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Introduction 

Motivation and research question 
 

Economic and financial models show agents that maximize their objective functions while interacting 

in their dynamic and competitive contexts. They establish their goal and identify obstacles that 

become constraints in a modelling environment. Competition in contests forces agents also to study 

others’ characteristics and status, and sports are one of the most important examples of competition, 

so they are also important for general audience since they are an analysis of choices and strategies in 

a dynamic context with constraints. 

They perfectly recreate a challenging environment, just like an economic sector with two or more 

firms competing or a financial market with two or more investors, that may not be in competition, 

but still have an influence on others’ choices; thus, sports can serve as a model for them and for 

several more.  

A very competitive team sport is Formula 1, and modelling and optimization are some essential 

elements of it. Like most of the sports, first of all the contest is studied before happening, as well as 

tactics. In Formula 1, even if it seems like the driver is alone in the contest to win the race, there is 

an entire team that only studies racing strategies, since these can overturn the result. Teams find 

themselves battling against other nine teams. It is a very dynamic environment, since choices made 

by strategists must be taken considering others’ choices and state. The most important strategies 

concern the start of the race, for example how to approach the first curves and where to attack or 

defend the opponent, the behavior between the two drivers of the same team and the pit-stop above 

all. Even though strategists study tactics before the race, most of them are constructed or modified 

during the event, because the environment is unpredictable and in constant change, and opponents’ 

moves could impact own choices. So, strategists must be able to adapt their tactics to the new situation 

and the changing during the race using simulation, algorithms and human intuition overall.  

 

The pit-stop strategy, that is the choice of the moment in which to stop, is the most thought-out choice 

because the driver’s surviving instinct is out of its scope, unlike the approach in the first curves. Due 

to regulations, drivers are obligated to take at least one pit-stop during the entire race1, changing their 

tyres’ type. The stopping strategy in F1 is highly effective and a wrong choice could compromise the 

 
1 This is the case of dry races. In wet (raining) races there is no obligation to stop, meaning that stopping strategies 
don’t necessary show up.  



entire race. It must carefully consider own capacities, because in the immediate laps after the pit-stop 

the driver must be able to recover the time lost due to the stop, circuit’s characteristics and it must 

especially consider others’ choices and state. An earlier pit-stop could give the driver the opportunity 

of the “undercut”, a typical F1 strategy in which first-mover advantage could arise by stopping before 

the direct opponent. The principle of the undercut is that, in a contest between two or more drivers, 

the one who stops before will have at least one lap (trip around the race circuit) with a fresher tyre 

that corresponds to more performance, compared to the other drivers that still have to stop. In this 

way he will gain an advantage in terms of time and this advantage will last until the opponents will 

stop to level off the “freshness” of tyres. Of course, stopping the driver early comes with some 

problems: the risk of putting him into the traffic of other cars and the disadvantage of having a more 

worn-out tyre for the rest of the race, meaning slower laps.  

On the other side of the coin, a late pit-stop will put the driver himself at risk of others’ undercut, 

while giving him a fresher and higher-performance tyre for the end of the race. Here, there is a clear 

trade-off between performance and strategy, two fundamental factors to be balanced with difficulty.  

 

That said, a Formula 1 race can be seen as an optimal stopping problem, that is a problem of 

optimization concerned with the choice of the moment in which executing a determined action in a 

finite horizon of time, in order to maximize an expected reward or to minimize an expected cost. 

Since in Formula 1 there is finite time composed by N laps in which to execute the action of the pit-

stop, it is a perfect environment to solve an optimal stopping problem.  

The objective of this optimization is to maximize the driver’s position at the end of the race with the 

optimal execution of the pit-stop. On the basis of this execution, the driver will find himself in a better 

or worse position, also in terms of distance from opponents, since he can gain or lose time because 

of the pit-stop.  

It is possible to find similarities between the choice of the lap in which to stop and when an investor 

should buy or sell a stock, exercise an option or when a firm should start selling a new product, etc. 

 

My goals in this original work will be to calculate for the first time which is the optimal stopping 

strategy in a F1 race, to understand how much the stopping strategy influences the probability of 

winning and which other factors have a higher influence on this probability. 

I will use a dual approach. From one side, I will investigate empirically what factors shape the choice 

of a stopping time and increase the probability of winning. This will be done through several 

regressions, analyzing the choice for different drivers or circuits but also taking into consideration 

general results. From the other side, I will construct different formal models and look for an 



equilibrium stopping time. The reason is that empirically it’s not possible to find a general equilibrium 

stopping time unless circuits are individually studied. In fact, since different circuits come with 

different specifications, each one of them has a different equilibrium stopping time. So, only a formal 

model can specify the equilibrium stopping time, whereas an empirical test can describe the optimal 

stopping time in a specific circuit. Furthermore, I will introduce competition slowly. Initially, the 

models will be ideal, assuming that the driver is alone in the circuit and only takes into consideration 

own conditions. Then, I will analyze how competition and interaction with opponents’ impact on the 

strategy and on the behavior.  

 

Finally, I will introduce the optimal stopping in the context of American options. I will show different 

approaches, but I will analyze the Markovian one, that is similar to my Formula 1 approach. I will 

explain American options’ payoff and gain function and characterize the value function that 

contributes to the choice of the optimal stopping time. 

Then, similarities and differences between the optimal stopping in Formula 1 and American options 

will be shown. 

 

This thesis examines the sport of F1 in depth, with more than 100.000 data and several regressions 

from different points of view. My work contributes to the literature on the topic since it is a completely 

original work in which optimal stopping is applied to the Formula 1 environment, both theoretically 

and empirically, for the first time. The similarities between Formula 1 and American options’ models 

show the close linkage between the two contexts, and they are useful to give even more importance 

to the contribution that my thesis brings to the optimal stopping literature. My models can serve as 

proxy for a lot of backgrounds, with or without competition. 

 

 

Literature Review 
 

In general, the literature about optimal stopping, dynamic contests and strategies, optimization and 

forecasting is very extended. One possible division of the research papers in this subject matter can 

be between the empirical literature on dynamic contests and the theoretical literature on the optimal 

stopping time. Sports find vast space in both directions since they recreate challenging environment 

in which the objective is to maximize the probability of winning and some of them come across 

optimal stopping problems.  



My thesis relates to the empirical literature on dynamic contests and to the formal one on the optimal 

stopping time. I will use new data, since Formula 1 has never been studied under this scope, and I 

will introduce a competitive environment in the optimal stopping time problem, with the analysis of 

interactions between opponents and competitors’ status and characteristics. 

Generally, all literature papers related to sports or to a realistic setting characterize a formal model at 

first, then apply the model to the data and finally show results. So, just as my work, they bring a mix 

of theoretical and empirical methods. In empirical literature researches, a recurring approach is to set 

up the problem as a Markov game and then use dynamic programming to solve the optimization 

problem.  

Hirotsu and Wright (2003) wanted to find the optimal substitution strategy in football matches by a 

Markov process model and dynamic programming, in order to maximize the expected number of 

league points, while Kira, Inakawa, Fujita and Ohori (2015) used the same procedure to study optimal 

decision making in the baseball field. Hoffmeister (2018) instead used the same approach but in the 

strategy optimization of beach volleyball.  

Percy (2015) went through a similar process by using dynamic learning to select the best strategy and 

to predict the outcome in different sports, such as cricket, football and badminton. He slightly 

modified the procedure by considering the sports as stochastic processes. 

Romer (2006), too, used dynamic programming to decide whether a football team in the NFL should 

kick the ball or try to go for a first down. He compared this choice with the ones that firms try to 

optimize every day. 

Brown (2007) analyzed the behavior of players in golf tournaments when a superstar is participating 

and he compared it to the behavior inside firms, when there is internal competition.  

Knoeber and Thurman (1994) compared the production of broilers with the tournament theory, 

finding consistent evidence with their prediction in the strategies construction.  

Another application of Markov chain has been made by Pfeiffer, Zhang and Hohmann (2010). They 

studied elite table tennis competition, going deep into the interaction between the two players, 

understanding the best strategies in order to maximize the probability of winning. 

Goldman and Rao (2011, 2014) brought dynamic efficiency and optimal  

stopping to the NBA. First, they studied the optimal decision making in a basketball  

match through dynamic and allocative efficiency, then they applied optimal stopping to the  

24 seconds possession that teams have. 

Gauriot, Page and Wooders (2018) found evidence from the biggest tennis competition, Wimbledon, 

of optimal solution used by players in a Nash equilibrium. 



Finally, Jeyapragasan, Karra and Krishna (2019) used deep learning and Markov decision processes 

to predict the outcomes of English football. 

Of course, optimal stopping is strongly relevant also in finance, with both theoretical and empirical 

studies in these settings. Jacka (1991) and Herdegen (2009) studied the pricing of American put 

options through an optimal stopping problem solved with a typical approach of parabolic free-

boundary problem. Guo Xin (2001) extended the research of optimal stopping problems on the 

pricing of Russian options, linking a hidden Markov process to the classical Black-Scholes model. 

Dai, Zhang and Zhu (2011) applied it to the stock market, finding the optimal strategy through a trend 

following system and thresholds, while Belomestny (2013) used the approach of dual optimization 

discovered by Rogers (2002) and Haugh and Kogan (2004) in order to solve an optimal stopping 

problem in the context of option pricing.  

Strack and Viefers (2013, 2018) wrote about decision makers in job and stock markets introducing 

the regret sentiment and factor in this optimal stopping problem.  

Strategic and optimal behaviors are also examined in depth in generic dynamic contests and 

backgrounds, as game theory. Differently from the previous, these papers are theoretically examined, 

with model constructions and a formal solution. 

