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Summary

This thesis explores the entertainment industry in a purely quantitative way, com-
bining time series data concerning box office revenue with movie-specific regressors
in one hybrid model. Since time series analysis is a subset of data science that
requires specific tools, a big chunk of the text is dedicated to the introduction of
the basic concepts of the subject, which paves the ground for more complex topics,
such as time series modelling with ARIMA and Exponential Smoothing. The last
part of the thesis is concerned with a quick review of two of the main tree-based
methods, before using them to model the variability not induced by time. Each of
the steps in each of the chapters is assisted by abundant visualization, in order to
aid interpretability. The analysis was completely done exploiting the possibilities
offered by the R programming language, while the scraping was done with Python;
details regarding the scripts can be found in the appendix.
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Chapter 1

Entertainment and
Analytics, this thesis and
how it came to be

1.1 Analytics at the core of the entertainment
industry?

Generally speaking, data is a powerful source of value, a key to understanding
present, past and future, and most importantly a compass for the direction of most
if not all economic investments, especially for customer facing sectors. It is no
surprise that the entertainment industry, one of the most marketing driven and
customer facing environments, with huge amount of capital invested in high risk
projects, has moved towards this direction, mainly due to the huge push brought
by the overall servitization trend.

Services by definition build their supremacy by exploiting data: they forge their
user experience through data (recommendation systems), they select, upgrade and
produce their content based on data, they try to infer the reaction of consumers to
each and every single step. More briefly, they create value through data. Great
giants in the entertainment industry have been walking this path for decades now,
and a giant such as Netflix has seen its success due to this kind of behaviour.

Although the current situation is quite eloquent, we do not have to specifically
talk about streaming and web-driven services to see the importance of analytics
for entertainment, and specifically for the movie industry. Test screenings, web
advertising, the focus on the comfort zone of franchises and the extreme caution
when giving green light to a new project are all signs of an active or passive
attention to data, which has always been latent in every step of production and
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distribution, but more so with an exponential growth of data sources.
In particular, there is a publicly available source of data which has always

established the ultimate fate of a production, the king of traditional entertainment
data and the most widely discussed piece of data on social networks and press
coverage: gross boxoffice revenue, of which BoxOffice Mojo and The Numbers are
the number one holders in aggregate form. A proof of the value given by such a
basic metric, especially when combined in a complete dataset with other essential
pieces of data, can be given by the price at which Amazon lists the access to the
dataset combining IMDb (market leader for movie data) and BoxOffice Mojo (both
owned by Amazon): 400’000$ for just twelve months.

Even though we cannot hold such an important set of data, there is still a lot of
information to be extracted from a subset of it (although noisy), a subset that has
to be built through extensive work. It is thus necessary to retrieve data from the
Internet (through APIs, for example, as we did) and to manipulate it and clean it
in order to give it value by making it appropriate for models, descriptive statistics
approaches and visualization.

In the next two sections we will first deep dive into how this thesis came to be,
before starting to go technical by introducing the overall structure of the pipeline
and by explaining how data was retrieved.

1.2 How was this thesis born?

This thesis stems from a project carried over for the Business and Marketing
Analytics Course with Professor Villarroel, supported by KNIME, a company
developing an integrated development environment designed to deal with every task
in a data science pipeline with almost no code. The project was a collaboration
among A. Brizzante, G.Iadisernia, A.Ballerino, F.Buzzi, F.Cardarelli and me.

The workflow we presented has a lot in common with what I am presenting
here, but the content of this thesis steps up some of the overall complexity and
presents a different approach in the methodology. More specifically, the KNIME
workflow ignored the time scope (which is instead the most important focus of this
thesis) and employed just a linear regression to test linear relationships between
the covariates, together with their interactions, and the response, with the help of
some advanced feature engineering, assisted by deep learning and cloud services.

The notable work we did can be retrieved (and freely explored and reutilized) by
visiting the KNIME Hub, a repository of documentation, components, extensions
and workflows for the KNIME Analytics Platform.
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Figure 1.1: Above the main KNIME workflow of the project we have built. The
workflow calls various sub-modules and represents the complete pipeline.

1.3 Introduction to the overall structure of the
pipeline of this thesis

This thesis is basically structured in a two-fold way, with two different approaches
which unfold one after the other, resulting completely complementary.

On one side, the first step in the pipeline regards time series modelling, trying
to capture the information coming just from the temporal progression over months
and years of the average of the box office revenue (in the United States market).
To achieve this, a monthly time series of averages of inflation-adjusted box of-
fice is computed from the overall dataset, thoroughly analyzed (and visualized)
and modelled with ETS (Exponential Smoothing) and ARIMA (AutoRegressive
Integrated Moving Average). This will pave the way to the introduction of funda-
mental concepts of time series and time series analysis, such as autocorrelation and
stationarity.

On the other hand, we use tree-based methods to capture movie-specific infor-
mation stemming from residuals. In this particular case, the residuals are in this
way defined:

ri = yi − f(i) (1.1)

In the above equation ri is the residual, yi is the the gross US box office revenue of
the movie and f(i) is the function that maps the movie index i to the predicted
average (the forecast) of the US box office for the month of release. In training, the
residual is thus calculated and used for fitting the tree-based methods; in inference
mode the equation, explicit with respect to yi, is used for making predictions,
once we have the predictions from the time series models and the ones from the
tree-based methods. It goes without saying that in training f(i) represents fitted
values for ARIMA and ETS1, while in inference f(i) represents actual forecasts.

1Fitted values for time series models are simply one-step-ahead forecasts.
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To be clear, the overall idea is thus the one of isolating the time effect affecting
box office outcomes and then modelling the residual part, thus performing two
different analysis at two different levels. After all, at the least, there is a strong
seasonality in theatrical attendance, and we will see that in the data; it would thus
be really naive not to consider the information stemming from time in the analysis.

Similar hybrid models to the one just presented and illustrated can be found
across the literature, with two particularly related examples in Guo et al.(2021) [1]
and in Kaytez (2020)[2].

Of course, all of this was made possible by scraping the necessary data and by
building the dataset (before manipulating it). Before concluding this chapter we
indeed briefly deal with scraping and how it was tackled for this thesis.

1.4 Scraping and data retrieval
The initial data for this work comes from a Kaggle2 dataset built by scraping IMDb3

(dataset which is now offline following a takedown request). The table has a lot of
interesting features, such as original title, duration, director, genre, synopsis, and
so on. However, the most important feature was the least semantically significant,
the IMDb ID, meaning the identification code of the movie for the IMDb URLs.

IMDb ID Original Title Genre Duration Country Director
tt1345836 The Dark Knight Rises Action, Adventure 164 UK, USA Christopher Nolan
tt1074638 Skyfall Action, Adventure, Thriller 143 UK, USA, Turkey Sam Mendes
tt0145487 Spider-Man Action, Adventure, Sci-Fi 121 USA Sam Raimi
tt1663202 The Revenant Action, Adventure, Drama 156 USA, Hong Kong, Taiwan Alejandro G. Iñárritu
tt0253474 The Pianist Biography, Drama, Music 150 UK, France, Poland, Germany, USA Roman Polanski
tt0317705 The Incredibles Animation, Action, Adventure 115 USA Brad Bird
tt0382932 Ratatouille Animation, Adventure, Comedy 111 USA Brad Bird, Jan Pinkava
tt0383574 Pirates of the Caribbean: Dead Man’s Chest Action, Adventure, Fantasy 151 USA Gore Verbinski
tt3498820 Captain America: Civil War Action, Adventure, Sci-Fi 147 USA Anthony Russo, Joe Russo
tt4154796 Avengers: Endgame Action, Adventure, Drama 181 USA Anthony Russo, Joe Russo

Table 1.1: A very small sample of rows and columns from the original Kaggle
Dataset. Notice the ID from IMDb.

This ID allowed me to reliably make REST GET calls for additional infor-
mation to another - far more relaxed in its ToS - service, TMDB (The Movie
Database/themoviedb.org), which offers a quite powerful and useful API.

TMDB is a totally crowd-sourced service, so I do not expect its data to be
entirely accurate, but it was nonetheless an extremely precious database for this
thesis and for the project we talked about in section 1.2. Most importantly, as

2Kaggle (kaggle.com) is a well known website for data scientists where people post datasets,
share scripts and partake in competitions for specific tasks.

3IMDb (imdb.com) is the most important website/database for movie data, for consumers
and professionals alike. It is owned by Amazon, like Box Office Mojo.
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I have already explained, its API supports the IMDb ID as an identifier, and it
thus allowed me to complete the information from the original dataset with the
information contained into the TMDB structure.

The scraping was done through Python scripts and mainly consisted of extracting
the English title (useful for text mining), which was missing, and the actual US
original theatrical release date, since the ones present in the original dataset were
not accurate at best and we needed them to be fairly reliable due to the monthly
granularity of the analysis.

Additionally, the API was used to get the TMDB URL for the poster of each
movie, and a complete set of images was thus downloaded. Images are not part of
the analysis of this thesis, but they could enter the pipeline, for example through a
convolutional neural network.

Most of the retrieval was not particularly difficult thanks to a good API docu-
mentation, with some careful handling needed for some specific steps. The code
used for scraping can be found in Appendix A.1, where it is also briefly explained
and commented (in addition to the comments already present in the code).

5



Chapter 2

Building the Time Series
and Introduction to Time
Series Analysis

2.1 Building the time series
In order to build the time series we need to use the original US theatrical release
dates that were scraped from TMDB according to the documentation of the API
and the related structure of the JSON response to the call. Even by being careful
there are still multiple release dates associated to the same movie. I attempted to
solve this by looking at the note field left by users that uploaded the release date
for the movie on TMDB. This field specifies some additional pieces of information
regarding the release date, and can be used for disambiguation. In my case, I
simply used a set of manually written Regular Expressions to capture the notes
that evidently highlighted mistakes, thus eliminating the related dates. The set of
multiple release dates that escaped this filtering were simply eliminated altogether,
since it was impossible to understand which were the correct ones.

Additionally, since we are dealing with time series involving economic data,
it makes sense to make it more stationary (a concept we will focus on later on)
by eliminating the trend induced by monetary inflation; this also allows to make
the scale of the single gross box office revenues uniform.[3] To do this, we use a
very important index for Macroeconomics, the Consumer Price Index (CPI), which
carefully tracks prices over a basket of consumer goods.

The CPI time series we used comes from the US. Bureau of Labor Statistics1,

1The CPI time series we have used has ID CUUR0000SA0 with base period 1982-84.
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and refers to CPI-U, the index for all urban customers; it can be easily retrieved
from the website of the Bureau.

Once retrieved the time series, to adjust for inflation at movie level a simple
operation suffices, with yi as usual representing the US gross box office revenue for
the movie i and CPIt as the index for the month t the movie was released in:

yiadj
= yi

CPIt

∗ 100 (2.1)

Since we do not have enough data from movies from previous years (in particular,
we have sparse box office data), this analysis starts from 1983. By choosing 1983
we also avoid a difficult to understand spike in 1982, probably due to the inflation
adjustment and to the fact that with the end of the Great Inflation there might
have been lags in the reaction of the overall economy towards monetary stability.
Additionally, since the time series from 2017 onward seems particularly erratic and
absolutely difficult to capture when compared to most of the previous years, we
consider it up until December 2016.

Lastly, to avoid biased averages computed on underpopulated subsets of data,
the mean for each month is not computed when having less than 10 movies to
compute it with. This resulted in 6 gaps over a total of 4002, a negligible set which
was imputed with linear interpolation.

Figure 2.1: Side by side the same time series, but one adjusted with CPI for
inflation (on the left), the other one not adjusted (on the right). Thanks to the
regression line coloured in blue, it can be clearly seen that inflation induces an
exogenous upward trend in the time series.

2The gaps make up just 1.5% of the total.

7



Building the Time Series and Introduction to Time Series Analysis

Figure 2.2: A closer look to the distribution of inflation-adjusted US gross box
office revenue in the dataset. The plots show an extremely skewed to the left and
leptokurtic distribution, with a skewness of 4.3 and an excess kurtosis of 29.1,
indicating a distribution dominated by many outliers which here were in part left
out in order to help the visualization.3

2.2 Fundamental concepts of time series analysis
Before continuing, in this paragraph we explain some important concepts of time
series analysis, in order to introduce terminology and concepts discussed in the
next chapter. This section is structured in subsections, one for each macro-topic
tackled.

Firstly, the concept of components and decomposition is visualized and presented
with the STL algorithm; secondly, autocorrelation and white noise are explored;
thirdly, the concept of stationarity is briefly explained in order to make the elements
behind ARIMA understandable.

2.2.1 Components and Decomposition
To introduce formally the concept of time series, we first have to talk about what
a time series is made up of. First and foremost, a time series embodies three/four
different components.[4]

The trend component It exists when there is a long-term increase or decrease
in the data. The trend can change direction over time when shifting from
increasing to decreasing, or viceversa. It is the general direction that the time

3Skewness and kurtosis are the third and fourth standardized central moment of a distribution.
Excess kurtosis is the deviation from the kurtosis of a normal distributon, which has kurtosis
equal to 3. Mesokurtic, platykurtic and leptokurtic relate to null, negative and positive excess
kurtosis, respectively.
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series takes macroscopically and does not need to be linear. The inflation
trend eliminated with Consumer Price Index is a good example of a trend
behaviour.

The seasonal component It is the periodic component, induced by seasonal
patterns over the so-called fixed seasonal period4, which can be thought in
exactly the same way as the length of a period for a periodic function such
as the well known trigonometric ones. The pattern related to the seasonality
may (relatively slowly) change over time, for example in size. An example of
seasonal behaviour of a time series may be the peak around Christmas of our
box office time series, which is particularly seasonal.

The cycle component This component is related to seasonality, but it has one
important difference, it is not anchored to a fixed period and the related fluc-
tuation thus do not have a fixed frequency. Examples may be macroeconomic
or business cycles, which can be delimited in time only ex-post. Due to the
closeness between the concepts of cycle and trend, cycle is usually combined
with trend when analyzing the time series.[3]

The remainder component It is just what cannot be explained by the decompo-
sition in season and trend-cycle. This component is similar to model residuals,
something typically associated to random noise.

These components can be added to assemble the series in an additive or in a
multiplicative way, depending on whether the size of the seasonal fluctuation
increases with the level of the series.[3]

Yt = St + Tt + Rt (2.2) Yt = St · Tt ·Rt (2.3)

In order to extract and visualize the components given a time series, various
types of algorithms exist. Since pure decomposition is not a focus of this thesis,
we will focus on just one, STL, which stands for Seasonal-Trend decomposition
procedure based on LOESS [5].

LOESS is local linear regression, or scatterplot smoothing, if you prefer, which
is basically a local least square fit with weights assigned by a kernel (which
normally uses some function of the Euclidean distance) to observations in the
neighborhood of a point5.[6] STL uses a mix of moving averages and LOESS to

4In some cases, there can be more than one seasonal pattern, one for each seasonal period.
For example, when having daily data, we have three possible seasonal period, at week, month
and year level.

