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ABSTRACT 
 

Multivariate GARCH models (MGARCH) have been a widely used and effective method in the field 

of finance for modelling conditional volatility since their introduction by Bollerslev et al. (1988). This 

thesis is divided into two main parts. The first part provides an extensive theoretical overview of 

MGARCH models, with a focus on VECH models, DCC and CCC, as well as the BEKK specification 

of the Diagonal VECH class. In addition, we introduce the Markowitz Efficient Portfolio theory and 

the Value at Risk (VaR). The second part of the thesis presents an empirical analysis where we apply 

the DVECH, SBEKK, DBEKK, DCC and CCC models to estimate and forecast the time conditional 

covariance matrix of seven ETFs. The estimation sample spans from 2012-2019, while the forecasting 

sample covers January 2020 to December 2022, with a total of 756 daily forecasts conducted using 

a one-step rolling window. We use covariance forecasts from the five different GARCH models as 

input in two different Portfolio optimization problems within Markowitz's framework: a minimum 

variance optimization and an expected return maximization under VaR constraint. In the second case, 

six different combinations of risk aversions are compared in a two-dimensional risk aversion 

parameter space, which represents investors' aversion to dispersion of returns and extreme 

observation respectively.  
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1.GARCH MODEL 

 

    1.1Introduction 
 

The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model is an 

extension of the Autoregressive Conditional Heteroscedasticity (ARCH) model. Both models 

were developed to model and forecast the volatility of financial time series, but GARCH 

models allow for more flexibility and complexity in modeling the volatility process. 

ARCH models were first proposed by Engle (1982) as a way to model and  forecast the 

volatility of financial time series that exhibit conditional heteroscedasticity, which means that 

the volatility changes over time. 

ARCH models assume that the conditional variance of a time series is a function of its past 

values. The simplest form of an ARCH model is the ARCH(1) model, which assumes that 

the conditional variance at time t is a function of the squared residuals (of the returns from  

a mean process) from the previous time period. GARCH models were first proposed by 

Bollerslev (1986) as an extension of ARCH models. They add an additional term to the 

ARCH model that allows the conditional variance to depend on past conditional variances. 

This allows for more flexibility in modeling the volatility process and for the volatility to 

persist over time. The simplest form of a GARCH model is the GARCH(1,1) model, which 

assumes that the conditional variance at time t is a function of the squared residuals from the 

previous time period and the conditional variance from the previous time period. 

Understanding and predicting the temporal dependence in the second-order moments of asset 

returns, such as variances and covariances, is important in financial econometrics. It is 

widely accepted that financial volatilities move together over time across assets and markets. 

Recognizing this feature through a multivariate modeling framework leads to more relevant 

empirical models than working with separate univariate models. This opens the door to better 

decision tools in various areas, such as asset pricing, portfolio selection, option pricing, 

hedging, and risk management. These models are widely used to analyze univariate financial 

returns. However, when dealing with multiple assets or markets, it is important to consider 

the dynamic relationships between the volatilities and covariances of these different series. 

This led tothe development of the Multivariate GARCH (MGARCH) model, which was first 

proposed by Bollerslev et al. (1988). 
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MGARCH models are particularly useful for applications that require estimates of 

conditional variances, covariances, and correlations of multivariate time series. These 

models have been widely used in the context of systems of financial returns, with many 

studies applying them to areas such as asset pricing, portfolio selection, risk management, 

and future hedging. For example, studies have used MGARCH models to estimate the 

conditional variances and covariances of financial time series to compute Value-at-Risk 

(VaR) measures for a portfolio of assets.The largest number of implementations of 

MGARCH models appear in the context of systems of financial returns; for example, 

Bollerslev et al. (1988), Attanasio (1991), De Santis and Gerard (1997), Hansson and 

Hordahl (1998), Lien and Tse (2002), Engle and Colacito (2006), Andersen et al. (2007), 

McNeil et al. (2010), Santos et al. (2012) and Santos et al. (2013), apply these models to 

selected asset pricing, portfolio selection, risk management, and future hedging applications 

However, the original MGARCH models were rather flexible, allowing all volatilities and 

conditional covariances in the model to be related to each other. This made their empirical 

implementation difficult, as it required the estimation of a large number of parameters. 

Additionally, their parameters needed to be restricted to guarantee covariance stationarity 

and positive definiteness of conditional covariance matrices. As a result, many popular 

MGARCH models implemented to represent the dynamic evolution of volatilities, 

covariances, and correlations of real systems are restricted in a such way that parameter 

estimation is feasible and it is easy to guarantee covariance stationarity and positive 

definiteness of the conditional covariance matrices. 

Multivariate GARCH (MGARCH) models are an extension of univariate GARCH models, 

while univariate GARCH models only consider the volatility of a single time series, 

MGARCH models take into account the volatility of multiple time series and the relationship 

between them. This allows for a more comprehensive understanding of the co-movements 

of the random variables, which is crucial for practical applications such as asset pricing, risk 

management, and asset allocation.In a multivariate GARCH model, the volatility of each 

variable is modeled as a function of the past values and past volatility of all the variables. 

This allows for the modeling of the interdependencies and interactions between the different 

variables, and the prediction of the volatility of each variable given the past values and past 

volatility of all the variables.MGARCH models are more complex than univariate GARCH 

models as they require more data and more parameters to estimate. However, this complexity 

also brings increased power, as MGARCH models can capture the relationship between the 

volatilities of different time series and the correlation structure among them. This is essential 
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for understanding the dependencies and interdependence among multiple time series and 

making more informed decisions. MGARCH models are a powerful tool for modeling the 

volatility of multiple time series and understanding the relationship between them. By 

carefully designing the model and choosing appropriate parameterizations, MGARCH 

models can provide valuable insights into the dynamics of multiple time series and inform 

decision-making in various fields. Additionally, model selection techniques such as AIC, 

BIC, and HQIC can be used to compare different MGARCH models, to select the model that 

best fits the data while avoiding overfitting. 

GARCH model can be covariance stationary even though it is time-varying. A model is 

considered to be covariance stationary if the mean and the covariance of the process do not 

change over time. In the case of a GARCH model, the conditional mean of the process is 

assumed to be constant, while the conditional variance is time-varying. However, if the 

model is well-specified and the parameters are estimated correctly, the time-varying 

conditional variance will converge to a stationary process, meaning the mean and the 

covariance of the process do not change over time. This is achieved by ensuring that the 

model satisfies the necessary conditions for covariance stationarity, such as having the 

moduli of the eigenvalues of the model less than one. 

Convergence in stationarity in GARCH models refers to the behavior of the model as the 

number of observations in the dataset increases. A GARCH model is considered to be 

stationary if the mean and variance are constant over time. In other words, the model's 

parameters do not change over time and the model's predictions do not depend on the specific 

time period for which it is being applied. 

When a GARCH model is estimated using a finite sample of data, the estimated parameters 

will be based on the sample and will be subject to some degree of estimation error. However, 

as the sample size increases, the estimation error is expected to decrease, and the estimated 

parameters will converge to the true population values. This is known as asymptotic 

consistency.In addition, when a GARCH model is estimated using a rolling window of data, 

the estimation process is repeated for different subsets of the data, and the estimated 

parameters will change over time. However, as the window size increases, the estimated 

parameters will converge towards a stable value, this is known as asymptotic stationarity 

One of the main challenges in developing MGARCH models is finding a balance between 

flexibility and parsimony. Flexibility is crucial for being able to represent the dynamics of 

the conditional variances and covariances, but having too many parameters can make the 

model difficult to estimate, interpret, and generalize. Overfitting is a common issue that can 
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arise when the number of parameters is too high. On the other hand, having too few 

parameters may not capture the relevant dynamics in the covariance structure, which can 

lead to underfitting. Additionally, ensuring the positive definiteness of the conditional 

covariance matrix is also important, as covariance matrices need to be positive definite by 

definition. One way to achieve this is to derive conditions under which the conditional 

covariance matrices implied by the model are positive definite, but this can be infeasible in 

practice. An alternative is to formulate the model in a way that positive definiteness is 

implied by the model structure, such as using certain types of parametric distributions or 

applying constraints on the parameters. 

Parsimony is a key consideration in the development of multivariate GARCH (MGARCH) 

models. Parsimony refers to the principle of using the simplest possible model that can 

explain the data. In the context of MGARCH models, this means using a model with the 

smallest number of parameters that can still accurately capture the dynamics of the 

conditional variances and covariances. 

Parsimony, or the principle of using the simplest explanation or solution, is an important 

concept in MGARCH models for several reasons. Firstly, parsimony can greatly aid in the 

estimation process by reducing the number of parameters that need to be estimated. This not 

only speeds up the estimation process but also reduces the risk of overfitting, which occurs 

when a model is so complex that it fits the data too well but fails to generalize to new data. 

Additionally, a parsimonious model is also less prone to estimation problems such as 

multicollinearity, and it reduces the risk of estimation bias. 

Secondly, a parsimonious model is also simpler and more transparent, making it easier to 

understand the relationships between the different variables in the model and the impact of 

each parameter on the model. This is especially important in MGARCH models, where the 

number of parameters can be quite large, making it difficult to interpret the model. With a 

parsimonious model, it is easier to identify the key drivers of the model and the impact of 

each parameter on the model's output. Thirdly, parsimony can aid in model selection by 

allowing for the comparison of different models based on the number of parameters they 

have, with models having fewer parameters being generally preferred. This is because 

models with fewer parameters are considered to be more parsimonious, and are therefore 

less likely to be overfitting the data. Additionally, model selection can be done by comparing 

different models based on their goodness-of-fit statistics such as AIC, BIC, HQIC, which 

are penalized by the number of parameters. Finally, parsimony also helps to make the model 

more robust by reducing the number of parameters that need to be estimated, making the 
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model less sensitive to small changes in the data. This is particularly important in MGARCH 

models, where the number of parameters can be quite large, making the model more sensitive 

to small changes in the data. By reducing the number of parameters, parsimony can help to 

make the model more robust, ensuring that the model's output remains stable even when the 

data changes.This feature is important in MGARCH models for several reasons, including 

easier estimation, better interpretability, better model selection, and increased robustness. 

By using the principle of parsimony, MGARCH models can be made more efficient and 

accurate, providing better insights into the underlying relationships in the data. 

However, parsimony should not be the only consideration in model selection. A model that 

is too simple may not be able to capture the relevant dynamics in the covariance structure, 

so it's important to find a balance between parsimony and flexibility. 

In MGARCH models, parsimony is usually achieved by using a simple structure for the 

model, such as assuming that the conditional covariance matrix is diagonal or by assuming 

that the conditional covariances follow a specific structure, such as a factor model. 

Additionally, some MGARCH models use shrinkage techniques to reduce the number of 

parameters and make the model more parsimonious. 

Flexibility is a crucial aspect in the design and implementation of Multivariate GARCH 

(MGARCH) models. It pertains to the capability of the model to adapt to the dynamic nature 

of conditional variances and covariances. A flexible MGARCH model can account for a vast 

range of potential dynamics and grasp the intricacies of the underlying relationships between 

variables. Another vital aspect is “Flexibility”, in MGARCH models it enables the 

representation of complex dynamics. By allowing for a substantial number of parameters or 

by enabling a more general structure for the model, a flexible model can represent a wide 

range of possible dynamics. This can be accomplished through models that allow for time-

varying parameters, such as the VECH (Vector Error Correction Heteroskedasticity) model 

which enables the conditional variances and covariances to change over time, providing a 

more comprehensive understanding of the underlying dynamics. 

Flexibility also allows for the capture of nonlinearities in the data, which is crucial for 

accurately representing the underlying relationships between variables covariances. 

Flexibility is also important for handling outliers in the data. Outliers can have a significant 

impact on the model's output, and a flexible model can handle them more effectively. Lastly, 

flexibility is also important in MGARCH models for handling asymmetries in the data. 

Asymmetries can arise due to factors such as seasonality, and a flexible model can handle 

them more effectively. A model that is too flexible may be too complex and difficult to 
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estimate and interpret, so it's important to find a balance between flexibility and 

parsimony.In MGARCH models, flexibility can be achieved by using a more general 

structure for the model, such as allowing for non-diagonal elements in the conditional 

covariance matrix, or by allowing for more general structures such as factor models. The last 

major problem we face in MGARCH Models is the positive definitiveness of the Variance-

Covariance Matrix. Positive definiteness is a crucial aspect of MGARCH models, which 

pertains to the property of the conditional covariance matrix, a key component of the model, 

that must be met. A matrix (A) is considered positive definite if, for any non-zero vector w, 

the product w'Aw (A is a matrix) is a positive scalar. This means that all its eigenvalues must 

be positive. In particular, a matrix A is positive definite if it satisfies one of the following 

conditions: 

 

• A is congruent with a diagonal matrix with positive real entries. 

• A is symmetric or Hermitian, and all its eigenvalues are real and positive. 

• A is symmetric or Hermitian, and all its leading principal minors are positive. 

• There exists an invertible matrix Z with conjugate transpose Z∗ such that  A = W∗ W 

  

 In the case of MGARCH models, the conditional covariance matrix is a vital quantity that 

must be estimated and must be positive definite. 

There are several reasons why positive definiteness is crucial in MGARCH models. It is a 

fundamental requirement for covariance matrices by definition. Therefore, MGARCH 

models must ensure that the conditional covariance matrix is positive definite to ensure that 

the model is well-defined and not affected by any mathematical or computational errors. 

Positive definite covariance matrices are also necessary for the implementation of various 

statistical techniques such as maximum likelihood estimation and the Kalman filter.Positive 

definiteness is important for interpreting the model and its parameters. A positive definite 

conditional covariance matrix ensures that the variances and covariances of the variables in 

the model are well-defined and positive, which is crucial for understanding the underlying 

relationships between the variables. Additionally, positive definiteness ensures that the 

model can be used for prediction and forecasting, as the forecast variances and covariances 

are well-defined and positive. 

It is also vital for estimation, as it is one of the prerequisites for the model to be identifiable 

and estimable, which is essential for the accuracy and reliability of the model's output. 

Positive definiteness also ensures that the estimation algorithm converges to the global 

https://en.wikipedia.org/wiki/Congruent_matrices
https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Principal_minor
https://en.wikipedia.org/wiki/Invertible_matrix
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optimum, rather than getting stuck in a local optimum, leading to better estimation of the 

model's parameters.Positive definiteness also enables the use of statistical techniques such 

as Value-at-Risk (VaR) and Expected Shortfall (ES) for risk management. 

There are several ways to ensure positive definiteness in MGARCH models. One way is to 

derive conditions under which the conditional covariance matrices implied by the model are 

positive definite, but this is often infeasible in practice. An alternative is to formulate the 

model in a way that positive definiteness is implied by the model structure. For example, 

using a factor model structure for the MGARCH model can ensure positive definiteness. 

Some MGARCH models use constraints on the parameters of the model to ensure positive 

definiteness, such as the Dynamic Conditional Correlation (DCC) model, which uses a 

correlation matrix as the parameter of the model, ensuring that the correlation matrix is 

always positive definite.Finding a good balance between Parsimony, Flexibility and the 

requirement of Positive Definiteness is the main challenge practitioners face when building 

their own MGARCH Model. 

 

 

 

 

 

    1.2 General Framework 

Considering an Nx1 random vector 𝑦𝑡, Conditioned on the Information Set Jt-1 ; we define Ѳ 

as a finite set of parameters and write our random process as: 

𝒚𝒕 = µ𝐭(Ѳ) + 𝜺𝒕 

 

Such that µ𝑡(Ѳ) is the conditional mean of 𝑦𝑡, and 𝜀𝑡 is an error term with Expected value 

equal zero and conditional variance given by a Positive definite Symmetric Matrix Ht.. The 

randomness of the process is given by the random component 𝜀𝑡, which contains the 

estimation error of µ𝑡(Ѳ) as well (which is composed by a forecasting error as well if the 

conditional mean is obtained through an autoregressive process).  

If the random vector 𝑦𝑡 𝑖𝑠 𝑚𝑒𝑎𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 then: 

 

E[𝒚𝒕] = E[𝒚𝒕|Jt-1] = µ(Ѳ) 
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i.e. The conditional Expectation is equal to the unconditional expectation, otherwise: 

E[𝑦𝑡|Jt-1] =µ𝑡(Ѳ) 

In both cases we have that the Expectation of the random component is equal to the zero 

vector: 

 

E[𝜺𝒕] = 𝟎 

Since this is the component that brings randomness in the process, MGARCH models are 

interested in modeling it. In fact, regardless of the particular model of interest, all the 

MGARCH propose different equations to define the variance carried by 𝜀𝑡. 

In general, we define 𝜀𝑡 as: 

 

𝜺𝒕 = 𝑯𝒕
𝟏 𝟐⁄ (Ѳ)𝜼𝒕 

 

Where 𝐻𝑡
1 2⁄ (Ѳ) is a NxN Positive definite symmetric matrix, which is the matrix counterpart 

of the standard deviation. In fact Ht(Ѳ)  is the conditional variance of yt, and we can obtain 

𝐻𝑡
1 2⁄ (Ѳ) through its Choleski decomposition. 

𝜂𝑡 is a Nx1 white noise process: 

 

E[𝜼𝒕] = 𝟎 

Var[𝜼𝒕] = 𝑰𝑵 

 

 

With 𝐼𝑁 being the NxN Identity matrix.  

It follows that: 

 

Var[𝒚𝒕|It-1] = Var[𝜺𝒕|It-1] 

  = 𝑯𝒕
𝟏 𝟐⁄ (Ѳ)𝑉𝑎𝑟[𝜼𝒕|𝐼𝑡−1] (𝑯𝒕

𝟏 𝟐⁄ (Ѳ))
𝑇

 

                                         = 𝑯𝒕
𝟏 𝟐⁄ (Ѳ)𝑰𝑵 (𝑯𝒕

𝟏 𝟐⁄ (Ѳ))
𝑻

 

                                                 = Ht(Ѳ) 

 

This shows that Ht(Ѳ) is the conditional variance of the random process. 
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It’s worth noting that both µ𝑡(Ѳ) and Ht(Ѳ) depend on the parameter vector Ѳ, however such 

a vector can be split into two components Ѳ 1 and Ѳ 2, such that we have µ𝑡(Ѳ1) and Ht(Ѳ2); 

they can also have some (or all) parameters in common. A particular case are the GARCH-

in-mean Models in which the conditional mean is functionally dependent on the conditional 

variance. 

The aim of the MGARCH models is to define Ht(Ѳ), they take different approaches, Each 

of these models has its own strengths and weaknesses and is suited to different types of data 

and research questions.  

We can split them into four main categories: 

 

1) The ones that model the conditional covariance matrix directly , such as VEC and BEKK; 

this class is a direct generalizations of the univariate GARCH model of Bollerslev (1986). 

These models are among the first parametric MGARCH models developed and have been 

widely used in financial and economic applications such as portfolio optimization, risk 

management and asset pricing. 

The VECH (Vector Error Correction Higher Order) is a dynamic factor model that allows 

for the modeling of the co-movements between multiple time series. It uses a vector error 

correction mechanism, which is a statistical technique that captures the long-term 

relationships between variables and the dynamic interactions among them. This makes the 

VECH model particularly useful for understanding the long-term dynamics of the system 

being studied.The BEKK ( Baba, Engle, Kraft, and Kroner) is a multivariate GARCH model 

that allows for the modeling of the conditional covariances between multiple time series. 

This model uses a bilinear structure to model the conditional covariances, which allows for 

the modeling of the dynamic interactions among the variables. This makes the BEKK model 

particularly useful for understanding the short-term dynamics of the system being studied. 

Both the VEC and BEKK models have been widely used in financial and economic 

applications, such as portfolio optimization, risk management, and asset pricing. These 

models provide a powerful tool for understanding the underlying relationships between 

multiple time series and for making more informed decisions based on those relationships. 

 

2) Factor models are motivated by parsimony, meaning that the random process 𝜀𝑡 is 

assumed to be generated by a limited number of unobserved heteroskedastic factors. This is 

in contrast to models that estimate the conditional variances and covariances directly, which 

can result in a large number of parameters and a complex model structure. 
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The use of factor models in MGARCH aims to simplify the model by reducing the number 

of parameters, making it more parsimonious. This not only improves the interpretability of 

the model but also helps to reduce the risk of overfitting. Additionally, it can also aid in the 

estimation process by reducing the number of parameters that need to be estimated, making 

it more computationally efficient.The factor model structure can be used to capture the 

underlying dynamics of the co-movements between multiple time series by assuming that 

the observed time series are driven by a smaller number of unobserved factors 

 

3) The third class of models are the ones aiming to model the conditional variances and 

correlations instead of modeling the conditional covariance matrix directly. One example of 

this class of models is the Constant Conditional Correlation (CCC) model and its extensions 

such as the Dynamic Conditional Correlation (DCC) . This models that may be viewed as 

nonlinear combinations of univariate GARCH model. This type of model aims to simplify 

the estimation process by only modeling the conditional variances and correlations, rather 

than the entire covariance matrix.The appeal of this class of models lies in the intuitive 

interpretation of the correlations. The CCC model, for example, assumes that the correlations 

between the variables are constant over time, making it easy to interpret and understand. 

Additionally, models belonging to this class have received significant attention in the recent 

literature. The CCC model and its extensions have been widely used in various applications 

in Finance. 

 

4) Semiparametric and Nonparametric models, which do not rely on a specific functional 

form for the conditional covariance matrix. These models are designed to address the 

limitations of parametric models in terms of misspecification of the structure of the 

conditional covariance matrices and in cases where the underlying dynamics of the 

conditional variances and covariances are not clear. In particular, Semiparametric models 

combine the strengths of both parametric and non-parametric models, such as consistency 

and interpretability of the parametric model and robustness against distributional 

misspecification of the non-parametric model. This allows for more efficient estimation of 

the conditional variances and covariances while being less sensitive to misspecification of 

the model structure. 
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    1.3 Estimation 

The most commonly used method for estimating the parameters of a GARCH models is 

maximum likelihood estimation (MLE), Another method is Quasi Maximum Likelihood 

Estimation (QMLE) which is a variant of MLE and it is robust against some distributions 

assumptions and is usually used in absence of Normality assumptions on the distributions of 

the innovations. QMLE is an estimation method that is used when the assumption of i.i.d. 

observations is not met or under possible misspecification of the probability density function. 

