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Introduction

Euro area annual inflation rate is expected to continue increasing and to be above 8%

in 2022 and decrease to 4.6% next year. If we look at the main components of euro

area inflation, energy will have the highest annual rate, reaching 38.3% in August 2022.

This inflation surge can partly be explained by some pandemic-driven shocks such as

the shift in consumption patterns, bottlenecks in global shipping, and shortages in the

labor market. Moreover, Russia’s invasion of Ukraine has impacted global energy and

food supply, driving even upwards their prices, with consequences all over the world.

Largely ignored as an inflationary driver, however, is climate change. There are different

channels through which climate change affects the economy. For instance, droughts or

flooding could destroy crops and affect agricultural products’ prices, major weather

disasters imply that housing could become more expensive, insurance companies could

raise premiums, transportation costs might rise, and many others.

According to the latest research from the WMO, greenhouse gas concentrations, sea

level rise, ocean heat and ocean acidification hit new records in 2021. Extreme weather

led to hundreds of billions in economic losses and triggered food and water security

shocks. Conflicts, abnormal weather conditions and economic shocks exacerbated by

the Covid-19 pandemic caused a worsening in humanitarian crises, increased internal

displacement and accelerated the degradation of ecosystems1.

In a longer-term perspective, inflation in the euro area is likely to be influenced by

some structural changes. Climate mitigation policies will impact energy prices, and

changes in relative prices affect the overall inflation path. By the end of this decade,

even if there could be upward pressures on consumer energy prices and increased price

volatility, such pressures might ease as the share of renewable sources for energy will

grow faster2.

1World Meteorological Organization (May 2022).
2Nickel et al. (2022).
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The research question of this thesis is inspired by the fact that climate-related supply

shocks are much more frequent with respect to the past, and hence, it could be useful to

understand which is the role of climate risks on inflation.

The methodology used is the Dynamic Model Averaging (DMA) forecasts. This choice

is because there is strong empirical evidence of time variation in the inflation process

and also since there is no unique measure of overall economic activity that provides

accurate forecasts in all time periods. Using DMA allows us to consider time-varying

parameters for inflation in each forecasting model and also to choose which is the best

model for forecasting at each point in time. The algorithm used for estimation is the

same as in Koop and Korobilis (2012), with the addition of a climate-related predictor,

which is CO2 emissions growth. Results show that CO2 emissions have predictive

power for inflation, particularly in medium-term forecasts and after the Great financial

crisis. Hence, climate shocks are relevant for the conduct of monetary policy and, in

the end, there is hope that also Central Banks will contribute to the transition to a more

environmentally sustainable steady state.

Furthermore, the increasing frequency of physical risks stemming from climate change

might cause short-term fluctuations in prices that amplify inflation volatility. Therefore

the linkage between inflation risk and climate-related risk should be analyzed more in

detail. To this end, an extension of the previous research is proposed using the quantile

regression model with time-varying parameters presented by Korobilis et al. (2021).

The rest of this thesis is organized as follows. Chapter 1 includes an overview of the

causes for the current surge in inflation rates and analyzes the role of climate change

on the economy. Then, some empirical evidence and summary statistics are provided.

Chapter 2 deals with the model used for estimation. Chapter 3 presents the results

and reports which is the role of CO2 emissions in inflation forecasting. Moreover,

some policy implications are discussed. In Chapter 4 is addressed the extension for the

forecast of inflation risk. The last section concludes the thesis.
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Chapter 1

Inflation and Climate change

1.1 Inflation

In modern economies, forecasting how the price level will evolve is an essential part of

private sector decision-making. The existence of long-term nominal commitments such

as mortgages and labor contracts has raised the prominence of inflation forecasting in

policymaking. Moreover, starting from the 1980s the aim of Central Banks is to keep

inflation stable, thus optimal policy will depend on optimal forecasts and policy will

be most effective when it is well understood by the public1. The main feature of this

revolution in central banking is the practice of central bankers to announce forecasts of

inflation and other key economic variables to boost transparency. In the euro area, the

ECB decides on monetary policy every six weeks to keep inflation under control, being

price stabilization the primary mandate of our Central Bank, and then the President

and the Vice-President explain them in detail in a press conference. The measurement

of inflation in the euro area includes all goods and services that households consume,

namely everyday items, durable goods, and services. All goods and services consumed

by households during a year are represented by a "basket" of items. Every item in the

basket has a price and the impact of price changes of the item on the basket depends

on a weight that is assigned based on how much households spend, on average, on that

product. The annual rate of inflation, thus, is the price of the total basket in a given

month compared with its price in the same month one year before2.

July 2021, for the first time since 2003, the ECB updated its monetary policy strategy.

1Faust and Wright (2013).
2ECB, "What is inflation?", ecb.europa.eu.
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The former inflation target was to set the annual increase of the HICP (Harmonized

Index of Consumer Prices) "below but close to 2%", whereas today the target is set

at exactly 2% of the annual increase of the HICP over the medium run. This new

definition implies that the ECB is willing to tolerate a transitory period of moderate

inflation overshoot to push inflation upwards after a period in which the inflation rate

in the euro area was close to zero. It is important to stress that, in the aftermath of

the financial crisis, the ECB deployed unprecedented measures to push inflation near

its target, such as negative policy rates and quantitative easing3. Notwithstanding these

measures, since 2013 the inflation rate deviated from the ideal path of the 2% annual

increase.

Therefore, considering also that the increase in inflation last year was supposed to be

temporary, the ECB was not willing to change its current monetary policy. High infla-

tion in the euro area, it was argued, reflects shocks generated abroad. If we decompose

HICP inflation into energy and food and items with high and low import content, it can

be shown that inflation for items characterized by low import content, which is mainly

driven by domestic price pressures, had remained stable4. Indeed, the thesis of Phillip

Lane, chief economist of the ECB, was that the high inflation rates we have observed

over the last year were driven by a pandemic cycle that had generated global bottlenecks

for manufactured goods and by the surge in energy prices, and both were thought to be

temporary shocks that did not affect long-term inflation.

After the peak of the Covid-19 pandemic, the fast recovery in demand over 2020 was

accompanied by a slow recovery of production capacity in some sectors that have gen-

erated supply shortages. Sanitary restrictions around the world to reduce the spread of

the virus have contributed to the persistent supply disruptions that are restraining the

economic recovery and, additionally, Covid-19 outbreaks have led to the closure of key

ports, creating bottlenecks in global shipping. On the other hand, there are significant

signs of shortages in labor markets that reflect both the change in the location of ac-

tivities and the skills required from workers and the fact that the pandemic led some

people to withdraw from the labor force. Such shortages are more evident in countries

and sectors that rely on cross-border inflow into the labor force, which declined by 30%

3Hennecke (2021).
4Nickel et al. (2022).
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last year. As a consequence, wages are subject to upward pressure due to the need to

re-hiring workers. In addition, the number of disruptions related to climate change are

increasing in recent years and the economic impact of such shocks has increased cor-

respondingly. For instance, in 2020 there have been huge wildfires (Siberia, California

and Turkey), heatwaves and droughts (North America), extreme cold weather events and

destructive floods (Germany and Belgium), and many others. Therefore, supply disrup-

tions related to the pandemic and other events have contributed to the rise in commodity

prices.

Some of those supply disruptions associated with the pandemic were supposed to ease

facilitating the global economic recovery and reducing inflationary pressures. The pro-

jections implied that output in the advanced economies was likely to converge on the

pre-pandemic path5. However, longer-term inflation expectations did not remain an-

chored in advanced economies. During 2020, the ECB Survey of Professional Fore-

casters computed long-term inflation expectations at 1.64%, and in 2021 they have been

moving up to close to 2%, indicating that longer-term expectations have re-anchored at

the ECB’s target6.

For what concerns the impact of high energy prices on inflation dynamics, we should

consider both the direct effect through the energy component in the HICP, and the in-

direct effect since energy is an input to produce many other commodities. Also, we

should take into account the potential effect on wages and a revision in inflation expec-

tations. According to Lane, the shift in medium-term inflation expectation depends on

the intensity and duration of the current burst of inflation, its underlying drivers, and

the credibility of the central bank in keeping an inflation rate consistent with the target

level. In the euro area, there is evidence that the low inflation environment that pre-

vailed after the financial crisis will not reoccur when the pandemic cycle is over. The

first factor indicating a re-anchoring in expectations in line with the 2% level is the huge

monetary and fiscal response to the pandemic demonstrating the commitment to stabi-

lize the economy, including the SURE and the NGEU initiative. Secondly, there are

some revisions to beliefs about the operation of the world economy such as the trend in

rising wages and the transition to a green economy that will reduce the cost of energy

5OECD (2021).
6Nickel et. al (2022).

9



in the long run. Hence, monetary policy needs to take into account both near-term and

medium-term forces driving inflation dynamics. Accordingly, with its new strategy, the

ECB aims to deliver its 2% target over the medium term, meaning that monetary policy

tightening is required if current high inflation threatens to persist above the target level

over the medium term.

In recent times, just when some of the supply-chain problems caused by the pandemic

started to fade, the war in Ukraine created a new negative supply shock. Russia and

Ukraine have a limited role in the global economy, as they account for just 2% of global

GDP and almost 2% of total global trade, and they have limited financial linkages with

other countries as well. However, they are major suppliers in several commodity mar-

kets. The two countries together account for about 30% of exports of wheat, 20% of

corn, mineral fertilizers, and natural gas, and 11% of oil globally. Exports of metal

and other commodities are crucial in the functioning of supply chains around the world.

The economic impact of the war is highly uncertain in magnitude, and it depends on

the duration of the war and the policy responses, however, there will be surely even

stronger inflationary pressures. Simulations run by the OECD show that global inflation

could raise by about 2.5% in the first year after the beginning of the conflict under the

assumption that the conflict lasts for at least one year and there is a deep recession in

the Russian economy. In those simulation studies, European economies will be affected

the most due to the increase in gas prices and the strengths of businesses and energy

linkages with Russia. Another risk factor is the complete cessation of energy exports

from Russia, which will cause abrupt peaks in energy prices given the limited possibil-

ity to substitute supplies from other markets in the short term and the low level of gas

reserves7.

Given this scenario, the ECB Governing Council decided to raise the interest rate on the

main refinancing operations, the interest rates on the marginal lending facility and the

deposit facility by 50 basis points, with effect from the 27th of July 2022.

7OECD (2022).
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1.2 Climate Change

Climate change, as defined by the Intergovernmental Panel on Climate Change (IPCC),

refers to changes in climate due to natural variability or human activity. Scientists

showed that changes in the atmospheric presence of greenhouse gases and aerosols,

in solar radiation and on land surfaces alter the energy balance of the climate system.

In particular, the concentration of carbon dioxide, methane and nitrous oxide (usually

referred to as greenhouse gases or GHG) in the atmosphere has increased sharply from

the first half of the XVIII century as a result of anthropogenic activities, mainly fos-

sil fuel use and agriculture. Carbon Dioxide (Co2) is the most present anthropogenic

greenhouse gas in the atmosphere, accounting for 66% of the radioactive forcing, that is

the warming effect on the climate. It is estimated that atmospheric Co2 reached 148%

of the preindustrial level in 2019, mostly because of fossil fuel and cement production.

Moreover, of the total Co2 emissions from anthropogenic sources from 2008 to 2018

about 44% accumulated in the atmosphere, 23% in oceans and 29% on land. Since

most of the Co2 already present in the atmosphere will remain there for several cen-

turies, even when net emissions of Co2 will approach zero the climate will continue to

warm. Methane, instead, accounts for about 16% of the radioactive forcing. Almost half

of Methane emissions come from natural sources, and the remaining part is due to an-

thropogenic activities such as rice agriculture, landfills, biomass burning and fossil fuel

exploitation. The latter, Nitrous Oxide, is the third most important contributor to global

warming, accounting for about the 7% of radioactive forcing. It is emitted from both

natural sources (60%) and anthropogenic ones (40%) such as fertilizer use and various

industrial processes8.

In the last decades, there is evidence of increases in global average air and ocean temper-

atures, increased melting of snow and ice, and rising average sea level, which indicates

a warming of the climate system that very likely is due to human activities. Moreover,

there have been observed many long-term changes in climate including changes in pre-

cipitation amounts, wind patterns and extreme weather events such as droughts, tropical

cyclones, and heat waves. According to the environmental analyst of the IPCC (2007),

projections show that we will experience a warming of about 0.2 °C per decade in the

8WMO (2020).
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next 20 years, which will cause further warming and induce many changes in the global

climate system that would be very likely greater than those observed during the previous

century.

