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Notation

Probability Theory
V Variance

C Covariance

E Expectation

𝔉 Fourier transform

P Probability measure
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Introduction

In quantitative finance, a derivative represents a contract whose value is derived from other
underlying variables (Hull, 2021). Such instruments date back to ancient times: the first
derivative was likely dealt with by the Greek philosopher Thales of Miletus around 600
BC. Generally engaged in philosophising, philosophers certainly did not shine for their
wealth. An anecdote in Aristotle’s Politics recounts how Thales, to prove the fallacy of this
commonplace, acquired the seasonal use of every nearby olive press at a discount. The
subsequent harvest, which proved exceptionally fruitful, allowed him to dispose of the
olive presses on his own terms, accumulating significant wealth in the process. Hence,
Thales was the first to set up a contingent contract depending upon the realisation of an
underlying state variable (here, the abundance of the harvest).

According to Aristotle, “from his knowledge of astronomy he had observed while it was
still winter that there was going to be a large crop of olives. . . ”. Thales would therefore have
used the derivative contract for speculative purposes, which is predominant in the use
of such financial instruments today (Calderone, 2020). Another attractive perspective,
provided by Taleb (2012), is instrumental in introducing the other primary reason for
derivative contracts: hedging. From this perspective, Thales would have positioned himself
to take advantage of his lack of knowledge rather than exploit his superior astronomy
understanding: “he did not need to understand too much the messages from the stars.”

The following chapters are concerned with a particular type of derivative contract
known as an option, giving its holder the right but not the obligation to execute a transaction
on the underlying asset within a specified time frame. In particular, this thesis focuses
on the valuation of European call options, giving the right to purchase a given stake in a
company at a pre-determined price and a specified maturity date. The analysis conducted
for the models may be equally carried out considering put options, whose value follows
immediately from a fundamental result known as the put-call parity.

The contingent nature of options contracts leads to an asymmetric payoff structure,
prompting the need for (more or less) sophisticated mathematical techniques for their
valuation. Pricing a derivative contract is, intuitively, subject to the specification of the
underlying asset’s dynamics. In this context, the erratic behaviour of prices observed across
different asset classes makes stochastic processes the fundamental tools to carry out the
analysis. Hence, one of the first contributions to the field is believed to be the application
of the Brownian motion by Bachelier (1900) to model stocks trading at the Paris Bourse.
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Introduction

Unfortunately, standard Brownian motion is unsuitable for modelling stock prices as it
comes with undesirable properties (such as a support of R). However, the same process
leads to a much more realistic representation when used to model the dynamics of the
log-price. The latter is the approach followed by Black and Scholes (1973) and Merton
(1973), who assumed a geometric Brownian motion for the underlying asset’s price and
relied on the no-arbitrage argument to derive a fundamental partial differential equation.
The solution to this equation still represents one of the most famous option pricing formulas,
and earned Scholes and Merton (Black had died by the time) a Nobel prize in 1997. It is
worth mentioning that the most significant contribution of the authors was not the PDE
itself but rather the replication and no-arbitrage arguments used to derive it. The pricing
equation worked fine until the Black Monday of October 1987, when all the major world
markets dropped by at least 20%. Inherent to the geometric Brownian motion assumption
is a Gaussian distribution for the returns on the underlying; after the market crash of 1987,
investors started to realise black swans existed, and rare events are more frequent than
under the Normal scenario. Evidence of such a change of mindset is acquired by looking
at the volatility parameter in the BSM formula — assuming constant variance for the spot
price — implicit in the market prices of options. It turns out that the value implied by
market prices is higher for deep out-of-the-money options than for their at-the-money
counterparts, revealing that investors think black swans are not so unlikely. Furthermore,
empirical distributions of returns are indeed characterised by an excess kurtosis and a
left asymmetry. In light of these findings, several models were proposed over the years to
relax one or more of the assumptions outlined in 1973. Overall, the models presented fall
either in the class of Lévy processes or that of frameworks based on stochastic volatility.
The increasing complexity of the dynamics for the underlying price does, however, require
more sophisticated mathematical tools to derive an option pricing formula. Luckily, in
the early 2000s, authors such as Bakshi and Madan (2000) and Lewis (2001) provided a
general solution leveraging the powerful mathematical concept of Fourier transform. This
thesis is organised into four chapters, whose content is briefly described below:

■ Chapter 1 concerns the mathematical tools needed to explore the pricing models
discussed, including a brief overview of measure theory and its particular case known
as probability theory. With such tools, the last part of the chapter explores the
functional Central Limit Theorem by deriving the well-known Brownian motion
starting from a symmetric random walk. Such a process provides the foundations
for the BSM framework, whose replication argument is presented along with the
general principle of risk-neutral valuation and the two fundamental theorems of
asset pricing by Harrison and Pliska (1981, 1983).
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■ Chapter 2 focuses on the class of Lévy processes, where Brownian motion belongs as
the only one with continuous paths. These models are designed to allow for disconti-
nuities in the price path, resembling the dynamics observed on the announcement
of a M&A transaction, the burst of a war (or a pandemic), and similar events. As a
result, the distribution of returns induced by this class of processes will inevitably be
characterised by an excess kurtosis. The chapter discusses the fundamentals of Lévy
processes, such as the Poisson process and an elegant decomposition by Lévy and
Itô, to conclude with the jump-diffusion model proposed by Merton (1976) and the
asymmetric variance-gamma framework due to Madan et al. (1998).

■ Chapter 3 regards models based on stochastic volatility. Here, an essential assumption
for Lévy processes — the independence of increments — is relaxed. In addition to
providing a more accurate fit of the price surface for contracts expiring further out in
time, this class of models can explain two stylised facts of empirical distributions of
returns — volatility clusters and the leverage effect — while retaining a leptokurtic
density. The chapter focuses on deriving the pricing PDE under the influential
stochastic volatility framework of Heston (1993) and its extension by Bates (1996),
combining the benefits of stochastic volatility and jump-diffusion processes.

■ Chapter 4 briefly discusses the concept of the Fourier transform and its fundamental
application to probability theory, where each density is entirely characterised by
its Fourier transform and which indeed goes under the name of the characteristic
function. Given the latter, the original density can then be recovered by inverting the
transform through a procedure presented by Gil-Pelaez (1951). The characteristic
function of the price process serves a fundamental role in option pricing, thanks to
the early results of Stein and Stein (1991) and Heston (1993) and the generalisa-
tions provided by Bakshi and Madan (2000) and Lewis (2001). The chapter then
concentrates on the discrete Fourier transform — needed to deal with samples of
data points belonging to a function — and an influential and efficient algorithm to
compute it, due to Cooley and Tukey (1965). The fast Fourier transform is then
applied to the pricing equation of Lewis (2001) and used to calibrate the models’
parameters on a data set of call options written on the Apple stock. The chapter
concludes with a discussion of the parameters implied by the market prices.

3
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1
Risk-Neutral Valuation

The insight backing the success of Thales’ strategy lies in the asymmetry of his position,
characterised by a finite but significant upside potential against a fixed cash outflow. This
feature, however, is not found in the “simplest” type of derivative: forward contracts. On
the contrary to a spot contract, here, two parties (or legs) agree to buy or sell an asset at
a particular future time 𝑇 and a pre-determined delivery price 𝐾. Forward contracts are
settled at the delivery date 𝑇, when the underlying asset is “transferred” from the short leg
to the long leg; letting 𝑆𝑇 represent the value of the underlying 𝑆 at maturity, the payoff to
the long leg in a forward contract is 𝑆𝑇 − 𝐾. As forwards correspond to zero-sum games,
the payoff to the short leg is exactly 𝐾 − 𝑆𝑇 . Intuitively, since no funds are exchanged at
the contract’s inception, it costs nothing to open a position on a forward. Analytically, the
delivery price is set to avoid arbitrage opportunities according to the no-arbitrage pricing
principle introduced by Merton (1973). An arbitrage opportunity can be defined as a
strategy that does not require any outflow at the inception and generates a cash inflow
and a loss later, with positive and zero probability, respectively.
Definition 1.1. A forward contract is an agreement to pay or receive a specified delivery price
𝐾 at a delivery date 𝑇, in exchange for an underlying asset whose price at time 𝑡 ∈ [0, 𝑇] is 𝑆𝑡.
The 𝑇- forward price 𝐹𝑇𝑡 at time 𝑡 corresponds to the delivery price that sets 𝐹𝑇𝑡 = 𝐾.

One can derive the no-arbitrage 𝑇- forward price fairly quickly by noting that a long
position is equivalent to a leveraged investment in the underlying, as summarised in
Figure 1.1. Suppose an agent takes a short forward position by agreeing to sell for 𝐹𝑇𝑡 at
time 𝑇 an asset worth 𝑆𝑡 at 𝑡. Assume the economy features a risk-free asset, such as a
zero-coupon bond (ZCB), yielding a risk-free rate of return 𝑟. An indirect definition of the
latter states that an asset with a positive probability of earning a return above 𝑟 must have
a positive probability of earning a return below it. Suppose the agent shorts 𝑆𝑡 units of
the bond and invest the proceeds in the underlying 𝑆. On the delivery date, the agent

4



Chapter 1. Risk-Neutral Valuation
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Figure 1.1 A long position on a forward contract is equivalent to — that is, can be replicated by —
a debt-financed investment in the underlying asset.

delivers the asset and is left with 𝐾 − 𝑆𝑡𝑒𝑟 (𝑇−𝑡) : if this amount is positive, the agent found
an arbitrage opportunity; in the specular case, taking the long leg of the forward contract
would provide a “free lunch”. Hence, the no-arbitrage principle implies:

𝐾 − 𝑆𝑡𝑒
𝑟 (𝑇−𝑡) = 0 ⇐⇒ 𝐹𝑇𝑡 = 𝐾 = 𝑆𝑡𝑒

𝑟 (𝑇−𝑡) (1.1)

As a direct consequence of Definition 1.1, no funds are exchanged at the inception of a
forward contract, and the payoffs at the delivery date correspond to the profits and losses
(P&Ls) realised by the parties involved in the transaction.

Financial options are related to forward contracts in that they share the same upside
potential. However, the most significant contribution provided by options is undoubtedly
the introduction of asymmetry in the payoff, bounded at zero from below; clearly, the
intrinsically contingent nature of options contracts comes at a cost.
Definition 1.2. A call option gives its buyer the right, but not the obligation, to buy an
underlying security for a pre-determined exercise (or strike) price within an expiration date 𝑇.
Similarly, a put option gives its buyer the right, but not the obligation, to sell an underlying
security for a pre-determined strike price within an expiration date 𝑇.

A further distinction, due to Samuelson (1965), concerns the tenor in which the holder
of an options contract can exercise his rights: an American option can be exercised at any
time before or at maturity 𝑇; a European option, on the other hand, can only be exercised
at maturity.∗ Nevertheless, American and European options share the same payoff at the
exercise date 𝑡 ∈ [0, 𝑇], namely [𝑆𝑇 −𝐾]+ and [𝐾−𝑆𝑇 ]+ for call and put options, respectively.

The existence of options may be rationalised through the two primary scopes such
contracts are adopted in — speculation and hedging. The former is quite evident with
∗Samuelson was introduced to options with early exercise as sophisticated financial instruments, understand-
able only to a European mind. He then decided to reverse the meanings in his definition.
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Chapter 1. Risk-Neutral Valuation 1.1. Probability Theory

options contracts, generally “controlling” for one hundred shares of the underlying — for
instance, the holder of a (say) call will buy 100 shares of asset 𝑆 for a price 𝐾, as long as
𝑆𝑇 −𝐾 > 0. Such built-in leverage makes options contracts especially suitable for speculative
purposes. Risk management represents another field featuring widespread use of options,
which may be employed to hedge a position and comply with regulatory requirements set
forth by banking authorities (e.g., EBA), such as Value at Risk (VaR).

The nonlinearity of options’ payoffs is evident in a graphical representation of the latter
(Figure 1.2). Determining the value provided by asymmetry, known as the option’s premium,
requires an accurate description of asset prices. In turn, such modelling assumptions are
based on a compendium of formal definitions from the theory initiated by Kolmogorov in
1933 for probability fields. Such framework is thoroughly based on the contributions of
Borel and Lebesgue, discussed in Appendix A.

1.1 | Probability Theory
The concepts presented in Appendix A are sufficient to introduce the theoretical underpin-
nings of this thesis. Probability theory is closely related to measure theory; the former is
nothing but the latter restricted to a particular type of measure spaces (𝑋,A, 𝜇) where
𝜇(𝑋) = 1, as clarified by the following definition.

The measure-theoretic approach to probability theory unifies discrete and continuous
probability distributions (see Bertrand paradox) while providing sensible definitions of
probabilities outside of R𝑛 (e.g., the space of continuous functions for Brownian motion).
Definition 1.3. Let Ω be a nonempty set, and let F be a 𝜎-algebra on subsets of Ω. Following
Kolmogorov (1933), a probability measure P is a function that, to every set 𝐴 ∈ F, assigns
a value in [0, 1] called the probability of 𝐴 and denoted P(𝐴). We require P(Ω) = 1 and
𝜎-additivity — that is, when

{
𝐴 𝑗

}
𝑗∈N+ is a sequence of pairwise disjoint events in F we have:

P
©­«

∞⋃
𝑗=1

𝐴 𝑗
ª®¬ =

∞∑︁
𝑗=1
P

(
𝐴 𝑗

) (1.2)

The triple (Ω,F, P) is called a probability space.

In terms of Definition A.6, a probability measure is just a map P : F → [0, 1] such that
the Kolmogorov axioms are satisfied. When dealing with an uncountably infinite sample
space Ω, each sequence 𝜔 = 𝜔1𝜔2 . . . ∈ Ω is assigned probability zero. For instance, if one
were to toss a coin infinitely many times, the sequence 𝐻𝐻𝐻𝐻 . . . ∈ Ω∞ would be exactly

6
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Long position on a forward contract

 (())
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Short position on a forward contract

 

>0

(())

P&L

Short position on a put option

 

20

(())

P&L
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20
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Figure 1.2 P&L functions for the most known plain vanilla derivative contracts. Forward prices
are set so that the value of a forward contract is zero at the inception: payoff at maturity and P&L
coincide. The main contribution of options contracts is due to their intrinsically nonlinear payoffs.



Chapter 1. Risk-Neutral Valuation 1.1. Probability Theory

as likely as 𝐻𝑇𝐻𝑇 . . . ∈ Ω∞: both have zero probability. Formally, if a set 𝐴 in the 𝜎-algebra
F on Ω is such that P(𝐴) = 1, then event 𝐴 is said to occur almost surely (or a.s. for short).

At any time 𝑡 ≥ 0, the price of a given asset is modelled by means of a random variable
(RV), prompting the need to provide a formal definition of the latter.
Definition 1.4. Let (Ω,F, P) be a probability space and (R,B(R)) a measurable space. A
random variable 𝑋 is a measurable map 𝑋 : Ω → R. Equivalently, 𝑋 is a random variable if
for every Borel-measurable set 𝐵 ∈ B(R) the pre-image of 𝑋 is F-measurable:

{𝑋 ∈ 𝐵} B 𝑋−1(𝐵) = {𝜔 ∈ Ω : 𝑋 (𝜔) ∈ 𝐵} ∈ F (1.3)

Note that Definition 1.4 is restricted to the case of R-valued RVs, where the line of real
numbers R is equipped with the Borel 𝜎-algebra B(R).

If two RVs 𝑋 and 𝑌 are such that P {𝜔 ∈ Ω : 𝑋 (𝜔) = 𝑌 (𝜔)} = 1, 𝑋 and 𝑌 are said equal
almost surely under P. If 𝜇𝑋 = 𝜇𝑌 , then 𝑋 and 𝑌 are said identical in distribution, a fact
denoted by 𝑋 𝑑

= 𝑌 . Clearly, one has 𝑋 = 𝑌 𝑎.𝑠. =⇒ 𝜇𝑋 = 𝜇𝑌 .
It should be noted that knowledge of 𝜇𝑋 allows characterising a random variable 𝑋

fully if and only if 𝑋 represents the only source of randomness in the probabilistic model
considered. In particular, when several RVs are involved, one can restrict the analysis to
operations on the (marginal) distributions only if the RVs are mutually independent.

A random variable 𝑋 induces a distribution measure 𝜇𝑋 on the measurable space
(R,B(R)). Intuitively, the distribution of a random variable is itself a probability measure
assigned to the Borel sets 𝐵 ⊂ B(R) rather than 𝐹 ⊂ F. Formally, 𝜇𝑋 is defined as follows.
Definition 1.5. Let 𝑋 : Ω → R be a real-valued random variable defined on a probability
space (Ω,F, P). The distribution measure of 𝑋 is defined as the map 𝜇𝑋 : B(R) → [0, 1] which
assigns to each Borel set 𝐵 ⊂ B(R) a mass 𝜇𝑋 (𝐵), where

𝜇𝑋 (𝐵) B P(𝑋−1(𝐵)) = P(𝑋 ∈ 𝐵) (1.4)

Ω

{𝑋 ∈ 𝐵}
R

𝑋 : Ω →
R

𝐵

Figure 1.3 The distribution measure 𝜇𝑋 : B(R) → [0, 1] of a random variable 𝑋 defines itself a
probability measure on the members of the Borel 𝜎-algebra B(R) rather than on the events in F.

8



Chapter 1. Risk-Neutral Valuation 1.1. Probability Theory

One can easily show that 𝜇𝑋 satisfies the conditions mentioned in Definition 1.3 and is
indeed a proper probability measure. First, by definition 𝑋 is a measurable map 𝑋 : Ω → R;
hence, 𝑋−1(R) = Ω =⇒ 𝜇𝑋 (R) = P(Ω) = 1. Similarly, 𝑋−1(∅) = ∅ =⇒ 𝜇𝑋 (∅) = P(∅) = 0.
To show that 𝜇𝑋 satisfies 𝜎-additivity, consider a sequence {

𝐵 𝑗
}
𝑗∈N+ of pairwise disjoint

Borel sets in B(R); since the pre-image of 𝑋 is stable under intersections and unions,

𝑖 ≠ 𝑗 =⇒ 𝑋−1(𝐵𝑖) ∩ 𝑋−1(𝐵 𝑗) = 𝑋−1(𝐵𝑖 ∩ 𝐵 𝑗) = 𝑋−1(∅) = ∅ (1.5)

Thus, {
𝑋−1(𝐵 𝑗)

}
𝑗∈N+ ∈ F is a sequence of pairwise disjoint measurable sets. Finally,

𝜇𝑋
©­«

∞⋃
𝑗=1

𝐵 𝑗
ª®¬ = P

©­«𝑋−1 ©­«
∞⋃
𝑗=1

𝐵 𝑗
ª®¬ª®¬ = P

©­«
∞⋃
𝑗=1

𝑋−1 (
𝐵 𝑗

)ª®¬ =
∞∑︁
𝑗=1
P

(
𝑋−1(𝐵 𝑗)

)
=

∞∑︁
𝑗=1

𝜇𝑋 (𝐵 𝑗) (1.6)

so that 𝜇𝑋 satisfies 𝜎-additivity and defines a proper probability measure. □

An essential notion is that of a random variable’s characteristic function (CF), defined
as the Fourier transform (FT) of the distribution measure induced by the RV. The CF of a
random variable fully characterises its distribution, and many probabilistic properties of
RVs are strictly related to the analytical properties of their CFs.
Definition 1.6. The characteristic function Φ𝑋 : R→ C of the R-valued RV 𝑋 is defined as

Φ𝑋 (𝑧) = E [exp(𝑖𝑧𝑋)] =
∫
R
𝑒𝑖𝑧𝑥 𝑑𝜇𝑋 (𝑥) (1.7)

for all 𝑧 ∈ R.
The 𝑛-th moment of a RV 𝑋 is defined as 𝑚𝑛 B E[𝑋𝑛]. Similarly, the 𝑛-th centered

moment 𝜇𝑛 is defined as the 𝑛-th moment of (𝑋 − E[𝑋])𝑛.

𝜇𝑛 B E[(𝑋 − E[𝑋])𝑛] (1.8)

A RV does not necessarily admit (finite) moments of all orders; for instance, it is well-known
that the Student’s t-distribution with 𝑛 degrees of freedom has moments up to the 𝑛-th
order. The moments of a RV are connected to the derivatives of its CF when evaluated at
𝑧 = 0. In particular, the moments of 𝑋 can be obtained through Φ𝑋 as follows:

𝑚𝑛 B E[𝑋𝑛] = 𝑖−𝑛
𝜕𝑛

𝜕𝑧𝑛
Φ𝑋 (𝑧)

����
𝑧 =0

(1.9)

It should be noted that a RV 𝑋 admits finite moments of all orders if and only if the map
𝑧 → Φ𝑋 (𝑧) belongs to the class of twice differentiable continuous functions 𝐶2.

Just as the value of an asset at a given point in time 𝑡 ≥ 0 is represented by a RV, the
dynamics of such value are proxied by a stochastic process — that is, a collection {𝑋𝑡}𝑡≥0 of

9
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random variables indexed by time 𝑡. Most importantly, a stochastic process may be seen
as a function 𝑋 : [0, 𝑇] × Ω → R of both time 𝑡 ∈ [0, 𝑇] and the randomness 𝜔 ∈ Ω. Such
observation prompts the need to define measures on function spaces. A trivial choice for
a real-valued stochastic process would be the set of all maps 𝑓 : [0, 𝑇] → R; such space,
however, happens to be “too large”. For instance, stochastic processes with continuous
paths can be seen as RVs defined on the space of continuous functions, 𝐶( [0, 𝑇] × R). A
well-known (Gaussian) measure on 𝐶( [0, 𝑇] ×R) is given by theWiener measure, describing
the Wiener process explored in the next section. As the title of this thesis suggests, however,
discontinuous paths will characterise most of the processes discussed.
Definition 1.7. A function 𝑓 : [0, 𝑇] → R is said to be càdlàg (“continue à droite, limite à
gauche”) if it is right-continuous with left limits. For each 𝑡 ∈ [0, 𝑇] the limits

𝑓𝑡− B lim
𝑠 ↑ 𝑡

𝑓𝑠 𝑓𝑡+ B lim
𝑠 ↓ 𝑡

𝑓𝑠 (1.10)

exist and 𝑓𝑡 = 𝑓𝑡+

Clearly, all continuous functions are càdlàg, but the latter are also allowed to exhibit
discontinuities. If 𝑡 is a point of discontinuity for a càdlàg function 𝑓 , Δ 𝑓 (𝑡) B 𝑓 (𝑡) − 𝑓 (𝑡−)
will denote the jump of 𝑓 at time 𝑡. It can be shown that any càdlàg function is characterised
by a finite number of jumps larger than 𝜀 for all 𝜀 ∈ R+ and (possibly) a countably infinite
amount of “small” jumps (Fristedt and Gray, 1997).

One final remark shall be made on the choice of the càdlàg class as opposed to càglàd
(“continue à gauche, limite à droite”) functions, where 𝑓 (𝑡) = 𝑓 (𝑡−). In a time dimension,
left stands for “before” and right for “after”; hence, if the price process were left-continuous,
an investor could foresee the value at 𝑡 by simply approaching time 𝑡 along the process path.
As jumps should not be predictable events, the class of càdlàg functions is appropriate.

One can imagine that, as time goes on and 𝑡 increases, more and more information
is revealed to the investor — that is, values proxied by random variables at time 𝑡 may
become deterministic at 𝜏 > 𝑡 if the information revealed in 𝜏 allows to do so. Such notion
is modelled through collections of 𝜎-algebras indexed by time, known as filtrations.
Definition 1.8. Let Ω be a non-empty set. Let 𝑇 be a fixed positive number, and assume that
for each 𝑡 ∈ [0, 𝑇] there exists a 𝜎-algebra F𝑡. Assume that if 𝑠 < 𝑡, then every set in F (𝑠) is
also found in F𝑡 — that is, 𝑠 < 𝑡 =⇒ F (𝑠) ⊆ F𝑡. Then, for 𝑡 ∈ [0, 𝑇], we call the collection
{F𝑡}𝑡∈[0, 𝑇 ] of non-decreasing 𝜎-algebras a filtration.

A probability space (Ω,F, P) equipped with a filtration is called a filtered probability
space. Once the information revealed over time is described by a filtration F𝑡, one can
distinguish between known quantities given F𝑡 from those still random. A random variable

10
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is said to be F𝑡-measurable if its value will be revealed at time 𝑡. A stochastic process whose
realisation at time 𝑡 is resolved by F𝑡 is said to be nonanticipating.
Definition 1.9. A stochastic process {𝑋𝑡}𝑡∈[0, 𝑇 ] is said to be nonanticipating (or adapted)
with respect to the filtration {𝐹𝑡}𝑡∈[0, 𝑇 ] if the RV 𝑋𝑡 is F𝑡-measurable ∀𝑡 ∈ [0, 𝑇].

Consider now a probability space (Ω,F, P) equipped with a filtration {F𝑡}𝑡∈[0, 𝑇 ] .
Definition 1.10. A càdlàg process {𝑋𝑡}𝑡∈[0, 𝑇 ] is said to be a martingale if

1. The process {𝑋𝑡}𝑡∈[0, 𝑇 ] is F𝑡-adapted

2. The expectation E[|𝑋𝑡 |] is finite for all 𝑡 ∈ [0, 𝑇]

3. For all 𝑠 < 𝑡, E[𝑋𝑡 | F𝑠] = 𝑋𝑠

Definition 1.10 makes sense only with respect to a filtration and once the probability
measure P has been specified. When more than one mapping F → [0, 1] is considered,
the term P-martingale clarifies the measure under which the process is a martingale.

1.2 | Brownian Motion
Brownian motion (BM) is named after the Scottish botanist Robert Brown, who observed the
jittery behaviour of minute pollen particles suspended in water. Thereafter, the well-known
stochastic process has played a crucial role in financial engineering since its introduction in
Bachelier’s doctoral thesis.∗ Preceding the work of Einstein (1905) on the movement of a
particle suspended in a liquid, Bachelier believed that stock returns should be independent
and normally distributed. Following this intuition, he tried to model the price of an asset
traded at the Paris Bourse by relying on a Brownian motion.

Around thirty years later, Kolmogorov (1931) referred to the construction of BM in
Bachelier (1900). In the same paper, Kolmogorov proved that continuous Markov processes,
also known as diffusions, are entirely determined by a parameter accounting for the drift
and another for the diffusive part (i.e., the size of the random shock). A few decades later,
the multiplicative version of Bachelier’s BM would have laid the foundations for the famous
model by Black and Scholes (1973) and Merton (1973).

A Brownian motion may be considered the continuous counterpart of a random walk.
The purpose of this section is to explore such a proposition, which is just another way of
phrasing Donsker’s invariance principle (Donsker, 1951). Such a principle is nothing but a
functional extension of the well-known Central Limit Theorem, reported below.
∗It is worth mentioning that another appearance of Brownian motion can be traced back to the work on time
series conducted in 1880 by Thiele of Copenhagen.
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Theorem 1.1. Let {𝑋𝑖}𝑛𝑖=1 be a sequence of independent and identically distributed RVs with
E[𝑋𝑖] = 𝜇 and V[𝑋𝑖] = 𝜎2 < ∞. Let 𝑋𝑛 denote the sample average of the sequence — that is,
𝑋𝑛 = 𝑛−1

∑𝑛
𝑖=1 𝑋𝑖. Then,

√
𝑛(𝑋𝑛 − 𝜇) 𝑑−→ 𝑁 (0, 𝜎2) as 𝑛 approaches infinity.

Consider now a sequence of i.i.d. random variables {𝑋𝑖}𝑖∈N+ such that each realisation
of each RV is equally likely to be either 1 or −1. Letting 𝑆𝑛 define the sum of the first 𝑛 RVs,
one has derived a random walk. The probabilistic properties of such a discrete process can
be easily derived by noting that each RV is normally distributed with zero mean and unit
variance — that is, E[𝑋𝑖] = 0.5(−1 + 1) = 0 and V[𝑋𝑖] = E[𝑋2

𝑖 ] − E[𝑋𝑖]2 = 1.
If the domain of the random walk is restricted to the time interval [0, 𝑇], one may

wonder about the value of 𝑆 at a point in time 𝑡 once an infinite number of steps is allowed
between 0 and 𝑇. Clearly, some rescaling is needed: if all steps had unit length, the random
walk would soon diverge to infinity. Hence, let us partition the interval [0, 𝑇] into 𝑛 equally
spaced sub-intervals of length Δ (so that Δ𝑛 = 𝑇) and define:

𝑈𝑘 𝑇𝑛
=

√︂
𝑇

𝑛
𝑆𝑘 =

√︂
𝑇

𝑛

𝑘∑︁
𝑖=1

𝑋𝑖 (1.11)

The (discrete) process defined by (1.11) is called a rescaled random walk. To reach a
continuous framework, one needs to increase the number of steps 𝑛 while adjusting 𝑘 so
that 𝑘Δ (i.e., the length of the interval over which 𝑆𝑘 is defined) does not move excessively.
Since the set R of real numbers is uncountable, for all 𝑡 ∈ [0, 𝑇], there exists 𝑘 ∈ R such
that 𝑘Δ ≤ 𝑡 < (𝑘 + 1)Δ. As a result, if the number of steps 𝑛 in the interval [0, 𝑇] increases,
then 𝑘 must also increase to counterbalance the decreasing Δ.

So far the analysis took place in a discrete framework with finitely many points
𝑘 = 1, . . . , 𝑛, whereas Brownian motion “lives” in a continuous time space. Hence, one may
define 𝑈𝑛

𝑡 as a linear interpolation between 𝑈𝑘 𝑇𝑛 and 𝑈(𝑘+1) 𝑇𝑛 :

𝑈𝑛
𝑡 B 𝑈𝑘 𝑇𝑛

+
(
𝑡 − 𝑘

𝑇

𝑛

) (
𝑈(𝑘+1) 𝑇𝑛 − 𝑈𝑘 𝑇𝑛

)
= 𝑈𝑘Δ + (𝑡 − 𝑘Δ) (

𝑈(𝑘+1)Δ − 𝑈𝑘Δ
) (1.12)

As the number of steps 𝑛 approaches ∞ the distance between 𝑘Δ and (𝑘 + 1)Δ becomes
infinitesimal and 𝑘Δ goes arbitrarily close to 𝑡, a fact denoted as 𝑘Δ ≈ 𝑡. By Theorem 1.1,

1
𝑘

∑𝑘
𝑖=1 𝑋𝑘 − 0
1/√𝐾

=
1√
𝑘

𝑘∑︁
𝑖=1

𝑋𝑘
𝑑−→ N(0, 1) =⇒ 𝑈𝑛

𝑡 ≈
√︂
𝑇𝑘

𝑛

1√
𝑘
𝑆𝑘 ≈

√
𝑡
1√
𝑘
𝑆𝑘

𝑑−→ N(0, 𝑡) (1.13)

Thus, as 𝑛 → ∞, 𝑈𝑁
𝑡 is confined within a region described by the distribution N(0, 𝑡).

One may also wonder how the difference 𝑈𝑛
𝑡 − 𝑈𝑛

𝑠 behaves as 𝑛 → ∞ for some 𝑡 > 𝑠. To
this end, let us choose 𝑘, 𝑙 ∈ R such that 𝑘Δ ≤ 𝑡 < (𝑘 + 1)Δ and 𝑙Δ ≤ 𝑠 < (𝑙 + 1)Δ. As in the
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previous analysis, 𝑘Δ ≈ 𝑡 and 𝑙Δ ≈ 𝑠. Hence,

𝑈𝑡 − 𝑈𝑠 ≈ 𝑈𝑘 𝑇𝑛
− 𝑈𝑙 𝑇𝑛 =

√︂
𝑇

𝑛

𝑘∑︁
𝑖=𝑙+1

𝑋𝑖 (1.14)

Since all the 𝑋𝑖s are independent and identically distributed, one may shift the index of the
summation backwards so that it starts at 𝑖 = 1. In order to do so, it is sufficient to notice
that between (𝑙 + 1) and 𝑘 there are exactly (𝑘 − 𝑙) RVs 𝑋𝑖. As a result, by Theorem 1.1

𝑈𝑁
𝑡 − 𝑈𝑁

𝑠 ≈
√︂
𝑇 (𝑘 − 𝑙)

𝑁

1√︁
(𝑘 − 𝑙)

𝑘−𝑙∑︁
𝑖=1

𝑋𝑖 ≈
√
𝑡 − 𝑠

1√
𝑘 − 𝑙

𝑘−𝑙∑︁
𝑖=1

𝑋𝑖︸          ︷︷          ︸
𝑑−→N(0,1)

𝑑−→ N(0, 𝑡 − 𝑠) (1.15)

Therefore, the increments considered behave like a Normal distribution with zero mean
and variance 𝑡 − 𝑠 (i.e., the time interval over which such increments are measured).
Furthermore, increments of a rescaled random walk are said to be stationary since their
distributional properties hold irrespectively of the time interval chosen.

Finally, one may ask what is the relationship between the increments 𝑈𝑛
𝑡2 − 𝑈𝑛

𝑡1 and
𝑈𝑛
𝑡4 − 𝑈𝑛

𝑡3 for 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4. By choosing some value 𝑙𝑖 such that for 𝑛 → ∞ one has
𝑙𝑖Δ ≈ 𝑡𝑖, for 𝑛 large enough it holds that 𝑋𝑖 for 𝑖 = 𝑙1 + 1, . . . , 𝑙2 and 𝑋 𝑗 for 𝑗 = 𝑙3 + 1, . . . , 𝑙4
are independent. As a result, the increments considered are distributed as

𝑈𝑛
𝑡2 − 𝑈𝑛

𝑡1 ≈ 𝑈𝑙2 𝑇𝑛
− 𝑈𝑙1 𝑇𝑛 =

√︂
𝑇

𝑛

𝑙2∑︁
𝑖=𝑙1+1

𝑋𝑖
𝑑−→ N(0, 𝑡2 − 𝑡1)

𝑈𝑛
𝑡4 − 𝑈𝑛

𝑡3 ≈ 𝑈𝑙4 𝑇𝑛
− 𝑈𝑙3 𝑇𝑛 =

√︂
𝑇

𝑛

𝑙4∑︁
𝑖=𝑙3+1

𝑋𝑖
𝑑−→ N(0, 𝑡4 − 𝑡3)

Furthermore, these increments are independent since C[𝑈𝑁
𝑡2 − 𝑈𝑁

𝑡1 , 𝑈
𝑁
𝑡4 − 𝑈𝑁

𝑡3] = 0. Hence, a
rescaled random walk 𝑈𝑛

𝑡 defined on the interval [0, 𝑇] exhibits the following properties:
1. It is continuous.

2. It starts, without loss of generality, at zero.

3. It has independent and stationary increments.

4. At time 𝑡 it behaves as a Normal distribution N(0, 𝑡).
The limit process arising as 𝑛 → ∞ and satisfying all these properties is known as Brownian
motion, or Wiener process in honour of Wiener (1923). A limit process of a rescaled
random walk satisfying only the second and third conditions belongs to the class of Lévy
processes, allowed to exhibit jumps, as discussed in the next chapter.
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The appropriateness of choosing Brownian motion as the data generating process is
best explained by Figure 1.4, containing the (log-)price of the ACB stock over the last
five years and five independent Brownian motion paths with the same drift and diffusive
components. If the actual path had not been highlighted in blue, it would have been
difficult to distinguish the actual stock price dynamics from the simulations.

Arithmetic Brownian motion, however, comes with several pitfalls that do not allow it to
be used as a realistic model of stock prices. Suppose for the moment that the infinitesimal
increment of the price of stock 𝑆, over an infinitesimal time interval denoted 𝑑𝑡, is governed
by the stochastic differential equation (SDE) below

𝑑𝑆𝑡 = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 (1.16)
where 𝜇 and 𝜎 are the expected drift and volatility of the process, respectively, and 𝑑𝑊𝑡

stands for the infinitesimal increment of a (standard) Brownian motion.
Clearly, (1.16) does not represent a sensible assumption for the price process. Indeed,

integrating both sides on the interval [0, 𝑇] one finds that:∫ 𝑇

0
𝑑𝑆𝑘 =

∫ 𝑇

0
𝜇 𝑑𝑘 +

∫ 𝑇

0
𝜎 𝑑𝑊𝑘 =⇒ 𝑆𝑇 = 𝑆0 + 𝜇𝑇 + 𝜎𝑊𝑇 =⇒ 𝑆𝑇 ∼ N(𝑆0 + 𝜇𝑇, 𝜎𝑇) (1.17)

Such configuration allows the stock price to become negative (the Normal distribution
has support R). Moreover, if 𝑆 follows an arithmetic Brownian motion (ABM) volatility is
constant regardless of the current stock price. None of these assumptions make particular
sense, as the shareholders’ personal belongings are shielded by limited liability and constant
volatility would imply larger price movements as the latter decreases. A sensible alternative

2018 2019 2020 20212017

log(𝑆𝑡)

Figure 1.4 Evolution of the log-price of the ACB stock in the 2017-2021 period, compared with
five independent Brownian motion paths rescaled to have the same annualised mean and volatility.
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Chapter 1. Risk-Neutral Valuation 1.2. Brownian Motion

is to predict that the instantaneous rate of return follows an arithmetic Brownian motion:
𝑑𝑆𝑡
𝑆𝑡

= 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 ⇐⇒ 𝑑𝑆𝑡 = 𝜇𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊𝑡 (1.18)

The solution to (1.18) is known as geometric Brownian motion (GBM). To solve such SDE,
however, one must rely on the analogous of the chain rule for stochastic calculus: the
Itô-Doeblin formula. Such a need comes from the observation that Brownian motion paths
are nowhere differentiable almost surely, violating the conditions for the existence of a
“standard” Riemann-Stieltjes integral and thus requiring a theory of stochastic integration.