QMLE uses a simplified likelihood function that is based on the conditional densities of the 

observations given the parameters and the variances at each time point. By assuming the 

conditional normality of the observations, the QMLE can be applied to MGARCH models, 

even though the observations are not strictly i.i.d.The QMLE is consistent estimator under 

certain conditions and is asymptotically equivalent to the MLE.In particular, in MGARCH 

models, the assumption of independent and identically distributed (i.i.d.) observations is not 

met as the variance is time dependent, however the observation can be considered to be i.i.d 

in order to use MLE; since, despite being time-varying as long as the specific model is 

covariance-stationary the conditional covariance will converge to its population 

unconditional value.In order to apply MLE estimation some regulatory conditions must be 

satisfied, such conditions are satisfied assuming an i.i.d Gaussian distribution of the random 

process.. The MLE provides a tool to obtain an asymptotically efficient estimations of the 

parameters, in particular an estimator is defined Asymptotically efficient if it is consistent, 

asymptotically normally distributed and has asymptotic variance covariance matrix that is 

no larger than the one obtained through another consistent and asymptotically normally 

distributed estimator :  

 

𝑝𝑙𝑖𝑚 𝜽̂
ˆ

= 𝜽𝟎 

𝜽̂ ∼
𝑎

𝑁 [𝜽𝟎, {−𝐸 [
𝜕2ln [𝐿(𝜽𝟎 ∣ 𝜺)]

𝝏𝜽𝟎𝝏𝜽𝟎
′ ]}

−1

] 

 

Where θ0 are our true, unobservable parameters. We start by assuming εt is distributed as a 

normal with mean µ and variance σ2 (both scalars), whose probability density function is 

given by: 
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𝑓(𝜀𝑡) =
1

𝜎√2𝜋
exp (−

1

2
(

(𝜀𝑡 − µ)

𝜎
)

2

) 

 

 Defining f(εt|θ0) the probability density function of εt under the true parameters, the joint 

density function of T i.i.d. random variables is given by:  

 

                                                 𝐿(𝜽𝟎 ∣ 𝜀) =  ∏  𝑓T
t=1   (𝜀t ∣ 𝜽𝟎)   

 

 

This is the likelihood function. MLE, however, works with the natural logarithm of the 

likelihood function: 

 

ln [𝐿(𝜽𝟎 ∣ 𝜀)] = ∑  

𝑇

𝑡=1

 ln [𝑓(𝜀t ∣ 𝜽𝟎)] 

 

 

Assuming our random variables are normally distributed the log-likelihood function is given 

by:  

 

ln [𝐿(𝜽 ∣ 𝜺)] = ∑  

𝑇

𝑡=1

 ln [𝑓(𝜀t ∣ 𝜽)] = −
1

2
∑  

𝑇

𝑡=1

  [ln (𝜎2) + ln (2𝜋) +
(𝜀𝑡 − 𝜇)

𝜎2
] 

 

This is the likelihood function, a function of the sample data ε and of the unknown parameter 

vector θ. The problem we want to solve is: 

 

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝛷𝐿(𝜺, 𝜽) 

 

Where Φ is a compact set. This is the function we want to maximize respect to the parameter 

vector, the values of the parameters that maximize the log-likelihood function are our MLE 

estimates 𝜃. Since the logarithm is a monotonic function the values that maximize the 

likelihood function are the same that maximize the log-likelihood. The first order condition 

is:  
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𝜕ln [𝐿(𝜽𝟎 ∣ 𝜺)]

𝝏𝜽𝟎
= 𝟎 

 

Since θ0 is the true parameter which maximizes the likelihood function such that its gradient 

is equal to zero. 

By defining A(θ0) and B(θ0) the two extreme values that our ε can assume in the sample, by 

definition of CDF:  

∫  
𝐵(𝜃0)

𝐴(𝜃0)

 𝑓(𝜀𝑡 ∣ 𝜽𝟎)𝑑𝜀𝑡 = 1 

 

By differentiating the equation left and right by θ0, and applying Leibnitz’s theorem we get 

on the LHS: 

 

𝜕 ∫  
𝐵(𝜃0)

𝐴(𝜃0)
 𝑓(𝜀𝑡 ∣ 𝜽𝟎)

𝝏𝜽𝟎
𝑑𝜀𝑡 = ∫  

𝐵(𝜃0)

𝐴(𝜃0)

 
𝜕𝑓(𝜀𝑡 ∣ 𝜽𝟎)

𝝏𝜽𝟎
𝑑𝜀𝑡 + 𝑓(𝐵(𝜽𝟎), 𝜽𝟎)

𝜕𝐵(𝜽𝟎)

𝝏𝜽𝟎

 −𝑓(𝐴(𝜽𝟎), 𝜽𝟎)
𝜕𝐴(𝜽𝟎)

𝜕𝜽𝟎

 

 

And on the RHS: 

 

𝜕1

𝝏𝜽𝟎
= 𝟎 

Which leads to: 

 

                                                       
𝜕 ∫  

𝐵(𝜃0)

𝐴(𝜃0)  𝑓(𝜀𝑡∣𝜽𝟎)

𝝏𝜽𝟎
𝑑𝜀𝑡 = 0 

 

This implies interchangeability of integration and differentiation as long as 𝜕A(𝜃0)/𝜕𝜃0 =

𝜕B(𝜃0)/𝜕𝜃0 = 0, i.e., as long as the range of the sample data does not depend on the 

parameters. If such condition holds, we can rewrite the equation as: 

 

 

                
𝜕 ∫ 𝑓(𝜀𝑡 ∣ 𝜽𝟎) 

𝝏𝜽𝟎
𝑑𝜀𝑡 =  

∫ 𝜕𝑓(𝜀𝑡 ∣ 𝜽𝟎) 

𝝏𝜽𝟎
𝑑𝜀𝑡                                                             
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                                 = ∫
1

𝑓(𝜀𝑡 ∣ 𝜽𝟎)
⋅

𝜕𝑓(𝜀𝑡 ∣ 𝜽𝟎)

𝝏𝜽𝟎
𝑓(𝜀𝑡 ∣ 𝜽𝟎)𝑑𝜀𝑡 

                             = ∫
𝜕ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎
𝑓(𝜀𝑡 ∣ 𝜽𝟎)𝑑𝜀𝑡 

        = 𝐸 [
𝜕ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎
] = 𝟎 

 

This shows that if evaluated in θ0, the expected value of the score is equal to zero: 

 

𝐸[𝒈𝟎,𝐭] = 𝟎 

 

Where 𝒈𝟎,𝐭 is the mx1 gradient vector of the log-likelihood function of the t observation of 

our sample with respect to the parameter vector, evaluated in θ0. In order to obtain the 

variability of the score with respect to the parameters, we differentiate the former result 

obtaining the Hessian matrix:  

 

∂(∫
𝜕ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎
𝑓(𝜀𝑡 ∣ 𝜽𝟎)𝑑𝜀𝑡)/𝝏𝜽𝟎

′  

= ∫ [
𝜕2ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎𝝏𝜽𝟎
′ ⋅ 𝑓(𝜀𝑡 ∣ 𝜽𝟎) +

𝜕ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎
⋅

𝜕𝑓(𝜀𝑡 ∣ 𝜽𝟎)

𝝏𝜽𝟎
′ ] ⋅ 𝑑𝜀𝑡 

             = ∫ [
𝜕2ln [𝑓(𝜀𝑡∣𝜽𝟎)]

𝝏𝜽𝟎𝝏𝜽𝟎
′ ⋅ 𝑓(𝜀𝑡 ∣ 𝜽𝟎) +

𝜕ln [𝑓(𝜀𝑡∣𝜽𝟎)]

𝝏𝜽𝟎

𝜕ln [𝑓(𝜀𝑡∣𝜽𝟎)]

𝝏𝜽𝟎
′ ⋅ 𝑓(𝜀𝑡 ∣ 𝜽𝟎)] ⋅ 𝑑𝜀𝑡 = 0 

 

 

Since the integral of a sum is the sum of the integrals, we split the integral and take the first 

part on the RHS of the equation:  

 

∫
𝜕ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎
.
𝜕ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎
′ ⋅ 𝑓(𝜀𝑡 ∣ 𝜽𝟎) ⋅ 𝑑𝜀𝑡  

=  − ∫
𝜕2ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎𝝏𝜽𝟎
′ ⋅ 𝑓(𝜀𝑡 ∣ 𝜽𝟎) ⋅ 𝑑𝜀𝑡 

 

Looking at the LHS of the equation above and remembering that:  
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𝐸 [
𝜕ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎
] = 𝟎 

 

We get that the variance of the gradient of the log-likelihood is given by: 

 

Var [
𝜕ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)

𝝏𝜽𝟎
] =  ∫

𝜕ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎
.
𝜕ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎
′ ⋅ 𝑓(𝜀𝑡 ∣ 𝜽𝟎) ⋅ 𝑑𝜀𝑡 

 

While: 

 

∫
𝜕2ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)]

𝝏𝜽𝟎𝝏𝜽𝟎
′ ⋅ 𝑓(𝜀𝑡 ∣ 𝜽𝟎) ⋅ 𝑑𝜀𝑡 =  𝐸 [

𝜕2ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)

𝝏𝜽𝟎𝝏𝜽𝟎
′ ] 

 

Which leads to the general expression for the Variance: 

 

 

Var [
𝜕ln [𝑓(𝜀𝑡 ∣ 𝜽𝟎)

𝝏𝜽𝟎
]  =  −𝐸 [

𝝏𝟐𝒍𝒏 [𝒇(𝜺𝒕 ∣ 𝜽𝟎)

𝝏𝜽𝟎𝝏𝜽𝟎
′ ]  =  −𝐸[𝑯𝟎,𝒕] 

 

 

Where H0,t indicates the mxm Hessian matrix of the log-likelihood for the t observation, 

evaluated in θ0.This shows that the expected value of the Hessian in t is the variance of the 

log-likelihood in t. Now we generalize the result to obtain the score and Hessian for our 

whole sample t=1,…,T:  

 

ln [𝐿(𝜽 ∣ 𝜺)] = ∑  

𝑇

𝑡=1

 ln [𝑓(𝜀𝑡 ∣ 𝜽)] 

𝒈 =
𝜕ln [𝐿(𝜽 ∣ 𝜺)]

𝝏𝜽
=

∑  𝑇
𝑖=1  ∂ln [𝑓(𝜀𝑡 ∣ 𝜽)]

𝝏𝜽
= ∑  

𝑇

𝑡=1

 𝒈𝒕 

Since under θ0 each 𝒈𝟎,𝐭 has expected value equal to zero, their sum is equal to zero: 

 

𝑬[𝒈𝟎] = 𝐸[∑  𝑇
𝑡=1  𝒈𝟎,𝒕] = 0 

 

As for the variance: 
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𝐻 =
𝜕2ln [𝐿(𝜽 ∣ 𝜺)]

𝝏𝜽𝝏𝜽′
=  

∑  𝑇
𝑖=1  𝜕2ln [𝑓(𝜀𝑡 ∣ 𝜽)]

𝝏𝜽𝝏𝜽′
 =  ∑  

𝑇

𝑡=1

 𝑯𝒕 

 

Which under θ0 becomes: 

 

𝐸[𝑯𝟎] =  E [∑  

𝑇

𝑡=1

 𝑯𝟎,𝒕] 

−𝐸[𝑯𝟎] = Var [
𝜕ln [𝐿(𝛆 ∣ 𝜽𝟎)

𝝏𝜽𝟎
]  =  −𝐸 [

𝜕2ln [𝐿(𝜺 ∣ 𝜽𝟎)

𝝏𝜽𝟎𝝏𝜽𝟎
′ ] 

 

 

These two results are the score and variance of our loglikelihood function under the true 

parameter θ0, in particular the last equation is known as the information matrix equality, 

which is the inverse of the asymptotic variance of our estimator 𝜽̂. 

These are the key quantitites to obtain the fundamental result of MLE estimation, the 

asymptotic Normality of the estimator: 

 

√𝑇(𝜽̂ − 𝜽𝟎) →
𝑑

𝑁 (0, {−𝐸 [
1

𝑇
𝐻(𝜽𝟎)]}

−1

) 

𝜽̂→
𝑎

𝑁 (0, {−𝐸 [
𝜕2ln [𝐿(𝜽𝟎 ∣ 𝜺)

𝝏𝜽𝟎𝝏𝜽𝟎
′ ]}

−1

) 

 

If we have N i.i.d. Gaussian vectors of the same size (Tx1) that follow a multivariate 

Gaussian distribution: 

 

𝜺𝒕 ∼ 𝑀𝑁(𝝁, 𝑯) 

 

Where µ is a Nx1 vector and H a NxN covariance matrix, the multivariate density of the Nx1 

random vector becomes: 

 

𝑓(𝜺𝐭) = (2𝜋)−N/2. |𝐇|−1 2⁄ . exp (−
1

2
(𝜺𝐭 − 𝝁)′𝑯−𝟏(𝜺𝐭 − 𝝁)) 
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The likelihood function becomes:  

 

𝐿(𝜽𝟎 ∣ 𝜺) =  ∏  𝑓

T

t=1

  (𝜺𝐭 ∣ 𝜽𝟎) 

 

While the log-likelihood: 

 ln [𝐿(𝜽𝟎 ∣ 𝜺)] = ln ∏  𝑓

T

t=1

  (𝜺𝐭 ∣ 𝜽𝟎)

 = ln ∏  

T

t=1

 
1

(2𝜋)N 2⁄
|𝐇|−1 2⁄ exp (−

1

2
(𝜺𝐭 − 𝝁)′𝐇−𝟏(𝜺𝐭 − 𝝁))

 = ∑  

T

t=1

 (−
N

2
ln (2𝜋) −

1

2
ln |𝐇| −

1

2
(𝜺𝐭 − 𝝁)′𝐇−𝟏(𝜺𝐭 − 𝝁))

 = −
NT

2
ln (2𝜋) −

T

2
ln |𝐇| −

1

2
∑  

T

t=1

  (𝜺𝐭 − 𝝁)′𝐇−𝟏(𝜺𝐭 − 𝝁)

 

 

Where H is positive semidefinite. 

In the MGARCH model the random process is given by 𝜀t where we want to maximize the 

log-likelihood with respect to the parameter vector θ which is defined in the specification of 

the conditional covariance matrix and depends on the particular model we’re referring to. 

The likelihood function of MGARCH is non-linear and non-convex, so the optimization 

algorithm may converge to a local maximum. To avoid this, sample estimates should be used 

as starting values since under stationarity such estimates converge to the true parameters. 

 

    1.4 VECH Model 

The VECH GARCH is the very first MGARCH presented in the literature, it was first 

proposed by Bollerslev, Engle, and Wooldridge (1988) in their paper “A Capital Asset 

Pricing Model with Time Varying Volatilities”. It’s one of the simplest MGARCH models 

available as it’s basically an extension of the Univariate Garch.(p,q). 

 

Defining: 

 

𝜺𝒕 ∣ 𝐼𝑡−1 ∼ 𝑀𝑁(𝟎, 𝑯𝒕) 
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As a Nx1 random vector, where 𝐻𝑡 is our NxN time varying conditional covariance matrix 

and 0 is a Nx1 vector; we can structure the Multivariate Conditional Variance Covariance 

Matrix as:  

 

Vech (𝐇𝒕) = 𝐂 + ∑  

𝑞

𝑖=1

 𝐀𝒊Vech(𝜺𝒕−𝒊𝜺𝒕−𝒊′) + ∑  

𝑝

𝑗=1

 𝐁𝒋Vech (𝐇𝒕−𝒋) 

 

Where the vech(.) operator is applied  to a symmetric matrix and it is a vectorization of the 

lower triangular elements of the matrix starting from the main diagonal. As an example, 

taking a 3x3 Symmetric Matrix A: 

 

𝑨 =  (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) 

 

𝑣𝑒𝑐ℎ(𝑨) = [𝑎11, 𝑎22, 𝑎33, 𝑎21, 𝑎32, 𝑎31]′ 

 

The VECH GARCH equation is obviously an extension of the univariate GARCH(p,q) 

frame work: 

 

ℎ𝑖,𝑡 =  𝑐𝑖  +  ∑  

𝑞

𝑗=1

𝛼𝑖𝑗(𝜀𝑖,𝑡−1
2 )  +  ∑  

𝑝

𝑗=1

𝛽𝑖𝑗ℎ𝑖,𝑡−1 

 

In particular C is a 1/2 N(N+1) x 1 vector of Constants, which is the representatives of c  in 

the univariate case, Ai and Bj are 1/2 N(N+1) x 1/2 N(N+1)  matrices of coefficients (for 

i=1,2,...p;  j=1,2,…,q), represented by α and β in the univariate framework.  

(εt-i   εt-i′) are the cross product of the past observations with i lags (i=1,2,…,p) and Ht-j is the 

past conditional Variance Covariance matrix  with j lags (j=1,2,…,q).    

The estimation of the parameters is executed through Maximum Likelihood Estimation, 

considering the innovations distributed as a Multivariate Normal, the parameter vector is: 

 

𝜽 = [𝐶′, 𝑣𝑒𝑐(𝑨𝟏)′, . . . , 𝑣𝑒𝑐(𝑨𝒒)′, 𝑣𝑒𝑐(𝑩𝟏)′, . . . , 𝑣𝑒𝑐(𝑩𝒑)′]′ 
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Where the operator vec(.) is is a linear transformation which converts the matrix into 

a column vector. 

 Referring to the the 3x3 matrix A from above we get: 

 

𝑣𝑒𝑐(𝑨) = [ 𝑎11, 𝑎21, 𝑎31, 𝑎12, 𝑎22, 𝑎32, 𝑎13,𝑎23, 𝑎33]′ 

 

And the log-likelihood function at time t is distributed as a multivariate Normal: 

ln [𝐿(𝜽 ∣ 𝜺𝒕)] = −
𝑁

2
ln(2𝜋) −

1

2
ln |𝐇𝒕| −

1

2
𝝐𝐭′𝐇𝒕

−𝟏𝝐𝒕 

 

Where 𝜀𝑡 is a Nx1 random vector. Considering our estimation sample t=1,…,T, let  the 

values of the pre sample values of vech(εt-i   εt-i
T) and vech(Ht-j ) are set equal to unconditional 

Expected values, or if unknown through the sample estimate as the two are asymptotically 

equivalent under covariance stationarity assumptions. Let εt (t=1,…;T) be realized values of 

the random process ε, we can compute Ht  through an iterative method. 

The overall function to maximize through iterative methods is:  

 

ln [𝐿(𝜽 ∣ 𝜺)] = ∑  

𝑇

𝑡=1

 ln [𝐿(𝜽 ∣ 𝜀𝑡)] 

 

The standard procedure to find the maximum point of the function is through numerical 

approximation of the first derivative 𝜕𝐿𝑡(Ѳ)/𝜕Ѳ such as Newton-Raphson Method to obtain 

first order necessary conditions. Given standard regularity conditions (Crowder 1976, 

Wooldridge 1986) the ML estimate of Ѳ will be Asymptotically normal and Unbiased.  

The VECH model is covariance stationary if the magnitudes of the eigenvalues of the matrix 

(A+B) are less than one. This concept is detailed by Engle and Kroner in 1995. Although 

there is currently no known general necessary conditions for the positive definitiveness of 

Ht, Gourieroux  (1997) provides sufficient conditionsThe model is a powerful tool for 

modeling the dynamics of conditional variances and covariances in a multivariate GARCH 

setting. It is particularly useful for representing symmetric responses of these quantities to 

past observations and cross-products of observations. Conditional variances depend on their 

past values and on conditional covariances, the same apply to conditional covariances. 

However, this flexibility comes at a cost, as the VECH model can be challenging to estimate 

https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Column_vector
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in relatively large systems due to the large number of parameters involved. Specifically, the 

number of parameters in the VECH model equals (p + q)(N(N + 1)/2)2 + N(N + 1)/2, where 

N is the number of variables in the system.. This can lead to computational challenges during 

estimation, particularly when N is large, making the model less practical for large-scale 

applications.In order to overcome the computational limitations brought forwards by such 

an high number of parameters, Bollerslev, Engle, and Wooldridge (1988) introduced a 

simplification to their model; considering the matrices A and B to be Diagonal matrices. 

This method however eliminates the cross-sectional dependencies between variances and 

covariances, although it significantly reduces the number of parameters to estimate to (p+q 

+1)N(N +1)/2.  

Here each equation can be computed separately:  

 

ℎ𝑖𝑗𝑡 = 𝑐𝑖𝑗 + 𝛼𝑖𝑗𝜀𝑖𝑡−1𝜀𝑗𝑡−1 + 𝛽𝑖𝑗ℎ𝑖𝑗,𝑡−1 

 

 With 𝑖, 𝑗 = 1, … , 𝑁. 

 From these relations we can see that only the lagged values of the conditional covariance 

and the lagged    cross products of the observation impact the covariance terms hijt. 

In order to ensure positive the definitiveness of the conditional variance covariance matrix, 

Engle and Ding (2001) proposed a different specification of the model for the case p=q=1, 

The DVECH equation is in fact equivalent to:  

 

𝑯𝒕 = 𝐂 + 𝐀 ∘ 𝜺𝒕−𝟏𝜺𝒕−𝟏′ + 𝐁 ∘ 𝐇𝒕−𝟏 

 

Where  ∘  indicates the Hadamard product, i.e the element by element product of matrices of 

the same size. 

Given two matrices U and V of the same size we have: 

 

(U ∘ V)ij = (U)ij (V)ij 

 

In particular, since Ht is symmetric and εt-1 εt—1’,Ht-1 are as well; C, A and be B have to be 

symmetric thanks to the element by element product characteristic of the Hadamard operator. 

In fact given a sum of matrices, the resulting matrix is symmetric if and only if the all the 

summed matrices are symmetric themselves, in our particular case this is possible if and only 

if A, B and C are symmetric. 
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This is an important result as only the lower portion of the parameters matrices have to be 

estimated.   

In order to ensure positive definitiveness Engle and Ding make use the Shur Product 

Theorem and its lemmas.Formal proof of these theorems can be found in their paper. 

Remembering that the sum of positive semi-definite matrix is a positive semi-definite we 

can obtain rewrite the DVECH Model as:  

 

𝐇𝒕 = 𝐂𝐂′ + 𝐀𝐀′ ∘ 𝜺𝒕−𝟏𝜺𝒕−𝟏′ + 𝐁𝐁′ ∘ 𝐇𝒕−𝟏 

 

This is the Matrix-Diagonal Model in which CC’, AA’,BB’ are positive semi-definite by 

construction. Since, AA’.BB’ and CC’ are positive semidefinite by construction, in order to 

ensure that Ht is positive semi-definite it’s enough to consider its starting value H0 being the 

sample estimate.  By expressing the matrices of parameters in the form of the product of a 

matrix and its transpose (CC′, AA′, and BB′), rather than just the matrices themselves (C, 

A, and B), the positive semi-definiteness property is automatically satisfied during 

estimation without the need for any additional constraints. A further simplification is the 

Vector-Diagonal Model in which A and B are constrained to be rank one matrices, this 

formulation is equivalent  to a diagonal BEKK: 

 

𝐇𝐭 = 𝐂𝐂′ + 𝛂𝛂′ ∘ 𝛆𝐭−𝟏𝛆𝐭−𝟏′ + 𝛃𝛃′ ∘ 𝐇𝐭−𝟏 

 

Here α and β are Nx1 vectors, since 𝛼𝛼′ and 𝛽𝛽′ are linear combination of the two vectors 

with themselves, the resulting matrix has rank one. In the Scalar-Diagonal  Model instead, α 

and β are positive scalars. It implies that any linear combination of the original series will 

have the same ARCH and GARCH parameters in its GARCH representation. This is a 

significant constraint, and is equivalent to a scalar BEKK model: 

 

𝐇𝒕 = 𝐂𝐂′ + 𝛼𝜺𝒕−𝟏𝜺𝒕−𝟏′ + 𝛽𝐇𝒕−𝟏 

 

Each conditional covariance along the matrix will present the same parameters: 

 

ℎ𝑖𝑗𝑡 = 𝑐𝑖𝑗 + 𝛼𝜀𝑖𝑡−1𝜀𝑗𝑡−1 + 𝛽ℎ𝑖𝑗,𝑡−1 
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1.5 BEKK MODEL 

The BEKK model was introduced by Engle and Kroner (1995) as special case of the VECH 

model, it guarantees the positive definiteness of the conditional covariance matrix. This is 

achieved by embedding the covariance matrix in a specific structure that imposes restrictions 

on the parameters across equations. The BEKK model includes all positive definite diagonal 

VECH models and nearly all positive definite VECH representations. However, like the 

VECH model, it still suffers from the disadvantage of having a large number of parameters, 

as even for the simplest form with K = p = q = 1 their magnitude is of the same order of a 

generic Diagonal model. This can make the estimation process computationally heavy. 