5LOESS is a memory-based model (it needs the training observations in memory, like K-NN)
and is a quite computationally expensive one, since each prediction requires one different local fit.
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perform the decomposition, which can be handled only in an additive sense. A
multiplicative decomposition can be forced6 by log-transforming the response and
back-transforming the components by exponentiation.[3]

Month Average seasonal component (AD) Average seasonal component (ML)
January -1.12 -1.08
February -0.34 -0.36
March -0.38 -0.34
April -0.93 -0.94
May 0.75 0.65
June 1.56 1.62
July 1.39 1.45
August -0.36 -0.39
September -1.16 -1.12
October -0.96 -0.97
November 0.5 0.47
December 1.04 0.99

Table 2.1: Average seasonal component for each month calculated with multi-
plicative (ML) and additive (AD) decomposition, with standardization to make
the entries comparable.

Figure 2.3: This additive STL decomposition of the US box office time series
is plotted with ggplot and feasts on R. The default STL options are used, with
seasonal_window set to 13 and trend_window set to 21.[3]

6Yt = St · Tt ·Rt ⇐⇒ log Yt = log(St · Tt ·Rt) = log St + log Tt + log Rt

This means that the additive decomposition of a log-transformed series can be considered equivalent
to a multiplicative decomposition.

10
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Figure 2.4: Notice that in this multiplicative decomposition seasonality and
remainder do not have an unit of measure, and this makes sense by a dimensional
analysis perspective, since they are just factors that multiply the trend component.

By looking at table 2.1 and at images 2.3 and 2.4, we can make this decomposition
useful and link it to real-world scenarios and circumstances. We can see that,
contrary to what happens in Italy (with distributors usually postponing releases to
the autumn), summer is particularly strong for theatrical attendance, with additive
and multiplicative seasonal components showing their highest values in June and
July, at a level far higher than Christmas season itself! Notable is also the fact
that following both peaks, the one around Christmas and the one in the summer,
two deep troughs immediately follow, in January and in September7, respectively.

2.2.2 The autocorrelation function
Autocorrelation is a powerful analytic tool for time series analysis which stems
in a quite straightforward way from the concept of simple correlation. Where
correlation acts as a proxy for covariance and measures the extent of the linear
relationship between two distinct random variables, autocorrelation measures the
extent of the linear relationship between a signal/a time series and a lagged version
of itself. When we say lagged time series here we mean a negatively translated
version of the original time series.

To introduce this concept and autocorrelation it may be best to present the
backshift operator in advance, which will be particularly useful later on: [7]

Byt = yt−1 (2.4) Bkyt = yt−k (2.5)

7August is weak, but as far as we can see it is definitely not a trough
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The backshift operator - applied over the whole series - thus returns the lagged
time series. With backshift notation, sample autocorrelation is in this way defined,
which is simply the sample Pearson’s correlation coefficient using the concept of
lag:

rk =
∑T

t=k+1(yt − ȳ)(Bkyt − ȳ)∑T
t=1(yt − ȳ)2 (2.6)

As you can see by the index k, the autocorrelation coefficient varies as the amount
of lag changes, defining8 the autocorrelation function (ACF), which is indeed a
function of k:

f(k) =
∞∑

l=1
rl Jl = kK (2.7)

Autocorrelation can be considered a proxy for the amount of information in the
time series (trend and seasonality can be clearly seen with the ACF, for example),
and we thus expect the residuals of a time series forecasting model to be white
noise (gaussian, for ARIMA and ETS9), namely a time series having its real
autocorrelations equal to 0.

The autocorrelation function plotted in 2.5 shows a strong seasonality highlighted
by the peaks at lags multiple of 12, which is the length of the seasonal period. The
negative peaks are due to the fact that the are two maximums in the seasonal
pattern of the series: around December, and at a beginning of the summer. Lags
that are around odd multiples of 3 are related to (weaker) negative autocorrelations
due to the fact that there are two peaks in each seasonal period, so a shift brought
by a lag of about 3 or 9 moves the index from a peak towards a trough.

Furthermore, the amplitude of the ACF remains approximately the same over
the lag axis, suggesting the absence of a strong trend, when adjusting for inflation,
and this can also be seen in Figure 2.3 and in Figure 2.4, by looking at the modest
scale of the trend oscillation.[4]

When checking if a time series is truly white noise, the autocorrelations are
obviously affected by fluctuations due to the sample estimation, so we cannot expect
to find autocorrelations equal or very close to zero for every and each lag. An
hypothesis test approach to test the null hypothesis of a white noise autocorrelation
is given by a boundary of ± 2√

T
for a 5% significance level, with T being the length

of the time series.[4] The 5% significance level implies a 5% probability of a Type
I error (false positive), and thus we can expect for a white noise series about 5%

8In the equation defining the ACF, the square brackets are Iverson brackets. If the condition
contained between them is satisfied, their value is 1, otherwise it is 0.

9For what concerns ETS, the gaussianity is related to the error considered, which can be
additive (absolute) or multiplicative (relative). With multiplicative errors, gaussianity does not
hold for the absolute residuals, of course.
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Figure 2.5: The plot of the autocorrelation function is called (auto)correlogram,
this is the one for the US box office time series. The dashed blue line is basically a
boundary for the hypothesis test with the time series being white noise as null.

(asymptotically, as per the weak law of large numbers) of calculated autocorrelations
above the threshold.

Figure 2.6: Time plot and autocorrelogram of a gaussian white noise time series,
with each point in the series coming from a standard normal distribution. Notice
how some of the autocorrelations are positive, but all quite low if not close to being
null.

In Figure 2.5 the threshold is represented by the two dashed blue lines, and

13
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we can therefore confidently say that the time series is not white noise. On the
contrary, the autocorrelogram in Figure 2.6 shows autocorrelations which are all
far lower than the threshold, highlighting the fact that they come from a white
noise series.

A more formal way to test for white noise over many time lags is given by
the Box-Pierce test and the Ljung-Box Test where we test the white noise null
hypothesis by comparing the test statistics with a χ2 distribution with degrees
of freedom given by the number of lags considered10. The two test statistics, for
Box-Pierce (left) and Ljung-Box (right) are the ones shown below, with rk being
the autocorellation for lag k[8]:

Q = T
l∑

k=1
r2

k (2.8) Q = T (T + 2)
l∑

k=1
(T − k)−1r2

k (2.9)

A careful eye can probably notice that the threshold ± 2√
T

we use when plotting
the autocorrelation function in Figures 2.5 and 2.6 comes directly from the Box-
Pierce test. If we test a single autocorrelation, Q ∼ χ2

1 under the null hypothesis,
and for a one sided test - such as this one - with a 5% significance level the threshold
for the rejection of the null hypothesis is 3.84. Now, looking at the equation of the
test statistic: Q = Tr2

k ⇐⇒ rk = ±
√

Q√
T

. Since
√

3.84 = 1.96 ≈ 2, the boundary
for rejection becomes ± 2√

T
.

It should be stressed that both the Box-Pierce and the Ljung-Box are so-called
portmanteau tests, meaning that they have a narrowly defined null hypothesis and
a very broadly defined alternative hypothesis. In this case, specifically, the null
hypothesis is that true value of each and every autocorrelation is zero, while the
alternative hypothesis, being the negation, is that at least one of the autocorrelations
has a non-null value. Statistically speaking, the strong rejection of the null
hypothesis for our US box office time series, as can be seen in Table 2.2, only allows
us to state that at least one of the autocorrelations is truly non-null.

Box-Pierce test Box-Pierce p-value Ljung-Box test Ljung-Box p-value
749.1 ≈ 0 780.7 ≈ 0

Table 2.2: The test statistics and the p-values for both the Box-Pierce and the
Ljung-Box tests for the US box office time series. Notice that in both cases the
null hypothesis of every autocorrelation being null is strongly rejected.

10More precisely, the degrees of freedom of the χ2 decrease by the number of parameters
estimated in the model whose residuals we are testing, in the case we are performing residual
diagnostics. This is not the case here since we are dealing with raw data, with the numbers of
parameters being thus 0.
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2.2.3 Stationarity
This last part of this chapter deals with stationarity, which is an important property
that needs to be enforced on the data in order to fit an ARIMA model.

A definition of stationarity is not simple and somewhat technical but can be given
by looking at a sequence of an arbitrary number of observations in a time series as
a realization of a multivariate distribution. Considering Xt = [Xt, ..., Xt+s]T as the
random vector of such a multivariate distribution, if the series is stationary, for any
s the distribution does not depend on t.[7] This has a lot of implications, such as
mean and variance stability and the fact that the autocovariance/autocorrelation
function is stable, meaning that the covariance between two points in a stationary
series depends only on the lag separating them.

To give some examples, a gaussian white noise series is (strictly) stationary
since each point in time is simply a random realization of a constant normal
distribution, with any sequence of observations11 being thus modelled by the same
multivariate normal. Series with trend and seasonality are not stationary since
the joint distribution of a sequence of points depends on time12. On the contrary,
cyclic time series can be stationary, since cycles do not have fixed periods and thus
the distribution of the points in the series is independent from time. As explained
before, variance also needs to be specifically taken into account, due to the fact
that heteroscedasticity can be easily present in a time series, for example when
variance linearly increases with the level of the series.[7]

A natural way to solve heteroscedasticity and stabilize the variance is to log-
transform the series, while the impact of trend and seasonality is normally greatly
reduced by stabilizing the mean through differencing, which - as easily understood
by its name - is an operation related to derivatives. Differencing consists in building
a new time series made up of differences between points of the original one and
their lagged equivalent. When the lag is equal to 1 we say that we are performing
first differencing and we normally use that to tackle trend; when the lag is equal
to the seasonal period we are performing seasonal differencing and we normally
use that to tackle seasonality.[7]

Formally speaking and using the backshift operator, first differencing (left) and
seasonal differencing (right) are this way defined, with a new observation yt for
each time index t:13

y′
t = (1−B)yt (2.10) y′

t = (1−Bk)yt (2.11)

Of course, if a time series presents both trend and seasonality, we need to apply

11Given same length.
12The mean vector of the multivariate distribution is not constant.
13k is the length of the seasonal period.
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both types of differencing, while in some cases it may be useful to apply the same
kind of differencing more than once in order to get stationarity, thus performing
an higher degree operation. In fact, if the trend is quadratic two first differencing
operations are required, if the trend is cubic three, if linear one, and so on. This
stems from a quite trivial fact: for a trend induced by a polynomial of degree one
the first order derivative is constant, for a trend induced by a polynomial of degree
two the second order derivative is constant, for a trend induced by a polynomial
of degree n the nth order derivative is constant. Since first differences compute
the mean derivative in intervals between points in the discrete sequence over time,
a constant derivative implies a constant value (when factoring out noise) for the
differenced series and thus a stable mean. Therefore, differencing operations can
be easily stacked when needed, with their order not changing the final result.

Figure 2.7: In the top two quadrants we can see an artificially generated time series
(with linear trend, guassian noise and sinusoidal seasonality) and its autocorrelation
function; in the other two the result of seasonal and first differencing is visualized.
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Chapter 3

ARIMA and Exponential
Smoothing models

3.1 Exponential Smoothing
One of the two time series models we are going to explore in detail in this chapter,
Exponential Smoothing (or ETS) is a latent variable model/method which tries to
forecast and explain time data according to latent states, trend, level and seasonality
(not necessarily all together). Latent variables are variables that are not directly
observable, but that can be inferred through observations, and that in turn explain
those observations.

Each ETS1 model, is defined by measurement equations that describe the actual
observed data and by state equations which describe how the latent states evolve
over time[9]. For example, a ETS(A,N,N), a model with additive error (A) which
does not consider trend or seasonality (N, N), is simply described by the following
two equations, where lt is the level state at time t and εt is a gaussian error:

yt = lt−1 + εt Measurement equation (3.1a)
lt = lt−1 + αεt 0 < α < 1 State equation (level) (3.1b)

α is a smoothing parameter - bounded between 0 and 1 - tuned during training
with maximum likelihood estimation/squared residuals minimization, and which
determines how strongly the level state reacts to the current observation. Notice
that due to the way the state equation is defined, the older the observations get, the
less they are considered to explain and predict data, and the higher the smoothing
parameter, the more this behaviour is dominant. Due to the restriction on the

1ETS can stand both for Exponential Smoothing and for Trend, Error and Seasonality.
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values of α, the weights of past observations always decrease exponentially with
time, and this is the reason for the Exponential Smoothing name. There is also
another parameter to be estimated during training, l0, which is the starting value
of the level component.

Now it is time to step up the complexity, also more appropriate for the needs of
a time series like the one we are dealing with, describing monthly US box office
data. In order to do this we switch to a ETS(A,A,A) model, which includes errors,
trend and seasonality in an additive way. The number of equations necessary to
describe the model obviously increases, as the number of estimated parameters
(and thus the degrees of freedom)[9]:

yt = lt−1 + bt−1 + st−m + εt Measurement equation (3.2a)
lt = lt−1 + bt−1 + αεt 0 < α < 1 State equation (level) (3.2b)
bt = bt−1 + βεt 0 < β < α State equation (trend) (3.2c)
st = st−m + γεt 0 < γ < 1− α State equation (seasonality) (3.2d)
m is the seasonal period

As it was for the level, the state equations for trend and seasonality need the
estimation of the initial states b0 and s0 in addition to the state-specific smoothing
parameters β and ε.

For ETS models with multiplicative errors we just exploit residuals relative to
the forecast2 and update the equations accordingly. To give a clearer idea, below
are the equations for a ETS(M,A,M) model, which considers both seasonality and
errors in a multiplicative way[9]:

yt = (lt−1 + bt−1)st−m(1 + εt) Measurement equation
(3.3a)

lt = (lt−1 + bt−1)(1 + αεt) 0 < α < 1 State equation (level)
(3.3b)

bt = bt−1 + β(lt−1 + bt−1)εt 0 < β < α State equation (trend)
(3.3c)

st = st−m(1 + γεt) 0 < γ < 1− α State equation (seasonality)
(3.3d)m is the seasonal period

Multiplicative seasonality may cause problems of numerical instability3 when
combined with additive errors, leading to a general avoidance of ETS(A,.,M)
models.4 Additionally, multiplicative errors lead to instability when the forecasts

2εt = yt−ŷt|t−1
ŷt|t−1

3The state equations are vulnerable to divisions by values close to zero.
4Numerical instability also affects some specific models with multiplicative trend, specifically,

ETS(AMA) and ETS(MMA).
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are prone to values close to zero, while in general multiplicative solutions do not
really make sense when the response uses an interval scale and can thus reach
negative values by exploiting the absence of an absolute zero.

Also notice that both multiplicative error and multiplicative seasonality are
strictly related to what we have said in Subsection 2.2.1 when explaining multiplica-
tive decomposition, since they allow the absolute effect of residual and seasonal
components to vary according to the level of the series.