On the other hand, climate change could have an impact on the economy both through

gradual warming and through the increased frequency of extreme weather events. There-

fore, it is important to understand which are the channels through which climate change

can affect the economic system and the possible policy responses. We can distinguish

between two different risks that arise from climate change that impact macroeconomy

and price stability. The former is the so-called physical risk that pertains to those risks

that are due to the vulnerability of exposure of human and natural systems to climate-

related hazards. They include both risks from gradual global warming and extreme

weather events. Transition risk, instead, is defined as that risk that originates from the

transition to a low-carbon economy9. To this end, in 2015 the Paris Agreement was

adopted by 196 countries with the aim of reducing the global emissions of GHG to limit

global warming below 2 degrees Celsius, compared to the pre-industrial level.

The transition to a more sustainable economy will contribute to affecting the outlook

on output and price stability through changes in employment, interest rates, investments

and productivity, financial stability, and transmission of monetary policy.

There are several linkages between climate and economy that are evolving over time.

On one hand, the technological innovations enabling the large-scale use of fossil fu-

els boosted economic growth, causing, on the other hand, higher GHG emissions. As

a consequence of this self-reinforcing mechanism, there is an attempt to try to adjust

to climate change through adaptation, such as building stronger sea defenses to avoid

damage from rising sea levels. Such activities involve significant investment, implying

an impact on the economy. The other response to climate change is the implementation

of policies aimed at climate mitigation. One way of doing that is to change the tech-

nology that leads to GHG emissions while maintaining a sustained level of economic

growth. The transition to a low-emission economy pertains to this kind of policy, how-

ever, it implies significant expenditures, investments and changes in relative prices that

would have a great economic effect. The last channel to consider regards the interaction

of climate change with the financial systems. In recent years, there has been growing

9Batten et al. (2020).
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recognition that climate issues might be relevant for price and financial stability. Physi-

cal risks may affect the banking and insurance sectors and transition risks might lead to

some businesses becoming unfeasible. Furthermore, climate change risk accounts for

the alteration of the risk profile of the asset held on the balance sheet of the Eurosystem,

causing the increase of climate-related financial risks10.

To sum up, climate change can be interpreted as an adverse permanent shock to the

supply potential of the economy. Likely, such shock would push output below its level

and lower future potential growth. At the same time, climate change in the short-run

could lead to changes in demand conditions, through a reduction in consumption by

households and in investment by firms due to greater uncertainty about future economic

growth and income prospects.

According to the purpose of this thesis, the focus will be on the linkages between in-

flation and climate change. In this regard, the agricultural sector is widely exposed to

the effect of climate change, thus there is a potential for lasting effects on the prices of

agricultural products. Clearly, agricultural yields may rise in some regions of the world

and fall in others, hence the final impact is a function of the location of a country and

its agricultural imports. Recent studies point out that storms and floods are positively

related to increases in inflation in developing countries in the short term and, on the

contrary, that droughts have a more persistent effect. Moreover, rising inflation rates

may be related to lower supply potential in the economy after climate-related shocks.

It is essential to also consider the contribution of changes in energy prices to inflation.

One of the main pillars of climate policy mitigation is, indeed, the transition to sustain-

able energy sources for production that could potentially reduce the overall expenditure

for energy consumption and reduce the weight that energy has in the computation of the

consumer price index. However, the downward pressure on inflation might be offset by

a "rebound effect" if the income gains emerging from lower expenditure on energy lead

households to increase their demand11.

At the same time, when considering the implication of climate change on inflation it

is important to evaluate how durable the impact is, and we still know relatively little

about the impact on medium-term inflationary pressure. There is empirical evidence

10ECB Press Release (2021).
11Andersson et al. (2020).
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that over the medium term there are negative inflation dynamics when we experience a

rise in the temperatures, especially in emerging economies. This result suggests that the

short-run supply turmoil in agriculture can result in longer-lasting lowering pressures

on demand12.

Therefore, it is clear that climate change is a critical issue that needs to be addressed by

central banks in the future, consistently with their mandate of price stabilization.

Indeed, the ECB drafted its climate action plan in 2021 as a result of the review of

monetary policy strategy. The plan objectives are, among others, accelerating the devel-

opment of new models and new indicators covering relevant green financial instruments,

and introducing climate stress tests to assess the exposure of the Eurosystem to climate

change risks13.

1.2.1 Existing literature about economics of climate change

From an economic point of view, climate change is a public good or externality. The

costs or benefits of such activities are not captured by market prices and the effects spill

outside the market. In this framework positive spillovers of climate change are new

technologies, while the negative spillover is pollution. Most of the research about the

economic effects of climate change focuses on the negative externality, that is GHG

emissions and global warming14.

GHG emissions are an externality that differs from the classical examples in that they

are global in their impact, their effects are long-lasting, there is high uncertainty in the

steps of the scientific path that produces global warming and most likely their effect

is irreversible. Therefore, the economic analysis must take into account the economic

implication of risk and uncertainty, the policy trade-offs, and the role of international

economic policy.

The Stern Review (2006) addresses these issues starting from a crucial assumption

which is the choice of a reduction of the stock target for GHG emissions. The first

step in this analysis is to define the major risks related to climate change and, hence,

to set the targets for stock and flow of emissions and the related costs to mitigate such

12Faccia et al. (2021).
13ECB Press Release (8th July 2021)
14Nordhaus (2019).
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risks. The first challenge is to provide estimates of GHG damages, that are highly sensi-

tive to assumptions about the future and highly uncertain. Then, the price mechanism to

be put in place in order to reach the targets needs to be defined. Assuming that there will

be a cut in global emissions of at least 30% in 2050, given the avoided risk, N. Stern,

states that the cost in world GDP is around 1% per annum. Furthermore, the carbon

price required to achieve the target may be 30$ per ton of Co2.

For what it concerns the implication of risks arising from climate change for the con-

duct of monetary policy there are few empirical studies to look at. For instance, a

recent study by the Deutsch Central Bank (2022) points out that there is a statistically

significant negative correlation between climate concern and expected inflation. They

measured climate concern through households’ perception of the gravity of the implica-

tion of climate change and found out that individuals with higher inflation expectations

are those that consider climate change a less serious concern. Although their research

design does not allow for any causal statement, it is useful in understanding expectations

about inflation that play a key role in the transmission of monetary policy.

Other contributions are those related to the concept of "Environmental Phillips Curve".

The Phillips curve states that there is a trade-off between national inflation and unem-

ployment, meaning that when a country can tolerate high inflation, it can reach a low

unemployment target. Unemployment and production are related by Okun’s law, ac-

cording to which if unemployment increases, actual GDP will be lower than the coun-

try’s potential. Given that output and pollution are highly positively correlated, there

will be a positive relationship between employment and pollution. Therefore, in this

theoretical framework when pollution increases there will be also less unemployment

and higher inflation15.

1.3 Empirical evidence

The aim of this section is to better understand our data, and which could be the relation-

ship between inflation and climate change, before going into the details of the model.

During the Covid-19 pandemic, the World Meteorological Organization (WMO), esti-

mated a decrease of about 5.6% of Co2 emissions in 2020. It is predicted, though, that

15Kashem and Rahman (2020).
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at the global scale, a reduction of this magnitude will not cause atmospheric Co2 to de-

crease. Notwithstanding the temporary decrease in growth rates of new emissions, the

increase from 2019-2020 was still larger than the average annual growth rate over the

last decade16. Data also show that levels of Co2 emissions continued to grow in 2021.

At the same time, we could observe considerable volatility of inflation worldwide. The

pandemic shock required lockdowns which caused a shutdown of businesses, an in-

crease in the prices of certain products, and, in the meantime, there was an unprece-

dented policy response to the supply shock. In the euro area headline inflation, as mea-

sured by HICP, was equal to 1.2% in 2019, decreased to 0.3% in 2020 and became

negative in the second half of 2020 before increasing again to 2.6% in 2021. Recently,

inflation has reached a historical high of 8.6% in June 202217.

This data suggests that there could be a negative relationship between inflation and

climate change.

In the following sections it is presented the methodology for the selection of the dataset,

the transformations applied to the series, and then a preliminary analysis of data with

some summary statistics and correlations.

1.3.1 Data selection

For what concerns inflation, two indicators have been used, the Consumer Price Index

(CPI) and the GDP Deflator (GDPDEFL).

The former measures changes over time in the general level of prices for goods and

services that households acquire. The latter, instead, measures the ratio of the value at

current prices of goods and services an economy produces in a particular year and the

value at the prices that prevailed during the base year. It shows how much the change

in GDP depends on changes in the price level. Therefore, the GDP price deflator is not

based on a fixed basket of items consumed by households, and it captures also changes

in consumption patterns. In this analysis, the time series used are, respectively, the CPI

for all urban consumers: all Items in U.S. city average, and the US GDP deflator with

base year 2015, from "Federal Reserve economic data" dataset. The data is downloaded

on a yearly basis choosing a time window from 1959 to 2021 and it is seasonally ad-

16WMO (2021).
17Nickel et al. (2022).
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justed in order to get rid of the effect of changes in prices that normally occur at the

same and in the same magnitude every year, such as the effect of holidays. The first step

is to compute the inflation rate π:

πt =
pt − pt−1

pt−1
−1

Then, the first-difference log transformation is applied to the series since log-returns

have better mathematical properties. The first introductory step to my analysis is plot-

ting the data to see the general behavior of the series over time to conduct a first graph-

ical analysis.

Figure 1.1: CPI and GDP Deflator inflation time series

The plot of both time series does not show the presence of a trend or a seasonal compo-

nent, hence the process appears to be stationary and, therefore, there is homogeneity in

the probabilistic structure of the series. Then, the stationarity of the series is verified by

running the Augmented Dickey-Fuller test. It tests the null hypothesis of the presence

of unit root in the process of the time series. From the results, the null hypothesis is

rejected and hence the process is stationary.

Moreover, in figure 1.2 and 1.3 the autocorrelation and the partial autocorrelation func-

tions of CPI and GDPDELF time series are plotted. In our case the ACF decays to zero

after the first few lags and the PACF decays to zero after the first lag, showing small

memory in the process.

The earth’s changing climate can be measured using different indicators such as global

average surface temperature or the level of ocean acidification. However, scientists
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Figure 1.2: ACF and PACF of CPI inflation

Figure 1.3: ACF and PACF of GDP Deflator inflation

18



have maintained a long-running observational record of the levels of CO2 since 1950.

This is a rough indicator of human-induced climate change since as previously stated

it is the most abundant greenhouse gas in the atmosphere and its sources are mainly

anthropogenic. In order to model climate change, hence, it is used the time series of

CO2 global emissions in millions of tons units from 1961 to 2021. From the series

of yearly observations, it is then computed the annual growth rate of carbon dioxide

emissions that is easier to interpret. The transformed series is then plotted to perform a

graphical analysis.

Figure 1.4: Co2 emission growth time series

From figure 1.4 it is possible to guess that the series is stationary, and the result is also

confirmed by the ADF stationarity test. Moreover, the plot of ACF and PACF of the

time series shows no serial autocorrelation.
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Figure 1.5: ACF and PACF of Co2 emission growth

1.3.2 Summary statistics

The table below shows summary statistics.

Cpi Inflation Deflator Inflation CO2 Growth

Minimum -0.0032 0.0063 -0.11258

Maximum 0.1266 0.0903 0.12686

Mean 0.0367 0.0325 -0.0008

Variance 0.0006 0.0004 0.0014

Standard deviation 0.02605 0.02157 0.03845

Skewness 1.5393 1.3021 0.37431

Kurtosis 5.3376 3.8982 4.33419

Table 1.1: Summary statistics

The table shows an average value for inflation of about 3% both for the CPI indicator

and the GDP Deflator. The growth in CO2 emissions shows a negative average value of

-0.09%. The minimum value for the inflation rate was reached in 2009, in correspon-

dence with the world financial crisis. Instead, the lower value for CO2 emission growth

was registered in 2020 due to restrictions and shutdowns imposed to contain Covid-

19 virus. The highest values for inflation were reached in the decade’ 70-’80, and the

maximum was hit in 1974. For what it concerns climate change, the highest growth in
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emissions is found in 2019.

