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Abstract

Socially responsible investment, and the modern idea of sustainable finance, has prompted
investors to find new ways to measure and incorporate non-financial factors in the invest-
ment decision process. Modern investors should be able to include additional criteria
other than return and risk in their investment decision process to address issues such
as climate impact and deploy financial resources toward a low-carbon economy. This
thesis presents an extension the traditional mean-variance portfolio optimization model
and implements a multi-objective evolutionary algorithm in Python to solve the multi-
objective optimization model. This research differs from other studies on ESG portfolio
optimization by constraining the sustainability factor to stricter requirements in contrast
to synthesized measures such as ESG risk. The empirical analysis on a subset of S&P 500
securities using the expected 𝐶𝑂2 reduction as third criterion shows that the proposed
approach is able to approximate the efficient surface in the 3D space risk-return-carbon
impact and find the set of non-dominated solutions to the portfolio optimization problem.
A comparison analysis shows that the proposed approach is able to find a find alternative
portfolio allocations that are competitive with the traditional mean-variance and the ESG
portfolio optimization model in terms of risk-return while outperforming them in terms
of portfolio carbon reduction.
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Chapter 1

Introduction

Climate change is proving to be a significant challenge for the financial sector, trying to
balance purely monetary objectives in pursuit of high returns while achieving sustainabil-
ity that positively impacts the environment and society.
Since the Paris Agreement on Climate Change of 2015 and the U.N. 2030 Agenda for Sus-
tainable Development, it has become apparent that there is a clear commitment, especially
in the EU, to align financial flows towards an economy that is low-carbon, resource-efficient
and sustainable. The European Union launched in 2018 the Action Plan on Financing
Sustainable Growth with the aim of aligning financial resources with the EU’s climate
and environmental objectives. The plan toward a more sustainable economy prompted
the financial sector to take into consideration environmental and social objectives in the
process of capital allocation.

In this regard, with the Markets in Financial Instruments Directive (MIFID II) and the
Insurance Distribution Directive (IDD), investment and insurance firms now are required
to ask their clients about their investment objectives also in terms of sustainability and
offer financial advice considering the client’s sustainability preferences.

Thus, investors should seek for additional criteria other than risk and return to ac-
count for in the investment decision-making process. This requires an extension to the
traditional mean-variance portfolio optimization developed in Markowitz (1952). A review
of the literature on multi-criteria portfolio optimization is found in sec. 2.

This thesis continues the research on multi-criteria portfolio optimization by extending
the traditional mean-variance portfolio optimization model to include a third criterion,
the carbon impact of the portfolio in sec. 3. In sec. 4 the empirical analysis of the model is
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conducted implementing a multi-objective evolutionary algorithm in Python to solve the
multi-criteria portfolio optimization problem. Finally, in sec. 5 the results of the empirical
analysis are discussed and the main findings are summarized.
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Chapter 2

Literature Review

This chapter contains a brief review of the Modern Portfolio Theory history and outlines
researches on the topic of multi-criteria portfolio optimization.

2.1 Modern Portfolio Theory

The famous publication Markowitz (1952) proposed the foundations of what later became
known as Modern Portfolio Theory (MPT). Before that, researches on portfolio selection
had used the law of large numbers formulated in Bernoulli (1954), essentially stating that
all risks could be diversified. Markowitz, however, argued that the law of large numbers
did not apply to a portfolio of securities, since securities’ price returns are often correlated
with each other. Consequently, it is not possible for diversification to eliminate all the
variance in returns. As a result, there is a trade-off between return and variance. In
addition, Markowitz assumes that investors are risk-averse. Thus, when making a choice
between two portfolios with the same expected return, the investor will prefer the one
with the lower variance. The portfolio selection process proposed in Markowitz (1952) is
divided into two stages:

1. Form beliefs on future performance of available securities, based on historical obser-
vations and experience.

2. Based on the conclusions formed in the first phase, select a combination of securities
to form a portfolio

Markowitz (1952) main proposal is the mean-variance rule for the second stage. It
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states that an investor should select one of the efficient portfolios, i.e. those that min-
imize variance for a given expected return (mean), or conversely, those that maximize
expected return for a given variance. From the mean-variance rule, it is possible to iden-
tify a set of non-dominated portfolio allocations, i.e. those portfolios are not dominated
by any other portfolio in the set. A portfolio is said to be dominated by another portfolio
if its variance and expected return are lower than those of another portfolio. Such set is
composed of Pareto efficient portfolio allocations and is commonly referred as the efficient
frontier.

Decades after the publication of Markowitz (1952), the mean-variance rule and Modern
Portfolio Theory has been widely acclaimed and has become the foundation of finance
courses. Nevertheless, economic theory has progressed and some critics put the MPT into
question, claiming that it does not correspond to the real world in several respects. This
has resulted in several branching of the theory such as multi-criteria portfolio optimization.

2.2 Multi-criteria portfolio optimization

Through the years, researches have been adapting the traditional MPT model with sophis-
ticated risk measures and additional constraints. More recently, there have been studies
suggesting the idea to include additional objectives. This branch of MPT is commonly
referred as multi-criteria portfolio optimization.

The main idea of multi-criteria portfolio optimization is to include one or more ad-
ditional measures other than variance and expected return in the portfolio optimization
process. Two main approaches can be identified in addressing the problem of extending
portfolio optimization: by exact methodologies or by heuristic methodologies1.

2.2.1 Approaches by exact methods

Exact methods are based on mathematical programming. The idea is to formulate the
problem as a mathematical optimization problem and solve it using a mathematical pro-
gramming solver. The main advantage of exact methods is that they are guaranteed

1Heuristic methodologies are techniques designed to solve a problem when classic methods are too slow
or fails to find the set of solutions. This methods that are not guaranteed to find the optimal solution.
However, they are computationally efficient and can be used to find a set of solutions that are close to
the optimal solution.
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to find the optimal solution. The main disadvantage is that they are computationally
expensive and only applicable in certain circumstances.