The  BEKK (1,1,K)  is defined as:  

 

𝐇𝒕 = 𝐂 + ∑  

𝐾

𝑘=1

 𝐀𝒌
′ 𝜺𝒕−𝟏𝜺𝒕−𝟏

′ 𝐀𝒌 + ∑  

𝐾

𝑘=1

 𝐁𝒌
′ 𝐇𝒕−𝟏𝐁𝒌 

 

Where K determines the generality of the process, and the matrices A,B and C are NxN 

matrices with C being lower triangular.The positivity of Ht is guaranteed by the specific way 

the model is parameterized. By using the Kronecker product of two matrices, it can be 

determined that the BEKK model is covariance stationary if and only if the absolute values 

of the eigenvalues of the sum ∑ Ak ⊗ Ak + ∑ Bk ⊗ Bk
K
k=1

K
k=1  are less than 1.  

The number of parameters in the BEKK(1,1,1) model is N(5N +1)/2. To reduce this number, 

we can impose diagonality to the parameter matrices A and B, obtaining a DVECH model 

equivalent, in particular a vector diagonal VECH representation. Since BEKK(1,1,1) is 

defined as: 

 

𝐇𝒕 = 𝐂 +  𝐀′𝜺𝒕−𝟏𝜺𝒕−𝟏
′ 𝐀 + 𝐁′𝐇𝒕−𝟏𝐁 

 

And being A and B diagonal matrices, we have that: 

 

𝐀′𝜺𝒕−𝟏𝜺𝒕−𝟏
′ 𝐀 =  𝐀 ∘ 𝜺𝒕−𝟏𝜺𝒕−𝟏′ 

𝐁′𝐇𝒕−𝟏𝐁 =  𝐁 ∘ 𝐇𝒕−𝟏 
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The Diagonal BEKK(1,1,1) is equivalent to the vector diagonal VECH, where A and B are 

constrained to be rank one matrices. 

However, unlike DVECH, BEKK model assures positive definitiveness of the conditional 

Variance Covariance Matrix. We can impose further restrictions on the parameters 

considering them to be scalars:  

 

𝐇𝒕 = 𝐂 +  α. 𝜺𝒕−𝟏𝜺𝒕−𝟏
′ + β𝐇𝒕−𝟏 

 

 

Obviously this significantly simplify parameters estimation, easing computational heaviness 

at the cost of increasing model misspecification.  

 

1.6 CCC Model 

The Constant Conditional Correlation (CCC) GARCH model, also known as the Engle-

Bollerslev-Nelson (EBN) model, was introduced by Robert Engle, Tim Bollerslev and Mark 

Nelson in a paper published in 1990. 

 The CCC-GARCH model allows for the modeling of the conditional correlation between 

multiple time series, in addition to modeling the conditional variances of the individual time 

series. This is achieved by introducing a new parameter matrix, the correlation matrix, that 

captures the interactions between the different time series. The appeal of the CCC-GARCH 

model lies in its ability to capture the dynamic interactions between multiple time series, as 

well as its interpretability. The correlation matrix allows for easy interpretation of the 

relationships between the variables. The CCC model assumes a constant structure of the 

correlation matrix, such that Rt=R is a positive definite symmetric matrix. Positive 

definiteness of Ht is assured if and only if R is positive definite and alle the conditional 

variances hiit are positive. The single conditional variances can be defined through any 

univariate GARCH (1,1):  

 

ℎ𝑖,𝑡 =  𝜔𝑖  + 𝛼𝑖(𝜀𝑖,𝑡−1
2 )  +  𝛽𝑖ℎ𝑖,𝑡−1 

 

The novelty introduced by Bollerslev is that he doesn’t specify directly the conditional 

covariances, but he does it indirectly through the Correlation matrix. Thus, the focus of the 

model is the Estimation of the constant matrix R. Since R is symmetric and ht a Nx1 vector, 
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the number of parameters to estimate is reduced to N(N+5)/2.It is possible to simplify the 

estimation process by assuming that conditional variances and correlations are independent, 

by first estimating the conditional variances, and then separately estimating the conditional 

correlations. This two-step procedure is relatively straightforward and can be used with high 

dimensional systems. The model specification is:  

 

𝑯𝒕 = 𝑫𝒕𝑹𝑫𝒕 

𝑫𝒕 = diag (√ℎ𝑖,𝑡) 

𝑹 = 𝑫𝒕
−𝟏𝑯𝒕𝑫𝒕

−𝟏 

 

Where Dt is the time dependent NxN diagonal matrix containing the N conditional variances 

and R is the NxN symmetric positive definite matrix containing the constant correlations 

coefficients:  

 

𝑅 = (

𝜌1,1 𝜌1,2 𝜌1,3

𝜌2,1 𝜌2,2 𝜌2,3

𝜌3,1 𝜌3,2 𝜌3,3

) 

 

𝐷𝑡 = (

√ℎ1,𝑡 0 0

0 √ℎ2,𝑡 0

0 0 √ℎ3,𝑡

) 

 

 

With 𝜌𝑖,𝑖 = 1 ∀i, and 𝜌𝑖,𝑗 = 𝜌𝑗,𝑖 ∀i, j.  

In the original paper hijt is defined through a standard GARCH(1,1) model, however its 

specification isn’t binding and is left to the practitioner as long as it results in a positive 

value.A simple estimate of the conditional correlation matrix is the unconditional correlation 

matrix of the residuals. Since here the Conditional Correlation is a time-invariant matrix, we 

can easily compute it through its sample estimate. Given two zero-mean random variables, 

we define the constant conditional correlation between them as:  

𝜌𝑖𝑗 =
𝐸𝑡−1(𝜀𝑖,𝑡𝜀𝑗,𝑡)

√𝐸𝑡−1(𝜀𝑖,𝑡
2 )𝐸𝑡−1(𝜀𝑗,𝑡

2 )
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Whose sample estimate is:  

 

𝜌𝑖𝑗̂ =
∑  𝑇

𝑡=1   𝜀𝑖,𝑡𝜀𝑗,𝑡

√(∑  𝑇
𝑡=1   𝜀𝑖,𝑡

2 )(∑  𝑇
𝑡=1   𝜀𝑗,𝑡

2 )

 

 

In CCC-GARCH the conditional correlation matrix gets estimated through multivariate 

MLE estimation, however under covariance stationarity it should converge to its sampe 

estimate which should itself converge to its unconditional value. 

 

 

1.7 Time Varying Conditional Correlation 

We can define the conditional time varying correlation between two random variables with 

Expected value equal zero as:  

 

𝜌𝑖𝑗,𝑡 =
𝐸𝑡−1(𝜀𝑖,𝑡𝜀𝑗,𝑡)

√𝐸𝑡−1(𝜀𝑖,𝑡
2 )𝐸𝑡−1(𝜀𝑗,𝑡

2 )

 

 

In this setting, the correlation is based on information known from the previous period. 

Correlations for future periods can also be defined in a similar way. According to 

probability laws, all correlations defined in this manner must fall within the range of [-1,1]. 

The conditional correlation holds true for all possible past information and for all linear 

combinations of the variables. Our stochastic process is defined as:  

 

𝜀𝑖,𝑡 = √ℎ𝑖,𝑡𝜂𝑖,𝑡 

ℎ𝑖,𝑡 = 𝐸𝑡−1(𝜀𝑖,𝑡
2 ) 

𝜀𝑖,𝑡|𝐼𝑡−1 ∼ 𝑁(0, ℎ𝑖,𝑡) 

 

With ηit being a white noise, with variance one and mean zero. And ℎ𝑖,𝑡 the conditional 

variance at time t. And considering N normally distributed random vector of size T, 

i=1,…,N the stochastic process is given by:  

 

𝜺𝑡 = 𝑫𝒕𝜼𝒕 



29 

 

𝑯𝒕 = 𝐸𝑡−1(𝜺𝒕𝜺𝒕
′) 

𝜺𝒕|𝑰𝒕−𝟏 ∼ 𝑀𝑁(𝟎, 𝑯𝒕) 

 

Where 0 is a Nx1 vector and 𝐻𝑡 the NxN conditional covariance matrix. With: 

 

𝑫𝒕 = diag (√ℎ𝑖,𝑡) 

 

Being the NxN conditional diagonal matrix containing the N conditional standard 

deviations of each 𝜀𝑖,𝑡.Thus, we can rewrite the correlation as: 

 

                                       𝜌𝑖𝑗,𝑡 =
𝐸𝑡−1(𝜀𝑖,𝑡𝜀𝑗,𝑡)

√𝐸𝑡−1(𝜀𝑖,𝑡
2 )𝐸𝑡−1(𝜀𝑗,𝑡

2 )

  =
𝐸𝑡−1(√ℎ𝑖,𝑡𝜂𝑖,𝑡.√ℎ𝑗,𝑡𝜂𝑗,𝑡)

√𝐸𝑡−1(ℎ𝑖,𝑡.𝜂𝑖,𝑡
2 )𝐸𝑡−1(ℎ𝑗,𝑡.𝜂𝑗,𝑡

2 )

 

                  =
𝐸𝑡−1(√ℎ𝑖,𝑡 )𝐸𝑡−1(√ℎ𝑗,𝑡)𝐸𝑡−1(𝜂𝑖,𝑡𝜂𝑗,𝑡)

𝐸𝑡−1(√ℎ𝑖,𝑡 )𝐸𝑡−1(√ℎ𝑗,𝑡).√𝐸𝑡−1(𝜂𝑖,𝑡
2 )𝐸𝑡−1(𝜂𝑗,𝑡

2 )

 

                                               =
𝐸𝑡−1(𝜂𝑖,𝑡𝜂𝑗,𝑡)

√𝐸𝑡−1(𝜂𝑖,𝑡
2 )𝐸𝑡−1(𝜂𝑗,𝑡

2 )

  = 𝐸𝑡−1(𝜂𝑖,𝑡𝜂𝑗,𝑡) 

  

Since 𝐸𝑡−1(𝜂𝑖,𝑡
2 ) = 1, which implies that the conditional correlation of our random variable 

εit  is equivalent to the conditional covariance of the white noise ηit: 

 

𝜼𝒕|𝑰𝒕−𝟏 ∼ 𝑀𝑁(0, 𝑹𝒕) 

 

Where 𝑅𝑡 is the NxN conditional correlation matrix of our random vector 𝜀𝑡. 

Many different approaches have been proposed in the literature to approximate ρijt, with 

one of the most popular being the one proposed by RiskMetrics, it uses exponentially 

decaying weights with parameter λ, with 0 < λ < 1 :  

 

𝜌̂𝑖𝑗,𝑡 =
∑  𝑡−1

𝑠=1  𝜆𝑡−𝑠−1𝜀𝑖,𝑠𝜀𝑗,𝑠

√(∑  𝑡−1
𝑠=1  𝜆𝑡−𝑠−1𝜀𝑖,𝑠

2 )(∑  𝑡−1
𝑠=1  𝜆𝑡−𝑠−1𝜀𝑗,𝑠

2 )

 

 

The estimator clearly gives more relevance to recent observation, while the weight of past 

ones decay exponentially towards 0. Since λ<1 the first observations will have weight λ  
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with higher exponent which will make them decay towards zero; in particular, the 

numerator decays faster than the denominator. It’s not clear at which point in time past 

observations become irrelevant and so the value of λ is ambiguous and depends on the 

dataset, Riskmetrics propose a value of 0,94. This estimator also lie in the interval [-1,1], 

moreover in a multivariate setting all variables must have the same λ in order to ensure a 

positive definite correlation matrix. The estimator can be expressed in matrix notation as:  

 

𝑯𝒕 = 𝜆(𝜼𝒕−𝟏𝜼𝒕−𝟏
′ ) + (1 − 𝜆)𝑯𝒕−𝟏 

 

Defining qijt as the conditional covariance matrix of the white noise, we can rewrite the 

conditional correlation as :  

 

𝑞𝑖,𝑗,𝑡 =  𝐸𝑡−1(𝜂𝑖,𝑡𝜂𝑗,𝑡) =  
𝐸𝑡−1(𝜂𝑖,𝑡𝜂𝑗,𝑡)

√𝐸𝑡−1(𝜂𝑖,𝑡
2 )𝐸𝑡−1(𝜂𝑗,𝑡

2 )

 

             =  
𝐸𝑡−1(𝜀𝑖,𝑡𝜀𝑗,𝑡)

√𝐸𝑡−1(𝜀𝑖,𝑡
2 )𝐸𝑡−1(𝜀𝑗,𝑡

2 )

=
𝑞𝑖𝑗,𝑡

√𝑞𝑖𝑖,𝑡𝑞𝑗𝑗,𝑡
= 𝜌𝑖,𝑗,𝑡 

 

Which means that the covariance of the white noise is equal to the correlation of our 

random process and to its own correlation as well. This holds as long as 𝐸𝑡−1(𝜂𝑖,𝑡
2 ) = 1. 

Since we have: 

 

𝜼𝒕 = 𝑫𝒕
−𝟏𝜺𝒕 

 

In matrix form we obtain the conditional correlation matrix becomes: 

 

𝐸𝑡−1(𝜼𝒕𝜼𝒕
′) = 𝑫𝒕

−𝟏𝑯𝒕𝑫𝒕
−𝟏 = 𝑹𝒕  =  𝑸𝒕 

 

Though exponential smoothing we obtain the following equality:  

 

                                          𝑞𝑖,𝑗,𝑡 = (1 − 𝜆)(𝜂𝑖,𝑡−1𝜂𝑗,𝑡−1) + 𝜆(𝑞𝑖,𝑗,𝑡−1)  

 

Which in matrix form is given by:  
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𝑸𝒕 = (1 − 𝜆)(𝜼𝒕−𝟏𝜼𝒕−𝟏
′ ) + 𝜆𝑸𝒕−𝟏 

 

Where 𝑸𝒕 is a NxN matrix. A different approach is given by a cross-sectional 

GARCH(1,1): 

 

𝑞𝑖,𝑗,𝑡 = 𝜌
‾

𝑖,𝑗 + 𝛼 (𝜂𝑖,𝑡−1𝜂𝑗,𝑡−1 − 𝜌
‾

𝑖,𝑗) + 𝛽 (𝑞𝑖,𝑗,𝑡−1 − 𝜌
‾

𝑖,𝑗) 

 

Where 𝜌𝑖𝑗 ̅̅ ̅̅ is the unconditional correlation between ηit and ηjt, which is not time varying 

and is also equal to the unconditional expectation of qijt; the variance of qijt is 1.  

In matrix form we can express the estimator as:  

 

𝑸𝒕 = 𝑆(1 − 𝛼 − 𝛽) + 𝛼(𝜼𝒕−𝟏𝜼𝒕−𝟏
′ ) + 𝛽𝑸𝒕−𝟏 

 

Where S represent the unconditional correlation Matrix of ηt. In both the estimators the 

conditional correlation matrix is positive definite, as the conditional covariance matrix is 

the weighted average of a Positive definite matrix (Ht-1) and positive semidefinite matrix 

(ηt-1 ηt-1’). In particular, the second estimator is mean reverting if α+β<1 with both being 

non-negative; while it simplifies to the first one if α+β=1. 

Ding and Engle (2001) proposed a generalization of such estimators:  

 

𝑸𝑡 = 𝑆 ∘ (𝜾𝜾′ − 𝐴 − 𝐵) + 𝑨 ∘ 𝜼𝒕−𝟏𝜼𝒕−𝟏
′ + 𝑩 ∘ 𝑸𝒕−𝟏 

 

Where ι is Nx1vector of ones, ans A and B are NxN matrices It can easily be seen that by 

setting A=(1-λ) 𝜾𝜾′ and B=λ 𝜾𝜾′; we obtain the first estimator:  

 

𝑺 ∘ (𝜾𝜾′ − (1 − 𝜆)𝜾𝜾′ − 𝜆𝜾𝜾′) + (1 − 𝜆)𝜾𝜾′ ∘ 𝜼𝒕−𝟏𝜼𝒕−𝟏
′ + 𝜆𝜾𝜾′ ∘ 𝑸𝒕−𝟏 

                             =  𝑺 ∘ (𝜾𝜾′ − 𝜾𝜾′)  + (1 − 𝜆)(𝜼𝒕−𝟏𝜼𝒕−𝟏
′ ) + 𝜆𝑸𝒕−𝟏 

                                  = (1 − 𝜆)(𝜼𝒕−𝟏𝜼𝒕−𝟏
′ ) + 𝜆𝑸𝒕−𝟏 

 

While setting A=α 𝜾𝜾′ and B=β 𝜾𝜾′ we obtain the second one:  

 

𝑺 ∘ (𝜾𝜾′ − α𝜾𝜾′ − β𝜾𝜾′) + α𝜾𝜾′ ∘ 𝜼𝒕−𝟏𝜼𝒕−𝟏
′ + β𝜾𝜾′ ∘ 𝑸𝒕−𝟏 

=  𝑺(1 − 𝛼 − 𝛽) + 𝛼(𝜼𝒕−𝟏𝜼𝒕−𝟏
′ ) + 𝛽𝑸𝒕−𝟏 
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Qt will be positive semidefinite if the matrices A,B and (ιι’ – A – B) are positive 

semidefinite, if any of them is positive definite then Qt will be positive definite. 

 

 

1.8 DCC Model 

The DCC-GARCH (Dynamic Conditional Correlation) model was first introduced by Engle 

(2002) as a way to capture the dynamic changes in the correlation structure of financial time 

series, it is an extension of the CCC model. 

In the DCC-GARCH model, the constant conditional correlation matrix is replaced with a 

time-varying conditional correlation matrix. This allows the model to capture changes in the 

correlation structure over time. 

It is used to model the correlation between multiple time series, relaxing the constant 

correlations assumption of the CCC model.  

We can express the model as:  

 

𝑯𝒕 = 𝑫𝒕𝑹𝒕𝑫𝒕 

𝜺𝒕 ∣ 𝑰𝒕−𝟏 ∼ 𝑴𝑵(𝟎, 𝑫𝒕𝑹𝒕𝑫𝒕) 

𝑫𝒕
𝟐 = diag {𝜔𝑖} + diag {𝜶𝒊} ∘ 𝜺𝒕−𝟏𝜺𝒕−𝟏

′ + diag {𝛽𝑖} ∘ 𝑫𝒕−𝟏
𝟐  

𝜼𝒕 = 𝑫𝒕
−𝟏𝜺𝒕 

𝑸𝒕 = 𝑺 ∘ (𝜾𝜾′ − 𝑨 − 𝑩) + 𝑨 ∘ 𝜼𝒕−𝟏𝜼𝒕−𝟏
′ + 𝑩 ∘ 𝑸𝒕−𝟏 

𝑹𝒕 = diag {𝑸𝒕}−1𝑸𝒕diag {𝑸𝒕}−1 

 

In which the third equation simply states that the conditional variances are obtained through 

a GARCH(1,1) specification:  

 

𝐷𝑖,𝑡
2  = ℎ𝑖,𝑡 =  𝜔𝑖  +  𝛼𝑖(𝜀𝑖,𝑡−1

2 )  +  𝛽𝑖ℎ𝑖,𝑡−1  

 

While the last equation expresses the form of the conditional correlation matrix as a function 

of the conditional covariance matrix of the white noise, 𝑸𝒕 converges asymptotically to its 

true value in which its main diagonal is given by the variances of ηi,t. Which means that 

diag {𝑸𝒕}−1converges to the NxN identity matrix (IN), such that: 
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dia g{𝑸𝒕}−1𝑸𝒕 dia g{𝑸𝒕}−1 ∼
𝑎

𝑰𝑵
−𝟏𝑸𝒕𝑰𝑵

−𝟏 = 𝑸𝒕 

 

 

The parameters of the model can then be estimated through a MLE, this is possible thanks 

to the first equation which expresses the gaussianity of the process, in absence of Normality 

we would have to estimate the parameters through Quasi-Maximum Likelihood.Assuming 

gaussianity of the process, the target loglikelihood function is the following application of 

the multivariate normal loglikelihood, seen before in its general form: 

 

ln [𝐿(𝜽 ∣ 𝜺)] = −
1

2
∑  

𝑇

𝑡=1

  (𝑁log (2𝜋) + ln |𝑯𝒕| + 𝜺𝒕
′𝑯𝒕

−𝟏𝜺𝒕) 

                                                 = −
1

2
∑  𝑇

𝑡=1   (𝑁ln (2𝜋) + ln |𝑫𝒕𝑹𝒕𝑫𝒕| 𝜺𝒕
′𝑫𝒕

−𝟏𝑹𝒕
−𝟏𝑫𝒕

−𝟏𝜺𝒕)  

 

Which remembering that: 

 

𝜺𝒕 = 𝑫𝒕𝜼𝒕 

                                                                 𝜺𝒕
′ = 𝜼𝒕

′𝑫𝒕  

 

      Where 𝑫𝒕 = 𝑫𝒕
′ since it’s a diagonal matrix: 

 

                          = −
1

2
∑  

𝑇

𝑖=1

  (𝑁ln (2𝜋) + 2ln |𝑫𝒕| + +ln |𝑹𝒕| + 𝜼𝒕
′𝑫𝒕𝑫𝒕

−𝟏𝑹𝒕
−𝟏𝑫𝒕

−𝟏𝑫𝒕𝜼𝒕)

= −
1

2
∑  

𝑇

𝑖=1

  (𝑁ln (2𝜋) + 2ln |𝑫𝒕| + +ln |𝑹𝑡| + 𝜼𝒕
′𝑰𝑵𝑹𝒕

−𝟏𝑰𝑵𝜼𝒕)

= −
1

2
∑  

𝑇

𝑖=1

  (𝑁ln (2𝜋) + 2ln |𝑫𝒕| + +ln |𝑹𝒕| + 𝜼𝒕
′𝑹𝒕

−𝟏𝜼𝒕) 

                              = −
1

2
∑  𝑇

𝑖=1   (𝑁ln (2𝜋) + 2ln |𝑫𝒕| + +ln |𝑹𝒕| + 𝜼𝒕
′𝑹𝒕

−𝟏𝜼𝒕  +

 𝜺𝒕
′𝑫𝒕

−𝟏𝑫𝒕
−𝟏𝜺𝒕  −  𝜼𝒕

′𝜼𝒕  ) 

 

      With: 

 

𝜺𝒕
′𝑫𝒕

−𝟏𝑫𝒕
−𝟏𝜺𝒕  −  𝜼𝒕

′𝜼𝒕 =  𝜼𝒕
′𝑫𝒕

′𝑫𝒕
−𝟏𝑫𝒕

−𝟏𝑫𝒕𝜼𝒕 − 𝜼𝒕
′𝜼𝒕 = 𝜼𝒕

′𝑰𝑵𝑰𝑵𝜼𝒕 − 𝜼𝒕
′𝜼𝒕 
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                                                             = 𝜼𝒕
′ 𝜼𝒕 − 𝜼𝒕

′𝜼𝒕 = 𝟎 

 

In order to simplify the estimation of the parameters Engle introduced a two step procedure 

to maximize the log-likelihood function. We split the parameters into two subsets, one for 

the variances diagonal matrix (Dt) and another one for the correlations (Rt), respectively θ 

and Φ.We can now consider the total log-likelihood as the sum of the log-likelihood of the 

two components, one dependent on θ (volatility component, Lv) and the other dependent on 

Φ (correlations component, Lc):  

 

𝑙𝑛[𝐿(𝜽, 𝝓 ∣ 𝜺))] = 𝑙𝑛[𝐿𝑉(𝜽)] + 𝑙𝑛[𝐿𝐶(𝜽, 𝝓)] 

                                𝑙𝑛[𝐿𝐶(𝜽, 𝝓 ∣ 𝜺))] = −
1

2
∑  𝑇

𝑡=1   (ln |𝑹𝒕| + 𝜼𝒕
′𝑹𝒕

−𝟏𝜼𝒕 − 𝜼𝒕
′𝜼𝒕) 

                                𝑙𝑛 [𝐿𝑉(𝜽 ∣ 𝜺))] = −
1

2
 ∑  𝑇

𝑡=1 (𝑁ln (2𝜋) + ln |𝑫𝒕|2 + 𝜺𝒕
′𝑫𝒕

−𝟐𝜺𝒕) 

 

It’s important to note that while Lv(θ) only depends on the parameter vector θ, Lc(Φ,θ) 

depends on both Φ and θ; the term 𝜼𝒕
′𝜼𝒕belongs to the correlation component as the 

covariance matrix of 𝜂𝑡 is the correlation matrix itself, so the white noises are the drivers of 

the correlation. We can maximize the total log-likelihood by separately maximizing the two 

components. The volatility part of the log-likelihood is equal to the sum of its N GARCH 

Likelihoods which is jointly maximized by separately maximizing the single Log-

likelihoods of its GARCH components. Remembering that the ML estimate of a single 

GARCH is defined as:  

 

ln [𝐿(𝜃 ∣ 𝜀)] =  −
1

2
∑  

𝑇

𝑡=1

(ln (2𝜋) + ln (ℎ𝑡) +
𝜀𝑡

2

ℎ𝑡
) 

 

We can rewrite the Volatility component as:  

 

𝑙𝑛[𝐿𝑉(𝜃 ∣ 𝜀))] = −
1

2
∑  

𝑇

𝑡=1

  ∑  

𝑁

𝑖=1

 (ln (2𝜋) + ln (ℎ𝑖,𝑡) +
𝜀𝑖,𝑡

2

ℎ𝑖,𝑡
) 

 

 

The square residuals (ηtηt’) do not enter the first order conditions (𝜕𝐿𝐶(𝜱, Ѳ)/𝜕(𝜱, Ѳ)=0) 

as they’re not dependent on the parameters, they’re only dependent on the parameters of the 
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univariate Garch estimates [ω’,α’,β’] through 𝑫𝒕
−𝟏, however such parameters are estimated 

separately through N univariate GARCH estimations. The two-step estimation approach 

consists in first estimating θ, by maximizing the volatility component Log-likelihood:  

 

𝜽̂ = arg 𝑚𝑎𝑥 {𝑙𝑛[𝐿𝑉(𝜽 ∣ 𝜺))]} 

 

Then take the 𝛉̂ estimate as given and plug it in the correlation log-likelihood component to 

estimate Φ:  

 

𝝓̂ =  arg max {ln[𝐿𝐶(𝝓 ∣ 𝜽̂, 𝜺))]} 

 

Consistency in the second step is assured if certain regularity conditions are met and the first 

step estimates are consistent. In fact, the result of the second step will depend on the 

estimates obtained in the first step, therefore, as long as the function that relates the two steps 

is continuous near the true parameters, consistency will be maintained. 