First, notice that the discretised version of (1.16) with 𝑆𝑡 = 𝑋𝑡 can be expressed as

𝑋𝑡+Δ − 𝑋𝑡 = 𝜇𝑡Δ + 𝜎𝑡 (𝑊𝑡+Δ −𝑊𝑡) (1.19)

To assess the dynamics of some smooth function 𝑓 (𝑋𝑡, 𝑡) of class 𝐶∞(R), one should compute
𝑓 (𝑋𝑡+Δ, 𝑡 + Δ) by relying on a second-order Taylor expansion around (𝑥0, 𝑦0) = (𝑋𝑡, 𝑡):

𝑓 (𝑋𝑡+Δ, 𝑡 + Δ) ≈ 𝑓 (𝑋𝑡, 𝑡) + 𝜕 𝑓

𝜕𝑋

𝐴︷       ︸︸       ︷
(𝑋𝑡+Δ − 𝑋𝑡) +𝜕 𝑓

𝜕𝑡
Δ

+ 1
2

[
𝜕2 𝑓
𝜕𝑋2 (𝑋𝑡+Δ − 𝑋𝑡)2︸         ︷︷         ︸

𝐵

+2 𝜕2 𝑓
𝜕𝑋𝜕𝑡

(𝑋𝑡+Δ − 𝑋𝑡)Δ︸         ︷︷         ︸
𝐶

+𝜕
2 𝑓
𝜕𝑡2

Δ2
] (1.20)

Let us now evaluate the terms highlighted by keeping those that are of the same order of
magnitude of Δ or (𝑊𝑡+Δ −𝑊𝑡), while neglecting all the others:

𝐴 : 𝑋𝑡+Δ − 𝑋𝑡 = 𝜇𝑡Δ + 𝜎𝑡 (𝑊𝑡+Δ −𝑊𝑡)
𝐵 : (𝑋𝑡+Δ − 𝑋𝑡)2 = 𝜇2𝑡 Δ

2 + 𝜎2𝑡 (𝑊𝑡+Δ −𝑊𝑡)2 + 2𝜇𝑡𝜎𝑡 (𝑊𝑡+Δ −𝑊𝑡)Δ ≈ 𝜎2𝑡 Δ

𝐶 : (𝑋𝑡+Δ − 𝑋𝑡) Δ = 𝜇𝑡Δ
2 + 𝜎𝑡 (𝑊𝑡+Δ −𝑊𝑡)Δ ≈ 0

Substituting 𝐴 and 𝐵 back into (1.20), one has

𝑓 (𝑋𝑡+Δ, 𝑡 + Δ) − 𝑓 (𝑋𝑡, 𝑡) ≈ 𝜕 𝑓

𝜕𝑋
[𝜇𝑡Δ + 𝜎𝑡 (𝑊𝑡+Δ −𝑊𝑡)] + 𝜕 𝑓

𝜕𝑡
Δ + 1

2
𝜕2 𝑓
𝜕𝑋2𝜎

2
𝑡 Δ (1.21)

Finally, the Itô-Doeblin formula arises as the limit of (1.21) for Δ approaching zero:

𝑑 𝑓𝑡 =

[
𝜕 𝑓

𝜕𝑡
+ 𝜕 𝑓

𝜕𝑋
𝜇𝑡 + 1

2
𝜕2 𝑓
𝜕𝑋

𝜎2𝑡

]
𝑑𝑡 + 𝜕 𝑓

𝜕𝑋
𝜎𝑡 𝑑𝑊𝑡 (1.22)

An alternative formulation, equivalent to (1.22), is as follows

𝑑 𝑓𝑡 =
𝜕 𝑓

𝜕𝑡
𝑑𝑡 + 𝜕 𝑓

𝜕𝑋
𝑑𝑋𝑡 + 1

2
𝜕2 𝑓
𝜕𝑋2 (𝑑𝑋𝑡)

2 (1.23)
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One can now rely on the Itô-Doeblin formula to solve (1.18). In particular, a clever choice of
𝑓 (𝑆𝑡, 𝑡) would be a function whose derivatives allow to cancel the 𝑆𝑡 terms on the right-hand
side. Hence, a natural choice would be the natural logarithm of 𝑆𝑡:

𝑑 log(𝑆𝑡) = 𝜕 log(𝑆𝑡)
𝜕𝑡

𝑑𝑡 + 𝜕 log(𝑆𝑡)
𝜕𝑆𝑡

𝑑𝑆𝑡 + 1
2
𝜕2 log(𝑆𝑡)

𝜕𝑆2𝑡
(𝑑𝑆𝑡)2

= 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 − 1
2𝑆2𝑡

(𝜇2𝑆2𝑡 𝑑𝑡2 + 𝜎2𝑆2𝑡 𝑑𝑊2
𝑡 + 2𝜇𝜎𝑆2𝑡 𝑑𝑡 𝑑𝑊𝑡)

= 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 − 1
2𝜇

2 𝑑𝑡2 − 1
2𝜎

2 𝑑𝑊2
𝑡 − 𝜇𝜎 𝑑𝑡 𝑑𝑊𝑡

Intuitively, since 𝑑𝑡 is an infinitesimal quantity, one can approximate 𝑑𝑡2 with 0. Similarly,
since the Brownian increment is normally distributed with zero mean and variance 𝑑𝑡, the
term 𝑑𝑡 𝑑𝑊𝑡 can be neglected as well. Finally, the Brownian Motion’s increment squared is
equal to 𝑑𝑡 by Itô isometry (see Appendix A). The resulting stochastic differential is:

𝑑 log(𝑆𝑡) = 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 − 1
2𝜎

2 𝑑𝑡 =
(
𝜇 − 1

2𝜎
2
)
𝑑𝑡 + 𝜎 𝑑𝑊𝑡 (1.24)

Integrating both sides of the SDE above, one obtains∫ 𝑡

0
log(𝑆𝑡) =

(
𝜇 − 1

2𝜎
2
) ∫ 𝑡

0
𝑑𝑡 + 𝜎

∫ 𝑡

0
𝑑𝑊𝑡 =⇒ log(𝑆𝑡) = log(𝑆0) +

(
𝜇 − 1

2𝜎
2
)
𝑡 + 𝜎𝑊𝑡

=⇒ 𝑆𝑡 = 𝑆0 exp
[(
𝜇 − 1

2𝜎
2
)
𝑡 + 𝜎𝑊𝑡

]
(1.25)

Geometric Brownian motion represents a superior choice for the price process of the
underlying as, at each point in time 𝑡 > 0, the latter is lognormally distributed, ruling out
negative prices. As a result, if the underlying follows a Geometric Brownian motion, then
(log-)returns, rather than prices, are normally distributed with constant volatility.

1.3 | Martingale Pricing
Years before the appearance of the famous Black-Scholes-Merton (BSM) formula, several
authors had assumed the price of the underlying asset moved like a geometric Brown-
ian motion and derived valuation formulas very similar to that of BSM (Boness, 1964;
Samuelson, 1965; Sprenkle, 1961; Thorp, 1969). For example, Boness (1964) derived the
following equation for the price of a European call option:

𝑐𝑡 = 𝑆𝑡Φ

[
ln (𝑆𝑡/𝐾) +

(
𝜇 + 𝜎2/2) (𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

]
− 𝐾𝑒−𝜇 (𝑇−𝑡)Φ

[
ln (𝑆𝑡/𝐾) +

(
𝜇 − 𝜎2/2) (𝑇 − 𝑡)

𝜎
√
𝑇 − 𝑡

]
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Chapter 1. Risk-Neutral Valuation 1.3. Martingale Pricing

It is then clear that the breakthrough introduced by Black and Scholes (1973) and Merton
(1973) was not the pricing formula itself but rather its derivation. As discussed below,
the extension of Δ hedging from a discrete to a continuous framework, coupled with the
no-arbitrage principle, allowed Black and Scholes (1973) and Merton (1973) to exclude
the underlying’s drift from the formula and thus apply risk-neutral valuation.

Having specified a stochastic process for the evolution of the underlying asset’s price, the
Δ-hedging argument in Black and Scholes (1973) is based on the following assumptions:

■ The market is frictionless — that is, no transaction costs are involved

■ It is possible to short sell fractional amounts of the underlying stock

■ Fractional amounts can be lent and borrowed at the risk-free rate

■ The underlying stock does not pay dividends

Let us now denote by 𝑓 (𝑆𝑡, 𝑡) the price of a derivative whose payoff depends on the price
of the underlying 𝑆𝑡 and time 𝑡. The dynamics of 𝑓 can be found by means of (1.22):

𝑑 𝑓 (𝑆𝑡, 𝑡) =
[
𝜕 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑡
+ 𝜕 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆𝑡
𝜇𝑆𝑡 + 1

2
𝜕2 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆2𝑡
𝜎2𝑆2𝑡

]
𝑑𝑡 + 𝜕 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆𝑡
𝜎𝑆𝑡 𝑑𝑊𝑡 (1.26)

Consider a portfolio long one unit of the derivative and short Δ units of the underlying:

𝑉𝑡 = 𝑓𝑡 (𝑆𝑡, 𝑡) − Δ𝑆𝑡 =⇒ 𝑑𝑉𝑡 = 𝑑 𝑓𝑡 (𝑆𝑡, 𝑡) − Δ 𝑑𝑆𝑡 (1.27)

1.00 2.00 3.00 4.00
0.00

0.20

0.40
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0.80

1.00

�1.50 �1.00 �0.50 0.00 0.50 1.00 1.50
0.00
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0.60

0.80
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Figure 1.5 Estimated probability density of terminal stock prices with 𝑆0 = 1 (left) and log-returns
(right) through an histogram of 10 000 independent realisations of a geometric Brownian motion.
The theoretical densities are superimposed on the respective histograms.
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Substituting (1.18) and (1.26) into (1.27), one has

𝑑𝑉𝑡 =

[
𝜕 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑡
+ 𝜕 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆𝑡
𝜇𝑆𝑡 + 1

2
𝜕2 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆2𝑡
𝜎2𝑆2𝑡

]
𝑑𝑡 + 𝜕 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆𝑡
𝜎𝑆𝑡 𝑑𝑊𝑡 − Δ (𝜇𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊𝑡)

=

[
𝜕 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑡
+ 𝜕 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆𝑡
𝜇𝑆𝑡 + 1

2
𝜕2 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆2𝑡
𝜎2𝑆2𝑡 − Δ𝜇𝑆𝑡

]
𝑑𝑡 +

(
𝜕 𝑓 (𝑆𝑡, 𝑡)
𝜕𝑆𝑡

𝜎𝑆𝑡 − Δ𝜎𝑆𝑡

)
𝑑𝑊𝑡

At this point, setting Δ equal to the first derivative of the option’s value with respect to the
underlying makes the diffusive component disappear. In particular, substituting such Δ

and making the appropriate simplifications, the dynamics of the portfolio become:

𝑑𝑉𝑡 =

[
𝜕 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑡
+ 1
2
𝜕2 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆2𝑡
𝜎2𝑆2𝑡

]
𝑑𝑡 (1.28)

Since the portfolio just constructed does not bear any risk, to avoid arbitrage its instanta-
neous rate of return must coincide with the risk-free rate 𝑟. In particular,

𝑑𝑉𝑡 = 𝑟𝑉𝑡 𝑑𝑡 = 𝑟

(
𝑓𝑡 (𝑆𝑡, 𝑡) − 𝜕 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆𝑡
𝑆𝑡

)
𝑑𝑡 (1.29)

Equating (1.28) and (1.29), one reaches the BSM fundamental partial differential equation:

𝜕 𝑓 (𝑆𝑡, 𝑡)
𝜕𝑡

+ 𝜕 𝑓 (𝑆𝑡, 𝑡)
𝜕𝑆𝑡

𝑟𝑆𝑡 + 1
2
𝜕2 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆2𝑡
𝜎2𝑆2𝑡 = 𝑟 𝑓 (𝑆𝑡, 𝑡) (1.30)

The explicit solution of this partial differential equation (PDE) depends on the boundary
conditions related to the terms of the derivative contract. In particular, the terminal payoff
defines the boundary conditions needed to solve the FPDE.

The absence of arbitrage opportunities is closely linked to the existence of a probability
measureQ, equivalent to P, under which the process followed by the discounted underlying’s
price defines a martingale. Two probability measures P and Q are said equivalent (denoted
P ∼ Q) if they share the same impossible events, that is:

P ∼ Q ⇐⇒ [P(𝐴) = 0 ⇐⇒ Q(𝐴) = 0] ∀𝐴 ∈ F (1.31)

Consider a measurable space (Ω,F) of scenarios referring to the prices of 𝑑 + 1 assets in
the time interval [0, 𝑇]. Suppose the dynamics of the assets are given by

𝑆 : [0, 𝑇] × Ω → R𝑑+1

: (𝑡, 𝜔) ↦→ (
𝑆0𝑡 (𝜔), 𝑆1𝑡 (𝜔), . . . , 𝑆𝑑𝑡 (𝜔)

)
where 𝑆0𝑡 = 𝑒𝑟𝑡 represents the value at time 𝑡 of one monetary unit invested in the money
market account. The latter is used for discounting purposes: for any claim whose value is
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𝑉𝑡, the discounted value will be denoted by 𝑉𝑡 B 𝑉𝑡/𝑆0𝑡 . The discount factor 𝐵(𝑡, 𝑇) B 𝑆0𝑇/𝑆0𝑡
reduces to 𝐵(𝑡, 𝑇) = 𝑒−𝑟 (𝑇−𝑡) if the numéraire 𝑆0 corresponds to the money market account.

One possible way to represent a contingent claimmaturing at time 𝑇 would be to specify
its payoff at maturity 𝐻 (𝜔) for each realisation 𝜔 ∈ Ω. Note that, since by definition 𝐻 is
known at maturity, the terminal payoff is a F𝑡-measurable map 𝐻 : Ω → R. With the notion
of pricing rule, one refers to a procedure which assigns to a contingent claim 𝐻 a value
𝑉𝑡 (𝐻) at each point in time 𝑡 ∈ [0, 𝑇]. A proper valuation rule should satisfy the following:

■ A rule must be adapted — that is, 𝑉𝑡 (𝐻) must be F𝑡-measurable ∀𝑡 ∈ [0, 𝑇]

■ Because of the contingent nature of the claim to be priced, a rule must be nonnegative

𝐻 (𝜔) ≥ 0 ∀𝜔 ∈ Ω =⇒ 𝑉𝑡 (𝐻) ≥ 0 ∀𝑡 ∈ [0, 𝑇] (1.32)

■ The rule should be linear — that is, for a portfolio of 𝑁 contingent claims

𝑉𝑡

(
𝑁∑︁
𝑛=1

𝐻𝑛

)
=

𝑁∑︁
𝑛=1

𝑉𝑡 (𝐻𝑛) (1.33)

For any measurable event 𝐴 ∈ F, let us denote by the RV 𝟙𝐴 the payoff at 𝑇 of a claim
which pays one if 𝐴 occurs and zero otherwise. For instance, 𝟙Ω represents a ZCB paying
one monetary unit at time 𝑇. Hence, its value is given by 𝑉𝑡 (𝟙Ω) = 𝑒−𝑟 (𝑇−𝑡) .

Consider the following map Q : F → R

Q B
𝑉0(𝟙𝐴)
𝑉0(𝟙Ω) = 𝑒𝑟𝑇𝑉0(𝟙Ω) (1.34)

Then, by (1.32) and (1.33) one has that:

■ Since 0 ≤ 𝟙𝐴 ≤ 1, 0 ≤ Q ≤ 1

■ If 𝐴 and 𝐵 are two disjoint measurable events in F, 𝟙𝐴+𝐵 = 𝟙𝐴+𝟙𝐵 and by the linearity
of the pricing rule Q(𝐴 ∪ 𝐵) = Q(𝐴) + Q(𝐵)

Allowing for infinite sums in (1.33), one concludes that 𝜎-additivity is satisfied and thus
Q defines a probability measure on the measurable space (Ω,F). There exists a strict
correspondence between the valuation rule 𝑉 and the probability measure Q:

𝑉𝑡 (𝐻) = 𝑒−𝑟 (𝑇−𝑡)EQ [𝐻 | F𝑡] and Q(𝐴) = 𝑒−𝑟 (𝑇−𝑡)𝑉𝑡 (𝟙𝐴) (1.35)

Suppose now a measurable event 𝐴 ∈ F is such that under the true-world probability P one
has P(𝐴) = 0. Clearly, in this scenario a random payoff 𝟙𝐴 is worth nothing to the investor.
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Under the pricing rule corresponding toQ, however, 𝑉0(𝟙𝐴) = 𝑒−𝑟𝑇EQ [𝟙𝐴] = 𝑒−𝑟𝑇Q(𝐴). Thus,
it must be that Q(𝐴) = 0 in order for measure Q to be consistent with the true-world views
on the scenarios contained in Ω. Suppose this is not the case: if Q(𝐴) = 0 while P(𝐴) ≠ 0,
one has that the claim on 𝐴 bears no premium but a positive probability of yielding a
nonnegative payoff — that is, a bet on 𝐴 would represent an arbitrage. Therefore, to
exclude the possibility of a “free lunch”, P and Q must be equivalent probability measures.

Consider an asset 𝑆𝑖 currently trading at 𝑆𝑖𝑡. Holding the stock until maturity leads to
a payoff of 𝑆𝑖𝑇 , whereas selling the stock now to invest the proceeds at the risk-free rate
returns an amount 𝑒𝑟 (𝑇−𝑡)𝑆𝑖𝑡 . By the law of one price implied by the no-arbitrage principle,
these two strategies should share the same value at time 𝑡 (under Q); namely:

EQ
[
𝑆𝑖𝑇 | F𝑡

]
= EQ

[
𝑒−𝑟 (𝑇−𝑡)𝑆𝑖𝑡 | F𝑡

]
= 𝑒−𝑟 (𝑇−𝑡)𝑆𝑖𝑡 =⇒ EQ

[
𝑆𝑖𝑇 | F𝑡

]
= 𝑆𝑖𝑡 (1.36)

The absence of arbitrage opportunities and the existence of Q are linked by means of the
first fundamental theorem of asset pricing, due to Harrison and Pliska (1981).
Theorem 1.2. Consider a market model defined on probability space (Ω,F, P) equipped with
a filtration F𝑡. Let

{
𝑆𝑖𝑡

}
𝑡∈[0,𝑇 ] represent the price process followed by asset 𝑆𝑖. Then, the market

does not admit arbitrage opportunities if and only if there exists a probability measure Q ∼ P
such that the discounted price process(es)

{
𝑆𝑖𝑡

}
𝑡∈[0,𝑇 ] define Q-martingales.

Figure 1.6 is included to stress that the martingale properties are satisfied only under
the risk-neutral measure Q, whereas the discounted price process still exhibits a positive
drift under P. In particular, suppose the stock price follows a geometric Brownian motion

𝑑𝑆𝑡 = 𝜇𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊P𝑡

Time

(̃B

Time

(̃B

Figure 1.6 The discounted price process on the left defines a submartingale with respect to its
natural filtration and the real-world probability measure P. The graph on the right shows how the
discounted price process defines a Q-martingale once the change of measure has been applied.
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where 𝑑𝑊P𝑡 denotes the increment of a Brownian motion under the true-world probability
measure P. One can then apply the Itô-Doeblin formula to find the dynamics of {

𝑆𝑡
}
𝑡∈[0,𝑇 ]:

𝑑𝑆𝑡 =
𝜕𝑆

𝜕𝑡
𝑑𝑡 + 𝜕𝑆

𝜕𝑆
𝑑𝑆𝑡 + 1

2
𝜕2𝑆
𝜕𝑆2

(𝑑𝑆𝑡)2

= −𝑟𝑒−𝑟𝑡𝑆𝑡 𝑑𝑡 + 𝑒−𝑟𝑡 (𝜇𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊𝑡)

= 𝑆𝑡 (𝜇 − 𝑟) 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊P𝑡 (1.37)

It is then clear that the dynamics of the discounted price process given by (1.37) do not
define a martingale. In particular, assuming the drift 𝜇 is greater than the risk-free rate 𝑟 it
is easy to see that EP [𝑆𝑡 | F𝑠] > 𝑆𝑠 for 𝑠 < 𝑡: the discounted price process is said to define a
submartingale under P. In light of Theorem 1.2, however, one knows that (1.37) should be
driftless under the risk-neutral measure Q. Then, it must be that

𝑆𝑡 (𝜇 − 𝑟) 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊P𝑡 = 𝜎𝑆𝑡 𝑑𝑊
Q
𝑡 =⇒ 𝑑𝑊Q𝑡 = 𝑑𝑊P𝑡 +

(𝜇 − 𝑟

𝜎

)
𝑑𝑡 B 𝑑𝑊P𝑡 + 𝜉 𝑑𝑡 (1.38)

where 𝑑𝑊Q𝑡 denotes the increment of a (standard) Brownian motion under Q and 𝜉 stands
for the market price of risk, here given by the Sharpe ratio of the underlying. As a result,
the risk-neutral dynamics of the stock price are given by

𝑑𝑆𝑡 = 𝜇𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡
[
𝑑𝑊Q𝑡 −

(𝜇 − 𝑟

𝜎

)
𝑑𝑡

]
= 𝑟𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊Q𝑡 (1.39)

and the discounted price process whose dynamics are described by (1.37), once the change
of measure from P to Q is performed, defines a Q-martingale:

𝑑𝑆𝑡 = 𝑆𝑡 (𝜇 − 𝑟) 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊P𝑡
= 𝑆𝑡 (𝜇 − 𝑟) 𝑑𝑡 + 𝜎𝑆𝑡

[
𝑑𝑊Q𝑡 −

(𝜇 − 𝑟

𝜎

)
𝑑𝑡

]
= 𝜎𝑆𝑡 𝑑𝑊

Q
𝑡 (1.40)

In light of (1.40), the pricing rule Q is also called equivalent martingale measure (EMM).

Another fundamental notion stemming from Black and Scholes (1973) and Merton
(1973) is that of market completeness. The latter amounts to stating that the payoff of
any derivative instrument can be replicated by means of an appropriate trading strategy.
Formally, a market is said complete if for any derivative contract 𝐻 there exists a self-
financing strategy ({

𝜙0
𝑡

}
,
{
𝜙𝑡

})
𝑡∈[0,𝑇 ] such that:

𝐻 = 𝑉0 +
∫ 𝑇

0
𝜙𝑡 𝑑𝑆𝑡 +

∫ 𝑇

0
𝜙0
𝑡 𝑑𝑆

0
𝑡 (1.41)
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almost surely under P and where 𝑉0 represents the initial commitment needed to setup
the replicating portfolio. It is clear that if (1.41) is verified with P equal to one, it must
also hold under an equivalent martingale measure Q ∼ P and one has that:

𝐻̃ = 𝑉0 +
∫ 𝑇

0
𝜙𝑡 𝑑𝑆𝑡 (1.42)

almost surely under Q. Assuming the trading strategy 𝜙𝑡 for the underlying is such that∫ 𝑇

0 𝜙𝑡 𝑑𝑆𝑡 defines a martingale, one concludes that EQ
[
𝐻̃
]
= 𝑉0 — that is, under the pricing

rule Q the value of any contingent claim 𝐻 corresponds to the initial cost of a portfolio
replicating 𝐻. Since every equivalent measure would lead to the same pricing rule, one may
state that market completeness implies the uniqueness of a given equivalent martingale
measure. The opposite is equally true, as shown in Harrison and Pliska (1983).
Theorem 1.3. Consider a market model defined on probability space (Ω,F, P) equipped with
a filtration F𝑡. Let

{
𝑆𝑖𝑡

}
𝑡∈[0,𝑇 ] represent the price process followed by asset 𝑆𝑖. The market is

complete if and only if there exists a unique martingale measure Q equivalent to P.

However, it is well-known that perfect hedges are mostly a theoretical construct; as a
result, a market model which assumes completeness is likely to return biased results. As
discussed in the next chapter, most market models built on Lévy processes do not feature
completeness, thereby providing a more accurate description of reality.

22



C
h
a
p
te

r

2
Lévy Processes

The previous chapter introduced the concept of risk-neutral valuation, wherein the value
of any contingent claim 𝐻𝑇 written on an underlying 𝑆𝑡 in an arbitrage-free market can be
computed as an expectation under the equivalent martingale measure Q:

𝑉𝑡 (𝐻𝑇 ) = 𝑒−𝑟 (𝑇−𝑡)EQ [𝐻𝑇 | F𝑡] (2.1)
Computing such expectation amounts to specifying the risk-neutral dynamics dictating the
underlying’s price movements. As mentioned in the discussion of Risk-Neutral Valuation, if
the log-price 𝑋𝑡 B log(𝑆𝑡) follows an arithmetic Brownian motion:

𝑑𝑋𝑡 =

(
𝑟 − 𝜎2

2

)
𝑑𝑡 + 𝜎 𝑑𝑊Q𝑡 (2.2)

where𝑊Q𝑡 is a standard Brownian motion under the equivalent martingale measure, then
the price 𝑆𝑡 follows a geometric Brownian motion. However, such an assumption comes
with several implications that are hardly met when looking at the common properties
characterising the time series of stock returns. In the BSM framework, the (log-)return on
the underlying at any time 𝑡 ∈ [0, 𝑇] is normally distributed:

𝑋𝑡 ∼ N
(
𝑋0 +

(
𝑟 − 1

2𝜎
2
)
𝑡, 𝜎2𝑡

)
(2.3)

It is well-known that stock returns do not obey a Gaussian probability law, as Mandelbrot
(1963) pointed out. The departure from Gaussianity is already evident on a graphical
level: Figure 2.1 shows the daily (log-)returns on six of the major stock indices globally. It
is clear from a glance that a leptokurtic distribution with negative skewness characterises
the time series under consideration. Alternatively, one could rely on econometric tests
designed to assess the Gaussianity of a given sample. Among these, the technique with the
best statistical power for a given significance level is the one proposed by Shapiro and Wilk
(1965). Based on the 𝑝-values reported in Table 2.1, one concludes that all the indices
considered had returns leading to a non-Gaussian distribution.
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Hang Seng Index 64 (HSI) Deutscher Aktienindex 30 (DAX)

Financial Times Stock Exchange 100 (FTSE) Nihon Keizai Shimbun 225 (N225)

National Stock Exchange of India 50 (NIFTY) Standard and Poor’s 500 (S&P500)

Figure 2.1 Histograms of the daily returns on six of the major stock indices globally. A Normal
density with the same moments as the series considered is superimposed in grey in each plot. The
time series range from 19/09/2007 to 13/04/2022: in such a period, all the empirical distributions
of daily returns are leptokurtic and characterised by a negative asymmetry.



Chapter 2. Lévy Processes

𝜇 𝜎 S K P(𝑊)
HSI -0.053 0.232 -0.323 7.522 0.000
DAX -0.000 0.224 -0.567 7.467 0.000
FTSE -0.057 0.191 -0.628 9.544 0.000
N225 -0.009 0.235 -0.743 6.605 0.000
NIFTY 0.068 0.218 -0.006 14.187 0.000
S&P500 0.046 0.207 -1.159 12.747 0.000

Table 2.1 Results of the Shapiro-Wilk test for normality applied to the six time series of stock
a considered. The mean (𝜇) and standard deviation (𝜎) reported are annualised, contrary to
skewness (S) and kurtosis (K). Finally, the last column shows the 𝑝-value associated with the
Shapiro-Wilk test: a 𝑝-value below 5.00% allows one to reject the null of normality. Hence, all the
empirical distributions are far from following a Gaussian distribution law.

Although deviations from normality were already documented in the 1960s, it is
believed that the framework proposed by Black and Scholes (1973) and Merton (1973)
has been “broken” since the market crash in 1987. Indeed, somewhat ironically, the first
substantial deviation from the BSM model predictions was recorded in the aftermath of
Black Monday 1987. One of the most significant implications of a specification of the
form (2.2) for the process followed by the logarithm of the underlying is that volatility 𝜎
should be constant between different maturities and strike prices. Furthermore, solving
the fundamental PDE (1.30) with the terminal condition 𝑓 (𝑆𝑇 , 𝑇) = [𝑆𝑇 − 𝐾]+, the resulting
price of a European call option maturing in 𝜏 B 𝑇 − 𝑡 is given by:

𝑉𝐵𝑆𝑡 = 𝑆𝑡Φ

[ log(𝑆𝑡/𝐾) + (𝑟 + 𝜎2/2)𝜏
𝜎
√
𝜏

]
− 𝐾𝑒−𝑟𝜏Φ

[ log(𝑆𝑡/𝐾) + (𝑟 − 𝜎2/2)𝜏
𝜎
√
𝜏

]
(2.4)

This equation, caeteris paribus, defines a monotonically increasing function of the underly-
ing’s volatility 𝜎, mapping (0, +∞) into ( [𝑆𝑡 − 𝐾𝑒−𝑟𝜏]+, 𝑆𝑡)∗. Hence, given a market price 𝑉𝑀𝑡
one can invert (2.4) and recover the unique value of Σ𝑡 reconciling the BSM and market
prices through some root-finding algorithm (e.g., Newton-Raphson or Brent). Analytically,

∃! Σ𝑡 (𝐾, 𝑇) > 0 : 𝑉𝐵𝑆𝑡 (𝑆𝑡, 𝐾, 𝜏, 𝑟, Σ𝑡 (𝐾, 𝑇)) = 𝑉𝑀𝑡 (𝐾, 𝑇) (2.5)

The mapping Σ𝑡 : (𝐾, 𝑇) → Σ𝑡 (𝐾, 𝑇) is known as the implied volatility surface at time 𝑡; for
a given maturity 𝑇 and exercise price 𝐾, {Σ𝑡}𝑡≥0 defines a stochastic process. If the market
followed the assumptions set forth by Black and Scholes (1973) and Merton (1973), one
would expect a flat surface across strikes and maturity dates. However, this is not the case
once one looks at the empirically extracted volatility surface. As shown in Figure 2.2, for a
given maturity 𝑇, implied volatility tends to exhibit a skew: out-of-the-money puts (calls)
∗Independently of the model specified for the price process, one can easily derive the last interval by considering
no-arbitrage relationships for the value of a European call.
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Chapter 2. Lévy Processes

are worth more (less) than their BSM counterparts. Moreover, the skew tends to flatten out
as the time to maturity increases. Finally, it should also be noted that the skew is typical
of equity markets, where out-of-the-money put options are used extensively as insurance.
If one looks, for instance, at the volatility implied by options on a given exchange rate,
one sees symmetry that gives rise to a genuine volatility smile.

Given the above premises, it is natural to move on to a generalisation of the BSM
framework. This chapter will focus on including discontinuity points in the process
followed by the underlying. Therefore, it is necessary to abstract from Brownian motion to
progress to the more general class of Lévy processes.
Definition 2.1. Let 𝑋 : [0, 𝑇] × Ω → R be a real-valued (càdlàg) stochastic process defined on
a probability space (Ω,F, P). Then, {𝑋𝑡}𝑡∈[0,𝑇 ] defines a Lévy process if and only if:

1. It starts, without loss of generality, at zero.

2. It has independent and stationary increments.

Independence: ∀(𝑡0 < · · · < 𝑡𝑛), 𝑋𝑡0 ⫫
(
𝑋𝑡1 − 𝑋𝑡1

) ⫫ . . . ⫫ (
𝑋𝑡𝑛 − 𝑋𝑡𝑛−1

)
Stationarity: The probability law followed by 𝑋𝑡+ℎ − 𝑋𝑡 is independent of 𝑡

3. It is stochastically continuous — that is, ∀𝜀 > 0, limℎ→0 P( |𝑋𝑡+ℎ − 𝑋𝑡 | ≥ 𝜀) = 0.

It is at this point essential to stress that the last property in no way implies that the paths
generated by a Lévy process are continuous. The assumption of stochastic continuity is
included to ensure that any jumps and points of discontinuity occur at random times, thus
excluding any “calendar effects” (Cont and Tankov, 2003). While assuming a Lévy process
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Figure 2.2 Implied volatility surface(s) as of 14/04/2022 on call options written on the AAPL
stock and the S&P500 ETF Trust. The maturity of the options considered ranges from a minimum
of fifteen trading days to a maximum of ninety-five trading days. The plots highlight how the
premiums charged exhibit a lower deviation from the BSM predictions as the maturity increases.
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Chapter 2. Lévy Processes

for the (log-)price process provides a sufficient generalisation of the BSM framework, some
constraints exist on the distributional properties of 𝑑𝑋𝑡. In particular, at each time 𝑡, the
distribution of 𝑋𝑡 must belong to the class of infinitely divisible distributions.
Definition 2.2. The distribution measure induced by a random variable 𝑋 is said infinitely
divisible if, for all 𝑛 ∈ N, there exists a collection of i.i.d. RVs 𝑋 (1/𝑛)

1 , . . . , 𝑋 (1/𝑛)
𝑛 such that:

𝑋
𝑑
= 𝑋 (1/𝑛)

1 + · · · + 𝑋 (1/𝑛)
𝑛

where 𝑑
= indicates equality in distribution.

Since the CF of a RV completely characterises its distribution, the distribution measure
of 𝑋 is infinitely divisible if, for all 𝑛 ∈ N, there exists a random variable 𝑋 (1/𝑛) such that:

Φ𝑋 (𝑧) =
(
Φ (1/𝑛)
𝑋 (𝑧)

)𝑛
(2.6)

These two equivalent definitions can be used to show that a given distribution is infinitely
divisible. For instance, consider a random variable 𝑋 ∼ N(𝜇, 𝜎2); the Fourier transform of
a normally distributed RV is known in closed form and given by:

Φ𝑋 (𝑧) = exp
(
𝑖𝑧𝜇 − 𝑧2𝜎2

2

)
= exp

[
𝑛

(
𝑖𝑧
𝜇

𝑛
− 𝑧2𝜎2

2𝑛

)]
=

[
exp

(
𝑖𝑧
𝜇

𝑛
− 𝑧2𝜎2

2𝑛

)]𝑛
=

(
Φ (1/𝑛)
𝑋 (𝑧)

)𝑛
where 𝑋 (1/𝑛) ∼ N(𝑛−1𝜇, 𝑛−1𝜎2). Similarly, in line with Definition 2.2, one can easily see
that 𝑋 𝑑

= 𝑋 (1/𝑛)
1 + · · · + 𝑋 (1/𝑛)

𝑛 where 𝑋 (1/𝑛)
𝑖 ∼ N(𝑛−1𝜇, 𝑛−1𝜎2) for 𝑖 = 1, . . . , 𝑛. In general, it

can be shown that if 𝜇𝑋 is an infinitely divisible distribution then there exists a Lévy process
{𝑌𝑡}𝑡≥0 where the distribution of 𝑌1 is given by 𝜇𝑋 (Sato, 1999). Well-known examples of
infinitely divisible distributions include the gamma and Poisson distributions, whereas a
uniform distributed RV does not induce an infinitely divisible probability law.

Consider now a Lévy process {𝑋𝑡}𝑡≥0 defined on a probability space (Ω,F, P). The
characteristic function of the process at each point in time 𝑡 is defined as:

Φ𝑡 (𝑧) B Φ𝑋𝑡 (𝑧) = E[exp(𝑖𝑧𝑋𝑡)] ∀𝑧 ∈ R (2.7)

Since {𝑋𝑡}𝑡≥0 is defined to have stationary independent increments, it holds that:

Φ𝑡+𝑠 (𝑧) B Φ𝑋𝑡+𝑠 (𝑧) = Φ𝑋𝑠 (𝑧)Φ𝑋𝑡+𝑠−𝑋𝑠 (𝑧) = Φ𝑋𝑠 (𝑧)Φ𝑋𝑡 (𝑧) B Φ𝑠 (𝑧)Φ𝑡 (𝑧) ∀𝑠 < 𝑡 (2.8)

where the second equality holds because the characteristic function of the sum of i.i.d.
RVs equals the product of the single characteristic functions. Furthermore, the stochastic
continuity of the process ensures that 𝑋𝑠 converges in distribution to 𝑋𝑡 as 𝑠 approaches 𝑡.
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Chapter 2. Lévy Processes 2.1. Poisson Process

As a result, Φ𝑠 (𝑧) → Φ𝑡 (𝑧) as 𝑠 → 𝑡 and 𝑡 → Φ𝑡 (𝑧) is continuous in 𝑡. Hence, there exists a
continuous map 𝜓 : R→ C, known as the characteristic exponent of 𝑋 , such that:

Φ𝑋𝑡 (𝑧) = E[exp(𝑖𝑧𝑋𝑡)] = exp(𝑡𝜓(𝑧)) ∀𝑧 ∈ R (2.9)

The assumption of stationary increments implies that the CF of 𝑋𝑡 is linear in time 𝑡. As a
result, the increments of a Lévy process sampled over time intervals of the same length
will share the same characteristic function (and hence distribution).

2.1 | Poisson Process
Brownian motion, discussed in the previous chapter, is the only example of continuous
Lévy process; the other “building block” needed to reach a general formulation of Lévy
processes, thereby allowing for discontinuities in the resulting paths, is the Poisson process.
The latter is closely related to exponentially distributed random variables: consider a RV 𝜏

following exponential distribution with probability density given by 𝜆𝑒−𝜆𝜏𝟙𝜏≥0 for 𝜆 ∈ R+.
Definition 2.3. Let {𝜏𝑖}𝑖≥1 be a collection of i.i.d. exponentially distributed random variables
and define 𝑇𝑛 B

∑𝑛
𝑖=1 𝜏𝑖. Then, the process {𝑁𝑡}𝑡≥0 given by

𝑁𝑡 =
∑︁
𝑛≥1

𝟙𝑡≥𝑇𝑛 = #{𝑛 ≥ 1 : 𝑇𝑛 ∈ [0, 𝑡]} (2.10)

is known as Poisson process with parameter 𝜆.

By definition, the Poisson process exhibits càdlàg paths — that is, at any discontinuity
point 𝑁𝑡 = 𝑁𝑡+. Since {𝑁𝑡}𝑡≥0 is built upon a sequence of exponentially distributed RVs, one
can easily see that the process has independent and stationary increments. Furthermore,
the Poisson process verifies the Markov property:

E [𝑁𝑡 | 𝑁𝑢] = E [𝑁𝑡 | 𝑁𝑠] ∀𝑢 ≤ 𝑠 < 𝑡 (2.11)

One can impose the martingale property on the process by subtracting a given compensator
(here, the first moment), thereby defining its compensated version:

𝑁𝑡 = 𝑁𝑡 − 𝜆𝑡 (2.12)

whose characteristic function is then given by

Φ𝑁𝑡 (𝑧) = E
[exp(𝑖𝑧𝑁𝑡)] = exp [

𝜆𝑡(𝑒𝑖𝑧 − 1 − 𝑖𝑧)] ∀𝑧 ∈ R (2.13)

Since the Poisson process has independent increments one concludes that

E [𝑁𝑡 | F𝑠] = E [𝑁𝑡 − 𝑁𝑠 + 𝑁𝑠 | F𝑠]
= E [𝑁𝑡 − 𝑁𝑠 | F𝑠] + 𝑁𝑠 = 𝜆 (𝑡 − 𝑠) + 𝑁𝑠 =⇒ E

[
𝑁𝑡 | F𝑠

]
= 𝑁𝑠 ∀𝑠 ≤ 𝑡 (2.14)
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Chapter 2. Lévy Processes 2.1. Poisson Process

Figure 2.3 presents sample paths of the Poisson process and its compensated version; note
that the latter is no longer integer-valued and does not thus define a counting process.