Several authors have attempted to expand the classical two-criteria portfolio selection
model to beyond expected return and variance with exact methods since the early 1970s.
Hilario-Caballero et al. (2020) identifies three major groups of studies dealing with this
problem. The first group, Li et al. (2006), expanded the Markowitz model by introducing
additional constraints like cardinality, rounded lots or the purchase threshold. Another
group of studies, Rockafellar & Uryasev (2002), proposed alternative risk measures, such
as down-side risk measures and conditional value at risk.

In the 20th century, a third group of studies fostered the idea of adding additional
criteria, and thus objectives, to the portfolio optimization problem. A non-dominated
tri-criteria surface is found in Hirschberger et al. (2013), Utz et al. (2014), Utz et
al. (2015) that employs a constrained linear programming approach by solving a
quadratic-linear-linear optimization problem in which the third objective is linear. An
example of three dimensional mean-variance-liquidity frontier is also constructed in Lo &
Petrov (2003) by defining several liquidity measures. A general framework for computing
the non-dominated surface in tri-criteria portfolio optimization problem is proposed in
Hirschberger et al. (2013), which extends the Markowitz portfolio selection approach
to an additional arbitrary linear criterion. The author solves a quad-lin-lin problem
and provides an exact method for calculating the non-dominated surface which may
outperform standard portfolio strategies for multi-criteria constrained linear program.
Also, the author develops an empirical application with sustainability as the third
criterion to show how to construct the non-dominated surface. In Utz et al. (2014),
sustainability is integrated as a third criterion to obtain the efficient variance-expected
return-sustainability frontier so as to explain how the mutual fund industry can increase
its sustainability levels. The non-dominated tri-criteria surface is calculated through the
Quadratic Constrained Linear Program (QCLP) methodology, and from the experimental
results it can be concluded that there is room to expand sustainability levels without
affecting risk and return levels.

Nevertheless, the existing approaches based on exact methods for solving tri-criteria
portfolio selection problems only have limited capabilities when the third objective is non-
linear. In these instances, modern heuristic techniques have been applied to solve multi-
objective problems and provide fair approximations of the optimal solution set know as
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the Pareto front.

2.2.2 Approaches by heuristic methods

When the optimization problem involves non-convexities, discontinuities or non-integer
variables, a mathematical programming solver cannot be used. In these cases, heuristic
methods are used to provide good approximations of the efficient frontier. The main ad-
vantage of heuristic methods is that they are computationally efficient and can be applied
to a wide range of problems. The main disadvantage is that they are not guaranteed to
find the optimal solution.

Increasing complexity of multi-criteria portfolio optimization problems prompted re-
searchers to adopt heuristic methodologies such as evolutionary multi-objective algorithms
(MOEAs). First suggested in the early 1990s to study biological processes, MOEAs are
now being applied in a variety of domains including finance, notably to solve portfolio
selection problems Sarker (n.d.). It was in Arnone et al. (1993) that a MOEA for opti-
mal portfolio selection was first suggested using lower partial moments as a measure of
risk. Hilario-Caballero et al. (2020) finds that early attempts to propose MOEAs as an
extension of the mean-variance model mainly focused on additional constraints such as
cardinality, lower and upper bounds, transaction costs, transaction lots, non-negativity
constraints or industry capitalization constraints Liagkouras & Metaxiotis (2018).

Other researchers have attempted to present alternative measures of risk, the most
popular of which are: semivariance, value-at-risk, expected shortfall, skewness and risk
parity Liagkouras (2019). While two-objective problems are the most widely implemented
among the authors, three-objective problems increased in popularity in recent years. In
Anagnostopoulos & Mamanis (2010), a three-objective optimization problem is presented
to identify the trade-off between risk, return and number of securities in the portfolio.
The authors also compare three multi-objective optimization techniques to find the best
trade-off between risk, return and portfolio cardinality. In Garcia-Bernabeu et al. (2019)
and Hilario-Caballero et al. (2020) a multi-objective genetic algorithm is used to solve a
tri-criteria portfolio optimization and compute the non-dominated surface using carbon
risk as the third objective function.
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Chapter 3

Methods

3.1 Traditional portfolio optimization

This section contains some definitions and the mathematical formulation of the traditional
portfolio optimization problem.

3.1.1 Return

The return of a security is the profit or loss in a defined period of time. For a given
security 𝑖, the return is denoted as 𝑅𝑖. Moreover, the price of the security at time 𝑡 is
denoted as 𝑃𝑖(𝑡). The return of a non-dividend paying security in the period [0, 𝑇 ] is
defined as:

𝑅𝑖 = 𝑃𝑇 − 𝑃0𝑃0 = 𝑃𝑇𝑃0 − 1 (3.1)

When a security pays dividends in the time period, denoted as 𝐷𝑖𝑣𝑇 , the return for
the security is defined as:

𝑅𝑖 = 𝐷𝑖𝑣𝑇 − 𝑃𝑇𝑃0 + −1 (3.2)

eq. 3.2 can be decomposed into the dividend yield component and the capital gain
component:

𝑅𝑖 = 𝐷𝑖𝑣𝑇𝑃0 + 𝑃𝑇 − 𝑃0𝑃0 (3.3)
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The return 𝑅𝑖 over the time period [0, 𝑇 ] is not known in advance. Thus, 𝑅𝑖 is a
random variable. The expected outcome of the random variable 𝑅𝑖 or, more explicitly,
the expected return of the security 𝑖 over the time period [0, 𝑇 ] is denoted as:

𝜇𝑖 = 𝐸[𝑅𝑖] (3.4)

For a portfolio of 𝑛 securities, the random return is given by:

𝑅𝑃 = 𝑛∑𝑖=1 𝑥𝑖𝑅𝑖 (3.5)

and the expected return is defined as:

𝜇𝑃 = 𝑛∑𝑖=1 𝑥𝑖𝜇𝑖 (3.6)

where 𝑥𝑖 is the relative allocation of the security 𝑖 in the total allocation of a portfolio,
commonly referred as weight of security 𝑖:

𝑥𝑖 = Value of investment𝑖
Total value of portfolio (3.7)

In vectorized form, the expected return of 𝑛 securities is defined as:

𝜇⊤ = [𝜇1, … , 𝜇𝑛] (3.8)

and the relative allocation of 𝑛 securities is defined as:

𝑥⊤ = [𝑥1, … , 𝑥𝑛] (3.9)

Thus, eq. 3.6 can be written as:

𝜇𝑝 = 𝜇⊤𝑥 (3.10)

3.1.2 Risk

In Modern Portfolio Theory (MPT), the risk of a portfolio is measured by the variance of
portfolio returns. Because of this definition, risk is also known as volatility (of portfolio
returns). However, in finance, the most common way to represent risk is by avoiding a
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squared measure and use the standard deviation instead.
The variance of a portfolio is defined as:

𝜎2𝑃 = 𝑉 𝑎𝑟(𝑅𝑃 ) = 𝐸[(𝑅𝑃 − 𝐸[𝑅𝑃 ])2] (3.11)

and the standard deviation, or volatility, is defined as:

𝜎𝑃 = 𝑆𝑡𝑑𝐷𝑒𝑣(𝑅𝑃 ) = √𝑉 𝑎𝑟(𝑅𝑃 ) (3.12)

To calculate the variance of a portfolio, the covariance matrix of the securities is
required. The covariance matrix is a 𝑛 × 𝑛 matrix, where 𝑛 is the number of securities in
the portfolio, defined as:

𝐶𝑃 = 𝐶𝑜𝑣(𝑅𝑃 ) = ⎡⎢⎢⎢⎢⎣
𝜎11 𝜎12 … 𝜎1𝑛𝜎21 𝜎22 … 𝜎2𝑛⋮ ⋮ ⋱ ⋮𝜎𝑛1 𝜎𝑛2 … 𝜎𝑛𝑛

⎤⎥⎥⎥⎥⎦ (3.13)

where 𝜎𝑖𝑗 is the covariance between the securities 𝑖 and 𝑗.
The volatility of a portfolio is given by:

𝜎𝑃 = √√√⎷ 𝑛∑𝑖=1
𝑛∑𝑗=1 𝑥𝑖𝑥𝑗𝜎𝑖𝑗 (3.14)

and in vectorized form:

𝜎𝑃 = √𝑥⊤𝐶𝑃 𝑥 (3.15)

3.1.3 Portfolio optimization problem

The assumptions of Modern Portfolio Theory can be summarized as follows:

• the investor has a set of 𝑛 securities to choose from;
• the investor has a fixed sum of money to invest;
• the investment horizon, or the holding period, is fixed with a predetermined begin-

ning and end.
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Using the notation defined in the previous sections, the traditional mean–variance
portfolio optimization problem for risk-averse investors can be formulated as:

maximize 𝜇𝑝 = 𝜇⊤𝑥
minimize 𝜎𝑃 = √𝑥⊤𝐶𝑃 𝑥

subject to ∑𝑛𝑖=1 𝑥𝑖 = 1𝛼𝑖 ≤ 𝑥𝑖 ≤ 𝛽𝑖
(3.16)

with 𝛼𝑖 and 𝛽𝑖 as the lower and upper limits of the weight of security 𝑖 respectively.
The most common limits are 𝛼𝑖 = 0 and 𝛽𝑖 = 1, representing a portfolio without short
positions.

3.2 Generalized portfolio optimization problem

The traditional mean–variance portfolio optimization problem is a special case of a more
general optimization problem.
Denoting the objective functions as 𝑓1(𝑥), … , 𝑓𝑚(𝑥) and the set of feasible solutions 𝑆,
the general optimization problem can be formulated as:

maximize 𝑓1(𝑥)⋮
maximize 𝑓𝑚(𝑥)
subject to 𝑥 ∈ 𝑆 (3.17)

Lundström (n.d.) proposes an interesting explanation on objective functions in the
realm of portfolio optimization. The author outline how objectives need to be classified as
either stochastic or deterministic and, in the case of stochastic objectives, a deterministic
interpretation has to be determined.

The author argue that certain measures, such as R&D, could fall into either category.
They explains that R&D expenditure during the holding period is indeed stochastic but
investments before the holding period may play the most important role for the investor,
allowing the measure to be considered deterministic.

Other objectives, however, do not have characteristics that would allow for a similar
interpretation to the one described above. In these cases, the author suggest to assign
a mean-variance pair to each stochastic target, as its done for portfolio return 𝑅𝑃 in

13



Modern Portfolio Theory:

maximize 𝐸[𝑅𝑃 ]
minimize 𝑉 𝑎𝑟(𝑅𝑃 )

subject to 𝑥 ∈ 𝑆 (3.18)

Yet, for practical reasons, whenever fluctuations of stochastic objectives are of minor
amplitude or importance, the objectives might be estimated by simply considering the
expected value. The author rightfully point out that this is highly convenient, since it
allows to calculate only the means while reducing the effort of estimating covariances.

Denoting as 𝑧1, … , 𝑧𝑚 the additional criteria to be included in portfolio optimization
and disregarding the variances on these objectives, the multi-criteria portfolio optimiza-
tion problem can be formulated as:

maximize 𝐸[𝑅𝑃 ]
minimize 𝑉 𝑎𝑟(𝑅𝑃 )
maximize 𝐸[𝑧1]⋮
maximize 𝐸[𝑧𝑚]
subject to 𝑥 ∈ 𝑆

(3.19)

3.3 Multi-objective evolutionary algorithms to solve
multi-criteria decision-making problems

A multi-objective optimization problem (MOP) is a subclass of multi-criteria decision-
making (MCDM) strategies that involves the concurrent optimization of multiple objective
functions. When the conflicting degree of objectives renders it impossible to find a feasible
solution that optimizes all objective functions simultaneously, a set of non-dominated
solutions, known as Pareto front (or efficient frontier in portfolio optimization), exists
where none of the objectives can be improved without worsening one or more of the
others. Typically, a multi-objective optimization problem can be presented as follows:𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑤) = [𝑓1(𝑤), 𝑓2(𝑤), ..., 𝑓𝑚(𝑤)]⊤,𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤 ∈ 𝑆
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where the vector 𝑤 = [𝑤1, 𝑤2, … , 𝑤𝑛]⊤ is a 𝑛-parameter set included in the decision
space 𝑆 , and 𝑓𝑖(𝑤), are the objectives to be minimized at the same time.