For what concerns point forecasts, the seasonal state remains fixed at the last
update from observed data, with the trend component inducing the only long-term
change in the forecast data. However, having a linear trend over the forecast
horizon is not usually something desirable, since for t→∞ the limit of the forecast
is not defined, approaching positive or negative infinity. A way to solve this is
to use a damped trend where an exponentially decreasing factor multiplies the
(absolute or relative) step-wise increase over the forecast horizon due to trend;
this makes the forecast converge for t→∞ without exploding to (plus or minus)
infinity. This dampening is regulated by parameter ϕ.

Now, among the many possibilities, how to choose the best ETS combination?
We can do that by exploiting the maximized likelihoods of the models through in-
formation criteria like Akaike Information Criterion (AIC) or Bayesian Information
Criterion (BIC). AIC or BIC are quite useful criteria for model evaluation because
they take into consideration the log-likelihood by adjusting its value for the number
of parameters estimated; this is done with a linear penalty, which is much higher
for BIC. To perform the calculation, the number of parameters considered is just
the number of smoothing parameters and the number of initial states (plus the
sample variance of the residuals). We pick the model which returns the lowest AIC
or BIC.

3.2 AutoRegressive Integrated Moving Average,
ARIMA for friends

An AutoRegressive Integrated Moving Average[10] model, as the name states, is the
union between two different kinds of models, Autoregressive models and Moving
Average models, with the word integrated meaning the opposite operation to the
differencing we defined in Subsection 2.2.3. In order to make things clearer, it
makes sense to analyze each of this building blocks in a separate way.

3.2.1 Autoregression
An autoregressive model owes its name to the fact that it is a multivariate linear
regression onto a random variable using as predictors the past values of the random
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variable itself.[7] How much of the past is considered for each observation is defined
by the order of the autoregression, defined by the parameter p, following the
convention for ARIMA models. Formally speaking and using the backshift operator
(see Equation 2.4), an autoregression of order p, AR(p), is this way defined, with c
as the intercept:

yt = c + yt(ϕ1B + ϕ2B
2 + ϕ3B

3 + ... + ϕpBp) + εt (3.4)

The ϕ parameters normally have constraints needed to enforce stationarity on
the model: for a AR(2) model, the constraints are the following:

−1 < ϕ1 < 1, ϕ1 + ϕ2 < 1, ϕ2 − ϕ1 = 1 (3.5)

3.2.2 Moving Average models
The rationale behind moving average model is very similar to the one behind autore-
gressive ones, with the only (big) difference that now the model is a regression onto
its same past errors.[7] Again, the number of past errors considered is determined
by the order of the autoregression, encoded by q, with MA(q) being a moving
average of order q. With the backshift operator:

yt = εt(1 + θ1B + θ2B
2 + θ3B

3 + ... + θqB
q) (3.6)

Interestingly enough, a AR(p) model can be seen as a MA(∞), whatever the order
of the autoregression and given stationarity constraints we talked about above in
Subsection 3.2.1. The inverse holds only if a similar set of parameter restraints
holds for the MA(q) model.

3.2.3 ARIMA models and integration
The union between the models we have described in Subsections 3.2.1 and 3.2.2
gives birth to an ARMA model, which is a model suited only to stationary data, as
we have made clear in Subsection 2.2.3 and in Subsection 3.2.1 with the enforcement
of stationarity conditions on the autoregression.

Now, how can we factor in non-stationary behaviour into an ARMA model? We
do that by simply making the series stationary with the differencing operation we
talked about in Subsection 2.2.3 and by reversing this transformation when needed
for predictions with the inverse operation, called integration, whose I completes the
ARIMA name. The model is thus obtained with maximum likelihood estimation
given an already differenced and stationary time series, but the actual predictions
are given with respect to the non-differenced data.
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A formulation of a non-seasonal ARIMA model can be given this way, using the
backshift operator, given (p, d, q) hyperparameters5[7]:

(1−ϕ1B−ϕ2B
2− ...−ϕpBp)(1−B)dyt = c+εt(1+θ1B +θ2B

2 + ...+θqB
q) (3.7)

Equation 3.7 also allows us to give a more defined meaning to the stationarity
and invertibility conditions we talked about in Subsections 3.2.1 and 3.2.2. First, we
notice that we have two polynomials (called characteristic polynomials) in B of order
p and q defined between round brackets in Equation 3.4. The stationarity constraints
impose that the p inverse complex roots6 of the autoregressive polynomial of order
p all stay within the unit circle7, with the invertibility constraints imposing the
same for the moving average polynomial of order q with q complex roots.[7] Notice
that, for the fundamental theorem of algebra, the polynomials are bounded to have
respectively p and q complex roots, counting multiplicity.

Seasonal ARIMA models follow a similar formulation, this time with a whole
other set of parameters and hyperparameters dedicated to the seasonal part of the
model. The conventional codification of these parameters follows the one from the
non-seasonal parameters, just in upper case. A seasonal ARIMA model is thus
specified by two sets of hyperparameters, (p, d, q) and (P, D, Q)m, where the second
set of parameters is the seasonal one and m is the seasonal period:

(1− Φ1Bm − Φ2B2m − ...− ΦP BP m)(1− ϕ1B − ϕ2B2 − ...− ϕpBp)(1−Bm)D(1−B)dyt =
c + εt(1 + θ1B + θ2B2 + ... + θqBq)(1 + Θ1Bm + Θ2B2m + ... + ΘQBQm)

(3.8)

Equation 3.8 shows that many interaction effects arise between the non-seasonal
and seasonal terms, adding a new layer of complexity to the model, which at this
point considers both the sets of terms in an organic way. Again, as for ETS in
Section 3.1, we use the maximized likelihood in combination with information
criteria in order to choose the best model that fits our data. As briefly explained at
the beginning of this subsection, point forecasts are easily obtained by reversing the
equations and by replacing future observations with their point forecasts. Notice
that since errors/residuals are modelled as normal random variables with mean 0,
their mean/point forecast is always zero.

5p is the order of the autoregression, d is the degree of differencing and q is the order of the
moving average. The (p,d,q) notation is a standard way to codify ARIMA models.

6Given a complex number z = a + bi, its inverse is z−1 = 1
a+bi = a

a2+b2 − b
a2+b2 i

7A complex number can be thought as a point with two coordinates, given by its real and
imaginary part.
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Figure 3.1: For explanatory purposes, the inverse characteristic roots of the
seasonal ARIMA model from a later point in this chapter, Section 3.3. Every root
is inside the unit circle, highlighting that the constraints on the ARIMA parameters
are respected. Notice the high number of moving average roots: this is due to the
hyperparameters of the model, which includes a seasonal moving average of second
order. The seasonal moving average polynomial in the backshift operator has a
high degree, and for the fundamental theorem of algebra the maximum number of
distinct complex roots is equal to the degree itself.

3.3 ARIMA and ETS fitted to the US box office
time series

Now, it is time to try these two models on our data, and more precisely on our time
series, built in the way described in Section 2.1. To do this, we are using the fable
package for R, a set of tools which allows to fit and compare time series models
in an efficient and fast way. fable belongs to a set of packages called tidyverts,
which also includes feasts and tsibble, two other packages that were extensively
used for this thesis, respectively for descriptive statistics and data structures/data
manipulation specific to the time series domain. Rob J Hyndman, one of the main
contributor to the tidyverts, is one of the two authors of Forecasts, Principles and
Practice, the book from which most of the theory regarding time series analysis in
this thesis comes from. [3][4][8][9][7]

That said, we fit both an ETS and an ARIMA model8 using as training data
the values until December 2015, in order to leave one year of data to test the

8It should be noted that some ETS models are special cases of ARIMA models, but that is
not the case for the ones selected for our use case. [7]
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models. To perform model selection, fable excludes by default numerically unstable
combinations for ETS (see Section 3.2.2), while to choose the best ARIMA a
step-wise algorithm is used to simplify the exploration of the hyperparameter space;
we disable it since we want the best model and we are not interested in the relatively
little speed-up gained9.

For ARIMA it is also important to have stationarity, and unit root KPSS tests
and seasonal strength measures 10are used to choose the right degree for normal
and seasonal differences, respectively. Recalling the definition of stationarity in
Subsection 2.2.3, differencing is sometimes not enough to obtain it, since we need
to act at distribution level and differencing just stabilizes the conditional means.
Variance also needs to be stabilized if needed, but in our case the series does not
show evident signs of heteroscedasticity.

As per the model selection, the best ETS model is a ETS(M,N,M), a model
similar to what we have formalized in Equation 3.3, just without the trend term
and thus without the state equation that describes its behaviour. This makes sense,
since when we factor out the inflation the time series does not seem trended at all.

For what concerns ARIMA, the best model is a ARIMA(2,0,2)(0,1,2)12 without
the constant, again confirming the fact that in this time series seasonality is strongly
present but trend is totally lacking. In fact, non-seasonal/first differencing is not
performed here. It is a good idea at this point to compare the performance of
ARIMA and ETS with a much simpler method, the Seasonal Naïve one, which acts
as a baseline, basically. Predictions for the SNAIVE model are trivially defined as
the latest useful observation from the same season11.

To quantify the performance of the models on test data, we are using root mean
squared error (RMSE) and mean absolute percentage error (MAPE), which we can
use since in this case our response variable uses a ratio scale12).

We can see that ARIMA performs definitely better for the 2016 horizon, with
ETS far nearer to SNAIVE than to ARIMA, in terms of amount of variance not
explained and absolute percentage error. We can also notice that from 3.2, where
ARIMA follows the peaks of the series better than ETS.

The one above is a particularly partial view of the actual performance, however.
A far more robust technique is time series cross-validation, which as its more
famous non-sequential equivalent tries to test a model performance by continuously

9Another option meant to speed up the search is also turned off.
10Seasonal strength is just the ratio between the variance of the remainder component and the

variance of the trended series, as obtained by a STL decomposition (for STL, see Subsection 2.2.1
11For monthly data, this means that we look at the last available observation from the same

month.
12Revenue cannot reach a negative value and has a non-arbitrary zero.
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Figure 3.2: A plot of the real box office time series (black line) and of the forecasts
from ARIMA (red line) and ETS (blue line). Given gaussianity of the errors, 95%
prediction intervals are plotted as shadows (ggplot ribbon geom) around the point
forecasts. Real box office data starts from 2013 in order to put a greater focus on
the forecasts.

Model RMSE MAPE
ARIMA 2693297.9 12.7%
ETS 3529239.8 17.1%
SNAIVE 3966293.4 19.3%

Table 3.1: Test data accuracy metrics.

updating the test data. The models are fitted on a progressively higher amount of
the time series, while keeping constant the forecast horizon.[8]

As you can see, with time series cross-validation over a 1 year forecast horizon
the difference in accuracy between ETS and ARIMA becomes far less clear and it
basically disappears, with both the models still performing significantly better than
a naïve method. The relatively good performance of a seasonal naïve model is an
indicator of the strong seasonality of the data, which overall seems to be incredibly
difficult to fit when looking at any information other than periodicity13.

Considering these metrics (equal performance on cross-validation, with test
data better fitted by ARIMA), it makes sense to choose ARIMA. At this point,

13The additional explained variance we obtain by using relatively complex models like ARIMA
and ETS is low.
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Model RMSE MAPE
ARIMA 4617673.9 24.9%
ETS 4688216.0 24.8%
SNAIVE 5829149.8 28.7%

Table 3.2: Time series cross validation accuracy metrics.

some residual diagnostic is required in order to check that the test residuals are
really gaussian white noise (i.e. the population autocovariances/autocorrelations
are zero). In order words, is the ARIMA model able to extract all or most of the
relevant information from the signal?

Figure 3.3: A complete visual overview of the residuals from ARIMA on test
data. A time plot, a histogram and an autocorrelogram are presented.

Box-Pierce test Box-Pierce p-value Ljung-Box test Ljung-Box p-value
19.1 0.388 19.7 0.349

Table 3.3: Test statistics and p-values for Box-Pierce and Ljung-Box tests on the
residuals from the ARIMA model. Notice that to calculate the p-values we need to
consider the degrees of freedom of the model, 6 in this case.

It is evident from Figure 3.3 that the ARIMA residuals are approximately
normally distributed (as we would expect) with just one significant autocorrelation
when considering them sequentially. With Table 3.3 we can also see the results from
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applying Box-Pierce and Ljung-Box tests on the residuals, with very high p-values
that show a complete lack of evidence towards non-null population autocorrelations.
Therefore, the residuals have all the properties of a gaussian white noise series, so
the model should have extracted most of the information from the data.
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Chapter 4

Tree-based methods

The last part of this thesis deals with tree based methods, which are used to model
exogenous regressors1 by using as response the difference between the gross box
office revenue of the movie and the fitted value from ARIMA for the month of the
release date. The set of regressors here comprises important information such as the
genre, the original language, the production company, the production country, the
duration and the director of the movie, with frequency based text mining to account
for title and synopsis. For directors and production company, the choice of what
to consider in the model is done on a most-frequent basis, while for what concerns
original languages the selection is made according to a most-spoken-in-the-world.
Production countries are chosen by looking at the list of countries sorted by the
number of productions hosted, with data about that coming from thenumbers.com,
an important database for movie data we already talked about in Section 1.1. For
more information regarding the quite complex pre-processing for this stage please
look at the R code in Appendix A.2.5.

Even though I will not go in detail with tree based methods since it is not the
main focus of this thesis, I will explain here the two algorithms which are used in
this case, bagging (briefly, since it is really a standard and simple algorithm2)and
gradient boosting (more in depth).

4.1 Bagging
As anticipated, I will be quite brief since bagging is quite intuitive and easy to
explain. The algorithm was formally introduced by Leo Breiman in 1996 with an

1Exogenous with respect to ARIMA.
2That said, it is still one of the most effective tree based algorithms out there and it has a

quite strong statistical reasoning, along with its more robust variation, random forest.
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incredibly famous paper, Bagging Predictors [11], which is a pillar of the modern
machine learning field, along with the following one about the random forest
algorithm, always by Breiman[12].

Bagging mainly addresses the fact that decision trees, although easy to explain
and quite useful for interpretability, do not generalize well and are quite prone to
overfitting, leading to high variance for the distribution of the prediction considered
as a random variable. Bagging uses the fundamental properties of variance to solve
or at least greatly reduce this problem, and it does that by building an ensemble
of (CART) trees, each fitted to a set of observations sampled with replacement of
the same size of the original dataset.

To be more formal, in a regression context, under the assumption of uncorrelated
predictions3 and equally distributed predictions, and with Yi as the random variable
representing one prediction: V ar

(∑N

i
Yi

N

)
= V ar(Yi)

n
, where N is the number of

trees in the ensemble model.
Given that the assumption of independent predictions is far from realistic,

random forest takes the algorithm a step forward by selecting only a subset of the
features for each tree in the ensemble, thus breaking links in the forest, with the
result of reducing the covariance terms impacting the variance of the ensemble
prediction.

Unfortunately, since the dataset that we are using here is incredibly sparse, it
does not make sense to use random forest.

