above
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1.
X = Cl-(é——-sm(29)) - C2
2

¢,
y = T-(I—COS(ZH))

are the equations that define a Cycloid. Let’s gain some intuition regarding the shape of a
Cycloid. Figures 16,17,18,19 provide a visual representation.

%

(Figure 16)

2

(Figure 17)
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(Figure 18)

o T = %(29 — sin 26)
(7171-’01) y = %L(lfcos29)
/ .
2
Y 26
z €10 Cyr

(Figure 19)

From the diagrams above, we can see that a Cycloid is the path traced out by a fixed point on the
circumference of a circle as the circle rolls along a line. Hence, relating back to the
Brachistochrone problem, using techniques from Calculus of Variations, we figured out that the
Cycloid that passes through points (a, yl) and (b, yz) minimizes the time it takes for the ball to

move from A to B under the influence of gravity.



95

Chapter 11: The Hamiltonian

In the previous chapter of the thesis, we applied the Euler-Lagrange equation (Beltrami identity)
to solve the famous Brachistochrone problem. In this section of the thesis, we will discuss in
more detail the Hamiltonian, the Principle of Least Action as well as the principles of
conservation of energy and momentum. All these fundamental ideas in Physics can be
formulated using the Hamiltonian and the Euler-Lagrange differential equation.

Suppose we are given a minimization problem with Lagrangian L. The momentum associated to
a given y = y(x) is defined as

P=1L, (x,y,y")

where L is the Lagrangian. The Hamiltonian, for our minimization problem, is defined as

H(x,y,y', P)=P-y' — L(x,y,y")

In this case, y and P are called canonical variables. Let’s now explore Hamilton’s canonical
equations. Let y be a minimum for our problem that satisfies the Euler-Lagrange differential
equation. We know that

dy

i y'(x) =H,(x,y,y")

, .. . dP
Let’s now figure out a similar expression for I
ap  d

T = a by D) = H, ey

The equations highlighted in red above are Hamilton’s canonical equations, therefore, another
necessary condition for having an optimal solution is strictly related to the Hamiltonian. The
condition states that H has a stationary point as a function of y'(x) along the optimal curve y(x).
To better understand this statement, note that
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Hy, (x,y,y', P) = P —Ly, (x,y,y') =0 since P = Ly, (x,y,y")

Moreover, let x € [a, b] and let y be the optimal curve. We define

P(x) =L, (x, y(x), y(x))

Additionally, the Hamiltonian is given by

P(x) =L, (x,y,y) -y — L(x,y,y)

Consider now H(z) = Ly, (x,y,¥)z — L(x,y,z) .One can prove that H(z) has a stationary
point when z = y'(x), which represents the velocity of the optimal curve y at x. More

: dH
specifically, — (¥'(x)) = 0.

Another interesting idea that emerges is the Principle of Least Action. Recall Newton’s law that
states that F = ma where F denotes the resultant force acting on a system, m denotes the mass,
and a denotes the acceleration. We can formulate this law as

d :
—( mq) ==-U .
dt 7 (equation 11)
where m is the mass, q= % denotes the velocity, and finally U = U(q) represents the

potential energy.

In addition, 4 is the momentum, and — U . is the force acting on a system. It turns out that

there is a very nice connection between Newton’s law of motion given by equation 11

and the Euler-Lagrange equation. To see this interesting connection, we must rewrite the
Euler-Lagrange differential equation in terms of this new notation. More specifically,

L(x,y,y') becomes L( t, q, q)
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Hence, the Euler-Lagrange equation becomes using this new notation:
d
ar(t) =t
dr\ ¢ 7 (equation 11.1)

The curves are now parameterized with respect to time (t). The central question that we now

want to answer is what Lagragian function makes equation 11 and equation 11. 1 the same. If
in R3 we consider

L:%.m.()ﬂw% 22) - U(q)
=?1-m (4)*= v

The term given by

denotes the kinetic energy, while the term given by U(q) denotes the potential energy. The
specific Lagrangian function given by

gives Hamilton’s Least Action Principle.
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More specifically, the paths of mechanical systems are the extremals of the following integral
Iy
/ (T—-U)dt
To

where T denotes the kinetic energy and U denotes the potential energy. Hamilton’s Least Action
Principle states that a particle will take the path that minimizes the difference between its kinetic
and potential energies. If we recall the definition of the Hamiltonian, using the Lagrangian
function given by

L=?1-m-(é1)2— U(q)

we arrive at a very intuitive physical interpretation of the Hamiltonian.