When the objective functions of a multi-objective optimization problems are non-
linear and non-convex, a mathematical programming solver cannot be used. A common
approach to solve MOPs is to use multi-objective evolutionary algorithms (MOEAs). An
evolutionary algorithm (EA) is a stochastic search algorithm that mimics the process of
natural evolution. The algorithm starts with a population of candidate solutions, called
individuals, and iteratively improves them by applying the following steps until a stopping
criterion is met:

1. Evaluate the fitness of each solution in the population.
2. Select the best solutions to be used as parents for the next generation.
3. Apply crossover and mutation operators to create new solutions.
4. Replace the worst solutions in the population with the new solutions.

MOEAs have been successfully applied in studies to solve multi-objective optimization
problems with conflicting objectives. The goals of these heuristic methodologies are:

• convergence: produce a set of solutions that is as close as possible to the Pareto
front;

• diversity: produce a well distributed set of solutions for a complete and informed
decision-making process.

The success of a multi-objective evolutionary algorithm is given by its ability to balance
the goal of convergence and the goal of diversity.

For the purpose of this thesis, the multi-objective optimization problem is solved
using an evolutionary algorithm called AGE-MOEA-II developed in Panichella (2022).
The choice of this algorithm was driven by its performance on estimating the geometry
of the non-dominated set of solution and the ease of implementation in Python.

3.4 Sustainability criterion

Previous researches including sustainability as part of multi-criteria portfolio optimization
have mainly used ESG score as the sustainability criterion. In general, an ESG score is a
normalized measure of the environmental, social and governance level of sustainability of
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a company. While ESG scores are a good comparison indicator, they are not designed to
be a performance indicator.

One of the objectives of this thesis is to propose a rigorous approach in the choice of
the sustainability factor that is directly related to the sustainability performance of a com-
pany. The sustainability factor is then modeled into the sustainability criterion, which
is the objective function that is optimized in the multi-objective portfolio optimization
problem. The goal of this approach is to provide investors with clear measures on port-
folio sustainability performance (i.e. portfolio allocation 𝐴 is expected to reduce carbon
footprint by 7%, as opposed to portfolio allocation 𝐴 has an ESG risk of 35).

An example including sustainability factor in portfolio selection is found in Nagy et al.
(2013). The authors develop three different strategies to integrate ESG rating to explore
how each one affects performance against a benchmark. The strategies are defined as
follows:

• The first strategy, called ESG worst-in-class exclusion, narrows the investment uni-
verse by excluding companies with the lowest current rating. The model first weight
assets by market capitalization and then over-weights securities with high ESG rat-
ings while under-weighting those with low ratings within the universe, keeping the
other portfolio allocation close the initial state.

• The second strategy, referred as simple ESG tilt approach, no asset is excluded from
the portfolio selection. Instead, assets with higher ESG ratings are over-weighted
and assets with lower ESG ratings are under-weighted. As in the first strategy, the
other portfolio exposures very close the benchmark.

• The third strategy, ESG Momentum approach, do not exclude any asset like the
second. Instead, assets that have improved their ESG rating over the previous 12
months are over-weighted and assets that have decreased their ESG rating over the
same period are under-weighted.

While the first two strategies are a very common approach to sustainable portfolio
optimization, the model developed in this thesis was inspired by the logic behind the
third strategy. The goal is to improve the investment sustainability over time by having
a positive expected trajectory on the sustainability factor.
In simple terms, momentum is the tendency of a variable to continue moving in the same
direction, with the idea being to exploit past trends to predict future performance. In
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the context of Nagy et al. (2013), the ESG Momentum strategy hopes to capture the
tendency of a company to improve its ESG rating over time, therefore yielding a better
portfolio ESG rating in the future.
However, the ESG momentum approach is found to be flawed as it under-weights top ESG
performers. This bias happens because the ESG momentum at time 𝑡 of a company with
ESG rating equal to 100 at time 𝑡 − 1 and 100 at time 𝑡 is 0. In this case, the company
is not improving its ESG rating, but it is still a top performer. Being defined on a fixed
scale (usually 0 to 50 or 0 to 100), the ESG rating is clearly not suitable for the purpose
of sustainability performance.

In order to solve this problem and design a sustainability performance measure, this
thesis proposes a conjecture on the requirements of the sustainability factor. Such factor
should be designed to be:

• a continuous variable;
• influenced by the actions of the company;
• related to environmental, social or corporate governance matters.

While there are limitations in the choice of such factor, environmental impact measures
are often a good candidate for the purpose.

For the empirical analysis, this thesis proposes the use of carbon dioxide emissions as
the sustainability factor and the expected carbon dioxide reduction as the sustainability
criterion. The rationale behind this choice is that carbon dioxide emissions are a direct
result of the company operations. Moreover, there is no upper or lower limit1 for carbon
dioxide emissions, which makes it a good candidate for a continuous variable2. Finally,
carbon dioxide emissions are a well-known and widely used measure of environmental
impact, which makes it easy to find data and to compare results with other studies.

To account for company or market specific fluctuations, the carbon dioxide emissions
are normalized with the company revenues. This will allow to compare the carbon dioxide
emissions of a company in distressed periods such as the COVID-19 pandemic. In fact, as
shown in fig. 3.1, while 𝐶𝑂2 emissions lowered in 2020 they quickly rebounded in 2021.

1Producing a negative amount of carbon dioxide emission means removing carbon dioxide from the
atmosphere and thus, carbon dioxide reduction.