Dixit (1987) analyzed a Nash equilibrium in a contest between two players that try to find the best 

solution to win the prize and he showed that there is a first-mover advantage in contests. 

Multiround contests were introduced by Tsetlin, Gaba and Winkler (2003) using variability and 

handicaps as the main factors of study, while Beaumont (2010) used the typical dynamic 

programming to solve the problem of an optimal strategy in a multi and subsequential rounds contract 

bridge tournament. 

Anderson and Cabral (2007) instead examined the variance in a Markov differential game, while 

comparing this with the choices that happen inside firms, showing some riskier and other safer.  

Moscarini and Smith (2007, 2011) created a scoring function to deeply analyze incentives and trade 

off with respect to being the leader or the runner-up, in the design of a two players’ dynamic contest.  

A curious study has been made by Seregina, Ivashko and Mazalov (2019) concerning the TV show 

“The price is right”. They used this competitive environment to model the strategic behavior through 

optimal stopping. 

Ryvkin (2021) characterized a Markov equilibrium and a competition in continuous time, as a 

Brownian motion. He analyzed effort and luck as main factor influencing the performance. 

Hinnosaar (2016, 2022), too, discussed effort in a sequential contest. He also showed the advantages 

of first and earlier movers and the similarities of these contests with firms’ environment.  



I will start by characterizing some formal models, just like theoretical papers, in order to find the 

optimal stopping time solution with and without competition. This solution will be a generic one that 

can be adapted race-by-race, since the specific optimal stopping strategy depends on the circuit taken 

into consideration. For this purpose, I will empirically analyze historical results and strategies in 

specific circuits. This will let me find the stopping lap evaluated as the best by the teams and compare 

it to the formal one that I previously found. 

Also, empirical regressions will take into account all the factors that most influence the probability 

of winning in every race, and not only the stopping lap.  

Finally, a classical theoretical setting will introduce the optimal stopping in American options and 

some similarities with the Formula 1 models will be underlined. Markov approaches and the analysis 

of some continuation and stopping values are the most important. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1. Basics of Formula 1 

 

Every year the Formula 1 World Championship takes place worldwide. With an average of 20 races 

every season, 10 teams and 20 drivers face themselves to win the two Championships: the 

constructor’s one and the driver’s one, with the latter being the most important. Before the season 

starts, teams develop their cars to construct the fastest one; the car’s speed and reliability are some 

essential factors to win. Of course, the driver is the one who drives the car, so a good team needs a 

talented one to have a perfect performance and vice versa. 

With a positive performance, probabilities of winning will increase. The races take place on Sundays, 

but the winning framework starts on Saturdays in the qualifying. During this session, drivers 

challenge themselves to score the fastest lap around the race circuit. Their starting position, 

technically called “grid position”, in the race of Sunday is based on the best lap they scored in the 

qualifying of Saturday. So, who had the best lap will start first, with the other drivers following based 

on their Saturday’s ranking; the starting position is a very great advantage. 

In the race, the drivers have to complete a pre-determined amount of laps around the circuit. 

Every circuit has a different length, and the number of race laps depends on it. Once the leading driver 

completes all the laps, the chequered flag is waved, and the race ends when all the cars cross it. Points 

will be awarded to the first 10 drivers, according to their ending order. Of course, as previously 

written, drivers and teams’ skills are essential to win.  

But there is a crucial factor that influences the probability of winning: the race strategy. It 

comprehends the start of the race, how to approach the first curves and where to attack or defend the 

opponent, the interaction between the two drivers of the same team and in particular the choice of 

tyres and the moment in which to change them, called pit-stop. This is crucial because, as I will show, 

there exists an optimal moment in which to execute the stop. If one wrongly moves away from it, he 

could ruin his race because tyres’ duration management must be run properly. If he stops too late, he 

could lose much time since tyres deteriorate with laps increasing. If he stops too early, he could lose 

much time because he doesn’t exploit all tyres’ potential. 

Teams are allowed to have several types (“compounds”) of tyres at disposal. Tyres can be softer, with 

a better performance but a shorter duration, or harder, with a longer duration but a worse performance.  

In this analysis, I will assume that drivers choose the same compounds of tyres, so that the study will 

focus on the stopping strategy and not on the technical-mechanical strategy.  

When it rains, wet or intermediate tyres are available for the teams. In dry races, drivers are obligated 

to stop at least once to change their tyres’ compound. When the teams will ask them to do it, they 



will enter the box, namely the area with the garage, and mechanics will substitute the four tyres. In 

the box lane, speed limiter on cars is active: cars can move between 60 and 80 kilometers per hour 

(depending on the circuit) due to safety rules. Normally, without considering the time to go through 

the box lane, a pit-stop is executed in 2-3.5 seconds; a longer one is considered slow. For this reason, 

mechanics need to be fast since a slow pit-stop can cost racing positions.  

So, teams try their best to minimize the break time and to optimize the moment in which execute the 

stop.  

They must think very well about their stopping strategy. In Formula 1 races, overtake “on the circuit” 

is quite difficult. In fact, circuits are narrow, an overtake can be dangerous and if one car isn’t way 

faster than the one preceding it, the overtake will be almost impossible. This explains even more why 

the pit-stop strategy is essential. An overtake can be executed not only on the circuit, but also through 

a pit stop.  

There are two main strategies. The most common one is called the “undercut”. In a contest between 

two drivers, this is typically used by the runner-up, that acts like the first mover. He chooses to bring 

the pit-stop forward, and to stop before the leader, in order to have fresher tyres with respect to the 

opponent (still with old and consumed tyres). During the “out-lap”, that is the lap after the pit-stop, 

there will be a significant difference in performance due to the difference in tyres (runner-up’s new 

vs. leader’s worn). The runner-up must exploit this to gain an advantage in terms of pace, that will 

allow him to recover time and distance, and hopefully will let him gain the position after the leader’s 

pit-stop. 

The negative side is that the driver who undercuts will have more consumed tyres for the end of the 

race, meaning a worse performance because these tyres were put on very early. Also, it is not easy to 

have a good out-lap, because tyres need to be heated, and if this process is not well executed by the 

driver, he will fail to gain time.  

Furthermore, the earlier you stop, the higher is the risk to get into the traffic of other cars. The reason 

is that the break at the boxes costs a lot of time due to the speed limiter. Of course, the undercut is 

very effective for the runner-up, so the leader may choose to be the first mover and to anticipate 

himself the pit-stop in order to avoid the opponent’s undercut. 

Another possible strategy is the opposite one, “going long”, technically called “overcut”, a late pit-

stop that will give the driver a fresher and higher-performance tyre for the end of the race but will put 

him at risk of others’ undercut. The overcut is very strong if the other driver struggles to heat the new 

tyres or if he finds himself in the traffic of other cars. 

 



 
Figure 1 2019 Russian Grand Prix Stop Strategies 

 

During a Formula 1 season an average of 20 races are run. These races take place in different circuits, 

each one with a different configuration and layout. The most basic difference between circuits is the 

number of laps, due to the length of the circuit. More specific differences comprehend the temperature 

of the air and the stress brought to the tyres, based on whether the curves are slow or fast. All these 

factors affect the ideal lap of pit-stop. Of course, in a hot-weather circuit with a lot of stressful curves, 

like Brasil, tyres will deteriorate faster, while in a cold-weather circuit, like Russia or Austria, they 

will last more. 

This is why by using historical data it’s impossible to find a broad optimal stopping lap. Circuits with 

less laps and high degradation will have an earlier optimal lap of stop with respect to circuits with 

more laps and less degradation. Therefore, only a formal model can define an always valid optimal 

stopping moment in Formula 1 races, with variables adapted as needed, while an empirical model can 

define circuit-specific optimal stopping lap. 

So, the objective of these theoretical models will be to generalize the optimal stopping time, whereas 

the empirical model will show the actual optimal stopping lap for individual circuits. 

 

 

 



Chapter 2. Methodology 

2.1 Formal theoretical model setup 

 

2.1.1 Individual decision-making 

 

As for other optimal stopping problems, it is easy to associate the stopping decision-making process 

with a Markov Decision Process (MDP), in which there are finite states and actions. Formula 1 races 

are composed by a finite number of laps in which to execute a finite number of pit-stops. Then, there 

is a driver, the decision maker, that faces an environment whose state changes in response to the 

actions made by the agent. Also, the changing of the status of the environment determines the 

immediate reward/payoff obtained by the decision maker. At each time, the agent observes the current 

state and executes an action, namely executing the pit-stop or continuing the race. So, the final 

objective of the agent will be to maximize his total reward through his decisions, that is maximizing 

the points in the end of the race.  

Defining the action space of the MDP as the actions of stopping and continuing, and the state space 

as the current lap, the current driver position (that is particularly important to estimate the expected 

payoff) and tyres’ condition, it is possible now to setup the theoretical optimal stopping model. 

To simplify the model and its tractability I will start by using the concept developed by Goldman and 

Rao (2011 and 2014), thanks to similarities between their work, “Optimal Stopping in the NBA”, and 

mine. Initially, I will assume an ideal individual decision-making in which the strategy depends solely 

on own’s conditions and state, as if the driver is racing alone in the circuit and his goal is to finish the 

race as fast as possible. The environment defined by Goldman and Rao is less competitive than mine 

because they only consider choices that can be made by players of the same team. So, I will introduce 

interaction with opponents in a competitive decision-making in the next sub-chapter. 