Since the Poisson process counts the number of points on [0,∞) in a given interval
[0, 𝑡], it “defines” a random jump measure 𝑀 such that for any measurable set 𝐴 ⊂ R+

𝑀 (𝜔, 𝐴) = #{𝑛 ≥ 1 : 𝑇𝑛(𝜔) ∈ 𝐴} (2.15)

The expectation of such measure is dictated by both the intensity 𝜆 of the Poisson process
and the measurable set 𝐴 considered. In particular, E [𝑀 (𝜔, 𝐴)] = 𝜆 |𝐴| where |𝐴| stands
for the Lebesgue measure associated to set 𝐴. The Poisson process may be expressed in
terms of the random measure just defined, namely:

𝑁𝑡 (𝜔) = 𝑀 (𝜔, [0, 𝑡]) =
∫ 𝑡

0
𝑀 (𝜔, 𝑑𝑠) (2.16)

Moreover, for all random measures 𝑀 with intensity 𝜇, measurable sets 𝐴 such that
𝜇(𝐴) < ∞, and functions 𝑓 such that

∫
𝐴
exp( 𝑓 (𝑥))𝜇(𝑑𝑥) < ∞ it holds that

E

[
exp

(∫
𝐴
𝑓 (𝑥)𝑀 (𝑑𝑥)

)]
= exp

[∫
𝐴

(
𝑒 𝑓 (𝑥 ) − 1

)
𝜇(𝑑𝑥)

]
(2.17)

In general, one can associate to any càdlàg process {𝑋𝑡}𝑡≥0 a so-called (random) jump
measure 𝐽𝑋 such that, for any measurable set 𝐴 ⊂ R, 𝐽𝑋 ( [0, 𝑡] × 𝐴) counts the number of
jumps occurring in the interval [0, 𝑡] whose size lies in 𝐴:

𝐽𝑋 ( [0, 𝑡] × 𝐴) = #{𝑠 ∈ [0, 𝑡] : (𝑋𝑠 − 𝑋𝑠−) ∈ 𝐴} (2.18)

Time

#B

Time

#̃B

Figure 2.3 Left: Sample path of a Poisson process {𝑁𝑡}𝑡≥0 with jump intensity 𝜆 = 1. Right:
Compensated Poisson process {𝑁𝑡}𝑡≥0 associated to the realisation on the left. The compensated
version {𝑁𝑡}𝑡≥0 shall not be interpreted as a counting process as it is no longer integer-valued.
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Chapter 2. Lévy Processes 2.1. Poisson Process

In order to obtain a more accurate description of asset price dynamics it is essential to
abstract from jumps in unit value, the only ones that a Poisson process can generate, and
introduce an arbitrary probability law for the jumps.
Definition 2.4. Let {𝑁𝑡}𝑡≥0 be a Poisson process with jump intensity 𝜆 and {𝑌𝑖}𝑖∈N a collection
of i.i.d. RVs following a distribution 𝑓 and independent from the Poisson process. Then,

𝑋𝑡 =
𝑁𝑡∑︁
𝑖=1

𝑌𝑖 (2.19)

defines a compound Poisson process with jump intensity 𝜆 and jump size distribution 𝑓 .

Hence, 𝑋𝑡 may be seen as the value of a random walk after a random number of steps
given by 𝑁𝑡; the characteristic function of a compound Poisson process is given by

Φ𝑋𝑡 (𝑧) = E [exp(𝑖𝑧𝑋𝑡)] = exp
[
𝜆𝑡

∫ +∞

−∞
(𝑒𝑖𝑧𝑥 − 1) 𝑓 (𝑑𝑥)

]
∀𝑧 ∈ R (2.20)

Such CF may be further simplified by defining the measure 𝜈(𝐴) = 𝜆 𝑓 (𝐴); (2.20) becomes

Φ𝑋𝑡 (𝑧) = E [exp(𝑖𝑧𝑋𝑡)] = exp
[
𝑡

∫ +∞

−∞
(𝑒𝑖𝑧𝑥 − 1)𝜈(𝑑𝑥)

]
∀𝑧 ∈ R (2.21)

Note that 𝜈 does not always define a probability measure: indeed,
∫
R
𝜈(𝑑𝑥) = 𝜆 does

not necessarily equal one. Furthermore, it can be shown that the random jump measure
defined on R × [0,∞) associated to a compound Poisson process {𝑋𝑡}𝑡≥0 has intensity
𝜇(𝑑𝑥 × 𝑑𝑡) = 𝜈(𝑑𝑥)𝑑𝑡 = 𝜆 𝑓 (𝑑𝑥)𝑑𝑡 (Cont and Tankov, 2003). As a result, every compound
Poisson process {𝑋𝑡}𝑡≥0 may be represented in terms of the jump measure just defined:

𝑋𝑡 =
∑︁

𝑠∈[0,𝑡]
(𝑋𝑠 − 𝑋𝑠−) =

∫ 𝑡

0

∫
R
𝑥𝐽𝑋 (𝑑𝑠 × 𝑑𝑥) (2.22)

where 𝐽𝑋 is a jump measure with intensity 𝜆 𝑓 (𝑑𝑥)𝑑𝑡.
Definition 2.5. Let {𝑋𝑡}𝑡≥0 be a real-valued Lévy process. One can define a measure 𝜈 on R:

𝜈(𝐴) = E [#{𝑡 ∈ [0, 1] : (𝑋𝑡 − 𝑋𝑡−) ∈ 𝐴}] ∀𝐴 ∈ B(R \ {0}) (2.23)

Here, 𝜈(𝐴) is known as the Lévy measure of the process and provides a representation of the
discontinuous component of {𝑋𝑡}𝑡≥0 — that is, 𝜈(𝐴) counts the expected number of jumps
whose size belongs to 𝐴 in a unitary time interval.

Finally, using (2.17) one can show that a Lévy measure 𝜈 integrates (|𝑥 |2 ∧ 1):∫
R

( |𝑥 |2 ∧ 1)𝜈(𝑑𝑥) < ∞ (2.24)

where (𝑎 ∧ 𝑏) denotes the minimum between 𝑎 and 𝑏.
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2.2 | Lévy-Itô Decomposition
Given a càdlàg process {𝑌𝑡}𝑡≥0 and an arithmetic Brownianmotion {𝛾𝑡 +𝑊𝑡}𝑡≥0 independent
of {𝑌𝑡}𝑡≥0 defined on a probability space (Ω,F, P), the process described by 𝑋𝑡 = 𝛾𝑡 +𝑊𝑡 +𝑌𝑡
defines a Lévy process and can be thus decomposed as:

𝑋𝑡 = 𝛾𝑡 +𝑊𝑡 +
∑︁

𝑠∈[0,𝑡] (𝑌𝑠 − 𝑌𝑠−) = 𝛾𝑡 +𝑊𝑡 +
∫ 𝑡

0

∫
R
𝑦𝐽𝑌 (𝑑𝑠 × 𝑑𝑦) (2.25)

One could still define the Lévy measure 𝜈 on B(R \ {0}) of the process associated to (2.25)
following Definition 2.5. However, such measure may not be necesarily finite as the process
may exhibit an infinite number of “small” jumps in the time interval considered. This
would result in an infinite series, whose convergence relies on some restrictions on the
Lévy measure of {𝑋𝑡}𝑡≥0, giving rise to the well-known Lévy-Itô decomposition.
Theorem 2.1. Let {𝑋𝑡}𝑡≥0 be a real-valued Lévy process with Lévy measure 𝜈 on B(R \ {0})
such that

∫
R

( |𝑥 |2 ∧ 1)𝜈(𝑑𝑥) < ∞. Then, there exists a 𝛾 ∈ R, a Brownian motion {𝑊𝑡}𝑡≥0 with
variance 𝜎2, and a jump measure 𝐽𝑋 on [0,∞) × R with intensity 𝜈(𝑑𝑥) 𝑑𝑡 such that:

𝑋𝑡 = 𝛾𝑡 +𝑊𝑡 +
∫ 𝑡

0

∫
|𝑥 | ≥1

𝑥𝐽𝑋 (𝑑𝑠 × 𝑑𝑥) + lim
𝜀 ↓ 0

∫ 𝑡

0

∫
𝜀≤ |𝑥 |<1

𝑥 [𝐽𝑋 (𝑑𝑠 × 𝑑𝑥) − 𝜈(𝑑𝑥) 𝑑𝑠] (2.26)

The triplet (𝛾, 𝜎2, 𝜈) completely characterises the distribution of {𝑋𝑡}𝑡≥0, and is therefore
known as the characteristic (or Lévy) triplet of the process.

The decomposition in (2.26), first proposed by Lévy (1934) and then formalised by Itô
(1941), shows how any Lévy process may be thought of as a combination of a Brownian
motion and several independent (compound) Poisson processes. In particular, 𝛾𝑡 +𝑊𝑡 is
included to represent the continuous dynamics of the process paths, whereas the remaining
terms account for discontinuity points. The integrability condition imposed on 𝜈 guarantees
the process exhibits a finite number of jumps whose absolute magnitude is greater than
one, thereby ensuring the finiteness of the first integral in (2.26). Finally, for any 𝜀 > 0 one
may also define an additional compound Poisson process where the magnitude of jumps
lies in [𝜀, 1); here, however, the jump measure should be replaced by its compensated
analogous 𝐽𝑋 B (𝐽𝑋 − 𝜈(𝑑𝑥) 𝑑𝑡) in order to guarantee a bounded sum.

As already mentioned, given a Lévy process {𝑋𝑡}𝑡≥0 there exists a continuous map
𝜓 : R→ C, known as the characteristic exponent of {𝑋𝑡}𝑡≥0, such that:

Φ𝑋𝑡 (𝑧) = E[exp(𝑖𝑧𝑋𝑡)] = exp(𝑡𝜓(𝑧)) ∀𝑧 ∈ R (2.27)

A result known as Lévy-Khinchin representation shows that such characteristic exponent is
completely determined by the Lévy triplet (𝛾, 𝜎2, 𝜈) associated to the process.
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Theorem 2.2. Let {𝑋𝑡}𝑡≥0 be a real-valued Lévy process with characteristic triplet given by
(𝛾, 𝜎2, 𝜈). Then, the characteristic function of the process at time 𝑡 is given by:

Φ𝑋𝑡 (𝑧) = E[exp(𝑖𝑧𝑋𝑡)] = exp
{
𝑡

[
𝑖𝛾𝑧 − 1

2𝜎
2𝑧2 +

∫
R

(
𝑒𝑖𝑧𝑥 − 1 − 𝑖𝑧𝑥𝟙 |𝑥 |<1

)
𝜈(𝑑𝑥)

]}
(2.28)

for all 𝑧 ∈ R.
The indicator 𝟙 |𝑥 |<1 in the characteristic exponent appearing in (2.28) serves as ac

truncation function, accounting for jumps in the process whose magnitude is larger than
one. As a result, if the Lévy measure also satisfies

∫
|𝑥 | ≥1 |𝑥 |𝜈(𝑑𝑥) < ∞ there is no need to

introduce truncations through 𝟙 |𝑥 |<1 in the integrand of (2.28).

Both the decomposition in (2.26) and the representation in (2.28) may be greatly
simplified if the paths of the process exhibit finite variation.
Definition 2.6. The total variation of a function 𝑓 : [𝑎, 𝑏] → R is given by

𝑇𝑉 ( 𝑓 ) = sup
𝑛∑︁
𝑖=1

| 𝑓 (𝑡𝑖) − 𝑓 (𝑡𝑖−1) | (2.29)

where the supremum runs over all the partitions 𝑎 = 𝑡0 < · · · < 𝑡𝑛 = 𝑏 of the domain on which
𝑓 is defined. Every increasing or decreasing function exhibits finite variation and every function
of finite variation is a difference of two increasing functions (Cont and Tankov, 2003).

One can show that a Lévy process exhibits finite (total) variation if and only if

𝜎2 = 0 and
∫
|𝑥 | ≤1

|𝑥 |𝜈(𝑑𝑥) < ∞ (2.30)

It is indeed well-known that Brownian motion paths have infinite variation and accumulate
quadratic variation at the rate of one unit per time. Hence, the absence of a purely diffusive
component and the restriction on the Lévy measure for small jumps ensure the process is
of finite variation. If this is the case, (2.26) and (2.28) may be rewritten as

𝑋𝑡 =

(
𝛾 −

∫
|𝑥 | ≤1

𝑥𝜈(𝑑𝑥)
)
𝑡 +

∫ 𝑡

0

∫
R
𝑥𝐽𝑋 (𝑑𝑠 × 𝑑𝑥) (2.31)

Φ𝑋𝑡 (𝑧) = E[exp(𝑖𝑧𝑋𝑡)] = exp
{
𝑡

[
𝑖

(
𝛾 −

∫
|𝑥 | ≤1

𝑥𝜈(𝑑𝑥)
)
𝑧 +

∫
R

(
𝑒𝑖𝑧𝑥 − 1)𝜈(𝑑𝑥)]} (2.32)

For option pricing purposes, it is essential to mention that any Lévy process satisfies the
strong Markov property — that is, it is homogenous in both time and space. In particular,
defining the transition probability as in Cont and Tankov (2003):

𝑃𝑠,𝑡 (𝑥, 𝐵) B P {𝑋𝑡 ∈ 𝐵 | 𝑋𝑠 = 𝑥} ∀𝐵 ∈ B(R) (2.33)
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Then, it holds that
𝑃𝑠,𝑡 (𝑥, 𝐵) = 𝑃0,𝑡−𝑠 (0, 𝐵 − 𝑋) (2.34)

It shall be mentioned that such property of the transition kernel completely characterises
Lévy processes, the only homogenous processes in both time and space. Finally, Sato
(1999) shows the following with respect to Lévy processes and martingales.
Definition 2.7. Given a real-valued stochastic process {𝑋𝑡}𝑡≥0 characterised by independent
increments, one has that:

■
{
𝑒𝑖𝑧𝑋𝑡/E [

𝑒𝑖𝑧𝑋𝑡
]}

𝑡≥0 defines a martingale for all 𝑧 ∈ R.
■ If the expectation E

[
𝑒𝑧𝑋𝑡

]
is finite for some 𝑧 ∈ R and for all 𝑡 in the interval considered,

then
{
𝑒𝑧𝑋𝑡/E [

𝑒𝑧𝑋𝑡
]}

𝑡≥0 defines a martingale.

■ If the process has finite expectation for all 𝑡 ≥ 0, then {𝑀𝑡}𝑡≥0 = {𝑋𝑡 − E[𝑋𝑡]}𝑡≥0 defines
a martingale with independent increments.

■ If the process has finite variance for all 𝑡 ≥ 0 and 𝑀 is as above, then the process given
by

{
𝑀2
𝑡 − E[𝑀2

𝑡 ]
}
𝑡≥0 defines a martingale.

If {𝑋𝑡}𝑡≥0 verifies the properties of a Lévy process, then for the processes listed above to define
martingales it is enough for the central moments mentioned to be finite for at least one time 𝑡.

The Lévy-Itô decomposition in (2.26), coupled with Definition 2.7, may be used to
draw the following conclusions about a Lévy process with characteristic triplet (𝛾, 𝜎2, 𝜈):
■ The process {𝑋𝑡}𝑡≥0 is a martingale if and only if

∫
|𝑥 | ≥1 |𝑥 |𝜈(𝑑𝑥) is finite, and

𝛾 +
∫
|𝑥 | ≥1

𝑥𝜈(𝑑𝑥) = 0 (2.35)

■ The process {exp(𝑋𝑡)}𝑡≥0 is a martingale if and only if
∫
|𝑥 | ≥1 𝑒

𝑥𝜈(𝑑𝑥) is finite, and

𝛾 + 𝜎2

2 +
∫
R
(𝑒𝑥 − 1 − 𝑥𝟙 |𝑥 | ≤1)𝜈(𝑑𝑥) = 0 (2.36)

Finally, one may distinguish between Lévy processes with a finite number of jumps in the
realised paths and those with an infinite number of discontinuities in a given time interval.
The first scenario includes the so-called finite-activity, or jump-diffusion models; here, the
expected evolution of the underlying is dictated by a purely diffusive process, such as a
Brownian motion with drift, while the points of discontinuity represent out-of-the-ordinary
events such as market crashes and booms. Alternatively, if the underlying dynamics were
to be modelled by a process extracted from the second scenario, we would speak of a model
with infinite activity. In this case, the inclusion of a diffusive component is redundant as
the process can already describe the underlying dynamics accurately (Carr et al., 2002).
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2.3 | Jump-Diffusion
The first author to take account of discontinuities in price paths is was Merton (1976). In
his derivation, a (compound) Poisson process, independent of the diffusive component, is
included into the dynamics of the underlying.

Assume that, in an infinitesimal time increment 𝑑𝑡, the price jumps from 𝑆𝑡 to 𝑌𝑡𝑆𝑡;
then, 𝑌𝑡 − 1 represents the percentage size of the discontinuity — that is, 𝑌𝑡 = 0.25 entails
that the stock will trade at 25% of its value before the jump. Regarding the frequency
of arrivals of such discontinuities, Merton (1976) assumed it to be dictated by a Poisson
process {𝑁𝑡}𝑡≥0 with intensity 𝜆. Hence, in an infinitesimal increment 𝑑𝑡 the discontinuous
component is given by (𝑆𝑡 − 𝑌𝑡𝑆𝑡) 𝑑𝑁𝑡 = 𝑆𝑡 (𝑌𝑡 − 1) 𝑑𝑁𝑡, or, in terms of instantaneous rate of
return, (𝑌𝑡 − 1) 𝑑𝑁𝑡. Moreover, Merton (1976) imposed a log-normal distribution for the
jump size 𝑌𝑡 — that is, log(𝑌𝑡) ∼ N(𝛼, 𝛽2). Equivalently,

𝑌𝑡 ∼ LogN
(
exp

(
𝛼 + 𝛽2

2

)
, exp(2𝛼 + 𝛽2) (exp(𝛽2) − 1)

)
(2.37)

The discontinuous component of the instantaneous rate of return does still entail a pre-
dictable part, which should be subtracted from the drift of the Brownian motion to preserve
the randomness of the process. In particular, one has:

𝜅 B E[𝑌𝑡 − 1] = exp
(
𝛼 + 𝛽2

2

)
− 1 (2.38)

Since {𝑌𝑡}𝑡≥0 is independent of the Poisson process {𝑁𝑡}𝑡≥0, one then has:

E[(𝑌𝑡 − 1) 𝑑𝑁𝑡] = E[𝑌𝑡 − 1]E[𝑑𝑁𝑡] = 𝜆𝜅 𝑑𝑡 (2.39)

Hence, the instantaneous return on the underlying is given by the following SDE:
𝑑𝑆𝑡
𝑆𝑡

= 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 + (𝑌𝑡 − 1) 𝑑𝑁𝑡 − 𝜆𝜅 𝑑𝑡 = (𝜇 − 𝜆𝜅) 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 + (𝑌𝑡 − 1) 𝑑𝑁𝑡 (2.40)

Finally, one has to allow for more than one jump to occur at each time. Since the Poisson
counter dictates the number of discontinuities, (2.40) becomes:

𝑑𝑆𝑡
𝑆𝑡

= (𝜇 − 𝜆𝜅) 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 + ©­«
𝑑𝑁𝑡∏
𝑗=1

𝑌𝑗 − 1ª®¬ (2.41)

To reach a solution of (2.41), however, one needs to rely on an extension of the Itô-Doeblin
formula capable of accounting for discontinuities in the process paths. In particular, let
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{𝑋𝑡}𝑡≥0 be a jump-diffusion (JD) process, and consider a jump of size Δ𝑋𝑡; then, the
dynamics of a smooth function 𝑓 (𝑋𝑡, 𝑡) of class 𝐶2(R) are given in Cont and Tankov (2003):

𝑑 𝑓𝑡 =

[
𝜕 𝑓

𝜕𝑡
+ 𝜕 𝑓

𝜕𝑋
𝜇𝑡 + 1

2
𝜕2 𝑓
𝜕𝑋

𝜎2𝑡

]
𝑑𝑡 + 𝜕 𝑓

𝜕𝑋
𝜎𝑡 𝑑𝑊𝑡 + [ 𝑓 (𝑋𝑡− + Δ𝑋𝑡) − 𝑓 (𝑋𝑡−)] (2.42)

where 𝑓 (𝑋𝑡−) represents the value of the function just before the jump. Equivalently,

𝑑 𝑓𝑡 =
𝜕 𝑓

𝜕𝑡
𝑑𝑡 + 𝜕 𝑓

𝜕𝑋
𝑑𝑋𝑡 + 1

2
𝜕2 𝑓
𝜕𝑋2 (𝑑𝑋𝑡)

2 + [ 𝑓 (𝑋𝑡− + Δ𝑋𝑡) − 𝑓 (𝑋𝑡−)] (2.43)

Just as in the case of the SDE defining geometric Brownian motion, a clever choice for 𝑓 is
given by the natural logarithm of the process — that is, 𝑓 (𝑋𝑡, 𝑡) = 𝑓 (𝑋𝑡) = log(𝑋𝑡):

𝑑 log(𝑆𝑡) = 1
𝑆𝑡
𝑑𝑆𝑡 − 1

2𝑆2𝑡
(𝑑𝑆𝑡)2 + log ©­«𝑆𝑡

𝑑𝑁𝑡∏
𝑗=1

𝑌𝑗
ª®¬ − log(𝑆𝑡)

= (𝜇 − 𝜆𝜅) 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 − 𝜎2

2 𝑑𝑡 + log ©­«
𝑑𝑁𝑡∏
𝑗=1

𝑌𝑗
ª®¬

=

(
𝜇 − 𝜆𝜅 − 𝜎2

2

)
𝑑𝑡 + 𝜎 𝑑𝑊𝑡 +

𝑑𝑁𝑡∑︁
𝑗=1

log(𝑌𝑗) (2.44)

Finally, integrating (2.44) on the interval [0, 𝑡] one has:∫ 𝑡

0
𝑑 log(𝑆𝑡) =

∫ 𝑡

0

(
𝜇 − 𝜆𝜅 − 𝜎2

2

)
𝑑𝑡 +

∫ 𝑡

0
𝜎 𝑑𝑊𝑡 +

∫ 𝑡

0

𝑑𝑁𝑡∑︁
𝑗=1

log(𝑌𝑗)

=⇒ log(𝑆𝑡) − log(𝑆0) =
(
𝜇 − 𝜆𝜅 − 𝜎2

2

)
𝑡 + 𝜎𝑊𝑡 +

𝑁𝑡∑︁
𝑗=1

log(𝑌𝑗)

=⇒ 𝑆𝑡 = 𝑆0 exp

(
𝜇 − 𝜆𝜅 − 𝜎2

2

)
𝑡 + 𝜎𝑊𝑡 +

𝑁𝑡∑︁
𝑗=1

log(𝑌𝑗)
 (2.45)

Hence, the model proposed by Merton (1976) specifies an exponential Lévy process of the
form {𝑆𝑡}𝑡≥0 = 𝑆0 exp({𝑋𝑡}𝑡≥0) for the dynamics of the underlying under P, where:

𝑋𝑡 =

(
𝜇 − 𝜆𝜅 − 𝜎2

2

)
𝑡 + 𝜎𝑊𝑡 +

𝑁𝑡∑︁
𝑗=1

log(𝑌𝑗) (2.46)

A sample path generated by a jump-diffusion process is presented in Figure 2.4. The
inclusion of jumps in the underlying price process clearly leads to much higher volatility
of the latter. Consequently, the distribution of returns will inevitably be characterised by
heavy tails and thus be more representative of the financial reality.
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The conclusion of the first chapter mentions how such a configuration for the dynamics
of the underlying leads to an incomplete market. In other words, an agent cannot hedge
his position on an option against the risks dictated by both the diffusive and discontinuous
components by relying exclusively on the underlying and a risk-free asset.

In a complete market, an option’s value equals the cost of the trading strategy that
replicates its cash flows. In an incomplete market, however, an option’s price will be
composed of the cost of hedging and a risk premium dictated by the writer of the contract
to cover his unhedgeable risk. Still, this second component may be close to zero in well-
functioning, competitive derivative markets, and, most importantly, incomplete frameworks
are much more resemblant to lifelike option trading. If markets were complete, hedging an
option would be coping with the Δ-risk by trading the underlying asset. Once one neglects
market imperfections, such risk can be hedged away completely. At this point, one could
argue that reducing the uncertainty attached to an options contract to Δ-risk is a bolder
assumption than neglecting bid-ask spreads, and this is indeed the case. The fundamental
exposure in the evolution of an option’s value is, in fact, mainly due to variables such as
Γ-risk and 𝜈-risk rather than distortions arising from market inefficiencies.

As shown in Cont and Tankov (2003), one can always derive an equivalent martingale
measure for an exponential Lévy model through a procedure similar to the drift change
of Brownian motion, known as the Esscher transform. While exponential Lévy models are
arbitrage-free, by Theorem 1.3, one knows that there will be more than one risk-neutral
measure under which no arbitrage opportunities are created.

Time

(B

Time

'B

Figure 2.4 Left: Sample path of a jump-diffusion process over an interval of ten years, with 𝜇 = 0.05,
𝜎 = 0.20, 𝛼 = 0.00, 𝛽 = 0.50, and 𝜆 = 1.5. The last parameter entails that one can expect three
jumps every two years. Right: Logarithmic returns associated to the realisation shown on the left.
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Although a JD process for the underlying leads to an incomplete market, in his deriva-
tion, Merton (1976) dramatically simplifies the analysis by assuming that the jump risk is
diversifiable and, as such, should bear no risk premium. This assumption is hardly com-
patible with empirical observations since large price movements identifiable as jumps can
safely occur in highly diversified indices such as those shown in Figure 2.1. Nevertheless,
this makes it possible to obtain the risk-neutral dynamics of the underlying asset in the
same way as one would with a purely diffusive process — that is, by imposing the drift
of the Brownian motion equal to the risk-free rate without altering the discontinuous
component of the process. In other words, the log-price at time 𝑡 is given by:

𝑋𝑡 =

(
𝑟 − 𝜆𝜅 − 𝜎2

2

)
𝑡 + 𝜎𝑊Q𝑡 +

𝑁𝑡∑︁
𝑗=1

log(𝑌𝑗) (2.47)

where 𝑊Q𝑡 is a (standard) Brownian motion under the equivalent martingale measure
proposed by Merton (1976). By conditioning on the Poisson process being equal to 𝑁𝑡 = 𝑛,
one can express (2.47) in terms of a single source of randomness — namely, the Brownian
motion under Q. Letting 𝑁𝑡 = 𝑛, (2.47) becomes:

𝑋𝑡 =

(
𝑟 − 𝜆𝜅 − 𝜎2

2

)
𝑡 + 𝜎𝑊Q𝑡 +

𝑛∑︁
𝑗=1

log(𝑌𝑗) (2.48)

Since the (log-)jumps are independent and identically (normally) distributed, and the
Poisson process is independent of the Brownian motion, one has that

𝜎𝑊Q𝑡 +
𝑛∑︁
𝑗=1

log(𝑌𝑗) = 𝑛𝛼 +
√︂
𝜎2 + 𝑛𝛽2

𝑡︸        ︷︷        ︸
B 𝜎𝑛

√
𝑡𝑍 = 𝑛𝛼 + 𝜎𝑛𝑊𝑡 ∼ N

(
𝑛𝛼, 𝜎2𝑛𝑡

)
(2.49)

where 𝑍 ∼ N(0, 1). Hence, one can rewrite (2.47) as

𝑋𝑡 =

(
𝑟 − 𝜆𝜅 − 𝜎2

2

)
𝑡 + 𝑛𝛼 +

√︂
𝜎2 + 𝑛𝛽2

𝑡
𝑊𝑡

=

(
𝑟 − 𝜆𝜅 − 𝜎2

2 − 𝑛𝛽2

2𝑡 + 𝑛𝛽2

2𝑡

)
𝑡 + 𝑛𝛼 +

√︂
𝜎2 + 𝑛𝛽2

𝑡
𝑊𝑡

=

(
𝑟 − 𝜆𝜅 − 𝜎2𝑛

2 + 𝑛𝛽2

2𝑡

)
𝑡 + 𝑛𝛼 + 𝜎𝑛𝑊𝑡 =

(
𝑛𝛽2

2𝑡 − 𝜆𝜅

)
𝑡 + 𝑛𝛼 +

(
𝑟 − 𝜎2𝑛

2

)
𝑡 + 𝜎𝑛𝑊𝑡 (2.50)

Therefore, the SDE of the underlying in a jump-diffusion model can be expressed as

𝑆𝑡 = 𝑆0 exp
[(
𝑛𝛽2

2𝑡 − 𝜆𝜅

)
𝑡 + 𝑛𝛼 +

(
𝑟 − 𝜎2𝑛

2

)
𝑡 + 𝜎𝑛𝑊𝑡

]
= 𝑆𝑛0

[(
𝑟 − 𝜎2𝑛

2

)
𝑡 + 𝜎𝑛𝑊𝑡

]
(2.51)
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where
𝑆𝑛 B 𝑆0 exp

[(
𝑛𝛽2

2𝑡 − 𝜆𝜅

)
𝑡 + 𝑛𝛼

]
and 𝜎2𝑛 B 𝜎2 + 𝑛𝛽2

𝑡
(2.52)

A call option written on the stock with dynamics given by (2.51) is associated with a
premium that can be calculated through (2.4) with the appropriate changes to spot price
and volatility. By the law of total probability, one has to account for all possible numbers
of jumps in the Poisson process; the price of a call option is then given by:

𝑉𝑡 =
∞∑︁
𝑛=0
Q(𝑁𝑡 = 𝑛)𝑉𝐵𝑆𝑡 (𝑆𝑛, 𝜎𝑛) =

∞∑︁
𝑛=0

𝑒−𝜆𝑡 (𝜆𝑡)𝑛
𝑛! 𝑉𝐵𝑆𝑡 (𝑆𝑛, 𝜎𝑛) (2.53)

The infinite series above converges exponentially and can be truncated after few values
for accurate results (Cont and Tankov, 2003). As an exponential Lévy process, the jump-
diffusion proposed by Merton (1976) is characterised by a Lévy triplet (𝛾, 𝜎2, 𝜈), where

𝛾 = 𝑟 − 𝜎2

2 − 𝜆𝜅 and 𝜈(𝑑𝑥) = 𝜆 𝑓 (𝑑𝑥) = 𝜆

𝛽
√
2𝜋

exp
[
−12

(
𝑑𝑥 − 𝛼

𝛽

)2]
(2.54)

Therefore, the characteristic exponent of the log-price process {𝑋𝑡}𝑡≥0 is:

𝜓(𝑧) = 𝑖𝛾𝑧 − 𝜎2𝑧2

2 + 𝜆
[
exp

(
𝑖𝛼𝑧 − 𝛽2𝑧2

2

)
− 1

]
(2.55)

Because of the stationary and independent increments, the characteristic function is then
linear in time with respect to (2.55). As noted in Chapter 1, one can compute the 𝑘-th
moment of a RV by differentiating the characteristic function 𝑘 times and evaluate it at the

𝑋𝑡

𝛼 = −0.5
𝛼 = 0.0
𝛼 = +0.5

Figure 2.5 Density of the log-price 𝑋𝑡 in one year under a jump-diffusion model with log-normally
distributed jumps. The parameters kept fixed are 𝜇 = 0.05, 𝜎 = 0.20, 𝜆 = 0.5, and 𝛽 = 0.10.
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point 𝑧 = 0. Doing so for the model proposed by Merton (1976), one obtains:

E[𝑋𝑡] = 𝑡(𝛾 + 𝛼𝜆) (2.56)
V[𝑋𝑡] = 𝑡(𝜎2 + 𝜆𝛼2 + 𝜆𝛽2) (2.57)
E[𝑋3

𝑡 ] = 𝑡𝜆 (3𝛼𝛽2 + 𝛼3) (2.58)
E[𝑋4

𝑡 ] = 𝑡𝜆 (3𝛽3 + 6𝛼2𝛽2 + 𝛼4) (2.59)

Since 𝑡, 𝜆, and 𝛽 all belong to R+0, it is clear from (2.58) that the skewness of the distribution
is entirely determined by the sign of the mean jump size 𝛼. Such observation is confirmed
once the density of the log-price 𝑋𝑡 is plotted as in Figure 2.5. Similarly, the intensity of
jump arrivals 𝜆 is positively related with the fourth moment of the process.

Finally, Figure 2.6 shows the implied volatility surface Σ𝑡 : (𝐾, 𝑇) → Σ𝑡 (𝐾, 𝑇) in the
Merton (1976) model for different values of the JD process parameters. In line with the
observations above, changing the (log-)jump size 𝛼 affects the shape of the volatility skew,
especially at short maturities. On the other hand, caeteris paribus, increasing the jump
intensity 𝜆 leads to a more pronounced volatility smile. Regardless of the parameter set
Θ = (𝜇, 𝜎, 𝜆, 𝛼, 𝛽) chosen, however, the JD model with log-normally distributed jumps does
not adequately reproduce the smile at longer maturities.

2.4 | Variance-Gamma
As already mentioned, one does not need to introduce a purely diffusive component to
reach an accurate representation of the evolution of asset prices. This section is devoted to
describing one of such pure jump processes — namely, the variance-gamma (VG) model
proposed by Madan et al. (1998) and extending the work of Madan and Seneta (1990)
and Madan and Milne (1991). Although such a model has no diffusive part, it can be
derived through a procedure known as Brownian subordination — the VG model may be
interpreted as a Brownian motion evaluated on a different time scale dictated by a gamma
process. Here, the gamma process is called subordinator: a Lévy process with almost surely
increasing paths popularised by Clark (1973) for financial applications. This feature allows
one to interpret the subordinator as a “distorted” time scale for the increments of some
other Lévy process, as shown by the following theorem (Cont and Tankov, 2003).
Theorem 2.3. Let (Ω,F, P) be a probability space and {𝑋𝑡}𝑡≥0 a R-valued Lévy process with
characteristic exponent 𝜓𝑋 (𝑧) and triplet (𝛾, 𝜎2, 𝜈). Let {𝑆𝑡}𝑡≥0 be a subordinator with Laplace
exponent 𝑙(𝑧) and triplet (𝑏, 0, 𝜌). Then, the process {𝑌𝑡}𝑡≥0 defined as:

𝑌𝑡 (𝜔) = 𝑋𝑆𝑡 (𝜔) (𝜔) (2.60)
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Figure 2.6 Volatility surfaces generated by the Merton (1976) model under Q. The left column
shows how the volatility profile changes for different values of the (log-)jump size — that is, from
top to bottom 𝛼 = −0.50, 0.00, and 0.50. The right column does the same for three distinct values
of the jump intensity 𝜆 — that is, from top to bottom 𝜆 = 1.00, 3.00, and 5.00. The volatility of
the price process and that of the (log)-jumps are kept constant at 𝜎 = 0.20 and 𝛽 = 0.50.



Chapter 2. Lévy Processes 2.4. Variance-Gamma

is still a Lévy process with characteristic exponent given by:

𝜓𝑌 (𝑧) = 𝑙(𝜓𝑋 (𝑧)) where 𝑙(𝑧) = 𝑏𝑧 +
∫ ∞

0
(𝑒𝑧𝑥 − 1)𝜌(𝑑𝑥) (2.61)

so that the Fourier transform of 𝑌𝑡 at a given time 𝑡 is found through the composition of the
characteristic exponent of 𝑋𝑡 with the Laplace exponent of 𝑆𝑡. Finally, the characteristic triplet
(𝛾𝑌 , 𝜎2𝑌 , 𝜈𝑌 ) of {𝑌𝑡}𝑡≥0 is given by:

𝜎2𝑌 = 𝑏𝜎2 (2.62)

𝛾𝑌 = 𝑏𝛾 +
∫ ∞

0
𝜌(𝑑𝑠)

∫ ∞

0
𝑥𝟙 |𝑥 | ≤1 𝑓𝑋𝑠 (𝑑𝑥) (2.63)

𝜈𝑌 (𝐵) = 𝑏𝜈(𝐵) +
∫ ∞

0
𝑓𝑋𝑠 (𝐵)𝜌(𝑑𝑠) ∀𝐵 ∈ B(R) (2.64)

where 𝑓𝑋𝑠 is the density of 𝑋𝑡 at time 𝑡 = 𝑠.

In the framework presented in Theorem 2.3, {𝑌𝑡}𝑡≥0 is said subordinate to {𝑋𝑡}𝑡≥0. The
VG process described by Madan et al. (1998) is simply a Brownian motion subordinate to
a gamma process. Here, rather than prescribing a diffusion process for the underlying,
realistic reproductions of market activity are obtained by allowing an infinite number of
(small) jumps in any time interval. From Section 2.2, one knows that the absence of a
Brownian component ensures the process has finite variation; by Definition 2.6, this entails
the VG process can be expressed as the difference of two increasing processes. As shown
by Madan et al. (1998), these two increasing processes are themselves gamma processes
with mean rates 𝜇𝑝 and 𝜇𝑛 accounting for gains and losses, respectively:

𝑋𝑡 = 𝛾𝑡 (𝜇𝑝, 𝜇2𝑝𝜈) − 𝛾𝑡 (𝜇𝑛, 𝜇2𝑛𝜈) (2.65)

where the mean rates 𝜇𝑝 and 𝜇𝑛 are defined as:

𝜇𝑝 B
1
2

√︂
𝜃2 + 2𝜎2

𝜈
+ 𝜃

2 and 𝜇𝑛 B
1
2

√︂
𝜃2 + 2𝜎2

𝜈
− 𝜃

2 (2.66)

Alternatively, letting {𝑍𝑡}𝑡≥0 be a Brownian motion with drift 𝜃, and using the notation
of (2.60), the variance-gamma process {𝑋𝑡}𝑡≥0 is defined as:

𝑋𝑡 (𝜔) = 𝑍𝛾𝑡 (1, 𝜈) (𝜔) = 𝜃𝛾𝑡 (1, 𝜈) + 𝜎𝑊𝛾𝑡 (1, 𝜈) (2.67)

where 𝛾𝑡 (1, 𝜈) is a gamma process with unit mean rate— that is, a process with independent
increments over non-overlapping intervals [𝑡, 𝑡 + ℎ] with density given by:(1

𝜈

)ℎ/𝜈 𝑥 (ℎ/𝜈)−1 exp (−𝑥/𝜈)
Γ (ℎ/𝜈) ∀𝑥 > 0 (2.68)
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Chapter 2. Lévy Processes 2.4. Variance-Gamma

where 𝑡 + ℎ − 𝑡 = ℎ is the interval length and Γ(·) the Gamma function. The representation
of the VG process as a subordinate to a gamma process implies that the density of 𝑋𝑡 is
Normal conditionally on the realisation of the time-change dictated by 𝛾𝑡 (1, 𝜈):

𝑓𝑋𝑡 (𝑥) =
∫
R
𝑓𝑋𝑡 ,𝛾𝑡 (𝑥, 𝑔) 𝑑𝑔 =

∫
R
𝑓𝑋𝑡 |𝛾𝑡 (𝑥 | 𝑔) 𝑓𝛾𝑡 (𝑔) 𝑑𝑔

=
∫ ∞

0

1
𝜎
√︁
2𝜋𝑔

exp
[
− (𝑥 − 𝜃𝑔)2

2𝜎2𝑔

] (1
𝜈

) 𝑡/𝜈 𝑔 (𝑡/𝜈)−1 exp (−𝑔/𝜈)
Γ (𝑡/𝜈) 𝑑𝑔

=

(1
𝜈

) 𝑡/𝜈 2 exp(𝜃𝑥/𝜎2)
𝜎
√
2𝜋Γ(𝑡/𝜈)

(
𝑥2

2𝜎2/𝜈 + 𝜃2
) 𝑡

2𝜈− 1
4
K 𝑡

𝜈− 1
2


1
𝜎2

√︄
𝑥2

(2𝜎2
𝜈

+ 𝜃2
) (2.69)

where K is a modified Bessel function of the second kind defined in Madan et al. (1998).
Following a similar reasoning — that is, conditioning on the realisation of the gamma
process — one sees that the characteristic exponent 𝜓(𝑧) of {𝑋𝑡}𝑡≥0 is:

𝜓(𝑧) = −1
𝜈
log

(
1 − 𝑖𝜈𝜃𝑧 + 𝜎2𝑧2𝜈

2

)
(2.70)

As (2.67) defines a Lévy process, its characteristic function is linear in time 𝑡 and equal to:

Φ𝑡 (𝑧) = exp
{
𝑡

[
−1
𝜈
log

(
1 − 𝑖𝜈𝜃𝑧 + 𝜎2𝑧2𝜈

2

)]}
=

(
1 − 𝑖𝜈𝜃𝑧 + 𝜎2𝑧2𝜈

2

)− 𝑡
𝜈

(2.71)

One can find the 𝑘-th moment of (2.67) by evaluating the 𝑘-th derivative of (2.71) at 𝑧 = 0;
here, the first four moments of the VG process at time 𝑡 are given by:

E[𝑋𝑡] = 𝑡𝜃 (2.72)
V[𝑋𝑡] = 𝑡(𝜎2 + 𝜃2𝜈) (2.73)
E[𝑋3

𝑡 ] = 𝑡(2𝜃3𝜈2 + 3𝜎2𝜃𝜈) (2.74)
E[𝑋4

𝑡 ] = 𝑡(3𝜎4𝜈 + 12𝜎2𝜈2𝜃2 + 6𝜃4𝜈3) (2.75)

From (2.74), one sees that 𝜃 = 0 implies a symmetric distribution of 𝑋𝑡 as in Madan and
Seneta (1990) and Madan and Milne (1991); when 𝜃 ≠ 0, the sign of the asymmetry
corresponds to that of 𝜃. Furthermore, dividing (2.75) by the variance of 𝑋𝑡, thereby
obtaining its kurtosis, one sees that this equals 3(1 + 𝜈); in other words, 𝜈 represents the
percentage excess kurtosis over the Normal distribution.