2This statement holds true for the purpose of this thesis. In the realm of physics, there is a finite
amount of particles in the universe.
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Figure 3.1: Annual change in 𝐶𝑂2 emissions from energy combustion and industrial
processes, 1900-2021. Source Global Energy Review (2021)

This shows that the plunge in 𝐶𝑂2 emissions in 2020 was in fact due to the economic
slowdown rather than improved sustainability of companies. Normalizing the carbon
dioxide emissions by revenues is an attempt to neutralize this effect.

The notation used for the sustainability criterion is as follows. First, one has to choose
a sustainability factor:

𝑆𝐹 = 𝑡𝑜𝑛𝑛𝑒𝑠 𝑜𝑓 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠 𝑖𝑛 𝑑𝑜𝑙𝑙𝑎𝑟 (3.20)

In the interest of using the sustainability performance as a criterion in the optimization
problem and to allow for an easier interpretation, the sustainability performance defined
as the reduction in 𝑡𝑜𝑛𝑛𝑒𝑠 𝑜𝑓 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠 𝑖𝑛 𝑑𝑜𝑙𝑙𝑎𝑟 . At an arbitrary time 𝑡, this is:

Δ𝑆𝐹 = −𝑆𝐹𝑡 − 𝑆𝐹𝑡−1𝑆𝐹𝑡−1 (3.21)

Also, following the explanation in sec. 3.2, the outcome of the sustainability criterion
will be assumed deterministic. Therefore, the expected sustainability performance for
company 𝑖 over 𝑛 periods is defined as:

𝜃𝑖 = 𝐸[Δ𝑆𝐹𝑖] = ∑𝑛𝑡=1 Δ𝑆𝐹𝑡𝑛 (3.22)

18



The portfolio expected sustainability performance, using the allocation notation 𝑥𝑖
introduced in eq. 3.7, can then be defined as:

𝜃𝑃 = 𝑛∑𝑖=1 𝜃𝑖𝑥𝑖 (3.23)

in vectorized form, with 𝜃 = [𝜃1, … , 𝜃𝑛]⊤ for 𝑛 companies:

𝜃𝑃 = 𝜃⊤𝑥 (3.24)

Finally, the tri-criteria portfolio optimization problem extended from eq. 3.16 can be
formulated as follows:

maximize 𝜇𝑝 = 𝜇⊤𝑥
minimize 𝜎𝑃 = √𝑥⊤𝐶𝑃 𝑥
maximize 𝜃𝑃 = 𝜃⊤𝑥
subject to ∑𝑛𝑖=1 𝑥𝑖 = 1𝛼𝑖 ≤ 𝑥𝑖 ≤ 𝛽𝑖

(3.25)
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Chapter 4

Empirical Analysis

This chapter presents an application of the multi-criteria portfolio optimization model
proposed in eq. 3.25.

4.1 Dataset

A dataset from Refinitiv was used to perform the analysis. To investigate the potential
of multi-objective algorithms, the first analysis is performed on a large set of variables.
Starting from the list of securities included in the S&P 500 Index1, the set was narrowed
down to securities with more than 10 years of valid environmental data. The resulting set
of 198 securities and the related expected return and expected 𝐶𝑂2 reduction over the 21
years period 2000-2020 is shown in tbl. 5.1.

Descriptive statistics of expected return (𝜇) distribution and expected 𝐶𝑂2/revenue
reduction (𝜃) distribution of the securities are illustrated in tbl. 4.1. The formula used
to compute 𝜇 is described in eq. 3.4 and the formula used to compute 𝜃 is described in
eq. 3.23

Table 4.1: Dataset descriptive statistics𝜇 𝜃
Mean 9.3744 1.4575
Standard deviation 5.5180 8.8355
Minimum -6.3160 -44.7434

1As of the end of June, 2022
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𝜇 𝜃
25th percentile 6.1608 -1.4255
Median 9.1959 2.9054
75th percentile 12.8253 6.1738
Maximum 24.2802 20.6077

Figure 4.1: Left: dataset expected return distribution. Right: dataset expected𝐶𝑂2/revenue reduction distribution.

A linear regression analysis is performed to explore a possible relationship between 𝜇
and 𝜃. The result shown in fig. 4.2 and in tbl. 4.2.

Figure 4.2: Assets Return 𝐶𝑂2 Regression
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Table 4.2: Assets Return 𝐶𝑂2 Linear Regression

Slope 0.24
Intercept -0.79𝑅2 0.15𝑝-value 0.04
Standard error 0.11

The linear regression analysis shows that there is a positive correlation between 𝜇
and 𝜃. The 𝑝-value is less than 0.05, which means that the correlation is statistically
significant, although the R-squared value of 0.15 signifies that the linear regression model
explains only 15% of the variance in 𝜃.

4.2 Optimization problem implementation in Python

The optimization problem is implemented in Python using the pymoo module presented
in Blank & Deb (2020). The inputs for the custom problem are:

• the list of assets;
• daily returns of the assets;
• yearly 𝐶𝑂2 reduction of the assets.

The parameters of the pymoo problem are:

• number of variables: number of assets;
• number of objectives: 3;
• lower and upper bounds of the single variables: 0 and 1.