In a 24 seconds possession, basketball players must decide when to shoot. So, the action to be 

executed in their optimal stopping problem is the shooting in a finite time of 24 seconds, whereas in 

mine it is the pit-stop in a finite time of N laps. At every lap, each driver has the possibility to stop. I 

will necessary assume that in the first 9 laps of the races, drivers don’t stop. This would be inefficient 

both because in the first race’s stages a stop would mean to get directly into the traffic of other cars 

and because the tyres’ performance and potential will not be completely exploited. Furthermore, if a 

driver stops in the first laps it is probably due to an accident since the race is more chaotic in the 



beginning. Since my model must be generally applicable, I want to exclude accidental and random 

observations.  

Also a pit-stop in the final moments is inefficient because tyres have an almost precisely defined life 

and they can’t last for all the race, since they would break or explode.  

That said, I will assume a finite time laps N Î{10, 11, …, 50} to execute the stop. Now, at every lap 

the driver and his team can decide whether to stop or to continue the race to the next lap when the 

same decision will be made. Of course, their decision will be based on maximizing the expected 

points obtained in the end of the race, by ranking higher.  

So, the decision’s process during every lap is based on the fact that the driver and his team observe 

an unbiased measure Sn (stopping value) of expected points they would get by stopping at that 

moment, with n Î N being the current lap in which the choice is taken. 

This measure, as properly stated by Goldman and Rao, is drawn from a continuous distribution with 

pdf fn that has positive density on its support in order to have the existence of a unique inverse cdf.  

In every lap, a reservation threshold value Rn is established, and it represents the marginal (in the 

sense of worst) opportunity of pit-stop lap, a continuation value. Here, the concept of dynamic 

efficiency comes in help to clarify this topic. As basketball players must efficiently allocate the shoot 

in Goldman and Rao’s paper, in mine teams must efficiently allocate their pit-stop during the race. 

Therefore, they will execute it if and only if Sn ≥ Rn. This means that, being Rn a future opportunity 

of pit-stop, the driver will continue to race if this value exceeds the expected points by stopping in 

that lap. So, a stop is executed when there is no better future opportunity that occurs with the 

continuation of the race. This is the standard of dynamic efficiency.  

This continuation value will be chosen in order to maximize this objective function, as stated by 

Goldman and Rao: 

  

𝑉! =	𝑉!"# +% (𝑥 − 𝑉!"#)𝑑𝑓!(𝑥)
$

%!
 

 

        (1) 

 

𝑉"# = 0, 

 

With Vn defined by Goldman and Rao as the expected points value of an unused stopping time. 

Dynamic efficiency requires to be set Rn = Vn-1. 

 

 



It is possible to find another way to define an optimal stopping time or, even better, to combine these 

two methods. What matters to drivers is the time used to complete the laps because by minimizing it 

the performance increases and so does the probability of winning. By simplifying and assuming a 

perfect lap without any external event, such as traffic and mistakes made by the driver, the time will 

depend only on the condition of the tyres, that is c Î C = [0,1]. Then, the time of a lap will be 

 

𝑡 ∶ 𝐶 → 	 [0,∞) 

 

Clearly, there is a negative effect between tyres’ condition and lap’s time, with time decreasing: 

 

𝑐 > 𝑐& ⟹ 𝑡(𝑐) < 𝑡(𝑐&) 

 

Then, let’s think about 𝑡(𝑐) in unit terms. A correct way of characterizing this function could be:  

 

 𝑡(𝑐) = 	
1
𝑐	, 

 

(2) 

 

𝑡(𝑐) ≡ 𝑡𝑖𝑚𝑒	𝑓𝑜𝑟	𝑎	𝑙𝑎𝑝	𝑤ℎ𝑒𝑛	𝑡𝑦𝑟𝑒𝑠&𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	𝑖𝑠	𝑐 

 

but it is also important to specify a tyres’ degradation function, ignoring external forces such as heat 

and sunlight, and so by assuming that they only get ruined because of the race proceeding.  

 

𝑓: 𝐶 → 𝐶, 𝑓(𝑐) < 𝑐, 𝑓(𝑐) ≡ 𝑡𝑦𝑟𝑒𝑠&	𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

 𝑓(𝑐) =
𝑐
2	 

 

(3) 

 

So, by combining (2) and (3), the lap’s time function becomes: 

 

 𝑡K𝑓(𝑐)L = 	
1

𝑓(𝑐) = 	
1
𝑐
2
= 	
2
𝑐 

 

(4) 

 

 

 

 



Now, the total time of the race with the stop at lap n is: 

 

 𝑇(𝑛) = 𝑡(1) + 𝑡K𝑓(1)L + ⋯+ 𝑡K𝑓(𝑛 − 1)L + 

𝑡(1) + 𝑡K𝑓(1)L + ⋯+ 𝑡(𝑓(𝑁 − 𝑛)) 

 

(5) 

 

The first part of the equation is the time until the stop at lap n. The second part is the time after the 

stop at n.  

The objective of teams and drivers will be to minimize this total time T obviously. By minimizing 

this, the result will be a maximum exploitation of the tyres’ performance for each “stint”, that is the 

portion of race between pit-stops. This could be considered a naïve strategy because it doesn’t 

consider the opponents at all. With the introduction of the other drivers, it can be used as a basis and 

be improved.  

 

 

2.1.2 Competitive decision-making 

 

Now, I introduce the opponents’ behavior.  

Ideally, a driver’s strategy decision should be based on the previous models, only considering own 

tyres’ condition, exploiting maximum performance from them, and stopping once the worsening 

condition is decreasing the lap time and the continuation value is lower than expected stopping value. 

This reasoning is even more valid once the driver is not involved in a direct fight against another 

driver. In fact, if he is quite safe from others’ attacks and undercut strategies, in terms of time gap, he 

can keep racing and stop when is better for him.  

But Formula 1 races are run in a highly competitive environment, and I’m interested in a dynamic 

and competitive analysis. For this reason, interaction and others’ condition and states must be 

necessarily considered. The outcome of a strategy depends not only on own actions but also on the 

actions of others. 

Simplifying the execution of a race, let’s assume that a driver directly competes against only one 

other driver. I will then construct a model of an instantaneous game in which two players compete to 

gain an advantage with respect to each other. One is the leader, the other one is the runner-up. They 

take actions accounting for other’s actions and own conditions. Obviously in my game, the action to 

be taken is the execution of the pit-stop. 

Of course, the leader has a position advantage. He is fine with the current situation and would like 

not to change the state. Ideally, the leader could think like in an individual decision-making setting 



and stop by using the previous models. Instead, clearly the runner-up wants to change the situation; 

he can’t reason like in an individual setting. If both players think ideally, the race will end almost 

surely in the current positions, with the runner-up ending the race behind the leader. For this reason, 

the runner-up is more aggressive, while the leader is more conservative, and he typically imitates 

runner-up’s strategies to protect himself.  

Then, the runner-up will try to come up with something different. As a matter of fact, usually, the 

following driver uses the opposite strategy with respect to the preceding driver. He has the advantage 

of seeing what the leader does. If the leader stops in front of him, he will keep racing; if the leader 

continues the race, he will stop.  

In general, the best for him would be the undercut, trying to anticipate the stop and gaining time 

during the out-lap. This strategy is the most effective. But the leader knows this, and by keeping 

racing and using the ideal strategy (by considering only his conditions) he will fall in the trap of the 

opponent’s undercut. So, he will in turn try to anticipate the stop even more. At this point, the runner-

up will not find the stop useful anymore, because the situation would stay unchanged, in favor of the 

leader. Then, he will choose to continue the race by going long and by using a different strategy, that 

is stopping later.  

It's now possible to start by formally constructing a simplistic 2-by-2 instantaneous game, for which 

I established numerical payoffs. 

 

 
Figure 2  2-by-2 instantaneous game: strategies and payoffs 

 

 

Here, we have pure strategies: when a player makes a choice, the other one knows exactly which 

choice is better for him. The operating environment is deterministic. 

Nevertheless, there is one important fact to highlight: I will only take into consideration actions and 

payoffs in lap n. This means that I will not consider the reactions of players in the lap n+m (with 

m>0). It is significant because in Formula 1 the leader is somehow automatically the first mover since 



he crosses the line as first and, by doing so, he is the first to start a new lap. In lap n, he decides to 

perform or not to perform the action of the stop. The runner-up can react by doing the same. 

Instead, in the case of the runner-up being the first executing the pit-stop at lap n, the leader can react 

(if he wants) by stopping only at least at lap n+1 (or even later), because he already crossed the pit-

stop zone. Anyway, since in normal condition one lap of difference in tyres’ freshness is enough for 

the runner-up to recover and gain some time with respect to the leader, the payoffs at lap n are much 

in favor for the runner-up: (0,5). 

So, by assigning numerical positive payoffs, it is clear that we have a Nash Equilibrium in the up-

right position, the Stop-Continue strategies. The leader has a dominant strategy in stopping. The 

runner-up knows it and he positions himself in the continuation strategy. Actually, this isn’t his 

optimal strategy, since he would have a greater payoff by stopping; anyway, the leader knows that, 

and he would stop in turn.  

So, the equilibrium is found when the leader stops, and the runner-up continues. This is easily 

detectable in real races: the leader is afraid of the following driver’s undercut, so he anticipates the 

stop; then, the runner-up comes with something different and decides to keep racing and stopping 

later. 

The payoffs also show the two different reasonings depending on the position. The leader wants to 

imitate the opponent’s strategies, whereas the runner-up finds more utility by differentiating the 

strategy.  

Clearly, actual and more advanced payoffs should consider utility depending on other factors, such 

as the previously mentioned continuation values of Goldman and Rao’s model, the tyres’ degradation 

function (so, how the driver is able to manage the tyre’s life) and the gap between the drivers, all 

ingredients that make the undercut even more effective. Further future studies and analyses are 

needed to include utility-payoffs.  