H=g-L — L =é1-[m'é1]—[%~m~(c'1)2— U(q)]

q
=m (q)z—%-m-(é)2+ U(q)
= %m (q)2+ U(q)
- E

The Hamiltonian thus represents the total energy in a system. We can apply what we discovered
about the physical interpretation of the Hamiltonian to the two special cases of the
Euler-Lagrange differential equation, to obtain the principles of conservation of energy and
momentum. In each one of the cases discussed below, the Lagrangian function L is given by

L=?1-m-(éz)2—U(q)

The conservation of energy principle is based on the special case 2 of the Euler-Lagrange
differential equation, also known as the Beltrami identity.
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CONSERVATION OF ENERGY PRINCIPLE

Suppose L= L( q, q)
This case corresponds to the L(y,y') case that we explored in a previous section of this thesis.

From the SPECIAL CASE 2 ( Beltrami identity) on page 85, we know that
y'-Ly,—L:C, CeR

Using this new notation,we can write the Beltrami identity as (.]-L  —L==H=C,CeR
q

This means that the Hamiltonian is conserved, which is another way of saying that the total energy of

a system is conserved since H = E =C,CeR

total

Moreover, the conservation of momentum principle is based on special case 1 of the
Euler-Lagrange differential equation.

CONSERVATION OF MOMENTUM PRINCIPLE

Assume that no external f orce acts on a system. Hence, Lq =-U . which is constant. The f orce

Uq is constant. The kinetic energy T of a system depends on q and not on q. Hence, L = T—U

does not explicitly depend on q.

From the SPECIAL CASE 1, given on page 85, we know that Ly. =a,a €R.

We can rewrite this statement using our new notation as . = a , a € R.
q

We also know an explicit expression for L. which equals m - q This means that momentum is conserved.
q

In the next chapter of the thesis we will consider some Calculus of Variations problems dealing
with constraints. We will consider just a few situations and we will provide some intuition
behind how to solve them.
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Chapter 12: Integral, non-integral constraints and
variable end point problems

In this last chapter of the thesis, we will consider three different possible plausible scenarios that
may emerge when dealing with a Calculus of Variations problem. We will begin with variable
end point problems and then we will move on to integral and non-integral constraints.

So far, we considered, as variations, a class of functions denoted by n(x), which must equal zero
at the respective endpoints. More specifically, n(a) = n(b) = 0.We will now consider a
slightly different problem. Consider the functional given by

b
J(y) = / L(x,y,y") dx wherey(a) =y, and y(b)is free

a

In this case y(b) can take on any value. This means thatn(a) = 0 but n(b) is not necessarily
equal to zero; it can be equal zero, but it is not restricted to equal zero. Moreover, recall that the
First Variation in its explicit form is given by

b
5J|y(n)=f Ly(x,y,y')—%(Ly-(x,y,y')) o dv+ L (xyy) ]

a

b
d
o1 () = f L (x.y,y") = E(Ly' (v ¥ ) [mdx + L, (b,y(b) .y (b)) -n(b)

a

Moreover, we know that if y is an extremum for the functional given by /() , then

8I1 (m) =0

which also means that
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[ s -ts, o
L(x,y.y) = —( L, (x,,5)) |-ndx =0

a
Finally, this implies that

L, (b,y(b),y (b)) n(b) =0

since 1n(b) is arbitrary. The equation highlighted in blue above replaces the boundary condition
y(b) =

In addition, we may also come across situations in which we have an integral constraint. For
example, the Catenary problem defined by