The data shows also a right-skewed distribution for inflation, which implies a fatter tail

on the right side of the distribution, and excessive kurtosis for the CPI-based inflation.

Lastly, the correlation between inflation and CO2 emission growth is negative and equal

to -0.09 and -0.10, for inflation computed with CPI and GDP Deflator, respectively. The

latter result is consistent with our guess of a negative relationship between price levels

and climate change.

From now on, the analysis will be carried out with the aid of more complex and statis-

tically robust models to assess whether this result is confirmed or rejected.
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Chapter 2

Inflation Forecast

2.1 Phillips curve inflation forecast

The most successful approaches to forecasting inflation are those based on extensions of

the Phillips Curve. Therefore, the first step in understanding the model used to perform

the empirical analysis is to review some of the most influential papers addressing this

topic. Following Stock and Watson (2008), the focus will be on models that conduct a

true or pseudo out-of-sample forecast evaluation. With this methodology it is possible

to estimate the model based on data up to date t, construct a forecast for the values at

time t+h and compare the result of the forecast with the actual values registered in t+h,

then moving forward to date t+1 and repeat the procedure through the sample.

The review of literature begins in 1958 when A. W. Phillips found empirical evidence

of a negative relationship between inflation and unemployment. Two years later, the

economists Solow and Samuelson repeated Phillips’s exercise using data for inflation

in the US from 1900 to 1960 and found the same results. They called this negative

relationship "Phillips’ Curve". This suggested that policymakers could choose between

different combinations of the unemployment rate and inflation, and in the following

years the economic debate focused mainly on which point in the Phillips curve was

best for a country’s economy. However, during the 70s the relationship of the Phillips

Curve seemed to disappear. Indeed, when the Organization of Petroleum Exporting

Countries was created in 1973 many countries experienced a period of high inflation,

driven upwards by the rise in oil prices, and growing unemployment. It became clear

that when non-labor input prices change dramatically, the relationship implied by the
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Phillips curve does not exist anymore in the economy1.

Consequently, between 1980 and 1990, the approach to forecasting inflation changed

with respect to "non-accelerationist" Phillips curves due to a mismatch in the classical

relationship between unemployment and price levels2. Many economists argued that

the most performing models in terms of forecast were those built around the Gordon

triangle model (1982) and its variants.

In the triangle model inflation is specified by the following equation:

πt+1 = µ +α
G(L)πt +β (L)ut+1 + γ(L)zt + vt+1, (2.1)

where ut is the unemployment rate, zt represent supply shock variables, and α(L), β (L),

γ(L) are polinomials in the lag operator L.

In eq. (2.1) inflation depends on inflation already built into the economy, contempora-

neous and previous lags of the unemployment gap, which represents demand-pull infla-

tion, and energy and food price shocks that affect aggregate supply, that is the cost-push

inflation. The unemployment gap is defined as the difference between the unemploy-

ment rate and the NAIRU (non-accelerating inflation rate of unemployment), which is

the unemployment rate at which inflation remains constant over time. The main idea

is that when unemployment is below the NAIRU, inflation tends to rise over time, and

vice versa when the unemployment gap is positive. Modern specifications of the Phillips

curve that use the unemployment gap are also called "NAIRU Phillips curves". In those

models, unemployment and the level of economic activity are used to forecast future

inflation rather than the inflation rate itself and they were introduced after the period of

high volatility in inflation of the 1970s when the negative relationship between inflation

and unemployment seemed to disappear. In those years, the inflation rate became more

persistent and, the Triangle model reflects this shift in inflation behavior.

Later, there were some studies about the deterioration of the Phillips curve forecast.

Most of the research during the 1990s documented that activity-based inflation forecasts

had a small advantage relative to an AR benchmark after 1985 with respect to before.

Moreover, Stock and Watson (1999) provided evidence that the US Phillips curve is not

stable over time and that the performance of the forecast can be improved by adding

1Kashem and Rahman (2020).
2Stock and Watson (2008).
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alternative measures of aggregate activity other than unemployment. The specification

of inflation in this model is:

π
h
t+h −πt = φ +β (L)ut + γ(L)δπt + εt+h,

where πh
t is the h-period inflation in the price level Pt , reported at an annual rate; πt

is monthly inflation at the annual rate and ut is the unemployment rate. In the latter

equation inflation is integrated of order one, and the constant term in the regression

captures the NAIRU rate that is assumed to be constant.

The first result of Stock and Watson’s analysis is that there is statistical evidence of time-

changing coefficients of the Phillips curve. Time variation could be due to the natural

level of unemployment, which is a function of all the political and economic variables

that determine the level of wages; hence, it is not surprising that the NAIRU is different

across time and countries. Amongst the different causes that could bring a variation

in the NAIRU, there are government subsidies, employment protection framework, the

existence of minimum wage, and the monopolistic power of firms.

Surprisingly, according to Stock and Watson, instability stems from changes in the con-

tribution of lags of inflation in the Phillips curve and not from a shift in the NAIRU.

However, there is evidence that in the US there has been a decrease in the NAIRU in the

90s due to several factors, such as increased competition between US firms and the rest

of the world, and the aging population 3. Indeed, more recent studies have challenged

the results of Stock and Watson, since in 1999 the instability registered in the mid of the

1990s was too recent to have clear results given the limited amount of data.

The second important contribution of this research is to have shown that including alter-

native measures of real economic activity, namely housing starts or the growth of trade

sales, can improve the forecasting performance of the model.

In 2001 another fundamental piece of evidence was published by Atkenson and Oha-

nian. Their research aimed to prove the usefulness of NAIRU Phillips curves in forecast-

ing inflation. The methodology consists in comparing the accuracy of forecasts made

with the classical specification of the Phillips curve used in Stock and Watson (1999),

with a naïve model that predicts that the inflation rate follows a random walk process.

Over the period between 1984 and 1999 the AO forecast seems to outperform the

Phillips curve forecast. Therefore, the problem with Phillips curve models was that they

3Blanchard et al. (2008).
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performed poorly starting from the 90s, a period of strong, but at the time unmeasured,

productivity growth that pressured inflation downwards.

After the publication of Atkenson and Ohanian paper, it was clear that there was no

unique measure of overall economic activity to be used in the forecasting model. This

suggested modeling the huge number of activity indicators using a dynamic factor

model. Those models are flexible in that the observed dependent variable is a linear

function of exogenous covariates and unobserved factors that have an autoregressive

structure. In this way, economists were able to estimate the common latent factor, that

is the economic activity, and use that estimation as the activity variable in the forecast

carried out with Phillips curve models.

Other statistical methods that were proposed to overcome the problems of dealing with

a very large number of predictors are model combination or model averaging, such as

Bayesian Model Averaging (BMA) or bagging. Another approach is to model all series

simultaneously using high-dimensional VARs with strong parameter restrictions. How-

ever, the gains obtained performing forecasts with many predictors are not systematic

and they seem to not overcome Atkenson and Ohanian’s results. Moreover, according to

Stock and Watson (2008), who reviewed and tested the forecasting accuracy of all previ-

ously stated models, the performance of the Phillips curve model is episodic in relation

to univariate forecasts. Their result suggests that when the unemployment rate is close

to the NAIRU, is better to use a univariate forecast, whereas when the unemployment

gap is big, it should be included in the covariates. To sum up, all this evidence points

out that there is strong empirical evidence of time variation in the inflation process. In

this thesis, I follow the approach of Koop and Korobilis (2012) to address the problem

of time variation in the model relevant for forecasting.

2.2 Bayesian approach to time-varying parameters mod-

els (DMA)

This econometric methodology aims to address three different issues that arise when

estimating future inflation: firstly, the slope of the Phillips curve changes over time and

there is empirical evidence of structural breaks in the time series; secondly, the number

of potential exogenous variables can be very large; and, lastly, the best model for fore-

casting might also be changing over time. This leaves us with a very complex problem
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in terms of the number of data that needs to be processed. For instance, let’s suppose

that the set of models is defined by whether a given potential predictor is included or not

in the estimation. If there is a set of m predictors, the forecaster has 2m models to evalu-

ate. If we assume also, that at any point in time a different forecasting model needs to be

used, at time τ the number of models to be estimated in order to have a forecast is 2mτ ,

that is an incredibly huge amount of data to be evaluated. Koop and Korobilis (2012)

consider in their research a strategy that is called dynamic model averaging (DMA),

which allows for the forecasting model to be time-varying and the coefficients in each

model to also change over time.

The starting point is the following generalized Phillips curve:

yt = φ + x′t−1β +
p

∑
j=1

γ jyt− j + εt (2.2)

where yt stands for inflation and xt is a vector of predictors. This representation allows

to conduct forecasts h-steps ahead directly, simply replacing yt and εt with yt+h−1 and

εt+h−1 in (2.2).

Then, the problem of time variation in parameters needs to be addressed. Usually, mod-

els that include time-varying parameters (TVP) are estimated using state space methods

such as the Kalman filter.

2.2.1 State space filters for TVP models

Kalman filter is an algorithm that computes estimates based on linear dynamical systems

in state space form. In general, there is a process model which defines the evolution of

the state over time, and a measurement model that defines the relationship between

the state and the observations at current time. The specification of the model in our

framework becomes:

yt = ztωt + εt

ωt = ωt−1 +ηt

With yt that is inflation, zt is a mx1 vector of predictors of inflation including: a constant,

the vector of exogenous variables xt−1, and previous p lags of inflation. ωt is a mx1

vector of coefficients, such that ωt = [φt−1,βt−1,γt−1, . . . ,γt−p]. Finally, the errors, εt

and ηt , are assumed to be mutually independent at all leads and lags, and i.i.d. normally

distributed with zero mean and variance equal to, respectively, Ht and Qt . Let’s define

also and yt = (y1, . . . ,yt)
′.

26



Usually, the variance-covariance matrices of errors are used as tuning parameters since

the true statistics of the noises are not known.

The algorithm usually works in two stages: prediction and update. In general, starting

from an initial condition, the first step is to define the prior distribution in order to

project the value in the following time period. Then, the prior values are used in the

measurement part, so to obtain the posterior values and update the estimates and the

error covariance. For given values of Ht and Qt , the predictive distribution is:

yt |yt−1 ∼ N
(

zt θ̂t−1,Ht + ztΣt|t−1z′t

)
.

Then, it proceeds using

θt |yt−1 ∼
(

θ̂t−1,Σt|t−1

)
,

and the update in Kalman filtering is

θt |yt ∼ N(θ̂t ,Σt|t).

Where,

θ̂t = θ̂t−1 +Σt|t−1zt(Ht + ztΣt|t−1z′t)
−1(yt − zt θ̂t−1) (2.3)

and

Σt|t =+Σt|t−1 −Σt|t−1zt(Ht + ztΣt|t−1z′t)
−1zt +Σt|t−1, (2.4)

Σt|t−1 = Σt−1|t−1 +Qt . (2.5)

This latter equation can be simplified using the approximation in Raftery et al. (2007)

according to which Qt = (1−λ−1)Σt−1|t−1, with 0 < λ ≤ 1. The parameter λ will be

called "forgetting factor" because it implies that observations that are t periods in the

past have weight λ i. Hence, the only unknown to be estimated or simulated is Ht .

2.2.2 Dynamic Model Averaging

The model specified in the previous section, however, has the drawback that it considers

the same set of explanatory variables to be always relevant. Hence, when the number

of predictors m is very large, the model could over-fit in-sample and forecast poorly. To

overcome this issue, Koop and Korobilis propose an application of the classical Kalman

filter algorithm to allow for averaging across different kinds of models at each time

and choose the best one in terms of forecast. Let’s define, therefore, the DMA model

equations as:

yt = z(k)t θ
(k)
t + ε

(k)
t
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θ
(k)
t+1 = θt(k)+η

k
t ,

with k = 1, . . . ,K, ε(k) ∼ N(0,H(k)
t ) and η

(k)
t ∼ N(0,Q(k)

t ). In this specification, there is

a set of K models characterized by having different subsets of predictors in zt . Moreover,

let’s define Lt ∈ 1,2, . . . ,K as the model that applies at time t, and the vector Ωt =

(θ
(1)
t

′, . . . ,θ
(K)
t

′)′.

DMA prescribes to compute the probability that a given model applies in time t given

variable information through time t-1, that is:

P(Lt = k|yt−1)

for k=1, . . . ,K, and averaging forecasts across models using those probabilities. The

model, therefore, should be completed by a transition matrix that specifies how predic-

tors enter or leave the model in real time. The elements of this transition matrix, P,

would be pi j =P(Lt = i|Lt−1 = j) for i, j = 1, . . .K.