4.2 Gradient Boosting
Gradient boosting is a far more elegant and complex algorithm/concept with respect
to Bagging or Random Forest. The algorithm we are using to fit it through R
stems from two important papers written by Jerome H. Friedman in 1999.[13][14]

Very broadly speaking, gradient boosting can be seen as an extension of the
concept of gradient descent to a tree-based method. Unfortunately, trees do not
have parameters in the strict sense, and we cannot simply calculate a gradient
of a differentiable cost function and move in the parameter space accordingly. It
works quite differently and in a clever way, but the underlying idea of exploiting
information from gradients of a loss is mostly the same.

The following description of the algorithm, with some tweaks, is taken from The
Elements of Statistical Learning, a reference book for the subject[15]:

3They are not, since the underlying data is the same, even though the noise stemming from
sampling (only 63% of the data is considered for each tree, asymptotically) and replacement do
help. Random forest allows to reduce the covariance between the predictions.
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Algorithm 1 Gradient Boosting algorithm
function GradientBoosting(D, ν, M , L(y, f(x)))

▷ D is the dataset of observations
▷ ν is the learning rate, a regularization constant for the ensemble procedure
▷ M is the number of weak learners in the ensemble
▷ L(y, f(x)) is the differentiable loss function which needs to be minimized

for each observation. It is a function of y, the real observation value, and
fm(x), the output of the ensemble model at stage m, after m weak learners
are fitted

▷ Initialization
f0(x) = arg min

γ

∑N
i=1 f(xi, γ) ▷ Initial output is set for every observation

m← 0 ▷ Weak learner index is set to 0

▷ Execution
while m ≤M do

m← m + 1 ▷ Update weak learner index
ri,m = −

[
∂f(yi,f(xi)

∂f(xi)

]
f=fm−1

▷ Compute pseudo-residuals
▷ Fit a regression tree over the pseudo-residuals ri,m with

resulting terminal regions Rj,m with j = 1, 2, ..., Jm

γj,m = arg min
γ

∑
xi∈Rj,m

L(yi, fm−1(xi) + γ) ▷ Compute updates

fm(x) = fm−1 + ∑Jm
j=1 ν γj,mJx ∈ Rj,mK ▷ Update output of the ensemble4

end while

return f̂(x) = fM(x) ▷ Prediction from the ensemble is returned

end function

4The square brackets are Iverson brackets. If the condition contained between them is satisfied,
their value is 1, otherwise it is 0.
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Algorithm 1 is a complete generalization of gradient boosting5: depending on
the loss function we are feeding it with, the optimization problem changes and thus
also the overall task of the method. For example, if the differentiable loss function
is the binary cross entropy6, the task of the gradient boosting algorithm is binary
classification. In our case, the task is a regressive one.

The most common loss function for a regressive problem is just the squared
residual expression7, since it comes from the maximization of the log-likelihood
given gaussianity. With this loss function, boosting is usually indeed simplified to
the fitting of a weak learner on the residuals of the preceding sequence of weak
learners, returning as output for each weak learner the average of the residuals in
the leaf. This is also our case, but how does it come to that? For that, we need to
follow the step of Algorithm 1.

Using the squared residual as the loss function for just a single observation, the
pseudo-residuals8 are trivially found:

−∂L(yi, f(xi))
∂f(xi)

= −
∂ 1

2(yi − f(xi))2

∂f(xi)
= −(yi − f(xi)) = f(xi)− yi (4.1)

The γ output of the leaf that minimizes the loss is easy to compute. We find the
only stationary point of the sum of the losses, which is the global minimum since
the sum of the squared residuals is a convex function of γ. As we have said, the
stationary point is just the mean of the residuals in the leaf, since:

∂
∑
i

1
2(yi − f(xi)− γ)2

∂ γ
= −

∑
i

yi−f(xi)−γ = 0 ⇐⇒ γ = mean(f(xi)−yi) (4.2)

The analogy to gradient descent is more appropriate and more straightforward
for this specific situation. Since each pseudo-residual is just a residual and each
leaf output is just the mean of the residuals in that leaf, we are each time updating
the outputs of the ensemble according to the gradient of the loss with respect to
the outputs themselves. Notice that the loss we are talking about here is the sum
of the squared residuals for each observation in the dataset.

5For multinomial classification, things are slightly more complicated since multiple weak
learners are needed at each stage and a softmax is required.

6It needs to be manipulated a little bit in order for it to be a function of the log-odds and not
of the probabilities.

7L(x, x̂) = 1
2 (x− x̂)2

8In this case the pseudo-residuals are the actual residuals, but this is just a specific situation.
With an absolute error loss the pseudo-residual would just be the sign of the actual residual, for
example.

30



Tree-based methods

Each entry of the gradient is the partial derivative of the loss with respect to a
function9, where each function is the mapping from an observation to its prediction.
In simpler wording, the predictions themselves take the place of the parameters of
a normal gradient descent.

ft(x)← ft−1(x)− ν∇f L(y, ft−1(x)) (4.3)

The update expression10 written above is exactly the same of the gradient descent
one. It is not precise since the gradient update is approximated with the means of
the partial derivatives in the leaves, but the idea holds anyway.

To actually train a gradient boosting model we also have to choose its hyperpa-
rameters. There are mainly three: the learning rate, the number of weak learners
and the maximum depth of each weak learner. Without some hyperparameter
tuning gradient boosting easily overfits the data, not generalizing well.

A way to solve for this is the brute force approach, running a massive, parallelized
cross validation on the method while searching the hyperparameter grid/space for
the solution which minimizes the chosen loss metric. This is also our approach, as
explained in the next section.

4.3 Tree-based methods using exogenous regres-
sors and last stage of the hybrid model

Now, as explained at the beginning of this chapter and in Section 1.3, we fit the
methods to the difference between ARIMA fitted values and the actual gross box
office revenue. This allows us to link the time series modelling to the gross box
office revenue of the single movie, thus completing our hybrid model.

Details of the implementation in R are given in Appendix A.2.6, but some
information on the hyperparameter tuning and the fitting must be given here.

For what concerns Gradient Boosting, the hyperparameter tuning with 10-fold
cross validation concerned the learning rate, the number of weak learners fitted and
the interaction depth of each weak learner. To be clear, the interaction depth is just
the maximum interaction level between features in a tree, considering the split at
the root as a main effect, and each subsequent split as an interaction effect. In other

9The partial derivatives are the (pseudo-)residuals.
10In the update expression f is a vector valued function taking a vector valued input of

dimensionality n, where n is the cardinality of the dataset. This can be noticed through the
bold font. It is the function representing the whole set of predictions. f : Rn −→ Rn. As
already explained, the loss here is real-valued and takes as input a vector of squared residuals
of dimensionality n (considering the responses as a constant vector), since it is the sum of the
squared residuals. L : Rn −→ R+.
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words, the interaction depth is the maximum depth each weak learner can reach.
In addition, sampling without replacement (70%) was performed to train each
weak learner, as suggested in the Stochastic Gradient Boosting implementation by
Friedman (2001)[14].

The results from the cross-validation11 indicate that the most appropriate
combination of hyperparameters is 800 for the number of trees, 8 for the interaction
depth and 0.2 for the shrinkage rate. The importance of each predictor in the
boosting process is also calculated with respect to the final model12, as the reduction
in performance due to random permutation on the predictor.

Figure 4.1: In the two upper tiles, the aggregated cross-validated RMSE as the
number of weak learners (left) and the shrinkage parameter (right) vary. Below,
the variable importance plot for gradient boosting with respect to the final model.
Notice the (obvious) importance of the duration of each movie as a predictor.

11The grid for the hyperparameters considered 100 to 1000 by 100 for the number of trees, 1 to
8 for the interaction depth and 0.01 to 0.1 by 0.01 for the shrinkage rate.

12The one with the cross-validated hyperparameters and fit to the whole dataset.
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Bagging is also (repeatedly) cross-validated, but this time just to have robust
measures of its performance, and not to tune any hyperparameters, since bagging
is not prone to overfitting at all (differently to boosting, which is quite delicate).
10-fold cross-validation is repeated 3 times and the number of trees in the ensemble
is set to a pretty high number (1000). Below a variable importance plot is shown,
with the importance computed as the total decrease of residual sum of squares
induced by splits on the variable, averaged over all the trees.

Figure 4.2: Variable importance plot for bagging: total decrease of RSS induced
by splits on the variable, averaged over all the trees. Again, the duration is by far
the most important variable.

Both the models explain about 40% of the variance of the response variable,
with gradient boosting performing better, closer to 40%, and bagging hovering
around 35%.

More precisely, table 4.1 shows the cross-validated R2 of both the methods,
which is exactly a measure of explained variance.

Gradient Boosting (R2 CV) Bagging (R2 CV)
0.392 0.352

Table 4.1: Cross-validated R2 for both tuned gradient boosting and bagging.

Given the cross-validated R2, it makes sense to use boosting for the final stage of
the overall hybrid model. At this point, we can sum the predictions from gradient
boosting with the forecasts from ARIMA, thus obtaining an overall predictions
which targets the actual US boxoffice revenue of the single movie.

The R2 for the predictions of the hybrid model is easy to compute, being
simply the ratio between the variance of the errors (mean squared residual) and
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the variance of the response, thus dividing the unexplained variance by the total
variance. Unfortunately, due to the quantity and the quality of the data (we cannot
buy the access to refined databases) and probably also due to the simplicity of
parts of our analysis, the explained variance on test data (2016 movies) is just 10%
of the total. This low R2 can be probably imputed to time series forecasts which
are accurate only up to a certain level and to the wild fluctuations present in the
time series itself, which are in turn probably caused by noise induced by the low
amount of data.
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Conclusions

This thesis presented a complete proof-of-concept for a hybrid model combining
observation specific data with a time aggregated perspective, introducing in the
meanwhile most of the main concepts of time series analysis, which were not taken
for granted. In fact, a thorough review of the statistics and the theory behind
time series was given, avoiding a sterile adoption of models in a black box fashion,
which is sadly so common in the data science field. Tree-based methods and in
particular gradient boosting were also rigorously treated, going more in depth than
what is usual when exploiting these techniques, whose mathematical and statistical
soundness is often overlooked.

In conclusion, although somewhat dehumanizing with respect to the artistic
background of the entertainment field, it is clear and obvious that there is infor-
mation there to be modelled, and that there is value to be extracted from it by
gaining insights into the behaviour and the tastes of viewers. The hope is that
this thesis managed to show that, highlighting patterns and thus the presence of a
strong signal in this kind of data.

With more advanced models, more time and resources, and especially with a
complete access to refined and comprehensive datasets that are kept behind very
expensive paywalls, the results would probably be far more interesting, and so
we are leaving to future and funded research the task to further explore the idea
proposed in these pages.
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Appendix A

Python and R Code

A.1 Python code for scraping
As explained in the thesis, to scrape the initial data to work with, extensive pieces
of code dedicated to scraping were necessary. Most of the work was made to
communicate with the TMDB API(see Section 1.4), make the appropriate GET
requests and parse the results.

The following code is necessary to map each IMDb ID from the original dataset
to a TMDB ID from the TMDB dataset. We are able to send a specific GET
request containing the IMDb ID in order to get a JSON containing the data we
need about the movie from the TMDB dataset. A lot of the code is also designed
to allow the scraping to stop and start again when needed, which proves useful
especially with limited time and resources.

Notice that to interact with the TMDB API a key is needed, and this can be
obtained by registering on the TMDB website. Since it is a private key, it is not
present in the code and it is called from an .env file.

The obtained TMDB IDs, together with the original IMDb IDs, are saved to a
.csv file during execution.

1 import r eque s t s
2 import csv
3 import time
4 import os
5 import dotenv
6

7

8 os . chd i r ( os . path . s p l i t ( os . path . abspath ( __file__ ) ) [ 0 ] ) # This a l l ows
to s e t the cur rent d i r e c t o r y to s c r i p t f o l d e r

9 dotenv . load_dotenv ( os . path . j o i n ( os . path . s p l i t ( os . path . abspath ( os . path
. cu rd i r ) ) [ 0 ] , ’ . env ’ ) )
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10 api_key = os . getenv ( ’TMDB_KEY’ ) # This i s to avoid putt ing the key
as p l a i n text

11

12 EditMode = ’ a ’
13 resume_control = False
14 complete = True
15 resume = False
16

17 with open ( ’ IMDbmovies . csv ’ , ’ r ’ ) as f i r s t_ l i n e_check :
18 next ( f i r s t_ l i n e_check ) # Skip header
19 i d_re f e r ence = next ( f i r s t_ l i n e_check ) . s p l i t ( ’ , ’ ) [ 0 ] # This i s

u s e f u l in case we have not an e x i s t i n g CSV f i l e
20

21 # These f o l l o w i n g l i n e s make the program f l e x i b l e , i t can work with a
new f i l e or by appending the IDs to e x i s t i n g one

22 i f os . path . e x i s t s ( ’TMDB_ID. csv ’ ) :
23 f i l e _ r e a d e r = open ( ’TMDB_ID. csv ’ , ’ r ’ )
24 next ( f i l e _ r e a d e r ) # Skip header
25 f o r element in f i l e _ r e a d e r :
26 i d_re f e r ence = element . s p l i t ( ’ , ’ ) [ 0 ]
27 f i l e _ r e a d e r . c l o s e ( )
28 pr in t ( ’ Ex i s t ing CSV f i l e found , the c a l l s to the TMDB API w i l l

s t a r t again \n ’
29 ’ from the IMDbID o f the l a s t row in the f i l e ’ )
30 e l s e :
31 pr in t ( ’No e x i s t i n g CSV f i l e found , a new one w i l l be b u i l t ’ )
32 EditMode = ’w ’
33

34

35 with open ( ’ IMDbmovies . csv ’ , ’ r ’ ) as o r i g i n a l :
36 next ( o r i g i n a l ) # Skip header o f the CSV
37 with open ( ’TMDB_ID. csv ’ , EditMode ) as id_pai r s :
38 wr i t e r = csv . w r i t e r ( id_pai r s )
39 i f EditMode == ’w ’ :
40 wr i t e r . writerow ( ( ’IMDb_ID ’ , ’TMDB_ID’ , ’ Eng l i sh T i t l e ’ ) )

# Header i s wr i t t en i f new csv f i l e
41 start_time = time . time ( )
42 f o r f i l m in o r i g i n a l :
43 e lapsed = time . time ( )−start_time
44 i f f i l m . s p l i t ( ’ , ’ ) [ 0 ] == id_re f e r ence : # This cond i t i on

a l l ows sc rap ing to s t a r t again where i t was paused
45 t e s t = f i l m . s p l i t ( ’ , ’ ) [ 0 ]
46 resume = True
47 i f resume_control or EditMode == ’w ’ :
48 i f e l apsed <= 1800 : # Elapsed time reaches g iven

time and then s tops the execut ion
49 imdb_id = f i l m . s p l i t ( ’ , ’ ) [ 0 ]
50 re sponse = reque s t s . get ( f ’ https : // api . themoviedb .

org /3/ f i n d /{imdb_id}? api_key={api_key} ’
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51 f ’&externa l_source=
imdb_id ’ )

52 i f r e sponse . status_code == 200 :
53 d i c t i o n a r y _ r e s u l t = response . j son ( ) [ ’

movie_resu lts ’ ]
54 i f d i c t i o n a r y _ r e s u l t :
55 row = ( imdb_id , d i c t i o n a r y _ r e s u l t [ 0 ] [ ’ id ’

] , d i c t i o n a r y _ r e s u l t [ 0 ] [ ’ t i t l e ’ ] )
56 wr i t e r . writerow ( row )
57 pr in t ( f ’ Current IMDb ID used f o r the c a l l to

the API −−−> {imdb_id} ’ )
58 e l s e :
59 pr in t ( ’Maximum elapsed time reached , e x i t i n g

program execut ion . . . ’ )
60 complete = False # This boolean a l l ows the

program to understand i f s c rap ing i s complete
61 break
62 i f resume :
63 resume_control = True
64 i f complete :
65 pr in t ( ’The program has parsed every l i n e in the CSV f i l e with the

IMDB IDs , e x i t i n g program execut ion . . . ’ )

The next code uses the IDs gathered in the previous .csv file to send other GET
requests to the API, this time asking for the data on the release dates. These
specific GET requests return a particularly nested JSON array containing the whole
set of available release dates for the specific movie queried. The API documentation
needs to be followed to understand how to navigate the JSON in order to only get
theatrical release dates for the North American market. Different dates for the
same movie are allowed, with the note field being later used (in R execution) to
understand which one is correct, when possible. The release dates are stored in a
.csv file, each of them paired with a TMDB ID to identify the related movie.