As noted at the beginning of this section, the VG process proposed by Madan et al.
(1998) does not include any diffusive component. Such statement may be proven by
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finding the characteristic triplet of the process. Madan et al. (1998) show that the Lévy
measure 𝜈 is given by the following expression:

𝜈(𝑑𝑥) = exp(𝜃𝑥/𝜎2)
𝜈|𝑥 | exp

(
−
√︁
2/𝜈 + 𝜃2/𝜎2

𝜎
|𝑥 |

)
𝑑𝑥 (2.76)

By (2.31), one knows that the Lévy-Itô decomposition of a process with finite variation is:

𝑋𝑡 =

(
𝛾 −

∫
|𝑥 | ≤1

𝑥𝜈(𝑑𝑥)
)
𝑡 +

∫ 𝑡

0

∫
R
𝑥𝐽𝑋 (𝑑𝑠 × 𝑑𝑥) B 𝛾𝑡 +

∫ 𝑡

0

∫
R
𝑥𝐽𝑋 (𝑑𝑠 × 𝑑𝑥) (2.77)

To find 𝛾 it is sufficient to impose the expectation of (2.77) equal to (2.72):

E[𝑋𝑡] = E
[
𝛾𝑡 +

∫ 𝑡

0

∫
R
𝑥𝐽𝑋 (𝑑𝑠 × 𝑑𝑥)

]
= 𝑡

(
𝛾 +

∫
R
𝑥𝜈(𝑑𝑥)

)
= 𝑡𝜃 (2.78)

The integral above may be solved by plugging in the VG Lévy measure (2.76);, let:

𝐴 =
𝜃

𝜎2
and 𝐵 =

|𝜃|
𝜎2

√︄
1 + 2𝜎2

𝜈𝜃2
(2.79)

Then, the integral involving the Lévy measure has solution:∫
R
𝑥𝜈(𝑑𝑥) =

∫
R
𝑥
exp(𝜃𝑥/𝜎2)

𝜈|𝑥 | exp
(
−
√︁
2/𝜈 + 𝜃2/𝜎2

𝜎
|𝑥 |

)
𝑑𝑥

=
∫
R

𝑥

𝜈|𝑥 | 𝑒
𝐴𝑥−𝐵 |𝑥 | =

∫ ∞

0

1
𝜈
𝑒(𝐴−𝐵)𝑥 −

∫ 0

−∞

1
𝜈
𝑒(𝐴+𝐵)𝑥 =

2𝐴
𝜈(𝐵2 − 𝐴2) = 𝜃 (2.80)

Time

(B

Time

'B

Figure 2.7 Left: Sample paths of a variance-gamma process over an interval of one year, with
𝜃 = −0.10, 𝜎 = 0.20, and 𝜈 = 0.10. The last parameter entails the distribution of (log-)prices has
an excess kurtosis around 10%, or 3.30. Right: Log-returns associated to the (blue) realisation.
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As a result, 𝛾 = 0 and the Lévy-Itô decomposition for the VG process is simply:

𝑋𝑡 =
∫ 𝑡

0

∫
R
𝑥𝐽𝑋 (𝑑𝑠 × 𝑑𝑥) (2.81)

Despite being the result of the subordination of a purely diffusive process — that is,
Brownian motion — all the information regarding {𝑋𝑡}𝑡≥0 is contained in its Lévy measure,
making the variance-gamma model a pure jump process. The characteristic triplet is then:(∫

|𝑥 | ≤1
𝑥𝜈(𝑑𝑥), 0, 𝜈

)
(2.82)

The absence of a diffusive component is evident in Figure 2.7, presenting one sample path
of a VG process along with the (logarithmic) returns corresponding to such realisation.

When it comes to option pricing, the framework proposed by Madan et al. (1998)
corresponds to an exponential Lévy model — that is, the log-price of the underlying is
assumed to follow the dynamics dictated by (2.67). In particular, under an equivalent
martingale measure Q, at any time 𝑡 one has:

𝑆𝑡 = 𝑆0 exp(𝑟𝑡 + 𝑋𝑡) =⇒ 𝑆𝑡 = 𝑆0 exp(𝑋𝑡) (2.83)

For 𝑆𝑡 to define a martingale under Q, one needs to subtract a correction term 𝜔 which
can be found by evaluating the Lévy exponent of the VG process at 𝑧 = 𝑖−1:

𝜔 = 𝜓

(1
𝑖

)
= −1

𝜈
log

(
1 − 𝜈𝜃 − 𝜎2𝜈

2

)
(2.84)

Then, 𝑆𝑡 = 𝑆0 exp(𝑋𝑡 − 𝜔𝑡) defines a Q-martingale:

EQ [𝑆𝑡 | F0] = EQ [𝑆0 exp(𝑋𝑡 − 𝜔𝑡) | F0] = 𝑆0 (2.85)

Under these dynamics, Madan et al. (1998) were able to derive a closed-formula for
the premium charged on European options. For instance, the price of a call when the
underlying follows an exponential VG process is given by:

𝑉𝑡 = 𝑆𝑡𝑒
−𝑟𝜏Ψ (𝛼1, 𝛽1, 𝜏/𝜈) − 𝐾𝑒−𝑟𝜏Ψ (𝛼2, 𝛽2, 𝜏/𝜈) (2.86)

where Ψ(·) is defined by Madan et al. (1998) in terms of the modified Bessel function of
the second kind and the degenerate hypergeometric function of two variables, and

𝛼1 =
log(𝑆𝑡/𝐾) − 𝜔𝑡

𝜎

√︂
1 − 𝜈(𝜃 + 𝜎2/2)

𝜈
𝛽1 =

𝜃 + 𝜎2
𝜎

√︂
𝜈

1 − 𝜈(𝜃 + 𝜎2/2) (2.87)

𝛼2 =
log(𝑆𝑡/𝐾) − 𝜔𝑡

𝜎

√︂
1
𝜈

𝛽2 =
𝜃
√
𝜈

𝜎
(2.88)
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Figure 2.8 Volatility surfaces generated by the variance-gamma model under Q. The left column
shows how the volatility profile changes for different values of the Brownian drift — that is, from
top to bottom 𝜃 = −0.50, 0.00, and 0.50. The right column does the same for three distinct
values of the gamma process’s rate 𝜈 — that is, from top to bottom 𝜈 = 0.10, 0.50, and 1.00. The
(annualised) volatility of the subordinate Brownian motion is kept constant at 𝜎 = 0.20.



Chapter 2. Lévy Processes 2.4. Variance-Gamma

Finally, Figure 2.8 shows the implied volatility surface Σ𝑡 : (𝐾, 𝑇) → Σ𝑡 (𝐾, 𝑇) in the VG
model of Madan et al. (1998) for different values of 𝜃 and 𝜈. In line with the observations
above, changing the skewness 𝜃 of the (log-)price 𝜃 affects the shape of the volatility
smile, especially at short maturities. On the other hand, caeteris paribus, increasing the
𝜈 parameter leads to a more pronounced volatility skew which, in any case, tends to be
more peaked than that arising from a jump-diffusion model. Regardless of the parameter
set Θ = (𝜃, 𝜎, 𝜈) chosen, however, the asymmetric VG model proposed by Madan et al.
(1998) does not adequately reproduce the surface at longer maturities. In order to obtain
a good fit even for contracts with an expiration further out in time, it is essential to relax
the assumption of independent increments at the basis of each exponential Lévy process
discussed so far. The leptokurtic distributions of returns are, in fact, only a tiny part of
the deviations from the BSM model, which include a positive correlation between the
magnitude of changes in returns. The next chapter is devoted to discussing such additional
stylised facts, along with option pricing models which explicitly account for them.
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3
Time-Varying Volatility

The previous chapter focused on the relaxation of the assumption of continuous price paths
inherent in the geometric Brownian motion employed by Black and Scholes (1973) and
Merton (1973). The BSM model, however, builds on another fundamental assumption:
namely, a constant volatility for the underlying asset. Just as the exponential Lévy processes
discussed in Chapter 2 improve on the BSM framework by allowing for discontinuity points
in the price process, stochastic volatility (SV) models are based on the idea that volatility
itself follows a stochastic process. The additional randomness introduced by these class
of models eventually leads to leptokurtic return distributions resembling the empirically
observed ones (Gatheral, 2011) such as those presented in Figure 2.1.

Before delving into a discussion of models designed to relax the assumption of constant
volatility imposed by Black and Scholes (1973), it is appropriate to proceed with a brief
digression on some characteristic properties of the variability of returns; in particular:

■ Volatility tends too cluster— that is, significant returns follow wide price swings while
more minor variations often predict negligible returns. From an econometric point of
view, this empirical observation implies that the volatility time series is characterised
by the presence of significant autocorrelation 𝜌(ℎ), defined as the correlation of a
time series with itself lagged by ℎ periods, for several lags ℎ:

𝜌(ℎ) B Corr[𝑋𝑡, 𝑋𝑡−ℎ] = C[𝑋𝑡, 𝑋𝑡−ℎ]
V[𝑋𝑡] (3.1)

The value of such function, for a series made up of 𝑛 observations, may be computed
up to a lag of ℎ = ⌊𝑛/4⌋. Furthermore, one may consider the autocorrelation at a
given lag statistically significant should its value lie outside the confidence bands
defined by ±1.96/𝑛−1/2; the latter (𝑛−1/2) being the standard deviation of 𝜌(ℎ) for a
so-called white noise process, unpredictable by definition. In order to keep things
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simple at this stage, the (annualised) volatility time series of Apple returns presented
in Figure 3.1b is estimated through the method proposed by Rogers and Satchell
(1991) based on the opening, closing, minimum, and maximum daily prices of the
stock. Specifically, on a given day 𝑡 the (daily) volatility is calculated as:

𝑣𝑡 =

√︄
log

(
𝐻𝑡
𝑆𝑡

)
log

(
𝐻𝑡
𝑂𝑡

)
+ log

(
𝐿𝑡
𝑆𝑡

)
log

(
𝐿𝑡
𝑂𝑡

)
(3.2)

where 𝐻𝑡, 𝐿𝑡, 𝑂𝑡, and 𝑆𝑡 are the maximum, minimum, opening, and closing price,
respectively, at time 𝑡. The volatility clusters are evident even by just an analysis of
the graph presented, while more rigorous evidence is provided by the autocorrelation
function for the first 50 lags in Figure 3.1c. It is thus obvious how the observed
volatility at day 𝑡 is (significantly) affected by its value recorded up to forty days
earlier. Furthermore, both Figure 3.1b and Figure 3.1c reveal the mean-reverting
nature of the volatility process, which indeed tends to fluctuate around a “long-run”
value as shown by the (slowly) decaying autocorrelation function.

■ Volatility and returns share a negative correlation — that is, volatility is larger
during market crashes and the latter have a greater impact on the riskiness of an
asset than bullish markets. Such phenomenon is known as leverage effect and was
first pointed out by Black (1976), which pointed out how a decreasing spot price
leads to a rise in the leverage ratio of the company thereby increasing its perceived
riskiness. Such explanation, however, is neither capable of justifying the observed
magnitude of the relationship (Schwert, 1988) nor the presence of the leverage effect
in market indices aggregating the performance of several companies. As a result, a
number of explanations based on behavioural finance theories and heterogeneous
agent models have been proposed over the years; for instance, the presence of noise
traders subject to herding behaviour might explain the increased volatility in bearish
markets (Avramov et al., 2004). The occurrence of a leverage effect is evident from
the data presented in Table 3.1, showing the correlation of volatility 𝑣𝑡 with positive
(𝑅+𝑡−ℎ B [𝑅𝑡−ℎ]+) and negative (𝑅−

𝑡−ℎ B [−𝑅𝑡−ℎ]+) shocks up to eight lags ℎ = 1, . . . , 8.
In particular, it is clear how the correlation between volatility and returns is negative
and the fact that negative shocks have a greater impact on 𝑣𝑡 than positive shocks.

The frequency with which these properties occur make them true stylised facts of volatility,
much like the leptokurtic distributions of returns presented in Chapter 2.

The widespread presence of the empirical observations just discussed clarifies the
inadequacy of a constant volatility specification for the underlying price process; an
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(a) Time series of the (adjusted) closing prices recorded for the Apple stock in the five-year span ranging from
August 2017 to August 2022.
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(b) Annualised volatility estimated each day through the approach proposed by based on the opening, closing,
minimum, and maximum daily prices of the stock.
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(c) Sample autocorrelation of the volatility time series plotted in (b) for the first fifty lags, along with the 95%
confidence bands under the null hypothesis of a white noise process.

Figure 3.1 Estimated annualised volatility of the Apple stock through the method proposed by
Rogers and Satchell (1991), along with the corresponding sample autocorrelation function for the
first fifty lags. The plots in (b) and (c) make clear how volatility itself is stochastic and characterised
by a strong degree of autocorrelation leading to clustering.
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ℎ = 1 ℎ = 2 ℎ = 3 ℎ = 4 ℎ = 5 ℎ = 6 ℎ = 7 ℎ = 8

Corr[𝑣𝑡, 𝑅𝑡−ℎ] -0.168 -0.127 -0.063 -0.084 -0.082 -0.066 -0.107 -0.043
Corr[𝑣𝑡, 𝑅+𝑡−ℎ] 0.145 0.092 0.143 0.108 0.120 0.097 0.055 0.087
Corr[𝑣𝑡, 𝑅−

𝑡−ℎ
] 0.411 0.293 0.239 0.239 0.248 0.200 0.225 0.153

Table 3.1 Correlation between volatility 𝑣𝑡 and log-returns 𝑅𝑡−ℎ for various lags ℎ. The negative
relationship is evident for all the lags considered and negative shocks 𝑅−

𝑡−ℎ have a (much) greater
impact on volatility than positive shocks 𝑅+𝑡−ℎ.

immediate improvement would then consist in the introduction of a deterministic function
of time in the geometric Brownian motion underpinning the BSM framework. In such a
case, the SDE dictating the dynamics of the underlying price under Q would read:

𝑑𝑆𝑡 = 𝑟𝑆𝑡 𝑑𝑡 + 𝜎𝑡𝑆𝑡 𝑑𝑊Q𝑡 (3.3)

A straightforward application of the Itô-Doeblin formula with 𝑓𝑡 (𝑆𝑡) = log(𝑆𝑡), however,
reveals that the terminal stock price is given by:

𝑆𝑇 = 𝑆𝑡 exp
[
𝑟𝜏 − 1

2

∫ 𝑇

𝑡
𝜎2𝑠 𝑑𝑠 +

∫ 𝑇

𝑡
𝜎𝑠 𝑑𝑊𝑠

]
(3.4)

Clearly, such configuration still implies that log-prices are normally distributed:

𝑋𝑇 ∼ N
(
𝑋𝑡 +

(
𝑟 − 1

2𝜎
2
)
𝜏, 𝜎2𝜏

)
(3.5)

where 𝜎2 B 𝜏
∫ 𝑇

𝑡
𝜎2𝑠 𝑑𝑠. It follows that one can simply price options relying on (2.4) by

simply replacing the constant 𝜎 with the root mean squared volatility 𝜎2. Furthermore, just
allowing for time-dependent volatility keeps the reasoning in a complete market framework,
leading to a higher mathematical tractability while providing a poor representation of
options markets. A slight generalisation of (3.3) would make volatility dependent on both
time and the spot price of the underlying, as discussed in the next section.

3.1 | Local Volatility
The approach proposed by Cox and Ross (1976) is among the first frameworks allowing
the volatility of the underlying to depend on both the current time and the spot price of the
underlying. In particular, Cox and Ross (1976) focused on the so-called class of constant
elasticity of variance (CEV) models, wherein volatility is given by 𝜎(𝑡, 𝑆𝑡) = 𝛿𝑆𝛼−1𝑡 with
𝛿 ∈ R and 𝛼 ∈ (0, 1). Such class of models also allows for option pricing through closed
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formulas, as shown by Schroder (1989); moreover, such values lead to a skewed volatility
surface thereby improving on the constant volatility paradigm of the BSM framework.

Before delving into pricing models that specify a functional form for the process
followed by the underlying’s volatility, it is worth briefly discussing one of the best-known
non-parametric approaches that purport to reproduce the volatility surface (erroneously)
predicted constant by the BSM assumptions. In particular, the remainder of this section
is concerned with the discussion of the (forward) PDE proposed by Dupire (1994), who
started from the assumption of a time- and stock-dependent volatility in the GBM SDE. In
other words, based on Dupire’s assumptions, (1.18) becomes:

𝑑𝑆𝑡 = 𝑟𝑆𝑡 𝑑𝑡 + 𝜎(𝑡, 𝑆𝑡)𝑆𝑡 𝑑𝑊Q𝑡 B 𝑟𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊Q𝑡 (3.6)

where it is understood that the dynamics are considered under the equivalent martingale
measure, and the underlying is assumed to pay no dividends. In this context, 𝜎(𝑡, 𝑆𝑡) is
known as local volatility as it is proxied by a deterministic function of both the current
time and the underlying’s spot price. In particular, Dupire (1994) showed the existence of
a (local) volatility function 𝜎(𝑡, 𝑆𝑡) consistent with the surface observed on a given day.

One derivation of the Dupire’s PDE starts from the application of the Itô-Doeblin
formula to the payoff of a European call — 𝑓 = [𝑆𝑇 − 𝐾]+ — when the dynamics of the
underlying are given by (3.6). As remarked in Chapter 1, however, the application of
the Itô-Doeblin formula is subject to the function considered being a smooth (twice)
differentiable function; this is clearly not the case for the payoff function of an option,
which is intrinsically nonlinear as shown in Figure 3.2 below. Nevertheless, the relevant
derivatives may be calculated by resorting to special functions such as the Dirac’s measure
discussed in Appendix A. In particular, the first two derivatives of the call payoff, with
respect to both the underlying and the exercise price, are given by:

𝜕

𝜕𝑆𝑇
[𝑆𝑇 − 𝐾]+ =

𝜕

𝜕𝑆𝑇
𝟙𝑆𝑇>𝐾 (𝑆𝑇 − 𝐾) = 𝟙𝑆𝑇>𝐾

𝜕

𝜕𝐾
[𝑆𝑇 − 𝐾]+ = −𝟙𝑆𝑇>𝐾 (3.7)

𝜕2

𝜕𝑆2𝑇
[𝑆𝑇 − 𝐾]+ =

𝜕

𝜕𝑆𝑇
𝟙𝑆𝑇>𝐾 = 𝛿(𝑆𝑇 − 𝐾) 𝜕2

𝜕𝐾2 [𝑆𝑇 − 𝐾]+ = 𝛿(𝑆𝑇 − 𝐾) (3.8)

As a result, applying the Itô-Doeblin formula reveals that the dynamics of the call’s payoff
are described by the following SDE:

𝑑 𝑓𝑇 =
𝜕 𝑓

𝜕𝑇
𝑑𝑇 + 𝜕 𝑓

𝜕𝑆𝑇
𝑑𝑆𝑇 + 1

2
𝜕2 𝑓
𝜕𝑆2𝑇

(𝑑𝑆𝑇 )2 (3.9)

=

[
𝟙𝑆𝑇>𝐾𝑟𝑆𝑇 +

𝛿(𝑆𝑇 − 𝐾)
2 𝜎2𝑇𝑆

2
𝑇

]
𝑑𝑇 + 𝟙𝑆𝑇>𝐾𝜎𝑆𝑇 𝑑𝑊𝑇 (3.10)
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The partial derivative with respect to the maturity 𝑇 of the expectation of 𝑑 𝑓𝑇 is then:

EQ [𝑑 𝑓𝑇 ] = EQ
[
𝟙𝑆𝑇>𝐾𝑟𝑆𝑇 +

𝛿(𝑆𝑇 − 𝐾)
2 𝜎2𝑇𝑆

2
𝑇

]
𝑑𝑇 (3.11)

𝜕

𝜕𝑇
EQ [𝑑 𝑓𝑇 ] = EQ

[
𝟙𝑆𝑇>𝐾𝑟𝑆𝑇 +

𝛿(𝑆𝑇 − 𝐾)
2 𝜎2𝑇𝑆

2
𝑇

]
(3.12)

To reach the Dupire’s PDE, one should express (3.12) as a function of the call price 𝑉 (𝐾, 𝑇):
𝜕

𝜕𝑇
EQ [𝑑 𝑓𝑇 ] = 𝑟 EQ

[
𝟙𝑆𝑇>𝐾𝑆𝑇

]︸          ︷︷          ︸
𝐴

+12 EQ
[
𝛿(𝑆𝑇 − 𝐾)𝜎2𝑇𝑆2𝑇

]︸                    ︷︷                    ︸
𝐵

(3.13)

As presented in Chapter 1 and remarked in Chapter 2, the (first) fundamental theorem of
asset pricing ensures the premium charged for a call option is given by the expectation of its
terminal payoff under the risk neutral measure — that is, 𝐶(𝐾, 𝑇) = 𝑒−𝑟𝑇EQ

[
𝟙𝑆𝑇>𝐾 (𝑆𝑇 − 𝐾)] .

Evaluating 𝐴 and 𝐵 separately by leveraging on (3.7) and (3.8), one sees that:

𝐴 : EQ
[
𝟙𝑆𝑇>𝐾𝑆𝑇

]
= 𝑒𝑟𝑇𝐶(𝐾, 𝑇) − 𝐾𝑒𝑟𝑇

𝜕

𝜕𝐾
𝐶(𝐾, 𝑇) (3.14)

𝐵 : EQ
[
𝛿(𝑆𝑇 − 𝐾)𝜎2𝑇𝑆2𝑇

]
= 𝐾2EQ

[
𝛿(𝑆𝑇 − 𝐾)𝜎2𝑇

]
= 𝐾2EQ

[
𝜎2𝑇 | 𝑆𝑇 = 𝐾

] 𝜕2𝑒𝑟𝑇𝐶(𝐾, 𝑇)
𝜕𝐾2 (3.15)

where the first equality in (3.15) follows from the fact that 𝛿(𝑆𝑇 − 𝐾) ≠ 0 ⇐⇒ 𝑆𝑇 = 𝐾.
Letting 𝐶𝑐 (𝐾, 𝑇) B 𝑒𝑟𝑇𝐶(𝐾, 𝑇), one can then plug (3.14) and (3.15) into (3.13) to reach:

𝜕𝐶𝑐 (𝐾, 𝑇)
𝜕𝑇

= 𝑟𝐶𝑐 (𝐾, 𝑇) − 𝑟𝐾
𝜕𝐶𝑐 (𝐾, 𝑇)

𝜕𝐾
+ 1
2𝐾

2EQ
[
𝜎2𝑇 | 𝑆𝑇 = 𝐾

] 𝜕2𝐶𝑐 (𝐾, 𝑇)
𝜕𝐾2 (3.16)

𝐾 𝑆𝑇

[𝑆𝑇 − 𝐾 ]+

𝐾 𝑆𝑇

𝟙𝑆𝑇 >𝐾

Figure 3.2 Left: Plot of the max function [𝑆𝑇 − 𝐾]+ B max{𝑆𝑇 − 𝐾, 0} corresponding to the payoff
at the maturity of a European call option. Right: Indicator function corresponding to the first
derivative of [𝑆𝑇 − 𝐾]+, where differentiation is understood to be in the generalised functions sense.
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Finally, “solving” for the local volatility in the equation above the PDE becomes:

EQ
[
𝜎2𝑇 | 𝑆𝑇 = 𝐾

]
=

2
𝐾2

[
𝜕𝐶𝑐 (𝐾, 𝑇)

𝜕𝑇
− 𝑟𝐶𝑐 (𝐾, 𝑇) + 𝑟𝐾 𝜕𝐶

𝑐 (𝐾, 𝑇)
𝜕𝐾

] [
𝜕2𝐶𝑐 (𝐾, 𝑇)

𝜕𝐾2

]−1
(3.17)

While (3.17) provides an expression for the (local) volatility surface in terms of the observed
market prices, the framework proposed by Dupire (1994) is built on a non-parametric
approach, and as such it does not specify the time evolution of the (local) volatility surface.
In other words, while providing a perfect fit to the existing surface, the model should be
calibrated each time the option prices quoted on the market move. Finally, calibrating the
Dupire’s model assumes the existence of a continuum of expirations and exercise prices; as
a result, for a pratical implementation one would need to resort to interpolation techniques.

3.2 | Stochastic Volatility
The disadvantages of the local volatility models discussed in the previous section, along
with the stylised facts presented at the beginning of this chapter, prompt the need for a
functional, parametric specification of the dynamics for the underlying’s volatility process.
Over the years, several authors proposed modelling volatility as a random variable. For
instance, Scott (1987) and Hull and White (1987) were among the first to generalise the
BSM framework by allowing for stochastic volatility; the authors, however, were not able to
provide closed-form solutions to price options contracts and resorted to numerical methods
to solve the two-dimensional pricing PDEs. Later on, Eisenberg and Jarrow (1991) as well
as Stein and Stein (1991) proposed a different approach wherein the premium charged
on a European option is obtained by averaging the BSM prices over all possible volatility
paths. The derivation of the two models, however, was built on the assumption of zero
correlation between returns and volatility. The first framework explicitly accounting for
both the leverage effect and the mean reverting nature of 𝑣𝑡 is due to Heston (1993).
Consider a generic SV framework based on the bivariate diffusion described by:

𝑑𝑆𝑡 = 𝜇𝑆𝑡 𝑑𝑡 +
√
𝑣𝑡𝑆𝑡 𝑑𝑊1,𝑡 (3.18)

𝑑𝑣𝑡 = 𝑎(𝑡, 𝑆𝑡, 𝑣𝑡)𝑆𝑡 𝑑𝑡 + 𝜎𝑏(𝑡, 𝑆𝑡, 𝑣𝑡)
√
𝑣𝑡 𝑑𝑊2,𝑡 (3.19)

where {𝑊1,𝑡}𝑡≥0 and {𝑊2,𝑡}𝑡≥0 are two correlated BMs so that E[𝑊1,𝑡𝑊2,𝑡] = 𝜌𝑡, or equiva-
lently E[𝑑𝑊1,𝑡 𝑑𝑊2,𝑡] = 𝜌 𝑑𝑡. Indeed, one has:

𝜌 =
E[𝑊1,𝑡,𝑊2,𝑡] − E[𝑊1,𝑡]E[𝑊2,𝑡]√︁

V[𝑊1,𝑡]V[𝑊2,𝑡]
=
E[𝑊1,𝑡,𝑊2,𝑡]√

𝑡2
=⇒ 𝜌𝑡 = E[𝑊1,𝑡𝑊2,𝑡] (3.20)
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In his original derivation, Heston (1993) assumed the dynamics of volatility √
𝑣𝑡 are

dictated by a Ornstein-Uhlenbeck (OU) process as in Stein and Stein (1991):

𝑑
√
𝑣𝑡 = −𝛽√𝑣𝑡 𝑑𝑡 + 𝛿 𝑑𝑊2,𝑡 (3.21)

Applying the Itô-Doeblin formula with 𝑓 (𝑡, 𝑣𝑡) = √
𝑣𝑡

2 then reveals that the process followed
by the variance of the spot price is described by the following SDE:

𝑑𝑣𝑡 =
𝜕𝑣

𝜕𝑡
𝑑𝑡 + 𝜕𝑣

𝜕
√
𝑣
𝑑
√
𝑣𝑡 + 1

2
𝜕2𝑣

𝜕
√
𝑣
2 (𝑑

√
𝑣𝑡)2

= 2√𝑣𝑡 (𝛿 𝑑𝑊2,𝑡 − 𝛽
√
𝑣𝑡 𝑑𝑡) + 𝛿2 𝑑𝑡

= (𝛿2 − 2𝛽𝑣𝑡) 𝑑𝑡 + 2𝛿√𝑣𝑡 𝑑𝑊2,𝑡 (3.22)

which may be also expressed in the form of the well-known square-root process firstly
employed by Cox et al. (1985) to model interest rates:

𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡) 𝑑𝑡 + 𝜎
√
𝑣𝑡 𝑑𝑊2,𝑡 (3.23)

Here, 𝜃 B 𝛿2/2𝛽 denotes the long-term mean of the variance process — that is, by
construction one has lim𝑡→∞ E[𝑣𝑡] = 𝜃. In general, the variance of the spot price oscillates
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Figure 3.3Monte Carlo simulation of ten volatility sample paths dictated by the square-root process
described above with 𝜅 = 3.0, 𝜃 = 0.04, and 𝜎 = 0.20 (0.50) on the left (right) with corresponding
non-central 𝜒2 distributions at five different times. In the plot showed on the right — where the
Feller condition does not hold — the volatility process tends to cluster around zero.
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around 𝜃 and reverts to it at a speed dictated by 𝜅 B 2𝛽 with oscillations whose magnitude
is specified by the volatility of volatility, 𝜎 = 2𝛿. The representation (3.23) for the variance
process ensures the latter will be strictly positive as long as the Feller condition (𝜎2 < 2𝜅𝜃)
is verified (Feller, 1951). Overall, it is known the variance process {𝑣𝑡}𝑡≥0 at 𝑡 is a random
variable which induces a non-central 𝜒2 distribution scaled by 𝑐 ∈ R with 𝑘 degrees of
freedom and noncentrality parameter 𝜆 given by:

𝑐 =
(1 − 𝑒−𝑡𝜅)𝜎2

4𝜅 ∧ 𝑘 =
4𝜅𝜃
𝜎2

∧ 𝜆 =
4𝜅𝑣0𝑒−𝑡𝜅

(1 − 𝑒−𝑡𝜅)𝜎2 (3.24)

The plots in Figure 3.3 present paths of the variance process otained by discretising (3.23)
both with and without the Feller condition being verified. Clearly, in the latter case the
density tends to be concentrated around the origin — that is, 𝑣𝑡 = 0.

One may follow a procedure similar to that of Chapter 1 to derive the pricing PDE
needed to value an option under the Heston’s dynamics. Here, however, the methodology
will be slightly more involved as the presence of an additional source of randomness as the
diffusive component in the dynamics of the underlying’s variance leads to an incomplete
market. As a result, rebalancing a position in the underlying is not sufficient to replicate
the option and an additional (longer-maturity) contract is required to hedge the risks
away. Suppose one is interested in valuing an option worth 𝑉𝑡 at time 𝑡, and by standard
assumptions consider another option worth 𝑈𝑡 and a risk-free money market account which
evolves according to 𝑑𝐵𝑡 = 𝑟𝐵𝑡𝑑𝑡. Just as the inclusion of a discontinuous component
in the underlying price process prompted the need for an extension of the Itô-Doeblin
formula discussed in Chapter 2, with a bivariate diffusion one needs to account for the
additional source of randomness driving the (variance) process. In particular, for two
separate stochastic processes {𝑋𝑡}𝑡≥0 and {𝑌𝑡}𝑡≥0, (1.23) becomes:

𝑑 𝑓𝑡 =
𝜕 𝑓

𝜕𝑡
𝑑𝑡 + 𝜕 𝑓

𝜕𝑋
𝑑𝑋𝑡 + 1

2
𝜕2 𝑓
𝜕𝑋2 (𝑑𝑋𝑡)

2 + 𝜕 𝑓

𝜕𝑌
𝑑𝑌𝑡 + 1

2
𝜕2 𝑓
𝜕𝑌2 (𝑑𝑌𝑡)

2 + 𝜕2 𝑓
𝜕𝑋𝜕𝑌

𝑑𝑋𝑡 𝑑𝑌𝑡 (3.25)

In other words, the formula remains fairly simple up to the inclusion of the relevant
derivatives for the second process considered as well as a cross-term accounting for the
(quadratic) covariation of {𝑋𝑡}𝑡≥0 and {𝑌𝑡}𝑡≥0. Therefore, in the framework proposed by
Heston (1993), the value 𝑉𝑡 of the option obeys the dynamics described by:

𝑑𝑉𝑡 =
𝜕𝑉

𝜕𝑡
𝑑𝑡 + 𝜕𝑉

𝜕𝑆
𝑑𝑆𝑡 + 1

2
𝜕2𝑉
𝜕𝑆2

(𝑑𝑆𝑡)2 + 𝜕𝑉

𝜕𝑣
𝑑𝑣𝑡 + 1

2
𝜕2𝑉
𝜕𝑣2

(𝑑𝑣𝑡)2 + 𝜕2𝑉
𝜕𝑆𝜕𝑣

𝑑𝑆𝑡 𝑑𝑣𝑡

=
𝜕𝑉

𝜕𝑡
𝑑𝑡 + 𝜕𝑉

𝜕𝑆
𝑑𝑆𝑡 + 1

2
𝜕2𝑉
𝜕𝑆2

𝑣𝑡𝑆
2
𝑡 𝑑𝑡 +

𝜕𝑉

𝜕𝑣
𝑑𝑣𝑡 + 1

2
𝜕2𝑉
𝜕𝑣2

𝜎2𝑣𝑡 𝑑𝑡 + 𝜕2𝑉
𝜕𝑆𝜕𝑣

𝜌𝜎𝑆𝑡𝑣𝑡 𝑑𝑡

=

[
𝜕𝑉

𝜕𝑡
+ 1
2
𝜕2𝑉
𝜕𝑆2

𝑣𝑡𝑆
2
𝑡 +

1
2
𝜕2𝑉
𝜕𝑣2

𝜎2𝑣𝑡 + 𝜕2𝑉
𝜕𝑆𝜕𝑣

𝜌𝜎𝑆𝑡𝑣𝑡

]
𝑑𝑡 + 𝜕𝑉

𝜕𝑆
𝑑𝑆𝑡 + 𝜕𝑉

𝜕𝑣
𝑑𝑣𝑡 (3.26)
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To ease notation further on, denote the differential operator above by L𝑉 (𝑡, 𝑆, 𝑣):

L𝑉 (𝑡, 𝑆, 𝑣) B 𝜕𝑉

𝜕𝑡
+ 1
2
𝜕2𝑉
𝜕𝑆2

𝑣𝑡𝑆
2
𝑡 +

1
2
𝜕2𝑉
𝜕𝑣2

𝜎2𝑣𝑡 + 𝜕2𝑉
𝜕𝑆𝜕𝑣

𝜌𝜎𝑆𝑡𝑣𝑡 (3.27)

The application of the no-arbitrage principle requires the construction of a replicating
(self-financing) portfolio; consider investing Δ units in the underlying, Σ units in the longer
maturity option, and 𝛼 units in the money market account so that:

𝑉𝑡 = Δ𝑆𝑡 + Σ𝑈𝑡 + 𝛼𝐵𝑡 =⇒ 𝑑𝑉𝑡 = Δ 𝑑𝑆𝑡 + Σ 𝑑𝑈𝑡 + 𝛼 𝑑𝐵𝑡 (3.28)

Substituting for the dynamics for the two options and the money market account, one gets:

L𝑉 (𝑡, 𝑆, 𝑣) 𝑑𝑡 + 𝜕𝑉
𝜕𝑆

𝑑𝑆𝑡 + 𝜕𝑉
𝜕𝑣

𝑑𝑣𝑡 = Δ 𝑑𝑆𝑡 +Σ

[
L𝑈 (𝑡, 𝑆, 𝑣) 𝑑𝑡 + 𝜕𝑈

𝜕𝑆
𝑑𝑆𝑡 + 𝜕𝑈

𝜕𝑣
𝑑𝑣𝑡

]
+𝛼𝑟𝐵 𝑑𝑡 (3.29)

Similarly to the derivation of the BSM fundamental PDE, one can then remove the ran-
domness in the portfolio arising from the two Brownian motions by imposing:

𝜕𝑉

𝜕𝑆
= Δ + Σ

𝜕𝑈

𝜕𝑆
=⇒ Δ =

𝜕𝑉

𝜕𝑆
− Σ

𝜕𝑈

𝜕𝑆
(3.30)

𝜕𝑉

𝜕𝑣
= Σ

𝜕𝑈

𝜕𝑣
=⇒ Σ =

𝜕𝑉

𝜕𝑣

/
𝜕𝑈

𝜕𝑣
(3.31)

Plugging the values just found into (3.29) the latter simplifies significantly to:

L𝑉 (𝑡, 𝑆, 𝑣) 𝑑𝑡 = ΣL𝑈 (𝑡, 𝑆, 𝑣) 𝑑𝑡 + 𝛼𝑟𝐵 𝑑𝑡

= ΣL𝑈 (𝑡, 𝑆, 𝑣) 𝑑𝑡 + 𝑟
[
𝑉𝑡 − 𝜕𝑉

𝜕𝑆
𝑆𝑡 + Σ

𝜕𝑈

𝜕𝑆
𝑆𝑡 − Σ𝑈𝑡

]
𝑑𝑡 (3.32)

Moving all the terms related to the first option’s value on the left-hand side, and substituting
for the units Σ invested in the longer maturity option from (3.31), one reaches:

L𝑉 (𝑡, 𝑆, 𝑣) − 𝑟𝑉𝑡 + 𝑟𝑆𝑡 𝜕𝑉
𝜕𝑆

𝜕𝑉/𝜕𝑣 =
L𝑈 (𝑡, 𝑆, 𝑣) − 𝑟𝑈𝑡 + 𝑟𝑆𝑡 𝜕𝑈

𝜕𝑆
𝜕𝑈/𝜕𝑣 (3.33)

As the (sub-)PDE on the left-hand side of (3.33) only concerns the option to be valued
while the terms on the right-hand side only refer to the option used for vega-hedging: it
follows that the identity must equal a function 𝑓 (𝑡, 𝑆𝑡, 𝑣𝑡) of the independent variables. In
particular, focusing on the left-hand side and expanding the differential operator one has:

𝜕𝑉

𝜕𝑡
+ 1
2
𝜕2𝑉
𝜕𝑆2

𝑣𝑡𝑆
2
𝑡 +

1
2
𝜕2𝑉
𝜕𝑣2

𝜎2𝑣𝑡 + 𝜕2𝑉
𝜕𝑆𝜕𝑣

𝜌𝜎𝑆𝑡𝑣𝑡 − 𝑟𝑉𝑡 + 𝑟𝑆𝑡 𝜕𝑉
𝜕𝑆
B

𝜕𝑉

𝜕𝑣
𝑓 (𝑡, 𝑆𝑡, 𝑣𝑡) (3.34)

The 𝑓 (𝑡, 𝑆𝑡, 𝑣𝑡) function is multiplied by the first partial derivative of the option’s value with
respect to the underlying’s variance; hence, in analogy with the BSM fundamental PDE,
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𝑓 (𝑡, 𝑆𝑡, 𝑣𝑡) should be some function of the variance process’s risk-neutral drift. To start,
the bivariate diffusion governing the spot price and its variance may be equally expressed
relying on two uncorrelated BMs {𝑍1,𝑡}𝑡≥0 and {𝑍2,𝑡}𝑡≥0; in particular, let:

𝑑𝑊1,𝑡 =
√︃
1 − 𝜌2 𝑑𝑍1,𝑡 + 𝜌 𝑑𝑍2,𝑡 (3.35)

𝑑𝑊2,𝑡 = 𝑑𝑍2,𝑡 (3.36)

for all 𝑡 ≥ 0. As a result, the two SDEs become:

𝑑𝑆𝑡 = 𝜇𝑆𝑡 𝑑𝑡 +
√︃
(1 − 𝜌2) (𝑣𝑡)𝑆𝑡 𝑑𝑍1,𝑡 +

√
𝑣𝑡𝜌𝑆𝑡 𝑑𝑍2,𝑡 (3.37)

𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡) 𝑑𝑡 + 𝜎
√
𝑣𝑡 𝑑𝑍2,𝑡 (3.38)

Under a given EMM∗ Q𝜉 ∈ Q, in analogy with (1.38), the two BMs will be replaced by
their risk-neutral counterparts given by:

𝑑𝑍
Q𝜉
1,𝑡 = 𝑑𝑍1,𝑡 +

𝜇 − 𝑟 − 𝜉𝜌
√
𝑣𝑡√︁

(1 − 𝜌2) (𝑣𝑡)
𝑑𝑡 (3.39)

𝑑𝑍
Q𝜉
2,𝑡 = 𝑑𝑍2,𝑡 + 𝜉 𝑑𝑡 (3.40)

where 𝜉 stands for the market price of volatility, and the modified Sharpe ratio appearing
in (3.39) ensures the stock price will grow at the risk-free rate:

𝑑𝑆𝑡
𝑆𝑡

= 𝜇 𝑑𝑡 +
√︃
(1 − 𝜌2) (𝑣𝑡)

(
𝑑𝑍
Q𝜉
1,𝑡 −

𝜇 − 𝑟 − 𝜉𝜌
√
𝑣𝑡√︁

(1 − 𝜌2) (𝑣𝑡)
𝑑𝑡

)
+ √

𝑣𝑡𝜌
(
𝑑𝑍
Q𝜉
2,𝑡 − 𝜉 𝑑𝑡

)
= (𝜇 − 𝜇 + 𝑟 + 𝜉𝜌√𝑣𝑡 −

√
𝑣𝑡𝜌𝜉) 𝑑𝑡 +

√︃
(1 − 𝜌2) (𝑣𝑡) 𝑑𝑍Q𝜉1,𝑡 +

√
𝑣𝑡𝜌 𝑑𝑍

Q𝜉
2,𝑡

= 𝑟 𝑑𝑡 +
√︃
(1 − 𝜌2) (𝑣𝑡) 𝑑𝑍Q𝜉1,𝑡 +

√
𝑣𝑡𝜌 𝑑𝑍

Q𝜉
2,𝑡 = 𝑟 𝑑𝑡 + √

𝑣𝑡 𝑑𝑊
Q𝜉
1,𝑡 (3.41)

As a result, the bivariate diffusion under the chosen EMM Q𝜉 is characterised by:

𝑑𝑆𝑡 = 𝑟𝑆𝑡 𝑑𝑡 +
√
𝑣𝑡𝑆𝑡 𝑑𝑊

Q𝜉
1,𝑡 (3.42)

𝑑𝑣𝑡 = [𝜅(𝜃 − 𝑣𝑡) − 𝜉𝜎
√
𝑣𝑡] 𝑑𝑡 + 𝜎

√
𝑣𝑡 𝑑𝑊

Q𝜉
2,𝑡 (3.43)

A replication argument similar to the one discussed above shows that the absence of
arbitrage opportunities implies the following pricing PDE:

𝜕𝑉

𝜕𝑡
+ 1
2
𝜕2𝑉
𝜕𝑆2

𝑣𝑡𝑆
2
𝑡 +

1
2
𝜕2𝑉
𝜕𝑣2

𝜎2𝑣𝑡 + 𝜕2𝑉
𝜕𝑆𝜕𝑣

𝜌𝜎𝑆𝑡𝑣𝑡 − 𝑟𝑉𝑡 + 𝑟𝑆𝑡 𝜕𝑉
𝜕𝑆

= −𝜕𝑉
𝜕𝑣

[𝜅(𝜃 − 𝑣𝑡) − 𝜉𝜎
√
𝑣𝑡] (3.44)

∗If the stock price is driven by a bivariate diffusion, the market is not complete and the set of risk-neutral
measures has a cardinality greater than one — that is, the EMM is not unique.
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It follows that 𝑓 (𝑡, 𝑆𝑡, 𝑣𝑡) = 𝜅(𝜃 − 𝑣𝑡) − 𝜉𝜎
√
𝑣𝑡, confirming the initial guess.