Minimize J(y) = f m-g-y-+/ 1+ (¥'(x))2 dx subject to the constraint f NI (x))2dx =

a

where C0 e R

is an example of a Calculus of Variations problem with an integral constraint. We can build upon
the general problem of optimizing a functional (¥) by introducing a constraint integral:

C(y) = / M(x,y(x),y'(x)) dx=C,, Cje R

However, some complications emerge when the curve y is an extremal of the constraint function
C. To rule out degenerate cases, it is imperative to assume that y is not an extremal of C so that
there exist nearby curves where C takes on values greater than or smaller than C o This is very

similar to the non-degeneracy requirement concerning Lagrange multipliers.

Notice that M is a function that belongs to the same class as L. Now, we assume that y is an
extremum for J(¥) . Consider y + an. Notice that for n(x) to be admissible it has to satisfy
the constraint and satisfy that n(a) = n(b) =

We know that C(y + an) = €, Va close to 0. This means that

5C1 () =0

If we follow the same steps used to derive the Euler-Lagrange differential equation, by
following the logic of METHOD 1, we get
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b
d
/ [My(x,y,y') - E(My' (x,y,y'))]- n(x) dx=0

a

(equation 12)

From the First Order Necessary Condition, we know that for every 1 (x) that satisfy equation
12 , we have

b
d
5le(11) =/ [Ly(x,y,y‘)—E(Lyv(x,y,y‘))]w(m dx =0

a

(equation 12.1)

If we pay close attention to equation 12 and equation 12. 1 , we can notice that there is a clear
connection with Lagrange Multipliers. More specifically,

3al* e R,such that (L - —(L ,))+ ,1*-( - —(M ,)) =0, Vx € [a.b]
y y y y
If we rearrange the terms, we obtain the following expression:

* d *
(L+2 -M)y =E(L+/1 -M)y,

The term given by
L+21"-M

is called the augmented Lagrangian. Hence, y being an extremal for the cost functional C(y)
means that

b
(74+27C)(y) =/ [L(x,y,y') +27 - M(x,y,y") | dx

a
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In the above section, we considered integral constraints since the cost functional C(y) was
written in terms of a definite integral. There are also non-integral, which the name implies, where
the cost functional is not written in terms of a definite integral. The difference between integral
and non-integral constraints is that integral constraints are global in the sense that they apply to
the entire curve, and non-integral constraints are local.

We now consider an equality constraint that has to hold pointwise. That is

M(x, y(x), y'(x)) = 0, Vx € [a,b].The First Order Necessary condition is very similar to

the one that we saw above, concerning integral constraints, the only difference is that 4~ (X) is
now a function of x. The Euler-Lagrange differential equation must hold for

(L+2%(x) - M)

.
where 4 [a’ b ] — R To rule out degenerate cases, we need to make two assumptions. We
assume that there are at least 2 degrees of freedom, and that along the curve y , My, # 0Oor if

y' is not present in M(x, y, y') then My # 0. We will not prove it here, but V x, 3 a Lagrange
Multiplier where A= X*(x) . The individual Lagrange Multipliers A*(x) combined together
b b

generate the function A". The problem becomes of minimizing [ Ldx + [ A(x) M dx .
a a

The last type of non-integral constraints that will be explored in this thesis are the Holonomic
constraints. Holonomic constraints refer to cases when the constraint does not depend on y'(x),

so they take form M(x, y(x)) = 0 . Let’s consider an interesting example. Consider figure
20.

(Figure 20)
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Figure 20 describes a pendulum, having a ball of mass m hanging from a string of fixed length [.
Moreover, 0 is the angle formed between the string and the vertical y-axis. We will apply
Hamilton’s least action principle to figure out an equation that describes the motion of the ball
subject to the pendulum, such that the difference between the ball’s kinetic and potential energy
is minimized. Before moving on to the example, we must define what Polar Coordinates are.

DEFINITION ( Polar Coordinates)

To move from Cartesian Coordinates (x,y) to Polar Coordinates (r, 0) we apply the f ollowing

equations: x=r-cos( @) and y= r-sin( ) .