 

 

 

 



Chapter 3. Data and empirical specification 

 

3.1 Data description and sample restriction 
 

As previously said, the theoretical model is useful for general results without taking into consideration 

specifics of races and circuits. To account for these elements and to check the influences of many 

other factors, it is necessary to use historical data and then restrict them in several different empirical 

analyses. 

The data were downloaded on kaggle.com, a huge database website that comprehends a lot of 

datasets. The Formula 1 dataset2 consists of a lot of observations about races, drivers, teams 

(constructors), qualifying (starting grid position), circuits, lap times and pit-stops. It includes 

information from 1950, the first Formula 1 championship, to 2022, the current and last one so far. It 

was necessary to make a first essential restriction: the data were downloaded starting from 2011. The 

reason is that previous data on pit-stops are not available because rules were different: there were 

seasons with not mandatory pit-stops or seasons with mandatory pit-stops due to refueling.  

 

The observations are composed as combination of data. For example, Lewis Hamilton (driverId = 1), 

ranked first in the championship (rank = 1), driver of a Mercedes (constructorId = 131) started the 

race in the third position (grid = 3) and ended the race in the first place (position = 1), by scoring 25 

points (points = 25) in the Italian Grand Prix of 2018 (raceId = 1002), composed by 53 laps (laps = 

53). He scored his fastest lap at lap 30 (fastestLap = 30), by stopping once (stop = 1) at the twenty-

eighth lap (lap = 28) in a break of 23,728 seconds (duration = 23,728). He ended the race in a normal 

way (statusId = 1) without any accident or problem to the car. All this result is gathered together in 

the resultId = 24486, making it easy to select, filter or use data. 

Another necessary data restriction was to eliminate random or abnormal events. That’s why I selected 

only data with statusId equal to 1 (the driver ended the race without problems) or with the statusId 

that represents a driver overtaken by one or more laps. So, I didn’t consider drivers that retired 

because they could mislead the results, for example by giving an unrealistic meaning to some data, 

and I didn’t even consider drivers that ended the race but with some accidents and other problems 

because their final result will be inevitably influenced by the problems and would again mislead the 

results. In fact, a driver that has an accident or problems to the car will probably end the race in a 

 
2 https://www.kaggle.com/datasets/rohanrao/formula-1-world-championship-1950-2020 



worse position and, in addition, he will probably be forced to have a pit-stop in an unexpected and 

unusual moment and not in the optimal one. For the same reason, I ignored data with an unusual long 

pit-stop due to problems at the box or to the car. 

Finally, as explained in the formal theoretical model section, I will exclude all the observations with 

pit-stop executed before lap 10 and after lap 50. 

In the end, after the data restrictions, my dataset comprehends a total of more than 7600 observations 

corresponding to more than 100.000 data. For more specific analyses, I will restrict data even more, 

for example related to a single circuit, to better analyze which is the optimal stopping lap in a 

determined race. 

 

 

3.2 Empirical model setup  
 

3.2.1 Individual decision-making 

 

 

All the empirical models that I will use are multiple linear regressions 

 

 𝑌 = 	b' +	b(𝑋( + 	𝜖 (6) 

 

In the first models, I will study the influence of several variables on the probability of winning. The 

stopping lap is included in these variables. Then, I will restrict the data to a single circuit, analyzing 

how in actual races the stopping lap is chosen depending on different factors and I will study the 

optimal stopping lap according to historical data – demonstrating the prediction for which there exists 

a reasonable optimal stopping lap only when we talk about circuit-specific analyses. 

In order to study the main influences on the probability of winning I had two ways of reasoning, both 

correct but different in the choice of the dependent variable. Of course, in Formula 1 only the first 

positioned driver is the winner. However, in my model, but also in reality, racing in a higher-ranked 

position increases the probability of winning, as higher positions bring more points at the end of the 

race. Because of this, both ending positions and points can be use as dependent variable that 

represents the win.  

From a broad and general point of view, it is possible to think about maximizing the probability of 

winning not only a race, but the entire Championship. In the end of the season, each driver has all 

races’ points summed up. Of course, the one with more points wins the Championship. Then, this 



objective is achieved through achieving the more possible points during each race. However, the 

distribution of points at the end of each race don’t display linearity, as instead assumed in my 

empirical specification. In fact, according to the ending positions, the points are given as follows: 25, 

18, 15, 12, 10, 8, 6, 4, 2, 1.  

After the 10th place, drivers don’t get any point. So, ending 11th or 20th would be the same with the 

points as dependent variable, but actually the probability of winning is higher when ending 11th with 

respect to the 20th position.  

Given these considerations, I decided to use the ending position as dependent variable, as it displays 

linearity, too. 

Clearly, in contrast to points, when we talk about position it is better to have a lower value, so 

dependent variables will have the opposite effect. I decided to run both regressions in order to show 

this difference in the results. 

 

This model will take into account only own conditions and characteristics. 

As Xi I will make use of several explanatory variables, but since I will run different analyses, 

sometimes I will omit some variables, or even use just one regressor in a simple linear regression, in 

order to establish the behavior of just one independent variable with respect to the dependent one.  

So, my explanatory variables will be the driver, the constructor team, the starting grid position, the 

lap of the driver’s fastest time, the rank of the driver in the championship, the number of stops, the 

lap of the pit-stop and finally the duration of the pit-stop.  

Some variables aren’t really explanatory, but my intention is also to demonstrate this.  

After having assessed the probability of winning, I will analyze the optimal stopping lap, running 

different regressions using the lap of stop as dependent variable. The independent regressors will be 

the drivers, the constructors, the grid position and the rank. The other variables must be omitted 

because of simultaneity bias and reverse causality problems. Also these regressions will be run on all 

races first, and then on a circuit-specific framework. 

 

Of course, my models have some limits. The drivers and the cars (constructors) are one of the main 

factors that bring to the victory. Unfortunately, it will be not numerically clear how an increase in 

these factors influence the probability of winning. The reason is that the drivers and teams’ data have 

not a qualitative numerical order based on strengths and abilities. They are enumerated without a 

precise logic. To put this right, the rank of the current championship will come in help, because surely 

the better are the driver and the team, the higher will be their rank. Anyway, multicollinearity doesn’t 

arise, because the rank is only related to the current season, and in Formula 1 power balances changes 



from one championship to the next, with a team or a driver that can be high-ranked in a year and low-

ranked in the next one. 

 

 

3.2.2 Competitive decision-making 

 

To internalize the competitive nature of the sport, it is necessary to include rivals’ status in the right-

hand size of the regression equation. To do this, it is possible and useful to introduce a variable that 

takes into account the opponent’s ability and the interaction between him and the driver taken into 

consideration. The most significant variable to explain this is the gap, that is the distance in time 

between the two drivers.  

The gap incorporates a lot of information and easily shows the ability of the drivers on the track 

circuit: an increasing gap means that the driver in front is gaining time, whereas a decreasing gap 

means that the runner-up is gaining time. The gap doesn’t need a Boolean variable to indicate if the 

driver in consideration is the leader or the runner-up. This characteristic is intrinsic in the gap, and it 

is the norm in Formula 1 terminology. If it has negative sign, it represents the distance that the leader 

has with respect to the runner-up; instead, if it has positive sign, it is the distance that the runner-up 

needs to recover.  

Of course, the relationship between the lap in which to stop and the gap is a negative relation, since 

the increasing gap should encourage a driver to anticipate the stop in order to recover distance. 

Unfortunately, gap data are not publicly stored, and I will not use them in the regressions. To account 

for opponents’ status, condition and choices, further future studies and analyses are needed. 

 

After the regressions, some results will be plotted, including variables coefficients, test statistics and 

distribution of residuals. The models will be run in R Studio software. 

 

 

 

 

 

 

 

 



Chapter 4. Results  

 

The results of this thesis satisfy all the expectations and predictions. All variables except one have 

significance in the general model that includes all races results from 2011 to 2022, without any 

specification in terms of circuits or drivers, but with the exclusion of random events. 

 

 
Figure 3 General Regression Model Results: Y = ending position 

 

 

 
Figure 4, General Regression Model Results: Y = points 



Even if the model with points being the dependent variable isn’t really correct in empirical 

specifications, it is still interesting to use it in a comparison with the model with ending position being 

the Y. 

Obviously, in both models the same variables have similar significance. This demonstrates that these 

two are correlated, since the points assigned depend on the ending position. 

However, except for drivers and constructors that, as previously written, aren’t qualitatively ordered 

by numbers, we can see that the regressors have opposite effects on the dependent variable. In fact, 

when an explanatory variable has a positive impact on the ending position, it has a negative impact 

on points (the lower the value of the position, the higher the points obtained). 

It was predictable that the driver, the team (“constructorId”), the starting position (“grid”) and the 

rank are the factors that have the highest significance on the general winning probability in Formula 

1. In fact, the driver and the car are the two main actors, the starting position is a great advantage in 

motorsport, being difficult to the overtake, and the rank represents the performance over the year of 

the driver, meaning that a high-ranked driver should obviously have more chances to perform well.  

Focusing on the regression with ending position, of course the grid and the rank have a very positive 

effect on the Y. The higher these two variables, that means a worse starting position and rank, the 

higher the expected ending position, meaning a worse result.  

The coefficients of driver and constructor should be ignored. They aren’t explicative because of their 

origin. 

Less obviously, the number of pit-stops (“stop”) and the duration of them explain the dependent 

variable of ending position. Both of them still have a positive numerical effect on it: the more pit-

stops a driver executes, the worse he will rank; the slower the pit-stop, the worse will be his final 

position. Both these factors correspond to a loss of time. This highlights necessary ability and 

technique by the mechanics in executing a quick pit-stop and also the need of intelligent choices by 

the team in constructing the pit-stops strategy.  