At this stage, Heston proposes a solution for (3.44) of the form:

𝑉𝑡 = 𝑆𝑡𝑃1 − 𝐾𝑒−𝑟𝜏𝑃2 (3.45)

where 𝑃1 and 𝑃2 represent the (risk-neutral) conditional probabilities of the option ending
in the money at expiration under the stock and risk-free asset numéraires, respectively.
Then, passing to the log-space with 𝑋𝑡 B log(𝑆𝑡) and combining (3.44) and (3.45) reveals
that the two probabilities must satisfy the following PDEs:

𝜕𝑃 𝑗
𝜕𝑡

+ 𝜕𝑃 𝑗
𝜕𝑥

(𝑟 + 𝑢 𝑗𝑣𝑡) +
𝜕𝑃 𝑗
𝜕𝑣

(𝛼 𝑗 − 𝛽 𝑗𝑣𝑡) + 1
2
𝜕2𝑃 𝑗
𝜕𝑥2

𝑣𝑡 + 1
2
𝜕2𝑃 𝑗
𝜕𝑣2

𝜎2𝑣𝑡 +
𝜕2𝑃 𝑗
𝜕𝑥𝜕𝑣

𝜌𝜎𝑣𝑡 = 0 (3.46)

where 𝑢1 = −𝑢2 = 1/2, 𝛼1 = 𝛼2 = 𝜅𝜃, 𝛽1 = 𝜅 − 𝜌𝜎, and 𝛽2 = 𝜅.
Even though finding 𝑃1 and 𝑃2 from (3.46) is not immediate, Heston (1993) showed

that their Fourier transforms (i.e., characteristic functions) must satisfy the same PDEs
subject to the terminal condition Φ𝑇 = E[exp(𝑖𝑧𝑋𝑇 )] = 𝑒𝑖𝑧𝑋𝑇 . The expressions for the
characteristic functions are particularly tractable as the model considered belongs to the
class of affine diffusions, wherein drifts and covariances are linear in the state vector [𝑥, 𝑣]
(Gatheral, 2011); as a result, the Fourier transform of each probability is simply given by:

E[exp(𝑖𝑧𝑋𝑇 )] = exp [𝐶(𝜏, 𝑧) + 𝐷(𝜏, 𝑧)𝑣𝑡 + 𝑖𝑧𝑋𝑡] (3.47)

where, employing the dynamics for the underlying’s price and variance proposed by Heston
(1993), the 𝐶(𝜏, 𝑧) and 𝐷(𝜏, 𝑧) coefficients correspond to the expressions below:

𝐶(𝜏, 𝑧) = 𝑟𝑖𝑧𝑡 + 𝛼

𝜎2

{(
𝛽 𝑗 − 𝜌𝜎𝑖𝑧 + 𝑑) 𝜏 − 2 log

[1 − 𝑔𝑒𝑑𝜏

1 − 𝑔

]}
(3.48)

𝐷(𝜏, 𝑧) = 𝛽 𝑗 − 𝜌𝜎𝑖𝑧 + 𝑑
𝜎2

[ 1 − 𝑒𝑑𝜏

1 − 𝑔𝑒𝑑𝜏

]
(3.49)

𝑑 =
√︃
(𝜌𝜎𝑖𝑧)2 − 𝜎2

(2𝑢 𝑗𝑖𝑧 − 𝑧2
) (3.50)

𝑔 =
𝛽 𝑗 − 𝜌𝜎𝑖𝑧 + 𝑑
𝛽 𝑗 − 𝜌𝜎𝑖𝑧 − 𝑑

(3.51)

Once the characteristic functions for 𝑃1 and 𝑃2 are specified, one can then recover the
probabilities by inverting the Fourier transform Φ 𝑗 as follows:

𝑃 𝑗 =
1
2 + 1

𝜋

∫ ∞

0
ℜ

[
𝑒−𝑖𝑧 log(𝑘)Φ 𝑗,𝑇 (𝑧)

𝑖𝑧

]
𝑑𝑧 (3.52)

A detailed discussion of the Fourier inversion technique, popularised by Heston (1993) and
presented in (3.52) to recover the originally sought probabilities can be found in Chapter 4.
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Figure 3.4 Volatility surfaces generated by the stochastic volatility model under Q𝜉. The left
column shows how the volatility profile changes for different values of the correlation between the
spot price and its volatility — that is, from top to bottom 𝜌 = −0.75, −0.25, and 0.00. The right
column does the same for three distinct values of the volatility of volatility 𝜎 — that is, from top
to bottom 𝜎 = 0.25, 0.50, and 1.50. The speed of mean reversion 𝜅 and the long-term average
variance 𝜃 are kept constant at 3.00 and 0.04, respectively.



Chapter 3. Time-Varying Volatility 3.3. Stochastic Volatility Jump-Diffusion

It is then possible to create a synthetic data set of options prices generated by the
SV framework and look at the BSM implied volatility surface Σ𝑡, presented in Figure 3.4.
First of all, one notes how including an additional diffusion driving the (latent) volatility
process allows for a closer reproduction of the implied skew for long-term contracts; in
particular, the correlation coefficient 𝜌 between the two BMs driving the spot price and its
volatility is responsible for the sign of the asymmetry in the implied skew: when 𝜌 = 0 one
achieves a symmetric smile. At the same time, while returning a good fit for expirations
far ahead, the introduction of dependence in the spot price increments is not sufficient to
replicate the pronounced smile for short-term contracts. In fact, the bivariate diffusion of
Heston (1993) does not generate a sufficient variation in the spot price over a short tenor
unless one assumes an excessive value for the volatility of volatility 𝜎; hence, one needs to
rely on the inclusion of discontinuities as to achieve such variation. Jumps may be included
either in the diffusion driving the spot price or its variance, or in both; the next section
is devoted to the discussion of a pricing model proposed by Bates (1996) combining the
benefits of the SV model of Heston (1993) and the JD framework of Merton (1976).

3.3 | Stochastic Volatility Jump-Diffusion
As anticipated at the end of the previous section, the pricing model proposed by Bates
(1996) “merges” the improvements over the BSM framework implemented by Merton
(1976) and Heston (1993). In particular, Bates’s stochastic volatility jump-diffusion (SVJD)
model still assumes a bivariate diffusion for the underlying’s spot price and volatility but
allows for the underlying’s path to exhibit discontinuity points. The latter are introduced
through a compound Poisson process with intensity 𝜆 and, as the distribution of a given
jump 𝑌𝑡 is assumed to be log-normal — that is, log(𝑌𝑡) ∼ N(𝛼, 𝛽2), such a framework may
be equally interpreted as a generalisation of the JD model or the SV representation. The
discontinuous component of the instantaneous rate of return does still entail a predictable
part, which should be subtracted from the drift of the Brownian motion to preserve the
randomness of the process. In particular, one has:

𝜂 B E[𝑌𝑡 − 1] = exp
(
𝛼 + 𝛽2

2

)
− 1 (3.53)

Since {𝑌𝑡}𝑡≥0 is assumed to be independent of the Poisson process {𝑁𝑡}𝑡≥0, one then has:

E[(𝑌𝑡 − 1) 𝑑𝑁𝑡] = E[𝑌𝑡 − 1]E[𝑑𝑁𝑡] = 𝜆𝜂 𝑑𝑡 (3.54)

Hence, the instantaneous return on the underlying is given by the following SDE:
𝑑𝑆𝑡
𝑆𝑡

= 𝜇 𝑑𝑡 + √
𝑣𝑡 𝑑𝑊1,𝑡 + (𝑌𝑡 − 1) 𝑑𝑁𝑡 − 𝜆𝜂 𝑑𝑡 = (𝜇 − 𝜆𝜂) 𝑑𝑡 + √

𝑣𝑡 𝑑𝑊1,𝑡 + (𝑌𝑡 − 1) 𝑑𝑁𝑡 (3.55)
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Finally, one has to allow for more than one jump to occur at each time. Since the Poisson
counter dictates the number of discontinuities, (2.40) becomes:

𝑑𝑆𝑡
𝑆𝑡

= (𝜇 − 𝜆𝜂) 𝑑𝑡 + √
𝑣𝑡 𝑑𝑊1,𝑡 + ©­«

𝑑𝑁𝑡∏
𝑗=1

𝑌𝑗 − 1ª®¬ (3.56)

Applying the Itô-Doelin formula for discontinuous processes presented in Chapter 2, one
notes that the SDE for the log-spot price 𝑋𝑡 is given by:

𝑑𝑋𝑡 =
1
𝑆𝑡
𝑑𝑆𝑡 − 1

2𝑆2𝑡
(𝑑𝑆𝑡)2 + log ©­«𝑆𝑡

𝑑𝑁𝑡∏
𝑗=1

𝑌𝑗
ª®¬ − log(𝑆𝑡)

= (𝜇 − 𝜆𝜂) 𝑑𝑡 + √
𝑣𝑡 𝑑𝑊1,𝑡 − 𝑣𝑡

2 𝑑𝑡 + log ©­«
𝑑𝑁𝑡∏
𝑗=1

𝑌𝑗
ª®¬

=
(
𝜇 − 𝜆𝜂 − 𝑣𝑡

2
)
𝑑𝑡 + 𝜎 𝑑𝑊1,𝑡 +

𝑑𝑁𝑡∑︁
𝑗=1

log(𝑌𝑗) (3.57)

By standard replication arguments, the diffusion for {𝑆𝑡}𝑡≥0 in the log-space under a given
EMM Q𝜉 ∈ Q is described by the following SDEs:

𝑑𝑋𝑡 =
(
𝑟 − 𝜆𝜂 − 𝑣𝑡

2
)
𝑑𝑡 + 𝜎 𝑑𝑊Q𝜉1,𝑡 +

𝑑𝑁𝑡∑︁
𝑗=1

log(𝑌𝑗) (3.58)

𝑑𝑣𝑡 = [𝜅(𝜃 − 𝑣𝑡) − 𝜉𝜎
√
𝑣𝑡] 𝑑𝑡 + 𝜎

√
𝑣𝑡 𝑑𝑊

Q𝜉
2,𝑡 (3.59)

where 𝜉 stands for the market price of volatility risk as in Heston (1993). Even in the
model proposed by Bates (1996), the premia charged for European options is found
through the inversion of the (risk-neutral) characteristic function of the log-spot price of
the underlying. As the Poisson counter {𝑁𝑡}𝑡≥0 for jumps is assumed independent from
the two BMs driving (3.58) and (3.59), the Fourier transform for the SVJD model can be
obtained by simply multiplying that of the SV framework times the characteristic function
of the JD process. Following Schoutens et al. (2004), one has:

E[exp(𝑖𝑧𝑋𝑇 )] = exp {[𝑖𝑧(𝑋𝑡 + 𝑟𝑡)] (3.60)

+
{
𝜃𝜅

𝜎2

[
(𝜅 − 𝜌𝜎𝑖𝑧 − 𝑑)𝑡 − 2 log(1 − 𝑔𝑒−𝑑𝑡)

(1 − 𝑔)

]}
(3.61)

+
[
𝑣20 (𝜅 − 𝜌𝜎𝑖𝑧 − 𝑑) (1 − 𝑒−𝑑𝑡)

𝜎2(1 − 𝑔𝑒−𝑑𝑡)

]
(3.62)

+
{
−𝜆𝛼𝑖𝑧𝑡 + 𝜆𝑡

[
(1 + 𝛼) 𝑖𝑧 exp

(
𝛽2𝑖𝑧(𝑖𝑧 − 1)

2 − 1
)]}}

(3.63)
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where 𝑑 and 𝑔 are two auxiliary variables given by:

𝑑 =
√︃
(𝜌𝜎𝑖𝑧)2 − 𝜎2(−𝑖𝑧 − 𝑧2) (3.64)

𝑔 =
𝜅 − 𝜌𝜎𝑖𝑧 − 𝑑

𝜅 − 𝜌𝜎𝑖𝑧 + 𝑑 (3.65)

Once the CF of the log-price is specified, one can then price options contracts in the Bates
(1996) framework by relying on the Fourier inversion technique proposed by Heston (1993).
The volatility profiles generated by the SVJD model of Bates (2006) are not reported for
they are qualitatively similar to those in Figure 3.4, except one can rely on much more
reasonable values for the volatility of volatility 𝜎 and the spot-volatility correlation 𝜌. In
particular, the left asymmetry typical of the distribution of returns can be obtained both
through a leverage effect (i.e., 𝜌 < 0) and average negative jump size (i.e., 𝛼 < 0). Similarly,
a more pronounced smile in the Bates (1996) model may be the result of either a larger
frequency of jumps 𝜆 or a greater volatility of volatility 𝜎 as in Heston (1993).

While the (log-normal) risk-neutral density of the terminal underlying price is still
tractable as the latter is driven by a simple GBM as in Black and Scholes (1973), making
a direct computation of the risk-neutral expectation of the payoff a feasible approach,
the expressions for the EMM Q(𝑆𝑇 | F𝑡) in the three other frameworks considered in
this thesis are either much more involved or not directly available. The use of Fourier
inversion techniques within financial modelling was introduced by Stein and Stein (1991)
and popularised by the work of Heston (1993) just discussed. As one shall see in the
next chapter, the premium charged for a European option can be decomposed into a
portfolio of Arrow-Debreu securities — assets paying off a single unit of the numéraire
chosen conditional on a prespecified event occurring — to be valued under the appropriate
equivalent martingale measure. Such intuition leads to a pricing formula resembling that
employed in Black and Scholes (1973) which, however, are also applicable in the case of
more complex dynamics for the underlying asset. Moreover, authors such as Lewis (2001)
proposed a technique relying on a single inversion of a generalised CF defined for the
payoff function of an option in some strip of regularity in the complex plane.
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4
Fourier Transform Methods

As introduced in the first chapter, under the martingale pricing approach (or risk-neutral
valuation), the premium 𝑉𝑡 of a derivative contract can be found by solving a conditional
expectation under the equivalent martingale measure. Harrison and Pliska (1981) showed
that such a probability measure rules out the presence of arbitrage opportunities; moreover,
in the (particular) case of complete markets, the risk-neutral measure is unique, and a
single price for the options contract can be established (Harrison and Pliska, 1983). A
European call option pays off [𝑆𝑇 − 𝐾]+ at the expiration date 𝑇; as a result, its value at an
intermediate time 𝑡 ∈ [0, 𝑇] is given by:

𝑉𝑡 (𝐻𝑇 ) = 𝑒−𝑟𝜏EQ [𝐻𝑇 | F𝑡] = 𝑒−𝑟𝜏
∫ ∞

0
[𝑆𝑇 − 𝐾]+Q(𝑆𝑇 | F𝑡) 𝑑𝑆𝑇 (4.1)

where 𝜏 B 𝑇 − 𝑡 and Q(𝑆𝑇 | F𝑡) stands for the conditional risk-neutral transition probability
of the underlying reaching state 𝑆𝑇 at the expiration 𝑇 given the filtration F𝑡 as of the
valuation date 𝑡. Such density is entirely determined by the risk-neutral dynamics specified
for the underlying; for instance, if 𝑆𝑡 follows a geometric Brownian motion, then one can
find the price charged for a call option on it by solving the following integral:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) = 𝑒−𝑟𝜏

𝑆𝑇𝜎
√
2𝜋𝜏

∫ ∞

𝐾
(𝑆𝑇 − 𝐾) exp

−
1
2

[
𝑋𝑇 −

[
𝑋0 +

(
𝑟 − 𝜎2/2) 𝜏]

𝜎
√
𝜏

]2 𝑑𝑆𝑇 (4.2)

In fact, in such a case, the log-price 𝑋𝑡 follows a Normal distribution. Unfortunately, for
all the other underlying asset dynamics discussed in this thesis, a functional form of the
risk-neutral density is either more involved or not directly available. For instance, the
mere superposition of a (compound) Poisson process to a geometric Brownian motion
leads to an infinite sum in the expression of the risk-neutral density as discussed in the JD
model of Chapter 2. Nevertheless, a one-to-one relationship holds between the distribution
induced by a random variable 𝑋 and its characteristic function presented in Definition 1.6.
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Furthermore, the foundations provided by Lévy (1925) make it possible to recover a
probability density 𝑓 (𝑥) starting from the CF of 𝑋; this is particularly convenient when
dealing with Lévy processes, where the characteristic function is linear in time and easily
obtainable through the decomposition described in Theorem 2.2.

Overall, the characteristic function of a given random variable 𝑋 is related to (i.e.,
defined as) the Fourier transform of the probability density function 𝑓 (𝑥) it induces, as
will be further discussed in the next section.

4.1 | Fourier Transform
The concept of Fourier transform is named after French mathematician Joseph Fourier,
who introduced it in 1822. This decomposition is widely employed in studying differential
equations and signal processing. Within financial modelling, the Fourier transform was
introduced by Stein and Stein (1991) and popularised by the work of Heston (1993).

As already discussed, the characteristic function of a random variable 𝑋 equals the
expectation of the complex exponential 𝑒𝑖𝑧𝑋 — that is, Φ𝑋 (𝑧) is given by:

Φ𝑋 (𝑧) = E [exp(𝑖𝑧𝑋)] =
∫
R
𝑒𝑖𝑧𝑥 𝑑 𝑓𝑋 (𝑥) B 𝔉[ 𝑓 (𝑥)] (4.3)

where 𝔉[ 𝑓 (𝑥)] denotes the Fourier transform of the random variable’s density 𝑓 (𝑥). Equiv-
alently, one can rely on Euler’s formula to rewrite the complex exponential as:

exp(𝑖𝑧𝑋) = cos(𝑧𝑋) + 𝑖 sin(𝑧𝑋) (4.4)

From (4.4), it is clear that, for any 𝑧 ∈ R, 𝑒𝑖𝑧𝑋 corresponds to a point on the unit circle in
the complex plane. As a result, Φ𝑋 (𝑧) is symmetric around 𝑧 = 0, its norm cannot exceed
one, and Φ𝑋 (0) B 1 since 0 · 𝑋 is deterministic. The symmetry verified by the characteristic
function of a random variable entails that one can focus on the positive half axis (𝑧 > 0)
and still be able to characterise the distribution induced by 𝑋 fully. Moreover, the function’s
complex conjugate Φ𝑋 (𝑧) is simply given by Φ𝑋 (−𝑧). Finally, two useful properties of the
Fourier transform concern differentiability and convolutions of densities. In fact, as shown
in Appendix A, both are mapped to multiplications in the Fourier space:

Differentiation: 𝔉

[
𝜕𝑛 𝑓 (𝑥)
𝜕𝑥𝑛

]
= −(𝑖𝑧)𝑛𝔉 [ 𝑓 (𝑧)] (4.5)

Convolution: 𝔉 [( 𝑓 ∗ 𝑔) (𝑥)] = 𝔉 [ 𝑓 (𝑥)]𝔉 [𝑔(𝑥)] (4.6)

Given the premises above, and building on the results of Lévy (1925), Gil-Pelaez (1951)
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provides the following representation for a cumulative distribution function (CDF):

𝐹𝑋 (𝑥) = P(𝑋 ≤ 𝑥) =
∫ 𝑥

−∞
𝑓𝑋 (𝑥) 𝑑𝑥 =

1
2 − 1

2𝜋

∫
R

𝑒−𝑖𝑧𝑥Φ𝑋 (𝑧)
𝑖𝑧

𝑑𝑧 (4.7)

A derivation of the integral above can be found in Appendix A. The density function is
then obtained by differentiating the CDF once:

𝑓𝑋 (𝑥) = 𝜕𝐹𝑋 (𝑥)
𝑥

=
1
2𝜋

∫
R
𝑒−𝑖𝑧𝑥Φ𝑋 (𝑧) 𝑑𝑧 (4.8)

One can then exploit the symmetry of the characteristic function and see that:

ℜ[𝜙𝑋 (𝑧)] = 𝜙𝑋 (𝑧) + 𝜙𝑋 (𝑧)
2 =

𝜙𝑋 (𝑧) + 𝜙𝑋 (−𝑧)
2 (4.9)

ℑ[𝜙𝑋 (𝑧)] = 𝜙𝑋 (𝑧) − 𝜙𝑋 (𝑧)
2𝑖 =

𝜙𝑋 (𝑧) − 𝜙𝑋 (−𝑧)
2𝑖 (4.10)

Hence, the CDF in (4.7) can be rewritten as:

𝐹𝑋 (𝑥) = 1
2 − 1

2𝜋

∫
R

𝑒−𝑖𝑧𝑥Φ𝑋 (𝑧)
𝑖𝑧

𝑑𝑧

=
1
2 − 1

2𝜋

∫ 0

−∞

𝑒−𝑖𝑧𝑥Φ𝑋 (𝑧)
𝑖𝑧

𝑑𝑧 + 1
2𝜋

∫ ∞

0

𝑒−𝑖𝑧𝑥Φ𝑋 (𝑧)
𝑖𝑧

𝑑𝑧

=
1
2 − 1

2𝜋

∫ ∞

0

[−𝑒𝑖𝑧𝑥Φ𝑋 (−𝑧) + 𝑒−𝑖𝑧𝑥Φ𝑋 (𝑧)
𝑖𝑧

]
𝑑𝑧

=
1
2 − 1

𝜋

∫ ∞

0
ℜ

[
𝑒−𝑖𝑧𝑥Φ𝑋 (𝑧)

𝑖𝑧

]
𝑑𝑧 (4.11)

Before delving into the option pricing techniques based on characteristic functions, it is
essential to point out that the Fourier transform of a given function 𝑓 requires the latter to
be (absolutely) integrable — that is, for 𝔉[ 𝑓 (𝑥)] to exist it must be that:∫

R
| 𝑓 (𝑥) | 𝑑𝑥 < ∞ (4.12)

Furthermore, if 𝑓 (𝑥) and 𝑔(𝑥) are both square integrable functions, then inner products
⟨ 𝑓 , 𝑔⟩ are preserved under Fourier transforms:

⟨ 𝑓 (𝑥), 𝑔(𝑥)⟩ =
∫
R
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥 =

1
2𝜋

∫
R
𝔉[ 𝑓 ]𝔉[𝑔] 𝑑𝑧 (4.13)

The relationship above is known as Parseval identity (or Plancherel Theorem) and provides
the basis for the call valuation formula proposed by Lewis (2001). The latter focused on
generalised characteristic functions where the input variable 𝑧 belongs to C. In this case,
however, the expectation of the complex exponential defining the characteristic function of
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a random variable is only defined in some strip of regularity S𝑥 parallel to the real 𝑧-axis —
that is, a region on the complex plane defined by 𝛼 < ℑ[𝑧] < 𝛽. Luckily, most properties
discussed so far apply to generalised Fourier transforms as well. For instance, the Parseval
identity given by (4.13) with 𝑧 ∈ C and assuming 𝑓 = 𝑔 becomes:∫

R
| 𝑓 (𝑥) |2 𝑑𝑥 =

1
2𝜋

∫
R
|𝔉[ 𝑓 (ℜ[𝑧] + 𝑖ℑ[𝑧])] |2 𝑑ℜ[𝑧] (4.14)

4.2 | Option Pricing
The results of Gil-Pelaez (1951) provide the basis for the closed-form solution of the call
option valuation problem presented by Heston (1993). Indeed, the premium charged for a
call option on an asset following a stochastic volatility model is obtained through a BSM-
style formula involving conditional probabilities of the option being in the money at the
expiration date; in turn, such probabilities are found by inverting the relevant characteristic
functions. Not even a decade later, Bakshi and Madan (2000) generalised several past
results concerning option pricing through Fourier transforms. Letting 𝑘 = log(𝐾) and
𝑋𝑇 = log(𝑆𝑇 ), one can always decompose the value of a call option as follows:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) = 𝑒−𝑟𝜏
∫ ∞

𝐾
(𝑆𝑇 − 𝐾)Q(𝑆𝑇 | F𝑡) 𝑑𝑆𝑇

= 𝑒−𝑟𝜏
∫ ∞

𝑘
𝑒𝑋𝑇Q(𝑋𝑇 | F𝑡) 𝑑𝑋𝑇 − 𝐾𝑒−𝑟𝜏

∫ ∞

𝑘
Q(𝑋𝑇 | F𝑡) 𝑑𝑋𝑇

= 𝑆𝑡Π1(𝑆𝑇 > 𝐾 | F𝑡) − 𝐾𝑒−𝑟𝜏Π2(𝑆𝑇 > 𝐾 | F𝑡) (4.15)

Here, both Π1 and Π2 represent the (risk-neutral) conditional probabilities of the option
ending in the money at 𝑡 = 𝑇. In particular, Π1 and Π2 are computed relying on the stock
and risk-free asset as numéraire, respectively. Starting from the latter, the characteristic
function of Π2 is given by Φ2(𝑧) = Φ𝑋𝑇 (𝑧) B Φ𝑇 (𝑧) = EQ [𝑒𝑖𝑢𝑋𝑇 ]; therefore, one has:

Π2 =
∫ ∞

𝑘

( 1
2𝜋

∫
R
𝑒−𝑖𝑢𝑋𝑇Φ𝑇 (𝑧) 𝑑𝑧

)
𝑑𝑋𝑇

=
1
2𝜋

∫
R
Φ𝑇 (𝑧)

(∫ ∞

𝑘
𝑒−𝑖𝑢𝑋𝑇 𝑑𝑋𝑇

)
𝑑𝑧

=
1
2 + 1

𝜋

∫ ∞

0
ℜ

[
𝑒−𝑖𝑧𝑘Φ𝑇 (𝑧)

𝑖𝑧

]
𝑑𝑧 (4.16)

A similar expression holds for Π1, up to a change of measure accounting for the stock
numéraire. Consider a measure Q̃, linked to Q through the Radon-Nikodym derivative:

𝑑Q̃

𝑑Q
=

𝑒𝑋𝑡

EQ [𝑒𝑋𝑡 ] (4.17)
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As a result, the probability Π1 of the underlying being above the strike at maturity under
the stock numéraire has a Fourier transform given by:

Φ1 = Φ̃𝑇 (𝑧) = EQ̃ [𝑒𝑖𝑧𝑋𝑡 ] = EQ
[
𝑑Q̃

𝑑Q
𝑒𝑖𝑧𝑋𝑡

]
= EQ

[
𝑒𝑋𝑡 (1+𝑖𝑧)

EQ [𝑒𝑋𝑡 ]

]
=

Φ𝑇 (𝑧 − 𝑖)
Φ𝑇 (−𝑖) (4.18)

Therefore, a similar procedure to that used to reach (4.16) can be followed to show that

Π1 =
1
2 + 1

𝜋

∫ ∞

0
ℜ

[
𝑒−𝑖𝑧𝑘Φ1(𝑧)

𝑖𝑧

]
𝑑𝑧 =

1
2 + 1

𝜋

∫ ∞

0
ℜ

[
𝑒−𝑖𝑧𝑘Φ𝑇 (𝑧 − 𝑖)
𝑖𝑧Φ𝑇 (−𝑧)

]
𝑑𝑧 (4.19)

Setting 𝑘 to equal a particular measure of moneyness given by 𝑘 B log(𝑆𝑡/𝐾) + 𝑟𝜏, the
risk-neutral probabilities derived can be simplified to:

Π1 =
1
2 + 1

𝜋

∫ ∞

0
ℜ

[
𝑒𝑖𝑧𝑘Φ𝑇 (𝑧 − 𝑖)

𝑖𝑧

]
𝑑𝑧 (4.20)

Π2 =
1
2 + 1

𝜋

∫ ∞

0
ℜ

[
𝑒𝑖𝑧𝑘Φ𝑇 (𝑧)

𝑖𝑧

]
𝑑𝑧 (4.21)

Finally, one can substitute these two expressions in the general valuation formula presented
in (4.15) and combine the two integrals into one, thereby obtaining:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) = 𝑆𝑡 − 𝐾𝑒−𝑟𝜏

2 + 1
𝜋

∫ ∞

0

{
𝑆𝑡ℜ

[
𝑒𝑖𝑧𝑘Φ𝑇 (𝑧 − 𝑖)

𝑖𝑧

]
− 𝐾𝑒−𝑟𝜏ℜ

[
𝑒𝑖𝑧𝑘Φ𝑇 (𝑧)

𝑖𝑧

]}
𝑑𝑧 (4.22)

In the years following Bakshi and Madan’s work, other authors (Attari, 2004; Bates, 2006)
have proposed alternatives that always lead to a BSM-style formula but exploit the intrinsic
relationship between the two probabilities of the option being profitable at expiration.
In turn, such observation allows to reduce the computational burden required by the
numerical evaluation of the integral(s).