 

 

 

2. PORTFOLIO SELECTION 

 

2.1 Introduction 

Modern Portfolio theory was first introduced by Harry Markowitz, an American economist, 

and is considered to be one of the most influential and revolutionary concepts in the field of 

finance. This theory was introduced in 1952 through Markowitz's paper "Portfolio 

Selection". The theory proposes that a portfolio of assets should not be viewed as an isolated 

set of assets but rather as a collection of assets that interact with each other. The risk and 

return of a portfolio are not simply a function of the individual assets in the portfolio, but 

rather are influenced by the relationship between those assets.Markowitz's work was 

motivated by the observation that investors often make investment decisions based solely on 

the expected returns of individual assets, without considering the risk associated with those 

assets. However, he believed that investors are risk-averse and therefore prefer portfolios 

with the highest expected return for a given level of risk. To create such a portfolio, an 
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investor would typically invest in a mix of different assets, such as stocks, bonds, and other 

securities, to create a diversified portfolio that minimizes risk. 

Markowitz's approach to portfolio theory involves mathematical analysis to construct an 

optimal portfolio that considers both the expected return and risk of the individual assets, 

and how they combine with each other. The risk is typically measured in terms of the 

standard deviation of returns, which is used as a proxy for the uncertainty related to the 

portfolio. By considering the correlation between assets, Markowitz showed that it is 

possible to create a diversified portfolio that reduces overall risk without sacrificing returns. 

The Markowitz portfolio theory proposes a series of fundamental concepts that will 

eventually become the foundation of advanced structured analysis. The first is that portfolio 

returns are a combination of the returns of individual assets. The second is that the risk of a 

portfolio is not simply the sum of the risks of the individual assets, but is also influenced by 

the correlations between them. lastly that the expected return of a portfolio is the weighted 

average of the expected returns of the individual assets. 

Markowitz's theory is based on several assumptions about investor behaviour. The first 

assumption is that investors view each investment alternative as being represented by a 

probability distribution of expected returns over some holding period. In other words, they 

consider the potential range of returns for each investment and the likelihood of each return. 

The second assumption is that investors maximize one-period expected utility, and their 

utility curves demonstrate diminishing marginal utility of wealth. This means that investors 

seek to maximize their returns while also considering the value of their wealth and the 

potential risks associated with their investments. The third assumption is that investors 

estimate the risk of the portfolio based on the variability of expected returns. In other words, 

they consider the range of potential outcomes and the likelihood of each outcome when 

evaluating the risk of their portfolio. The fourth assumption is that investors base their 

decisions solely on expected return and risk, so their utility curves are a function of expected 

return and the expected variance or standard deviation of returns only. This means that 

investors evaluate investments solely based on the expected returns and potential risks 

associated with each investment, rather than considering other factors like social or ethical 

considerations.The final assumption is that for a given risk level, investors prefer higher 

returns to lower returns. Similarly, for a given level of expected return, investors prefer less 

risk to more risk, i.e they are investors are risk-averse and prefer to minimize risk, while also 

seeking to maximize their returns. Markowitz's approach can be summarized in a simple 

two-step process. The first step involves the identification of the optimal mix of assets that 
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maximizes returns for a given level of risk. This can be done by plotting the expected returns 

and standard deviations of various asset combinations on a graph, known as the efficient 

frontier. The optimal portfolio lies on the efficient frontier, and the investor can choose the 

portfolio that best matches their risk tolerance. The second step involves the determination 

of the actual portfolio composition. This involves identifying the actual allocation of funds 

among the selected assets, taking into account any constraints, such as minimum investment 

levels or restrictions on short selling. The investor would then periodically rebalance the 

portfolio to maintain the desired asset allocation, the original framework was in fact a static 

multi-objective optimization problem.  

One of the main benefits of the Markowitz portfolio theory is that it allows investors to 

achieve a higher expected return for a given level of risk, or a lower level of risk for a given 

expected return. This is achieved through diversification, which reduces the overall risk of 

the portfolio. By spreading investments across multiple assets, the investor can reduce the 

impact of any one asset's poor performance. 

However, Markowitz's theory has many limitations. It assumes that investors are rational 

and have perfect information about the assets in the portfolio and that information is spread 

equally and instantaneously amongst all agents. In reality, investors often make irrational 

decisions and may not have complete information about the assets they are investing in. 

Another limitation is the assumption of normality of the log-returns, however most of these 

problems can be mitigated by manipulating the original model to fit the data and the 

particular scenarios of reference. Markowitz portfolio is in fact the building block upon 

which a much more complex structure has been built along the decades.  

 

 

2.2Efficient Portfolio 

We will define the return of each unit of capital invest in a given portfolio as:  

 

𝑟𝑝 = 𝐰′𝐫 

𝒘′𝒊 = 1 

 

Where rp is the return of the portfolio, w the Nx1 vector of weights of the portfolio,  i.e the 

vector containing the percentage amount of the unitary capital invested in each asset i, and 

r is a Nx1 vector containing the returns of the single assets. 
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By definition w’i =1, where i is a Nx1 vector of ones, this is the constrained imposing that 

the sum of the percentage of the investment in each asset is equal to the unitary capital 

meaning that all our capital has to be invested in assets belonging to the portfolio of 

reference.  It’s worth noting that since the set A={w’i =1}is open and unbounded, thus 

Weistrass theorem can’t be applied to find global extremal point over the set A, which is an 

affine hyperplane of dimension N-1. We can add additional constraints to the wights, such 

as the non negative constraints that forbids short sellling such that wi>0 ∀ 𝑖 ∈ N, in such case  

𝒘 ∈ 𝚺𝑵, where 𝚺𝑵 is simplex of N-1 dimensions in the real vector space (although a simplex 

can be defined even in the complex space),  the smallest convex set that contains a given set 

of points the in Euclidean space. 

The expected rate of return and standard deviation of returns are two crucial characteristics 

used to describe a portfolio of assets. In particular the correlation between assets, has a 

significant impact on the portfolio's standard deviation. If assets in a portfolio are positively 

correlated, they tend to move in the same direction, leading to an increase in the portfolio's 

standard deviation and risk. In contrast, when assets are negatively correlated, they move in 

opposite directions, which reduces the portfolio's standard deviation and risk. A low 

correlation between assets can reduce the portfolio's risk without affecting its expected 

return. This is due to the diversification benefits of combining assets with low correlation, 

which can lead to an overall reduction in portfolio risk. The individual assets in a portfolio 

can differ in their expected rates of return and standard deviations, affecting the portfolio's 

risk and return. Negative correlation between assets is especially effective in reducing 

portfolio risk. Combining two assets with a correlation of -1.0 would reduce the portfolio's 

standard deviation to zero only if the individual standard deviations of the assets are equal, 

which is a rare occurrence in practice. We define the Expected return and variance of a given 

portfolio as:  

 

𝐸[𝑟𝑝] = 𝒘′𝐸[𝒓] 

𝜎𝑝
2 = 𝒘′𝑯𝒘 

 

With H being the NxN covariance matrix of our assets. We can identify the efficient portfolio 

as that particular portfolio represents the  optimal combination of assets is based on the 

concept of Pareto optimality. 

Pareto optimality is a state in which it is not possible to improve the welfare of any one 

individual without reducing the welfare of another. In the context of portfolio management, 



39 

 

Pareto optimality means that the efficient portfolio represents the best possible allocation of 

assets, given a set of constraints such as risk tolerance and return objectives. 

The efficient portfolio is structured from Pareto optimality by identifying the set of portfolios 

that are Pareto efficient. These portfolios are those that provide the highest expected return 

for a given level of risk, or the lowest level of risk for a given expected return. The set of 

Pareto efficient portfolios is known as the efficient frontier. 

Estimating the set of all the efficient portfolio weights results in a parametric constrained 

optimization problem, which is usually divided into three main branches in the general 

framework. 

 

1. Minimizing the risk of the portfolio, constraining the weights to ensure a minimum 

expected return: min (Hp(w)) s.t.: E[rp(w)] ≥ r , w 𝜖 ℝn , w’i =1 for a given r. 

2. Maximize the expected return for a maximum level of risk: max (E[rp(w)]) s.t.: Hp(w) ≤

 H, w 𝜖 ℝn , w’i =1 for a given H. 

3. max (E[rp(w)]- αHp(w)) s.t: α 𝜖 [0,+∞], w 𝜖 ℝn , w’i =1. In this case for the two limit 

cases α=0 and α=∞ the objective function to optimize become E[rp(w)] and - Hp(w) 

respectively, we can see α as a risk aversion coefficient as the maximization of - Hp(w) 

consists in minimizing the risk without regards for the expected return and viceversa for 

α=0. 

 

It's important to note that in these three class of problems Hp(w) doesn’t necessarily refers to 

the variance of the portfolio, it’s usually a function of it but more in general is a variable 

expressing the risk associated to the portfolio. 

 

 

2.3 Value at Risk (VaR) 

Defining the concept of risk is not straightforward, in Markowitz framework portfolio 

variance is used as a proxy. While the standard deviation is a widely used measure of risk, 

there are other approaches to assessing the potential for losses in a portfolio. One alternative 

is Value at Risk (VaR), which calculates the potential loss a portfolio may experience over 

specific time horizon at a given level of confidence. Unlike standard deviation, VaR 

estimates the worst-case scenario at a given confidence level, rather than the typical 

deviation from the mean. One advantage of VaR is that it provides a simple and 
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straightforward measure of risk that can be used to compare the risk of different portfolios. 

VaR can also be used to set risk limits and to monitor the risk of a portfolio over time.   

Given x 𝜖 ℝn  and y a random vector in ℝm that represents a stochastic process, such as 

market prices, we denote by f(x, y) the loss associated to x, which can be interpreted as a 

portfolio with X representing the set of available portfolios subject to certain constraints. 

However, there could be other interpretations as well. It is important to note that the loss 

could be negative, and therefore represent a gain. For each x, f(x, y) is a random variable 

that has a distribution in ℝ, driven by the probability distribution of y in ℝm with pdf f(y). 

The probability of f(x, y) not exceeding a threshold value ζ is Ψ(x, ζ):  

 

Ψ(𝐱, ζ) =  ∫ 𝑓(𝐲) d𝐲

f(𝐱,𝐲)≤ζ

−∞

 

 

        For a given x, Ψ(x, ζ) is the cumulative distribution function of the loss associated with x, 

Ψ(x, ζ) is non-decreasing in ζ. For any specified probability level α within the range of 0 and 

1, the value of α-VaR associated with the loss random variable for x is denoted by ζα(x) 

which is defined as the minimum value of ζ in the set of real numbers such that Ψ(x, ζ) is 

greater than or equal to α. The value of ζα(x) is obtained as the left endpoint of the interval 

that consists of all values of ζ where Ψ(x, ζ) is equal to α: 

 

ζα(x) = min{ ζ ∈ ℝ : Ψ(x, ζ) ≥ α } 

 

In the setting of portfolio optimization, with returns of the assets are assumed being 

realization of a random process distribute as a Multivariate Normal, the var of the Portfolio is 

given by: 

 

ζtα(xt) = µt(wt,xt) + Za(wt’Ht(xt)wt)1/2 

 

Where Za is the α quantile of the standard normal, wt the vector of weights of the assets 

within the portfolio at time t, x the vector of returns of the single assets ,Ht(x) the time 

conditional covariance matrix of the returns, µt (w,x) the expected value of the portfolio at 

time t, function of expected returns and weights. It’s worth noting that in such a setting the 

VaR becomes a time series, displaying typical characteristics of random processes such as 
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variance and expected value. This framework will be used in the empirical application to 

apply  a time varying Var constraint in the portfolio optimization algorithm. 

 

 

 

 

 

EMPIRICAL APPLICATION 

 

3.1 GENERAL FRAMEWORK 

In this Chapter an empirical application of the M-GARCH to financial time series will be 

presented, for the study 7 ETF have been selected in order to have some level of 

diversification within the single assets to reduce the size of our portfolio thus the parameters 

to be estimated. The following ETF have been selected represent different sectors, 

geographical areas, market sizes and company policies: 

 

1. Invesco QQQ Trust Fund (QQQ): the technology-heavy NASDAQ-100 Index managed 

by Invesco. The NASDAQ-100 Index is comprised of 100 of the largest and most actively 

traded non-financial companies listed on the NASDAQ stock exchange.  

 

2. First Trust Financials AlphaDEX Fund (FXO): tracks the performance of the StrataQuant 

Financials Index. The index uses the AlphaDEX stock selection methodology, it selects 

stocks from the financial sector with potential for outperformance relative to traditional 

market-cap weighted indexes. 

 

3. iShares MSCI Emerging Markets Fund (EEM): provides exposure to the emerging 

markets sector. The fund tracks the performance of the MSCI Emerging Markets Index, 

which includes large- and mid-cap stocks from emerging market countries such as China, 

Brazil, South Africa, and Russia. 

 

4. Utilities Select Sector SPDR Fund (XLU): tracks the performance of the Utilities Select 

Sector Index. The fund invests in a diversified portfolio of companies in the utilities sector, 
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including electric utilities, multi-utilities, and independent power producers and energy 

traders. 

 

5. Invesco DB Agriculture Fund (DBA): tracks the performance of a basket of agricultural 

commodity futures contracts. The fund is designed to provide exposure to the agriculture 

sector, which includes commodities such as corn, wheat, soybeans, and sugar. 

 

6. Vanguard Real Estate Fund (VNQ): tracks the performance of the MSCI US Investable 

Market Real Estate 25/50 Index. The fund invests in a diversified portfolio of publicly traded 

real estate investment trusts (REITs) and other real estate-related companies in the United 

States. 

 

7. Health Care Select Sector SPDR Fund (XLV): tracks the performance of the Health Care 

Select Sector Index. The fund invests in a diversified portfolio of companies in the health 

care sector, including companies involved in pharmaceuticals, biotechnology, medical 

devices, and health care services. 

 

 

For the analysis we considered a 10 year sample ranging from January 2012 to December 

2022, accounting for 2768 daily observations. In which the first seven years (for a total of 

2011 observations) compose the in sample dataset on which estimates were drawn; while the 

last three years (2020-2022) are the forecasting sample amounting to 756 observations. The 

prices of reference are the adjusted closing prices. The graphs along the whoòle timeframe 

of reference are reported below:   
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Figure 1: historical prices of the seven ETFs 
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Figure 1 displays the graphs of the prices of the 7 assets we picked for our analysis.  graphs 

there is a clear downwards peak in 2020, caused by the outbreak of COVID-19. 

We now compute the percentage log-returns, which are plotted below in Figure 2, as:  

 

𝑟𝑖,𝑡 = (log(𝑃𝑖,𝑡) − log(𝑃𝑖,𝑡−1)) ∗ 100 

 

 

 

 

 

 

 

 

 

 



45 

 

 

 

                                                        Figure 2: Log-returns of the seven ETFs 

 

The year 2020 was a critical year for the stock market, particularly in the first half, due to 

the Covid-19 pandemic. This posed significant challenges for the estimation and forecasting 

of future data points. The returns data for 2020 highlights the significance of the year, with 

the first 4-6 months being particularly noisy, and the variance trajectory not following the 

same mapping as before. This leads to potential biases in the estimation process and can 

make parameters estimated from previous periods less precise in explaining future 

projections.To address these challenges, it is necessary to implement a model that can 

effectively capture extreme events like the Covid-19 pandemic. One potential approach is to 

use a fundamental model specifically designed for such events. However, for this particular 

application, we have opted to use a standard Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) approach to define the conditional variance structure. This 

approach can still provide valuable insights into the stock market and is a commonly used 

method for forecasting in finance. In this case, since 2020 is the first year in the "Forecasting 

sample," it will not affect the in-sample estimates. The in-sample parameters will be used to 
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generate normal-scenario predictions in the forecasting process, assuming the GARCH 

assumptions hold. The variance forecasts generated by this model should be lower than the 

variances of the forecasting sample.It is important to note that the GARCH model is not 

perfect, and there may be limitations in its ability to capture the complexities of the stock 

market, especially during extreme events like the Covid-19 pandemic. However, it provides 

a starting point for forecasting and can still provide valuable insights when used with caution. 

Regular reassessment of the model's accuracy and necessary adjustments should be made to 

ensure its relevance in reflecting the current market conditions.In the absence of a time-

dependent conditional mean, we can define log-returns:  

 

𝑟𝑖,𝑡 = µ𝑖 + 𝜀𝑖,𝑡 

 

With εi,t indicating the innovations, drivers of the variance and following a GARCH process. 

To assess the presence of autocorrelation in the returns, the autocorrelation function (ACF) 

was calculated. The ACF measures the linear correlation between the returns at different 

time lags and helps to determine whether there is a pattern in the returns over time. The ACF 

was computed using the estimation sample, as the actual price dynamics of the forecasting 

period were unknown. To address missing values in the sample, the log returns were 

"smoothed" by computing the average between the previous and next observation for any 

missing values. The Autocorrelation Function (ACF) for returns up to 100 lags was then 

calculated, providing an estimate of the linear correlation along the time-series for different 

lags: 
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                                  Figure 3: AFC of the ETFs’ log-returns 

 

 

    Apparently, there is no substantial correlation present within the exchange-traded funds 

      (ETFs). This is consistent  with the obtained  results of the AR(1) of the in-sample timeseris, 

that did not yield any significant autocorrelation even at a 10% level of significance. . 

However, this dynamic changes over the forecast period. By estimating the AR(1) through 

a one-step rolling window, it was observed that the significance of the autocorrelation 
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coefficients slowly increases and reaches its peak around May 2020. This increase in 

autocorrelation is not surprising as the high volatility seen in 2020, as depicted in the figure 

above, was due to a structural change in the price dynamics.To account for this change in 

the data, the residuals were calculated as the deviation from the sample mean in the in-sample 

estimation. In the forecasting application, an AR(1) was applied to define the mean-

generating process from the 50th observation onwards. This approach allowed for a more 

accurate representation of the price dynamics and helped to mitigate the impact of the 

structural change.The presence of significant autocorrelation in the forecast period may 

indicate a persistent pattern in the data, suggesting that past values have an influence on 

future values. In this case, applying an AR(1) model in the forecasting process proved to be 

an appropriate approach for capturing this pattern and generating more accurate forecasts. 

Presence of autocorrelation in daily log-returns of financial assets was already discussed 

widely in the   literature, see “Large Scale Conditional Covariance Matrix Modeling, 

Estimation and Testing” Zhuanxin Ding, Rober F. Engle (1996). Table 3.1 presents the 

statistical summary of the returns, including the mean, standard deviation, kurtosis, and 

skewness. 

 

TABLE 3.1: Descriptive Statistics Percentage Log-Returns 

       Mean 

      

Median 

  

st.deviation 

 

Skewness 

      

Kurtosis      Max       Min 

QQQ 0.069 0.101 1.009 -0.401 6.039 6.057 -4.685 

FXO 0.058 0.132 0.874 -0.523 5.562 4.488 -4.924 

EEM 0.014 0.080 1.171 -0.205 4.144 4.788 -6.262 

XLU 0.045 0.113 0.841 -0.551 4.881 2.941 -4.271 

DBA -0.028 -0.069 0.708 0.050 3.698 2.722 -3.357 

VNQ 0.041 0.090 0.899 -0.509 4.782 3.331 -4.795 

XLV 0.061 0.098 0.893 -0.379 5.160 4.269 -4.532 

 

QQQ had the highest average return at 0.069, followed by XLV at 0.061, FXO at 0.058, and 

VNQ at 0.041. EEM had an average return of 0.014, while DBA had a negative average 

return of -0.028. This suggests that QQQ may have been a more profitable investment 

compared to the other ETFs, while DBA may have resulted in losses over the observed 

period. The median provides a measure of the middle value of the returns data. FXO had the 

highest median return at 0.132, followed by XLU at 0.113, and then QQQ at 0.101. This 

suggests that FXO had more consistent positive returns compared to the other ETFs, which 

may be attractive to investors who seek a reliable return. EEM had the highest standard 

deviation at 1.171, followed by QQQ at 1.009. XLU had the lowest standard deviation at 
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0.841. Making  EEM and QQQ be riskier investments due to their higher risk associated to 

the uncertainty.The skewness measures the asymmetry of the returns distribution. A negative 

skewness indicates that the distribution is skewed to the left, while a positive skewness 

indicates that the distribution is skewed to the right. QQQ, FXO, EEM, VNQ, and XLV all 

had negative skewness values, indicating a left-skewed distribution.  Such that the majority 

of the returns were concentrated on the left side of the distribution. XLU and DBA had more 

symmetrical distributions. This implies that XLU and DBA may be more predictable and 

stable investments.The kurtosis measures the "peakiness" of the returns distribution. A 

higher kurtosis indicates more extreme values in the tails of the distribution. All ETFs had 

positive kurtosis values, suggesting that they had fat tails and were more prone to extreme 

events. However, EEM had the highest kurtosis value, suggesting that it may be more 

susceptible to extreme events compared to the other ETFs.As a normal has both third and 

fourth moment equal to zero, these returns are leptokurtic and platykurtic ( beside DBA as 

it ha positive skewness).Finally, the maximum and minimum returns provide insights into 

the potential gains and losses of each ETF. EEM had the highest return at 4.144, while DBA 

had the lowest return at -3.357. This implies that EEM may have the potential for higher 

returns, but also a higher risk of losses compared to DBA.In conclusion, QQQ may have 

been a more profitable investment with higher average returns, while FXO had a more 

consistent positive performance. EEM had the highest volatility and kurtosis, making it a 

riskier investment. XLU and DBA had lower volatility and more symmetrical distributions, 

making them more predictable and stable investments. In Table3.2 a set of test statistic will 

be presented, namely: the Jarque-Bera (JB) normality test statistic, the Ljung_Box test 

statistic (LB) with 10 lags for residuals, absolute and square residuals for autocorrelation, 

the ARCH test for heteroskedasticity with 10 lags and the Augmented Dickey–Fuller for the 

existence of unit roots and stationarity also with ten lags.These tests are computed over the 

sampling period 2012-2019, and since this time framework didn’t show significance of 

AR(1) autocorrelation, the residuals were computed as simple deviation from the sample 

mean.  