Of course, the estimation can take a long time when the number of predictors is large

using this methodology, hence, they use an approximation that allows for the use of

Kalman filter. Such approximation involves the definition of two forgetting factors, λ ,

as defined in section 2.2.1, and α .

To better understand the role of these parameters let’s rewrite the Kalman algorithm for

the multi-model case:

Θt−1|Lt−1 = k,yt−1 ∼ N
(

θ̂
(k)
t−1,Σ

(k)
t−1|t−1

)
(2.6)

Θt |Lt = k,yt−1 ∼ N
(

θ̂
(k)
t−1,Σ

(k)
t|t−1

)
(2.7)

and,

Θt |Lt = k,yt ∼ N
(

θ̂
(k)
t ,Σ

(k)
t|t

)
. (2.8)

Also here, we can compute θ̂
(k)
t , Σ

(k)
t|t , and Σ

(k)
t|t−1 using equations (2.3), (2.4) and (2.5),

considering that the k superscript means that we are computing the state conditional on

a certain model k. To be clearer, equation (2.6) only gives information about θ
(k)
t , since

it is conditional on a given model at time t.

However, we need to derive unconditional predictions. The straightforward way is to

compute the transition matrix P as defined above and then use Markov chain Monte

Carlo (MCMC) methods to retrieve unconditional results. MCMC methods are used
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when direct sampling from a target posterior distribution is difficult, and they provide a

way to approximate that distribution of interest. Intuitively, MCMC starts with gener-

ating some random values, subject to a rule that specifies whether the parameter value

is good or bad. For each set of parameter values is possible to compute which is better

by assessing how likely that parameter can explain our data. Hence, if the last value

estimated is better than the previous one it is added to the chain of parameter values

with a given probability. After a period of time, the random samples tend to converge in

the region of highest probability for the parameter of interest and the algorithm can start

sampling from the estimated posterior distribution. Gibbs sampling is one of the most

common MCMC method for obtaining sampling from multivariate probability distribu-

tions.

In this framework we need to evaluate the posterior:

p(Θt−1,Lt−1|yt−1) =
K

∑
k=1

p(θ (k)
t−1|Lt−1 = k,yt−1)Pr(Lt−1 = k|yt−1),

where p(θ (k)
t−1|Lt−1 = k,yt−1) is given by eq. (2.6) and we denote Pr(Lt−1 = k|yt−1) as

πt−1|t−1,k.

Using the elements of the transition matrix, pi j = P(Lt = i|Lt−1 = j) for i, j = 1, . . .K,

the model predicting equation is:

πt|t−1,k =
K

∑
l=1

πt−1|t−1,l pk,l. (2.9)

As we know this is computationally infeasible and, thus, following again Koop and

Korobilis (2012), we can define:

πt|t−1,k =
πα

t−1|t−1,k

∑
K
l=1 πα

t−1|t−1,l

, (2.10)

with 0 < α ≤ 1, that is a forgetting factor. Using that approximation, the updating

equation of the algorithm becomes:

πt|t,k =
πt|t−1,k pk(yt |yt−1)

∑
K
l=1 πt|t−1,l pl(yt |yt−1)

,

with,

yt |yt−1 ∼ N
(

z(k)t θ̂
(k)
t−1,H

(k)
t + z(k)t Σ

(k)
t|t−1z(k)t

′
)
,

that is the prior density defined in section 2.2.1 but for the multimodel case.
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At this point, the DMA forecast is given by averaging over the predictive results given

by any model using (2.10). Let’s notice that,

πt|t−1,k ∝ [πt−1|t−2,k pk(yt−1|yt−2)]α =
t−1

∏
i=1

[pk(yt−1|yt−i−1)]α
i
.

Therefore, if the forecast performance in the recent past, which is measured by the

predictive density pk(yt−1|yt−i−1) is high, the model k will receive more weight at time

t. The forgetting factor α controls how much weight is associated to forecast in previous

periods. For instance, using α = 0.95, the forecast performance five years ago, that is

20 trimesters ago, receives 0.9520 = 35% as much weight as the forecast performance

last period.

2.3 The model

The model used for forecasting is specified by the following equations:

yt = z(k)t θ
(k)
t + ε

(k)
t

θ
(k)
t+1 = θ

(k)
t +η

k
t ,

with k = 1, . . . ,K, ε(k) ∼ N(0,H(k)
t ) and η

(k)
t ∼ N(0,Q(k)

t ).

In this model we need to set priors for θ k
0 ∼N

(
θ̂
(k)
0 ,Σ0

)
, and π0|0,k as initial conditions.

In the empirical analysis we assume a data based prior for θ
(k)
0 , instead π0|0,k =

1
k , for

k = 1, . . . ,K. Moreover, following Raftery et al., λ = α = 0.99, suggesting a gradual

evolution of coefficients. The last parameter to be set is H(k)
t .

Clearly, when forecasting inflation, the error variance is also time-varying, hence, we

could use a stochastic volatility or ARCH specification. In order to simplify computa-

tion Koop and Korobilis (2012) use an alternative simpler plug-in approach:

H̃(k)
t =

1
20

t

∑
j=t−20+1

[(
yt − z(k)t θ̂

(k)
t−1

)2

− z(k)t Σ
(k)
t|t−1z(k)t

′
]
,

and,

Ĥ(k)
t =

{
H̃(k)

t if H̃(k)
t > 0

Ĥ(k)
t−1 otherwise

.

Then the algorithm follows the Kalman filter procedure set out in section 2.2.1, but with

the additional prediction about the probability update explained in section 2.2.2. Once
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all parameters are estimated, forecasting is done recursively. Thus, DMA forecasts are

given by:

E(yt |yt−1) =
K

∑
k=1

πt|t−1,kz(k)t θ̂
(k)
t−1.
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Chapter 3

Results

3.1 Data and transformations

To estimate the conditional distribution of inflation I have used two different indicators

for inflation and fourteen other indicators, distinguishing between monetary measures

for inflation and other relevant data. Inflation is computed using the US Consumer

Price Index (CPI) and the US Gross Domestic Product deflator (GDPDEFL) time series,

using quarterly observation from 1959Q1 to 2021Q3. The inflation rate is the annualized

quarter-on-quarter growth rate over the whole sample size. Then, the log transformation

is applied to the time series to work with stationary data. The distribution of inflation

measured with both CPI and GDPDEFL shows mean around 3% and variance close to

zero, it is lightly right skewed and has high kurtosis. The empirical quantiles at the

5th and 95th percentiles correspond to quarterly inflation rates at -0.14% and 10.2%

for CPI inflation, and 0.7% and 8.1% for GDP Deflator inflation. These statistics are

summarized in table 4.1 below, which includes also descriptive statistics for the time

series of inflation before and after the great financial crisis and the Covid-19 pandemic.
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1959-2021 1959-2008 1959-2019

Cpi inflation Mean 0.0361 0.0414 0.0360

Variance 9.14e-04 8.66e-04 9.17e-04

Standard deviation 0.0302 0.0294 0.0303

Skewness 0.8103 1.2660 0.8177

Kurtosis 5.9347 4.8322 5.9724

5th quantile -0.0014 0.0076 -0.0014

Median 0.0312 0.0351 0.0312

95th quantile 0.1014 0.1097 0.1022

GDP Deflator inflation Mean 0.0320 0.0360 0.0319

Variance 5.34e-04 5.56e-04 5.36e-04

Standard deviation 0.0231 0.0236 0.0231

Skewness 1.3112 1.2416 1.3261

Kurtosis 4.6289 4.0643 4.6633

5th quantile 0.0069 0.0093 0.0069

Median 0.0247 0.0292 0.0246

95th quantile 0.0816 0.0862 0.0819

Table 3.1: Summary statistics

Finally, the Bai-Perron test is performed to assess whether there are structural breaks

in the series, which rejects the hypothesis of the presence of structural breaks in the

inflation time series.

The monetary measures for inflation include:

• 3-month Treasury Bill (TBILL) secondary market rate, quarterly observations

from 1959Q1to 2021Q3. The TBILL series is not stationary, hence it is applied

the first difference transformation.

• Spread between the 10-year T-Bond yield and the 3-month T-Bill, i.e. GS10-

TR3M, (SPREAD), quarterly observations from 1959Q1to 2021Q3. It is not ap-

plied any transformation.

• Real M1 Money Stock (M1), billions of 1982-84 dollars, quarterly observations

for the whole sample (1959Q1-2021Q3). Notice that, in May 2020 there is a
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structural break in the time series that is due to a change in the composition of

the Real M1 index by the Federal Reserve. Until April 2020 M1 consisted of

currency, demand deposits, and other highly liquid accounts called "other check-

able deposits" (OCDs), whereas now it includes also savings accounts. In order

to avoid this structural break, data from May 2020 to July 2021 is retrieved by

subtracting the new time series for M1 from M2 Money stock, that is a rough in-

dicator of what would have been M1 without the change introduced by the FED1.

Then, in order to make the series stationary the log first difference transformation

is applied.

The non-monetary measures are:

• US Civilian Unemployment rate (UNEMP), quarterly observations from 1959Q1

to 2021Q3, the first difference is applied.

• Real personal consumption expenditures per capita, quarterly, seasonally adjusted

(CONS), the first difference transformation is applied.

• Private Residential Fixed Investment, quarterly seasonally adjusted annual rate

(INV). Then, I applied the log first difference transformation.

• US Real gross domestic product (GDP), quarterly observations, seasonally ad-

justed annual rate from 1959Q1 to 2021Q3, with log first difference transforma-

tion.

• New privately owned housing units started (HSTARTS), quarterly data, season-

ally adjusted, from 1959Q1 to 2021Q3, with first difference transformation.

• US all employees in total private industries (EMPLOY), quarterly data from 1959Q1

to 2021Q3, first difference transformation.

• ISM Manufacturing, composite Purchasing Managers’ Index (PMI), quarterly

data from 1959Q1 to 2021Q3, first difference transformation.

• Average hourly earnings of US manufacturing employees in dollars per hour

(WAGE), quarterly from 1959Q1 to 2021Q3, seasonally adjusted and log-first

difference transformation applied.

1https://fred.stlouisfed.org/series/M1SL
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• Dow Jones Industrial Average (DIJA), quarterly data from 1959Q1 to 2021Q3,

with log-first difference transformation.

• Inflation expectations in the US, University of Michigan survey of consumers,

(INFEXP), quarterly data from 1978Q1 to 2021Q3, first difference transforma-

tion.

All the data is downloaded from the FRED Dataset, except for the Dow Jones industrial

Average that is sourced from Bloomberg.

For what it concerns US CO2 emissions percentage growth, data from 1960 up to 1990 is

sourced from Carbon Dioxide Information Analysis Center, data from 1990 are Climate

Watch data. Carbon dioxide emissions are those stemming from the burning of fossil

fuels and the manufacture of cement. They include carbon dioxide produced during

consumption of solid, liquid, and gas fuels and gas flaring2. The data is only available on

a yearly basis; hence it is assumed that through each quarter of the year CO2 emissions

growth remains constant. The time series is stationary, thus no further transformation is

applied. Some descriptive statistics are provided in table 1.1.

3.2 Results from DMA

In this section are presented the results from DMA forecasting for the two proxies of

inflation for the short-term (h=1), medium-term (h=4), and long-term (h=8) forecast

horizons. The sample period used to start producing forecasts is 30 years, thus, after the

last quarter of 1990 forecasts are computed recursively. The model includes all fourteen

predictors plus an intercept and two lags of the dependent variable, therefore the total

number of models to be considered at each time t is K = 214. The main improvement

of DMA with respect to other forecasting procedures is that it allows the model relevant

for the forecast to change over time.

To assess the forecasting performance of DMA I have used three indicators: the mean

squared forecast error (MSFE) the mean absolute forecast error (MAFE) and the bias. I

present forecasting results for the DMA model and three alternative forecasting models

for comparison:

2Definition of variable from World Bank dataset.
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1. Forecasts using DMA, but the coefficients do not vary over time (a special case of

DMA where λ = 1 and α = 0.99).

2. Forecasts using Bayesian model averaging (BMA: a special case of DMA where

α = λ= 1).