Oddly, the lap in which the driver executes his fastest lap has some statistical relevance. Probably, 

this is just fortuity since in the reality the fastest lap is not really related to the winning but is more 

related to the general conditions of the car.  

In relation to pit-stops, the lap in which to stop is the least explanatory variable in this general model, 

with no statistical relevance at all. As highlighted and predicted previously, the stopping lap depends 

on circuits’ characteristics; so, generally talking, it makes no sense to say that a specific stopping lap 

can influence the probability of winning in Formula 1. The intuitions are confirmed. 

 



Instead, the analysis can be carried out singularly and restricted to a specific circuit to find out if the 

stopping moment has a higher impact related to a precise track. 

I gathered together all Monza races from 2011 and by only analyzing the last eleven Italian Grand 

Prix results on regressors are much different, indeed. 

 

 
Figure 5, Circuit Specific (Monza) Regression Results: Y = ending position 

 

 

A surprising result, at first sight, is the statistical irrelevance of the stopping lap on the probability of 

winning. Actually, it isn’t surprising because every driver tries to stop at the optimal stopping lap of 

Monza (that will be defined later). Due to this, the stopping lap loses importance on the probability 

of winning. 

 

These results confirm that the starting position is an evergreen element in Formula 1 races, regardless 

of a generic analysis or a circuit-delimited one. The Championship rank, too, has statistical 

importance, whereas the driver and the car have a minor influence on winning from a micro point of 

view; they count more on the long-term view in the entire Championship. This is reasonable since 

generally it’s unlikely that a driver and a car are skilled on a specific circuit through years. In Formula 

1, except for special cases, there is a big turnover in drivers and also in title contenders from one year 

to the next. Furthermore, the sample (11 races) is too small to highlight the dominance of great 

champions.  



Instead, the rank finds significance because typically balance of power doesn’t change over the same 

year. A well-assembled driver-car pair will have more chance of winning regardless of the circuit. 

The duration of pit-stop affirms its importance even in this circuit-specific model, showing that is 

crucial for mechanics to perform a good pit-stop.  

The fastest lap, as predictable, doesn’t find significance in this model, highlighting a more realistic 

result.  

Also, this regression shows that the Italian Grand Prix is a one-stop race since an increase of 1 unit 

in stops has an effect of almost 2 negative units on position (a very heavy worsening in F1), whereas 

in the general regression it didn’t have this impact.  

Both of these models predict a large proportion (around 57% and 75% respectively) of variance of 

the outcome variable of position: they are a good fit. Furthermore, looking at p-values, in both models 

the F-statistic is statistically significant: the regression models fit the data better than the intercept 

itself with no independent variables. 

In the appendix, residuals are plotted, and they have a normal distribution, meaning that my 

assumptions are valid as well as the models.  

 

Now, to identify an empirical optimal stopping lap, I needed to use the lap in which to stop as the 

dependent variable. To start, some regressors used in the previous regressions must be taken out, 

since problems of reverse causality and simultaneity bias arise. 

In fact, the fastest lap depends on when the pit-stop has been executed, giving the driver a greater 

opportunity to score a fastest lap.  

The ending position, that was the previous dependent variable, must be eliminated, too. It is the effect 

of the choice of the stopping lap, and it can’t be an explanatory variable. The duration of the pit-stop 

is an effect, too, and it can’t be used as a regressor. 

The number of stops shows simultaneity bias. As a matter of fact, the number of stops that a team 

wants to undertake influences the laps in which to stop (if there is a second pit-stop, it will surely be 

in the ending laps of the race), and vice versa the stopping lap has an impact on the number of pit-

stops (if one anticipates the stop, he will probably need to stop again to have fresh tyres in the end of 

the race). 

Then, the correct variables to be selected are the driver, the constructor, the starting position and the 

rank.  

 



 
Figure 6 Optimal Stopping General Regression Results: Y = lap 

 

In this first regression, I used all the available data. All the variables, except for the driver, have 

statistical significance. The F-statistic confirms that the model fits the data better than the intercept 

alone.  

Analyzing why the driver is an insignificant variable, while the constructor is a significant one, it can 

be thought that the team influences the strategy of both drivers, whereas the driver individually is not 

having an impact on it. It’s important to highlight again that the coefficients of these two variables 

aren’t quantitively defined. 

The grid confirms the prediction of the leader anticipating the stop and the runner-up stopping later. 

The data demonstrate that the better the driver is positioned, the earlier he will execute the stop, trying 

to avoid others’ undercut.  

That said, a general optimal stopping lap isn’t realistic when looking at all circuits, because each one 

has different characteristics, including degradation and number of laps. That’s why it is more 

important to individually look at circuits when empirically defining an optimal stopping lap.  

 



 
Figure 7 Optimal Stopping Circuit-Specific (Monza) Regression Results: Y = lap 

 

The first difference with the general regression is the p-value of the F-statistic. It demonstrates that 

the regressors have no predictive capability. This means that when looking at individual circuits, there 

exists a well-defined optimal stopping lap that only depends on the circuit’s characteristics 

themselves, regardless of the starting position, the abilities (rank) and the driver-car couple. Of 

course, this lap should be modified race by race according to competition and tyres’ condition, data 

that can’t be incorporated since they are not available.  

Nonetheless, it was possible to find the ideal stopping lap in the Italian Gran Prix (as it is possible to 

find it in the other circuits), demonstrating that when studying a single circuit, there is an optimal 

stopping strategy. 

So, the optimal stopping strategy in Monza would be to stop either at lap 24 or 25, when considering 

a normal tyres’ management and an individual decision-making. With the introduction of interaction 

and competition, this result could be slightly modified. 

 



 
Figure 8 Italian Grand Prix 2022: pit-stop summary 

 

This year’s Italian Grand Prix (not included in the data) confirms the results and the theoretical 

models, too. It’s important to highlight that 2022 regulation is slightly different from the past. This 

was a two-stop race, since there was a Safety Car in the end (lap 47), an advantage for who stops. 

Without considering that late stop and the early ones due to problems, a lot of drivers that were 

battling stopped between laps 18 and 19, anticipating the stop to try the undercut strategy. The leader, 

Verstappen, that had a clear pace advantage and was safe from others’ attacks, had the opportunity to 

construct his strategy as an individual decision-making: he indeed stopped at lap 25. 

 

 

 

 



 
Figure 9 Italian Grand Prix 2021: pit-stop summary 

 

The Italian Grand Prix in 2021, with typical regulation about tyres and cars, confirms the results even 

more: the drivers (without accident or technical problems) stopped around lap 24-25.  

Here it’s also possible to point out the precision of the formal competitive decision-making model in 

the battle between Verstappen (VER) and Hamilton (HAM). Taking into consideration the optimal 

stopping lap (24.5 according to empirical results), the leader (VER) decided to anticipate the pit-stop 

at lap 23, whereas the runner-up (HAM), seeing the decision of the leader, reacted later with a stop 

at lap 25. 

In the appendix, also these residuals are plotted, and they have a normal distribution. 

 

The empirical results confirm the predictions presented in the theoretical models. Formal models are 

valid in general but must be adapted with drivers’ conditions and circuit-by-circuit because, as 

demonstrated empirically, results are different when looking at individual races with respect to 

entirety. 

Each circuit has its own optimal stopping lap. The optimal one can be found empirically, but, 

depending on competition and degradation, as established by theoretical models, it can and perhaps 

must be modified. The dynamicity of the Formula 1 environment determines an uncertainty factor for 



which, even if it is possible to state the ideal stopping lap, teams must be ready to adapt their strategies 

to single race’s conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5. Financial Applications 

 

The presented models find applications in several backgrounds. The optimal stopping problem in 

Formula 1 shows typical characteristics that can be found elsewhere, and they are the maximization 

of a payoff, strategies, dynamicity and interaction with the surroundings. 

Financial markets are a very dynamic environment in which countless new data and information keep 

coming continuously and influence the markets by changing trading directions, securities prices and 

volumes. Strategy is essential to achieve positive investment results. Certainly, the other agents have 

a big impact on one’s investment decisions, but differently from Formula 1, agents are not in 

competition.  

In contrast to that, both investors and drivers try to maximize their objective function in their dynamic 

contexts, visualizing the situation in a specific moment in time as a Markov Decision Process. 

Drivers want to optimize their ending position every race, while investors will try to maximize the 

realized profit. 

In financial markets, a lot of instruments’ payoffs depend on when they are executed. For instance, it 

is easy to think about American options. Then, we can illustrate the choice of when executing 

American options as an optimal stopping problem, just as Formula 1 pit-stops, that is finding the 

stopping time that maximizes the expected gains.  

 

 

5.1 American Options 
 

An option is a financial instrument whose price is derived from an underlying asset. When an investor 

buys an option, he enters a contract in which he has the right, but not the obligation, to buy or sell a 

pre-determined amount of the underlying security at a pre-determined price (known as strike price) 

on or before a specified date. If he buys a call option, he is in a long position and he has the right to 

buy the underlying; whereas, if he buys a put option, he is in a short position and he has the right to 

sell it. In order to have the right to exercise the option, the holder pays an option premium to the 

seller. 

It's important to differentiate between American options and European options. American options can 

be exercised in every moment from the opening of the contract to the expiration date, whereas 

European options can be exercised only at the expiration date.  



I will focus on American options, since they are obviously the only type for which is possible to find 

an optimal stopping time. 