Another approach to the problem of valuing a European option is pursued by Carr and
Madan (1999), who provide a valuation formula especially suitable for a discretised version
of the Fourier transform, allowing to rely on a single inversion to price options for several
exercise prices. Unfortunately, the premium of a call option is not absolutely integrable,
and an appropriate transformation must be performed to make the implementation of the
fast Fourier transform feasible. In fact, by letting 𝑋𝑡 = log(𝑆𝑡) and 𝑘 = log(𝐾), one notices
that 𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) does not go to zero as 𝑘 → −∞ (i.e., 𝐾 → 0); in particular:

lim
𝑘→−∞

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) = lim
𝑘→−∞

𝑒−𝑟𝜏
∫
R

[
𝑒𝑋𝑇 − 𝑒𝑘

]+
Q(𝑋𝑇 | F𝑡) 𝑑𝑋𝑇

= 𝑒−𝑟𝜏
∫
R

[
𝑒𝑋𝑇 − 𝑒−∞

]+
Q(𝑋𝑇 | F𝑡) 𝑑𝑋𝑇

= 𝑒−𝑟𝜏
∫
R
𝑒𝑋𝑇Q(𝑋𝑇 | F𝑡) 𝑑𝑋𝑇 = 𝑒−𝑟𝜏EQ [𝑒𝑋𝑡 | F𝑡] = 𝑆𝑡 (4.23)
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where the last equality follows by the martingale condition EQ [𝑆𝑇 | F𝑡] = 𝑒𝑟𝜏𝑆𝑡. Hence,
𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) is clearly not (absolutely) integrable and therefore does not admit a Fourier
transform. Nevertheless, Carr and Madan (1999) show that damping exponentially the
call value leads to an integrable function — that is, it holds that:

𝑐𝑡 (𝑆𝑡, 𝑇, 𝐾) B 𝑒𝛼𝑘𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) =⇒
∫
R
|𝑐𝑡 (𝑆𝑡, 𝑇, 𝐾) | 𝑑𝑘 < ∞ (4.24)

for an appropriate choice of 𝛼 ∈ R+. A visualisation of the effect of the damping parameter
on the asymptotic properties of 𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) is shown in Figure 4.1. It is clear that the
damped option price becomes integrable on the negative half axis (𝑘 < 0) but increases
exponentially for 𝑘 > 0. Nevertheless, 𝑐𝑡 (𝑆𝑡, 𝑇, 𝐾) will be square integrable (i.e., integrable
on the entire 𝑘-axis) as long as its Fourier transform is finite at 𝑧 = 0 (Carr and Madan,
1999). In turn, the characteristic function of the damped option price is given by:

𝜓𝑐𝑇 (𝑧) B 𝜓𝑇 (𝑧) =
∫
R
𝑒𝑖𝑧𝑘𝑐𝑡 (𝑆𝑇 , 𝑇, 𝑘) 𝑑𝑘

=
∫
R
𝑒𝑖𝑧𝑘

∫
R
𝑒𝛼𝑘𝑒−𝑟𝜏

[
𝑒𝑋𝑇 − 𝑒𝑘

]+
Q(𝑋𝑇 | F𝑡) 𝑑𝑋𝑇 𝑑𝑘

=
∫
R
𝑒𝑖𝑧𝑘

∫ ∞

𝑘
𝑒𝛼𝑘𝑒−𝑟𝜏(𝑒𝑋𝑇 − 𝑒𝑘)Q(𝑋𝑇 | F𝑡) 𝑑𝑋𝑇 𝑑𝑘

=
∫
R
𝑒−𝑟𝜏Q(𝑋𝑇 | F𝑡)

[∫ 𝑋𝑇

−∞
𝑒𝑖𝑧𝑘𝑒𝛼𝑘 (𝑒𝑋𝑇 − 𝑒𝑘) 𝑑𝑘

]
︸                             ︷︷                             ︸

𝐴

𝑑𝑋𝑇 (4.25)
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Figure 4.1 Left: Sample path of a variance-gamma process over an interval of ten years, with
𝜇 = 0.05, 𝜎 = 0.20, 𝛼 = 0.00, 𝛽 = 0.50, and 𝜆 = 1.5. The last parameter entails that one can expect
three jumps every two years. Right: Logarithmic returns associated to the realisation.
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The inner integral (𝐴) in square brackets corresponds to the call payoff and can be computed
on the interval (−∞, 𝑋𝑇 ] as follows:

𝐴 = 𝑒𝑋𝑇
∫ 𝑋𝑇

−∞
𝑒(𝑖𝑧+𝛼)𝑘 𝑑𝑘 −

∫ 𝑋𝑇

−∞
𝑒(𝑖𝑧+𝛼+1)𝑘 𝑑𝑘

=
𝑒𝑋𝑇

𝑖𝑧 + 𝛼
[
𝑒(𝑖𝑧+𝛼)𝑘

] 𝑋𝑡
−∞

− 1
𝑖𝑧 + 𝛼 + 1

[
𝑒(𝑖𝑧+𝛼+1)𝑘

] 𝑋𝑡
−∞

=
𝑒(𝑖𝑧+𝛼+1)𝑋𝑇

𝑖𝑧 + 𝛼 − 𝑒(𝑖𝑧+𝛼+1)𝑋𝑇

𝑖𝑧 + 𝛼 + 1 (4.26)

where the last equality holds since lim𝑘→−∞ 𝑒(𝑖𝑧+𝛼)𝑘 = lim𝑘→−∞ 𝑒(𝑖𝑧+𝛼+1)𝑘 = 0. At this point,
plugging (4.26) into the integral for 𝜓𝑇 , one obtains:

𝜓𝑇 (𝑧) =
∫
R
𝑒−𝑟𝜏Q(𝑋𝑇 | F𝑡)

[
𝑒(𝑖𝑧+𝛼+1)𝑋𝑇

𝑖𝑧 + 𝛼 − 𝑒(𝑖𝑧+𝛼+1)𝑋𝑇

𝑖𝑧 + 𝛼 + 1

]
𝑑𝑋𝑇

=
∫
R
𝑒−𝑟𝜏Q(𝑋𝑇 | F𝑡)

[
𝑒(𝑖𝑧+𝛼+1)𝑋𝑇

(𝑖𝑧 + 𝛼) (𝑖𝑧 + 𝛼 + 1)

]
𝑑𝑋𝑇

=
𝑒−𝑟𝜏

(𝑖𝑧 + 𝛼) (𝑖𝑧 + 𝛼 + 1)
∫
R
𝑒(𝑖𝑧+𝛼+1)𝑋𝑇Q(𝑋𝑇 | F𝑡) 𝑑𝑋𝑇︸                               ︷︷                               ︸

𝐵

(4.27)

Finally, notice that 𝐵 is the characteristic function of the underlying asset at maturity under
the equivalent martingale measure. In particular, 𝐵 = Φ𝑇 (𝑧) with 𝑧 = 𝑧 − (𝛼 + 1)𝑖 so that:

𝜓𝑇 (𝑧) = 𝑒−𝑟𝜏Φ𝑇 (𝑧 − 𝑖(𝛼 + 1))
(𝑖𝑧 + 𝛼) (𝑖𝑧 + 𝛼 + 1) (4.28)

To recover the undamped call premia, it is sufficient to apply an inverse Fourier transform
and undo the exponential damping applied to make the function integrable — that is, the
value of a European call option at time 𝑡 is given by:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝑘) = 𝑒−𝛼𝑘𝔉−1 [𝜓𝑇 (𝑧)]

=
𝑒−𝛼𝑘

2𝜋

∫
R
𝑒−𝑖𝑧𝑘𝜓𝑇 (𝑧) 𝑑𝑧 = 𝑒−𝛼𝑘

𝜋

∫ ∞

0
ℜ[𝑒−𝑖𝑧𝑘𝜓𝑇 (𝑧)] 𝑑𝑧 (4.29)

where the last equality holds because 𝜓𝑇 (𝑧) is even in its real part (Carr and Madan,
1999). Going back to integrability requirements, it is clear that 𝜓𝑇 (0) is finite as long as
Φ𝑇 (−(𝛼 + 1)𝑖) < ∞ — that is, for 𝑐𝑡 (𝑆𝑡, 𝑇, 𝑘) to be (square) integrable, it must be that:

Φ𝑇 (−(𝛼 + 1)𝑖) < ∞ ⇐⇒ E[exp(𝑋𝑇 )𝛼+1] = E[𝑆𝛼+1𝑇 ] < ∞ (4.30)

In other words, the damped call option will stay integrable on the positive half axis (𝑘 > 0)
as long as the underlying price process exhibits finite and well-defined moments up to the
(1 + 𝛼)-th order. As a result, the existence of the 𝑛-th moment of the underlying sets an
upper bound for choosing the damping parameter 𝛼.
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Unfortunately, as noted in Carr and Madan (1999), the premium charged for a call
option converges to its intrinsic value (i.e., [𝑆𝑇 − 𝐾]+) as one approaches the contract’s
expiration, thereby leading to a highly oscillatory integrand. In particular, for 𝑘 > 𝑋𝑡

(𝑘 < 𝑋𝑡), let 𝑧𝑇 (𝑘) be the price of a call (put) option maturing in 𝜏 B 𝑇 − 𝑡. Without any
loss of generality, let 𝑆𝑡 = 1; then, 𝑧𝑇 (𝑘) is given by:

𝑧𝑇 (𝑘) = 𝑒−𝑟𝜏
∫
R

[(𝑒𝑋𝑡 − 𝑒𝑘)𝟙𝑋𝑡<𝑘,𝑘<0 + (𝑒𝑋𝑡 − 𝑒𝑘)𝟙𝑋𝑡>𝑘,𝑘>0
]
Q(𝑋𝑇 | F𝑡) 𝑑𝑋𝑇 (4.31)

Furthermore, 𝑧𝑇 (𝑘) may be recovered through an inverse Fourier transform:

𝜉𝑇 (𝑧) =
∫
R
𝑒𝑖𝑧𝑘𝑧𝑇 (𝑘) 𝑑𝑘 ⇐⇒ 𝑧𝑇 (𝑘) = 1

2𝜋

∫
R
𝑒−𝑖𝑧𝑘𝜁𝑇 (𝑢) 𝑑𝑢 (4.32)

Plugging 𝑧𝑇 (𝑘) into the Fourier transform of the latter, Carr and Madan (1999) show that:

𝜉𝑇 (𝑧) = 𝑒𝑟𝜏
( 1
1 + 𝑖𝑧 −

𝑒𝑟𝜏

𝑖𝑧
− 𝜙𝑇 (𝑧 − 𝑖)

𝑧2 − 𝑖𝑧

)
(4.33)

The resulting inverse Fourier transform in (4.32) does not present invertibility problems at
±∞; for especially low values of 𝜏, however, the integrand of 𝑧𝑇 (𝑘) exhibits wide oscillations
in the region around 𝑘 = 0. Here, 𝑧𝑇 (0) resembles a Dirac delta function 𝛿𝑘 (0) as 𝑇 → 𝑡, as
shown in Figure 4.2. To cope with such an issue, Carr and Madan (1999) propose to damp
𝑧𝑇 (𝑘) employing the hyperbolic sine function sinh(𝑥) evaluated at 𝑥 = 𝛼𝑘. In this case, the
value of 𝛼 allows one to control the magnitude of the integrand in the region around zero;
the option’s premium then equals the following:

𝑧𝑇 (𝑘) = 1
2 sinh(𝛼𝑘)𝜋

∫
R
𝑒−𝑖𝑧𝑘

[
𝜁𝑇 (𝑧 − 𝑖𝛼) − 𝜁𝑇 (𝑧 + 𝑖𝛼)

2

]
𝑑𝑧 (4.34)

0 5 10 1515 10 5
𝑘

𝑧𝑇 (𝑘)

Figure 4.2 Time value 𝑧𝑇 (𝑘) of a call expiring in five trading days (i.e., 𝑇 ≈ 0.02). The premium
charged approaches the option’s intrinsic value: with no hyperbolic sine damping (solid line), this
leads to wide oscillations in the neighborhood of 𝑘 = 0 and poor numerical integration results.
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The damped time value proposed in (4.34) is much more well-behaved than that repre-
sented by (4.31), as highlighted by Figure 4.2.

Two years after the publication of Carr and Madan’s work, Lewis (2001) generalised the
authors’ results by showing that integrating a damped function is equivalent to evaluating
a contour integral in the complex plane. Underlying Lewis’s work is the idea that the payoff
function of an option admits a generalised Fourier transform Φ𝑡 (𝑧) = E[𝑒𝑖𝑧𝑋𝑡 ] with 𝑧 ∈ C
in some strip of regularity S𝑋 parallel to the R-axis in the complex plane. In particular,
𝑤(𝑋𝑇 ) B [𝑒𝑋𝑇 − 𝐾]+ diverges as 𝑋𝑇 → ∞, but 𝑤(𝑋𝑇 )𝑒−ℑ[𝑧]𝑋𝑇 becomes integrable for an
appropriate choice of 𝑧 ∈ C. In turn, the latter expression is equivalent to the integration
of the actual payoff over a contour parallel to the real axis:

𝑤̂(𝑧) B 𝔉[𝑤(𝑋𝑇 )] =
∫
R
𝑒𝑖𝑧𝑋𝑇𝑤(𝑋𝑇 ) 𝑑𝑋𝑇

=
∫
R
𝑒𝑖𝑧𝑋𝑇 [𝑒𝑋𝑇 − 𝐾]+ 𝑑𝑋𝑇 =

∫ ∞

log(𝐾 )
𝑒𝑖𝑧𝑋𝑇 (𝑒𝑋𝑇 − 𝐾) 𝑑𝑋𝑇

=

[
𝑒(𝑖𝑧+1)𝑋𝑇

𝑖𝑧 + 1 − 𝐾
𝑒𝑖𝑧𝑋𝑇

𝑖𝑧

]∞
log(𝐾 )

= −
[
𝐾 𝑖𝑧+1

𝑖𝑧 + 1 − 𝐾
𝐾 𝑖𝑧

𝑖𝑧

]
= − 𝐾 𝑖𝑧+1

𝑧2 − 𝑖𝑧
(4.35)

For the upper limit (i.e., 𝑋𝑇 → ∞) to exist, however, one needs ℑ[𝑧] > 1; in other words,
the generalised Fourier transform of the call payoff is only defined in a strip of regularity
S𝑤 characterised by ℑ[𝑧] > 1 and presented in Figure 4.3. Put options share the same
Fourier transform (4.35) of calls, but similar reasoning shows that S𝑤 must be shifted to
the region where ℑ[𝑧] < 0 for the transformed payoff 𝑤̂(𝑧) to be well-behaved. In turn,
given 𝑤̂(𝑧), one can then recover the original payoff through an inverse Fourier transform:

𝑤(𝑋𝑇 ) = 𝔉−1 [𝑤̂(𝑧)] = 1
2𝜋

∫ 𝑖ℑ[𝑧]+∞

𝑖ℑ[𝑧]−∞
𝑒−𝑖𝑧𝑋𝑇 𝑤̂(𝑧) 𝑑𝑧 (4.36)

R[H]
I[H

]

R
[Ê

(H
)]
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(H
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Figure 4.3 Regularity strips S𝑤 for the call (left) and put (right) options payoffs in Fourier space.
The functional form of 𝑤̂(𝑧) is unchanged between calls and puts, but for the limits of the integral
to be defined it must be that ℑ[𝑧] > 1 (ℑ[𝑧] < 0) for call (put) options.
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Provided the risk-neutral price process has a well-defined characteristic function Φ𝑇 (𝑧)
for some 𝑧 ∈ S𝑥 , and the modified payoff 𝑤̂(𝑧) is regular with 𝑧 ∈ C in a given strip of
regularity S𝑤, one can recover the price of an option relying on the martingale condition:

𝑉𝑡 (𝑤(𝑋𝑇 )) = 𝑒−𝑟𝜏EQ [𝑤(𝑋𝑇 )] = 𝑒−𝑟𝜏EQ

[∫ 𝑖ℑ[𝑧]+∞

𝑖ℑ[𝑧]−∞
𝑒−𝑖𝑧𝑋𝑇 𝑤̂(𝑧) 𝑑𝑧

]
=
𝑒−𝑟𝜏

2𝜋

∫ 𝑖ℑ[𝑧]+∞

𝑖ℑ[𝑧]−∞
EQ [𝑒−𝑖𝑧𝑋𝑇 ]𝑤̂(𝑧) 𝑑𝑧 = 𝑒−𝑟𝜏

2𝜋

∫ 𝑖ℑ[𝑧]+∞

𝑖ℑ[𝑧]−∞
Φ𝑇 (−𝑧)𝑤̂(𝑧) 𝑑𝑧 (4.37)

As mentioned at the beginning of the previous section, Φ𝑇 (𝑧) = Φ𝑇 (−𝑧); therefore, if Φ𝑇 (𝑧)
is well-defined in S𝑥 , its conjugate appearing in (4.37) will share the same behaviour in
the strip of regularity given by S𝑥 . Furthermore, for the integral in (4.37) to be tractable,
one must choose a strip S𝑣 = S𝑤 ∩ S𝑥 where both Φ𝑇 (−𝑧) and 𝑤̂(𝑧) are well-behaved. In
fact, computing the integral along a contour in S𝑣 guarantees the former’s convergence
and allows to bring the expectation inside the integral by Fubini’s Theorem (Lewis, 2001).
Notice that (4.37) is a straightforward application of the Parseval identity in (4.13) with
𝑓 = 𝑤(𝑋𝑇 ) and 𝑔 = Q(𝑋𝑇 | F𝑡) — that is, Lewis (2001) showed that:

𝑒−𝑟𝜏
∫
R
𝑤(𝑋𝑇 )Q(𝑋𝑇 | F𝑡) 𝑑𝑋𝑇 =

𝑒−𝑟𝜏

2𝜋

∫ 𝑖ℑ[𝑧]+∞

𝑖ℑ[𝑧]−∞
Φ𝑇 (−𝑧)𝑤̂(𝑧) 𝑑𝑧 (4.38)

It is worth emphasising that the valuation formula holds for several types of non-path-
dependent European options; some of the transformed payoffs 𝑤̂(𝑧) are reported in Ta-
ble 4.1. For a call option, the fair premium to be charged is obtained by plugging (4.35)

S𝑤

S𝑥

S𝑥

S𝑣

ℜ[𝑧]

ℑ [𝑧]

Figure 4.4 Regularity strip S𝑣 for the premium charged on a European put option. The payoff
function is analytic in the strip S𝑤 defined by ℑ[𝑧] < 0; assuming the (generalised) characteristic
function Φ𝑇 (𝑧) of the risk-neutral price process is well-behaved in some strip S𝑥 , then the regularity
strip for the put price is found at the intersection S𝑣 = S𝑤 ∩ S𝑥 .
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into (4.37) as to reach:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) = −𝐾𝑒
−𝑟𝜏

2𝜋

∫ 𝑖ℑ[𝑧]+∞

𝑖ℑ[𝑧]−∞

𝑒−𝑖𝑧𝑘𝜙𝑇 (−𝑧)
𝑧2 − 𝑖𝑧

𝑑𝑧 (4.39)

where 𝑘 B log(𝑆𝑡/𝐾) + 𝑟𝜏 represents a “dimensionless” measure of moneyness of the option.
At this stage, Lewis (2001) relies on Cauchy’s Residue Theorem to rewrite (4.39) as:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) = 𝑆𝑡 − 𝐾𝑒−𝑟𝜏

2𝜋

∫ 𝑖ℑ[𝑧]+∞

𝑖ℑ[𝑧]−∞

𝑒−𝑖𝑧𝑘𝜙𝑇 (−𝑧)
𝑧2 − 𝑖𝑧

𝑑𝑧 (4.40)

Shifting the contour by ℑ[𝑧] = 0.5 leads to an integration path which is equidistant
from the two poles of the integrand — namely, 𝑧 = 0 and 𝑧 = 𝑖. In particular, setting
𝑧 = 𝑢 + 𝑖/2, (4.40) becomes:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) = 𝑆𝑡 −
√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋

∫ ∞

0
ℜ

[
𝑒−𝑖𝑢𝑘𝜙𝑇

(
−𝑢 − 𝑖

2

)]
𝑑𝑢

𝑢2 + 1/4

= 𝑆𝑡 −
√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋

∫ ∞

0
ℜ

[
𝑒𝑖𝑢𝑘𝜙𝑇

(
𝑢 − 𝑖

2

)]
𝑑𝑢

𝑢2 + 1/4 (4.41)

Finally, Lewis (2001) shows how moving the path of integration to the two poles given
by ℑ[𝑧] = 0 and ℑ[𝑧] = 1 leads to the BSM-style formula (4.22) discussed by Bakshi and
Madan (2000) and presented at the beginning of this section.

Contract 𝑤(𝑋𝑇 ) 𝑤̂(𝑧) S𝑤

Call [𝑒𝑋𝑇 − 𝐾]+ − 𝐾 𝑖𝑧+1

𝑧2 − 𝑖𝑧
ℑ[𝑧] > 1

Put [𝐾 − 𝑒𝑋𝑇 ]+ − 𝐾 𝑖𝑧+1

𝑧2 − 𝑖𝑧
ℑ[𝑧] > 1

Cash-or-Nothing Call 𝟙𝑒𝑋𝑇 ≥𝐾 −𝐾
𝑖𝑧

𝑖𝑧
ℑ[𝑧] > 0

Cash-or-Nothing Put 𝟙𝑒𝑋𝑇 ≤𝐾
𝐾 𝑖𝑧

𝑖𝑧
ℑ[𝑧] < 0

Asset-or-Nothing Call 𝑒𝑋𝑇𝟙𝑒𝑋𝑇 ≥𝐾 − 𝐾 𝑖𝑧+1

𝑖𝑧 + 1 ℑ[𝑧] > 1

Asset-or-Nothing Put 𝑒𝑋𝑇𝟙𝑒𝑋𝑇 ≤𝐾
𝐾 𝑖𝑧+1

𝑖𝑧 + 1 ℑ[𝑧] < 0

Table 4.1 Generalised Fourier transforms 𝑤̂(𝑧) for the payoff functions and strips of regularity S𝑤

in the complex plane for some well-known non-path-dependent European options. Clearly, the strip
of regularity S𝑣 where the option value is well-behaved will depend on that for the generalised
characteristic function of the risk-neutral price process.
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4.3 | Calibration
Calibrating one of the valuation models seen so far amounts to finding the set of parameters
Θ that minimises the deviation of the prices predicted by the model from those quoted on
the market. In incomplete market models, the time series of the underlying is not sufficient
to reach an estimated price surface for the options contracts; moreover, the equivalent
martingale measure Q only shares qualitative characteristics of the true measure P, such
as the presence of jumps and, for instance, the finiteness of the Lévy measure (Cont and
Tankov, 2003). Therefore, one must rely on an “implied” modelling technique where Q
is found by calibrating the pricing model to the (most recent) surface of quoted option
prices. Once the model parameters have been estimated, one can use the model to price
exotic instruments and devise hedging strategies. In this sense, model calibration is the
inverse of the pricing problem — that is, while the latter is concerned with valuing one or
more options contracts given a set Θ of model parameters, the former is about finding Θ

such that the model outputs a given set of prices. Specifically, given 𝑁 options contracts
with prices 𝐶𝑖 (𝑖 = 1, . . . , 𝑁), the problem is finding the set of parameters under which the
price process {

𝑆𝑡
}
𝑡∈[0,𝑇 ] defines a QΘ-martingale and

𝐶𝑖 = 𝑒−𝑟𝜏𝑖EΘ [[𝑆𝑇𝑖 − 𝐾𝑖]+] ∀𝑖 ∈ {1, . . . , 𝑁} (4.42)

where EΘ [[𝑆𝑇𝑖 − 𝐾𝑖]+] represents the expected intrinsic value of the option under the model
identified by Θ. Clearly, a perfect calibration is not required as market frictions such as
bid-ask spreads are common even in liquid options markets; hence, the main aim of the
inverse pricing problem is obtaining the “best” approximation of market prices with a
predetermined model. In turn, the quality of such approximation is usually intended in a
(nonlinear) least-squares sense (Cont and Tankov, 2003; Schoutens et al., 2004), namely:

Θ∗ = argmin
QΘ∈Q

𝑁∑︁
𝑖=1

𝑤𝑖 [𝐶Θ (𝑇𝑖, 𝐾𝑖) − 𝐶𝑖]2 (4.43)

where 𝐶Θ (𝑇𝑖, 𝐾𝑖) is the price of option 𝐶𝑖 with strike 𝐾𝑖 and maturity 𝑇𝑖 under the given
model with parameter set Θ and measure QΘ. As discussed in the first chapter, the
presence of jumps or stochastic volatility in the price process leads to incomplete markets:
the second fundamental theorem of asset pricing does not hold, and several risk-neutral
measures QΘ ∈ Q do not introduce arbitrage into the market. While the minimisation
problem in (4.43) is guaranteed to have solution(s), the quadratic pricing error is non-
convex, may have several local minima, and features regions insensitive to changes in the
model parameters. Furthermore, the optimum Θ∗ is significantly dependent on the input
parameters, prompting the need for some regularisation technique; for instance, Cont
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and Tankov (2003) incorporate a prior P0 by relying on relative entropy — a measure of
divergence between two probability measures. This section implements a somewhat naive
calibration and is instead devoted to describing the problem and the numerical procedure
to solve it. The weights 𝑤𝑖 in (4.43) should be related to the reliability of the option prices
available; assuming liquid options have the most reliable data, such aim may be achieved
by looking at the bid-ask spread for each contract and setting:

𝑤𝑖 =
1

𝐶Ask
𝑖 − 𝐶Bid

𝑖

so that highly illiquid options will have little influence on the minimisation problem. The
numerical implementation of the calibration problem relies on an influential algorithm
known as fast Fourier transform (FFT), discussed below.

Suppose one is dealing with a given function 𝑓 with values fk = [ 𝑓0 . . . 𝑓𝑁−1]𝑇
sampled at 𝑁 discrete points x = [𝑥0 . . . 𝑥𝑁−1]𝑇 . The Fourier transform of such sample
is well-defined and known as discrete Fourier transform (DFT)∗; here, the representation in
Fourier space of the 𝑘-th data point is given by:

𝔉[ 𝑓𝑘] =
𝑁−1∑︁
𝑗=0

𝑓 𝑗𝑒
𝑖2 𝑗𝑘𝜋/𝑁 (4.44)

For each 𝑓𝑘, (4.44) sums integer multiples of 𝜔 B 𝑒2𝜋𝑖/𝑁 ; hence, one can rely on a 𝑁 × 𝑁

square matrix to write the vector of Fourier coefficients 𝔉[fk] as:

𝔉[ 𝑓0]
𝔉[ 𝑓1]
𝔉[ 𝑓2]
...

𝔉[ 𝑓𝑁−1]


=



1 1 1 · · · 1
1 𝜔 𝜔2 · · · 𝜔𝑁−1

1 𝜔2 𝜔4 · · · 𝜔2(𝑁−1)
...

...
...

. . .
...

1 𝜔𝑁−1 𝜔2(𝑁−1) · · · 𝜔 (𝑁−1)2





𝑓0
𝑓1
𝑓2
...

𝑓𝑁−1


(4.45)

Each of the 𝑁 entries of 𝔉[fk] requires 𝑁 multiplications to be found, leading to a com-
putational complexity of 𝑂(𝑁2); luckily, a decomposition developed by Cooley and Tukey
(1965), applied recursively, allows to reduce the number of operations to be performed to
the order of 𝑂(𝑁log(𝑁)); for this reason, Cooley and Tukey’s algorithm is known as FFT.

In the context of option pricing, the FFT allows one to value options contracts for
several strikes in a single run. Applying the transform to the value of an option requires
a numerical approximation for the relevant integral; for instance, since the real part of
∗The transform actually returns the weights in the Fourier series representation of the function. Letting the
period go to ∞, one moves from a Fourier series to a Fourier transform.

75



Chapter 4. Fourier Transform Methods 4.3. Calibration

a complex number is linear, the call price proposed by Lewis (2001) can be numerically
approximated through the trapezoid rule as follows:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) = 𝑆𝑡 −
√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋

∫ ∞

0
ℜ

[
𝑒𝑖𝑢𝑘𝜙𝑇

(
𝑢 − 𝑖

2

)]
𝑑𝑢

𝑢2 + 1/4

= 𝑆𝑡 −
√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋
ℜ

[∫ ∞

0
𝑒𝑖𝑢𝑘𝜙𝑇

(
𝑢 − 𝑖

2

)
𝑑𝑢

𝑢2 + 1/4

]
≈ 𝑆𝑡 −

√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋
ℜ

[∑︁𝑁−1
𝑛=0 𝑒𝑖𝑢𝑛𝑘𝜙𝑇

(
𝑢𝑛 − 𝑖

2

)
𝜂

𝑢2𝑛 + 1/4

]
(4.46)

where 𝜂 is the discrete increment of the Fourier variable 𝑢𝑛 = 𝜂𝑛, so that the integral is
truncated at 𝑁𝜂. It is worth mentioning that this approximation will induce both a sampling
error, for the continuous Fourier variable 𝑢 is sampled at 𝑁 discrete points, and a truncation
error, for the infinite integral is truncated at a finite value 𝑁𝜂. If one’s aim is to price
in-the-money options, it is sufficient to focus on the region where 𝑘 ≈ 0. Assuming an
interval [−𝑏, 𝑏] for the (log-)moneyness 𝑘 with a regular step size equal to 𝜆, one has:

𝑘 𝑗 = −𝑏 + 𝜆 𝑗 (4.47)

where 𝑏 = 𝑁𝜆/2. Substituting for (4.47) into (4.46) leads to:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) ≈ 𝑆𝑡 −
√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋
ℜ

[∑︁𝑁−1
𝑛=0 𝑒𝑖𝑢𝑛 (−𝑏+𝜆𝑘)𝜙𝑇

(
𝑢𝑛 − 𝑖

2

)
𝜂

𝑢2𝑛 + 1/4

]
(4.48)

Moreover, since 𝑢𝑛 = 𝜂𝑛, one can rewrite (4.48) as:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) ≈ 𝑆𝑡 −
√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋
ℜ

[∑︁𝑁−1
𝑛=0 𝑒−𝑖𝑏𝜂𝑛+𝑖𝜂𝑛𝜆𝑘𝜙𝑇

(
𝑢𝑛 − 𝑖

2

)
𝜂

𝑢2𝑛 + 1/4

]
= 𝑆𝑡 −

√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋
ℜ

[∑︁𝑁−1
𝑛=0 𝑒−𝑖𝑏𝑢𝑛𝑒𝑖𝜂𝑛𝜆𝑘𝜙𝑇

(
𝑢𝑛 − 𝑖

2

)
𝜂

𝑢2𝑛 + 1/4

]
(4.49)

For (4.49) to be a suitable input as input of a FFT routine, the (log-)moneyness spacing 𝜆
and the Fourier variable step size 𝜂 must verify the identity:

𝜆𝜂 =
2𝜋
𝑁

(4.50)

It follows that the (log-)moneyness lies in the interval bounded by ±𝜋/𝜂. Substituting for
𝜆 into (4.49), one reaches a DFT representation of the call price proposed by Lewis:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) ≈ 𝑆𝑡 −
√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋
ℜ

[∑︁𝑁−1
𝑛=0 𝑒−𝑖𝑏𝑢𝑛𝑒𝑖2 𝑗𝑛𝜋/𝑁𝜙𝑇

(
𝑢𝑛 − 𝑖

2

)
𝜂

𝑢2𝑛 + 1/4

]
(4.51)

The identity shown in (4.50) entails an inverse relationship between the step size of the
(log-)moneyness and the Fourier variable. Therefore, opting for a finer integration scheme
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by selecting a small 𝜂 will lead to a sparser values of 𝑘 which may not lie in the region
of interest of the problem (i.e., around 𝑘 = 0). Hence, it is desirable to incorporate some
weighting scheme 𝑤 𝑗 into the discretised integral above; doing so, the prices of call options
for several strikes can be efficiently computed by evaluating:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) ≈ 𝑆𝑡 −
√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋
ℜ

[∑︁𝑁−1
𝑛=0 𝑤 𝑗𝑒

−𝑖𝑏𝑢𝑛𝑒𝑖2 𝑗𝑛𝜋/𝑁𝜙𝑇

(
𝑢𝑛 − 𝑖

2

)
𝜂

𝑢2𝑛 + 1/4

]
(4.52)

Two popular choices of integration rules are:

Trapezoidal: 𝑤 𝑗 =
𝟙 𝑗∈{0, 𝑁−1} ( 𝑗)

2 + 𝟙 𝑗∉{0, 𝑁−1} ( 𝑗) (4.53)

Simpson’s: 𝑤 𝑗 =
3 + (−1) 𝑗 − 𝛿 𝑗

3 (4.54)

where 𝛿 𝑗 is the Kronecker delta function, defined as 𝛿 𝑗 = 𝟙 𝑗=0( 𝑗). In other words, Simpson’s
integration rule assigns a weight 𝑤 𝑗 = 1/3 to the first and last points (i.e., 𝑗 = 0 or 𝑗 = 𝑁−1),
a weight 𝑤 𝑗 = 2/3 if 𝑗 ≡ 0 (mod2) (i.e., 𝑗 is even), and a weight 𝑤 𝑗 = 4/3 if 𝑗 ≡ 1 (mod2)
(i.e., 𝑗 is odd). A visualisation of the trapezoidal and Simpson’s integration schemes is
shown in Figure 4.5 for an arbitrary real-valued function. Finally, as the 𝑘 𝑗-s lie on an
equally spaced grid, one can rely on some interpolation technique to obtain prices for a
continuum of strikes. In this context, some authors claim that the error introduced by a
simple linear interpolation exceeds the sum of sampling and truncation error due to the
discretisation of the evaluation formula (Chourdakis, 2005; McCulloch, 2003). In contrast,
a cubic spline introduces much more negligible error. It is therefore advisable to choose a
finer grid for the discretisation of the Fourier variable 𝑢 as to reach more accurate results;

𝑎 = 𝑥0 𝑥1 𝑥 𝑗−1 𝑥 𝑗 𝑥𝑛−1 𝑏 = 𝑥𝑛

𝜂
2

𝑥

𝑦

𝑦 = 𝑓 (𝑥)

𝑎 = 𝑥0 𝑥1 𝑥 𝑗−1 𝑥 𝑗 𝑥𝑛−1 𝑏 = 𝑥𝑛

𝜂
2

𝑥

𝑦

𝑦 = 𝑓 (𝑥)

Figure 4.5 Left: Numerical approximation of the area under an arbitrary function 𝑓 (𝑥) according
to the Simpson’s rule based on quadratic equations for each sub-interval. Right: approximated
definite integral of 𝑓 (𝑥) as computed through the trapezoidal rule based on trapezoids described
by vertices at each bound of the sub-intervals in which the function is partitioned.
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from (4.50) one knows that a smaller 𝑢-spacing will lead to few values of 𝑘 in the region
of interest, which can, however, be found by cubic interpolation.

One can then assess the performance of the pricing formulas relying on Fourier inversion
discussed so far; in particular, Table 4.2 presents the results concerning computational
time and pricing accuracy of the three methods for a number of call options ranging from
10 to 1000. Pricing accuracy is proxied by the mean absolute percentage error (MAPE) —
that is, a lower MAPE is associated by construction to a larger pricing accuracy; for a data
set of 𝑁 observations 𝑋𝑖 and respective forecasts 𝑋𝑖, the MAPE is simply given by:

MAPE =
100
𝑁

𝑁∑︁
𝑖=1

����𝑋𝑖 − 𝑋𝑖
𝑋𝑖

���� (4.55)

The choice of MAPE comes from its superior interpretability when compared to other
accuracy measures such as root mean squared error (RMSE); indeed, a MAPE of 𝑥 implies
the predictions are, on average, off by 𝑥% with respect to the outstanding market prices.

Number of options contracts
10 50 100 250 500 1000

Closed formula
CPU Time 0.04927 0.21900 0.55028 1.17697 2.36880 4.58952
MAPE — — — — — —
Speed-up — — — — — —

Bakshi and Madan
CPU Time 0.32445 0.06420 0.65664 1.61980 3.27012 6.49194
MAPE 3.51e-12 3.07e-12 3.01e-12 3.45e-12 3.02e-12 2.20e-09
Speed-up 0.15185x 3.41120x 0.83802x 0.72661x 0.72438x 0.70696x

Lewis
CPU Time 0.05627 0.29824 0.59589 2.88720 2.96523 5.78536
MAPE 6.71e-12 6.74e-12 6.75e-12 6.82e-12 6.92e-12 7.78e-09
Speed-up 0.87550x 0.73429x 0.92346x 0.40765x 0.79886x 0.79330x

Fast Fourier transform
CPU Time 0.03549 0.03665 0.03418 0.09848 0.03321 0.03370
MAPE 2.44e-07 2.72e-07 2.78e-07 3.16e-07 3.19e-07 3.19e-07
Speed-up 1.38832x 5.97582x 16.1822x 11.9515x 71.3259x 136.178x

Table 4.2 Computational time (in seconds) and mean absolute percentage error of different pricing
methods based on Fourier inversion in the jump-diffusion model of Merton (1976). The FFT is
implemented with 𝑁 = 213 = 8192 points and a discretisation step 𝜂 = 0.1 for the Fourier variable
𝑢. Hence, the integral is truncated at 0.1 × 8192 = 819.2 and the 𝑘 𝑗’s are 𝜆 = 0.007669 apart.
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Setting the closed-formula values as a benchmark, the last row of Table 4.2 highlights
how relying on the algorithm proposed by Cooley and Tukey (1965) becomes increasingly
beneficial as the number of contracts gets larger. Furthermore, all the three methods
presented come with a significant pricing accuracy, irrespectively of the sample size; still,
the reduction in computational time makes a FFT the desirable approach when pricing
more than one contract (Cont and Tankov, 2003).

The actual calibration of the pricing models discussed in the previous chapters is
conducted relying on the outstanding call options chain written on the Apple stock as of the
17th of August, 2022. The analysis could easily be conducted by referring to put contracts
as well, but the put-call parity arbitrage relation ensures that the magnitude of mispricings
with respect to the BSM framework are similar across the two contract speifications; as a
result, the analysis which follows focuses on call options. Furthermore, even though the
derivations of the models assumed a non-dividend paying underlying, the generalisation
is straightforward: it is indeed sufficient to impose a correction in the drift of the spot
(log-)price by letting it equal 𝑟 − 𝑞 in the respective risk-neutral characteristic functions; at
the time of the analysis, the Apple stock closed at a price of $174.55, thereby implying a
dividend yield of 𝑞 = 0.90/174.55 ≈ 0.52%.

The contract with the earliest expiration matures on the 26/08/2022, while the last
available option in terms of maturity refers to the 21/06/2024. The exercise prices range
from a minimum of $30 for the 20/01/2023 maturity up to a maximum of $320 for the last
expiration available. Even though the options prices are proxied by the bid-ask mid-point,
it is worth noting that even on such a liquid instrument — that is, options written on the
Apple stock — the bid-ask spread goes from $0.01 to $0.55. Overall, the data set contains
342 calls sharing 19 common strikes with a minimum of $130 and a maximum of $240.
To render the calibration procedure (slightly) faster, a filter considering strikes lying in an
interval bounded by ±25% of the spot price is applied, thereby leading to a price surface
made up of 15 strikes for 18 different expirations.

The risk-free rate is assumed to be proxied by the par yield published daily by the US
Treasury. Unfortunately, the Treasury only provides the yield for a predetermined set of
maturities. Hence, in order to obtain the relevant rates for the options expirations in the
data set, it is necessary to resort to yield curve models. Within the latter, a popular and
proven efficient choice is the well-known framework of Nelson and Siegel (1987) and in
particular its six-parameter extension proposed by Svensson (1994). Here, the risk-free
rate (yield) for a given time 𝑡 ≥ 0 is given by:

𝑟𝑡 = 𝛽1 + 𝛽2

(1 − 𝑒−𝑡/𝜆1

𝑡/𝜆1

)
+ 𝛽3

(1 − 𝑒−𝑡/𝜆1

𝑡/𝜆1 − 𝑒−𝑡/𝜆1
)
+ 𝛽4

(1 − 𝑒−𝑡/𝜆2

𝑡/𝜆2 − 𝑒−𝑡/𝜆2
)

(4.56)
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All Contracts Short-Term Contracts
JD VG SV SVJD JD VG SV SVJD

M
er
to
n

𝜎
0.1613 — — — 0.1985 — — —(0.0041) (0.0037)

𝜆
2.5746 — — — 7.0621 — — —(0.1683) (0.1829)

𝛼
0.1369 — — — 0.1586 — — —(0.0058) (0.0049)

𝛽
0.1620 — — — 0.0936 — — —(0.0022) (0.0017)

M
ad

an
et

al.

𝜃 — 0.3678 — — — 0.7911 — —(0.0194) (0.0236)

𝜎 — 0.2768 — — — 0.2664 — —(0.0018) (0.0023)

𝜈 — 0.3031 — — — 0.0783 — —(0.0034) (0.0037)

He
sto

n

𝜌 — — 0.5519 — — — 0.6301 —(0.0070) (0.0074)

𝜎 — — 0.7863 — — — 1.1498 —(0.0239) (0.0314)

𝜃 — — 0.0520 — — — 0.0107 —(0.0002) (0.0005)

𝜅 — — 1.1646 — — — 3.3791 —(0.1632) (0.1743)

𝑣0 — — 0.1399 — — — 0.0959 —(0.0006) (0.0005)

Ba
te
s

𝜌 — — — 0.4469 — — — 0.5953
(0.0159) (0.0231)

𝜎 — — — 0.6298 — — — 0.7737
(0.0722) (0.0536)

𝜃 — — — 0.0739 — — — 0.1165
(0.0042) (0.0073)

𝜅 — — — 2.8937 — — — 4.3243
(0.3986) (0.5143)

𝜆 — — — 0.8160 — — — 0.8463
(0.1477) (0.1318)

𝛼 — — — 0.0624 — — — 0.1107
(0.0056) (0.0053)

𝛽 — — — 0.0726 — — — 0.0904
(0.0026) (0.0031)

𝑣0 — — — 0.0672 — — — 0.0977
(0.0046) (0.0047)

MAPE (%) 5.94 6.82 2.23 1.81 12.24 14.01 4.39 3.51

Table 4.3 Results of the calibration procedure for the four pricing models discussed so far. When
it comes to pricing accuracy, all the frameworks provide a substantial improvement on the BSM
framework, associated with 36.38% and 65.67%MAPEs for all and short-term contracts, respectively.
The most significant contribution is undoubtedly due to the introduction of stochastic volatility
paths, and allowing for discontinuities improves the fit even further.
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The six parameters are then estimated by minimising the sum of squared errors between
the model predictions and the yields published by the US Treasury. The yield curve obtained
through such procedure is presented in Figure 4.6. Even though the fit is not perfect,
especially for short tenors the Nelson-Siegel-Svensson interpolation technique provides
an almost exact representation of the yields. Luckily, this portion of the curve is the most
crucial for the calibration problem at hand, as most of the options considered in the data
are set to expire within a year and all the contracts will be worthless in at most two years.

Given the data described above, considering (4.43) for each of the four models leads to
the parameter sets and respective standard errors are presented in Table 4.3. In particular,
the calibration procedure is carried out once for all the options contracts available and then
focusing on short-term calls only; a contract is assumed to be short-term if it is supposed
to expire within 100 trading days, or about 0.397 years.