3. Forecasts using the random walk (RW).

The table below presents results for my forecasting exercise for the two different mea-

sures of inflation. DMA in most cases performs better than the other three models, and

in no case much worse than the best alternative method, consistently with Koop and

Korobilis’s results3. The benchmark model (random walk) does well for longer-term

horizons forecasts. For what it concerns DMA with constant parameters model, we can

see that it forecasts better with respect to the benchmark and also with respect to BMA.

This latter result suggests that allowing for the model to change over time is at least as

important as having time-varying parameters.

3Koop, Korobilis (2012).
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MSFE MAFE Bias

DMA

CPI h=1 1.7719 0.2468 0.4065

h=4 1.5100 0.1779 0.9497

h=8 1.4376 0.1823 0.4215

GDP Deflator h=1 1.0430 0.1231 0.1818

h=4 0.9932 0.1119 0.1628

h=8 2.1242 0.2517 0.4589

DMA with λ = 1 and α = 0.99

CPI h=1 2.0000 0.2420 0.4304

h=4 2.0916 0.2386 1.1781

h=8 2.1394 0.2398 1.1286

GDP Deflator h=1 1.5426 0.1997 0.4654

h=4 1.7433 0.2002 0.2984

h=8 2.8517 0.3455 0.2421

BMA

CPI h=1 2.3436 0.2828 0.7436

h=4 2.2107 0.2458 1.1467

h=8 2.0835 0.2350 0.6524

GDP Deflator h=1 1.3550 0.1750 0.4933

h=4 1.6082 0.1830 0.3431

h=8 2.2508 0.2971 0.6524

Random Walk

CPI h=1 3.1548 0.3214 2.7102

h=4 2.5867 0.2609 2.5294

h=8 2.3349 0.2386 2.3307

GDP Deflator h=1 2.4021 0.2361 2.3397

h=4 2.1587 0.2121 2.1587

h=8 1.9994 0.2012 1.9994

Table 3.2: Forecast performances
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In addition, graph 3.1 plots the actual values for inflation and the forecasted values with

the best-selected model, for the medium-term forecast (h=4) that is the best in terms of

performance.

(a) Cpi (b) GDP Deflator

Figure 3.1: Actual values vs forecasted values for inflation

The next result provided deals with the expected number of predictors when forecasting

with DMA. Although I have used fourteen potential predictors, higher probability is

attached to more parsimonious models. Let Sizek indicate the number of predictors

included in model k, thus:

E(Sizet) =
K

∑
k=1

πt|t−1Sizek,

is the average number of independent variables used in DMA at time t, not including the

intercept and the two lags of inflation that are common to each model. In the plot below

is shown that the shrinkage of the DMA in each forecasting exercise is very effective for

the short-term forecast with a maximum value of two predictors for the GDP Deflator,

and roughly four for CPI in the last years of the sample. The highest expected number

of predictors can be seen for the longer-term forecast horizon (CPI H=4, GDPDEFL

H=8 and GDPDEFL H=4); however, it does not exceed six, and, overall, we can assess

that DMA chooses parsimonious models.

The plot below, however, does not provide information about which predictor is more

relevant in each period. To assess whether a predictor has explanatory power in a time

period we can look at the weight attached to models which include one predictor used

by DMA, that is the posterior inclusion probability. A predictor is considered relevant

if its posterior inclusion probability is above 0.5 for at least one point in time. The plots
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Figure 3.2: Expected number of predictors in the forecasting model used by DMA

are provided in the Appendix in figures A.1 to A.6. The results show strong evidence

of time-varying models with predictors that change over time. For the short-term hori-

zon forecast, the average number of predictors is low, and the most relevant ones are,

for CPI, Money stock from 1975 and, T-bill and Inflation Expectations from 2000. For

what it concerns the GDP Deflator, Wage and Money Stock have the greatest weight

attached between 1970 and 1980, whereas from 2000 the most relevant is CO2 Emis-

sions. For H=4 and H=8, Inflation Expectation is a useful predictor for inflation starting

from the 1980s. Another useful predictor for both proxies of inflation in longer-term

horizon forecasts are Wage and Employment which are included in almost the whole

sample. Spread and Money stock are other two variables that show strong predictive

power between 1975 and the early 1990s. Consumption, GDP and Investments also

often are relevant predictors for inflation, especially after the 1990s. Housing starts has

significant predictive power for the H=8 horizon of the forecast of inflation with CPI.

Finally, it is important to notice that the DIJA and the PMI are never included in the

analysis.

3.2.1 Predictive power of Co2 emissions

In this thesis, we are mainly interested in studying the predictive power of CO2 emis-

sions with respect to inflation. In figure 3.3 below it is shown the posterior inclusion

probability of CO2 predictor for all the different specifications of the model studied.
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The case for CPI with H=1 is excluded because the posterior probability of inclusion is

never above 0.5.

Figure 3.3: Probability of inclusion of CO2 emission growth in the forecasting model

The graph highlights that the CO2 emissions predictor has stronger predictive power for

the medium-term horizon forecast, and it is more useful after the great financial crisis

of 2008-09.

Finally, table 4.3 shows the value of the coefficient β that measures the effect of CO2

emissions growth on inflation over time. In our model, when the probability of inclusion

of the predictor CO2 in the forecasting model is below 0.5, β is shrunk to zero. From

the table, Carbon Dioxide emissions have a negative relationship with inflation in all

time periods in which the indicator has predictive power.

These results are consistent with the empirical evidence presented in section 1.3. How-

ever, they are surprising, given that most of the literature about climate change’s effect

on inflation suggests that it is likely to periodically push up inflation and add to eco-

nomic instability. According to DMA forecasts, instead, climate change seems to have

a negative correlation with inflation in the long run. Decreasing inflation can often be

associated with economic growth, at least when inflation is not already close to zero.

On the other hand, rising inflation implies higher prices of products and services. Thus,

consumer demands for goods will fall, and by decreasing production, CO2 emissions

will decrease4.

4Shpak et al. (2022).
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year h=1 h=4 h=8

CPI 1960-1970 0 0 0

1970-1973 0 -0.065% -12%

1974-2004 0 0 0

2004-2012 0 -0.065% -7%

2012-2019 0 0 0

2019-2020 0 -1.8% 0

GDP Deflator 1960-1983 0 0 0

1983-1985 0 0.05% 0

1985-2003 0 0 0

2003-2011 0 -1.5% -0.5%

2011-2015 0 -0.5% 0

2015-2021 -2% -0.5% 0

Table 3.3: Time-varying coefficients of CO2

In conclusion, two additional remarks could be relevant to understand what will be the

relationship between climate change and inflation in the next years. The first consid-

eration is that climate-related shocks are likely to affect supply chain production, espe-

cially in the agricultural sector, pushing up food prices. This is why such shocks have

a nonnegligible effect on medium-term inflation, in particular in developing economies,

where food is more relevant in the basket of goods used to compute inflation and they

are less resilient to natural hazards. This suggests that the increased presence of climate

shocks can in the future bring the same effect also on developed countries even if we

have not yet experienced them.

The second aspect to consider is that while we will experience temporary inflation

surges from climate change, there will be price increases related to actions to mitigate

climate change. In most scenarios, the green transition will imply sizeable changes in

the level and volatility of energy prices, accelerated obsolescence of the existing capital

stock, significant reallocation of labor and capital, and strong acceleration in invest-

ment. Such developments will have major implications for monetary policy, especially
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in a disorderly transition5.

Climate change, hence, affects the conduct and transmission of monetary policy. Re-

gardless of the sign of the effect on inflation the main challenge is that higher prices,

especially for commodities such as fuel and food could reduce production and consump-

tion. Therefore, the conventional monetary policy measure of increasing interest rates

to reduce inflation will likely make these negative impacts of inflation on demand and

job creation worse and increase inequality. Moreover, rising interest rates for the entire

economy would harm investments, including the ones in renewable energies and new

green technologies.

A growing literature has emerged on the policy options available to central banks to

respond to climate change. These measures include outright exclusion of certain assets

deemed more polluting from monetary policy operations (e.g. from eligibility as collat-

eral for refinancing operations or for central bank asset purchases in so-called quanti-

tative easing programs). On the other hand, such measures involve complex trade-offs

that have to be assessed on a case-by-case basis, depending on the central bank’s man-

date, the institutional setting, and societal preferences6. The second policy action con-

sists of an upgrading of the macroeconomic models including climate change variables,

promoting the creation of more comprehensive climate-related datasets, and supporting

ongoing initiatives aimed at identifying taxonomies of sustainable and polluting activi-

ties.

5Boneva, Ferrucci (2022)
6Boneva, Ferrucci (2022)
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Chapter 4

Further extension: inflation risk forecast

4.1 Inflation risk forecast with Bayesian model averag-

ing quantile regression models (BMA-QR)

This expansion of the previous analysis deals with the prediction of inflation risk, that is

the risk of extreme values for inflation that lie on the tails of its distribution. The aim is to

bring the analysis carried out with the model in the previous chapter one step forward,

with some modeling extensions that could improve the forecast of the distribution of

inflation, with a focus on its left and right tails.

Following Korobilis et al. (2021)1, the econometric setting is a time-series quantile re-

gression that is enhanced including time-varying parameters (TVP-QR), considering a

Bayesian framework in which parameter and error have a flexible parametric distribu-

tion to capture the behavior of extreme quantiles.

Recall that, the cumulative distribution function (FY ) is the function that, for each value

of y, gives the probability for which the random variable Y is smaller than y, i. e.

P(Y ≤ y). Given a sample from a distribution y1,y2, . . . ,yn, the τ th quantile Qτ of the

CDF is the smallest y such that F(y)≥ τ , or in other terms:

Q(τ)(F̂) = F̂y
−1
(y ≥ qτ).

A very basic formulation of QR model is the following linear regression with only one

covariate:

yi = β
(τ)
0 +β

(τ)
1 xi + ε

(τ)
i ,

1Korobilis, Landau, Musso and Phella (2021)
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and,

Q(τ)(yi|xi) = β
(τ)
0 +β

(τ)
1 xi,

where τ represents the quantile. The quantile regression estimates for β̂0
(τ)

and β̂1
(τ)

are the values that minimize the weighted sum of residuals yi − ŷi , where the weight is

1− τ if the fitted value overpredicts the observed value, and τ otherwise2.

In this thesis I use the approach of Korobilis et al., which is a bayesian approach to

inference. For the quantile regression formulation, there are no available standard con-

jugate prior distributions but MCMC methods can be applied to estimate the posterior

distributions of parameters. This allows for the use of any prior distribution.

Given the observations y = (y1, . . . ,yn), the posterior distribution of β (τ) = (β
(τ)
0 ,β

(τ)
1 )

is:

p(β (τ)|y) ∝ L(y|β (τ))p(β (τ)).

In this expression p(β (τ)) is the prior distribution of the parameter and L(y|β (τ)) is the

likelihood function. In Yu et al.3 is shown that the minimization problem described

above is equivalent to the maximization of a likelihood function assuming asymmetric

Laplace density. Whatever the actual distribution of the data, hence, Bayesian inference

for quantile regression proceeds by forming the likelihood function under the assump-

tion that the prior distribution of y is asymmetric Laplace.

Now, let πt be the observation of inflation at time t and xt a p-dimensional vector that

includes an intercept, previous lags of inflation, and a set of independent predictors. The

inference aims to estimate the full distribution of inflation by specifying:

πt = Qτ(πt |xt)+ εt , (4.1)

where Qτ is the conditional quantile function of the τ-th quantile, and,

Qτ(πt |xt) = xtβ (τ). (4.2)

By assumption τ = 0.05,0.10, . . . ,0.90,0.95.

The estimation of β (τ) is the solution to the following minimization problem:

min
T

∑
t=1

ρτ(εt),

2Hao (2020).
3Yu, Moyeed (2001).

44



with ρτ(u) = τ(τ − I(u < 0)) that is a loss function.

We know that the estimates from the minimization problem can also be retrieved by

maximizing a likelihood function under the asymmetric Laplace error distribution.

The asymmetric Laplace distribution has different mixture representations. According

to Kozumi et al.4, to develop the Gibbs sampler for the quantile regression model is

most efficient to utilize a mixture based on exponential and normal distributions for the

error, that takes the following form:

εt = θzt + τ
√

ztut ,

where zt ∼ Exponential(1), and ut ∼ N(0,1). Substituting into eq.(4.1) the quantile

regression takes the form:

πt = x′tβ(τ)+θzt + τ
√

ztut .