The objective functions, denoted f1, f2 and f3 in code, are the volatility, the expected
return and the 𝐶𝑂2 reduction. The portfolio volatility is the standard deviation of the
portfolio return calculated with eq. 3.15. The expected return is the mean of the portfolio
returns as per eq. 3.8. The portfolio expected 𝐶𝑂2 reduction per dollar revenue (eq. 3.20)
is given by eq. 3.24.
Multi-objectives algorithms expect the objective functions to be minimized. Therefore, to
maximize the portfolio expected return and 𝐶𝑂2 reduction, f2 and f3 objective functions
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are multiplied by -1.
The ret, theta and vol methods of the TriCriterionPortfolioOptimization class
contain vectorized form of the objective functions. This is done to speed up the opti-
mization process by evaluating the algorithm population in parallel rather than element
wise.

class TriCriterionPortfolioOptimization(pymoo.core.problem.Problem):
def __init__(

self,
tickers: list[str],
daily_log_ret: pandas.DataFrame,
yearly_co2_change: pandas.DataFrame,

):

super().__init__(
n_var=len(tickers),
n_obj=3,
xl=0.0,
xu=1.0
)

self.tickers: list[str] = tickers
self.mu_vector: numpy.ndarray = (daily_log_ret.mean() * 252).values
self.sigma_matrix: numpy.ndarray = (daily_log_ret.cov() * 252).values
self.theta_vector: numpy.ndarray = yearly_co2_change.mean().values

def ret(self, weights_matrix: numpy.ndarray) -> numpy.ndarray:
return weights_matrix @ self.mu_vector

def theta(self, weights_matrix: numpy.ndarray) -> numpy.ndarray:
return weights_matrix @ self.theta_vector

def vol(self, weights_matrix: numpy.ndarray) -> numpy.ndarray:
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return np.sqrt(np.diag(weights_matrix @ (self.sigma_matrix @ weights_matrix.T)))

def _evaluate(self, x: numpy.matrix, out, *args, **kwargs):
f1 = self.vol(x)
f2 = self.ret(x) * -1
f3 = self.theta(x) * -1

out["F"] = [f1, f2, f3]

To further improve computational performance, it is possible to implement the op-
timization constraints with and ex-ante approach. Instead of checking the constraint
satisfaction after each iteration, the code is developed to correct the input variables be-
forehand to satisfy the constraint in eq. 3.25, effectively making each iteration a feasible
solution to the problem.

class PortfolioAllocationConstraint(pymoo.core.repair.Repair):

def _do(self, problem, X: numpy.ndarray, **kwargs):
X[X < 1e-3] = 0
return X / X.sum(axis=1, keepdims=True)

Following a trial and error process, the best parameters found for AGE-MOEA-II
algorithm are the following:

Table 4.3: AGE-MOEA-II algorithm parameters

Probability of mutation 0.2
Probability of crossover 0.2

4.3 Non-dominated surface result (Pareto front)

The set of results of the optimization performed is first shown in fig. 4.3 with a traditional
2D cartesian plot with the expected return on the y-axis and the portfolio volatility on
the x-axis. The third objective function, the 𝐶𝑂2 reduction, is on the color map scale.
The plot also shows in red the frontier of the mean-variance optimization.
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Figure 4.3: Comparison between traditional efficient frontier and set of results from tri-
criteria AGE-MOEA-II optimization

The tri-criterion problem allows for the visualization of the set of non-dominated
solutions in a 3D space. The set of results forms a surface in fig. 4.4 with a 3D cartesian
plot having the expected return on the z-axis, the portfolio volatility on the x-axis and
the expected 𝐶𝑂2 reduction on the y-axis.

Figure 4.4: Efficient surface of optimal portfolio allocations, different angle views

As described in sec. 2.2.2, heuristic methodologies are not guaranteed to find the
optimal solution to an optimization problem. An analysis is performed to show the trade-
off of the approximated solution, visible in the gap between the efficient frontier and the
set of solutions in fig. 4.3. This trade-off is due to computational constraints on the large
number of variables to be modeled. The trade-off is expressed as loss in percentage return
for any given level of portfolio volatility. The analysis is performed by computing the
distance between returns on the traditional mean-variance frontier and returns on the
tri-criterion frontier. Using 100 steps on the mean-variance frontier volatility range the
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median loss in percentage return is found to be 0.4757. This means that portfolio return
on the tri-criterion solutions is averagely 0.4757% less than the optimal portfolio return
on the mean-variance frontier.

Figure 4.5: Tri-criterion heuristic optimization trade-off, loss in % return

Table 4.4: Tri-criterion heuristic optimization trade-off, loss in % return. Descriptive
statistics

Mean 0.5663
Standard deviation 0.3257
Minimum -0.1353
25th percentile -0.3656
Median 0.4757
75th percentile 0.5940
Maximum 1.5279

4.4 Comparison with traditional optimization and
ESG optimization

The comparison analysis has been performed on a smaller set of selected securities. Ten
securities with highest market capitalization have been selected from tbl. 5.1. The opti-
mization has been performed on a smaller time period than the previous analysis, from
January 1, 2015 to December 31, 2020.
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The analysis aims to compare the results of the traditional mean-variance portfolio
optimization with the results of two multi-criteria optimization models: (i) the model
developed in this thesis (hereinafter M-V-𝐶𝑂2 reduction model) and (ii) the ESG op-
timization model (hereinafter M-V-ESG risk model) commonly applied in sustainable
portfolio optimization literature.

The ESG optimization model has been structured as a general multi-criteria portfolio
optimization problem in eq. 3.19. The third objective function, ESG risk of the portfolio𝐸𝑆𝐺𝑃 , is:

minimize 𝐸𝑆𝐺𝑃 = ∑𝑛𝑖=1 𝐸𝑆𝐺𝑖𝑤𝑖
with 𝐸𝑆𝐺𝑖 representing the ESG score and 𝑤𝑖 the relative allocation of the 𝑖th security

in the portfolio.
The ESG optimization model has been solved using the same algorithm described

in sec. 3.3. ESG scores have been sourced from Morningstar Sustainalytics, one of the
leading provider of ESG data together with MSCI ESG IVA and Refinitiv. The ESG
data is in form of ESG risk, which are normalized scores between 0 and 40+, with values
closer to 0 meaning negligible ESG risk and values over 40 meaning severe risk exposure
to environmental, social and corporate governance matters.

To compare the models, tbl. 4.5 shows the results of the optimizations in three com-
parable points of each Pareto front. The first point is the optimal portfolio close to 20%
volatility, the second point is the optimal portfolio close to 25% volatility and the third
point is the optimal portfolio close to 30% volatility. The results are shown in terms of ex-
pected return, volatility, 𝐶𝑂2 reduction and ESG risk of the optimal portfolio allocation
produced by the model.