Since the call option is a long position, the investor will profit when the price of the underlying asset 

increases. The final payoff is the difference between the spot price (namely the current market price) 

and the strike price at the expiration date (if it is negative, the investors doesn’t exercise the right to 

buy the security, and the payoff will be zero). Vice versa, when an investor buys a put option he will 

profit when the price of the underlying asset decreases. Here, the final payoff is the difference 

between the strike price and the spot price at the expiration date (if it is negative, the investors doesn’t 

exercise the right to sell the security, and the payoff will be zero). 

The intrinsic value of an option is the value it would have if exercised at the moment.  

So, considering an American option issued at t=0 with expiration date TÎ (0,¥), the intrinsic value 

at t Î [0,T] is equal to 

 

Call option (𝑆) − 𝐾)* = max(0, 𝑆) − 𝐾) 

 

(7) 

 

Put option (𝐾 − 𝑆))* = max(0, 𝐾 − 𝑆)) 

 

(8) 

 

With St = spot price, K = strike price. 

 

Now, defining t = T – t as the option’s residual time, it is possible to express the value of the option 

as a function of the underlying price, the strike price and of the residual time. 

For a call option, the value at t is C (St, K, t), whereas for a put option it is P (St, K, t). 

Then, at the expiring date t = 0, we have 

 

Call option 𝐶	(𝑆) , 𝐾, 0) = 	 (𝑆) − 𝐾)* 

 

(9) 

 

Put option 𝑃	(𝑆) , 𝐾, 0) = 	 (𝐾 − 𝑆))* 

 

(10) 

 

 

Instead, before expiry, the option value must be at least equal to its intrinsic value.  



When an option has a positive intrinsic value is said to be in-the-money (ITM). When it hasn’t, the 

option is out-of-the-money (OTM). When the strike price is the same as the underlying price, the 

option is said to be at-the-money (ATM). 

The time value instead is any premium in excess of the intrinsic value before the expiration date. It 

is the additional amount the investor is willing to pay over the intrinsic value for additional time until 

the expiration. In fact, the more the time remaining, the greater the probability for the option to be in-

the-money. As the expiry date gets closer, the time value diminishes until zero on the expiration. 

It's important to highlight that comparing two equal options (same strike price, same underlying price) 

with two different expiring date, the one with the longer residual life will have a higher value. 

So, in an American option the timing is essential to maximize the extraction of value from the option.  

To solve an optimal stopping problem one can use two possible approaches. The first one is the 

Martingale approach, for which there are two methods: the backward induction and the essential 

supremum. Typically, the first one is used for discrete time, whereas the latter is used for continuous 

time. The second approach is the Markovian one. 

When choosing the model, one should look at the probabilistic structure of the stochastic process. I 

decided to use exhibit the Markovian approach that is very similar to the model used for the Formula 

1 application. This technique gives both the optimal stopping time t in which to stop the process and 

the optimal value, called value function V, that is the smallest supermartingale dominating the gain 

process, a parallel approach to the Martingale one in which the same function is executed by the Snell 

envelope. 

My objective will be to solve the optimal stopping problem using this approach and relating it to that 

of Formula 1, with continuation and stopping values, to demonstrate similarities and applications. 

Just like in Formula 1, the optimal stopping problem in American options can work as a Markov 

Decision Process. Then, at every moment in time, the investor will observe his opportunity of 

expected profit obtained by closing the contract at that specific moment.  

Let’s start by defining a Markov chain 𝑋 = (𝑋)))+'	 on a probability space (Ω, ℱ) , (ℱ)))+', ℙ) that 

takes values in the measurable space (ℝ, , ℬ(ℝ,)). 

It is necessary to define a value function and a gain function that have a very similar purpose to my 

stopping value and continuation value. 

Introducing a risk-free asset with value 𝐵(𝑡) = 	 𝑒-), with interest rate r, and defining  

t Î [0,T] as the stopping time in American options, it is possible to define the arbitrage-free price of 

American options at time t=0. But first, it is necessary to state the fundamental theorem of asset 

pricing.  



Let ℙ be a risk-neutral probability measure and {ℱ)})+' be the filtration of the underlying probability 

space. With T>0, let D be a ℙ-integrable and ℱ)-measurable random variable.  

Therefore, the arbitrage-free price of a derivative D at time t Î [0, T] is 

 

 𝐷(𝑡) = 𝔼[𝑒"-(/"))𝐷|ℱ)] 

 

(11) 

 

The probability measure ℙ makes the discounted derivative price 𝑒"-)𝐷(𝑡) a martingale. 

 

Then, the arbitrage-free price of an American option is 

 

 

Call option 𝐶 = 	 𝑠𝑢𝑝	t	Î	[',/]	𝔼[𝑒"-t(𝑆) − 𝐾)*] 

 

(12) 

 

 

Put option 𝑃 = 	 𝑠𝑢𝑝	t	Î	[',/]	𝔼[𝑒"-t(𝐾 − 𝑆))*] 

 

(13) 

 

To describe the gain and the value functions, we first assume that 𝑆) = 𝑥 is the value of a stock with 

volatility s. 

Now, identifying the time coordinate as E = [0, T] ´ (0,¥), we define the gain function  

G : E ⟼ [0, K] by  

 

Call option G (t,x) ≔ 𝑒"-)(𝑥 − 𝐾)* 

 

(14) 

 

 

Put option G (t,x) ≔ 𝑒"-)(𝐾 − 𝑥)* 

 

(15) 

 

 

 

  



 

By discounting, we can simplify the gain function as 

 

 

Call option 𝑔(𝑡, 𝑥) = 𝑒-)𝐺(𝑡, 𝑥) = (𝑥 − 𝐾)* 

 

(16) 

 

 

Put option 𝑔(𝑡, 𝑥) = 𝑒-)𝐺(𝑡, 𝑥) = (𝐾 − 𝑥)* 

 

(17) 

 

 

Instead, for (t,x) Î E, the value function is 

 

Call option 𝑉(𝑡, 𝑥) = 	 𝑠𝑢𝑝5	∈[',/")]	𝔼(),7)[𝐺(𝑋5)] 

= 𝑠𝑢𝑝5	∈[',/")]	𝔼(),7)h𝑒"-()*5)(𝑆5 − 𝐾)i 

(18) 

 

 

Put option 𝑉(𝑡, 𝑥) = 	 𝑠𝑢𝑝5	∈[',/")]	𝔼(),7)[𝐺(𝑋5)] 

= 𝑠𝑢𝑝5	∈[',/")]	𝔼(),7)h𝑒"-()*5)(𝐾 − 𝑆5)i 

(19) 

 

also written as 

 

Call option 𝑣(𝑡, 𝑥) = 𝑒-)𝑉(𝑡, 𝑥) = 	 𝑠𝑢𝑝5	∈[',/")]	𝔼7[𝑒"-5(𝑆5 − 𝐾)*] 

 

(20) 

 

Put option 𝑣(𝑡, 𝑥) = 𝑒-)𝑉(𝑡, 𝑥) = 	 𝑠𝑢𝑝5	∈[',/")]	𝔼7[𝑒"-5(𝐾 − 𝑆5)*] 

 

(21) 

 

 

for which we define an optimal stopping problem, with T being the upper boundary of time coordinate 

E and t being the stopping time in [0, T-t]. 

 

 



Finally, using the Markovian framework, we state  

 

Continuation set 𝐶 ≔ {(𝑡, 𝑥) ∈ [0, 𝑇) ×	(0,∞) ∶ 𝑉(𝑡, 𝑥) > 𝐺(𝑡, 𝑥)} 

 

(22) 

 

 

Stopping set 𝑆 ≔ {(𝑡, 𝑥) ∈ [0, 𝑇] ×	(0,∞) ∶ 𝑉(𝑡, 𝑥) = 𝐺(𝑡, 𝑥)} 

 

(23) 

   

As anticipated, the value sequence (𝑉/")(𝑋))){'9)9/} is the smallest supermartingale dominating the 

gain sequence (𝐺(𝑋))){'9)9/} under ℙ for x fixed. 

 

In the end, the optimal stopping time is 

  

𝜏; = 𝑖𝑛𝑓{0 ≤ 𝑡 ≤ 𝑇 ∶ 𝑋) ∈ 𝑆} 

 

 

(24) 

 

 

 

5.2 Formula 1 and American options  
 

 

This whole reasoning is very similar to the Goldman and Rao’s one. In both Formula 1 and American 

options, the Markov process is essential. Drivers and investors observe states and payoffs, and 

according to that they decide when to stop and execute the action.  

In Goldman and Rao’s model, a reservation threshold value is set through dynamic efficiency. That 

threshold is the continuation value, that is the marginal or worst opportunity of pit-stop lap. When 

the stopping value, that is observed at lap n, exceeds or equals the continuation value, the action of 

pit-stop is executed. 

Here, the gain function is observed at time t as the payoff of the American option. Then, one stops 

when the stopping time 𝜏 makes the value function, that is the smallest supermartingale dominating 

the gain process, equal to the gain function, that means to extrapolate maximum gain from the option. 

The difference is that in American options the time is the cause: it is chosen in order to maximize the 

payoff and it is a key factor in the decision of stopping. Instead, in Formula 1 it is a consequence or 



just a surrounding element: drivers and team choose their best opportunity to stop in the race, 

depending only on the payoffs. Then, they visualize which was their optimal stopping lap.  

In spite of the differences, the models could be interchangeable with some adjustments due to the 

specifics of the backgrounds. Of course, in Formula 1 the competition is one of the main elements. 

Instead, in financial markets competition doesn’t show up clearly.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusion  

 

In every competitive environment, whether it is a financial context or a generic dynamic contest, 

agents work towards the win confronting themselves with competitors. They set an objective and, by 

knowing own characteristics, choices are taken through optimization. The optimal stopping is a 

problem of optimization: the decision of the moment in which executing an action. 