Thus, the conditional density of inflation is normal, and the conditional parameter poste-

rior will be identical to the standard expression for linear Gaussian regression models5.

4.2 Treating time variation in the parameters

The second step in building the model is treating time variation in the parameters. If we

consider time-varying parameters, the model’s equations become

πt = Qτ(πt |xt)+ εt ,

Qτ(πt |xt) = xtβt(τ),

βt(τ) = βt−1(τ)+ vt ,

with vt ∼ N(0,V (τ)) that is a state error with covariance matrix V (τ). Under this as-

sumption, the parameters follow a random walk process.

Given that in the previous section we have assumed that εt follows an ALD distribution

it is possible to treat the system as a linear conditionally Gaussian state-space model.

4Kozumi and Kobayashi (2009).
5Korobilis (2017).
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Under this representation it is possible to write:

πt = xtβt(τ)+ εt

= xt∆βt(τ)+ xtβt−1(τ)+ εt

= xt∆βt(τ)+ xt∆βt−1(τ)+ xtβt−2(τ)+ εt

. . .

= xt∆βt(τ)+ xt∆βt−1(τ)+ . . . + xt∆β2(τ)+ xtβ1(τ)+ εt .

This suggests that βt(τ) is the cumulative sum of changes over the previous periods,

thus, if we stack for all observations t, the equations above can be rewritten as:

Qt(π|χ) = χβ∆(τ), (4.3)

β∆(τ) = v, (4.4)

where, π = [π1, . . . ,πT ]
′, v = [v′1, . . . ,v

′
T ]

′,

χ=



x1 0 . . . 0 0

x2 x2 . . . 0 0

. . . . . . . . . . . . . . .

xT−1 xT−1 . . . xT−1 0

xT xT . . . xT−1 xT


, β∆(τ) =



β1(τ)

∆β2(τ)

. . .

∆βT−1(τ)

∆βT (τ)


6.

T xTp Tpx1

This is clearly a high-dimensional setting since the lower triangular matrix χ has more

covariates than observations.

Usually, equation (4.4) is considered as a prior for β∆(τ), such that eq. (4.3) can be

treated as a regression in state-space form model and inference can be carried out using

MCMC methods.

However, existing algorithms used for simulating posterior distributions are inefficient

when dealing with very high dimensions. Hence, borrowing ideas from Korobilis (2019),

inference will be done in this thesis without the conditional prior assumption outlined

above, but rather using an algorithm with hierarchical data-based shrinkage priors due

to the high-dimensional setting.

6Korobilis, Landau, Musso and Phella (2021).
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4.3 Bayesian time-varying parameter quantile regres-

sion

Putting together those pieces, the model has the following form:

π = χβ∆(τ)+ ε

β∆(τ) = v.

The first assumption from section 4.1 is that ε follows an Asymmetric Laplace distribu-

tion, that can be represented by a Gaussian-Exponential scale distribution:

(εt |ut ,zt)∼ θ(τ)zt +
√

σ(τ)2k(τ)2zt(τ)ut ,

where, σ(τ) is a scale parameter that takes the standard inverse Gamma prior, i.e,

σ(τ)∼ IG(ρ1,ρ2), ut ∼N(0,1), zt(τ)∼ exp(σ(τ)2), θ(τ)= 1−2τ

τ(1−τ) , and k(τ)2 = 2
τ(1−τ) .

This implies that the likelihood function of πt takes the form:

T

∏
t=1

1√
2πzt(τ)σ(τ)2k(τ)2

exp
{
− (πt −χtβ

∆(τ)−θ(τ)zt(τ))
2

2zt(τ)σ(τ)2k(τ)2

}
exp
{
− zt(τ)

σ(τ)2

}
.

Under this mixture the model can be rewritten as:

π = χβ∆(τ)+θ(τ)z(τ)+ S̃u,

with S̃ that is a T xT diagonal matrix with diagonal elements σ(τ)k(τ)
√

zt(τ).

To complete the model we need to set a prior for β∆(τ ). In quantile regression, shrink-

age is necessary because we are going to estimate a Tp-dimensional vector for each

quantile level τ = 0.05,0.10, . . . ,0.90,0.95. Therefore, it is used a Horseshoe prior from

Carvalho et al.7 that allows for shrinkage of the time-varying parameters without any

dependence on prior hyperparameters. It is defined as,

β
∆(τ)|λ (τ)2,ψi(τ)

2T p
i=1 ∼ N(0,V (τ)),

Vi,i = σ(τ)λ (τ)2
ψi(τ)

2,

λ (τ)∼Cauchy+(0,1),

ψi(τ)∼Cauchy+(0,1).

7Carvalho, Polson and Scott (2010).
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Estimation is done with a Gibbs sampler, derived from an extension of the sampler

proposed by Kozumi et al.8. In particular, from the prior and the likelihood above, the

posterior distribution of β∆(τ ) has the form:

β∆(τ )|• ∼ N
(
(χ ′Uχ +V (τ)−1)−1(χ ′U [π −θ(τ)z(τ)]),(χ ′Uχ +V (τ)−1)−1

)
9.

Due to the high-dimensional setting, sampling from the posterior is done using the fol-

lowing sampling scheme proposed by Bhattacharya et al.10:

Step 1: Sample η ∼ N(0,V (τ)) and δ ∼ N(0, IT )

Step 2: Set v = χ̃η +δ (4.5)

Step 3: Set w = (χ̃V χ̃ ′+Tt)
−1[π −θ(τ)z(τ)− v] (4.6)

Step 4: Set β∆(τ )= η +V χ̃ ′w (4.7)

In the algorithm above, χ̃ = χU−1/2,where U1/2 is a diagonal matrix with diagonal

elements (
√

zt(τ)σ(τ)k(τ))−1, and σ2(τ) and zt(τ) are updated using the posteriors:

σ(τ)|•∼ Inverse−Gamma
(

ρ1+
3T
2
,ρ2+

T

∑
t=1

(πt −χtβ
∆(τ )−θ(τ)zt(τ))

2

2zt(τ)k(τ)2)
+

T

∑
t=1

zt(τ)

)
,

zt(τ)|• ∼ IG
(√

θ(τ)2 +2k(τ)2

|πt −χtβ∆(τ )|
,
θ(τ)2 +2k(τ)2

σ2(τ)k(τ)2

)
.

The variance-covariance matrix is updated following the scheme below,

Vi,i(τ) = σ(τ)2
λ (τ)2

ψi(τ)
2 i = 1, . . . ,T p,

with the following horseshoe prior for λ and ψi:

λ (τ)2|ξ (τ)∼ Inverse−Gamma(1/2,1/ξ (τ)),

ξ (τ)∼ IG(1/2,1),

ψi(τ)|ζi(τ)∼ Inverse−Gamma(1/2,1/ζi(τ),

ζi(τ)∼ Inverse−Gamma(1/2,1).

From Makalic and Schmidt (2016) I use the exact conditional posterior distributions

under this prior formulation for the global and local hypervariaces:

λ (τ)2|• ∼ Inverse−Gamma

(
T p+1

2
,

1
ξ (τ)

+
1

2σ2(τ)

T p

∑
i=1

β 2
i (τ)

ψ2
i (τ)

)
,

8Kozumi and Kobayashi (2009).
9The bullet stands for "conditional on other parameters and variables".

10Bhattacharya, Chakraborty and Mallick (2016).
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ψ
2
i (τ)|• ∼ Inverse−Gamma

(
1,

1
ζi(τ)

+
β 2

i (τ)

2λ 2(τ)σ2(τ)

)
,

i = 1, . . . ,T p. Finally, the conditional posteriors for the auxiliary variables are also of

Inverse Gamma type:

ζi(τ)|• ∼ Inverse−Gamma

(
1,

1
ψ2

i (τ)

)
,

i = 1, . . . ,T p , and,

ξ (τ)|• ∼ Inverse−Gamma

(
1,1+

1
λ 2(τ)

)
11.

The algorithm requires for each MCMC estimation to iterate through equations (4.5)-

(4.7) for each quantile, however, using MATLAB computation can be sped up sampling

for all values of τ simultaneously.

To sum up, the full Bayesian time-varying parameter quantile regression model is:

π = χβ∆(τ )+θ(τ)z(τ)+ S̃u,

β∆(τ )∼ N(0,V (τ))

Vi,i(τ) = σ
2(τ)λ 2(τ)ψ2

i (τ), i = 1, . . . ,T p,

λ (τ)∼Cauchy(0,1)+,

ψi(τ)∼Cauchy(0,1)+,

σ(τ)∼ Inverse−Gamma(ρ1,ρ2),

zt(τ)∼ exp(σ(τ)), t = 1, . . . ,T,

with S̃ = σ(τ)κ(τ)
√

zt(τ).

11Makalic and Schimdt (2016).
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4.4 Results

This section presents some initial results from the algorithm described above to imple-

ment the TVP-QR model.

The performance of each different specification of the model is assessed by comparing

the quantile score. In particular, I have computed the average of the quantile scores

across all forecasting periods. For each competing model j the average quantile score

for each quantile τ and forecast horizon h is:

QS j
h(τ) =

1
Rh

Rh

∑
t=1

[πt+h − Q̂τ(πt+h|xt)][I(πt+h ≤ Q̂τ(πt+h|xt)],

where Rh is the length of the period in which the forecast is produced.

The benchmark model is a time-varying parameter quantile AR model with two lags of

inflation.

Here the focus is on understanding the role of CO2 emissions on the forecast for tail

inflation risk, hence, it would be interesting to look at the average quantile scores for

the 5th and the 95th quantile of a model that includes two lags of inflation and only

CO2 emissions as the exogenous variable. However, the Gibbs sampler is incomplete

and does not provide accurate results.

Qscore05 Qscore95

Quantile AR(2) with TVP

CPI h=4 -0.3202 -0.7157

GDPDEFL h=4 -0.3237 -0.4290

Quantile AR(2) with TVP including CO2

CPI h=4 -1.4774 -0.6486

GDPDEFL h=4 -1.0345 -0.7327

Table 4.1: Average quantile scores from TVP-QR

The exercise could be repeated with other predictors to understand which are the best

models.

Moreover, as suggested in Korobilis et al. (2021)., it can be interesting to compare the

evolution over time of the upper and lower quantile scores, as a measure of tail risk fore-

cast errors, for different models. Comparing the evolution of quantile scores of different

models that are specified with or without a certain indicator could help understand the
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importance of including that specific additional indicator when forecasting inflation tail

risk.
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Conclusion

Through this work it is exposed the role of climate change on inflation using dynamic

model averaging. In a nutshell, given the evidence of instability of Phillips curve fore-

casts over time, and the fact that the economic activity predictors for inflation are not

constant, I have used the methodology of Koop and Korobilis to allow for the set of

predictors to be time-varying. DMA, in particular, combines the forecasts produced by

a large number of different models to predict the future value of a time series.

I have used as the dependent variable US inflation, and a set of fourteen different pre-

dictors, that are the same used by Koop and Korobilis in their research, plus a predictor

for climate change that is CO2 emissions.

I have observed that there is empirical evidence of the time-varying nature of inflation

and the best performance of DMA has been confirmed with a new and more recent

dataset. Secondly, I have found evidence of the predictive power that climate change

has on forecasting inflation, in particular over the medium term, and that the sign of

their relationship is negative.

To sum up, climate change affects the conduct and transmission of monetary policy and

it should be included in the models used by Central Banks when forecasting macroeco-

nomic variables. To this end, there is some research on the policy measures that could

be put in place to dampen the effects of climate shocks. The measures available include,

among others, upgrading the climate-related datasets to produce more precise forecasts,

and excluding certain assets that are considered more polluting from monetary policy

operations.