 

 

 

 

 

 



50 

 

TABLE 3.2: Test Statistics Percentage Log-Returns and residuals 

 JB(r) LB10(ε) LB10(|ε |) LB10(ε2) ARCH10 test(ε) ADF(r) 

QQQ 827.447 22.495 612.578 552.785 242.733 -14.163 

FXO 641.587 15.977 392.451 292.443 163.832 -12.817 

EEM 123.775 8.500 304.258 268.017 143.604 -13.785 

XLU 398.282 17.983 113.584 113.167 80.613 -14.388 

DBA 41.646 20.673 88.625 70.334 53.421 -12.689 

VNQ 352.791 25.143 208.253 218.887 126.566 -13.586 

XLV 439.124 17.430 486.084 420.083 204.948 -14.492 

 

Starting with the Jarque test, we observe that the test statistic is extremely high for all the 

assets, with QQQ having the highest value at 827.45. The critical value for the test is 5.991, 

indicating that the null hypothesis of normality can be rejected for all the assets at a 5% 

significance level. This suggests that the distribution of the returns and residuals is not 

normal, as the Jarque-Bera test is distributed as chi-square with 2 degrees of freedom and 

under the null, the random variable is normally distributed. This implies that when 

forecasting and estimating GARCH parameters under the assumption of normality, we may 

incur bias driven by distribution misspecification. Moving on to the Ljung-Box test, we see 

that the test statistics are below the critical values for some of the ETFS, including XLU, 

FXO, EEM, and XLV. These levels are significantly smaller compared to the Jarque test, 

with the largest test statistic being 25.14 for VNQ. The table implies that only QQQ, DBA 

and VNQ present autocorrelation with ten lags, as the statistic is distributed as a chi-squared 

with 10 degrees of freedom (number of lags) and its critical value is 18.31. The null 

hypothesis of the absence of autocorrelation and i.i.d. of the data holds for one lag in all 

assets. We can see that the test statistics increase significantly for the squared and absolute 

residuals, which is an obvious consequence of the higher correlation present in the 

magnitude of the returns time series. The null is rejected for all ETFs, in particular, the test 

statistic is higher for absolute returns as squared returns move towards zero when |r|<1 while 

diverge faster for |r|>1. In both the absolute residuals and squared residuals subsets, QQQ 

presents the highest value of 612.57 and 552.78, respectively. The ARCH test, which tests 

the null hypothesis of autocorrelation in the squared residuals and the null hypothesis that a 

series of residuals r(t) exhibits no conditional heteroscedasticity, has the same distribution 

as the Ljung-Box test with 10 degrees of freedom. It is significant for all the assets, with the 

largest test statistic being 242.73 for QQQ. For the other assets, the value ranges from 53.42 
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to 163.83, leading us to reject the null of the absence of heteroskedasticity. We can conclude 

that the variance of the residuals is not constant over time and changes depending on the 

values of the previous residuals. The presence of conditional heteroscedasticity requires 

models that account for this feature, and GARCH models are a good fit for this data 

structure.Finally, the ADF test, which is distributed as a t-student with N-10 degrees of 

freedom and critical value=-1.941 at a 5% significance level, presents low values for all 

ETFs, far below the critical floor, with the lowest being XLV at -14.49 and the highest being 

DBA at -12.89. Thus, the null hypothesis of a unit root can be rejected for all the assets at a 

5% significance level. This implies that the series is stationary, which simplifies the 

modeling process and improves the accuracy of the predictions within our GARCH 

framework. Overall, while all the assets exhibit violations of normality, conditional 

heteroscedasticity, and some degree of autocorrelation, their magnitudes and significance 

levels vary. For example, QQQ has the highest test statistic for the Jarque test and ARCH 

test, indicating that its distribution of returns and residuals is the most non-normal and 

heteroscedastic, respectively. VNQ has the highest test statistic for the Ljung-Box test, 

indicating that its residuals exhibit the highest degree of autocorrelation. Additionally, DBA 

has the largest ADF test statistic, suggesting that its series is the least stationary among all 

the assets, while XLV is the most stationary one.It is worth noting that the significance levels 

and critical values for the different tests vary depending on the number of lags used in the 

analysis, excluding the Jarque-Bera test. Therefore, it is crucial to choose appropriate 

significance levels and lag orders while interpreting the results. The use of the correct 

significance levels and lag orders helps to avoid spurious results and ensure that the models 

are well-specified.  

 

 

3.2 MGARCH: ESTIMATION AND FORECASTING 

Since our assets present stationarity and heteroskedasticity, it is appropriate to model 

variance forecasts with GARCH models. Starting from the 50th observation in the 

forecasting window, the data-generating process is assumed to be an AR(1) with GARCH 

innovations. This allows the variance of the returns to be decomposed into two distinct 

components: a purely GARCH component and an autocorrelation component. The GARCH 

component captures the conditional volatility of the returns, while the autocorrelation 

component links previous GARCH estimates to the variance when estimating the variance 

of r(t+k) given the information set I(t) for k>=2. 



52 

 

The GARCH component is modelled using a MGARCH process, where the autoregressive 

component models the persistence of volatility over time, while the moving average 

component captures sudden changes in volatility. By assuming that the data-generating 

process is an AR(1) with GARCH innovations, the model can capture both the 

autocorrelation and conditional volatility structure of the returns, providing a better 

framework for forecasting future returns. In the forecasting of the volatility for the 

forecasting sample (of length T=756) a one step ahead rolling window was used, this lead 

the volatility forecast to reduce to the GARCH component as the one step ahead forecast of 

AR(1) is defined only by the variance component of the residuals one-step ahead future 

residuals. In particular in the analysis we computed model residual within the forecasting 

sample for each observations as time went forward one step at a time, such residuals were 

used at each iteration to forecast the next period conditional variance through the various 

model. In particular, due to the high dimensionality of the data and the high dimensionality 

of the data and high numbers of parameters to be estimated, the following procedure was 

applied: 

• Define a one step ahead rolling window in which at each itineration a new value gets 

added and the first of the old ones gets dropped to maintain the size dataset of interest 

constant at 2011 points. 

• In the one step ahead rolling window compute the residuals at each itineration with 

the new data that becomes gradually available, one data point at a time. 

• For the first 50 observation there was no significant presence of autocorrelation and 

so the expected value was simply compute with a moving average, residuals were 

computed by simple subtraction form realized log-returns 

• From the 51th observation onwards, at each itineration the new parameters for the 

AR(1) were estimated, as they become statistically relevant, and compute the 

residuals 

• Due to the high dimensionality of the data it was infeasible to estimate the parameters 

each time for all 756 itineration’s, so the following simplification was employed: 

Divide the forecasting sample in 11 sub samples of 70 observations each, with the 

last one containing 56 observations. Then estimate the parameters a the end of each 

subsample for the next forecasting period. With the values for the first 70 forecast 

being the in-sample estimates of the parameters. 

• All estimations along the rolling window (for AR(1) and MGARCH) were made by 

subtracting from the start sample the number of new entering observations in order 
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to keep a fixed number of observation on which running esrimates of 2011 values. 

Which for AR(1) implied losing one observation at the beginning in each itineration, 

as a new one was added; while for the MGARCH it was done in groups of 70 

observations(entering new 70 ones from the forecasting sample, which are now 

realized values, and dropping the  first 70 observations).  

 

Table 3.3 below displays the estimates for the autoregressive and ARCH component of five 

different MGARCH models. The autoregressive component of the conditional variance is 

denoted by alpha, while beta represents its dependence on past square residuals. It is 

important to note that alpha_q and beta_q refer to the parameters used in estimating the 

correlation matrix of the innovations Q. In particular, beta_q represents the autoregressive 

component of Qt, while alpha represents the coefficient linking it to past square innovations 

(𝜼𝒕−𝟏𝜼′𝒕−𝟏) These two parameters are constrained such that beta_q+alpha_q < =1. 

The parameters alpha and beta are important in understanding the dynamics of the 

conditional variance in MGARCH models. The autoregressive component alpha captures 

the persistence of the conditional variance, while the ARCH component beta captures the 

impact of past squared residuals on the current conditional variance. By constraining beta_q 

+ alpha_q to be less than or equal to 1, we ensure that the conditional variance remains 

positive and well-behaved. While in Table 3.4, standard deviation and t-statistics of the 

parameters are reported, since for large sample size the t-distribution converges to a Normal 

we can simply compare them with the z-score to deduce the significance of the parameters. 

It has to be pointed out that all the statistics reported besides alpha_q, beta_q and alpha and 

beta sBEKK are mean values of the parameter matrices of reference. Not all parameters were 

posted due to their numerosity, thus mean value are taken into consideration. The same 

applies to standard deviation (square root of average variance) and t-statistics .The averages 

were taken considering the absolute values of the single parameters/statistics in order to 

study the average magnitude. The DVECH estimation method involves estimating the 

elements of the lower triangular section of the parameters matrices Since the matrix is 

symmetric, we only need to estimate the lower triangular part, which has N*(N+1)/2 

elements, repeated for the three parameter matrices as introduced by Bollerslev, Engle, and 

Wooldridge (1988). However, to ensure positive semi-definiteness of the matrix, we need to 

compute the parameter matrices A and B as A=A*A’* and B=B*B’*, where A* and B* are 

NxN full matrices. This increases the number of parameters to be estimated to is 

N*(N+1)/2+2*N^2, which is computationally intensive and leads to incorrect and shaky 
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result for larger systems unless you have significant computation power and a perfected 

algorithm. 

 

 

TABLE 3.3: Average Estimated parameters of MGARCH models 

 

 

TABLE 3.4: Average standard error and t-statistic of parameters MGARCH models 

 sigma alpha sigma beta t alpha t beta 
 Sigma 

alpha_q 
sigma 

beta_q t alpha_q t beta_q 

SBEKK 0.011 0.006 16.092 78.433     

DBEKK 0.019 0.011 22.689 121.89     

DVECH 0.013 0.008 5.637 49.807     

CCC 0.025 0.017 4.501 67.876     

DCC 0.025 0.017 4.501 67.876 0.019 0.005 5.179 49.445 

 

The SBEKK model estimates the value of alpha to be 0.1802, with a standard error of 0.0112 

and a t-statistic of 16.09, while the estimated value of beta is 0.9669, with a standard error 

of 0.0061 and a t-statistic of 157.43. These results suggest that past squared residuals have a 

smaller impact on the estimation of the conditional covariance matrix compared to past 

conditional covariance matrices. Furthermore, both parameters' t-statistics are highly 

significant, surpassing the critical value of 1.96 at a 5% significance level, indicating that 

the estimates are unlikely to be noise. The DBEKK GARCH model estimates alpha at 

0.0902, with a standard error of 0.019 and a t-statistic of 22.689. The estimated value of beta 

is 0.9642, with a standard error of 0.0115 and a t-statistic of 121.883, similar in nature to the 

SBEKK GARCH. The CCC GARCH and DCC GARCH models both have the same 

estimated values for alpha and beta by structure, with the conditional variances estimated 

  N.of parameters alpha beta alpha_q beta_q 

SBEKK 
N*(N+1)/2+2 

For N=7➔30 0.180 0.967     

DBEKK 
N*(N+1)/2+2*N 

For N=7➔42 0.090 0.964     

DVECH 
N*(N+1)/2+2*N^2 

For N=7➔126 0.0397 0.139     

CCC 
3*N+N*(N-1)/2 

For N=7➔42 0.109 0.846     

DCC 
3*N+N*(N-1)/2+2 

For N=7➔44 0.109 0.846 0.022 0.942 
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through N separated univariate GARCH(1,1) models. The estimates for alpha and beta are 

0.1086 and 0.8457, respectively, and both are significant. In particular, the beta_q of the 

DCC is much higher and closer to the SBEKK and DBEKK estimates of the conditional 

variance beta than to the estimates of the CCC and DCC for the univariate processes. In the 

DVECH GARCH model, the estimates for alpha and beta are 0.044 and 0.139, respectively, 

with the standard errors for these parameters at 0.013 and 0.008, respectively. The t-statistics 

are 5.637 and 49.807. Beta assumes the lowest values across all models, this isn’t an 

unexpected result due to the high dimensionality of the DVECH estimator, being the largest 

parameterized model in the framework. Therefore, beta being much lower than the others is 

necessary to keep the conditional variance divergence in check in the matrix multiplication, 

the same logic is applied to alpha. The data clearly indicate that there is a significant 

persistence of conditional variance over time, which is highly significant, as evidenced by 

the beta parameters consistently having the highest t-statistic across all the models and 

highest magnitude, moreover both alpha and betas are all significant at 5%. Therefore, it is 

essential to choose an MGARCH specification that best fits the data. Although the 

differences in results among different models may appear small, they can have significant 

impacts on our forecasts. This highlights the importance of carefully comparing the results 

of different models and selecting the one that best suits the data to achieve accurate forecasts. 

It’s crucial to consider potential biases and flaws in the estimates, and in case of substantial 

differences between estimates of different models, to study the roots of the issue and address 

them in order to mitigate possible model misspecifications or structural issues. 

 

Parameters estimation within DVECH has been a major issue due to the dimensionality 

problem. In fact, the conditional variance estimates and forecasts of the DVECH are 

explosive moving further into the sample for N=7 in the order of 10^15, using the Sheppard 

Algorithm in the MLE toolbox and a function evaluation set at 3000 in the “optimset” 

function It is worth noting that while the estimates converged when checking the efficacy of 

the algorithm with five assets, they did not hold for seven, as shown by the explosive 

trajectories. The algorithm I developed had even worse performance in this regard, as it only 

produced accurate results convergent to Sheppard's when given very specific starting values. 

Although it ran much more quickly, using it for a large number of variables would produce 

results that were significantly biased, making it an unfeasible option for practical 

applications. The issue  was eventually solved by setting the function evaluation parameter 

to a lower value of 1000 thus reducing the accuracy of the estimation but gaining in 
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parsimony. Moreover the “interior point estimation” of the “fmincon” function in MATLAB 

seemed to yield more consistent results in a 2011x7 dataset than the "trust-region-reflective" 

method, leading to an increase of computational resources to employ it in the procedure, as 

the “interior point method” is more computationally intensive but yield better results when 

there are a high number of constraints to be satisfied or when they are significantly 

binding.The “trust-region-reflect” method employed by default in MATLAB is a gradient-

based optimization method that can handle nonlinear constraints, however, if the constraints 

are particularly difficult to satisfy, or if the problem has a large number of constraints it loses 

efficacy. Nevertheless trajectory still ended up exploding in the forecasting sample for thee 

forecasting subsets (namely T=3,4,8), as the increase of volatility caused by structural effect 

of the markets and by the Covid-19 aftereffects lead to the estimation of biased parameters 

in those timeframes, which caused explosive forecasts in the following periods. In order to 

lighten the problem I replaced the parameters matrices estimated in those windows with the 

ones estimated the previous iteration. In other words A3, B3, C3, and A4, B4, C4 were replaced 

by their counterparts estimated in forecasting period T=2 A2, B2, C2 and the same logic was 

applied on the matrices of the 8th period which were replaced with the ones from the 7th. 

Amongst these diverging parameters matrices there was hardly any difference in the matrix 

of constants C, while B which scales the autoregressive component was significatively larger 

than it was in previous and next estimations.   The issue of dimensionality estimation in 

DVECH and other large sized parametric estimators has been addressed multiple times in 

the literature, such as in "A Large-Dimensional Factor Model for High-Dimensional Time 

Series" by Fan et al. (2008). In this paper, the authors propose a new method for estimating 

a large-dimensional factor model for high-dimensional time series data. They discuss the 

challenges of estimating the DVECH matrix when the number of assets is large, and propose 

a new method called the smoothed threshold factor model (STFM) that is designed to handle 

such situations. In particular, the authors note that the DVECH matrix can have a large 

number of parameters when the number of assets is large, which can make estimation 

difficult. They also note that the DVECH matrix can be ill-conditioned, which can lead to 

numerical instability in estimation procedures. The STFM method proposed in the paper is 

designed to address these issues by introducing a thresholding procedure that reduces the 

number of parameters in the DVECH matrix and improves its conditioning properties. 

This was even worst for the algorithm I coded, which converged to Sheppard algorithms 

results only for precise starting values. Although it ran much faster application was 

unfeasible as results were quite biased when applied to a high number of variables  
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A different kind of issue ensued in computing DCC forecasts, in this case as well 

explosiveness of the variance estimated was detected, in this case the issue lied in the code 

that was used for forecasting future parameters as there was no issue in the estimation. The 

problem lied in the definition of the conditional correlation matrix, as we’ve already seen in 

chapter 1.8 𝑹𝒕 = diag {𝑸𝒕}−1𝑸𝒕diag {𝑸𝒕}−1, with Qt defined as a multivariate ARMA(1,1)  

process, since Qt= 𝐸𝑡−1(𝜼𝒕𝜼𝒕
′), it is equal to 𝑹𝒕 in its population representation while It 

should converge to it asymptotically in its sample counterpart. Thus, the algorithm was 

initialised considering 𝑸𝒕−𝟏=𝑹𝒕−𝟏 this value was used to estimate Qt through its ARMA 

representation and then the estimate was used as input to compute 𝑹𝒕 through the formula 

reported above. However, while theoretically correct this approach eventually lead to 

explosive forecasts, the two possible reasons were either that 2011 observations weren’t a 

significantly large enough sample for Q to converge to R or that the model itself was 

misspecified for the true generating process of the returns. As its explosiveness could hardly 

be bounded by a larger data set do to its autoregressive component a larger dataset would 

only have pushed the trajectories of the estimator further away from its true theoretical value.  

So, issue may have laid in the starting point of initialization but that didn’t seem to be the 

case as it wasn’t greatly different from other models conditional correlations or from sample 

corelation itself. It should be reminded that the estimation process of the parameters was 

carried iteratively every 70 periods, to overcome the issue I simply considered Qt =𝑹𝒕 i.e. I 

assumed its asymptotic properties to hold within our sample, and directly computed 

𝑹𝒕through Qt ARMA process:      

𝑹𝒕 = 𝑺 ∘ (𝜾𝜾′ − 𝑨 − 𝑩) + 𝑨 ∘ 𝜼𝒕−𝟏𝜼𝒕−𝟏
′ + 𝑩 ∘ 𝑹𝒕−𝟏 

This lead to realistic forecasting results and was used in practice to carry on with the analysis, 

however the issue of misspecification within our sample remains. When checking for the 

RMSE_Adj (RMSE for volatility forecasting power, adjusted for scale) for the different 

models in the portfolio optimization it resulted that under this metrics DCC fared worse than 

any other model in forecasting power over volatility in a portfolio setting which puts the 

emphasis mostly conditional correlation itself. Summing up these considerations it should 

be reasonable to conclude that DCC model has proved itself quite unable to explain the time 

varying dynamics between the data structure of the 2020-2022 forecasting sample. 

Tables containing different descriptive statistics for the portfolio optimization are listed 

further ahead, amongst them RMSE_Adj for DCC was the highest in all the different 

settings, indicating “bad fit” of the model. 
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Tables 3.5A and 3.5B display the in-sample correlation matrices of the seven ETFs, where 

the first is the sample correlation matrix, while the second the correlation matrix estimated 

with CCC model: 

 

              Table 3.5A: Sample correlation Matrix (2012-2019) 

 

 

 

 

 

 

 

 

                 Table 3.5B: CCC estimated correlation Matrix (2012-2019) 

  QQQ FXO EEM XLU DBA VNQ XLV 

QQQ 1.000 0.733 0.691 0.254 0.141 0.456 0.736 

FXO 0.733 1.000 0.644 0.277 0.141 0.527 0.670 

EEM 0.691 0.644 1.000 0.272 0.248 0.444 0.560 

XLU 0.254 0.277 0.272 1.000 0.047 0.590 0.332 

DBA 0.141 0.141 0.248 0.047 1.000 0.105 0.111 

VNQ 0.456 0.527 0.444 0.590 0.105 1.000 0.467 

XLV 0.736 0.670 0.560 0.332 0.111 0.467 1.000 

 

We can see that the two matrices show a similar pattern of correlations between the assets 

and that all ETFs are positively correlated in both of them. However CCC estimates 

correlations are adjusted for the volatility of the assets, whereas the sample are all lower than 

their sample counterpart. For example, the correlation between QQQ and XLU is 0.25 in the 

GARCH CCC-model, while it is 0.27 in the sample correlation matrix, similarly for the 

others. Another point to make  is that the GARCH CCC-model tends to estimate lower 

correlations between assets that have higher volatility. This is because CCC adjusts is 

correlation component to keep the overall covariance matrix in check, in fact we can see that 

the biggest differences in the two matrices are in QQQ, XLV and VQN, which are the three 

assets with highest variance within the estimation sample. The highest divergence 

corresponds to the pair VNQ-FXO which amounts at 0.046 points, while the lowest is 

surprisingly XLV-DBA for 0.01 difference, however this is caused by the fact that DBA is 

  QQQ FXO EEM XLU DBA VNQ XLV 

QQQ 1.000 0.766 0.701 0.274 0.144 0.485 0.768 

FXO 0.766 1.000 0.672 0.298 0.154 0.573 0.713 

EEM 0.701 0.672 1.000 0.302 0.265 0.480 0.574 

XLU 0.274 0.298 0.302 1.000 0.046 0.608 0.344 

DBA 0.144 0.154 0.265 0.046 1.000 0.118 0.110 

VNQ 0.485 0.573 0.480 0.608 0.118 1.000 0.499 

XLV 0.768 0.713 0.574 0.344 0.110 0.499 1.000 
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the ETF with lowest volatility in our set, thus filtering the CCC tendency to contain 

correlation magnitude for the pair.  

When selecting the best GARCH model, there are several criteria that can be used to 

evaluate the goodness of fit and the complexity of the model. The four commonly used 

criteria are the Bayesian Information Criterion (BIC), the Akaike Information Criterion 

(AIC), the Hannan-Quinn Information Criterion (HQC), and the negative log-

likelihood(NLL). The BIC, AIC, and HQC are all information criteria that balance the fit 

of the model with its complexity. They provide a trade-off between a good fit to the data 

and a model that is not too complex. The BIC penalizes more heavily model complexity 

compared to AIC, which tends to select larger models. The HQC is a modification of AIC 

that gives more weight to the number of observations in the sample. The negative log-

likelihood, on the other hand, is a measure of how well the model fits the data, with 

lower values indicating better fit. 

In Table 3.6 below, we compare the values of these four criteria MGARCH model to 

evaluate their relative performance, with the best model being chosen based on the 

lowest value of the criteria.  