 

In my work, I used Formula 1 as the main environment, and I implemented optimization and theories 

that could be used in a financial or economic context, such as American options. 

Formula 1 is a very competitive field with 20 agents that simultaneously aim for the win. My objective 

was to find a theoretical way to optimize their choices with particular attention to the pit-stop, to 

empirically test what factors more influence the winning probability and how drivers and teams 

behave in reality when it comes to pit-stop.  

The focus was on the optimal stopping time. The results, that can be deepened and continued in 

further studies, confirm the expectations: the optimal stopping time is found by formal models if 

general conclusions are needed, and can be adapted race by race, circuit by circuit, according to 

specific characteristics; instead, it is found by the empirical model and historical data if one wants 

circuit-specific results. 

 

So, three formal models were presented, one of them developed by Goldman and Rao (2011, 2014) 

in their work on the optimal stopping problem in the NBA. 

In the first model, every lap the strategists keep an eye on a reservation threshold (a marginal 

opportunity of pit-stop lap), that is the continuation value of the race and compare it to the pit-stop 

(stopping) value in terms of expected points. They will execute the stop once the continuation value 

is less than or equal to the pit-stop (stopping) value. It is based on dynamic efficiency and marginality.  

The second model instead is based on minimizing the entire time of the driver’s race by choosing the 

optimal stopping time according to the tyres’ condition function only, assuming that this is the only 

factor influencing the entire race time and that the driver is racing alone around the circuit. 

This leads to the third model, that introduces the competition and the interaction with the opponents. 

Here, a 2-by-2 instantaneous game is presented. Two drivers have two possible actions: to stop or to 

continue the race. One of them is the leader, the other is the runner-up. With numerical payoffs, the 



Nash equilibrium is found when the leader chooses to stop, and the runner-up decides to continue to 

race. In fact, the leader will anticipate the stop to protect himself from others’ undercut strategies, 

whereas the runner-up will try to come up with something different by differentiating the strategy 

and not stopping: he will go long and stop later. 

The first model is adaptable to every race; the second one is usable when the driver isn’t threatened 

by opponents’ attack and has a considerable advantage on chasers. The third model studies the 

interaction between drivers. 

All of these models work and find confirmation in reality. The best solution would be to use them 

together and to mix them with empirical ones.  

 

My empirical tests were multiple regressions in order to assess which factors influence the most the 

probability of winning, to study how much the stopping lap counted in historical results and how the 

stopping lap is actually chosen.  

Furthermore, I found that factors of influence have different weights whether the analysis is related 

to the entire history or to a single circuit. Drivers and cars have a higher influence on the long-term 

and on the totality of the Championship, whereas they have less on specific circuits. In fact, the drivers 

and teams’ dominance are more related to eras and years than to circuits, that find themselves several 

protagonists. 

 

A relevant outcome was that the starting grid position and the championship rank are the most 

important factors related to winning in F1. Looking at races in the same circuit, a lot of variables lose 

importance, the grid position and the rank stays on the top winning factors. Duration of pit-stop and 

number of pit-stops are both important in a macro and in a micro view, with the latter being 

particularly impactful when carrying on a circuit-specific analysis. 

The stopping lap hasn’t a statistical relevance neither in the general model nor in the circuit-related 

one. It was predictable, since generally it’s impossible to find a precise lap number in which to stop: 

circuits have different total number of laps and characteristics. Furthermore, analyzing an individual 

circuit, every driver will want to stop at the optimal lap. Due to this, it loses importance; by the way, 

the optimal stopping lap still exists, and it is studied empirically. 

 

Firstly, using it as the dependent variable of the regression, it was analyzed from a general point of 

view, in all the races. There, it wasn’t possible to establish an optimal one, since it depends on several 

variables that must be adapted race-by-race, circuit-by-circuit. These variables are the starting grid 

position, the rank of the driver and the car.  



Instead, when looking at individual circuit, an optimal stopping lap arises. As a matter of fact, in the 

restricted-Monza model, the regressors have no predictive capability: the optimal stopping lap is 

explained by the intercept only. It has a value of 24.5, meaning that in a normal race in Italy a driver 

should stop between lap 24 and 25. Of course, this optimal lap can be adjusted taking into 

consideration formal models, so accounting for tyres’ degradation and competition, giving once again 

importance to a right mix of the two kind of models (theoretical and empirical) that are coherent and 

find confirmation between each other.  

 

So, even if it loses importance as an impactful factor on the final winning since everyone pursue it, it 

is shown that the optimal stopping lap exists, found theoretically for general purposes and empirically 

for specific circuits, and the drivers can’t move much away from it, or their race will be ruined. They 

should instead slightly modify it according to competition and own conditions.  

 

The optimal stopping time in Formula 1 is as important as in a financial or an economical context. 

The action must be executed by taking into account the entire environment and conditions, by 

checking every moment what is worth more between continuing and stopping and by looking at 

historical data. 

 

Important financial instruments for which optimal stopping is crucial are the American options. The 

reasoning behind their optimal stopping problem is very similar to the one behind my first model in 

Formula 1 and the problem can be modelled very likewise to the problem in Formula 1, even if the 

competition is not included in American options.  

I found similarities in the use of the Markov framework, since drivers and investors observe states 

and payoffs, and in the usage of a threshold, that is the continuation value in F1, and the gain function 

in American options. Both drivers and investors look at these values and are ready to execute the 

action once a condition is satisfied. 

In the case of F1, the stopping value must get greater than or equal to the continuation value; in the 

case of the American options, the value function must be equal to the gain function. 

One big difference instead, is in the usage of time: in Formula 1, it is passive. It is only a consequence 

of the previously-presented choice. 

Instead in American options, time has an active role: it is the cause, not the consequence. It is chosen 

in order to satisfy the condition and maximize the payoff. 

Another difference is the presence of competition: in Formula 1 it is central, whereas in American 

options it isn’t an element to keep into consideration. 



Despite the differences, the models can be interchanged because they are based on the same concepts. 

Formula 1 can be used as a proxy for other contexts where time has an important value and impact 

on the final payoff and where optimal stopping problem arises. With adjustments related to the 

specifics of the surroundings and the characteristics, the models shown are much adaptable. 
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Appendix 

Code 
 

library(dplyr) 

library(sn) 

library(car) 

library(ggplot2) 

library(PerformanceAnalytics) 

 

 

full_model <- lm(position ~ driverId + constructorId + grid + fastestLap + rank + stop + lap + 

duration, data = dataset) 

summary(full_model) 

 

full_model <- lm(lap ~ driverId + constructorId + grid + rank , data = dataset) 

summary(full_model) 

 

plot(full_model[["residuals"]]) 

qqPlot(full_model[["residuals"]]) 

plot(selm(full_model[["residuals"]]~1, family="SN")) 

chart.TimeSeries(full_model[["residuals"]]) 

chart.Histogram(full_model[["residuals"]], methods = "add.normal") 

 

plot(residuals(full_model))  

 

layout(matrix(c(1,2,3,4),2,2))  

plot(full_model) 

 

 

 



Plots  

 

Figure 10 Y=Position Residuals Analysis 

 

Figure 11 Y=Position Residuals Analysis 
 



 

Figure 12 Y=Position Residuals Analysis 
 

 

 

Figure 13 Y=Position Residuals Analysis 
 

 

 



 

Figure 14 Y=Position Residuals Analysis 

 

Figure 15 Y=Position Residuals Analysis 

 

Figure 16 Y=Position Residuals Analysis 



 

 

Figure 17 Y=Position Residuals Analysis 
 

 

 

Figure 18 Y=Lap Residuals Analysis 



 

Figure 19 Y=Lap Residuals Analysis 
 

 

Figure 20 Y=Lap Residuals Analysis 

 
 
 
 
 
 
 
 
 
 
 
 



Summary 

 
Economic and financial models show agents that maximize their objective functions while interacting 

in their dynamic and competitive contexts. They establish their goal and identify obstacles that 

become constraints in a modelling environment. Competition in contests forces agents also to study 

others’ characteristics and status, and sports are one of the most important examples of competition, 

so they are also important for general audience since they are an analysis of choices and strategies in 

a dynamic context with constraints. 

They perfectly recreate a challenging environment, just like an economic sector with two or more 

firms competing or a financial market with two or more investors, that may not be in competition, 

but still have an influence on others’ choices; thus, sports can serve as a model for them and for 

several more.  

A very competitive team sport is Formula 1, and modelling and optimization are some essential 

elements of it. Like most of the sports, first of all the contest is studied before happening, as well as 

tactics. In Formula 1, even if it seems like the driver is alone in the contest to win the race, there is 

an entire team that only studies racing strategies, since these can overturn the result. Teams find 

themselves battling against other nine teams. It is a very dynamic environment, since choices made 

by strategists must be taken considering others’ choices and state. The most important strategies 

concern the start of the race, for example how to approach the first curves and where to attack or 

defend the opponent, the behavior between the two drivers of the same team and the pit-stop above 

all. Even though strategists study tactics before the race, most of them are constructed or modified 

during the event, because the environment is unpredictable and in constant change, and opponents’ 

moves could impact own choices. So, strategists must be able to adapt their tactics to the new situation 

and the changing during the race using simulation, algorithms and human intuition overall.  