It is uncertain how this relationship will evolve, and which implications will have the

transition to a more sustainable economy. In the next years, a greater incidence of phys-

ical risk could cause short-term fluctuations that amplify longer-term macroeconomic

volatility, therefore the linkage between inflation risk and climate-related risk should be

analyzed more in detail.
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Appendix

Figure A.1: GDP Deflator; Probability of inclusion of predictors (h=1)

(a) CO2 (b) Consumption (c) Employment

(d) GDP (e) Housing Starts (f) Inflation Expectations

(g) Investments (h) Money Stock (i) Spread

(j) T-bill (k) Wage
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Figure A.2: GDP Deflator; Probability of inclusion of predictors (h=4)

(a) CO2 (b) Consumption (c) Employment

(d) GDP (e) Housing Starts (f) Inflation Expectations

(g) Investments (h) Money Stock (i) Spread

(j) T-bill (k) Wage
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Figure A.3: GDP Deflator; Probability of inclusion of predictors (h=8)

(a) CO2 (b) Consumption (c) Employment

(d) GDP (e) Housing Starts (f) Inflation Expectations

(g) Investments (h) Money Stock (i) Spread

(j) T-bill (k) Wage
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Figure A.4: CPI; Probability of inclusion of predictors (h=1)

(a) CO2 (b) Consumption (c) Employment

(d) GDP (e) Housing Starts (f) Inflation Expectations

(g) Investments (h) Money Stock (i) Spread

(j) T-bill (k) Wage
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Figure A.5: CPI; Probability of inclusion of predictors (h=4)

(a) CO2 (b) Consumption (c) Employment

(d) GDP (e) Housing Starts (f) Inflation Expectations

(g) Investments (h) Money Stock (i) Spread

(j) T-bill (k) Wage
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Figure A.6: CPI; Probability of inclusion of predictors (h=8)

(a) CO2 (b) Consumption (c) Employment

(d) GDP (e) Housing Starts (f) Inflation Expectations

(g) Investments (h) Money Stock (i) Spread

(j) T-bill (k) Wage
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Summary

Abstract

This thesis aims to understand the role of climate change on inflation. The

model used is the Dynamic Model Averaging developed by Koop and Korobilis

(2012). The DMA is a time-varying parameter model that allows changing the

predictors for inflation in each forecasting model and also choosing which is

the best model for forecasting at each point in time. The algorithm used for

estimation is the same as in Koop and Korobilis (2012), with the addition of a

climate-related predictor, which is CO2 emissions growth. Results show that

CO2 emissions have predictive power for inflation, particularly in medium-

term forecasts and after the Great financial crisis. Hence, climate change is

relevant to the conduct of monetary policy. In addition, an extension to analyze

the impact of climate change on inflation risk with a TVP-Quantile Regression

model is proposed for further investigations.

Chapter I

My thesis deals with inflation forecasting, which is an essential part of private and public

sector decision-making. Starting from the 1980s, the aim of Central Banks is to keep

inflation stable, thus optimal policy will depend on optimal forecasts and policy will be

most effective when it is well understood by the public1.

The first chapter of this thesis is an overview of the main topics that inspired the research

question and that will be addressed in the next chapters from an econometric standpoint.

Here I will focus on the recent developments in price levels and their causes and im-

plications for the future. In the euro area headline inflation, as measured by HICP, was

1Faust J., Wright J. H., "Forecasting Inflation", Handbook of Economic Forecasting, Editor(s): Gra-

ham Elliott, Allan Timmermann, Elsevier, 2013, Volume 2, Part A, pp. 2-56.
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equal to 1.2% in 2019, decreased to 0.3% in 2020, and became negative in the second

half of 2020 before increasing again to 2.6% in 20212. In July 2021, the ECB updated

its monetary policy strategy. The former inflation target was to set the annual increase

of the HICP (Harmonized Index of Consumer Prices) “below but close to 2%”, whereas

today the target is set at exactly 2% of the annual increase of the HICP over the medium

run. This new definition implies that the ECB is willing to tolerate a transitory period

of moderate inflation overshoot to push inflation upwards after a period in which the in-

flation rate in the euro area was close to zero3. However, recently, inflation has reached

a historical high of 8.6% in June 2022.

The increase in inflation last year was supposed to be temporary. According to Philip

Lane, chief economist of the ECB, high inflation rates that were observed during 2020-

2021 were driven by a pandemic cycle that had generated global bottlenecks for manu-

factured goods and by the surge in energy prices, and both were thought to be temporary

shocks that did not affect long-term inflation.

After the peak of the Covid-19 pandemic, the fast recovery in demand over 2020 was

accompanied by a slow recovery of production capacity in some sectors that have gener-

ated supply shortages. Sanitary restrictions around the world to reduce the spread of the

virus have contributed to the persistent supply disruptions that restrained the economic

recovery and, additionally, Covid-19 outbreaks have led to the closure of key ports, cre-

ating bottlenecks in global shipping. On the other hand, there are significant signs of

shortages in labor markets that reflect both the change in the location of activities and

the skills required from workers, and the fact that the pandemic led some people to with-

draw from the labor force4. For what it concerns the impact of high energy prices on

inflation dynamics, we should consider both the direct effect through the energy compo-

nent in the HICP, and the indirect effect since energy is an input to produce many other

commodities. Therefore, supply disruptions related to the pandemic and other events

have contributed to the rise in commodity prices. Some of those supply disruptions

2Nickel C., Koester G., Lis E., “ Inflation developments in the Euro Area since the onset of the pan-

demic”, The challenges of Inflation in Europe and the US, Intereconomics, Review of European economic

policy, 2022, Vol. 57, No. 2, pp. 69-75.
3Hennecke P., "The ECB’s new monetary policy strategy", published in Review of European economic

policy, 2021, Vol. 2021, No. 5.
4OECD, "Economic Outlook", 2021, Vol. 2021, Issue 2.
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associated with the pandemic were supposed to ease facilitating the global economic

recovery and reducing inflationary pressures. The projections implied that output in

the advanced economies was likely to converge on the pre-pandemic path. However,

longer-term inflation expectations did not remain anchored in advanced economies. In

2020, the ECB Survey of Professional Forecasters computed long-term inflation expec-

tations at 1.64%, and in 2021 they have been moving up to close to 2%. The first factor

indicating a re-anchoring in expectations in line with the 2% level is the huge mon-

etary and fiscal response to the pandemic demonstrating the commitment to stabilize

the economy, including the SURE and the NGEU initiative. Secondly, there are some

revisions to beliefs about the operation of the world economy.

In recent times, just when some of the supply-chain problems caused by the pandemic

started to fade, the war in Ukraine has created a new negative supply shock. Simulations

run by the OECD show that global inflation could raise by about 2.5% in the first year

after the beginning of the conflict under the assumptions that the conflict lasts for at least

one year and there is a deep recession in the Russian economy5. Given this scenario,

the ECB Governing Council decided to raise the interest rate on the main refinancing

operations, the interest rates on the marginal lending facility and the deposit facility by

50 basis points, with effect from the 27th of July 2022.

Moreover, the number of disruptions related to climate change is increasing in recent

years and the economic impact of such shocks has increased correspondingly. For in-

stance, in 2020 there have been huge wildfires (Siberia, California and Turkey), heat-

waves and droughts (North America), extreme cold weather events and destructive

floods (Germany and Belgium), and many others, and hence, it is crucial to take into

account climate shocks when making forecasts on the price levels6.

In a nutshell, from an economic point of view climate change can be interpreted as

an adverse permanent shock to the supply potential of the economy and likely such

shock will push output below its level and will lower future potential growth. At the

same time, climate change in the short-run could lead to changes in demand conditions,

through a reduction in consumption by households and in investment by firms due to

greater uncertainty about future economic growth and income prospects.

5OECD, "Economic Outlook, Interim Report March 2022: Economic and Social Impacts and Policy

Implications of the War in Ukraine", 2022, Vol. 2022.
6OECD (2021).
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According to the purpose of this thesis, the focus will be on the linkages between in-

flation and climate change. In this regard, the agricultural sector is widely exposed to

the effect of climate change, thus there is a potential for lasting effects on the prices of

agricultural products. Clearly, agricultural yields may rise in some regions of the world

and fall in others, hence the final impact is a function of the location of a country and

its agricultural imports. Recent studies point out that storms and floods are positively

related to increases in inflation in developing countries in the short term and, on the con-

trary, that droughts have a more persistent effect. Moreover, rising inflation rates may

be related to lower supply potential in the economy after climate-related shocks. It is

essential to also consider the contribution of changes in energy prices to inflation. One

of the main pillars of climate policy mitigation is, indeed, the transition to sustainable

energy sources for production that could potentially reduce the overall expenditure for

energy consumption and reduce the weight that energy has in the computation of the

consumer price index7.

For what it concerns the implication of risks arising from climate change for the conduct

of monetary policy there are few empirical studies to look at. Therefore, the next step in

this analysis is to understand the data, and which could be the relationship between in-

flation and climate change. For what concerns inflation, two indicators have been used,

the Consumer Price Index (CPI) and the GDP Deflator (GDPDEFL). The earth’s chang-

ing climate can be measured using different indicators such as global average surface

temperature or the level of ocean acidification. However, scientists have maintained a

long-running observational record of the levels of CO2 since 1950. This is a rough in-

dicator of human-induced climate change since it is the most abundant greenhouse gas

in the atmosphere and its sources are mainly anthropogenic.

Carbon Dioxide (Co2) is the most present anthropogenic greenhouse gas in the atmo-

sphere, accounting for 66% of the radioactive forcing, that is the warming effect on the

climate. It is estimated that atmospheric Co2 reached 148% of the preindustrial level in

2019, mostly because of fossil fuel and cement production. Moreover, of the total Co2

emissions from anthropogenic sources from 2008 to 2018 about 44% accumulated in

the atmosphere, 23% in oceans and 29% on land. Since most of the Co2 already present

7Andersson M., Baccianti C., Morgan J.,"Climate change and the macroeconomy", ECB, Occasional

Paper Series, 2020, No 243.
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in the atmosphere will remain there for several centuries, even when net emissions of

Co2 will approach zero the climate will continue to warm8.

During the Covid-19 pandemic, the World Meteorological Organization (WMO), esti-

mated a decrease of about 5.6% of Co2 emissions in 2020. It is predicted, though, that

at the global scale, a reduction of this magnitude will not cause atmospheric Co2 to de-

crease. This data suggests that there could be a negative relationship between inflation

and climate change.

For all the details about the time series analysis and the summary statistics you can look

at section 1.3.2. The main result from this preliminary analysis is that the correlation

between inflation and CO2 emission growth is negative and equal to -0.10, for inflation

computed with CPI and GDP Deflator. This result is consistent with my guess of a

negative relationship between price levels and climate change.

Chapter II

In the second chapter is included a brief overview of the existing literature about infla-

tion forecasting and the rationale for choosing a time-varying parameter model. Then,

the model is presented in detail.

The most successful approaches to forecasting inflation are those based on extensions

of the Phillips Curve. The review of literature begins in 1958 when A. W. Phillips

found empirical evidence of a negative relationship between inflation and unemploy-

ment. This suggested that policymakers could choose between different combinations

of the unemployment rate and inflation, and in the following years the economic debate

focused mainly on which point in the Phillips curve was best for a country’s economy.

However, during the 70s the relationship of the Phillips Curve seemed to disappear.

Consequently, between 1980 and 1990, the approach to forecasting inflation changed

with respect to “non-accelerationist” Phillips curves due to a mismatch in the classical

relationship between unemployment and price levels. Economists argued that the most

performing models in terms of forecast were those built around Gordon triangle model

and its variants. In such models, inflation depends, among others, on the unemployment

gap, defined as the difference between the unemployment rate and the NAIRU (non-

8WMO, "GHG Bulleting, The state of GHG in the atmosphere based on global observation through

2019",2020, Vol. 16.
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accelerating inflation rate of unemployment), which is the unemployment rate at which

inflation remains constant over time. The main idea is that when unemployment is be-

low the NAIRU, inflation tends to rise over time, and vice versa when the unemployment

gap is positive. Later, there were some studies about the deterioration of Phillips curve

forecasts, especially in the 1990s. To sum up, all this evidence points to the fact that the

Phillips curve is not stable over time and there is statistical evidence of time-changing

coefficients. Moreover, it seems that, including alternative measures of real economic

activity, namely housing starts or the growth of trade sales, can improve the forecasting

performance of the model9. Given that there is no unique measure of overall economic

activity to be used in the forecasting model, economists suggested modeling the huge

number of activity indicators using a dynamic factor model. Other statistical methods

that were proposed to overcome the problems of dealing with a very large number of

predictors are model combination or model averaging, such as Bayesian Model Averag-

ing (BMA) or bagging.

In this thesis, I follow the approach of Koop and Korobilis (2012) to address the prob-

lem of time variation in the model relevant for forecasting. They considered in their

research a strategy that is called dynamic model averaging (DMA), which allows for

the forecasting model to be time-varying and the coefficients in each model to also

change over time.