Starting from the jump-diffusion model of Merton (1976), the results highlight how
the options considered come with a significant implied jump intensity for the Poisson
process in (2.40), with around five jumps every two years. Together with the estimate
for the average log-jump size 𝛼, the jump-diffusion parameters seem to imply a large
kurtosis and a substantial asymmetry for the risk-neutral density of log-returns on the
Apple stock. Coherently, the results for the variance-gamma model proposed by Madan
et al. (1998) show how the implied risk-neutral density is both significantly left-skewed
and leptokurtic; in particular, the implied kurtosis is about 30% greater than it would be

0 5 10 15 20 25 30
Years

@B

Figure 4.6 Yield curve obtained by applying the six-parameter Nelson-Siegel-Svennson model. The
best fit is characterised by 𝛽1 = 0.0326, 𝛽2 = −0.1939, 𝛽3 = 0.0083, 𝛽4 = −0.0174, 𝜆1 = 0.1707,
and 𝜆2 = 4.4075. Although overestimating the par yield at longer maturities, the model provides a
significantly accurate representation of the curve in the time span of interest.
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for a Normal distribution of returns, or 3.9. The parameter set Θ∗ minimising the weighted
sum of pricing errors for the stochastic volatility model of Heston (1993) confirm the
presence of the leverage effect discussed at the beginning of Chapter 3, wherein returns and
volatility are known to share a negative correlation. It is also known that the correlation 𝜌

between volatility 𝑣𝑡 and spot price 𝑆𝑡 and the volatility of volatility 𝜎 are responsible for
the skewness and kurtosis of the returns distribution, respectively. It is then clear that the
implied distribution is asymmetrical and leptokurtic, as the Heston (1993) model requires
a substantially high estimate of 𝜎 to justify the pronounced volatility skew observed in the
options data for short maturities. Finally, turning to the stochastic volatility jump-diffusion
model described by Bates (1996) one notes that the leverage effect is still present but with
a lower magnitude, while the estimated speed of mean reversion 𝜅 is slightly higher. At the
same time, the estimate for the volatility of volatility 𝜎 is smaller than that of the stochastic
volatility relying on continuous paths only. Concerning the discontinuous component of
the price process, the intensity of jumps, average log-jump size, and variance of the latter
are all associated to estimates lower than those obtained for the jump-diffusion model
assuming a constant volatility. Interestingly, the results for the Bates (1996) model seem
to suggest that the jump-diffusion model justifies the implied volatility skew with greater
estimates for the parameters of the compound Poisson process which may be instead
the result of an additional source of randomness in the volatility process; similarly, the
estimated Θ∗ for the framework proposed by Heston (1993), coupled with the results
observed for the Bates (2006) model, show that the high variability attached to 𝑣𝑡 may
actually be the result of a discontinuous component in the price process.

Focusing on short-term call contracts, one immediately notes how the estimate for the
volatility coefficient — either for the spot price or its volatility — is inevitably higher for all
the models considered. As a result, one can infer that a significantly more erratic path for
the underlying’s price or volatility is implied in the prices of short-term options contracts.
Furthermore, both the stochastic volatility and stochastic volatility jump-diffusion models
predict a (slightly) stronger leverage effect which, in the Bates (1996) framework, is
coupled with more frequent jumps characterised by a significantly more negative average
(log-)jump size, down by about 5% from the estimate obtained with the calibration to all the
available contracts. A similar observation holds for the models allowing for discontinuity
points in the price paths discussed in, wherein the more significant asymmetry proxied by a
lower correlation coefficient 𝜌 in the Heston (1993) and Bates (1996) models is translated
to a much more negative estimate for 𝛼 and 𝜃 in the jump-diffusion and (asymmetric)
variance-gamma representations. Similarly, the greater volatility also leads to a larger
kurtosis, as shown by the increase in the estimates for 𝜆 and 𝜈. Hence, it follows that
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for the considered short-term contracts to be priced consistently by models allowing for
discontinuous price paths, the magnitude of market crashes and their frequency must be
greater. On the other hand, frameworks involving stochastic volatility attribute the greater
variation potentially generated by jumps in the spot price to the presence of a stronger
leverage effect and an even more erratic, or rough, volatility process.

Overall, the results of Table 4.3 show that the biggest improvement over the BSM
model in terms of pricing accuracy is achieved through the explicit inclusion of a stochastic
process dictating the dynamics of the underlying volatility. While providing a good fit
for short-term options, models only allowing for discontinuities in the price path such
as exponential Lévy processes suffer from their independent increments requirement,
eventually leading to implied volatility surfaces which flatten out too quickly as the
contracts expirations increase. Still, a generalisation of the class of jump-diffusion models
accounting for stochastic volatility or, equivalently, an expansion of the stochastic volatility
framework allowing for discontinuities in the price path — such as the model described by
Bates (1996) — can indeed improve the fit to the volatility surface even further.
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This thesis aimed to explore option pricing techniques that explicitly account for some
of the most common properties observed in empirical data on asset prices and volatility.
These observations are reflected in different data sets so frequently that they are now
recognised as actual stylised facts about asset returns. As far as the arguments of this thesis
are concerned, the most attractive property is the excess kurtosis and the left-asymmetry
of the returns distribution; a leptokurtic distribution comes with heavy tails, meaning that
“extreme” events do occur with a greater frequency than in the Gaussian specification.
Such configuration for the densities implies that deep in-the-money and (especially) deep
out-of-the-money options contracts are underpriced in the BSM framework, leading to the
volatility smiles and skews implied in the market prices of options contracts.

Starting from one of the most influential contributions in quantitative finance — the
fundamental partial differential equation developed by Black and Scholes (1973) and
Merton (1973) — derived in the first chapter, the second and third parts are designed to
provide the theoretical background underlying four of the most common pricing models
entailing a nongaussian distribution of returns. An intuitive technique to increase the
probability of extreme returns consists in allowing the price path of the underlying on
which the option contract is written to exhibit discontinuities — that is, jumps. The latter
may occur for various reasons: the announcement of an M&A transaction, the outbreak of
a war (or pandemic), the discovery of a new drug by some biotech company, and similar.
As a result, the stochastic differential equations describing the dynamics of the price
paths are not only artificially associated with leptokurtic distributions but also reflect the
significant changes observed in stock prices over a short time interval. One may argue
that the key here would be to define how long a short time interval lasts. However, the
argument would only favour the discontinuity hypothesis as jumps essentially dictate
intraday movements. As described in the second chapter, càdlàg stochastic processes
allowing for discontinuity points share most of the properties verified by the Brownian
motion on which the BSM framework is built. In particular, the class of Lévy processes
provides a generalisation wherein Brownian motion is the only continuous specification
and may or may not be included in the final stochastic differential equation, as in the
variance-gamma process proposed by Madan et al. (1998). In fact, the independence of
increments features among the properties of Brownian motion present in the more general
class of Lévy processes; as a result, while providing a good fit for options contracts expiring
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in the short term, the accuracy worsens and approximates that of BSM as the maturity
of the contract moves further out in time. Such observation prompts the need to relax
the assumption of independence, which is indeed absent in the second subset of pricing
frameworks — based on stochastic volatility — presented in the third chapter. This class of
models rejects the assumption of independent increments and constant volatility inherent
to the BSM representation while addressing two additional stylised facts of asset returns,
specifically about their variation. First, volatility tends to cluster — significant returns
follow wide price swings while more minor variations often predict negligible returns —
and second, volatility and returns share a negative correlation, an observation known as
the leverage effect. Among the earliest and most significant contributions in this field is the
Heston (1993) model, which proposes a stochastic representation of volatility that follows
the same square root process used for interest rates by Cox et al. (1985). Heston’s model
has several advantages, including the presence of a closed-form solution for European
option pricing. However, the assumption of continuous paths for the asset price and its
volatility makes the model incapable of reproducing the pronounced smile or skew observed
for short-term options contracts. In particular, the bivariate diffusion does not generate
enough variation over short time intervals unless one assumes an unreasonably large value
for the volatility of volatility. At the same time, however, the volatility surfaces at longer
maturities match those typically observed on the market. An ideal specification for the price
paths would still model volatility as stochastic while allowing for discontinuities, either
in the price path or the volatility one (or both). Bates (1996) follows the first approach,
introducing jumps in the spot price and combining the benefits of the Heston (1993) and
Merton (1976) models while providing the fourth pricing framework discussed in this
thesis. In such representation, the volatility surfaces implied in the artificially generated
prices accurately reflects their empirical counterparts with reasonable parameter estimates.

Unfortunately, specifying a more realistic stochastic process to model the behaviour of a
given underlying asset impact the analytical tractability of the model. The essential results
obtained by Harrison and Pliska in 1981 and 1983 — namely, the two fundamental theo-
rems of asset pricing — allow to price options without introducing arbitrage opportunities
by computing an expectation under an equivalent martingale measure. However, as soon
as (say) jumps enter the equation, the density needed to compute the expectation becomes
much more involved by including infinite sums or special functions defined ad-hoc for the
problem at hand. Nevertheless, as discussed in the fourth chapter, the approach pionereed
by Stein and Stein (1991) and popularised by Heston (1993) to price via expectation
without specifying the density was later generalised by the works of Bakshi and Madan
(2000), Carr and Madan (1999), and Lewis (2001). In particular, each probability density
function is entirely characterised by its characteristic function — a standard terminology in
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probability theory to denote the Fourier transform of a density. The relevant characteristic
function can then be inverted to recover the original density, a result due to Gil-Pelaez
(1951). While such a procedure may be seen as excess work to obtain the same result,
working with characteristic functions allows specifying complex dynamics for the model
and still price options without the need for Monte Carlo simulations. Most importantly,
the Fourier transforms of the distribution induced by the log-price in the models discussed
in this thesis have a simple closed-form representation due to the Lévy-Itô decomposition
or the affine nature of the framework. Furthermore, posing the pricing problem in terms
of characteristic functions allows one to rely on the fast Fourier transform — a recursive
algorithm able to price thousands of options contracts in a matter of seconds. The results
show how, when it comes to pricing accuracy, the most significant improvement over the
BSM framework is obtained by introducing stochastic volatility in the model. Still, allowing
for discontinuities, as in Bates (2006), permits achieving an even better performance.

Concerning the calibration procedure, a research limit of this thesis lies in the absence
of an out-of-sample assessment of the results obtained — that is, it would be interesting to
look at the pricing accuracy obtained with the parameters calibrated on a different, more
extensive, options data set. Equally interestingly, one may assess the fit of an increasingly
popular class of models relying on fractional Brownian motion — a process relaxing
the continuity assumption — known as fractional stochastic volatility frameworks. Here,
exploring variations of the rough fractional stochastic volatility model, based on a fractional
Brownian motion with Hurst exponent below one-half, would be particularly engaging.
Although present in a more elaborate representation, the ubiquitous need to abstract from
the assumption of independent increments within these models validates the building
blocks on which the models presented in this thesis are built.
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A.1 | Measure Theory
The discovery by Hankel (1882) of sets of zero extent (or null sets), as well as their close
relationship (Du Bois-Reymond, 1882) to the integrability conditions of a function proposed
by Riemann (1868), led the German mathematician and pioneer of set theory Georg Cantor
(1883) to provide the first definition of the measure (Inhalt) of an arbitrary set. Intuitively,
a null set can be covered by a countable union of intervals of arbitrarily small total length.
A formal definition can be found in Null Sets. The notion of measure proposed by Georg
Cantor (1883) was substantially generalised by Peano (1887) and Jordan (1892). Hence,
such a measure is often called the Peano-Jordan (PJ) measure. Even though the definition
of PJ measure is suitable for any dimension, the definition below refers to a plane — that
is, R2, as in Jordan (1892).
Definition A.1. Let 𝑆 be the sum of the areas of those (closed) squares of the grid located inside
the set 𝐸. Let 𝑆′ be the sum of areas of those squares which contain at least one boundary
point of the set 𝐸. The sum 𝑆 + 𝑆′ is the total area of the squares containing points of the
closure 𝐸 + 𝐸′. As the grid diameter tends to zero, the numbers 𝑆 and 𝑆 + 𝑆′ tend to limits;
the first of the limits is called the inner measure of the set 𝐸, and the second is known as
the outer measure of the set 𝐸. When these values agree, the set is called measurable in the
Peano-Jordan sense (or PJ-measurable), and the shared value of the inner and outer measures
is called the Peano-Jordan measure of the set 𝐸.

A substantial contribution to the field of measure theory is due to the French mathe-
matician Borel (1898), who provided a series of descriptive postulates that became the
standard for defining measures of sets.
Definition A.2. The postulates contained in Borel (1898) to define a measure are as follows.

1. A measure is always nonnegative.

2. The measure of a sum of a finite number of (non-overlapping) sets equals the sum of
their measures.

92



Appendix Measure Theory

3. The measure of the difference of two sets (a set and a subset) equals the difference of
their measures.

4. Every set whose measure is not zero is uncountable.

Note that the second and fourth conditions, taken together, imply that a singleton —
that is, a set with a single element — has Borel measure zero.

Borel, however, did not manage to show that the first postulate was always satisfied;
these deficiencies were later made up by Lebesgue (1902), who provided a rigorous
algorithm to construct the class of sets obtained by successive application of addition and
subtraction on open sets. Lebesgue proposed to call the members of this class Borel sets.
Definition A.3. The 𝜎-algebra 𝜎 (O𝑛) generated by the open sets O𝑛 of R𝑛 is the Borel 𝜎-
algebra, and its members are the Borel (measurable) sets; the notation B (R𝑛) indicates the
(set of) Borel sets in R𝑛.

An intuitive example of a measure is the Lebesgue measure 𝜆 (·) on R𝑛, defined on B (R𝑛)
and corresponding to the 𝑛-dimensional notion of volume: 𝜆 (𝐴) =

∫
𝐴
𝑑𝑥 =

∫
𝟙𝐴 𝑑𝑥. In

the one-dimensional case, the notion of Lebesgue measure of a measurable set 𝐴 ⊂ B(R)
reduces to its “length” — that is, 𝜆 ( [𝑎, 𝑏]) = 𝜆 ((𝑎, 𝑏)) = 𝑏 − 𝑎. As a result, the Lebesgue
measure can be used to construct the uniform probability measure as long as one restricts
the domain to [0, 1]. Another well-known measure is the Dirac measure 𝛿𝑥 (·) associated to
a point 𝑥 ∈ R and defined to be 𝛿𝑥 (𝐴) = 1 if 𝑥 ∈ 𝐴 and 𝛿𝑥 (𝐴) = 0 otherwise.

A measure 𝜇0 assigning a value of zero to any single point is said to be diffuse (or
atomless). The Lebesgue measure defined above is a clear example of diffuse measure; on
the contrary, Dirac measures are by definition positive only in a finite number of points. It
is therefore natural to introduce the notion of Radon measure 𝜇(·), defined on a measurable
space (R𝑛,B(R𝑛)) and such that for every bounded closed subset 𝐵 ∈ B(R𝑛) the Radon
measure is finite, 𝜇(𝐵) < ∞. Any Radon measure 𝜇 can be decomposed as the sum of a
diffuse measure 𝜇0 and a linear combination of Dirac measures (Kallenberg, 2017):

∃ 𝑥 𝑗 ∈ R, 𝑏 𝑗 ∈ R+ : 𝜇 = 𝜇0 +
∞∑︁
𝑗=1

𝑏 𝑗𝛿𝑥 𝑗

If 𝜇0 happens to equal zero, then the Radon measure 𝜇 reduces to a linear combination of
Dirac measures and is called a purely atomic measure.

Definition A.3 mentions a fundamental concept for probability theory applied to
continuous-time financial models, where collections of 𝜎-algebras (or 𝜎-fields) are used to
model the information flowing to an agent; Fama (1970) is just one example showing the
importance of modelling information in finance applications.
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Definition A.4. A 𝜎-algebra A on a non-empty set 𝑋 is a family of subsets of 𝑋 such that:

1. The non-empty set 𝑋 belongs to A
𝑋 ∈ A (A.1)

2. If a set 𝐴 belongs to A, its complement 𝐴𝑐 B 𝑋 \ 𝐴 is also in A

𝐴 ∈ A =⇒ 𝐴𝑐 ∈ A (A.2)

3. If a sequence of sets 𝐴1, 𝐴2, . . . belongs to A, their union is also in A{
𝐴 𝑗

}
𝑗∈N+ ⊆ A =⇒

⋃
𝑗∈N+

𝐴 𝑗 ∈ A (A.3)

A set 𝑋 ∈ A is said to be (A-)measurable.

Three properties of 𝜎-algebras follow from Definition A.4 and are listed below.

1. The empty set ∅ belongs to A: ∅ = 𝑋 𝑐 ∈ A by (A.1) and (A.2)

2. If 𝐴 and 𝐵 are two sets inA, then 𝐴∪𝐵 ∈ A: set 𝐴1 = 𝐴, 𝐴2 = 𝐵, and 𝐴3 = 𝐴4 = · · · = ∅.
Then, 𝐴 ∪ 𝐵 =

⋃
𝑗∈N+ 𝐴 𝑗 ∈ A by (A.3)

3. If a sequence of sets 𝐴1, 𝐴2, . . . belongs to A, their intersection is also in A; indeed,
if 𝐴 𝑗 ∈ A then 𝐴𝑐𝑗 ∈ A by (A.2), hence ⋃

𝑗∈N+ 𝐴
𝑐
𝑗 ∈ A by (A.3) and, again by (A.2)

we conclude that ⋂
𝑗∈N+ 𝐴 𝑗 =

(⋃
𝑗∈N+ 𝐴

𝑐
𝑗

) 𝑐 ∈ A.

Clearly, the power set (i.e., the set of all subsets) 2𝑋 of 𝑋 represents the maximal 𝜎-field,
whereas the minimal 𝜎-algebra on 𝑋 is always given by A = {∅, 𝑋}.

Since every subset of R𝑛 encountered in this thesis belongs to B (R𝑛) — that is, it is
Borel-measurable — it is worth introducing the notion of 𝜎-algebra generated by a set.
Definition A.5. Let 𝑋 be a non-empty set. For every system of sets M ⊆ 2𝑋 there exists a
unique minimal 𝜎-algebra containingM. This is known as the 𝜎-field generated byM, denoted
by 𝜎 (M), and M is called its generator.

In light of Definition A.5, the Borel 𝜎-algebra on R𝑛 shall be interpreted as the minimal
𝜎-field generated by the class O𝑛 of open sets of R𝑛.

To make the reasoning less abstract, consider 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and M = {{𝑎} , {𝑏}} ⊂ 𝑋 .
The subset M is clearly not a 𝜎-algebra (e.g., it does not contain neither ∅ nor 𝑋); in fact,
the “smallest” 𝜎-field generated by M is given by:

𝜎 (M) = {∅ , 𝑋 , {𝑎} , {𝑏}︸    ︷︷    ︸
M

, {𝑎, 𝑏}︸︷︷︸
{𝑎}∪{𝑏}

, {𝑐, 𝑑}︸︷︷︸
[ {𝑎}∪{𝑏} ]𝑐

, {𝑏, 𝑐, 𝑑}︸   ︷︷   ︸
{𝑎}𝑐

, {𝑎, 𝑐, 𝑑}︸   ︷︷   ︸
{𝑏}𝑐

}
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To conclude this brief section on measure theory it is essential to mention one last
notion, which, once we restrict our focus to measure spaces with total mass equal to one
(i.e., probability spaces), defines the concept of random variables.
Definition A.6. Let (𝑋,A) and (𝑋 ′,A′) be two measurable spaces. A map 𝑇 : 𝑋 → 𝑋 ′ is said
to be (A/A′-)measurable if the pre-image of every measurable set is itself a measurable set:

𝑋−1 (𝐴′) B {𝑥 : 𝑋 (𝑥) ∈ 𝐴′} ∈ A ∀𝐴′ ∈ A′ (A.4)

As presented in Section 1.1, the concepts defined so far have broad applications in
probability theory: an event is just a subset of the 𝜎-algebra F defined on the sample space
Ω, random variables are measurable maps from a probability space to a measurable space,
the expectation of a random variable requires its (Lebesgue) integral over the sample space
with respect to the probability measure, and so forth.

A.2 | Null Sets
A formal definition of null set requires the notion of cover of a set, presented below.

Definition A.7. A cover of a set 𝑋 represents a collection of sets whose union includes 𝑋 as a
subset. If 𝐶 = {𝑈𝛼 : 𝛼 ∈ 𝐴} is an indexed family of sets 𝑈𝛼, then 𝐶 is a cover of 𝑋 if

𝑋 ⊆
⋃
𝛼∈𝐴

𝑈𝛼 (A.5)

We say that 𝐶 is an open cover if each of its members is an open set.

Definition A.7 allows us to introduce the null set, which does not necessarily coincide
with the empty set and whose description requires the existence of a sequence of open
covers of a given set 𝐴 for which the limit of the lengths of its covers is zero.
Definition A.8. The set 𝐴 is called a set of extent zero if for every 𝜀 > 0 there exists a finite
system of intervals {𝑈𝑛}𝑛 of total length smaller than 𝜀 covering the set 𝐴. Analytically, suppose
𝐴 is a subset of the real line R such that

∀𝜀 > 0, ∃ {𝑈𝑛}𝑛 : 𝑈𝑛 = (𝑎𝑛, 𝑏𝑛) ⊂ R : 𝐴 ⊂
∞⋃
𝑛=1

𝑈𝑛 ∧
∞∑︁
𝑛=1

|𝑈𝑛 | < 𝜀 (A.6)

where the 𝑈𝑛 are intervals and |𝑈 | is the “length” of U, then 𝐴 is a null set.

Sets of zero extent are heavily related to the integrability conditions of a function set
forth by Riemann (1868). In particular, let us define the set 𝐸𝛼 B 𝐸𝑥 {𝜔( 𝑓 , 𝑥) > 𝛼}, where
𝜔( 𝑓 , 𝐸) B sup𝐸 𝑓 (𝑥) − inf𝐸 𝑓 (𝑥) and thus the oscillation 𝜔( 𝑓 , 𝑥0) of 𝑓 around a point 𝑥0 as:

lim
𝜀→0

𝜔( 𝑓 , [𝑥0 − 𝜀, 𝑥0 + 𝜀]) (A.7)
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Appendix Itô Isometry

In other words, 𝐸𝛼 defines the set of the point(s) 𝑥 for which the oscillation of 𝑓 (·) is
greater than 𝛼. In 1882, Du Bois-Reymond showed that if a function is such that, for each
𝛼 > 0, the set 𝐸𝛼 can be included in a finite system of intervals of an arbitrarily small
total length, then Riemann’s integrability criterion is satisfied and vice versa. The results
of Du Bois-Reymond (1882) shed light on the relationship between integration and the
concept of measure: a bounded function is integrable if the set 𝐸𝛼 is null for all 𝛼 > 0.

A.3 | Itô Isometry
Following Itô (1951), given a Brownian motion 𝑊𝑡 (𝜔) we define:

𝐼( 𝑓 ) B
∫ 𝑇

0
𝑓𝑡 (𝜔) 𝑑𝑊𝑠 (A.8)

The statement that Brownian motion is nowhere differentiable almost surely amounts
to saying that its paths exhibit unbounded variation almost surely on any interval. Itô
was aware that not all continuous processes could be integrated, and he thus focused on
stochastic processes that are adapted to the natural filtration of the Brownian Motion. Let
us then characterise the class 𝑀2 [0, 𝑇] of functions 𝑓 that admit an Itô integral.
Definition A.9. A function 𝑓 : [0,∞) × Ω ↦→ R belongs to the 𝑀2 [0, 𝑇] class if:

■ 𝑓𝑡 (𝜔) is B × F-measurable

■ 𝑓𝑡 (𝜔) is non-anticipative

■ E
[∫ 𝑇

0 𝑓 2𝑡 (𝜔) 𝑑𝑡
]
< ∞

Definition A.10. A function 𝜙 ∈ 𝑀2 [0, 𝑇] is called a simple process if

𝜙𝑡 (𝜔) =
𝑛−1∑︁
𝑗=0

𝛼 𝑗 (𝜔)𝟙[𝑡 𝑗,𝑡 𝑗+1] (𝑡) (A.9)

for some partition Π = Π(𝑡0, 𝑡1, . . . , 𝑡𝑛) with 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑇. If 𝜙 ∈ 𝑀2 [0, 𝑇] is a
simple process, then its Itô integral is given by

𝐼( 𝑓 ) B
∫ 𝑇

0
𝜙𝑡 (𝜔) 𝑑𝑊𝑡 = lim

𝑛→∞

𝑛−1∑︁
𝑗=0

𝛼 𝑗 (𝜔)
[
𝑊𝑡 𝑗+1 −𝑊𝑡 𝑗

] (A.10)

Let 𝜙1 and 𝜙2 be two simple processes in 𝑀2 [0, 𝑇]. Then:

1.
∫ 𝑇

0 (𝜙1,𝑡 + 𝜙2,𝑡) 𝑑𝑊𝑡 =
∫ 𝑇

0 𝜙1,𝑡 𝑑𝑊𝑡 +
∫ 𝑇

0 𝜙2,𝑡 𝑑𝑊𝑡
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Appendix Itô Isometry

2.
∫ 𝑇

0 𝑐𝜙1,𝑡 𝑑𝑊𝑡 = 𝑐
∫ 𝑇

0 𝜙1,𝑡 𝑑𝑊𝑡 for all 𝑐 ∈ R

3. E
[∫ 𝑇

0 𝜙1,𝑡 𝑑𝑊𝑡

]
= 0

4. E
[∫ 𝑇

0 𝜙1,𝑡 𝑑𝑊𝑡 ·
∫ 𝑇

0 𝜙2,𝑡 𝑑𝑊𝑡

]
= E

[∫ 𝑇

0 (𝜙1,𝑡 · 𝜙2,𝑡) 𝑑𝑡
]

A proof of the last property, known as Itô isometry, for the case of simple processes follows.

Proof. We start with the case 𝜙1 = 𝜙2 = 𝜙, that is

E

[∫ 𝑇

0
𝜙𝑡 𝑑𝑊𝑡 ·

∫ 𝑇

0
𝜙2,𝑡 𝑑𝑊𝑡

]
= E

[(∫ 𝑇

0
𝜙𝑡 𝑑𝑊𝑡

)2]
= E


𝑛−1∑︁
𝑗=0

𝛼2𝑗 (𝜔)
[
𝐵𝑡 𝑗+1 − 𝐵𝑡 𝑗

]2
+ 2

∑︁
0≤ 𝑗<𝑘≤𝑛−1

𝛼 𝑗 (𝜔)
[
𝐵𝑡 𝑗+1 − 𝐵𝑡 𝑗

]
𝛼𝑘 (𝜔)

[
𝐵𝑡𝑘+1 − 𝐵𝑡𝑘

]
︸                                                            ︷︷                                                            ︸

𝐶

]

Notice that:
■ E

[(𝐵𝑡 𝑗+1 − 𝐵𝑡 𝑗)2
]
= 𝑡 𝑗+1 − 𝑡 𝑗, since (𝐵𝑡 𝑗+1 − 𝐵𝑡 𝑗) ∼ N(0, 𝑡 𝑗+1 − 𝑡 𝑗)

■ For 𝑘 > 𝑗, we have 𝛼 𝑗 (𝜔)
[
𝐵𝑡 𝑗+1 − 𝐵𝑡 𝑗

]
𝛼𝑘 (𝜔) ⫫

[
𝐵𝑡𝑘+1 − 𝐵𝑡𝑘

] . Hence, 𝐶 = 0.

E

[(∫ 𝑇

0
𝜙𝑡 𝑑𝑊𝑡

)2]
= E


𝑛−1∑︁
𝑗=0

𝛼2𝑗 (𝜔)
[
𝐵𝑡 𝑗+1 − 𝐵𝑡 𝑗

]2
=

𝑛−1∑︁
𝑗=0
E

[
𝛼2𝑗 (𝜔)

[
𝐵𝑡 𝑗+1 − 𝐵𝑡 𝑗

]2]
=

𝑛−1∑︁
𝑗=0
E

[
𝛼2𝑗 (𝜔)

]
E

[ [
𝐵𝑡 𝑗+1 − 𝐵𝑡 𝑗

]2]
= E


𝑛−1∑︁
𝑗=0

𝛼2𝑗 (𝜔) (𝑡 𝑗+1 − 𝑡 𝑗)


= E

[∫ 𝑇

0
𝜙2
𝑡 (𝜔) 𝑑𝑡

]
(A.11)

For the general case 𝜙1 ≠ 𝜙2, we start by defining 𝜙3 as the linear combination 𝜙1 + 𝜙2.
Hence,

E

[(∫ 𝑇

0
𝜙3,𝑡 𝑑𝑊𝑡

)2]
= E

[(∫ 𝑇

0

(
𝜙1,𝑡 + 𝜙2,𝑡

)
𝑑𝑊𝑡

)2]
= E

[(∫ 𝑇

0
𝜙1,𝑡 𝑑𝑊𝑡 +

∫ 𝑇

0
𝜙2,𝑡 𝑑𝑊𝑡

)2]
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Expanding the square inside the expectation, we reach

E

[(∫ 𝑇

0
𝜙3,𝑡 𝑑𝑊𝑡

)2]
= E

[∫ 𝑇

0
𝜙2
1,𝑡 𝑑𝑡

]
+ 2E

[∫ 𝑇

0
𝜙1,𝑡 𝑑𝑊𝑡

∫ 𝑇

0
𝜙2,𝑡 𝑑𝑊𝑡

]
+ E

[∫ 𝑇

0
𝜙2
2,𝑡 𝑑𝑡

]
At the same time, however, we also know the following:

E

[(∫ 𝑇

0
𝜙3,𝑡 𝑑𝑊𝑡

)2]
= E

[∫ 𝑇

0
𝜙2
3,𝑡 𝑑𝑡

]
= E

[∫ 𝑇

0
(𝜙2

1,𝑡 + 2𝜙1,𝑡𝜙2,𝑡 + 𝜙2
2,𝑡) 𝑑𝑡

]
(A.12)

where the first equality holds by Itô Isometry for a (single) simple process — that is, (A.11).
Again, by exploiting the linearity of the expectation operator we have

E

[(∫ 𝑇

0
𝜙3,𝑡 𝑑𝑊𝑡

)2]
= E

[∫ 𝑇

0
𝜙2
1,𝑡 𝑑𝑡

]
+ 2E

[∫ 𝑇

0

(
𝜙1,𝑡 · 𝜙2,𝑡

)
𝑑𝑡

]
+ E

[∫ 𝑇

0
𝜙2
2,𝑡 𝑑𝑡

]
(A.13)

Finally, equating (A.12) and (A.13) we obtain:

E

[∫ 𝑇

0
𝜙1,𝑡 𝑑𝑊𝑡 ·

∫ 𝑇

0
𝜙2,𝑡 𝑑𝑊𝑡

]
= E

[∫ 𝑇

0
(𝜙1,𝑡 · 𝜙2,𝑡) 𝑑𝑡

]
□

A.4 | Properties of Fourier Transform
Differentiation is conveniently translated to multiplication in the Fourier space; consider

the Fourier transform of the derivative of an integrable function 𝑓 (𝑥):

𝔉 [ 𝑓 (𝑥)] =
∫
R
𝑒𝑖𝑢𝑥 𝑓 (𝑥) 𝑑𝑥 =⇒ 𝔉

[
𝑑

𝑑𝑥
𝑓 (𝑥)

]
=

∫
R
𝑒𝑖𝑢𝑥

𝑑

𝑑𝑥
𝑓 (𝑥) 𝑑𝑥 (A.14)

The integral above can be solved by integration by parts — that is,
∫
𝑓 𝑑𝑔 = 𝑓 𝑔 −

∫
𝑔𝑑 𝑓 .

Here, letting 𝑓 (𝑥) = 𝑒𝑖𝑢𝑥 and 𝑑𝑔(𝑥) 𝑑𝑥 = 𝑑 𝑓 (𝑥) so that the transform can be rewritten as:

𝔉

[
𝑑

𝑑𝑥
𝑓 (𝑥)

]
=

∫
R
𝑒𝑖𝑢𝑥

𝑑

𝑑𝑥
𝑓 (𝑥) 𝑑𝑥 =

[
𝑓 (𝑥)𝑒𝑖𝑢𝑥 ]+∞−∞︸          ︷︷          ︸

𝐴

−
∫
R
𝑓 (𝑥) (𝑖𝑢)𝑒𝑖𝑢𝑥 𝑑𝑥︸                 ︷︷                 ︸

𝐵

(A.15)

Concerning 𝐴, the norm of 𝑒𝑖𝑢𝑥 can be at most one for any 𝑥, 𝑢 ∈ R; at the same time,
since 𝑓 (𝑥) is absolutely integrable we have

∫
R
| 𝑓 (𝑥) | 𝑑𝑥 < ∞ which entails that 𝑓 (𝑥) → 0 as

𝑥 → ±∞. In other words, 𝐴 = 0. The second term, 𝐵, features an integral with respect to 𝑥.
This allows us to bring 𝑖𝑢 outside, thereby obtaining:

𝔉

[
𝑑

𝑑𝑥
𝑓 (𝑥)

]
= −

∫
R
𝑓 (𝑥) (𝑖𝑢)𝑒𝑖𝑢𝑥 𝑑𝑥 = −(𝑖𝑢)

∫
R
𝑒𝑖𝑢𝑥 𝑓 (𝑥) 𝑑𝑥 = −(𝑖𝑢)𝔉 [ 𝑓 (𝑥)] (A.16)
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The convolution of two (probability density) functions 𝑓 (𝑥) and 𝑔(𝑥) is denoted ( 𝑓 ∗ 𝑔) (𝑥)
and defined by the following integral:

( 𝑓 ∗ 𝑔) (𝑥) =
∫
R
𝑓 (𝑥 − 𝑠)𝑔(𝑠) 𝑑𝑠 (A.17)

In the Fourier space, convolutions are mapped to products — that is,𝔉 [ 𝑓 ∗ 𝑔] = 𝔉 [ 𝑓 ]𝔉[𝑔]:

𝔉−1 [𝔉 [ 𝑓 ]𝔉[𝑔]] = 1
2𝜋

∫
R
𝑒−𝑖𝑢𝑥 (𝔉 [ 𝑓 ]𝔉[𝑔]) 𝑑𝑢 =

1
2𝜋

∫
R
𝑒−𝑖𝑢𝑥𝔉 [ 𝑓 ]

(∫
R
𝑒𝑖𝑢𝑠𝑔(𝑠) 𝑑𝑠

)
𝑑𝑢

=
1
2𝜋

∫
R

∫
R
𝑒𝑖𝑢(𝑠−𝑥 )𝔉 [ 𝑓 ] 𝑔(𝑠) 𝑑𝑠 𝑑𝑢 =

∫
R
𝑔(𝑠) 1

2𝜋

∫
R
𝑒𝑖𝑢(𝑠−𝑥 )𝔉[ 𝑓 ] 𝑑𝑢︸                       ︷︷                       ︸

𝔉−1 [𝔉[ 𝑓 ] ]= 𝑓

𝑑𝑠

=
∫
R
𝑓 (𝑥 − 𝑠)𝑔(𝑠) 𝑑𝑠 (A.18)

□

A.5 | Gil-Pelaez CDF
The representation of a cumulative distribution function proposed by Gil-Pelaez (1951)
and given by (4.7) can be obtained through a convolution of the density 𝑓 (𝑥) with the
signum function 𝑠𝑔𝑛(𝑥), defined as 𝑠𝑔𝑛(𝑥) = −𝟙𝑥<0(𝑥) + 𝟙𝑥>0(𝑥); moreover, it is known that
𝔉[𝑠𝑔𝑛(𝑥)] = 2(𝑖𝑢)−1. Consider now the convolution of the density 𝑓𝑋 (𝑥) with 𝑠𝑔𝑛(𝑥):

( 𝑓𝑋 ∗ 𝑠𝑔𝑛) (𝑥) =
∫
R
𝑓 (𝑥 + 𝑠)𝑠𝑔𝑛(𝑠) 𝑑𝑠

=
∫ 0

−∞
− 𝑓𝑋 (𝑥 + 𝑠) 𝑑𝑠 +

∫ ∞

0
𝑓𝑋 (𝑥 + 𝑠) 𝑑𝑠 = 1 − 2𝐹𝑋 (𝑥) (A.19)

At the same time, we also know that convolutions are mapped onto products in the Fourier
space — that is, ( 𝑓𝑋 ∗ 𝑠𝑔𝑛) (𝑥) is also given by:

( 𝑓𝑋 ∗ 𝑠𝑔𝑛) (𝑥) = 𝔉−1 [𝔉[ 𝑓 (𝑥)]𝔉[𝑠𝑔𝑛(𝑥)]] = 1
2𝜋

∫
R

2𝑒−𝑖𝑧𝑥
𝑖𝑧

Φ𝑋 (𝑧) 𝑑𝑧 (A.20)

Hence, equating (A.19) and (A.20), one obtains (4.7):

1 − 2𝐹𝑋 (𝑥) = 1
2𝜋

∫
R

2𝑒−𝑖𝑧𝑥
𝑖𝑧

Φ𝑋 (𝑧) 𝑑𝑧 ⇐⇒ 𝐹𝑋 (𝑥) = 1
2 − 1

2𝜋

∫
R

𝑒−𝑖𝑧𝑥Φ𝑋 (𝑧)
𝑖𝑧

𝑑𝑧 (A.21)

□
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(a) Chords (left) and midpoints (right) chosen according to the “random endpoints” method:
choose two random points on the circumference of the circle and draw the chord joining them

(b) Chords (left) and midpoints (right) chosen according to the “random radial point” method:
choose a radius, choose a point on the radius and construct the chord perpendicular to it

(c) Chords (left) and midpoints (right) chosen according to the “random midpoint” method:
choose a point anywhere within the circle and construct a chord with the former as a midpoint

Figure A.1 Consider an equilateral triangle inscribed in a circle, and suppose a chord is chosen at
random; Bertrand (1889) asks what is the probability 𝑝 of picking a chord longer than a side of
the triangle. One can show that three different criteria, all in line with the principle of indifference,
produce three different results: 𝑝 = 1/3 in (a), 𝑝 = 1/2 in (b), and 𝑝 = 1/4 in (c).
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In quantitative finance, a derivative represents a contract whose value is derived from other
underlying variables (Hull, 2021). Such instruments date back to ancient times: the first
derivative was likely dealt with by the Greek philosopher Thales of Miletus around 600
BC. Generally engaged in philosophising, philosophers certainly did not shine for their
wealth. An anecdote in Aristotle’s Politics recounts how Thales, to prove the fallacy of this
commonplace, acquired the seasonal use of every nearby olive press at a discount. The
subsequent harvest, which proved exceptionally fruitful, allowed him to dispose of the
olive presses on his own terms, accumulating significant wealth in the process. Hence,
Thales was the first to set up a contingent contract depending upon the realisation of an
underlying state variable (here, the abundance of the harvest).

According to Aristotle, “from his knowledge of astronomy he had observed while it was
still winter that there was going to be a large crop of olives. . . ”. Thales would therefore have
used the derivative contract for speculative purposes, which is predominant in the use of
such financial instruments today. Another attractive perspective, provided by Taleb (2012),
is instrumental in introducing the other primary reason for derivative contracts: hedging.
From this perspective, Thales would have positioned himself to take advantage of his lack
of knowledge rather than exploit his superior astronomy understanding: “he did not need
to understand too much the messages from the stars.”