 

The pit-stop strategy, that is the choice of the moment in which to stop, is the most thought-out choice 

because the driver’s surviving instinct is out of its scope, unlike the approach in the first curves. Due 

to regulations, drivers are obligated to take at least one pit-stop during the entire race3, changing their 

tyres’ type. The stopping strategy in F1 is highly effective and a wrong choice could compromise the 

entire race. It must carefully consider own capacities, because in the immediate laps after the pit-stop 

 
3 This is the case of dry races. In wet (raining) races there is no obligation to stop, meaning that stopping strategies 
don’t necessary show up.  



the driver must be able to recover the time lost due to the stop, circuit’s characteristics and it must 

especially consider others’ choices and state. An earlier pit-stop could give the driver the opportunity 

of the “undercut”, a typical F1 strategy in which first-mover advantage could arise by stopping before 

the direct opponent. The principle of the undercut is that, in a contest between two or more drivers, 

the one who stops before will have at least one lap (trip around the race circuit) with a fresher tyre 

that corresponds to more performance, compared to the other drivers that still have to stop. In this 

way he will gain an advantage in terms of time and this advantage will last until the opponents will 

stop to level off the “freshness” of tyres. Of course, stopping the driver early comes with some 

problems: the risk of putting him into the traffic of other cars and the disadvantage of having a more 

worn-out tyre for the rest of the race, meaning slower laps.  

On the other side of the coin, a late pit-stop will put the driver himself at risk of others’ undercut, 

while giving him a fresher and higher-performance tyre for the end of the race. Here, there is a clear 

trade-off between performance and strategy, two fundamental factors to be balanced with difficulty.  

 

That said, a Formula 1 race can be seen as an optimal stopping problem, that is a problem of 

optimization concerned with the choice of the moment in which executing a determined action in a 

finite horizon of time, in order to maximize an expected reward or to minimize an expected cost. 

Since in Formula 1 there is finite time composed by N laps in which to execute the action of the pit-

stop, it is a perfect and interesting environment to solve an optimal stopping problem.  

The objective of this optimization is to maximize the driver’s position at the end of the race with the 

optimal execution of the pit-stop. On the basis of this execution, the driver will find himself in a better 

or worse position, also in terms of distance from opponents, since he can gain or lose time because 

of the pit-stop.  

It is possible to find similarities between the choice of the lap in which to stop and when an investor 

should buy or sell a stock, exercise an American option or when a firm should start selling a new 

product, etc. 

 

My goals in this original work were to calculate for the first time which is the optimal stopping 

strategy in a F1 race, to understand how much the stopping strategy influences the probability of 

winning, which other factors have a higher influence on this probability and to compare the stopping 

in Formula 1 with the stopping in the execution of American options’ contracts, whom I studied the 

pricing, too. 

I used a dual approach. From one side, I investigated empirically what factors shape the choice of a 

stopping time and increase the probability of winning. This has been done through several 



regressions, analyzing the choice for different drivers or circuits but also taking into consideration 

general results. From the other side, I constructed different formal models and looked for an 

equilibrium stopping time. The reason is that empirically it’s not possible to find a general equilibrium 

stopping time unless circuits are individually studied. In fact, since different circuits come with 

different specifications, each one of them has a different equilibrium stopping time. So, only a formal 

model can specify the equilibrium stopping time, whereas an empirical test can describe the optimal 

stopping time in a specific circuit. Furthermore, I introduced competition slowly. Initially, the models 

were ideal, assuming that the driver is alone in the circuit and only takes into consideration own 

conditions. Then, I analyzed how competition and interaction with opponents’ impact on the strategy 

and on the behavior.  

 

Finally, I introduced the optimal stopping in the context of American options. I showed different 

approaches, but I analyzed the Markovian one, that is similar to my Formula 1 approach. I explained 

American options’ payoff and gain function and characterized the value function that contributes to 

the choice of the optimal stopping time. 

Then, similarities and differences between the optimal stopping in Formula 1 and American options 

had been shown. 

 

This thesis examines the sport of F1 in depth, with more than 100.000 data and several regressions 

from different points of view. My work contributes to the literature on the topic since it is a completely 

original work in which optimal stopping is applied to the Formula 1 environment, both theoretically 

and empirically, for the first time. The similarities between Formula 1 and American options’ models 

show the close linkage between the two contexts, and they are useful to give even more importance 

to the contribution that my thesis brings to the optimal stopping literature. My models can serve as 

proxy for a lot of backgrounds, with or without competition. 

 

The results, that can be deepened and continued in further studies, confirm the expectations: the 

optimal stopping time is found by formal models if general conclusions are needed, and can be 

adapted race by race, circuit by circuit, according to specific characteristics; instead, it is found by 

the empirical model and historical data if one wants circuit-specific results. 

 

So, three formal models were presented, one of them developed by Goldman and Rao (2011, 2014) 

in their work on the optimal stopping problem in the NBA. 



In the first model, every lap the strategists keep an eye on a reservation threshold (a marginal 

opportunity of pit-stop lap), that is the continuation value of the race and compare it to the pit-stop 

(stopping) value in terms of expected points. They will execute the stop once the continuation value 

is less than or equal to the pit-stop (stopping) value. It is based on dynamic efficiency and marginality.  

The second model instead is based on minimizing the entire time of the driver’s race by choosing the 

optimal stopping time according to the tyres’ condition function only, assuming that this is the only 

factor influencing the entire race time and that the driver is racing alone around the circuit. 

This leads to the third model, that introduces the competition and the interaction with the opponents. 

Here, a 2-by-2 instantaneous game is presented. Two drivers have two possible actions: to stop or to 

continue the race. One of them is the leader, the other is the runner-up. With numerical payoffs, the 

Nash equilibrium is found when the leader chooses to stop, and the runner-up decides to continue to 

race. In fact, the leader will anticipate the stop to protect himself from others’ undercut strategies, 

whereas the runner-up will try to come up with something different by differentiating the strategy 

and not stopping: he will go long and stop later. 

The first model is adaptable to every race; the second one is usable when the driver isn’t threatened 

by opponents’ attack and has a considerable advantage on chasers. The third model studies the 

interaction between drivers. 

All of these models work and find confirmation in reality. The best solution would be to use them 

together and to mix them with empirical ones.  

 

My empirical tests were multiple regressions in order to assess which factors influence the most the 

probability of winning, to study how much the stopping lap counted in historical results and how the 

stopping lap is actually chosen.  

Furthermore, I found that factors of influence have different weights whether the analysis is related 

to the entire history or to a single circuit. Drivers and cars have a higher influence on the long-term 

and on the totality of the Championship, whereas they have less on specific circuits. In fact, the drivers 

and teams’ dominance are more related to eras and years than to circuits, that find themselves several 

protagonists. 

 

A relevant outcome was that the starting grid position and the championship rank are the most 

important factors related to winning in F1. Looking at races in the same circuit, a lot of variables lose 

importance, while the grid position and the rank stays on the top winning factors. Duration of pit-stop 

and number of pit-stops are both important in a macro and in a micro view, with the latter being 

particularly impactful when carrying on a circuit-specific analysis. 



The stopping lap hasn’t a statistical relevance neither in the general model nor in the circuit-related 

one. It was predictable, since generally it’s impossible to find a precise lap number in which to stop: 

circuits have different total number of laps and characteristics. Furthermore, analyzing an individual 

circuit, every driver will want to stop at the optimal lap. Due to this, it loses importance; by the way, 

the optimal stopping lap still exists, and it is studied empirically. 

 

Firstly, using it as the dependent variable of the regression, it was analyzed from a general point of 

view, in all the races. There, it wasn’t possible to establish an optimal one, since it depends on several 

variables that must be adapted race-by-race, circuit-by-circuit. These variables are the starting grid 

position, the rank of the driver and the car.  

Instead, when looking at individual circuit, an optimal stopping lap arises. As a matter of fact, in the 

restricted-Monza model, the regressors have no predictive capability: the optimal stopping lap is 

explained by the intercept only. It has a value of 24.5, meaning that in a normal race in Italy a driver 

should stop between lap 24 and 25. Of course, this optimal lap can be adjusted taking into 

consideration formal models, so accounting for tyres’ degradation and competition, giving once again 

importance to a right mix of the two kind of models (theoretical and empirical) that are coherent and 

find confirmation between each other.  

 

So, even if it loses importance as an impactful factor on the final winning since everyone pursue it, it 

is shown that the optimal stopping lap exists, found theoretically for general purposes and empirically 

for specific circuits, and the drivers can’t move much away from it, or their race will be ruined. They 

should instead slightly modify it according to competition and own conditions.  

 

The optimal stopping time in Formula 1 is as important as in a financial or an economical context. 

The action must be executed by taking into account the entire environment and conditions, by 

checking every moment what is worth more between continuing and stopping and by looking at 

historical data. 

 

Important financial instruments for which optimal stopping is crucial are the American options. The 

reasoning behind their optimal stopping problem is very similar to the one behind my first model in 

Formula 1 and the problem can be modelled very likewise to the problem in Formula 1, even if the 

competition is not included in American options.  

I found similarities in the use of the Markov framework, since drivers and investors observe states 

and payoffs, and in the usage of a threshold, that is the continuation value in F1, and the gain function 



in American options. Both drivers and investors look at these values and are ready to execute the 

action once a condition is satisfied. 

In the case of F1, the stopping value must get greater than or equal to the continuation value; in the 

case of the American options, the value function must be equal to the gain function. 

One big difference instead, is in the usage of time: in Formula 1, it is passive. It is only a consequence 

of the previously-presented choice. 

Instead in American options, time has an active role: it is the cause, not the consequence. It is chosen 

in order to satisfy the condition and maximize the payoff. 

Another difference is the presence of competition: in Formula 1 it is central, whereas in American 

options it isn’t an element to keep into consideration. 

Despite the differences, the models can be interchanged because they are based on the same concepts. 

Formula 1 can be used as a proxy for other contexts where time has an important value and impact 

on the final payoff and where optimal stopping problem arises. With adjustments related to the 

specifics of the surroundings and the characteristics, the models shown are much adaptable. 