1 import r eque s t s
2 import csv
3 import time
4 import os
5 import dotenv
6

7 os . chd i r ( os . path . s p l i t ( os . path . abspath ( __file__ ) ) [ 0 ] ) # Set cd to
f o l d e r o f the s c r i p t

8 dotenv . load_dotenv ( os . path . j o i n ( os . path . s p l i t ( os . path . abspath ( os . path
. cu rd i r ) ) [ 0 ] , ’ . env ’ ) )

9 api_key = os . getenv ( ’TMDB_KEY’ ) # This i s to avoid putt ing the key
as p l a i n text
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10

11 EditMode = ’ a ’
12 complete = True
13 resume_control = False
14 resume = False
15

16 with open ( ’TMDB_ID. csv ’ , ’ r ’ ) as f i r s t_ l i n e_check :
17 next ( f i r s t_ l i n e_check ) # Skip header
18 i d_re f e r ence = next ( f i r s t_ l i n e_check ) . s p l i t ( ’ , ’ ) [ 1 ] [ : − 1 ] # This

i s u s e f u l in case we have not an e x i s t i n g CSV f i l e
19

20 # The f o l l o w i n g l i n e s make the program f l e x i b l e , i t can work with a
new f i l e or by appending the IDs to e x i s t i n g one

21 i f os . path . e x i s t s ( ’TMDB_Release . csv ’ ) :
22 f i l e _ r e a d e r = open ( ’TMDB_Release . csv ’ , ’ r ’ , newl ine=’ \n ’ )
23 next ( f i l e _ r e a d e r ) # Skip header
24 f o r element in f i l e _ r e a d e r :
25 i d_re f e r ence = element . s p l i t ( ’ , ’ ) [ 0 ]
26 f i l e _ r e a d e r . c l o s e ( )
27 pr in t ( ’ Ex i s t ing CSV f i l e found , the c a l l s to the TMDB API w i l l

s t a r t again \n ’
28 ’ from the l a s t obse rvat i on in the CSV f i l e ’ )
29 e l s e :
30 pr in t ( ’No e x i s t i n g CSV f i l e found , a new one w i l l be b u i l t ’ )
31 EditMode = ’w ’
32

33 t ime_l imit = input ( ’How long do you want t h i s program to run at most?
Please i n s e r t time in minutes ’ )

34

35 with open ( ’TMDB_ID. csv ’ , ’ r ’ ) as o r i g i n a l :
36 next ( o r i g i n a l ) # Skip header o f the CSV
37 with open ( ’TMDB_Release . csv ’ , EditMode ) as r e l ea s e_csv :
38 wr i t e r = csv . w r i t e r ( r e l ea s e_csv )
39 i f EditMode == ’w ’ :
40 # Header i s wr i t t en i f new csv f i l e
41 wr i t e r . writerow ( ( ’TMDB_ID’ , ’ Release_Date_US_Theatrical ’ ,

’ Re lease date note ’ ) )
42 start_time = time . time ( )
43 f o r f i l m in o r i g i n a l :
44 e lapsed = time . time ( )−start_time
45 # This cond i t i on ( below ) a l l ows sc rap ing to s t a r t again

where i t was paused
46 i f f i l m . s p l i t ( ’ , ’ ) [ 1 ] [ : − 1 ] == id_re f e r ence :
47 resume = True
48 i f resume_control or EditMode == ’w ’ :
49 i f e l apsed <= i n t ( t ime_l imit ) ∗60 : # Elapsed time

reaches x minutes and then s tops
50 tmdb_id = f i l m . s p l i t ( ’ , ’ ) [ 1 ] [ : − 1 ]
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51 re sponse = reque s t s . get ( f ’ https : // api . themoviedb .
org /3/ movie/{tmdb_id}/ r e l ea s e_date s ? ’

52 f ’ api_key={api_key} ’ )
53 i f r e sponse . status_code == 200 :
54 re sponse = response . j son ( ) [ ’ r e s u l t s ’ ] # From

here , r e s ea r ch in the nested d i c t i o n a r y
55 f o r array_country in response :
56 i f array_country [ ’ iso_3166_1 ’ ] == ’US ’ :

# According to the schema o f the JSON response
57 f o r a r ray_re l ea s e in array_country [ ’

r e l ea s e_date s ’ ] :
58 i f a r ray_re l ea s e [ ’ type ’ ] == 3 :
59 re lease_date_us =

ar ray_re l ea s e [ ’ r e l ea se_date ’ ] [ : 1 0 ]
60 t ry :
61 note = ar ray_re l ea s e [ ’

note ’ ]
62 except KeyError :
63 note = ’ ’
64 row = (tmdb_id ,

release_date_us , note )
65 wr i t e r . writerow ( row ) # I

removed a break here in order to catch
66 # the e v e n t u a l i t y o f mu l t ip l e

t h e a t r i c a l dates ( movies that were r e l e a s e d again )
67 # This p o s s i b l e i n c o n s i s t e n c y

w i l l be manually c l eaned in l a t e r s t ep s ( with R)
68 # by look ing at the notes o f

the r e l e a s e dates
69 break
70 pr in t ( f ’ Current TMDB ID used f o r the c a l l to

the API −−−> {tmdb_id} ’ )
71 e l s e :
72 pr in t ( ’Maximum elapsed time reached , e x i t i n g

program execut ion . . . ’ )
73 complete = False # This boolean v a r i a b l e a l l ows

the program to understand i f s c rap ing i s complete
74 break
75 i f resume :
76 resume_control = True
77 i f complete :
78 pr in t ( ’The program has reached the end o f the CSV f i l e with the

TMDB IDs , te rminat ing program execut ion . . . ’ )

41



Python and R Code

A.2 R code for time series manipulation, analysis
and modelling

A.2.1 Initial pre-processing
The following R code deals with most of the initial pre-processing of the dataset, a
part of the pipeline that comes even before the actual manipulation of time series
data. Here scraped data which was saved in .csv files is loaded into memory, release
dates are cleaned through their note field1 with regular expressions, boxoffice data
is adjusted for inflation, inner joins are performed and data is filtered with respect
to missing values in relevant fields.

1 l i b r a r y ( t i d y v e r s e )
2 l i b r a r y ( fpp3 )
3 l i b r a r y ( r eadx l )
4 l i b r a r y ( zoo )
5 l i b r a r y ( fu tu r e )
6 l i b r a r y ( p a r a l l e l )
7 l i b r a r y ( t i c t o c )
8 l i b r a r y ( purrr )
9 l i b r a r y ( t i d y t e x t )

10 l i b r a r y ( randomForest )
11 l i b r a r y ( d o P a r a l l e l )
12 l i b r a r y ( ca r e t )
13 l i b r a r y ( ggthemes )
14 l i b r a r y (tm)
15 l i b r a r y (moments )
16 l i b r a r y ( f a c e t s c a l e s )
17

18 s e t . seed (1 )
19

20

21 path_separator = . P l a t f o r m $ f i l e . sep # We need the OS separa to r to
g e n e r a l i z e the code execut ion

22

23 tmdb_id = readr : : read_csv ( paste ( ’ . ’ , ’TMDB_ID. csv ’ , sep =
path_separator ) )

24

25 # We read the CSV datase t I have obtained by per forming some sc rap ing
through a Python s c r i p t

26 # This i s a CSV with a l l the r e l e a s e dates f o r the o r i g i n a l datase t
that were pre sent in the TMDB

27 # database . Al l the data was r e t r i e v e d through the TMDB API

1Additional information left by users. TMDB is crowdsourced.
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28

29 r e l ea s e_date s = readr : : read_csv ( paste ( ’ . ’ , ’ TMDB_Release . csv ’ , sep =
path_separator ) )

30

31 # Set o f regex to search f o r in order to remove some r e l e a s e dates
accord ing to t h e i r ’ note ’ f i e l d

32 regex_set = paste (
33 ’ ( ? i ) f e s t | ( ? i ) re − |(? i ) v e r s i on | ( ? i ) l i m i t e d | ( ? i ) cut | ’ ,
34 ’ ( ? i ) e d i t i o n | ( ? i ) played | ( ? i ) r e i s s u e | ( ? i ) remastered | ’ ,
35 ’ ( ? i ) r e s t o r a t i o n | ( ? i ) guess | ( ? i ) blu−ray | ( ? i ) dvd | ( ? i ) premiere | ’ ,
36 ’ ( ? i ) r e r e l e a s e | ( ? i ) i n t e r n e t | ( ? i ) event | ( ? i ) e d i t i o n | ( ? i )known ’ ,
37 sep = ’ ’
38 )
39

40 # Fir s t , I s e l e c t the s e t o f r e l e a s e dates which r e f e r to mu l t ip l e
TMDB IDs

41 # I try to c l ean them through r e g u l a r expre s s i on s , the r e s t i s
d i s ca rded

42 r e l ea s e_date s = bind_rows (
43 r e l ea s e_date s %>% group_by (TMDB_ID) %>% mutate ( count = n ( ) ) %>%
44 f i l t e r ( count > 1) %>% f i l t e r (TMDB_ID != 86978) %>% # I am

exc lud ing an obse rvat i on manually ( i t does not make sense )
45 f i l t e r (
46 i s . na ( ‘ Re lease date note ‘ ) |
47 s t r_detec t (
48 ‘ Re lease date note ‘ ,
49 negate = T,
50 pattern = regex ( regex_set )
51 )
52 ) %>% mutate ( count = n ( ) ) %>% f i l t e r ( count == 1) ,
53 r e l ea s e_date s %>% group_by (TMDB_ID) %>% mutate ( count = n ( ) ) %>%

f i l t e r ( count == 1)
54 ) %>%
55 f i l t e r ( i s . na ( ‘ Re lease date note ‘ ) |
56 s t r_detec t (
57 ‘ Re lease date note ‘ ,
58 negate = T,
59 pattern = regex ( regex_set )
60 ) ) %>%
61 s e l e c t (− ‘ Re lease date note ‘ , −‘count ‘ )
62

63 # I am read ing the o r i g i n a l datase t ( ’ IMDbMovies . csv ’ )
64 imdb_dataset = readr : : read_csv ( paste ( ’ . ’ , ’ IMDbMovies . csv ’ , sep =

path_separator ) ) %>%
65 rename (IMDb_ID = ’ imdb_title_id ’ )
66 # I n f l a t i o n datase t i s read
67 # Source f o r i n f l a t i o n /CPI datase t −−−> U. S . Bureau o f Labor

S t a t i s t i c s
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68 # ( https : // data . b l s . gov/ t i m e s e r i e s /CUUR0000SA0? years_option=a l l_yea r s
)

69 # base per iod 1982−1984
70 cp i = read_excel ( paste ( ’ . ’ , ’ CPI . x lsx ’ , sep = path_separator ) )
71 cp i = cp i %>% s e l e c t ( c(−HALF1, −HALF2) ) %>% pivot_longer ( 2 : 1 3 ,

names_to = ’Month ’ , values_to = ’CPI ’ ) %>%
72 mutate (Month = yearmonth ( paste ( Year , Month , sep = ’ , ’ ) ) ) %>% s e l e c t

(−Year )
73

74

75 # Now, inner j o i n between r e l e a s e dates datase t and o r i g i n a l datase t
76 datase t = inner_jo in ( tmdb_id , re l ease_dates , by = ’TMDB_ID’ ) %>%

inner_jo in ( imdb_dataset , by = ’IMDb_ID’ ) %>%
77 s e l e c t (−date_published , −year ) %>% f i l t e r ( usa_gross_income != ’ ’ &
78 s t r_detec t (

usa_gross_income , ’ $ ’ ) ) %>%
79 mutate ( Release_Date_US_Theatrical = yearmonth (

Release_Date_US_Theatrical ) ) %>%
80 mutate ( usa_gross_income = parse_number ( usa_gross_income ) ) %>%

rename (Month = ’ Release_Date_US_Theatrical ’ )
81

82 # We adjus t f o r united s t a t e s i n f l a t i o n the USA gro s s revenue o f the
movies , removing trend

83 # We keep the non adjusted va lue s f o r v i s u a l i z a t i o n
84 datase t = inner_jo in ( dataset , cpi , by = "Month " ) %>%
85 mutate ( notad j_boxo f f i c e = usa_gross_income , usa_gross_income = (

usa_gross_income / CPI) ∗ 100) %>% s e l e c t (−CPI)
86

87 # Let ’ s check f o r miss ing va lue s in those f i e l d s (+ language and +
country + d e s c r i p t i o n + t i t l e )

88 # These are r e l e v a n t f e a t u r e s f e a t u r e s and need to be pre sent
89 datase t %>% f i l t e r ( i s . na ( country ) | i s . na ( language ) | i s . na ( genre ) |

i s . na ( d e s c r i p t i o n ) | i s . na ( t i t l e ) ) %>% summarise (n ( ) )
90 datase t = datase t %>% f i l t e r ( ! ( i s . na ( country ) | i s . na ( language ) | i s .

na ( genre ) | i s . na ( d e s c r i p t i o n ) | i s . na ( t i t l e ) ) )

A.2.2 Manipulation, exploration and visualization of the
US box office time series

The following code takes care of building and manipulating the time series, using
tidyverse and tidyverts at full capability. Data visualization is another of the
main concerns of this piece of code and in general of a proper data exploration
procedure, especially here, where many important concepts of time series analysis
are introduced (see Chapter 2). The extremely powerful ggplot2 library is the
workhorse which allowed the rendering of literally every plot in this thesis.

More in detail, the time series of the monthly averages of US box office gross

44



Python and R Code

revenue is built, missing values2 are tracked and imputed, STL decompostion is
performed and the Box-Pierce and Ljung-Box are introduced and applied on the
series. As part of the focus on data visualization, Figures 2.1, 2.5, 2.3 and 2.4 are
all defined below. The insightful Table 2.1 is also defined here.