Table 4.5: Comparison of the results of three optimization methods for portfolio volatility
target at 20%, 25% and 30%

Optimization method Return 𝐶𝑂2 Reduction ESG Risk Volatility

Mean-Variance 22.51 2.53 21.35 20.14
M-V-𝐶𝑂2 reduction 22.11 6.23 21.14 20.19
M-V-ESG risk 21.73 2.98 20.04 20.18
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Optimization method Return 𝐶𝑂2 Reduction ESG Risk Volatility

Mean-Variance 31.87 0.21 18.09 25.22
M-V-𝐶𝑂2 reduction 31.22 7.37 18.46 25.20
M-V-ESG risk 31.12 2.68 16.62 25.23

Mean-Variance 38.96 -0.24 15.65 30.27
M-V-𝐶𝑂2 reduction 38.37 6.62 16.06 30.18
M-V-ESG risk 38.80 1.26 15.34 30.28

The first comparison with 20% volatility target shows very similar results for the
tradition mean-variance optimization and both multi-criteria optimization in terms of
expected return. The M-V-ESG risk model produces a portfolio with marginally better
ESG risk than the other models. On the portfolio 𝐶𝑂2 reduction performance, the M-V-𝐶𝑂2 reduction model developed in this thesis produces a portfolio with more than double
the performance of the other two models.

The second comparison with 25% volatility target shows a similar trend as the first
comparison. The M-V-ESG risk model portfolio allocation has a marginally better ESG
risk than the other models. The M-V-𝐶𝑂2 reduction model developed in this thesis
outperforms the other two models by an even larger margin than the first comparison in
terms of 𝐶𝑂2 reduction.

The third comparison with 30% volatility has the same conclusion of the second com-
parison. The expected return is in line for each portfolio allocation produced by the three
models. A slight improvement in ESG risk is observed for the M-V-ESG risk model. The
M-V-𝐶𝑂2 reduction model developed in this thesis guarantees a portfolio with a 𝐶𝑂2
reduction by far superior to the other two models.

The conclusion of the comparison analysis is that the M-V-𝐶𝑂2 reduction model
developed in this thesis outperforms the traditional mean-variance model and the M-V-
ESG risk model in terms of 𝐶𝑂2 reduction with little to no impact on the expected return
of the portfolio. The M-V-ESG risk model slightly outperforms the other models in terms
of ESG risk with no significant impact on the expected return. The M-V-ESG risk model
also comes ahead of the traditional mean-variance model in terms of 𝐶𝑂2 reduction,
possibly showing a relationship between lower ESG risk and positive 𝐶𝑂2 reduction.
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Figure 4.6: Optimal portfolio allocation. Comparison of three optimization methods for
portfolio volatility target at 20%, 25% and 30%
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Chapter 5

Conclusion

The traditional mean-variance model has gained popularity for its simplicity and its ability
to provide risk-averse investor with the optimal portfolio allocation. However, the model
is not able to incorporate criteria other than return and risk that may be concerning in-
vestors. In this thesis, I propose a model that extends the traditional mean-variance model
to incorporate other criteria. In the context of sustainable finance, I propose a set of rules
to select the sustainability factor as opposed to the common ESG risk found in sustainable
portfolio optimization literature. Furthermore, I solve the multi-objective optimization
problem using a multi-objective evolutionary algorithm implemented in Python.

The model is tested on a real-world portfolio of 198 stocks using the expected 𝐶𝑂2
reduction as third criterion and successfully finds the set of non-dominated portfolio al-
locations. The model is also compared to the traditional mean-variance model and the
mean-variance-ESG risk model on a smaller set of data. The comparison shows that
the model developed in this thesis outperforms the other two models in terms of 𝐶𝑂2
reduction with little to no impact on the expected return and volatility of the portfolio.
In conclusion, the model proposed is able to find alternative allocations that may satisfy
investors’ sustainability concern in a more rigorous manner than the one presented in
portfolio ESG risk optimization.

This model may find application in the financial industry, where asset managers are
increasingly incorporating sustainability criteria in their investment strategies. The model
may also be useful for companies that want to offset their carbon footprint by allocating
resources in economically and sustainable efficient investments.

The main limitation on the theoretical model is assuming the sustainability criteria
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as a deterministic objective. On the empirical analysis, the lack of available raw ESG
data plays another limiting factor in back-testing the model on different time periods,
geographical regions, industries and sectors.

Further research on the model might explore the use of other(s) sustainability fac-
tor(s), fine-tune the parameters of the optimization algorithm and explore the use of
other optimization algorithms.
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Appendix

Table 5.1: Dataset processed over the 21-years period 2000-2020. Source: Refinitiv