 

TABLE 3.6: Model Selection Criteria 

  NLL BIC AIC HQC 

SBEKK -14386 -28544 -28713 -28712 

DBEKK -14592 -28865 -29100 -29099 

DVECH -14388 -27817 -28524 -28520 

DCC -14344 -28353 -28599 -28598 

CCC -14499 -28679 -28914 -28913 

 

As we can see the DBEKK presents the lowest Negative Loglikelihood while the DCC’s 

values is the highest, thus under this evaluation they should be the model that best fits the 

data and the worst one respectively, moreover due to the extremely low value reached by the 

loglikelihoods evaluated in their optimal estimated points, the evaluations hardly change 

along the different metrics. The only information criteria that gives significant weight to the 

number of observation is the BIC, accordingly it changes the evaluation of the DCC respect 

to the Loglikelihood, placing it above t the DVECH due to the high number of parameters 

present in the DVECH model which amounts to 126 scaled by the log of the number of 

observations. In the BIC’s evaluation the DVECH is considered the least optimal models 
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amongst the ones proposed, while the SBEKK is still inferior to the CCC. The AIC model 

still penalizes the DVECH enough for the DCC to surpass it, although by a lower margin; 

keeping the same conclusions of the BIC and the same applies to the HQC.  

The information obtained through these criterions are however far from being conclusive, 

especially taking in consideration the scaling issue brought forward by the significant 

magnitude of the loglikelihoods which leads to weakened effect of the parameters and weight 

penalties applied by the different criterions.  

 

Below will be reported a series of graphs with estimated and forecasted conditional volatility 

and correlations for three of the seven ETFs, due to the high number of correlations 

combination amongst seven assets three out of the seven were picked to display a graphical 

overview. The ETFs presented are QQQ, FXO and EEM. 

 

                              Figure 4.a                                                                                        Figure 4.d   

                            

                                                                                                                



61 

 

                               Figure 4.b                                                                                       Figure 4.e 

 

 

                        Figure 4.c                                                                                          Figure 4.f 

 

 

In Figures 4.a, 4.b and 4.c the in-sample estimates of the conditional volatilities scaled by 

1000 are shown for the three ETFs. CCC was not included as its Variance estimates coincide 

with DCC by structure. As we can see DCC consistently estimated higher magnitudes of 

dispersion across all three assets with higher dispersions o the results as well as we can notice 

for the larger movements it displayed across all assets, it appeared to be the most unstable 

estimator with relative high peaks and low lows.. DVECH and SBEKK have yielded similar 

results, with their graphs almost overlapping in all three examples; while the DBEKK gave 

lower estimates than other, in particular in EEM its projections are much “flatter than the 

others”. Figures 4.d, 4.e and 4.f represent the corresponding forecasts for the three assets 

along the forecasting sample (2020-2022), we can clearly se that forecasts present a similar 

pattern to the estimation samples; with DCC application leading to higher and more volatile 
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projections presenting significant peaks in correspondence to the subsamples in which 

residuals displayed more extreme behaviours as it can be noticed by its highest peak in the 

first half of 2020. The other three models displayed similar forecasts, with SBEKK 

predicting higher variations on average; DBEKK was much closer in predictions to the other 

two models respect to the estimation sample, this pattern can be clearly seen comparing the 

EEM forecast with its sample respective, in-sample estimations were much “flatter”. Lastly 

DVECH tracked SBEKK and DBEKK for the whole horizon.  

 

In the same fashion as for the conditional volatilities, below are plotted the conditional 

correlations of the three assets, the line parallel to the x-axis represents the correlation 

estimated by the CCC model which is constant; besides our five model it was added the 

conditional correlation proposed by RiskMetrics and introduced in chapter, the smoothing 

parameter used here is 0.94. On the LHS we will present the in-sample conditional 

corelations and on the RHS their forecasted estimates. 

                                                                                                       

 

                                                                        

                                   Figure 5.a                                                                      Figure 5.d 
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                          Figure 5.b                                                                             Figure 5.e 

 

 

 

                        Figure5.c                                                                                 Figure 5.f 

 

 

In the Figures 5.a, 5.b and 5.c are presented the different correlation estimations for the the 

five models, plus the ones obtained through the RiskMetrics estimator. As we can see 

RiskMetrics’ is much noisier than the other models estimates with significant swing up and 

down along the estimation horizon, it mostly placed significantly above or below the other 

models. CCC is apereas to be a mean value around which the other oscillate, which makes 

sense given its time independent nature. SBEKK, DBEKK and DVECH yielded quite similar 

results, with DVECH and SBEKK almost overlapping each other DBEKK oscillating above 

and below. All estimators yielded strictly positive correlation, with only RiskMetrics almost 

hitting the zero mark in 2018.  In Figures 5.d, 5.e and 5.f are displayed the respective 
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forecasts, the noisiest estimator appears to be the DVECH in all three pairs, it still tracks the 

SBEKK while the DBEKK increases the distance from the other two, keeping an higher 

expectation on future correlation on average. Negative correlation where reached only on 

the pair QQQ-FXO in 2020 and 2021, by DVECH, DBEKK and SBEKK with the latter 

pushing furthest downwards respect to the other two in both occasions. CCC’s presents a 

“stairs” outlook as it was estimated 10 times in the rolling window, leading to ten different 

constant correlations forecasts with descending trajectory, without any significant jump. The 

similar behaviour displayed by DVECH, SBEKK and DBEKK in both estimating and 

forecasting variances and correlations   does not come as a surprise; in fact, as shown by 

Engle and Kroner(1995) in their paper “Multivariate Simultaneous Generalized Arch”, every 

single DVECH model can be expressed as a specific case within the DBEKK models class, 

These models belong essentially to the same family, with the DBEKK framework being a 

generalization. We can clearly see this close relationship even graphically, as in all the 

examples above they’re the ones that performed the most similarly even in the forecasting 

environment.  

 

 

3.3.1 PORTFOLIO OPTIMIZATION: MINIMUM VARIANCE 

In this section, we will use the Markowitz Portfolio Optimization approach  to construct two 

optimal portfolios in a dynamic setting where we rebalance the portfolio at each iterations, 

for a total of 756 iterations spanning across three years. For both portfolios, we will estimate 

the covariance matrix of the assets using the multivariate GARCH forecasts from the 

different models obtained previously. The first portfolio will be constructed using a simple 

mean-variance optimization procedure, which assumes that the investor is risk-neutral and 

interested only in maximizing returns. The second portfolio will be constructed with a Value 

at Risk (VaR) constraint to ensure that the portfolio is constructed with a specified level of 

risk that is acceptable to the investor, and we will further add two parameters that shape 

investors risk aversion to dispersion of returns and extreme returns respectively, providing 

insights into the sensitivity of the portfolios to changes in investor risk preferences.  

As discussed in chapter 2.2 Markowitz minimum variance optimal portfolio is the particular 

portfolio that minimizes risk for a given level of expected return, in this application we will 

compute the optimal mean-variance portfolio for each period of the forecasting sample 

through a rolling window. As time goes on, new information’s will enter our datasets that 

will lead to changes in the optimal portfolio structure, in such a sense the portfolio is 
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dynamic, time conditional and with variables weights. However, as will be discussed in the 

second application with VaR constraint, this is not an intertemporal application. As our 

optimization takes int account only one period at a time and doesn’t aim to maximize the 

objective function considering the whole stochastic (as it still unknown) future dataset. The 

resulting weights are the decision outcome of T optimizations, with T being the number of 

one-step ahead forecasts in our investment, it can be considered a rolling forecast as new 

observations will gradually enter the estimation dataset to infer the changing relationship 

between the variables and estimate new parameters values. In this particular case the size of 

the forecasting sample is of three years, composed more specifically by 756 daily forecasts. 

At the end of each day we will run an optimization on the new dataset which includes one 

new point and loses another at the beginning of the data string, we will use this information 

to carry out forecasts to use as input in our optimization algorithm in order to choose the 

optimal weights for the next period. In particular we will run Covariance forecasts through 

the Multivariate GARCH models encountered in the previous section, which will be the 

minimization inputs of our objective function. This particular optimization belongs to the 

first class of portfolio optimization techniques discussed in chapter 2.2, i.e variance 

minimization under an Expected return constraint. 

The model specification is the following: 

 

                            Min(wt’Htwt)                         (1) 

 

                                                             Subject to: 

 

                       Wt’Et-1[rt] >= Et-1[rmkt,t]                  (2) 

 

                                zt’i <=1.66                              (3)    

 

                                    wt’wt=1                              (4) 

 

to iterate for every t=1,..,T 

 

Where zt is an auxiliary variable defined as zt=[|w1,t|,..,|wN,t|]’, and i an Nx1 vector of ones. 



66 

 

(1) Is our minimization objective function, where wt’Htwt expresses the conditional variance 

estimated through MGARCH forecasting, scaled by the risk aversion parameter “tau” which 

we introduced previously and represents investors aversion to dispersion in returns. 

(2) Is our constraint on portfolio Expected returns, coinciding with the expected return of 

the market portfolio which was computed as a sample moving average of the market return 

proxied by the S&P500 index. (3) Allows for the option of short selling up to a maximum 

of 33% per unit, this value was chosen as neighbourhood of regulatory constraints on short 

sales, which are quite heterogeneous, but often lay within the range of the 30%. Lastly (4) 

imposes the constraint that the capital has to be fully invested in the portfolio. 

 

                                                                   Figure 6 

 

    In Figure 6 are presented the cumulative returns of the different GARCH models driven 

portfolio allocations, SBEKK and DBEKK are the ones who achieve consistently a better 

performance, with SBEKK coming on top at 40.24%. The worst performer was CCC at 

29.94%. Cumulative returns have been negative for a fraction of time spanning the second and 

third quarters of 2020, accordingly to the market trend. From the first half of 2020 to Jan 2022 

returns seem to have kept increasing across all portfolios bouncing back from the lows of the 

crisis, but seem to have stopped their ascension during the last year, with S&P500 and the 
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equally weighted portfolio tracking back towards the zero mark. Even the worst portfolio under 

CCC specification scored 12% more than the market, but it laid below it on the graph for most 

of the time horizon of reference, in particular during the whole recovery phase.      

                                                                     

 

                                                                  Figure 7 

 

Figure 7 displays the dynamics of the minimization objective function vs the realized 

variance. Being the objective function only driven by returns dispersion in this particular 

case, the graph displays a steep increase in the objective function as realized variance shot 

up in early 2020. It should be remembered that unlike the Model discussed further below, 

in which we want to maximize a function, here our aim is minimization. Suc an increase in 

the function is obviously sign of loss of “efficacy” of the models to reach optimum point at 

the given market conditions. Realized Variance in the graph was scaled by 10. DCC was 

the worst performer, maintaining significance distance from the others for all three years, 

SBEKK,DVECH and CCC yielded similar results showcasing small differences on their 

curves while DBEKK clearly overperformed. This graph would suggest that the model 

performed best under DBEKK conditional covariance specification for the ETFs. 
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                                                   Figure 8 

 

In Figure 8 the efficient frontier is plotted for the forecasting sample timeline. It’s an ex-

post  efficient frontier as in the standard framework, where the line represents the optimal 

allocation of portfolios weights in order to maximize mean portfolio return for a given 

level of risk. As we can see our portfolios lie above the frontier, this is because they’re 

obtained through a dynamic allocation with changing weights at each itineration, while the 

classical efficient frontier only offers a static snapshot evaluated at a given time (in this 

case at the end of our forecasting horizon). As we can see, all portfolios performed better 

than the one suggested by the frontier, hinting that even the most misspecified of our 

models, if actively managed, can outperform the “optimal” static allocation. S&P500 and 

the equally weighted portfolio lie within the frontier as their weight are constant and thus 

are accounted for in its optimization process. As we notice, they’re far from being optimal, 

even in a static environment. 

 

In Tables 3.7 and 3.8 below are reported the weights of the different asset allocations 

according to the various portfolio and the average value of the maximization objective 

function in our minimum variance framework for the various models. A number of 
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descriptive statistics and performance metrics are presented, amongst which: Realized 

volatility computed as the absolute value of daily returns, RMSE adjusted for volatility 

computed as the square root of the average square difference between realized volatility 

and GARCH forecast estimates normalized by realized volatility in order to present the 

measure of fit as a percentage of the realized volatility itself, Information ratio using the 

S&P500 index as benchmark portfolio, the VaR at 95% significance level and the Sharpe 

Ratio over the Fed 3-months Treasury bill return rate. 

The Sharpe ratio was computed with the closing ofthe time varying rates posted on a daily 

basis. 

              TABLE 3.7: Portfolios Weights 

  S-BEKK D-BEKK D-VECH DCC CCC 

QQQ 0.006 0.020 -0.005 0.024 0.025 

FXO 0.032 0.056 -0.012 0.028 0.022 

EEM 0.053 0.013 0.072 0.072 0.021 

XLU 0.203 0.199 0.172 0.189 0.188 

DBA 0.459 0.478 0.453 0.387 0.430 

VNQ 0.010 0.016 0.043 0.051 0.051 

XLV 0.237 0.218 0.278 0.248 0.262 

Obj. Fun. 0.520 0.426 0.498 0.779 0.535 

 

 

From Table 3.7 we can observe that for some of the assets the weight allocations s vary 

significantly across the different models. For instance, the weight allocation for XLV ranges 

from 0.218 to 0.278 in DBEKK and DVECH respectively, similarly, the weight allocation 

for DBA ranges from 0.3847 in DCC to 0.478 in DBEKK.  

An even bigger divergence was encountered in the average value of the objective function 

The D-BEKK model has the lowest average value at 0.426, while the DCC has the highest 

scoring 0.779. This suggests that the DCC model may be the least effective under variance 

minimizations constraints in the analysed sample, as we’re in a minimization framework our 

objective is to minimize the objective function. We can also notice that the weight allocations 

for the different models relatively consistent across the assets, they’re all centred around 

DBA with DCC, as the most conservative in this regard, allocating 0.387 of its portfolio to 

it. In particular, all the models seem to distribute over 80% of the weights to three single 

assets namely DBA, XLU and XLV; with the second best falling significantly short at 7% 

(DCC-EEM). This shows that pure variance optimization through MGARCH leads to low 
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level of diversification in this study, however the assets are ETFs themselves so they’re 

diversified financial instruments even as stand alone. DBEKK scored the lowest in the 

objective function average suggesting it may be the model best fit to minimize the variance 

in this framework, while CCC surpassed both S-BEKK and DVECH at 0.5354. Moreover 

DCC which scored the highest in the objective function evaluation, is the one with the 

highest level of diversification giving the least weight to DBA compared to all other models 

and distributing the extra space to other less popular assets as VNQ and EEM. DVECH is 

the only model which has average negative weights for an asset, implying higher short sales 

over that asset along the horizon, in QQQ and FXO with weights -0.005 and -0.012 

respectively. 

 

TABLE 3.8: Descriptive Statistics and Risk adjusted Measures of portfolios log-returns 

  Mean Max Min 
Total 

Return RV VaR 
Sharpe 
Ratio 

Info 
Ratio RMSE_Adj 

S-BEKK 0.053 5.060 -5.857 40.243 0.901 -1.426 0.057 0.025 0.327 

D-BEKK 0.045 4.633 -7.218 34.219 0.953 -1.364 0.046 0.020 0.385 

D-VECH 0.050 5.048 -5.954 37.445 0.924 -1.352 0.052 0.023 0.422 

DCC 0.043 4.808 -7.360 32.516 1.002 -1.467 0.041 0.018 0.502 

CCC 0.040 4.948 -7.482 29.994 0.964 -1.434 0.039 0.015 0.406 

S&P 0.023 8.968 -12.765 17.262 1.610 -2.476 0.013     

Equal 
Weight 0.023 7.893 -12.258 17.062 1.356 -1.985 0.015 -0.001   

 

 

Referring to Table 3.8, we observe that the mean return and total return vary significantly 

across the different models. S-BEKK has the highest mean return of 0.053 and the highest 

total return of 40.24. On the other hand, CCC has the lowest mean return of 0.0397 and the 

lowest total return of 29.99. This suggests that S-BEKK may be the best model for generating 

returns and maximizing the performance of the portfolio. Additionally, the maximum and 

minimum returns for each model also vary significantly. S-BEKK still has the highest 

maximum return at 5.05, but it loses to both S&P500 and the equally weighted portfolio as 

they display much higher levels of volatility, while DCC has the lowest maximum return of 

4.8077. Similarly, CCC has the lowest minimum return of -7.48, while S-BEKK has the 

highest minimum return of -5.85. We can also see that the range of returns for each model 

is different. S-BEKK has the lowest range of returns, with a difference of 10.8 between the 

maximum and minimum, DCC, on the other hand, is the highest in this regard, with a 

difference of 12.5. By these measures alone it would appear that S-BEKK is the most stable 



71 

 

and appetible model amongst the ones analysed, as the data suggests that S-BEKK may be 

the best model for generating returns and maximizing the performance of the portfolio. In 

terms o realized volatility used as proxy of uncertainty in the marker DCC showcase the 

highest level at 1.002, while S-BEKK the lowest at 0.901. Moving on to the VaR DCC still 

brings along the highest loss -1.426 with 5% probability, while the SBEKK’s is also quite 

high following close behind with a VaR of -1.43 and ranking sthirs amongst the models, 

right behind the CCC at -1.43. These values are in line with the average 5% quantiles of the 

single assets showcased in the in-sample analysis which is a bit counterintuitive since the 

forecasting sample was characterized by a quite higher level of volatility. The relatively low 

VaR of the portfolios is good evidence of the efficacy of the minimum variance framework, 

at least in balancing risk. The lowest VaR was displayed by the DVECH model, close enough 

to the others, there doesn’t appear to be any significative difference amongst the VaRs of 

different portfolios. In terms of Sharpe Ratio s-BEKK has to be preferred as well, outclassing 

the second-best portfolio by 0.06 at 0.0572.  CCC scores quite purely compared to the others, 

with a Sharpe Ratio of 0.039. Information Ratio displays then same dynamics, with SBEKK 

coming on top 0.0251 and CCC placing last with 0.015, other models are centred around 

0.02. Since we computed the Information ratio using the S&P500 Index as benchmark this 

indicates that all portfolio convincedly beat the market in risk-adjusted terms as well and not 

just in gains or stability. Finally, we take a look at the Adjusted RMSE, being normalized 

with respect to the realized volatility it represents some sort of unfitness of the models to the 

noise of the market in percentage terms. It should be highlighted that using realized volatility 

computed as absolute value of the returns, although simple in application, can be quite 

misleading and we shouldn’t be too confident in this “fitness results”. Regardless, SBEKK 

had the best performance under this metrics as well with 0.327, which is still quite an high 

value as it expresses a percentage. The worst performer was DCC at 0.502 which was 

surprisingly overtaken by the CCC at 0.405. CCC relative performance in this metrics was 

quite unexpected as it lagged behind in most of the analysis so far, her however he performed 

better than DVECH as well, placing extremely close to the DBEKK at 0.385. 

 

Overall, by comparing the various metrics we can conclude that SBEKK model is the 

superior model within a simple variance minimization framework. It dominated all of the 

performance risk indices by a good margin on average, however it lost to the DCC in terms 

of average Objective function evaluation which may indicate that this model was more 

performance oriented rather than purely focused on risk minimization. As it displayed the 
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lowest Realized volatility this may sound counterintuitive, however its was amongst the 

highest, suggesting that it was more skewed towards extreme returns than DBEKK and 

DVECH. CCC was by far the worst performer, but in the RMSE Adjusted, dominated one 

another in different metrics making it harder and more subjective to judge which one 

performed better. DCC had the highest Objective function evaluation and highest VaR in 

absolute terms indicating  a relatively risky allocation , it was the model which most 

differentiated amongst the different assets in terms of weight allocations strangely enough 

may be one of the main drivers behind its poor performance, proof of is its RMSE which 

was the highest. Under the assumption that RMSE gives solid evidence of unfitness in this 

sample the choice to hold a portfolio with higher level of diversification respect to its 

competitors ,may not be the cause of DDC performance but rather proof and consequence 

of its poor predictive ability in the sample . All models displayed a really high Adjusted 

RMSE, which would indicate significant model misspecification. Main drivers o this 

outcome are probably the gaussianity assumption, which facilitates estimations at the cost 

of misspecification on the tails f the distribution. This was further accentuated by the global 

crisis which it the whole economy during our forecasting timeframe, causing a structural 

change in the data dynamics at least in the short term, far higher volatility was pervaded the 

market respect to our sample observations with an increase of extreme values; our models 

failed to capture this distorted price structure, however it should be noted that every single 

portfolio significantly outperformed the S&P500 and the equally weighted under all metrics 

suggesting that our volatility estimates, and optimization choice still yielded superior 

performance to passive investment, even under adverse conditions which weakened further 

the already weak Normality assumptions.  

 

 

3.3.2 PORTFOLIO OPTIMIZATION: VaR CONSTRAINT 

We now move on to a more complex model, introducing VaR constraints and investors risk 

aversion. We introduce two different kind of parameters, one parameterizes aversion to 

dispersion in returns (tau), while the other is linked to the constrained we impose to the 

VaR(gamma). In particular we constraint our portfolio such that the VaR tolerated by the 

investor can’t be higher than gamma. In this case our objective function is to maximize a 

function of the portfolio expected return and a penalty loss for variance exposure, under a 

Var constraint and a constraint on the expected value of our portfolio such that we want it to 

be higher than the expected value of the market, indexed by theS&P500. 
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In “Portfolio Optimization with Conditional Value-at-Risk Objective and Constraints" by R. 

Kouwenberg and R. Vorst, published in The Journal of Banking and Finance in 2004, used 

a range of risk aversion parameter values between 0 and 5 in their analysis of portfolio 

optimization with a conditional value-at-risk (CVaR) objective function. The authors note 

that the optimal value of the risk aversion parameter will depend on the investor's risk 

preferences. In this analysis, we chose to use a range of risk aversion parameter values “tau” 

based on recommendations in the literature. Specifically, we used a value of 0.5 as a 

benchmark for the limiting case of an highly risk tolerant investor which mostly aims to 

maximize expected return with much less regard to the risk it carries, a value of 5 as a 

benchmark for a moderately risk-averse agent based on the recommendation of Markowitz 

(1952) and other studies (e.g., Jagannathan and Ma, 2003; Kouwenberg and Vorst, 2004), 

and a value of 10 as a benchmark for a highly risk-averse investor. These values are 

consistent with the findings of previous studies, which have suggested a range of values for 

the risk aversion parameter depending on the level of risk aversion and the specific 

investment goals and constraints, such as “Robust Portfolio Optimization" by S. Boyd et al 

which, introduces a robust optimization framework for portfolio optimization that takes into 

account the uncertainty in the inputs. The paper suggests a range of risk aversion parameter 

values between 0.1 and 10. By using a range of values for the risk aversion parameter, we 

are able to explore the impact of different levels of risk aversion on the optimized portfolio, 

and to provide a more robust analysis that takes into account a variety of risk preferences. 

As for tau, the appropriate value of gamma in portfolio optimization with VaR constraints 

depends on the investor's risk preferences and investment objectives. In the literature, 

different authors have used different values of gamma based on their assumptions about the 

investor's risk tolerance. For example, Meucci (2009) in “Risk and asset allocation (Vol. 1). 

Springer Science & Business Media” suggests using gamma values ranging from 1% to 10% 

of the portfolio value, depending on the investor's risk aversion. He notes that a gamma value 

of 1% would correspond to a 99% confidence level for VaR, while a gamma value of 10% 

would correspond to a 90% confidence level. Similarly, DeMiguel et al. (2009) “Optimal 

versus naive diversification: How inefficient is the 1/n portfolio strategy?” consider gamma 

values ranging from 1% to 5% for different risk tolerances. Pelizzari in “A stochastic 

dominance approach. European Journal of Operational Research (2015)” considers gamma 

values ranging from 0.5% to 5. Here due to values  of 3% and 7.5% were chosen benchmarks. 