Usually, time-varying parameter models are estimated using state space methods such

as the Kalman filter, which is an algorithm that computes estimates based on linear

dynamical systems in state-space form. Koop and Korobilis propose an application of

the classical Kalman filter algorithm to allow for averaging across different kinds of

models at each time and choose the best one in terms of forecast.

The starting point is the following generalized Phillips curve:

yt = φ + x′t−1β +
p

∑
j=1

γ jyt− j + εt .

Here, yt is inflation, that is dependent on previous p lags of inflation and a set of predic-

tor variables xt .

Let’s assume that we have m predictors, which gives a total of K = 2m models to esti-

mate. If we assume also, that at any point in time a different forecasting model needs

9Stock J. H., Watson M. W., "Phillips curve inflation forecast", National bureau of economic research,

working paper, 2008, No. 14322.
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to be used, at time t the number of models to be estimated in order to have a forecast is

2mt , that is an incredibly huge amount of data to be evaluated10.

Hence, the state-space form of the model is specified by the following equations:

yt = z(k)t θ
(k)
t + ε

(k)
t

θ
(k)
t = θ

(k)
t−1 +η

(k)
t ,

where zt is the vector of predictors, yt is inflation, θt = [φ ,βt−1,γt−1, . . . ,γt−p], with,Lt =

k, and Lt is the model that applies at time t. Moreover, ε(k) ∼ N(0,H(k)
t ), and η(k) ∼

N(0,Q(k)
t ).

To complete the model specification, transitions between models are indexed from a

matrix P with elements (pi j) that represent the probability of using model i at time t,

given that in t −1 the model relevant for forecasting was model j.

Subsequently, to switch between models we need to estimate the posterior probability

distribution:

p(Θt ,Lt |yt) =
K

∑
k=1

p(θ (k)
t |Lt = k,yt)p(Lt = k|yt),

with Θt = (θ 1
t , . . . ,θ

K
t ).

The estimation is carried out with a Kalman filter with forgetting factors. Details about

the algorithm used can be found in equations (2.6)-(2.10). In section 2.3 are presented

all the initial conditions and assumptions needed for estimations. In the end, once all

parameters are estimated forecasting is done in a recursive manner:

E(yt |yt−1) =
K

∑
k=1

πt|t−1,kz(k)t θ̂
(k)
t−1.

Chapter III

In this final chapter are included details about the dataset used to carry out estimation

and the results retrieved. To estimate the conditional distribution of inflation I have

used two different indicators for inflation and fourteen other indicators, distinguishing

between monetary measures for inflation and other relevant data. Inflation is computed

using the US Consumer Price Index (CPI) and the US Gross Domestic Product deflator

(GDPDEFL) time series, using quarterly observation from 1959Q1 to 2021Q3. The

10Koop G., Korobilis D., "Forecasting inflation using dynamic model averaging", International Eco-

nomic Review, 2012, Vol. 53, pp. 867-886.
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inflation rate is the annualized quarter-on-quarter growth rate over the whole sample

size. Then, the log transformation is applied to the time series to work with stationary

data. Finally, the Bai-Perron test rejects the presence of structural breaks in inflation

time series.

The monetary measures of inflation include: 3-month Treasury Bill (TBILL), the Spread

between the 10-year T-Bond yield and the TBILL (SPREAD), and the real M1 money

stock (M1).

The non-monetary measures are: US Civilian Unemployment rate (UNEMP), real per-

sonal consumption expenditures per capita (CONS), private real fixed investments (INV),

US real gross domestic product (GDP), new privately owned housing units started

(HSTARTS), US all employees in total private industries (EMPLOY), PMI Index (PMI),

average hourly earnings of US manufacturing employees in dollars per hours (WAGE),

the Dow Jones Industrial Average (DIJA), CO2 emissions growth (CO2), and inflation

expectations in the US (INFEXP).

Then, the results from DMA forecasting for the two proxy of inflation for the short-term

(h=1), medium-term (h=4), and long-term (h=8) forecast horizons are presented. The

sample period used to start producing forecasts is 30 years, thus, after the last quarter

of 1990 forecasts are computed recursively. To assess the performance of DMA I have

used the MSFE, MAFE and the bias. Moreover, I present forecasting results for the

DMA model and three alternative forecasting models for comparison, that are:

• Forecasts using DMA, but the coefficients do not vary over time (a special case of

DMA where λ = 1 and α = 0.99).

• Forecasts using Bayesian model averaging (BMA: a special case of DMA where

α = λ = 1).

• Forecasts using the random walk (RW).

DMA in most cases performs better than the other three models, and in no case much

worse than the best alternative method. The benchmark model (random walk) does well

for longer-term horizon forecasts. For what concerns DMA with constant parameters

model, we can see that it forecasts better with respect to the benchmark and also with

respect to BMA. This latter result suggests that allowing for the model to change over
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time is at least as important as having time-varying parameters11.

DMA, hence, forecasts well with respect to other models. In addition, although there

have been used 14 predictors, the higher probability is attached to more parsimonious

models. The highest expected number of predictors is six and it can be seen for longer-

term forecast horizons.

This result, however, does not provide information about which predictors are more

relevant in each period. As a consequence, we can look at the weight attached to models

which include one predictor used by DMA, which is the posterior inclusion probability.

I assumed that a predictor is considered relevant if its posterior inclusion probability is

above 0.5 for at least one point in time.

For the short-term horizon forecast the average number of predictors is low, and the

most relevant ones are, for CPI, Money stock from 1975 and, T-bill and Inflation Ex-

pectations from 2000. For what it concerns the GDP Deflator, Wage and Money Stock

have the greatest weight attached between 1970 and 1980, whereas from 2000 the most

relevant is CO2 Emissions. For H=4 and H=8, Inflation Expectation is a useful pre-

dictor for inflation starting from the 1980s. Another useful predictor for both proxies

of inflation in longer-term horizon forecasts are Wage and Employment which are in-

cluded in almost the whole sample. Spread and Money stock are other two variables

that show strong predictive power between 1975 and the early 1990s. Consumption,

GDP and Investments also often are relevant predictors for inflation, especially after the

1990s. Housing starts has significant predictive power for the H=8 horizon of forecast

of inflation with CPI. Finally, it is important to notice that the DIJA and the PMI are

never included in the analysis.

In this thesis the focus is on studying the predictive power of CO2 emissions with re-

spect to inflation. Results show that the CO2 emissions predictor has stronger predictive

power for the medium-term horizon forecast, and it is more useful after the great finan-

cial crisis of 2008.

Moreover, we can look at the β coefficients that measure the effect of CO2 emissions on

inflation over time. From table 3.3, Carbon Dioxide emissions have a negative relation-

ship with inflation in all time periods in which the indicator has predictive power. These

11Koop G., Korobilis D., "Forecasting inflation using dynamic model averaging", International Eco-

nomic Review, 2012, Vol. 53, pp. 867-886.
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results are consistent with the empirical evidence presented in section 1.3. According

to DMA forecasts, climate change seems to have a negative correlation with inflation

in the long run. Decreasing inflation can often be associated with economic growth,

at least when inflation is not already close to zero. On the other hand, rising inflation

implies higher prices of products and services. Thus, consumer demands for goods will

fall, and by decreasing production, CO2 emissions will decrease12.

In conclusion, there is evidence that climate change affects the conduct and transmission

of monetary policy.

Chapter IV

The aim of this chapter is to bring the analysis carried out with the model in the pre-

vious chapter one step forward, with some modeling extensions that could improve the

forecast of the distribution of inflation, with a focus on its left and right tails. Fol-

lowing Korobilis et al., the econometric setting is a time-series quantile regression that

is enhanced by including time-varying parameters (TVP-QR), considering a Bayesian

framework in which parameter and error have a flexible parametric distribution to cap-

ture the behavior of extreme quantiles.

Let πt be the scalar observation of inflation and xt a p-dimensional vector of predeter-

mined variables that includes an intercept, lags of inflation, and exogenous predictors.

In order to model the full distribution of πt , for each of its quantiles τ , we specify the

following model:

πt = Qτ(πt |xt)+ εt ,

Qτ(πt |xt) = xtβt(τ),

βt(τ) = βt−1(τ)+ vt ,

where Qτ denotes the conditional quantile function of the τ−th quantile of inflation and

vt ∼ Np(0,V (τ)) is a state error with covariance matrix V (τ).

In a quantile regression framework the estimates β̂ (τ) are the result of the minimization

12Shpak N., et al., "CO2 Emissions and Macroeconomic Indicators: Analysis of the Most Polluted

Regions in the World", Energies, 2022, Vol. 15, No. 2928.
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problem:

β̂ (τ) = min
β (τ)

E

T

∑
t=1

ρτ)(εt),

with ρτ(u) = (τ − I(u < 0))u that is a loss function.

Following Yu and Moyeed (2001) the minimizer of the above problem is equivalent to

maximizing an asymmetric Laplace likelihood. Again, following Kozumi and Kobayashi

(2011), the asymmetric Laplace distribution can be written as a Gaussian-Exponential

scale mixture. Hence, the first assumption is that the error distribution follows a mix-

ture of Normals specifications and, therefore, the conditional parameter posteriors will

resemble standard expressions from linear Gaussian regression models.

Then, we need to address the problem of time variation in the parameters. Borrowing

ideas from Korobilis (2021), the model specified above is rewritten as:

Qτ(π|χ) = χβ∆(τ),

β∆(τ) = v,

where, π = [π1, . . . ,πT ]
′, v = [v′1, . . . ,v

′
T ]

′,

χ=



x1 0 . . . 0 0

x2 x2 . . . 0 0

. . . . . . . . . . . . . . .

xT−1 xT−1 . . . xT−1 0

xT xT . . . xT−1 xT


, β∆(τ) =



β1(τ)

∆β2(τ)

. . .

∆βT−1(τ)

∆βT (τ)


.

T xTp Tpx1

Putting together those pieces, the time-varying parameter quantile regression model,

considering the distributional assumption on the error term, takes the following form:

π = χβ∆(τ )+θ(τ)z(τ)+ S̃u

where S̃ is a T xT diagonal matrix with t−th diagonal element
√

σ(τ)2k(τ)zt(τ). This

model is completed by considering the following priors:

σ(τ)∼ Inverse−Gamma(ρ1,ρ2),

zt(τ)∼ exp(σ(τ)), t = 1, . . . ,T.

Multiplication of these priors with the conditional likelihood gives the conditional pos-

teriors:
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β∆(τ )|• ∼ N
(
(χ ′Uχ +V (τ)−1)−1(χ ′U [π −θ(τ)z(τ)]),(χ ′Uχ +V (τ)−1)−1

)

σ(τ)|•∼ Inverse−Gamma
(

ρ1+
3T
2
,ρ2+

T

∑
t=1

(πt −χtβ
∆(τ )−θ(τ)zt(τ))

2

2zt(τ)k(τ)2)
+

T

∑
t=1

zt(τ)

)

zt(τ)|• ∼ IG
(√

θ(τ)2 +2k(τ)2

|πt −χtβ∆(τ )|
,
θ(τ)2 +2k(τ)2

σ2(τ)k(τ)2

)
13.

The algorithm used for estimation is a Gibbs sampler and all the information about im-

plementation is included in section 4.3. Lastly, let’s notice that this is a model with more

predictors than observations, thus, as a prior for the high-dimensional vector β∆(τ) I use

the horseshoe prior of Carvalho et al. (2010):

β
∆(τ)|λ (τ)2,ψi(τ)

2T p
i=1 ∼ N(0,V (τ)),

Vi,i = σ(τ)λ (τ)2
ψi(τ)

2,

λ (τ)∼Cauchy+(0,1),

ψi(τ)∼Cauchy+(0,1).

Conclusions

Through this work, it is exposed the role of climate change on inflation using dynamic

model averaging. I have used as the dependent variable US inflation, and a set of four-

teen different predictors, that are the same used by Koop and Korobilis in their research,

plus a predictor for climate change that is CO2 emissions. I have observed that there is

empirical evidence of the time-varying nature of inflation and the best performance of

DMA has been confirmed with a more recent dataset. Secondly, I have found evidence

of the predictive power that climate change has on forecasting inflation, in particular

over the medium term, and that the sign of their relationship is negative. To sum up,

climate change affects the conduct and transmission of monetary policy and it should

be included in the models used by Central Banks when forecasting macroeconomic

variables.

13The bullet stands for "conditional on other parameters and variables".
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