Ticker 𝜇 𝜃 Ticker 𝜇 𝜃 Ticker 𝜇 𝜃
A 4.9382 7.2041 ES 10.0422 16.1181 NEE 16.2589 1.4442
AAL -0.9382 -1.4089 ETN 13.7274 2.2076 NEM 5.357 4.679
AAPL 24.1333 3.4388 ETR 10.4528 1.2675 NI 10.0106 4.7365
ABT 11.5354 -9.7224 EW 20.3946 5.7501 NKE 16.6087 -9.5425
ACN 16.3231 3.7962 EXC 8.0993 0.4537 NLOK 9.9377 -14.1799
ADBE 16.7378 -3.7526 EXPD 11.9196 6.2776 NOC 13.6151 11.6192
ADI 7.9257 4.1016 F -1.8349 4.0708 NRG 8.8144 8.3747
ADSK 17.5245 -15.041 FCX 6.8372 0.0868 NSC 14.5087 3.0871
AEE 9.0482 2.5326 FDX 9.3919 4.1597 NTRS 5.0557 7.3644
AEP 9.1986 7.9758 FE 6.1542 3.6615 NVDA 24.2802 -0.7477
AES -0.6069 1.1221 FMC 15.1769 14.9951 NWL 2.0902 3.7773
AKAM -5.0723 1.1678 GD 10.2158 4.0763 OKE 13.871 -17.4552
ALB 15.2821 1.7027 GE -3.7628 5.1805 OMC 3.6941 8.8481
ALL 9.8563 8.4625 GIS 8.9119 5.148 ORCL 4.6549 -2.2391
AMAT 6.5421 2.9539 GOOG 21.7498 2.5231 OXY 5.8885 -0.3447
AMCR 8.1927 -0.4472 GOOGL 21.7234 2.5231 PEG 10.0827 4.1022
AMD 9.2252 16.3041 HAL 1.8541 -8.784 PEP 8.9713 2.0026
AMGN 7.5129 6.3007 HAS 10.4725 10.3753 PFE 4.3285 3.8284
APA 1.0584 -8.4268 HBAN 1.2388 9.322 PFG 6.9239 12.0761
APD 13.2124 -2.6227 HD 9.2475 9.1198 PG 7.199 -1.3797
AWK 18.4367 6.9619 HES 6.5043 -11.2227 PLD 11.8468 -22.4021
AXP 6.6965 6.4011 HIG 2.7679 1.5646 PM 8.6482 5.1333
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Ticker 𝜇 𝜃 Ticker 𝜇 𝜃 Ticker 𝜇 𝜃
BA 10.9939 -0.1275 HPQ 3.19 -7.3992 PNC 9.1931 5.6694
BAC 3.9591 6.8091 HRL 12.5285 -2.9315 PNW 9.2126 5.3993
BALL 18.3192 5.7233 HST 7.2798 -5.3064 PPG 10.6097 13.2332
BAX 9.4478 1.2565 HSY 11.4428 2.5371 PPL 9.3402 -1.114
BBWI 8.458 1.6565 HUM 19.651 10.6225 PRU 7.7322 2.9431
BDX 12.2175 6.534 HWM 10.6638 1.2131 PVH 12.9315 -10.4799
BF-B 14.3675 2.2784 IBM 2.7007 2.8678 QCOM 4.7711 -3.8599
BIIB 10.0388 9.7865 IFF 7.6415 5.122 RCL 6.3065 -10.9507
BKR 3.4577 -2.4433 INTC 3.3408 -13.7351 ROK 15.2003 5.2233
BMY 3.7375 10.6251 INTU 12.8327 19.2248 RTX 9.6719 -2.0355
BSX 5.7562 8.2537 IP 3.3647 -2.5905 SBUX 18.0591 2.7988
C -6.316 0.6939 ITW 11.3904 3.3991 SHW 19.1396 5.5534
CAG 6.8648 3.8484 JCI 0.763 -6.7415 SJM 11.6961 1.0566
CAT 12.6474 2.3725 JNJ 8.397 4.9413 SLB 0.992 -5.1744
CB 13.5571 7.7143 JNPR -3.376 -2.2228 SO 11.7801 6.9339
CBRE 14.0698 7.3238 JPM 7.7971 7.2728 SPG 11.5143 9.5052
CCL 0.476 -6.1573 KMB 7.0274 6.8754 SPGI 13.585 10.4414
CHD 15.6325 6.5603 KO 5.8539 -11.7299 SRE 13.0976 4.7394
CI 10.5185 12.9859 KR 7.0536 4.8526 STX 12.7634 -3.9861
CL 6.9198 3.395 LIN 13.6222 1.2154 STZ 17.1818 2.684
CLX 9.4596 5.9665 LLY 7.5698 8.5832 T 4.1884 5.3392
CMA 4.2238 4.3008 LMT 15.5023 6.4682 TAP 4.9275 -1.9509
CMI 16.8168 5.5383 LNT 10.797 2.8524 TEL 10.5338 3.9155
COF 5.2896 7.996 LUMN -1.7928 5.3244 TGT 9.8318 2.5695
COP 7.0828 -4.2199 LUV 8.8154 -1.4311 TROW 12.991 11.7441
COST 12.1426 1.5208 LYB 18.5745 -5.6052 TSN 8.0493 1.2158
CPB 4.0403 1.7997 MAR 12.7305 -10.8586 TT 12.5125 9.627
CRM 23.9006 -8.9012 MAS 7.151 -41.6609 TXN 7.471 -0.3706
CSCO 0.6061 1.3285 MCHP 12.0889 2.6007 UAL 2.0864 -1.0197
CSX 15.8589 4.8191 MCK 10.6248 -4.2672 UNP 16.3343 3.2404
CVS 7.5823 10.7145 MDLZ 7.9332 -2.0262 UPS 7.1387 -1.0577
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Ticker 𝜇 𝜃 Ticker 𝜇 𝜃 Ticker 𝜇 𝜃
CVX 7.0379 -2.3387 MDT 7.6421 5.0063 V 22.1356 20.0842
DE 14.4869 6.243 MET 8.3727 -33.074 VMC 8.1796 9.7346
DGX 14.487 5.4266 MGM 6.1804 -4.4602 VZ 4.9897 5.8963
DIS 10.7913 4.6056 MKC 14.7613 -1.2948 WAT 10.9369 7.0758
DRI 14.1709 2.6888 MMC 6.8987 6.5982 WDC 14.2841 -6.4456
DTE 11.0901 4.1484 MMM 9.0948 9.0951 WEC 14.0873 1.4877
DUK 8.5789 -10.9028 MO 14.9664 9.2658 WFC 4.9726 -3.3972
EBAY 9.7334 -0.165 MOS 2.9794 -5.4816 WHR 8.2986 2.0308
ECL 13.3056 -0.5837 MRK 4.5589 2.6337 WM 11.925 5.0835
ED 8.4376 -2.2492 MRO 2.1867 -44.7434 WMT 5.7238 3.6694
EIX 7.7014 20.6077 MSFT 8.9477 -31.737 WY 4.8841 4.1945
EL 12.8032 7.4977 MSI 1.2251 -15.8917 XEL 10.3233 5.8077
EMR 8.0065 -9.7433 MTD 16.7984 4.5392 XOM 3.3198 -2.2366
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