S.1 | Risk-Neutral Valuation
The insight backing the success of Thales’ strategy lies in the asymmetry of his position,

characterised by a finite but significant upside potential against a fixed cash outflow. Indeed,
the most significant contribution provided by options is undoubtedly the introduction of
asymmetry in the payoff, bounded at zero from below; clearly, the intrinsically contingent
nature of options contracts comes at a cost. The existence of options may be rationalised
through the two primary scopes such contracts are adopted in — speculation and hedging.
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Summary Risk-Neutral Valuation

The former is quite evident with options contracts, generally “controlling” for one hundred
shares of the underlying — for instance, the holder of a (say) call will buy 100 shares of
asset 𝑆 for a price 𝐾, as long as 𝑆𝑇 − 𝐾 > 0. Such built-in leverage makes options contracts
especially suitable for speculative purposes. Risk management represents another field
featuring widespread use of options, which may be employed to hedge a position and
comply with regulatory requirements set forth by banking authorities (e.g., EBA), such
as Value at Risk (VaR). Determining the value provided by asymmetry, known as the
option’s premium, requires an accurate description of asset prices. In turn, such modelling
assumptions are based on a compendium of formal definitions from the theory initiated by
Kolmogorov in 1933 for probability fields.
Definition S.1. Let Ω be a nonempty set, and let F be a 𝜎-algebra on subsets of Ω. Following
Kolmogorov (1933), a probability measure P is a function that, to every set 𝐴 ∈ F, assigns
a value in [0, 1] called the probability of 𝐴 and denoted P(𝐴). We require P(Ω) = 1 and
𝜎-additivity — that is, when

{
𝐴 𝑗

}
𝑗∈N+ is a sequence of pairwise disjoint events in F we have:

P
©­«

∞⋃
𝑗=1

𝐴 𝑗
ª®¬ =

∞∑︁
𝑗=1
P

(
𝐴 𝑗

) (S.1)

The triple (Ω,F, P) is called a probability space.

Definition S.2. Let (Ω,F, P) be a probability space and (R,B(R)) a measurable space. A
random variable 𝑋 is a measurable map 𝑋 : Ω → R. Equivalently, 𝑋 is a random variable if
for every Borel-measurable set 𝐵 ∈ B(R) the pre-image of 𝑋 is F-measurable:

{𝑋 ∈ 𝐵} B 𝑋−1(𝐵) = {𝜔 ∈ Ω : 𝑋 (𝜔) ∈ 𝐵} ∈ F (S.2)

Definition S.3. Let 𝑋 : Ω → R be a real-valued random variable defined on a probability
space (Ω,F, P). The distribution measure of 𝑋 is defined as the map 𝜇𝑋 : B(R) → [0, 1] which
assigns to each Borel set 𝐵 ⊂ B(R) a mass 𝜇𝑋 (𝐵), where:s

𝜇𝑋 (𝐵) B P(𝑋−1(𝐵)) = P(𝑋 ∈ 𝐵) (S.3)

Definition S.4. The characteristic function Φ𝑋 : R→ C of the R-valued random variable 𝑋 is
defined as the Fourier transform of the distribution 𝜇𝑋 :

Φ𝑋 (𝑧) = E [exp(𝑖𝑧𝑋)] =
∫
R
𝑒𝑖𝑧𝑥 𝑑𝜇𝑋 (𝑥) (S.4)

for all 𝑧 ∈ R.
Just as the value of an asset at a given point in time 𝑡 ≥ 0 is represented by a RV, the

dynamics of such value are proxied by a stochastic process — that is, a collection {𝑋𝑡}𝑡≥0 of
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Summary Risk-Neutral Valuation

random variables indexed by time 𝑡. Most importantly, a stochastic process may be seen as
a function 𝑋 : [0, 𝑇] × Ω → R of both time 𝑡 ∈ [0, 𝑇] and the randomness 𝜔 ∈ Ω.
Definition S.5. Let Ω be a non-empty set. Let 𝑇 be a fixed positive number, and assume that
for each 𝑡 ∈ [0, 𝑇] there exists a 𝜎-algebra F𝑡. Assume that if 𝑠 < 𝑡, then every set in F (𝑠) is
also found in F𝑡 — that is, 𝑠 < 𝑡 =⇒ F (𝑠) ⊆ F𝑡. Then, for 𝑡 ∈ [0, 𝑇], we call the collection
{F𝑡}𝑡∈[0, 𝑇 ] of non-decreasing 𝜎-algebras a filtration.

Definition S.6. A stochastic process {𝑋𝑡}𝑡∈[0, 𝑇 ] is said to be a martingale if

1. The process {𝑋𝑡}𝑡∈[0, 𝑇 ] is F𝑡-adapted

2. The expectation E[|𝑋𝑡 |] is finite for all 𝑡 ∈ [0, 𝑇]

3. For all 𝑠 < 𝑡, E[𝑋𝑡 | F𝑠] = 𝑋𝑠

Definition S.6 makes sense only with respect to a filtration and once the probability
measure P has been specified. When more than one mapping F → [0, 1] is considered,
the term P-martingale clarifies the measure under which the process is a martingale.

Brownian motion (BM) is named after the Scottish botanist Robert Brown, who observed
the jittery behaviour of pollen particles suspended in water, and may be considered the
continuous counterpart of a (rescaled) random walk with the following properties:

1. It is continuous.

2. It starts, without loss of generality, at zero.

3. It has independent and stationary increments.

4. At time 𝑡 it behaves as a Normal distribution N(0, 𝑡).
Unfortunately, specifying a BM for the spot price leads to some undesirable outcomes,
such as negative equity values. Assuming such a process for the instantaneuous return
gives much more realistic results and coincides with the approach followed by Black and
Scholes (1973) and Merton (1973). Applying the Itô-Doeblin formula to a geometric BM
reveals that the spot price at 𝑡 is log-normally distributed, ruling out negative values. The
breakthrough introduced by Black-Scholes-Merton (BSM) was not the pricing formula
itself but rather its derivation. The extension of Δ-hedging from a discrete to a continuous
framework, coupled with the no-arbitrage principle, allowed the authors to exclude the
underlying’s drift from the formula and thus apply risk-neutral valuation. A hedged portfolio
long an option valued at 𝑓 (𝑆𝑡, 𝑡) and short 𝜕 𝑓/𝜕𝑆 units of the underlying must earn the

104



Summary Lévy Processes

risk-free rate 𝑟, leading to the fundamental pricing partial differential equation (PDE):

𝜕 𝑓 (𝑆𝑡, 𝑡)
𝜕𝑡

+ 𝜕 𝑓 (𝑆𝑡, 𝑡)
𝜕𝑆𝑡

𝑟𝑆𝑡 + 1
2
𝜕2 𝑓 (𝑆𝑡, 𝑡)

𝜕𝑆2𝑡
𝜎2𝑆2𝑡 = 𝑟 𝑓 (𝑆𝑡, 𝑡) (S.5)

which can be solved once the terminal condition — 𝑓 (𝑆𝑇 , 𝑇) = [𝑆𝑇 − 𝐾]+ for a call — is
specified. The absence of arbitrage opportunities is closely linked to the existence of a
probability measure Q, equivalent to P, under which the process followed by the discounted
underlying’s price defines a martingale. Twomeasures P andQ are said equivalent (denoted
P ∼ Q) if they share the same impossible events:

P ∼ Q ⇐⇒ [P(𝐴) = 0 ⇐⇒ Q(𝐴) = 0] ∀𝐴 ∈ F (S.6)

The absence of arbitrage and the existence of Q are related by the first fundamental theorem
of asset pricing due to Harrison and Pliska (1981).
Theorem S.1. Consider a market model defined on probability space (Ω,F, P) equipped with
a filtration F𝑡. Let

{
𝑆𝑖𝑡

}
𝑡∈[0,𝑇 ] represent the price process followed by asset 𝑆𝑖. Then, the market

does not admit arbitrage opportunities if and only if there exists a probability measure Q ∼ P
such that the discounted price process(es)

{
𝑆𝑖𝑡

}
𝑡∈[0,𝑇 ] define Q-martingales.

Once the dynamics of the spot price under Q are known, the premium charged for an
option with terminal payoff 𝐻 is the expected payoff under Q: 𝑉𝑡 (𝐻) = 𝑒−𝑟 (𝑇−𝑡)EQ [𝐻 | F𝑡].
Computing such expectation amounts to specifying the risk-neutral dynamics dictating the
underlying’s price movements. In the BSM framework, the (log-)return on the underlying
at any time 𝑡 ∈ [0, 𝑇] is normally distributed:

𝑋𝑡 ∼ N
(
𝑋0 +

(
𝑟 − 1

2𝜎
2
)
𝑡, 𝜎2𝑡

)
(S.7)

It is well-known, however, that stock returns do not obey a Gaussian probability law, as
Mandelbrot (1963) pointed out.

S.2 | Lévy Processes
Solving the fundamental PDE with the terminal condition 𝑓 (𝑆𝑇 , 𝑇) = [𝑆𝑇 −𝐾]+, the resulting
price of a European call option maturing in 𝜏 B 𝑇 − 𝑡 is given by:

𝑉𝐵𝑆𝑡 = 𝑆𝑡Φ

[ log(𝑆𝑡/𝐾) + (𝑟 + 𝜎2/2)𝜏
𝜎
√
𝜏

]
− 𝐾𝑒−𝑟𝜏Φ

[ log(𝑆𝑡/𝐾) + (𝑟 − 𝜎2/2)𝜏
𝜎
√
𝜏

]
(S.8)

This equation, caeteris paribus, defines a monotonically increasing function of the underly-
ing’s volatility 𝜎, mapping (0, +∞) into ( [𝑆𝑡 − 𝐾𝑒−𝑟𝜏]+, 𝑆𝑡). Hence, given a market price 𝑉𝑀𝑡
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one can invert the pricing formula and recover the unique value of Σ𝑡 reconciling the BSM
and market prices:

∃! Σ𝑡 (𝐾, 𝑇) > 0 : 𝑉𝐵𝑆𝑡 (𝑆𝑡, 𝐾, 𝜏, 𝑟, Σ𝑡 (𝐾, 𝑇)) = 𝑉𝑀𝑡 (𝐾, 𝑇) (S.9)

The mapping Σ𝑡 : (𝐾, 𝑇) → Σ𝑡 (𝐾, 𝑇) is known as the implied volatility surface at time 𝑡. If
the market followed the assumptions set forth by Black and Scholes (1973) and Merton
(1973), one would expect a flat surface across strikes and maturities. However, this is not
the case once one looks at the empirically extracted volatility surface. Given the above,
it is natural to move on to a generalisation of the BSM framework — the class of Lévy
processes.
Definition S.7. Let 𝑋 : [0, 𝑇] × Ω → R be a real-valued (càdlàg) stochastic process defined on
a probability space (Ω,F, P). Then, {𝑋𝑡}𝑡∈[0,𝑇 ] defines a Lévy process if and only if:

1. It starts, without loss of generality, at zero.

2. It has independent and stationary increments.

3. It is stochastically continuous — that is, ∀𝜀 > 0, limℎ→0 P( |𝑋𝑡+ℎ − 𝑋𝑡 | ≥ 𝜀) = 0.

Letting {𝑋𝑡}𝑡≥0 be a Lévy process, there exists a continuous map 𝜓 : R→ C, known as
the characteristic exponent of 𝑋 , such that:

Φ𝑋𝑡 (𝑧) = E[exp(𝑖𝑧𝑋𝑡)] = exp(𝑡𝜓(𝑧)) ∀𝑧 ∈ R (S.10)

The assumption of stationary increments implies that the CF of 𝑋𝑡 is linear in time 𝑡.
Brownian motion is the only example of continuous Lévy process; the other “building
block” needed to reach a general formulation of Lévy processes, thereby allowing for
discontinuities in the resulting paths, is the Poisson process.
Definition S.8. Let {𝜏𝑖}𝑖≥1 be a collection of i.i.d. exponentially distributed random variables
and define 𝑇𝑛 B

∑𝑛
𝑖=1 𝜏𝑖. Then, the process {𝑁𝑡}𝑡≥0 given by

𝑁𝑡 =
∑︁
𝑛≥1

𝟙𝑡≥𝑇𝑛 = #{𝑛 ≥ 1 : 𝑇𝑛 ∈ [0, 𝑡]} (S.11)

is known as Poisson process with parameter 𝜆.

Given a càdlàg process {𝑌𝑡}𝑡≥0 and an arithmetic Brownian motion {𝛾𝑡 +𝑊𝑡}𝑡≥0 in-
dependent of {𝑌𝑡}𝑡≥0 defined on a probability space (Ω,F, P), the process described by
𝑋𝑡 = 𝛾𝑡 +𝑊𝑡 + 𝑌𝑡 defines a Lévy process and can be thus decomposed as:

𝑋𝑡 = 𝛾𝑡 +𝑊𝑡 +
∑︁

𝑠∈[0,𝑡] (𝑌𝑠 − 𝑌𝑠−) = 𝛾𝑡 +𝑊𝑡 +
∫ 𝑡

0

∫
R
𝑦𝐽𝑌 (𝑑𝑠 × 𝑑𝑦) (S.12)
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Theorem S.2. Let {𝑋𝑡}𝑡≥0 be a real-valued Lévy process with characteristic triplet given by
(𝛾, 𝜎2, 𝜈). Then, the characteristic function of the process at time 𝑡 is given by:

Φ𝑋𝑡 (𝑧) = E[exp(𝑖𝑧𝑋𝑡)] = exp
{
𝑡

[
𝑖𝛾𝑧 − 1

2𝜎
2𝑧2 +

∫
R

(
𝑒𝑖𝑧𝑥 − 1 − 𝑖𝑧𝑥𝟙 |𝑥 |<1

)
𝜈(𝑑𝑥)

]}
(S.13)

The first author to take account of discontinuities in price paths is was Merton (1976).
In his derivation, a (compound) Poisson process, independent of the diffusive component,
is included into the dynamics of the underlying. Hence, the instantaneous return on the
underlying is given by the following stochastic differential equation (SDE):

𝑑𝑆𝑡
𝑆𝑡

= (𝜇 − 𝜆𝜅) 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 + ©­«
𝑑𝑁𝑡∏
𝑗=1

𝑌𝑗 − 1ª®¬ (S.14)

with 𝜅 B E[𝑌𝑡−1] = exp (
𝛼 + 𝛽2/2)−1. Applying a generalised Itô-Doeblin formul allowing

for discontinuities with 𝑋𝑡 B log(𝑆𝑡) reveals that the log-price follows:

𝑑𝑋𝑡 =

(
𝜇 − 𝜆𝜅 − 𝜎2

2

)
𝑑𝑡 + 𝜎 𝑑𝑊𝑡 +

𝑑𝑁𝑡∑︁
𝑗=1

log(𝑌𝑗) (S.15)

Consequently, the distribution of returns will inevitably be characterised by heavy tails and
thus be more representative of the financial reality.

One does not need to introduce a diffusive component to reach an accurate representa-
tion of the evolution of asset prices. Letting {𝑍𝑡}𝑡≥0 be a Brownian motion with drift 𝜃, the
variance-gamma process {𝑋𝑡}𝑡≥0 proposed by Madan et al. (1998) is defined as:

𝑋𝑡 (𝜔) = 𝑍𝛾𝑡 (1, 𝜈) (𝜔) = 𝜃𝛾𝑡 (1, 𝜈) + 𝜎𝑊𝛾𝑡 (1, 𝜈) (S.16)

where 𝛾𝑡 (1, 𝜈) is a gamma process with unit mean rate— that is, a process with independent
increments over non-overlapping intervals [𝑡, 𝑡 + ℎ] with density given by:(1

𝜈

)ℎ/𝜈 𝑥 (ℎ/𝜈)−1 exp (−𝑥/𝜈)
Γ (ℎ/𝜈) ∀𝑥 > 0 (S.17)

where 𝑡 + ℎ − 𝑡 = ℎ is the interval length and Γ(·) the Gamma function. Despite being the
result of the subordination of a diffusive process, all the information regarding {𝑋𝑡}𝑡≥0 is
contained in its Lévy measure, making the variance-gamma model a pure jump process.

S.3 | Time-Varying Volatility
The previous section focused on the relaxation of the assumption of continuous price paths
inherent in the geometric Brownian motion employed by Black and Scholes (1973) and
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Merton (1973). The BSM model, however, builds on another fundamental assumption:
namely, a constant volatility for the underlying asset. Just as the exponential Lévy processes
discussed improve on the BSM framework by allowing for discontinuity points in the price
process, stochastic volatility (SV) models are based on the idea that volatility itself follows
a stochastic process. The additional randomness introduced by these class of models
eventually leads to leptokurtic return distributions resembling the empirically observed ones
(Gatheral, 2011). This class of models rejects the assumption of independent increments
and constant volatility inherent to the BSM representation while addressing two additional
stylised facts of asset returns, specifically about their variation. First, volatility tends to
cluster — significant returns follow wide price swings while more minor variations often
predict negligible returns — and second, volatility and returns share a negative correlation,
an observation known as the leverage effect. The first framework explicitly accounting for
both the leverage effect and the mean reverting nature of 𝑣𝑡 is due to Heston (1993), who
specified a bivariate diffusion for the spot price and its variance:

𝑑𝑆𝑡 = 𝜇𝑆𝑡 𝑑𝑡 +
√
𝑣𝑡𝑆𝑡 𝑑𝑊1,𝑡 (S.18)

𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡) 𝑑𝑡 + 𝜎
√
𝑣𝑡 𝑑𝑊2,𝑡 (S.19)

where {𝑊1,𝑡}𝑡≥0 and {𝑊2,𝑡}𝑡≥0 are two correlated BMs so that E[𝑊1,𝑡𝑊2,𝑡] = 𝜌𝑡, or equiva-
lently E[𝑑𝑊1,𝑡 𝑑𝑊2,𝑡] = 𝜌 𝑑𝑡. A replication argument similar to the one discussed for the
derivation of the BSM fundamental PDE implies the following pricing equation:

𝜕𝑉

𝜕𝑡
+ 1
2
𝜕2𝑉
𝜕𝑆2

𝑣𝑡𝑆
2
𝑡 +

1
2
𝜕2𝑉
𝜕𝑣2

𝜎2𝑣𝑡 + 𝜕2𝑉
𝜕𝑆𝜕𝑣

𝜌𝜎𝑆𝑡𝑣𝑡 − 𝑟𝑉𝑡 + 𝑟𝑆𝑡 𝜕𝑉
𝜕𝑆

= −𝜕𝑉
𝜕𝑣

[𝜅(𝜃 − 𝑣𝑡) − 𝜉𝜎
√
𝑣𝑡] (S.20)

where 𝜉 stands for the market price of volatility risk. At this stage, Heston proposes a
solution for the pricing PDE of the form:

𝑉𝑡 = 𝑆𝑡𝑃1 − 𝐾𝑒−𝑟𝜏𝑃2 (S.21)

where 𝑃1 and 𝑃2 represent the (risk-neutral) conditional probabilities of the option ending
in the money at expiration under the stock and risk-free asset numéraires, respectively.
Then, passing to the log-space with 𝑋𝑡 B log(𝑆𝑡) and combining (S.20) and (S.21) reveals
that the two probabilities must satisfy the following PDEs:

𝜕𝑃 𝑗
𝜕𝑡

+ 𝜕𝑃 𝑗
𝜕𝑥

(𝑟 + 𝑢 𝑗𝑣𝑡) +
𝜕𝑃 𝑗
𝜕𝑣

(𝛼 𝑗 − 𝛽 𝑗𝑣𝑡) + 1
2
𝜕2𝑃 𝑗
𝜕𝑥2

𝑣𝑡 + 1
2
𝜕2𝑃 𝑗
𝜕𝑣2

𝜎2𝑣𝑡 +
𝜕2𝑃 𝑗
𝜕𝑥𝜕𝑣

𝜌𝜎𝑣𝑡 = 0 (S.22)

where 𝑢1 = −𝑢2 = 1/2, 𝛼1 = 𝛼2 = 𝜅𝜃, 𝛽1 = 𝜅 − 𝜌𝜎, and 𝛽2 = 𝜅. The two probabilities can
then be found by inverting the characteristic function of the log-price, which is built to be
affine in the state variables 𝑆𝑡 and 𝑣𝑡. While returning a good fit for options contracts with
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expirations far ahead, the introduction of dependence in the spot price increments is not
sufficient to replicate the pronounced smile for short-term contracts. In fact, the bivariate
diffusion of Heston (1993) does not generate a sufficient variation in the spot price over a
short tenor unless one assumes an excessive value for the volatility of volatility 𝜎; hence,
one needs to include discontinuities as to achieve such variation. Jumps may be included
either in the diffusion driving the spot price or its variance, or in both. The first approach
is followed by Bates (1996), who combined the benefits of the stochastic volatility model
of Heston (1993) and the jump-diffusion framework of Merton (1976). In particular, the
bivariate stochastic process dictating the dynamics of the spot price and its variance is
described by the SDEs below:

𝑑𝑋𝑡 =
(
𝑟 − 𝜆𝜂 − 𝑣𝑡

2
)
𝑑𝑡 + 𝜎 𝑑𝑊Q𝜉1,𝑡 +

𝑑𝑁𝑡∑︁
𝑗=1

log(𝑌𝑗) (S.23)

𝑑𝑣𝑡 = [𝜅(𝜃 − 𝑣𝑡) − 𝜉𝜎
√
𝑣𝑡] 𝑑𝑡 + 𝜎

√
𝑣𝑡 𝑑𝑊

Q𝜉
2,𝑡 (S.24)

Even in the model proposed by Bates (1996), the premia charged for European options
is found through the inversion of the (risk-neutral) characteristic function of the log-spot
price of the underlying. As the Poisson counter {𝑁𝑡}𝑡≥0 for jumps is assumed independent
from the two BMs driving the two SDEs, the Fourier transform in the stochastic volatility
jump-diffusion model can be obtained by simply multiplying that of the SV framework
times the characteristic function of the JD process.

S.4 | Fourier Transform Methods
The concept of Fourier transform is named after French mathematician Joseph Fourier,

who introduced it in 1822. This decomposition is widely employed in studying differential
equations and signal processing. Within financial modelling, the Fourier transform was
introduced by Stein and Stein (1991) and popularised by the work of Heston (1993).
Before delving into the option pricing techniques based on characteristic functions, it is
essential to point out that the Fourier transform of a given function 𝑓 requires the latter to
be (absolutely) integrable — that is, for 𝔉[ 𝑓 (𝑥)] to exist it must be that:∫

R
| 𝑓 (𝑥) | 𝑑𝑥 < ∞ (S.25)

Furthermore, if 𝑓 (𝑥) and 𝑔(𝑥) are both square integrable functions, then inner products
⟨ 𝑓 , 𝑔⟩ are preserved under Fourier transforms:

⟨ 𝑓 (𝑥), 𝑔(𝑥)⟩ =
∫
R
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥 =

1
2𝜋

∫
R
𝔉[ 𝑓 ]𝔉[𝑔] 𝑑𝑧 (S.26)
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The relationship above is known as Parseval identity (or Plancherel Theorem) and provides
the basis for the call valuation formula proposed by Lewis (2001). Not even a decade
later after the work of Heston, Bakshi and Madan (2000) generalised several past results
concerning option pricing through Fourier transforms. Letting 𝑘 = log(𝐾) and 𝑋𝑇 = log(𝑆𝑇 ),
one can always decompose the value of a call option as follows:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) = 𝑒−𝑟𝜏
∫ ∞

𝐾
(𝑆𝑇 − 𝐾)Q(𝑆𝑇 | F𝑡) 𝑑𝑆𝑇

= 𝑆𝑡Π1(𝑆𝑇 > 𝐾 | F𝑡) − 𝐾𝑒−𝑟𝜏Π2(𝑆𝑇 > 𝐾 | F𝑡) (S.27)

Here, both Π1 and Π2 represent the (risk-neutral) conditional probabilities of the option
ending in the money at 𝑡 = 𝑇, and are given by:

Π1 =
1
2 + 1

𝜋

∫ ∞

0
ℜ

[
𝑒𝑖𝑧𝑘Φ𝑇 (𝑧 − 𝑖)

𝑖𝑧

]
𝑑𝑧 (S.28)

Π2 =
1
2 + 1

𝜋

∫ ∞

0
ℜ

[
𝑒𝑖𝑧𝑘Φ𝑇 (𝑧)

𝑖𝑧

]
𝑑𝑧 (S.29)

Another approach to the problem of valuing a European option is pursued by Carr and
Madan (1999), who provide a valuation formula especially suitable for a discretised version
of the Fourier transform, allowing to rely on a single inversion to price options for several
exercise prices. Unfortunately, the premium of a call option is not absolutely integrable,
and an appropriate transformation must be performed to make the implementation of the
fast Fourier transform feasible. Nevertheless, Carr and Madan (1999) show that damping
exponentially the call value leads to an integrable function — that is, it holds that:

𝑐𝑡 (𝑆𝑡, 𝑇, 𝐾) B 𝑒𝛼𝑘𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) =⇒
∫
R
|𝑐𝑡 (𝑆𝑡, 𝑇, 𝐾) | 𝑑𝑘 < ∞ (S.30)

for an appropriate choice of 𝛼 ∈ R+. In turn, the characteristic function of the damped
option price is given by the expression below:

𝜓𝑐𝑇 (𝑧) B 𝜓𝑇 (𝑧) =
∫
R
𝑒−𝑟𝜏Q(𝑋𝑇 | F𝑡)

[∫ 𝑋𝑇

−∞
𝑒𝑖𝑧𝑘𝑒𝛼𝑘 (𝑒𝑋𝑇 − 𝑒𝑘) 𝑑𝑘

]
𝑑𝑋𝑇 (S.31)

Computing the integral reveals that the characteristic function corresponds to:

𝜓𝑇 (𝑧) = 𝑒−𝑟𝜏Φ𝑇 (𝑧 − 𝑖(𝛼 + 1))
(𝑖𝑧 + 𝛼) (𝑖𝑧 + 𝛼 + 1) (S.32)

To recover the undamped call premia, it is sufficient to apply an inverse Fourier transform
and undo the exponential damping applied to make the function integrable — that is, the
value of a European call option at time 𝑡 is given by:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝑘) = 𝑒−𝛼𝑘

𝜋

∫ ∞

0
ℜ[𝑒−𝑖𝑧𝑘𝜓𝑇 (𝑧)] 𝑑𝑧 (S.33)
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Two years after the publication of Carr and Madan’s work, Lewis (2001) generalised the
authors’ results by showing that integrating a damped function is equivalent to evaluating
a contour integral in the complex plane. Underlying Lewis’s work is the idea that the
payoff function of an option admits a generalised Fourier transform Φ𝑡 (𝑧) = E[𝑒𝑖𝑧𝑋𝑡 ] with
𝑧 ∈ C in some strip of regularity S𝑋 parallel to the R-axis in the complex plane. Provided
the risk-neutral price process has a well-defined characteristic function Φ𝑇 (𝑧) for some
𝑧 ∈ S𝑥 , and the modified payoff 𝑤̂(𝑧) is regular with 𝑧 ∈ C in a given strip of regularity S𝑤,
one can recover the price of an option relying on the martingale condition:

𝑉𝑡 (𝑤(𝑋𝑇 )) = 𝑒−𝑟𝜏EQ [𝑤(𝑋𝑇 )] = 𝑒−𝑟𝜏EQ

[∫ 𝑖ℑ[𝑧]+∞

𝑖ℑ[𝑧]−∞
𝑒−𝑖𝑧𝑋𝑇 𝑤̂(𝑧) 𝑑𝑧

]
=
𝑒−𝑟𝜏

2𝜋

∫ 𝑖ℑ[𝑧]+∞

𝑖ℑ[𝑧]−∞
EQ [𝑒−𝑖𝑧𝑋𝑇 ]𝑤̂(𝑧) 𝑑𝑧 = 𝑒−𝑟𝜏

2𝜋

∫ 𝑖ℑ[𝑧]+∞

𝑖ℑ[𝑧]−∞
Φ𝑇 (−𝑧)𝑤̂(𝑧) 𝑑𝑧 (S.34)

For a call option, the fair premium to be charged is given by:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) = −𝐾𝑒
−𝑟𝜏

2𝜋

∫ 𝑖ℑ[𝑧]+∞

𝑖ℑ[𝑧]−∞

𝑒−𝑖𝑧𝑘𝜙𝑇 (−𝑧)
𝑧2 − 𝑖𝑧

𝑑𝑧 (S.35)

Shifting the contour by ℑ[𝑧] = 0.5 leads to an integration path which is equidistant from
the two poles of the integrand — namely, 𝑧 = 0 and 𝑧 = 𝑖. In particular, setting 𝑧 = 𝑢 + 𝑖/2,
the pricing formula above becomes:

𝐶𝑡 (𝑆𝑡, 𝑇, 𝐾) = 𝑆𝑡 −
√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋

∫ ∞

0
ℜ

[
𝑒−𝑖𝑢𝑘𝜙𝑇

(
−𝑢 − 𝑖

2

)]
𝑑𝑢

𝑢2 + 1/4

= 𝑆𝑡 −
√
𝑆𝑡𝐾𝑒𝑟𝜏/2

𝜋

∫ ∞

0
ℜ

[
𝑒𝑖𝑢𝑘𝜙𝑇

(
𝑢 − 𝑖

2

)]
𝑑𝑢

𝑢2 + 1/4 (S.36)

Finally, Lewis (2001) shows how moving the path of integration to the two poles given
by ℑ[𝑧] = 0 and ℑ[𝑧] = 1 leads to the BSM-style formula discussed by Bakshi and Madan
(2000) and presented at the beginning of this section.

Calibrating one of the valuation models seen so far amounts to finding the set of
parameters Θ that minimises the deviation of the prices predicted by the model from those
quoted on the market. In incomplete market models, the time series of the underlying
is not sufficient to reach an estimated price surface for the options contracts; moreover,
the equivalent martingale measure Q only shares qualitative characteristics of the true
measure P, such as the presence of jumps and, for instance, the finiteness of the Lévy
measure (Cont and Tankov, 2003). Therefore, one must rely on an “implied” modelling
technique where Q is found by calibrating the pricing model to the (most recent) surface
of quoted option prices. Once the model parameters have been estimated, one can use
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the model to price exotic instruments and devise hedging strategies. In this sense, model
calibration is the inverse of the pricing problem — that is, while the latter is concerned
with valuing one or more options contracts given a set Θ of model parameters, the former
is about finding Θ such that the model outputs a given set of prices.

The actual calibration of the pricing models discussed is conducted relying on the
outstanding call options chain written on the Apple stock as of the 17th of August, 2022.
The analysis could easily be conducted by referring to put contracts as well, but the put-call
parity arbitrage relation ensures that the magnitude of mispricings with respect to the
BSM framework are similar across the two contract speifications; as a result, the analysis
which follows focuses on call options. Furthermore, even though the derivations of the
models assumed a non-dividend paying underlying, the generalisation is straightforward:
it is indeed sufficient to impose a correction in the drift of the spot (log-)price by letting
it equal 𝑟 − 𝑞 in the respective risk-neutral characteristic functions; at the time of the
analysis, the Apple stock closed at a price of $174.55, thereby implying a dividend yield
of 𝑞 = 0.90/174.55 ≈ 0.52%. The contract with the earliest expiration matures on the
26/08/2022, while the last available option in terms of maturity refers to the 21/06/2024.
The exercise prices range from a minimum of $30 for the 20/01/2023 maturity up to a
maximum of $320 for the last expiration available. Even though the options prices are
proxied by the bid-ask mid-point, it is worth noting that even on such a liquid instrument
— that is, options written on the Apple stock — the bid-ask spread goes from $0.01 to
$0.55. Overall, the data set contains 342 calls sharing 19 common strikes with a minimum
of $130 and a maximum of $240. To render the calibration procedure (slightly) faster, a
filter considering strikes lying in an interval bounded by ±25% of the spot price is applied,
thereby leading to a price surface made up of 15 strikes for 18 different expirations. The
risk-free rate is assumed to be proxied by the par yield published daily by the US Treasury.
Unfortunately, the Treasury only provides the yield for a predetermined set of maturities.
Hence, in order to obtain the relevant rates for the options expirations in the data set, it is
necessary to resort to yield curve models. Within the latter, a popular and proven efficient
choice is the well-known framework of Nelson and Siegel (1987) and in particular its
six-parameter extension proposed by Svensson (1994). Starting from the jump-diffusion
model of Merton (1976), the results highlight how the options considered come with a
significant implied jump intensity for the Poisson process, with around five jumps every
two years. Together with the estimate for the average log-jump size 𝛼, the jump-diffusion
parameters seem to imply a large kurtosis and a substantial asymmetry for the risk-neutral
density of log-returns on the Apple stock. Coherently, the results for the variance-gamma
model proposed by Madan et al. (1998) show how the implied risk-neutral density is both
significantly left-skewed and leptokurtic; in particular, the implied kurtosis is about 30%
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All Contracts Short-Term Contracts
JD VG SV SVJD JD VG SV SVJD

M
er
to
n

𝜎
0.1613 — — — 0.1985 — — —(0.0041) (0.0037)

𝜆
2.5746 — — — 7.0621 — — —(0.1683) (0.1829)

𝛼
0.1369 — — — 0.1586 — — —(0.0058) (0.0049)

𝛽
0.1620 — — — 0.0936 — — —(0.0022) (0.0017)

M
ad

an
et

al.

𝜃 — 0.3678 — — — 0.7911 — —(0.0194) (0.0236)

𝜎 — 0.2768 — — — 0.2664 — —(0.0018) (0.0023)

𝜈 — 0.3031 — — — 0.0783 — —(0.0034) (0.0037)

He
sto

n

𝜌 — — 0.5519 — — — 0.6301 —(0.0070) (0.0074)

𝜎 — — 0.7863 — — — 1.1498 —(0.0239) (0.0314)

𝜃 — — 0.0520 — — — 0.0107 —(0.0002) (0.0005)

𝜅 — — 1.1646 — — — 3.3791 —(0.1632) (0.1743)

𝑣0 — — 0.1399 — — — 0.0959 —(0.0006) (0.0005)

Ba
te
s

𝜌 — — — 0.4469 — — — 0.5953
(0.0159) (0.0231)

𝜎 — — — 0.6298 — — — 0.7737
(0.0722) (0.0536)

𝜃 — — — 0.0739 — — — 0.1165
(0.0042) (0.0073)

𝜅 — — — 2.8937 — — — 4.3243
(0.3986) (0.5143)

𝜆 — — — 0.8160 — — — 0.8463
(0.1477) (0.1318)

𝛼 — — — 0.0624 — — — 0.1107
(0.0056) (0.0053)

𝛽 — — — 0.0726 — — — 0.0904
(0.0026) (0.0031)

𝑣0 — — — 0.0672 — — — 0.0977
(0.0046) (0.0047)

MAPE (%) 5.94 6.82 2.23 1.81 12.24 14.01 4.39 3.51

Table S.1 Results of the calibration procedure for the four pricing models discussed so far. When
it comes to pricing accuracy, all the frameworks provide a substantial improvement on the BSM
framework, associated with 36.38% and 65.67%MAPEs for all and short-term contracts, respectively.
The most significant contribution is undoubtedly due to the introduction of stochastic volatility
paths, and allowing for discontinuities improves the fit even further.
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greater than it would be for a Normal distribution of returns, or 3.9. The parameter set Θ∗

minimising the weighted sum of pricing errors for the stochastic volatility model of Heston
(1993) confirm the presence of the leverage effect discussed in the third section, wherein
returns and volatility are known to share a negative correlation. It is also known that the
correlation 𝜌 between volatility 𝑣𝑡 and spot price 𝑆𝑡 and the volatility of volatility 𝜎 are
responsible for the skewness and kurtosis of the returns distribution, respectively. It is then
clear that the implied distribution is asymmetrical and leptokurtic, as the Heston (1993)
model requires a substantially high estimate of 𝜎 to justify the pronounced volatility skew
observed in the options data for short maturities. Finally, turning to the stochastic volatility
jump-diffusion model described by Bates (1996) one notes that the leverage effect is still
present but with a lower magnitude, while the estimated speed of mean reversion 𝜅 is
slightly higher. At the same time, the estimate for the volatility of volatility 𝜎 is smaller
than that of the stochastic volatility relying on continuous paths only. Concerning the
discontinuous component of the price process, the intensity of jumps, average log-jump size,
and variance of the latter are all associated to estimates lower than those obtained for the
jump-diffusion model assuming a constant volatility. Interestingly, the results for the Bates
(1996) model seem to suggest that the jump-diffusion model justifies the implied volatility
skew with greater estimates for the parameters of the compound Poisson process which
may be instead the result of an additional source of randomness in the volatility process;
similarly, the estimated Θ∗ for the framework proposed by Heston (1993), coupled with
the results observed for the Bates (2006) model, show that the high variability attached to
𝑣𝑡 may actually be the result of a discontinuous component in the price process.

Focusing on short-term call contracts, one immediately notes how the estimate for the
volatility coefficient — either for the spot price or its volatility — is inevitably higher for all
the models considered. As a result, one can infer that a significantly more erratic path for
the underlying’s price or volatility is implied in the prices of short-term options contracts.
Furthermore, both the stochastic volatility and stochastic volatility jump-diffusion models
predict a (slightly) stronger leverage effect which, in the Bates (1996) framework, is
coupled with more frequent jumps characterised by a significantly more negative average
(log-)jump size, down by about 5% from the estimate obtained with the calibration to all the
available contracts. A similar observation holds for the models allowing for discontinuity
points in the price paths discussed in, wherein the more significant asymmetry proxied by a
lower correlation coefficient 𝜌 in the Heston (1993) and Bates (1996) models is translated
to a much more negative estimate for 𝛼 and 𝜃 in the jump-diffusion and (asymmetric)
variance-gamma representations. Similarly, the greater volatility also leads to a larger
kurtosis, as shown by the increase in the estimates for 𝜆 and 𝜈. Hence, it follows that
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for the considered short-term contracts to be priced consistently by models allowing for
discontinuous price paths, the magnitude of market crashes and their frequency must be
greater. On the other hand, frameworks involving stochastic volatility attribute the greater
variation potentially generated by jumps in the spot price to the presence of a stronger
leverage effect and an even more erratic, or rough, volatility process.

Overall, the results of Table S.1 show that the biggest improvement over the BSM
model in terms of pricing performance is achieved through the explicit inclusion of a
stochastic process dictating the dynamics of the underlying volatility. While providing a
good fit for short-term options, models only allowing for discontinuities in the price path
such as exponential Lévy processes suffer from their independent increments requirement,
eventually leading to implied volatility surfaces which flatten out too quickly as the
contracts expirations increase. Still, a generalisation of the class of jump-diffusion models
accounting for stochastic volatility or, equivalently, an expansion of the stochastic volatility
framework allowing for discontinuities in the price path — such as the model described
by Bates (1996) — can indeed improve the fit to the volatility surface even further.
Concerning the calibration procedure, a research limit of this thesis lies in the absence of
an out-of-sample assessment of the results obtained — that is, it would be interesting to
look at the pricing accuracy obtained with the parameters calibrated on a different, more
extensive, options data set. Equally interestingly, one may assess the fit of an increasingly
popular class of models relying on fractional Brownian motion — a process relaxing
the continuity assumption — known as fractional stochastic volatility frameworks. Here,
exploring variations of the rough fractional stochastic volatility model, based on a fractional
Brownian motion with Hurst exponent below one-half, would be particularly engaging.
Although present in a more elaborate representation, the ubiquitous need to abstract from
the assumption of independent increments within these models validates the building
blocks on which the models presented in this thesis are built.
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