1 ### Building , exp l o r i ng and v i s u a l i z i n g the monthly b o x o f f i c e time
s e r i e s −−−−−−

2

3 # We s t a r t from the 1980 s ( avo id ing a d i f f i c u l t to understand sp ike
in 1982) and we exc lude very r e cent years ,

4 # we have about 10 ’000 movies remaining through which we es t imate the
monthly means ,

5 # a f t e r a l l t h i s f i l t e r i n g .
6

7 datase t = datase t %>% f i l t e r ( format (Month , ’%Y’ ) >1982 & format (Month ,
’%Y’ ) <2017)

8

9 # Compare non adjusted with adjusted data , two p l o t s
10

11 datase t %>% group_by (Month) %>% f i l t e r (n ( ) >= 10) %>%
12 summarise ( AverageMonthBoxOffice = mean( usa_gross_income ) ) %>%
13 as_ts ibb l e ( index = Month) %>%
14 autop lo t ( ) + labs ( y = ’ Average Domestic Box O f f i c e Gross Income ’ ) +
15 scale_y_continuous ( l a b e l s = s c a l e s : : do l lar_format ( ) ) +
16 geom_smooth ( method = ’ lm ’ , se = F)
17

18 datase t %>% group_by (Month) %>% f i l t e r (n ( ) >= 10) %>%
19 summarise ( AverageMonthBoxOffice = mean( notad j_boxo f f i c e ) ) %>%
20 as_ts ibb l e ( index = Month) %>%
21 autop lo t ( ) + labs ( y = ’ Average Domestic Box O f f i c e Gross Income ’ ) +
22 scale_y_continuous ( l a b e l s = s c a l e s : : do l lar_format ( ) ) +
23 geom_smooth ( method = ’ lm ’ , se = F)
24 datase t = datase t %>% s e l e c t (−notad j_boxo f f i c e )
25

26 # Now we have to f i l l the remaining gaps in the r e s u l t i n g time s e r i e s
,

27 # and we overwr i t e the monthly average box o f f i c e f e a t u r e with one
with NAs in the s e r i e s l i n e a r l y i n t e r p o l a t e d from the e x i s t i n g
po in t s / averages

28 # There are only about 6 months/monthly averages miss ing in the
s e r i e s over a t o t a l o f 400 . The data imputation can d e f i n i t e l y be
acceptab le , a r t i f i c i a l l y data i s j u s t a t iny f r a c t i o n (1.5%) .

29 datase t %>% group_by (Month) %>% f i l t e r (n ( ) >= 10) %>%

2If there are less than 10 observations in a month, the mean is not computed and month is a
missing value in the series.
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30 summarise ( AverageMonthBoxOffice = mean( usa_gross_income ) ) %>%
31 as_ts ibb l e ( index = Month) %>% f i l l _ g a p s ( AverageMonthBoxOffice = NA)

%>% as_t ibb le ( ) %>%
32 f i l t e r ( ! complete . c a s e s ( . ) ) %>% summarise (n ( ) )
33

34 # With the code below , the time s e r i e s i s f i n a l l y complete
35

36 compl_ser ies = datase t %>% group_by (Month) %>% f i l t e r (n ( ) >= 10) %>%
37 summarise ( AverageMonthBoxOffice = mean( usa_gross_income ) ) %>%
38 as_ts ibb l e ( index = Month) %>% f i l l _ g a p s ( AverageMonthBoxOffice = NA)

%>%
39 mutate ( AverageMonthBoxOffice = na . approx ( AverageMonthBoxOffice ) )

%>%
40 mutate ( AverageMonthBoxOffice = round ( AverageMonthBoxOffice ) )
41

42

43 # Autoco r r e l a t i on func t i on p lo t
44 compl_ser ies %>% ACF( lag_max = 60) %>% autop lot ( ) + labs ( y = ’

Autocor re la t ion ’ ,
45 t i t l e = ’ Correlogram of

the adjusted U. S . b o x o f f i c e time s e r i e s ’ )
46

47 # Let ’ s perform the Ljung−Box/Box−Pie r ce t e s t in order to check i f
the f i r s t n a u t o c o r r e l a t i o n s in the ACF are s i g n i f i c a n t l y
d i f f e r e n t from what one would expect from white no i s e

48 # The p−value i s so low that the so f tware rounds i t to zero , so we
can d e f i n i t e l y r e j e c t the n u l l hypothes i s and say that the re i s
some s i g n i f i c a n t a u t o c o r r e l a t i o n in t h i s time s e r i e s

49

50 df_portmant = compl_ser ies %>% f a b l e t o o l s : : f e a t u r e s (
AverageMonthBoxOffice , c ( box_pierce , ljung_box ) , l ag = 24 , dof =0)

51 colnames ( df_portmant ) = c ( ’ Box Pie r ce t e s t ’ , ’Box Pie r ce p−value ’ , ’
Ljung−Box te s t ’ , ’ Ljung−Box p−value ’ )

52 write_csv ( df_portmant , ’ . / portmanteau . csv ’ )
53

54

55 # STL Decomposition
56

57 s c a l e s _ m u l t i p l i c a t i v e = l i s t ( Trend= scale_y_continuous ( l a b e l s =
s c a l e s : : l a b e l _ d o l l a r ( s c a l e =1/10^6 , s u f f i x = ’M’ ) ,

58 breaks = s c a l e s : :
extended_breaks (n = 3) ) ,

59 ‘Time Se r i e s ‘ = scale_y_continuous ( l a b e l s = s c a l e s : :
l a b e l _ d o l l a r ( s c a l e =1/10^6 , s u f f i x = ’M’ ) ,

60 breaks = s c a l e s : :
extended_breaks (n = 3) ) ,

61 Sea sona l i t y = scale_y_continuous ( breaks = s c a l e s : :
extended_breaks (n = 3) ) ,
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62 Remainder = scale_y_continuous ( breaks = s c a l e s : :
extended_breaks (n = 3) ) )

63

64 # Addit ive p l o t
65

66 compl_ser ies %>% model (STL( AverageMonthBoxOffice~ trend ( )+season ( ) ,
robust = T) ) %>% components ( ) %>% autop lo t ( ) + labs ( s u b t i t l e =
NULL, t i t l e = NULL) +

67 scale_y_continuous ( l a b e l s = s c a l e s : : l a b e l _ d o l l a r ( s c a l e =1/10^6 ,
s u f f i x = ’M’ ) , breaks = s c a l e s : : extended_breaks (n = 3) )

68 compl_ser ies %>% model (STL( AverageMonthBoxOffice~ trend ( )+season ( ) ,
robust = T) ) %>% components ( ) %>%

69 as . t i b b l e ( ) %>% s e l e c t ( −.model , −season_adjust ) %>%
70 rename ( ’ Trend ’ = trend , ’ Seasona l i ty ’ = season_year , ’ Remainder ’ =

remainder , ’Time Se r i e s ’ = AverageMonthBoxOffice ) %>%
71 pivot_longer ( c o l s = c(−Month) , names_to = ’Component ’ ) %>%
72 mutate (Component = f a c t o r ( . $Component , l e v e l s = c ( ’ Time Se r i e s ’ , ’

Trend ’ , ’ Seasona l i ty ’ , ’ Remainder ’ ) ) ) %>%
73 ggp lot ( aes ( x = Month , y = value ) ) +
74 geom_line ( ) +
75 theme ( ax i s . t i t l e = element_blank ( ) ) +
76 scale_y_continuous ( l a b e l s = s c a l e s : : l a b e l _ d o l l a r ( s c a l e =1/10^6 ,

s u f f i x = ’M’ ) , breaks = s c a l e s : : extended_breaks (n = 4) ) +
77 f a c e t_gr id ( rows = ’Component ’ , s c a l e s = ’ f r e e ’ ) +
78 l ab s ( s u b t i t l e = NULL, t i t l e = NULL)
79

80 # M u l t i p l i c a t i v e p l o t
81 compl_ser ies %>% model (STL( log ( AverageMonthBoxOffice )~ trend ( )+season

( ) , robust = T) ) %>% components ( ) %>%
82 mutate ( trend = exp ( trend ) , season_year = exp ( season_year ) ,

remainder = exp ( remainder ) ,
83 ‘ l og ( AverageMonthBoxOffice ) ‘ = exp ( ‘ l og (

AverageMonthBoxOffice ) ‘ ) ) %>%
84 as . t i b b l e ( ) %>% s e l e c t ( −.model , −season_adjust ) %>%
85 rename ( ’ Trend ’ = trend , ’ Seasona l i ty ’ = season_year , ’ Remainder ’ =

remainder , ’Time Se r i e s ’ = ‘ l og ( AverageMonthBoxOffice ) ‘ ) %>%
86 pivot_longer ( c o l s = c(−Month) , names_to = ’Component ’ ) %>%
87 mutate (Component = f a c t o r ( . $Component , l e v e l s = c ( ’ Time Se r i e s ’ , ’

Trend ’ , ’ Seasona l i ty ’ , ’ Remainder ’ ) ) ) %>%
88 ggp lot ( aes ( x = Month , y = value ) ) +
89 geom_line ( ) +
90 theme ( ax i s . t i t l e = element_blank ( ) ) +
91 facet_gr id_sc ( rows = ’Component ’ , s c a l e s = l i s t ( y =

s c a l e s _ m u l t i p l i c a t i v e ) ) +
92 l ab s ( s u b t i t l e = NULL, t i t l e = NULL)
93

94 # Addit ive STL s e a s o n a l i t y
95 season_STLadd = compl_ser ies %>% model (STL( AverageMonthBoxOffice~

trend ( )+season ( ) , robust = T) ) %>% components ( ) %>%
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96 as . t i b b l e ( ) %>% s e l e c t (Month , season_year ) %>%
97 rename ( Sea sona l i t y = ’ season_year ’ ) %>% mutate (Month = as . i n t e g e r (

month(Month) ) ) %>%
98 group_by (Month) %>% summarise ( ‘ Average s ea sona l component (AD) ‘ =

mean( Sea sona l i t y ) ) %>%
99 mutate ( ‘ Average s ea sona l component (AD) ‘ = round ( s c a l e ( ‘ Average

s ea sona l component (AD) ‘ ) , d i g i t s = 2) , Month = month . name [ Month ] )
100

101 # M u l t i p l i c a t i v e STL s e a s o n a l i t y
102 season_STLmult = compl_ser ies %>% model (STL( log ( AverageMonthBoxOffice

)~ trend ( )+season ( ) , robust = T) ) %>% components ( ) %>%
103 mutate ( trend = exp ( trend ) , season_year = exp ( season_year ) ,

remainder = exp ( remainder ) ,
104 ‘ l og ( AverageMonthBoxOffice ) ‘ = exp ( ‘ l og (

AverageMonthBoxOffice ) ‘ ) ) %>%
105 as . t i b b l e ( ) %>% s e l e c t (Month , season_year ) %>%
106 rename ( ’ Seasona l i ty ’ = season_year ) %>% mutate (Month = as . i n t e g e r (

month(Month) ) ) %>%
107 group_by (Month) %>% summarise ( ‘ Average s ea sona l component (ML) ‘ =

mean( Sea sona l i t y ) ) %>%
108 mutate ( ‘ Average s ea sona l component (ML) ‘ = round ( s c a l e ( ‘ Average

s ea sona l component (ML) ‘ ) , d i g i t s = 2) ,
109 Month = month . name [ Month ] )
110

111 season_STLadd$ ‘ Average s ea sona l component (AD) ‘ = season_STLadd$ ‘
Average s ea sona l component (AD) ‘ [ , 1 ]

112 season_STLmult$ ‘ Average s ea sona l component (ML) ‘ = season_STLmult$ ‘
Average s ea sona l component (ML) ‘ [ , 1 ]

113

114 seasonal_STLtable = inner_jo in ( season_STLadd , season_STLmult , by = ’
Month ’ )

115 write_csv ( seasonal_STLtable , ’ . / seasonalSTL . csv ’ )

A.2.3 General visualization
The following code deals with more general visualization, illustrating the sample
distribution of the US box office revenue feature together with another one of
interest, the duration of each movie (see Figure 2.2).

Below you can also find the code used to plot Figures 2.6 and 2.7, used to
explain white noise and differencing, respectively.

1 # Exploratory p l o t s on revenue −−−−−
2

3 datase t %>% ggp lot ( aes ( x = usa_gross_income ) ) +
4 geom_boxplot ( ) +
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5 theme ( ax i s . t i c k s . y = element_blank ( ) , ax i s . t ex t . y = element_blank ( )
) +

6 xlab ( ’USA Box O f f i c e Gross Income ( Adjusted ) ’ ) +
7 scale_x_continuous ( l i m i t s = c (80000 , 16000000) , l a b e l s = s c a l e s : :

l a b e l _ d o l l a r ( s c a l e = 1/10^6 , s u f f i x = ’M’ ) )
8

9 datase t %>% ggp lot ( aes ( x = usa_gross_income ) ) +
10 geom_density ( f i l l = ’ l i g h t b l u e ’ ) +
11 ylab ( element_blank ( ) ) +
12 xlab ( ’USA Box O f f i c e Gross Income ( Adjusted ) ’ ) +
13 scale_y_continuous ( l a b e l s = s c a l e s : : format_format ( s c i e n t i f i c = TRUE

) ) +
14 scale_x_continuous ( l i m i t s = c (80000 , 16000000) , l a b e l s = s c a l e s : :

l a b e l _ d o l l a r ( s c a l e =1/10^6 , s u f f i x = ’M’ ) )
15

16 skewness ( dataset$usa_gross_income )
17 # Excess k u r t o s i s
18 k u r t o s i s ( dataset$usa_gross_income )−3
19

20

21 # A r t i f i c i a l data p l o t s −−−−
22 # Plo t t i ng o f a s imple white gauss ian no i s e s e r i e s
23 s e t . seed (1 )
24 gauss ian_whiteno i se = t s i b b l e ( time = seq (1 , 30 , 1) , no i s e = rnorm (30)

, index = time )
25 white_1 = autop lo t ( gauss ian_whiteno i se ) + xlab ( ’ Time ’ ) + ylab ( ’ Noise

’ )
26 white_2 = autop lo t (ACF( gauss ian_whitenoise , lag_max = 5) ) + ylab ( ’

Autocor re la t ion ’ ) + xlab ( ’ Lag ’ )
27 ggpubr : : ggarrange ( white_1 , white_2 )
28

29 # Plo t t i ng o f a s e r i e s with s e a s o n a l i t y and trend + guass ian no i s e
30 s e t . seed (1 )
31 season_trend_ser i e s = t s i b b l e ( time = yearquar te r ( seq ( from = as . Date

( ’2000 −01 −01 ’) , by = ’ quarter ’ , l ength . out = 100) ) ,
32 re sponse = seq (1 , 100 , 1) ∗0 .1 +5∗ s i n ( p i

/2∗ seq (1 , 100 , 1) ) + 3∗ rnorm (100) , index = time )
33 o r i g i n a l _ p l o t = autop lo t ( season_trend_ser i e s )+ylab ( ’ Response ’ )
34 a c f _ o r i g i n a l = autop lo t (ACF( season_trend_ser i e s ) )+ylab ( ’

Autocor re la t ion ’ )
35 detrended = season_trend_ser i e s %>% transmute ( ‘ Detrended Se r i e s ‘ =

d i f f e r e n c e ( response , 1 , 1) )
36 s t a t i o n a r y = detrended %>% transmute ( ‘ S ta t i onary Se r i e s ‘ = d i f f e r e n c e

( ‘ Detrended Se r i e s ‘ , 4 , 1) )
37 s t a t i o n a r y %>% f a b l e t o o l s : : f e a t u r e s ( ‘ S ta t i onary Se r i e s ‘ , c (~

unitroot_kpss ( . ) , ~ f e a t _ s t l ( . , 4) ) )
38 s ta t i onary_p lo t = autop lo t ( s t a t i o n a r y ) + ylab ( ’ Response ’ )
39 ac f_s ta t i onary = autop lo t (ACF( s t a t i o n a r y ) ) + ylab ( ’ Autocor re la t ion ’ )
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40 ggpubr : : ggarrange ( o r i g ina l_p lo t , a c f_or i g i na l , s ta t ionary_plot ,
a c f_s ta t i onary )

A.2.4 ARIMA and ETS modelling
Here you can find the code related to model fit, selection, and (cross) validation
for ARIMA and ETS. Residuals from ARIMA are checked with a Ljung-Box test
and visualized. Figures 3.2. 3.3 are defined here. The last lines of this code extract
the fitted values from ARIMA that are used to build the response variable for the
tree-based methods. Forecasts from ARIMA are also extracted in order to test the
overall hybrid model afterwards.