In our optimization problem, the gamma value is a parameter that we use to set the minimum 

value we want our VaR to have. This parameter is inversely related to the quantile of the 
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theoretical distribution of our portfolio. We specify the gamma value based on the desired 

confidence level for the VaR constraint. Since we want our VaR at a 95% confidence level 

to be higher than -gamma, this means that the 0.05 quantile of the portfolio return distribution 

has to be associated with a higher quantile of an unknown distribution. We considered two 

different scenarios: a risk-averse investor, for which we wanted to associate a low gamma 

value, and a risk-tolerant investor. To set the gamma value for the risk-averse investor, we 

took the average of the 7.5% quantiles of the sample return series as the value of gamma. 

For the risk-tolerant investor, we took the mean of the 3% quantiles of the sample return 

series as the value of gamma. This choice of gamma coupled with the three choice of tau 

allow us to study the performance of the portfolio under six different risk scenarios for each 

model. The maximization problem falls in the third of the three main categories discussed in 

chapter 2.2 and can be expressed as follows: 

 

                    Max(wt’Et-1[rt] -τwt’Htwt)                  (5) 

 

Subject to: 

 

                 wt’Et-1[rt] + Zα(wt’Htwt)1/2 >=-ϒ           (6) 

 

                       Wt’Et-1[rt] >= Et-1[rmkt,t]                  (7) 

 

                                zt’i <=1.66                              (8)    

 

                                    wt’wt=1                              (9) 

 

to iterate for every t=1,..,T 

 

Where zt is an auxiliary variable defined as zt=[|w1,t|,..,|wN,t|]’, and i an Nx1 vector of ones. 

(5) Is our maximization objective function, with wt’E[rt] expressing the expected value of 

the portfolio return in (t-1), since the optimization is carried on in a dynamical setting in 

which in each period we want the optimal portfolio weights to hold until the next iteration. 

rt is our Nx1 vectors of asset returns, in this application N=7, the expected value is computed 

as the sample moving average for the first 50 observations and through an AR(1) 

specification from the 51th onwards. τwt’Htwt expresses the penalty term of our objective 
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function, with the conditional variance estimated through MGARCH forecasting , scaled by 

the risk aversion parameter “tau” which we introduced previously and represents investors 

aversion to dispersion in returns. (6) Is the analytical formulation of our VaR constraint, 

where Za is the quantile of the portfolio returns distribution corresponding with the (1-α) 

quantile of the loss distribution function. Since we assumed that our assets are distributed as 

Multivariate Normal and that the sum of the weights is equal to 1, wt’E[rt] is a convex linear 

combination of the returns which is distributed as an univariate Normal. This implies that Za 

is the z-score value of F-1(1-α), since we’re considering α=0.95 in our analysis, we obtain 

that F-1(0.05)=-1.645. We can reformulate the VaR constraint as:  

wt’E[rt] -1.645(wt’Htwt)1/2 >=-ϒ. Where ϒ is the risk aversion factor, indexing aversion to 

extreme realization, we introduced above. In other words this constraint set a lower boundary 

for the accepted values of our portfolio at 95% confidence, i.e it sets a minimum on the VaR.  

(7) Introduces a lower boundary to our portfolio Expected returns, coinciding with the 

expected return of the market portfolio which was computed as a sample moving average of 

the market return proxied by the S&P500 index. (8) Allows for the option of short selling up 

to a maximum of 33%  per unit, this value was chosen as neighbourhood of regulatory 

constraints on short sales, which are quite heterogeneous, but often lay within the range of 

the 30%. Lastly (9) imposes the constraint that the capital has to be fully invested in the 

portfolio and I can’t invest more capital than what I have (unless I resort to short selling, but 

the overall invested capital still stay the same as the extra capital gets balanced by the 

counterpart carrying negative weight). It’s important to remember that the algorithm gets 

itinerated and find an optimum set of points for each period of the horizon T (here T=756), 

it’s a conditional one step ahead optimization framework, in which optimum points don’t 

get selected by the algorithm evaluating possible scenarios and interdependencies further 

than ahead than one period in time. In other words we’re running T optimizations, 

independent from one another, the only layer od intertemporal dependency is driven by our 

AR(1,1) and MGARCH(1,1) components which are both presents in our objective functions 

and constraints; however being a one step iteration algorithm, each objective function gets 

maximized in each period of time without accounting for intertemporal optimization in other 

words the objective functions and constraint are not bounded by predictions on future events 

and the maximization doesn’t aim to find an optimum for the whole timeframe at each 

evaluation, but just looks for a “static” optimum point. 
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We will now present a series of graphs regarding some of the results of the analysis, the 

graphs will be pertaining the most and least risk averse scenario, to draw graphical remarks 

in comparison f the two limiting cases. 

 

 

Figure 9.a 



77 

 

 

 

      Figure 9.b 

 

 

In Figure 9.a, representing the least risk averse scenario, DVECH and S-BEKK 

outperformed the rest of the models consistently, netting 68.22% and 60.56% return 

respectively over the investment horizon. DBEKK and DCC are close behind, at 58.56% 

and 57.80% respectively, while CCC was the worst performer with a total return of 49.24%. 

The equally weighted portfolio scored worse than the S&P500 at 17.06%. There is a steep 

drop in all portfolio’s returns in the middle o 2020 in coinciding with the peak of the Covid-

19 outbreak which pushed downwards all returns in negative zone, following the decline a 

bull rend dominated the market until January 2022 when returns started settling and no 

further significant increase was registered. It was during this window of time that the five 

portfolios significantly diverged from the market index.  Figure 9.b instead displays the 

most risk averse investors, their overall return is largely lower, amounting to roughly 50% 

of scenario of the other scenario, however DVECH still placed first 35.45% followed by 

SBEKK at 33.11% and DCC at 33.07%. CCC was still the worst performer. The order of 

performance of the various strategy did not change however their distance from the market 
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index was significantly reduced, with CCC scoring merely 7 percentage points above the 

S&P500.  

 

                                                Figure 10.a 

 

 

                                                                  Figure 10.b 
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Figures 10.a and 10.b, display the dynamics od the cumulative of the objective in the 

optimization process versus the Average realized variance of the portfolios, although the 

maximization algorithm doesn’t aim to maximize the function in an intertemporal 

framework, but looks for the optimum in each interval of time, the cumulative value of the 

function was shown to embody more meaningful graphical remarks. The Realized variance 

was multiplied by 100 in figure 10.b due to the low value of the target function, in order to 

give a better visual representation of its dynamics. Realized variances in the frameworks 

follow similar patterns, although in the more risk averse case we see lower relative peaks, as 

for the values of the objective function we have an explosive decrease in the risk averse 

framework, where it averages around -3000 with its lowest value displayed by the DVECH 

at -3196.46. In the most risk neutral scenario instead, the objective function had negative 

values only for the first quarter of 2020. After the collapse in prices and peak in realized 

volatility of the second quarter of 2020 due to Covid-19, it had a sharp increase, reaching 

positive values, and it no longer receded for the whole window, with maximum value at 

51.85 for DCC. This does not come as a surprise as more risk averse investors suffer 

significantly more from the penalty term in the maximization algorithm, while risk neutral 

ones, giving less importance to dispersion of returns and extreme values, don’t get punished 

as much by the penalty terms as in the objective function that parameter tau is 100 times 

smaller in Figure 10.a respect to Figure 10.b.  It should be pointed out that DBEKK 

performed best in both scenarios, with values of 63,62 and -2840.28 respectively. 

 

In the six tables below, ranging from Table 3.9A to 3.9F, the weights associated to the seven 

ETF under different risk aversion scenarios will be presented. Split for the decision making 

process in the portfolio optimization algorithm driven by the choice of the MGARCH model 

used to forecast the variance. The value of the maximization objective function is also 

displayed; the objective function values represent the level of “success” obtained in the 

optimization of the portfolio; therefore, higher objective function values indicate that the 

model was more successful in producing a minimum variance portfolio. 

It should be noted that being a multiple period optimization, the weights displayed are 

average values, computed as the average of the single value assumed in each iteration, 

counting 756) iterations. It’s important to note that these weights reflect also the presence of 

short selling, which we accounted for in our optimization problem up to 33%, and this 

weights are thus the resulting compensation along all the timeframe of reference (i.e an high 
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percentage of short sale on a certain asset will significantly lower the average net position it 

has in the portfolio) 

 

 

TABLE 3.9A: Average Weights and Obj. Function for τ=0.1; ϒ=1.84 

 

 

 

                 

 

 

 

 

 

 

        TABLE 3.9B: Average Weights and Obj. Function for τ=5; ϒ=1.84 

 

 

 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

τ=0.1; 
ϒ=1.84 S-BEKK D-BEKK D-VECH DCC CCC 

QQQ 0.198 0.231 0.189 0.165 0.1876 

FXO 0.049 0.059 0.026 0.037 0.0335 

EEM 0.006 -0.005 0.024 0.039 0.0046 

XLU 0.204 0.200 0.195 0.208 0.2247 

DBA 0.267 0.251 0.236 0.226 0.2359 

VNQ 0.022 0.038 0.057 0.044 0.0503 

XLV 0.254 0.227 0.273 0.266 0.2586 

Obj. Fun. 0.069 0.084 0.065 0.049 0.0626 

τ=5; ϒ=1.84 S-BEKK D-BEKK D-VECH DCC CCC 

QQQ -0.002 0.015 -0.008 0.016 0.018 

FXO 0.029 0.055 -0.011 0.025 0.017 

EEM 0.054 0.010 0.076 0.074 0.020 

XLU 0.205 0.201 0.170 0.190 0.187 

DBA 0.468 0.486 0.451 0.391 0.442 

VNQ 0.005 0.012 0.047 0.048 0.049 

XLV 0.240 0.221 0.273 0.240 0.263 

Obj. Fun. -2.323 -1.987 -2.452 -2.420 -2.265 
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             TABLE 3.9C: Average Weights and Obj. Function for τ=10; ϒ=1.84 

 

 

 

 

 

 

 

 

 

 

 

                     TABLE 3.9D: Average Weights and Obj. Function for τ=0.1; ϒ=1.24 

τ=0.1; 
ϒ=1.24 S-BEKK D-BEKK D-VECH DCC CCC 

QQQ 0.113 0.152 0.109 0.113 0.1233 

FXO 0.036 0.048 0.002 0.029 0.0202 

EEM 0.014 -0.016 0.036 0.042 0.0036 

XLU 0.216 0.211 0.192 0.204 0.2179 

DBA 0.348 0.343 0.317 0.265 0.2983 

VNQ 0.002 0.025 0.042 0.038 0.0441 

XLV 0.259 0.234 0.287 0.272 0.275 

Obj. Fun. 0.056 0.073 0.055 0.043 0.0546 

 

 

               TABLE 3.9E: Average Weights and Obj. Function for τ=5; ϒ=1.24 

τ=5; ϒ=1.24 S-BEKK D-BEKK D-VECH DCC CCC 

QQQ -0.014 0.011 -0.015 0.013 0.014 

FXO 0.025 0.052 -0.016 0.020 0.015 

EEM 0.057 0.008 0.080 0.075 0.021 

XLU 0.208 0.203 0.172 0.189 0.186 

DBA 0.472 0.494 0.444 0.382 0.437 

VNQ 0.002 0.012 0.045 0.046 0.047 

XLV 0.239 0.219 0.273 0.239 0.262 

Obj. Fun. -2.016 -1.857 -2.092 -1.980 -1.969 

τ=10; ϒ=1.84 S-BEKK D-BEKK D-VECH DCC CCC 

QQQ -0.004 0.013 -0.009 0.014 0.018 

FXO 0.029 0.055 -0.010 0.026 0.018 

EEM 0.055 0.010 0.077 0.075 0.021 

XLU 0.205 0.201 0.170 0.189 0.186 

DBA 0.468 0.488 0.451 0.391 0.443 

VNQ 0.005 0.013 0.047 0.048 0.049 

XLV 0.240 0.221 0.272 0.240 0.262 

Obj. Fun. -4.675 -4.015 -4.942 -4.892 -4.576 
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              TABLE 3.9F: Average Weights and Obj. Function for τ=10; ϒ=1.24 

 

              

 

 

 

 

 

 

 

 

From the tables above we can see that the different GARCH models produced similar results, 

with only minor variations in the weights assigned to each asset in the portfolios while 

moving from tau =5 to tau=10, this pattern is present for both gammas and indicates a 

decreasing marginal impact of risk aversion to dispersion of returns, such patterns will 

obviously be mirrored in the Descriptive statistics displayed in the next set of tables. E can 

observe that higher the level of risk aversion (higher tau values), the lower the weights 

assigned to riskier assets, such as EEM and VNQ. On the other hand, the lower the level of 

risk aversion (lower tau values), the higher the weights assigned to these assets. Similarly, 

we can observe that the higher the value of gamma, the higher the weights assigned to riskier 

assets, and vice versa. This relationship between gamma and the level of risk aversion is 

expected, as a higher value of gamma means that the investor is less risk-averse, and 

therefore assigns lower weights to riskier assets. Analysing the objective function values, we 

can observe that the S-BEKK and D-VECH models produced lower values than the other 

models beside in the tables with value of tau equal to one, indicating that they performed 

worse in terms of minimum variance portfolio optimization but still better than other in a 

more risk neutral environment. This is particularly true for DVECH which scored the worse 

objective function evaluation in most of the tables. In contrast, DBEKK higher target 

function levels, evidence that it may be more effective in producing minimum variance 

portfolios than other models. However, it is worth noting that the differences in objective 

function values between the models are relatively small, indicating that all models can 

produce effective minimum variance portfolios. It’s also important to highlight that DVECH 

τ=10; ϒ=1.24 S-BEKK D-BEKK D-VECH DCC CCC 

QQQ -0.015 0.008 -0.016 0.012 0.013 

FXO 0.024 0.052 -0.016 0.020 0.015 

EEM 0.058 0.009 0.081 0.076 0.022 

XLU 0.208 0.202 0.172 0.189 0.1859 

DBA 0.472 0.495 0.446 0.383 0.4385 

VNQ 0.002 0.013 0.046 0.047 0.047 

XLV 0.239 0.219 0.273 0.239 0.261 

Obj. Fun. -4.073 -3.757 -4.228 -4.001 -3.9813 
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and SBEKK scored particularly bad in the most risk averse settings with respect to tau, while 

in Table 3.9A and 3.9A they placed right after the DBEKK, having higher value in the first 

table which represents the least risk averse investors space. DCC and CCC have generally 

been more conservative with weights associated to those models being more equally 

distributed, CCC diverges from this trend only in the two scenarios associated to a value of 

0.1 for tau in which it gives more weight to XLU than any other of the models, but still 

within a moderate range of 0.22 for gamma=1.84 and 0.21 for gamma=1.24. 

In the objective function evaluations we can see a steep decline moving up in the risk 

aversion scale, such trend seems to be mainly driven by tau rather than gamma. Both Table 

3.9A and 3.9B have positive values for all objective functions with DBEKK scoring best in 

both cases with 0.084 and 0.073 respectively, while DCC hit the lowest at 0.049 and 0.043 

respectively. In the second set of tables (3.9B and 3.9E) all values had already turned 

negative and then doubled in magnitude in the most risk averse frameworks in which the 

lowest was reached by DVECH in both cases with values of -4.9 and -4.3 for gamma values 

of 1.84 and 1.24 respectively, while the highest was still reached by DBEKK with values of 

-4,75 and -4,015.It's also worth noting that in all combinations but the ones with lowest tau 

all the different models  are centred around DBA, with an average weight of around 0.4. This 

is because it’s the ETF with lowest variance and correlation, both in the in-sample analysis 

than in the forecast estimates as the two are unavoidably linked. 

 In terms of individual assets, we can observe some interesting trends. We can see that all 

tables values for the wights of DBA are consistently higher than those of other assets, 

implying that it may be closer to the optimal ETF within the optimization framework 

amongst the ones considered in this sample, the model which consistently gave more weight 

to DBA is the DBEKK which is also the one with highest objective function values, 

enforcing the idea of the strength of the DBA within this framework regardless of the risk 

aversion combination. In particular Tables 3.9A and 3.9D, we can see that the weights 

assigned to DBA are quite lower than the ones assigned to it in the other risk aversion spaces 

being 0.267 and 0.348 respectively, which would seem counterintuitive as an higher level of 

risk aversion should lead to a more diversified portfolio. This is however in line with the fact 

that DBA has lower projected variance and correlation within the GARCH framework, and 

thus is preferred by the more risk averse investors; in fact, in Table 3.9A its value is the 

lowest amongst all the different weights it was assigned in other risk settings. 

Another outlier is VNQ which has been subject to heavy short selling by all models in all 

settings with weights equal all lower than 0.005, beside in the more risk neutral setting in 
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which it peaked under DVECH with 0.057. Similarly, FXO reached its maximum of 0.059 

in the same environment with DBEKK, however that was also roughly the average it had 

amongst most models in all the different scenarios, the normalized variance of its allocation 

was the smallest. These two outliers are assets which have been subject to heavier short 

selling respect to the others, leading to a convergence of their net position on the portfolio 

towards zero in this case, it may have been negative.  All other ETF have been almost equally 

split in the different models, with weights centred around 0.2. It’s also worth noting that 

despite VNQ and FXO being close to zero across tables on average, there only negative 

weights present are QQQ in Tables 3.9B,3.9C,3.9E,3.9F in the s-BEKK model and EEM in 

Tables 3.9A and 3,9D in DBEKK model; which although negative are still close to zero. 

This implies that our resulting “average portfolio” is indeed a long portfolio under all 

GARCH models all risk aversion settings considered in this analysis. 

In the six tables below (Table 3.10A to 3.10F) a number of descriptive statistics are reported 

for the daily log-returns of the different portfolios.  We have average return, max and min, 

Total return which is the total return over the three years of the investment horizon, Realized 

volatility (RV), Value at risk(95%), Sharpe ratio computed as the excessive return of the 

portfolio over the 3-month Fed Treasury Bill, Information Ratio(IR) computed using the 

market return  (indexed by the performance of the S&P500) as benchmark and  Root Mean 

Squared Error Adjusted(RMSE_Adj) evaluated for the volatility and normalized through 

realized volatility. RMSE is a measure of the accuracy of a statistical model in predicting 

values., a low RMSE indicates that the model is better at predicting the future volatility of 

the asset.Here we use RMSE to deduce the accuracy of the various MGARCH models 

employed in predicting volatility, as a realized value for daily volatility we take realized 

volatility, although it’s effectiveness is contested in the literature due to its highly noisy 

nature, it’ simple to compute which makes it a handy benchmark; RV was computed as the 

square root of the square daily realized returns of the various portfolio or as the absolute 

value of the realized return. RMSE was than normalized by dividing it by the average 

Realized volatility in order to resolve scale issues and make data easier to compare. In other 

words the RMSE_Adj is the “unfitness” of our model to volatility in percentage terms. 

 

𝑅𝑀𝑆𝐸𝐴𝑑𝑗 =

√∑ (𝜎𝑡,𝑀𝐺𝐴𝑅𝐶𝐻 − |𝑟|𝑡)
2

𝑇
𝑇

⁄

√∑ 𝑟𝑡
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Where the numerator is the standard RMSE for volatility, while the denominator is the 

Normalization term i.e. the average realized volatility of the forecast sample, while rt is the 

return of the generic time-varying portfolio, whose weights are time conditional and depend 

on the specific GARCH model and risk aversion scenario we’re analysing.  

 

 

TABLE 3.10A: Descriptive statistics of portfolio log-returns for ττ =0.1; ϒ=1.84. 

 

 

Table 3.10A represent the scenario with least risk averse investors (low τ  and high ϒ), this 

is the framework in which we expect to see the highest returns overall and highest degree of 

risk taken. D-VECH model outperformed all other models with a mean return of 0.0902 and 

a total return of 68.215. The S-BEKK model had the second-highest total return of 60.556, 

followed by D-BEKK, DCC, and CCC. These results suggest that the D-VECH model is the 

most profitable, on the other hand, the CCC model had the lowest mean and total returns of 

0.065 and 49.231, respectively. With the Sharpe Ratio and D-VECH again performed the 

best with a Sharpe Ratio of 0.073. The DCC is a close second with a Sharpe Ratio of 0.071. 

The other models had Sharpe Ratios ranging between 0.0548 to 0.068. These results suggest 

that D-VECH and DCC models provide better risk-adjusted returns than other models, 

within the space of risk-taking investors. The D-VECH model has the highest Information 

Ratio of 0.06, which means it has outperformed the S&P500 in risk-adjusted terms. This 

τ=0.1; 
ϒ=1.84 Mean Max Min 

Total 
Return RV VaR 

Sharpe 
Ratio 

Info 
Ratio RMSE_Adj 

S-BEKK 0.080 4.534 -5.772 60.556 1.151 -1.907 0.068 0.049 0.344 

D-BEKK 0.078 5.154 -14.638 58.564 1.384 -1.900 0.055 0.052 0.420 

D-VECH 0.090 4.860 -7.111 68.215 1.216 -1.838 0.073 0.060 0.470 

DCC 0.077 3.912 -4.837 57.799 1.050 -1.654 0.071 0.04 0.493 

CCC 0.065 4.948 -6.167 49.243 1.142 -1.702 0.056 0.037 0.466 

S&P500 0.023 8.968 -12.765 17.262 1.610 -2.476 0.013     

Equal 
Weight 0.023 7.893 -12.258 17.062 1.356 -1.985 0.015 -0.001   
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result suggests that the S-BEKK model may be the best choice for investors who want to 

outperform the market. The other models had Information Ratios ranging from 0.037 to 

0.052.The S-BEKK model had the highest VaR(95%) of -1.9074 amongst the actively 

managed portfolios, which means it is the riskiest portfolio in terms of potential losses. The 

other models had VaR(95%) ranging from -1.65 to -1.83 with S&P500 hitting-2.476.The S-

BEKK model had the lowest RMSE_Adjusted of 0.344, which means that it was the most 

accurate in forecasting volatility. The other models had RMSE_Adjusted values ranging 

from 0.42 to 0.493. Comparing the results of the MGARCH models with the S&P500, the 

S&P500 had a mean return of 0.0228 and a total return of 17.2619, which is lower than all 

models except the equally weighted portfolio. The S&P500 had the lowest Sharpe Ratio of 

0.0131 and the highest VaR(95%) of -2.47, thus despite having low expected return and high 

variance it’s extreme losses were also severe.In conclusion, the D-VECH and S-BEKK 

models have provided the best risk-adjusted returns and outperformed the S&P500 in terms 

of risk-adjusted performance. The S -BEKK model was the most accurate in forecasting 

volatility but had also the highest potential for losses. The CCC model had the lowest 

performance across all metrics.  