In this case, r is the distance from the origin to the point in Cartesian coordinates. x>+ y? = r.
TE n . . . . . . .
Moreover, 0 €| — —,— |is the angle formed between the x — axis and the point given in Cartesian Coordiantes .
2 2

0= arctan(l)
X

Now let’s go back to our initial problem. The constraint function is given by

M(x,y) = X+ y2 —F =0 by the Pythagorean Theorem. We can express everything in
terms of Polar Coordinates. Note that r = [ and 0 is a free parameter. Moreover, let’s denote by

0 = %. The kinetic energy as the mass m swings back in forth on the pendulum can be

writtenas T = %ml2 (9)2 and the potential energy can be expressedas U = mg(L — y)

which is equivalent to mg(1 —<-) = mg(1 — cos(6)). The Lagrangian, by following

Hamilton’s Least Action Principle, is given by L = %ml2 — mg(1 — cos(0)) . If weapply
the Euler-Lagrange differential equation for Polar Coordinates, given by L 0 = % (L 6) , We

arrive at the famous pendulum equation given by

d?*6 g .
= = — 2 in(6)
dr? !

where g represents the acceleration due to gravity, given by 9. 81 ms , and [ represents the
length of the string.
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Conclusions

In conclusion, in this thesis we started with exploring some general theory behind Differential
Equations. We started off with giving the general form of an Ordinary Differential Equation.
Next, we explored Autonomous, separable, and finally Second Order linear homogeneous and
nonhomogeneous differential equations with constant coefficients. We then gave a brief
definition of what it means for a function to be Lipschitz and we provided the general statement
of the Picard-Lindel6f theorem. Before proving this theorem, we explored some interesting
concepts ranging from Cauchy Sequences, and Cauchy sequences of functions as well as
pointwise and uniform convergence.

We then provided some intuition behind the concept of Optimization for real-valued functions
having n variables. We also explored the concept of Lagrange Multipliers. Finally, we explored
the concept of a Functional,which is the central building block of Calculus of Variations. We then
introduced the First and Second Variation of a functional in both a general and explicit form.. We
then derived the Euler-Lagrange differential equation and applied it to the infamous
Brachistochrone problem. We concluded the thesis by looking at some possible integral and
non-integral constraints.

Calculus of Variations is a very important topic since it has a wide range of applications in
Physics, Chemistry, etc. Calculus of Variations is analogous to the idea of minimizing or
maximizing a function of real variables. The only difference is that in this case, we are trying to
find a specific curve (function) that optimizes a functional (which is a function of a function).

As we saw 1n this thesis, Newton’s laws of motion have a clear connection with the
Euler-Lagrange differential equation. For further research, it would be very interesting to explore
the connection between the Euler-Lagrange differential equation and relativistic systems. The
Euler-Lagrange differential equation can be applied in the context of both special and general
relativity. Moreover, since the theory of Relativity by Einstein is based upon Differential
Geometry, this also implies that Lagrangian Mechanics is connected to Differential Geometry.

Much of the theory that was developed in this thesis can also be applied to Computer science,
more specifically, in Machine Learning for example. A Calculus of Variations methodology can
be applied to provide a lower bound for the marginal likelihood function *. Moreover, Calculus
of Variation techniques can also be applied to image restoration, which is based on minimizing a
specific functional *. For example, image restoration, which is a ML topic, is often based on
optimizing

1
I(u)=/;(f—u)2+i-|Vu|dx
5

U

3 Anders Meng, An Introduction to Variation Calculus in Machine Learning
4 Jeff Calder, The Calculus of Variations
® ibid
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In this case,

u: U - R where U= (0,1) 2. Moreover, f is the original noisy image, and u

denotes the minimizer, which represents the denoized image .

In terms of a Calculus of Variations problem, the Lagrangian is given by:

1
L(X’Z’P) = E(f(x) _Z) 2+}'|p| 6

and hence, the Euler-Lagrange method, discussed in this thesis, can be applied to minimize the
functional.

¢ ibid
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