1 # ARIMA and ETS model l ing −−−−
2

3 # ETS/ARIMA 2016 Fi t t ing , p l o t t i n g and accuracy with SNAIVE
4 mable_models=compl_ser ies %>% f i l t e r _ i n d e x (~ ’ Dec 2015 ’ ) %>%
5 model ( ’ETS’ = ETS( AverageMonthBoxOffice , i c = ’ a ic ’ ) ,
6 ’ARIMA’ = ARIMA( AverageMonthBoxOffice , i c = ’ a ic ’ , s t epwi s e=F

, t r a c e=T, approximation=FALSE) ,
7 "SNAIVE" = SNAIVE( AverageMonthBoxOffice ) )
8

9 mable_models %>%
10 s e l e c t (−SNAIVE) %>%
11 f o r e c a s t (h = ’1 year ’ ) %>% r44
12 geom_ribbon ( aes ( group=‘Model ‘ , ymin= ‘.mean‘− u n l i s t ( d i s t r i b u t i o n a l : :

h i l o ( AverageMonthBoxOffice ) ) [ 1 ] ,
13 ymax= ‘.mean‘+ u n l i s t ( h i l o ( AverageMonthBoxOffice ) )

[ 2 ] , f i l l =‘Model ‘ ) , alpha = 0 . 3 )+
14 scale_color_manual ( va lue s = c ( ’ red ’ , ’ blue ’ ) ) +
15 scale_y_continuous ( l a b e l s = s c a l e s : : l a b e l _ d o l l a r ( s c a l e =1/10^6 ,

s u f f i x = ’M’ ) )+
16 ylab ( " Average Montly Box O f f i c e Gross Income (US market ) " )+
17 geom_line ( data=compl_ser ies %>% f i l t e r _ i n d e x ( " 2 0 1 3 " ~ . ) , mapping=aes

( x=Month , y=AverageMonthBoxOffice ) )
18

19 t e s t = mable_models %>%
20 f o r e c a s t (h="1 year " )
21 f it_compare = mable_models %>%
22 f o r e c a s t (h="1 year " ) %>%
23 accuracy ( data=compl_series , measures=point_accuracy_measures )%>%
24 s e l e c t (−c ( ‘ . type ‘ , ‘ME‘ , ‘MAE‘ , ‘MPE‘ , ‘MASE‘ , ‘RMSSE‘ , ‘ACF1‘ ) )
25

26 f it_compare%>%write_csv ( " . / comparison . csv " )
27

28

29 # Time s e r i e s c r o s s v a l i d a t i o n
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30 cv_se r i e s = compl_ser ies %>% s t r e t c h _ t s i b b l e ( . s tep =12, . i n i t =120)
31 cv_models=cv_se r i e s%>%model ( "ARIMA"=ARIMA( formula=

AverageMonthBoxOffice~0+pdq (2 , 0 , 2 )+PDQ(0 , 1 , 2 ) ) ,
32 "ETS" = ETS( AverageMonthBoxOffice~ e r r o r ( "M" )+trend

( "N" )+season ( "M" ) ) ,
33 "SNAIVE" = SNAIVE( AverageMonthBoxOffice ) )
34

35 accuracy_ts_cv = cv_models%>%
36 f o r e c a s t (h=12) %>%
37 f i l t e r ( ! i s . na ( ‘ . mean ‘ ) ) %>%
38 accuracy ( compl_series , by=c ( ’ . model ’ ) ) %>%
39 s e l e c t (−c ( ‘ . type ‘ , ‘ME‘ , ‘MAE‘ , ‘MPE‘ , ‘MASE‘ , ‘RMSSE‘ , ‘ACF1‘ ) )
40

41 accuracy_ts_cv%>%write_csv ( " . / accuracy_ts_cv . csv " )
42

43

44 # Res idual d i a g n o s i s / p l o t f o r ETS and ARIMA
45 f i r s t _ t i l e = mable_models%>%s e l e c t (ARIMA)%>%r e s i d u a l s ( )%>%s e l e c t ( −.

model )%>%
46 rename ( Res idual = ‘. r e s id ‘ ) %>%
47 f i l t e r _ i n d e x ( " March 1984 "~ . ) %>%
48 ggp lot ( aes ( x=Month , y = Res idual ) ) +
49 geom_line ( )+
50 geom_point ( )
51

52 s e cond_t i l e = mable_models%>%s e l e c t (ARIMA)%>%r e s i d u a l s ( )%>%s e l e c t ( −.
model )%>%

53 rename ( Res idual = ‘. r e s id ‘ ) %>%
54 f i l t e r _ i n d e x ( " March 1984 "~ . ) %>%
55 ggp lot ( ) +
56 geom_histogram ( aes ( x=Res idua l ) , c o l o r ="blue " , f i l l = " l i g h t b l u e " ,

alpha =0.8)+
57 ylab ("# o f occur r ence s " )
58

59 t h i r d _ t i l e = mable_models %>% s e l e c t (ARIMA)%>%r e s i d u a l s ( )%>%s e l e c t ( −.
model )%>%

60 rename ( Res idual = ‘. r e s id ‘ )%>%
61 f i l t e r _ i n d e x ( " March 1984 "~ . ) %>% ACF( ) %>% autop lo t ( ) +
62 ylab (NULL) + xlab (NULL)
63

64 ggpubr : : ggarrange ( f i r s t _ t i l e ,
65 ggpubr : : ggarrange ( second_t i l e , t h i r d _ t i l e ) , nrow=2)
66

67 # Ljung−Box and Box t e s t on the r e s i d u a l s to check that they are
white no i s e

68 mable_models%>%s e l e c t (ARIMA)%>%r e s i d u a l s ( )%>%s e l e c t ( −.model )%>%
69 rename ( Res idual = ‘. r e s id ‘ ) %>% f a b l e t o o l s : : f e a t u r e s ( Residual , c (

box_pierce , ljung_box ) , l ag =24, dof =6)
70
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71 f i t_ar ima = mable_models %>% s e l e c t (ARIMA)
72

73 f i t t e d _ v a l u e s = f i t_ar ima %>% f i t t e d ( )

A.2.5 Building the document-term matrix and the dummy
variables: preparing the dataset of exogenous regres-
sors for modelling

As explained in Chapter 4, the procedure to pre-process the exogenous regressors is
not easy and not simple. In this part of the Appendix the code of that pre-processing
pipeline is reported and explained.

As can be read in the comments inside the R script, the piece of code below
extracts categorical variables (labels) from text fields that contain them. The
original language, the genres and the production countries of each movie are
reported in a list-type format, with every label separated by a comma. A dummy
variable has to be built for every label, or at least for the most significant ones of
each set.

1 # This part o f the pre−pro c e s s i n g i s ded icated to e x t r a c t i n g
2 # c a t e g o r i c a l v a r i a b l e s from text f i e l d s where they are found

toge the r .
3 # Dummies are b u i l t f o r each o f them
4 # Trimming o f whitespace needs to be done be f o r e e x t r a c t i n g the

l a b e l s from the text f i e l d
5 # A l i s t o f the unique va lue s f o r each f i e l d we are
6 # e x t r a c t i n g l a b e l s / c a t e g o r i c a l v a r i a b l e s from
7 # has to be saved f o r the f o l l o w i n g operat ions ,
8 # s i n c e i t i s needed f o r the " a c r o s s " t i d y v e r s e operator
9 # This needs to be done more than once , so I w i l l d e f i n e a func t i on

10

11 s p l i t t e r _ c a t e g = func t i on ( vec ) {
12 empty_vec = c ( )
13 f o r ( element in vec ) {
14 row_el = u n l i s t ( s t r _ s p l i t ( element , ’ , ’ ) )
15 f o r ( item in row_el ) {
16 i f ( ! i s . e lement ( item , empty_vec ) ) {
17 empty_vec = append ( empty_vec , item )
18 }
19 }
20 }
21 empty_vec = paste ( paste ( ’ ^ ’ , empty_vec , sep = ’ ’ ) , ’ $ ’ , sep = ’ ’ )
22 # regex exp r e s s i on to en f o r c e s t r i c t match
23 re turn ( empty_vec )
24 }
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25

26 # F i r s t in l i n e i s genre
27 datase t = datase t %>% mutate ( genre = gsub ( " " , " " , genre , f i x e d =

TRUE) )
28 genre_vec = s p l i t t e r _ c a t e g ( datase t$genre )
29

30 datase t = datase t %>%
31 separate_rows ( genre , sep = ’ , ’ ) %>% pivot_wider ( values_from = genre

, names_from = genre ) %>%
32 mutate ( a c r o s s ( matches ( genre_vec ) , ~ i s . na ( . ) ) ) %>%
33 mutate ( a c r o s s ( matches ( genre_vec ) , ~ i f e l s e (.==TRUE, 0 , 1) ) )
34

35 # Now we should do the same with languages and country , but s e l e c t i n g
only the

36 # most preva l ent languages and count r i e s , manually . I t a l y and I t a l i a n
are a bonus , s i n c e I am I t a l i a n

37 # S e l e c t i o n accord ing to most spoken languages in the world
38 datase t = datase t %>% mutate ( language = gsub ( " " , " " , language , f i x e d

= TRUE) )
39 language_vec = s p l i t t e r _ c a t e g ( dataset$ language )
40

41 dataset_languages = datase t %>%
42 separate_rows ( language , sep = ’ , ’ ) %>% pivot_wider ( values_from =

language , names_from = language ) %>%
43 mutate ( a c r o s s ( c ( matches ( language_vec ) ) , ~ i s . na ( . ) ) ) %>%
44 mutate ( a c r o s s ( c ( matches ( language_vec ) ) , ~ i f e l s e (.==TRUE, 0 , 1) ) )

%>%
45 s e l e c t ( Engl ish , Chinese , Hindi ,
46 Spanish , French , Arabic , Bengal i , Russian , Portuguese ,

Indones ian ,
47 Urdu , German , I t a l i a n )
48

49 datase t = cbind ( datase t %>% s e l e c t (− language ) , dataset_languages )
50

51 # The same a l s o f o r country , s e l e c t i o n accord ing to volume o f
product ion data

52 # https : //www. the−numbers . com/movies / production−c o u n t r i e s/#tab=
t e r r i t o r y

53

54 datase t = datase t %>% mutate ( country = gsub ( " " , " " , country , f i x e d =
TRUE) )

55 country_vec = s p l i t t e r _ c a t e g ( dataset$country )
56 dataset_country = datase t %>%
57 separate_rows ( country , sep = ’ , ’ ) %>% pivot_wider ( values_from =

country , names_from = country ) %>%
58 mutate ( a c r o s s ( matches ( country_vec ) , ~ i s . na ( . ) ) ) %>%
59 mutate ( a c r o s s ( matches ( country_vec ) , ~ i f e l s e (.==TRUE, 0 , 1) ) ) %>%
60 s e l e c t (USA, UK, China , France , Japan , Germany , SouthKorea , Canada ,

Aust ra l i a , India ,
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61 NewZealand , HongKong , I t a l y , Spain , Russia )
62

63 datase t = cbind ( datase t %>% s e l e c t (−country ) , dataset_country )

Now we need to extract information in a structured way from text, from the
title and the synopsis of each movie. A very simple approach - when compared to
the most basic models of the modern NLP world, like Word2Vec - is just to build a
Document-Term matrix, using as weight the TF-IDF of each term and putting in
place document frequency boundaries in order to reduce the dimensionality of the
matrix. The tm R library takes care of the necessary pre-processing steps3 with its
TermDocumentMatrix function.

1 # le t ’ s put the Engl i sh t i t l e in the dataset , i t i s more meaningful
2 # f o r text mining in our context (USA b o x o f f i c e )
3

4 # This i s a dataframe which comes from the only p i e c e o f Python code
which i s not in the t h e s i s ,

5 # I t i s a s c r i p t to sc rape pos te r s , which were not inc luded in the
f i n a l p i p e l i n e in the end ,

6 # s i n c e deep l e a r n i n g and CNN were even tua l l y excluded
7

8 # The only important th ing i s that i t conta in s Engl i sh t i t l e s (
scraped with the TMDB API)

9 images_downloaded = read_csv ( paste ( ’ . ’ , ’ images_downloaded . csv ’ , sep =
path_separator ) )

10 images_downloaded = images_downloaded %>% rename (IMDb_ID = ’IMDbID ’ )
11 datase t = inner_jo in ( dataset , images_downloaded , by = ’IMDb_ID’ , keep

= F) %>%
12 s e l e c t (− ‘ Poster URL‘ ) %>% r e l o c a t e ( ‘ Eng l i sh t i t l e ‘ , . b e f o r e =

o r i g i n a l _ t i t l e )
13

14

15 # Prepar ing a BOW f o r s u c c e s s i v e t ext mining steps , concern ing t i t l e
and synops i s

16 # The term document matrix func t i on o f the tm l i b r a r y takes care o f
everyth ing ,

17 # without us needing to pr ep roce s s words manually with a pipe .
18 # Important pre−pro c e s s i n g s t ep s that are performed are lower case

convers ion , stemming ,
19 # stopwords removal and punctuat ion removal
20 # Document f requency bounds are put in p lace to
21 # reduce at l e a s t in part the d imens i ona l i t y o f the term document

matrix
22 # TF−IDF i s chosen as weight f o r the r e s u l t i n g term document matrix

3Stemming, punctuation removal, lower case conversion, stopwords removal.
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23

24 c o n t r o l _ l i s t 1 = l i s t ( t oken i z e = words , language = ’ en ’ ,
25 bounds = l i s t ( g l o b a l = c (20 , 300) ) , we ight ing =

weightTfIdf , to lower = TRUE,
26 removePunctuation = TRUE, stopwords = TRUE,

stemming = TRUE)
27 bowTitle = tm : : TermDocumentMatrix (tm : : VCorpus (tm : : VectorSource (

dataset$ ‘ Eng l i sh t i t l e ‘ ) ) ,
28 c o n t r o l _ l i s t 1 )
29 bowTitle = t ( as . matrix ( bowTitle ) )
30 bowTitle = as . data . frame ( bowTitle )
31 colnames ( bowTitle ) = paste ( colnames ( bowTitle ) , ’ _t i t l e ’ )
32 bowTitle = cbind (dataset$TMDB_ID , bowTitle ) %>% rename ( ’TMDB_ID’ = ‘

dataset$TMDB_ID ‘ )
33

34 c o n t r o l _ l i s t 2 = l i s t ( t oken i z e = words , language = ’ en ’ ,
35 bounds = l i s t ( g l o b a l = c (60 , 300) ) , we ight ing =

weightTfIdf , to lower = TRUE,
36 removePunctuation = TRUE, stopwords = TRUE,

stemming = TRUE, removeNumbers = TRUE)
37 bowDescr ipt ion = tm : : TermDocumentMatrix (tm : : VCorpus (tm : : VectorSource (

d a t a s e t $ d e s c r i p t i o n ) ) ,
38 c o n t r o l _ l i s t 2 )
39 bowDescr ipt ion = t ( as . matrix ( bowDescr ipt ion ) )
40 bowDescr ipt ion = as . data . frame ( bowDescr ipt ion )
41 colnames ( bowDescr ipt ion ) = paste ( colnames ( bowDescr ipt ion ) , ’ _des ’ )
42 bowDescr ipt ion = cbind (dataset$TMDB_ID , bowDescr ipt ion ) %>% rename ( ’

TMDB_ID’ = ‘dataset$TMDB_ID ‘ )

The dummies for the directors and for the production companies are also added,
considering only the highest ranking based on the frequency in the dataset. Results
from various stages are merged and the dataset is now ready to be used to fit the
tree-based methods.

1 # We a l s o add some dummies to encode the d i r e c t o r and product ion
companies

2 # Fir s t , we check the most popular e n t r i e s o f each and save them in
two vec to r s

3 # These popular e n t r i e s are the only ones that are dummied ( otherwi se
we would have way too much dummy

4 # v a r i a b l e s and the matrix i s a l r eady too spar s e as i t i s )
5

6 pop_directors = datase t %>% group_by ( d i r e c t o r ) %>% summarise (n ( ) ) %>%
7 arrange ( desc ( ‘ n ( ) ‘ ) ) %>% sl i ce_head (n = 20) %>% s e l e c t (− ‘n ( ) ‘ ) %>%

u n l i s t ( )
8 pop_production = datase t %>% group_by ( production_company ) %>%

summarise (n ( ) ) %>%
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9 arrange ( desc ( ‘ n ( ) ‘ ) ) %>% sl i ce_head (n = 21) %>% f i l t e r ( complete .
c a s e s ( . ) ) %>%

10 s e l e c t (− ‘n ( ) ‘ ) %>% u n l i s t ( )
11 pop_directors = paste ( ’ d i rector_ ’ , pop_directors , sep = ’ ’ )
12 pop_production = paste ( ’ production_company_ ’ , pop_production , sep = ’ ’)
13

14 directors_dummy = datase t %>% fastDummies : : dummy_columns ( ’ d i r e c t o r ’ )
%>%

15 s e l e c t ( a l l _ o f ( pop_directors ) , ’TMDB_ID’ ) %>% mutate ( a c r o s s (
pop_directors , ~replace_na ( . , 0) ) )

16 production_dummy = datase t %>% fastDummies : : dummy_columns ( ’
production_company ’ ) %>%

17 s e l e c t ( a l l _ o f ( pop_production ) , ’TMDB_ID’ ) %>% mutate ( a c r o s s (
pop_production , ~replace_na ( . , 0) ) )

18

19

20 # Merging the da ta s e t s
21 # The l a s t three l i n e s are needed to avoid ’ bad names ’ as column

names
22

23 dataset_treated = datase t %>% l e f t _ j o i n ( bowTitle , by = ’TMDB_ID’ ) %>%
24 mutate ( a c r o s s ( colnames ( bowTitle ) , ~replace_na ( . , 0) ) ) %>% l e f t _ j o i n

( bowDescription , by = ’TMDB_ID’ ) %>%
25 mutate ( a c r o s s ( colnames ( bowDescr ipt ion ) , ~replace_na ( . , 0) ) ) %>%
26 i nner_jo in ( directors_dummy , by = ’TMDB_ID’ ) %>% inner_jo in (

production_dummy , by = ’TMDB_ID’ ) %>%
27 rename_with (~ str_remove_all ( . , " [ \ n\\ s ] | \ \ ( | \ \ ) " ) , everyth ing ( ) )

%>%
28 rename_with (~ s t r_rep l a c e_a l l ( . , " −" , ’_’ ) , everyth ing ( ) )

The last step missing is adding the response for the fit. We take the difference
between the gross box office revenue of each movie and the fitted value from ARIMA
for the month of the release date. Train and test (observations from 2016) datasets
are then obtained, and the test dataset is joined with the forecasts from ARIMA
for that time span.

1 # We j o i n the f i t t e d va lue s from ARIMA with the datase t and
2 # then we take the d i f f e r e n c e between the USA b o x o f f i c e and
3 # the f i t t e d va lue s . This w i l l be the re sponse o f the tree −based

models
4 f i t t e d _ v a l u e s = f i t t e d _ v a l u e s %>% s e l e c t ( −.model )
5 f i t t e d _ v a l u e s = f i t t e d _ v a l u e s %>% rename ( F i t t ed = ’ . f i t t e d ’ )
6 dataset_treated = r i gh t_ jo in ( as_t ibb le ( f i t t e d _ v a l u e s ) ,

dataset_treated , by = ’Month ’ ) %>%
7 r e l o c a t e ( Fitted , . a f t e r = worlwide_gross_income ) %>%
8 mutate ( Response = i f e l s e ( i s . na ( F i t t ed ) , NA, usa_gross_income−Fit t ed

) ) %>%
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9 r e l o c a t e ( Response , . a f t e r = Fi t ted )
10

11 # Let ’ s stop the datase t f o r the model to 2015 , in order to have a
t r a i n t e s t s p l i t

12 # Observat ions o f 2016 are used f o r the t e s t i n g o f the o v e r a l l model ,
13 # l i k e we have done with ARIMA
14 datase t_tes t = dataset_treated %>% f i l t e r ( format (Month , ’%Y’ ) ==2016)
15 datase t_tra in = dataset_treated %>% f i l t e r ( format (Month , ’%Y’ ) <2016)
16

17 tes t_ar ima_forecast %>% as_t ibb le ( )
18 datase t_tes t = datase t_tes t %>% inner_jo in ( test_ar ima_forecast , by =

’Month ’ ) %>% mutate ( F i t t ed = ‘ . mean ‘ ) %>% s e l e c t ( −.mean)
19

20 datase t_tra in = datase t_tra in %>% s e l e c t (−c (Month , t i t l e ,
o r i g i n a l _ t i t l e , avg_vote , votes ,

21 budget , metascore , reviews_from_users ,
rev iews_from_cr i t i c s , d i r e c t o r , wr i te r , production_company , actors
,

22 de s c r i p t i on , worlwide_gross_income ,
E n g l i s h t i t l e ) )

23

24 datase t_tes t = datase t_tes t %>% s e l e c t (−c (Month , t i t l e , o r i g i n a l _ t i t l e
, avg_vote , votes ,

25 budget , metascore ,
reviews_from_users , rev iews_from_cr i t i c s , d i r e c t o r , wr i te r ,
production_company , actors ,

26 de s c r i p t i on ,
worlwide_gross_income , E n g l i s h t i t l e ) )

A.2.6 Fitting the tree based-methods and predictions from
the overall hybrid model

The following code illustrates the fitting procedure for what concerns gradient
boosting and bagging. The implementation used the R caret package, which offers
a nice interface for an extensive set of underlying models which are supported
from the respective libraries. Since brute-forcing the hyperparameter tuning (for
gradient boosting) with cross-validation is one of the most expensive tasks in
machine learning, the execution was parallelized in order to drastically reduce
computation time.

Gradient boosting uses the stochastic implementation from Friedman (2001)[14],
sampling without replacement 70% of the dataset for the fit of each weak learner.

Naturally, Figures 4.2 and 4.1 come from this piece of code.

1 # BAGGING
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2

3 bag . c o n t r o l = t ra inCont ro l (
4 method = ’ repeatedcv ’ ,
5 number = 10 ,
6 r epea t s = 3 ,
7 v e r b o s e I t e r = TRUE,
8 summaryFunction = defaultSummary ,
9 a l l o w P a r a l l e l = TRUE

10 )
11

12 n_cores = detectCores ( ) − 4
13 c l = makeCluster ( n_cores , type = ’FORK’ , o u t f i l e = " " )
14 r e g i s t e r D o P a r a l l e l ( c l )
15 bag . f i t = t r a i n (
16 Response ~.−IMDb_ID−TMDB_ID−usa_gross_income−Fitted ,
17 method = ’ r f ’ ,
18 ntree = 1000 ,
19 data = dataset_tra in ,
20 t rContro l = bag . cont ro l ,
21 metr ic = ’RMSE’ ,
22 tuneGrid = data . frame ( mtry = nco l ( datase t_tra in ) −4)
23 )
24 s topClus t e r ( c l )
25 bag . f i t $ r e s u l t s
26

27 importance_bag = importance ( bag . f i t $ f i n a l M o d e l , type=2)
28 importance_bag = t i b b l e (name = rownames ( importance_bag ) , ‘ Reduction

in RSS ‘ = importance_bag )
29 a t t r ( importance_bag$ ‘ Reduction in RSS ‘ , " dimnames " ) = NULL
30 importance_bag$ ‘ Reduction in RSS‘=importance_bag$ ‘ Reduction in RSS ‘ [ ,

1 ]
31

32 importance_bag %>% arrange ( desc ( ‘ Reduction in RSS ‘ ) ) %>% head (10) %>%
33 ggp lot ( aes ( x=reo rde r (name , ‘ Reduction in RSS ‘ ) , y = ‘ Reduction in

RSS ‘ ) ) +
34 geom_bar ( s t a t =" i d e n t i t y " , f i l l = " blue " ) +xlab (NULL) + coord_f l ip ( )
35

36 # BOOSTING
37

38 s e t . seed (1 )
39 boost ing_contro l = t ra inCont ro l (
40 method = ’ cv ’ ,
41 number = 10 ,
42 summaryFunction = defaultSummary ,
43 a l l o w P a r a l l e l = TRUE,
44 v e r b o s e I t e r = TRUE
45 )
46

58



Python and R Code

47 tune_grid_boost = expand . g r id (n . t r e e s = seq (100 , 1000 , by = 100) ,
i n t e r a c t i o n . depth = seq (1 , 8 , by = 1) ,

48 shr inkage = seq ( 0 . 0 2 , 0 . 1 , by = 0 . 02 ) ,
n . minobsinnode = 10)

49

50 n_cores = detectCores ( )−4
51 c l = makeCluster ( n_cores , type = ’FORK’ , o u t f i l e= " " )
52 r e g i s t e r D o P a r a l l e l ( c l )
53 boost . f i t = t r a i n (
54 Response ~.−IMDb_ID−TMDB_ID−usa_gross_income−Fitted ,
55 method = ’gbm’ ,
56 bag . f r a c t i o n = 0 . 7 ,
57 d i s t r i b u t i o n = ’ gauss ian ’ ,
58 data = dataset_tra in ,
59 t rContro l = boost ing_contro l ,
60 metr ic = ’RMSE’ ,
61 verbose=TRUE,
62 tuneGrid = tune_grid_boost
63 )
64

65 s topClus t e r ( c l )
66 boost . f i t $bes tTune
67

68 # Var iab le importance p l o t boost ing
69 var iable_importance = t i b b l e ( names = boost . f i t $ f i n a l M o d e l $ v a r . names ,

importance = gbm : : permutation . t e s t . gbm( boost . f i t $ f i n a l M o d e l ,
70

n . t r e e s = 800) )
71 var iable_importance = var iable_importance %>% arrange ( desc (

importance ) )
72 grid_3 = var iable_importance %>% head (10) %>% ggplot ( aes ( x=reo rde r (

names , importance ) , y =importance ) ) +
73 geom_bar ( s t a t = " i d e n t i t y " , f i l l ="blue " ) + coord_f l ip ( ) + xlab (

NULL) + ylab ( " Decrease in performance " )
74

75 # CV p l o t s boos t ing s
76 cv_resu l t = boost . f i t $ r e s u l t s
77 grid_cv_1 = cv_resu l t %>% group_by (n . t r e e s ) %>% summarise (

AverageRMSE = mean(RMSE) ) %>%
78 ggp lot ( aes ( x=n . t r e e s , y=AverageRMSE) ) +
79 geom_line ( c o l o r ="blue " ) + ylab ( " Average RMSE" ) + xlab ("# o f weak

l e a r n e r s " )
80

81 grid_cv_2 = cv_resu l t %>% group_by ( shr inkage ) %>% summarise (
AverageRMSE=mean(RMSE) ) %>%

82 ggp lot ( aes ( x=shr inkage , y=AverageRMSE) ) +
83 geom_line ( c o l o r ="blue " ) + ylab ( " Average RMSE" ) + xlab ( " Shrinkage

ra t e " )
84
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85 ggpubr : : ggarrange ( ggpubr : : ggarrange ( grid_cv_1 , grid_cv_2 ) , grid_3 ,
nrow = 2)

At this point, computing the predictions from the overall hybrid model on test
data is easy, since we just have to add the ARIMA forecasts to the predictions
from gradient boosting. Computing the resulting R2 on test data is also simple:
it is just the ratio between the variance of the residuals and the variance of the
response.

1 boost_test_pred = p r e d i c t ( boost . f i t $ f i n a l M o d e l , dataset_test , 800)
2 datase t_tes t = datase t_tes t %>% add_column ( " pred i c t i on_boos t ing "=

boost_test_pred )
3 datase t_tes t = datase t_tes t %>% mutate ( " hybrid model p r e d i t i o n s "=

Fi t ted + pred i c t i on_boos t ing )
4 datase t_tes t = datase t_tes t %>% mutate ( " hybrid_model_errors " = ‘

hybrid model p r ed i t i on s ‘− usa_gross_income )
5 var ( dataset_test$hybrid_model_errors ) / var (

dataset_test$usa_gross_income )
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