 

TABLE 3.10B: Descriptive statistics for ττ =5; ϒ=1.84 

 

 

Table 3.10B shows the results of portfolio optimization for investors a higher level of 

aversion to dispersion of returns (tau=5) compared to the models in Table 3.10A. The results 

demonstrate that the performance of the models varied significantly across different metrics, 

emphasizing the importance of selecting an appropriate model based on an investor's goals 

and risk tolerance. The D-VECH model had the highest mean return of 0.0529, indicating 

its potential to generate higher returns compared to the other models. The S-BEKK model 

τ=5; ϒ=1.84 Mean Max Min 
Total 

Return RV VaR 
Sharpe 
Ratio 

Info 
Ratio RMSE_Adj 

S-BEKK 0.051 4.534 -4.798 38.777 0.854 -1.387 0.058 0.023 0.345 

D-BEKK 0.047 4.622 -6.929 35.204 0.943 -1.357 0.048 0.021 0.414 

D-VECH 0.053 4.861 -5.124 39.968 0.887 -1.288 0.058 0.025 0.476 

DCC 0.043 2.814 -4.195 32.482 0.819 -1.282 0.050 0.016 0.494 

CCC 0.037 4.948 -6.155 27.907 0.886 -1.340 0.040 0.012 0.475 

S&P 0.023 8.968 -12.765 17.262 1.610 -2.476 0.013     

Equal 
Weight 0.023 7.893 -12.258 17.062 1.356 -1.985 0.015 -0.001   
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had the second-highest mean return of 0.0513, while the D-BEKK model had the highest 

realized volatility of 0.9431, which may result in a higher potential for losses. In terms of 

volatility parsimony, the DCC model once again demonstrated the highest accuracy, with a 

realized volatility of 0.82, as expected the realized volatility for all models was lower 

compared to Table 3.10A caused by the higher variance penalty term in the objective 

function of our optimization algorithm. Regarding risk-adjusted returns, D-VECH had the 

highest Sharpe ratio of 0.058 followed by S_BEKK at 0.0575 and by the DCC at 0.050, the 

CCC model once again had the lowest Sharpe ratio of 0.04, although in table 310A it had 

won over the DBEKK by 0.001.D-VECH had the highest information ratio (IR) of 0.0251, 

indicating that it generated the highest excess return over the S&P 500 benchmark compared 

to the other models. The S-BEKK model had the second-highest IR of 0.0227, followed by 

the D-BEKK model with an IR of 0.0207. The CCC still stands at the bottom with an IR of 

0.0117, while the equally weighted portfolio lost to the market with an IR of -0.001.In terms 

of total return, the D-VECH model generated the highest return of 39.97 followed closely 

by the S-BEKK model with a return of 38.78. The D-BEKK model generated a total return 

of 35.2, while The CCC once again had the lowest total return of 27.90. The maximum return 

in Table 3.10B was generated by the S&P 500 with a value of 8.96, while the highest 

maximum return for the models was generated by the equally weighted portfolio with a value 

of 7.9. DCC had the highest minimum return of -4.19, while S&P 500 hit a value of -12.7652. 

CCC had the highest maximum return of 4.9, followed by DVECH. As for the VaR SBEKK 

has the highest one at -1.387, while the DCC displays the lowest by a significant margin 

with 1.282, closely followed by the DVECH at 1.288. Finally, in terms of accuracy in 

volatility forecasting, the RMSE adjusted by realized volatility for the S-BEKK model was 

0.345, which is the lowest by a significant margin as all the others are centred around 0.45.  

D-BEKK also fared relatively well with 0.414 in second place.  
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TABLE 3.10C: Descriptive statistics for ττ =10; ϒ=1.84 

τ=10; 
ϒ=1.84 Mean Max Min 

Total 
Return RV VaR 

Sharpe 
Ratio 

Info 
Ratio RMSE_Adj 

S-BEKK 0.051 4.534 -4.858 38.315 0.851 -1.389 0.058 0.022 0.344 

D-BEKK 0.047 4.622 -6.911 35.223 0.939 -1.347 0.048 0.021 0.414 

D-VECH 0.052 4.868 -5.247 38.951 0.886 -1.284 0.056 0.024 0.477 

DCC 0.042 2.899 -4.195 31.738 0.818 -1.275 0.049 0.015 0.495 

CCC 0.035 4.948 -6.162 26.522 0.885 -1.327 0.038 0.010 0.474 

S&P 0.023 8.968 -12.765 17.262 1.610 -2.476 0.013     

Equal 
Weight 0.023 7.893 -12.258 17.062 1.356 -1.985 0.015 -0.001   

 

In Table 3.10C we increase investor risk aversion further up to 10 which leads to a decrease 

of the investor utility obtained from increase in wealth at the cost of risk. In this framework 

the DVECH still has the highest mean at 0.052, followed by S-BEKK at 0.051, and CCC has 

the lowest mean at 0.035. The maximum return is once again 4.948 for CCC, while the 

minimum return is -6.911 for D-BEKK.In terms of total return, D-VECH has the highest 

total return at 38.951, followed closely by S-BEKK at 38.315. CCC has the lowest total 

return at 26.522. This indicates that both S-BEKK and D-VECH are able to provide higher 

returns to investors despite their risk preferences. The realized volatility is lowest for DCC 

at 0.818 and highest for S&P at 1.610.VaR(95%) is lowest for DCC at -1.275 and highest 

for SBEKK at -1.389 but even this ceiling amounts roughly to half respect to the one 

showcased by S&P500 at-2.476.In terms of Sharpe Ratio, S-BEKK has the highest value at 

0.058, surpassing fore the first time the D-VECH at 0.056. CCC has the lowest Sharpe Ratio 

at 0.038. The Information Ratio is highest for D-VECH at 0.024, followed by S-BEKK at 

0.022. CCC has the lowest Information Ratio at 0.010 and the equally weighted still loses to 

the market at -0.001. Finally, the RMSE_Adj is the highest for DCC at 0.495, and the lowest 

for S-BEKK still at 0.344. This results are quite consistent with the one obtained in Table 

3.10B which would seem to implicate that beyond a given a threshold an marginal impact of 

increase of investor aversion to dispersion of the return is negligible.  
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TABLE 3.10D: Descriptive statistics for ττ =0.1; ϒ=1.24 

 

 

In Table 3.10D we shifted ϒ to 1.24, indexing higher risk averse investor towards extreme 

realizations. Here the DVECH model had the highest mean return at 0.076. The maximum 

return was achieved by the S&P 500 at 8.9683, while the D-BEKK model had the highest 

maximum return among the MGARCH models at 4.722. The minimum return was lowest 

for the DCC model at -4.09 and highest for the D-BEKK model at -11.435. 

In terms of total return, the D-VECH model had the highest among the MGARCH models 

at 57.7623while the CCC had the lowest total return among the MGARCH models at 

39.56.When considering realized volatility, the DBEKK had the highest value at 1.11, while 

the DCC model had the lowest at 0.9. Looking at VaR, the D-BEKK model had the highest 

value among the MGARCH models at -1.633, while the DCC model had the lowest at -1.42. 

When considering Sharpe ratio, the D-VECH model had the highest value among the 

MGARCH models at 0.0766, while the S-BEKK model was a close second at 0.0702.  

The information ratio was highest for the D-VECH as well with a 0.0438 ratio, while the 

CCC model had the lowest at 0.024. The equally weighted portfolio still displayed negative 

information ratio at -0.001. Finally, the RMSE_Adj was highest for the DCC model at 

0.4860, while the S-BEKK model had the lowest at 0.3404., maintaining its static trend in 

the sample. The  performance of the models varied across the different statistics. While the 

S-BEKK model had the lowers RMSE_Adj proving its good fit relative to the others, it still 

had a lower total and mean return compared to the D-VECH, although it displayed lower 

realized volatility and VaR. The D-BEKK model had the highest maximum return among 

the MGARCH models, but also had the lowest minimum return and highest VaR and realized 

τ=0.1; 
ϒ=1.24 Mean Max Min 

Total 
Return RV VaR 

Sharpe 
Ratio 

Info 
Ratio RMSE_Adj 

S-BEKK 0.066 3.160 -4.601 50.142 0.922 -1.479 0.070 0.034 0.340 

D-BEKK 0.064 4.722 -11.435 48.242 1.135 -1.633 0.055 0.038 0.418 

D-VECH 0.076 3.328 -6.342 57.762 0.978 -1.494 0.077 0.044 0.465 

DCC 0.066 3.322 -4.097 49.843 0.900 -1.423 0.071 0.033 0.486 

CCC 0.052 3.640 -4.527 39.548 0.947 -1.463 0.053 0.024 0.467 

S&P 0.023 8.968 -12.765 17.262 1.610 -2.476 0.013     

Equal 
Weight 0.023 7.893 -12.258 17.062 1.356 -1.985 0.015 

-
0.001   
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volatility. The  D-VECH mean and total return, Sharpe ratio, and information ratio among 

the MGARCH models. The DCC model had the highest RMSE_Adj value.  

 

TABLE 3.10E: Descriptive statistics for ττ =5; ϒ=1.24 

 

 

 

In Table 3.10E The S-BEKK model has a relatively low maximum return of 3.07, a median 

low at -4.17, with total return of 33.13, making it a relatively risky investment. The D-BEKK 

model has the lowest minimum return of -6.8 and VaR of -1.3491, making it a suboptimal 

portfolio allocation model for extreme value averse investors driven by a lower parameter ϒ. 

However, it displays a relatively low adjusted RMSE value of 0.41, placing right after the 

CCC as in the other scenarios. The D-VECH model has the highest mean return of 0.0474, 

highest Sharpe ratio of 0.0572, and highest total return of 35.87 among the MGARCH 

models, indicating that it has performed well across several metrics. Is VaR of -1.2094 is 

relatively low as well, and as in all other frameworks it possesses the highest information 

ratio of 0.0194. The DCC model has the lowest volatility of 0.76 and VaR of -1.2862, his 

average returns also stays right behind the DVECH in second place while their Sharpe ratio 

are equal at 0.057, however its adjusted RMSE is quite high at 0.49. The CCC instead fares 

quite badly under all metrics, with the lowest mean and total return, high volatility and low 

performance ratio of 0.041 and 0.009 which lace him last in both of them. Overall, the D-

VECH model has outperformed the others in this scenario as well in several metrics, 

including the highest mean return, highest Sharpe ratio, and highest total return among the 

MGARCH models. However, it is relatively risky with a high VaR and realized volatility 

τ=5; 
ϒ=1.24 Mean Max Min 

Total 
Return RV. VaR 

Sharpe 
Ratio 

Info 
Ratio RMSE_Adj 

S-BEKK 0.044 3.077 -4.177 33.131 0.763 -1.263 0.055 0.016 0.343 

D-BEKK 0.041 4.622 -6.853 30.908 0.899 -1.349 0.044 0.015 0.416 

D-VECH 0.047 3.319 -4.280 35.870 0.799 -1.209 0.057 0.019 0.468 

DCC 0.045 2.446 -3.500 33.835 0.762 -1.193 0.057 0.016 0.490 

CCC 0.034 3.611 -4.421 25.918 0.790 -1.286 0.041 0.009 0.472 

S&P 0.023 8.968 -12.765 17.262 1.610 -2.476 0.013     

Equal 
Weight 0.023 7.893 -12.258 17.062 1.356 -1.985 0.015 -0.001   
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The D-BEKK model is quite unnoticeable in this scenario, its predictive ability according to 

RMSE stick out respect to the other but it shows high VaR and volatility and no particular 

performance in other metrics to make up for it.  

 

 

TABLE 3.10F: Descriptive statistics for ττ =10; ϒ=1.24 

τ=10; 
ϒ=1.24 Mean Max Min 

Total 
Return RV VaR 

Sharpe 
Ratio 

Info 
Ratio RMSE_Adj 

S-BEKK 0.044 3.035 -4.177 33.110 0.762 -1.263 0.055 0.016 0.343 

D-BEKK 0.040 4.622 -6.567 30.258 0.895 -1.338 0.043 0.015 0.415 

D-VECH 0.047 3.387 -4.280 35.446 0.798 -1.204 0.057 0.019 0.467 

DCC 0.044 2.446 -3.498 33.071 0.762 -1.200 0.055 0.016 0.489 

CCC 0.034 3.614 -4.520 25.704 0.790 -1.266 0.041 0.009 0.472 

S&P 0.023 8.968 -12.765 17.262 1.610 -2.476 0.013 0.000 0.000 

Equal 
Weight 0.023 7.893 -12.258 17.062 1.356 -1.985 0.015 -0.001 0.000 

 

 

In Table 3.10F we are in the scenario with highest risk aversion combination take in 

consideration in our analysis, but the results are quite similar to the ones obtained under the 

former combination of gamma and tau. In terms of mean return, the D-VECH model 

performed the best with a mean return of 0.047, while the CCC model had the worst mean 

return of 0.034. Looking at the maximum return, the D-BEKK model had the best 

performance with a maximum return of 4.62. On the other hand, the DCC model had the 

worst performance in terms of maximum return with a value of 2.44. In terms of the 

minimum return, the D-BEKK model had the best performance with a minimum return of -

6.57. While the DCC performed best, high maximum and low minimum has been a persistent 

characteristic of DBEKK along all frameworks, which is also explained by the relative high 

realized volatility and VaR it carried. When looking at the total return, the D-VECH model 

had the best performance with a value of 35.4464, hardly different for the case with tau=5, 

implying once again significant decreasing marginal impact of investor aversion to risk on 

portfolios performance within the models of reference. The CCC had the worst performance 

with a value of 25.7.Moving on to the risk metrics, the D-BEKK model had the worst 

performance in terms of risk with a RV. of 0.895 and a VaR of -1.3382, while the DCC 
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performed on top eith an RV  0.762 and a VaR of -1.2.For the Sharpe ratio and IR, the D-

VECH model had the best performance with a ratio of 0.057and 0.019 respectively, while 

the CCC model had the worst performance with a ratio of 0.041 and 0.009.RMSE_Adj 

remained pretty much the same also here, with SBEKK on top and DBEKK right after.  

 

Drawing conclusive remarks about the data presented in the tables, the first important thing 

to notice is the significant decline of the marginal impact of risk aversion on the various 

portfolio outcomes. While an increase from tau equal 0.1 to tau equal 5 yields significant 

differences, the same doesn’t apply in the next step from tau equal 5 to tau equal 10. 

Symmetrically, an increase in gamma increases portfolio performance and risk significantly 

even for the same level of tau.It makes sense that in our framework, with a constraint on the 

95%VaR, decreased aversion to extreme outcomes leads to consistently higher returns. 

Moreover, in the two risk parameters in this sample show oppositive behaviour with IR being 

the highest for gamma equal 1.84 and tau equal 0.1, while SR being the highest in the least 

risk aversion setting for gamma in which tau equals 0.1 and gamma equals 1.24. In particular, 

we observe that the D-VECH model consistently has the highest mean and total returns 

among the MGARCH models in all six tables. This indicates that the D-VECH model is the 

best model in terms of returns generation. On the other hand, the CCC model consistently 

displays the lowest mean and total returns, making it an inferior model for portfolio 

optimization. The S-BEKK model follows closely behind the D-VECH model. It is worth 

noting that the models' performance is affected by varying levels of risk aversion. We can 

see that increasing risk aversion tends to decrease mean and total returns across all models, 

which is expected since higher risk aversion implies a lower tolerance for investment risk.  

Considering the models' performance in terms of volatility. We observe that the DCC model 

consistently displays the lowest realized volatility across all tables, indicating its superiority 

in forecasting optimization processes with the objective of simply reduce the variance. On 

the other hand, the D-BEKK model tends to have the highest realized volatility across all 

tables, making it a relatively riskier investment, while S-BEKK model is in the middle. We 

observe that the DCC model consistently displays the lowest VaR across all tables, 

indicating that it is better able to control downside risk and provide downside protection for 

investors. This is consistent with its performance in realized volatility, however, it sacrifices 

potential returns for the sake of downside protection The S-BEKK and D-BEKK models, on 

the other hand, tend to have the highest VaR across most tables, hinting that they are 

relatively riskier investments with higher potential for losses. D-BEKK model tends to have 
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mixed results across different scenarios, displaying high maximum returns in some scenarios 

but also high minimum returns and VaR in others. This indicates that the model's 

performance is not entirely predictable and can vary based on different factors such as the 

level of risk aversion and investor preferences. Another important consideration when 

selecting a model for portfolio optimization is the trade-off between risk and return. We 

observe that the D-VECH model consistently generates higher returns but is also relatively 

riskier, with high realized volatility and VaR. On the other hand, the DCC model provides 

downside protection but also generates lower returns. Therefore, it is important to consider 

an investor's risk tolerance and preference for downside protection when selecting a model 

for portfolio optimization. Regarding the Sharpe ratio, we observe that the D-VECH model 

consistently displays the highest Sharpe ratio across all tables. In particular, the D-VECH 

model has the highest Sharpe ratio in Tables 3.10A, 3.10B, 3.10D, 3.10E, and 3.10F, 

indicating that it is the most efficient model in generating risk-adjusted returns for investors. 

The S-BEKK model also displays a high Sharpe ratio in most tables, following closely 

behind the DVECH. On the other hand, the CCC model consistently displays the lowest 

Sharpe ratio across all tables, indicating that it is the least efficient model in generating risk-

adjusted returns. As for the Information ratio across all tables, we observe that the D-VECH 

consistently displays the highest information ratio, indicating that it generates the most 

excess returns per unit of active risk. The S-BEKK also displays a relatively high information 

ratio in most while, the CCC consistently displays the lowest information ratio across all 

tables, indicating that it generates the least amount of excess returns relative to a benchmark 

index. Finally, we move to the RMSE_Adj, which measures the difference between the 

predicted and actual volatility of a portfolio, normalized to the realized volatility of the 

portfolio model. Across all tables, we observe that the S-BEKK model consistently displays 

the lowest RMSE_Adj among the MGARCH models, indicating that it is the most accurate 

predictor of volatility. The D-BEKK model also displays a relatively low RMSE_Adj in 

most tables,. On the other hand, the CCC model consistently displays the highest RMSE_Adj 

among the MGARCH models, being the least accurate predictor of volatility under this 

metrics. It’s also worth noting that RMSE values are quite static, with minimal variation for 

different combination of risk aversion-VECH model consistently displays the highest Sharpe 

and information ratios, the DCC model consistently displays the lowest VaR, and the S-

BEKK model consistently displays the lowest RMSE_Adj. These findings further reinforce 

the superiority of the D-VECH model in generating risk-adjusted returns, the DCC model in 

controlling downside risk, and the S-BEKK model in accurately predicting volatility. In 
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conclusion, the six tables provide a comprehensive comparison of the performance of 

different MGARCH models under varying levels of risk aversion. We can see that the D-

VECH model consistently outperforms the other models in terms of generating returns and 

providing higher risk-adjusted returns, while the S-BEKK model is more accurate in 

predicting volatility. The CCC model consistently displays inferior performance across 

different metrics, making it a less attractive investment. The SBEKK performance is inferior 

to the DVECH in risk-adjusted metrics as well, but as a standalone it displays significantly 

lower VAR, RV and RMSE. 

 

 

4. CONCLUSIONS 

In this study we presented and in-depth review of some of the most popular GARVH models 

in multivariate time series, and an introduction to portfolio optimization in the Markowitz 

framework. We then proceeded to apply these models to a real dataset. In particular we 

estimated and forecasted the variance covariance matrices and annexed parameters for seven 

ETFs through five different MGARCH models specifications under the assumption of 

gaussianity: SBEKK, DBEKK, DVECH CCC and DCC. We compared and discussed the 

results drawing conclusions,, and applied the results in to forecast the covariance matrices 

later used in two different application of portfolio optimization within the Markowitz 

framework. We introduced and analysed limitations ensuing in estimation of the parameter 

matrices for large datasets in the DVECH and the biasness of the DCC forecasts. In both 

applications to portfolio optimization DCC scored the highest Adjsusted RMSE and lowest 

absolute value for the optimizations objective functions, this is partially caused by the 

mispefication of the model within the dataset in which the innovations’ conditional  

correlations matrices Qt  don’t converge to the correlation matrices of the residuals Rt 

asymptotically, despite being their true population values. In portfolio optimization, the 

application of more complex models like Black-Litterman under a more fitting distribution 

such as the Generalized Hyperbolic Distribution (GHD) will be addressed in further 

research. 

In this study, two optimization models were applied to the same dataset to assess their 

performance, and the results obtained were found to be quite heterogeneous. 

The first model aimed to minimize risk, which was proxied by portfolio variance, while the 

second model aimed to maximize return penalized by variance and under a Value at Risk 

(VaR) restriction. The investors for both models were different, with the first model designed 
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to appeal to risk-averse investors, and the second model catering to those who were willing 

to take on more risk to achieve higher returns, under different degrees of risk aversion 

scenarios. Despite being linked to a minimum return constrained against the S&P500, the 

two models had different objectives. The first model aimed to minimize risk by minimizing 

the portfolio's variance, while the second model aimed to maximize returns while keeping 

risk under control. Consequently, the models used different approaches to allocate assets and 

achieve their objectives. The results obtained from the two optimization models were quite 

different. The cumulative return of the second model was higher in the most risk-neutral 

scenario and lower in the most risk-averse one. In the second model, DVECH was the 

outperformer in both scenarios, while SBWKK was the outperformer in the first model. 

However, in the VaR portfolio DVECH wasn't consistently the over-performer in all metrics, 

and its objective function evaluation was consistently lower than the SBEKK's in all risk 

scenarios.The standard variance approach favoured the SBEKK, which had the highest 

Sharpe ratio and information ratio and the lowest realized volatility and adjusted RMSE. 

However, it also displayed the highest VaR, which was not fully captured in the evaluation 

of its objective function and choice of weights. This means that the model with the highest 

Sharpe ratio and information ratio maynot necessarily be the best-performing model, and 

investors need to consider other evaluation metrics to make an informed decision.The second 

methodology emphasized extreme realizations, penalizing the SBEKK, which displayed 

high extreme values under all risk-aversion scenarios. The second model's results were more 

heterogeneous and open to interpretation, with DVECH dominating in all risk-adjusted 

returns. However, it was not consistently the over-performer in all metrics. Its objective 

function evaluation was consistently lower than the SBEKK's and DBEKK’s in all risk 

scenarios, but it outperformed the SBEKK in other metrics, such as realized volatility and 

Sharpe ratio. The optimal choice in the second model was the DBEKK, which displayed the 

highest average objective function in all six scenarios. The weight portfolio allocation was 

different for both models, both centred around DBA, followed by XLU and XLV. The VaR 

models gave significant importance to QQQ as well in the two scenarios with tau=0.1, while 

the others coincided with a much closer representation to the minimum variance.In risk-

adjusted performance metrics, the second model consistently scored above the first, which 

netted results inferior even to the most risk-averse scenario in Sharpe Ratio. Realized 

volatilities level of scenarios with tau=0.1 were worse than in the first model, while all the 

others showcased superior performance. The only metrics in which minimum variance 

portfolios overcame the competing ones was adjusted RMSE. However, having computed it 



96 

 

with respect to realized volatility, it was an extremely noisy measure. It is important to 

consider this while evaluating the results of these models. Overall, the study results indicate 

that the second methodology was significantly superior in performance, even considering 

different scenarios and spanning a wide range of evaluation criteria. The results also 

highlight the importance of understanding the objectives and constraints of an optimization 

model, as well as the underlying assumptions, which may influence the performance of the 

model. It is, therefore, critical for investors to be aware of these factors and use them to 

inform their decision-making process. However, regardless of their relative performance 

both models consistently overperformed the market indexed by the S&P500, under all 

market conditions proving the profitability of active management. The study also highlights 

that different investors have different risk-reward trade-offs and hence require different 

optimization models. Therefore, investors need to identify their investment goals, risk 

tolerance, and other investment constraints before selecting an appropriate optimization 

model. 

In conclusion, the study shows that the selection of an appropriate optimization model is 

crucial for investors, and the models need to be evaluated based on multiple metrics, 

including risk-adjusted returns, realized volatility, Sharpe ratio, and information ratio. The 

evaluation of these metrics allows investors to compare the performance of different models 

and make informed investment decisions. Moreover, the study reveals that the weight 

portfolio allocation was different for both models. thus, the allocation of portfolio weights 

depended on the investors' risk aversion levels and investment objectives.The study results 

also indicate that the choice of optimization model can significantly impact the portfolio's 

performance. Investors need to carefully evaluate the available models and select the one 

that best aligns with their investment goals and risk tolerance levels. Finally, the results show 

that there is no one-size-fits-all solution when it comes to portfolio optimization. The choice 

of optimization model needs to be tailored to the investors' risk-reward trade-off and 

investment objectives. This highlights the importance of understanding the investors' needs 

and designing appropriate investment strategies that align with their objectives. The study's 

results indicate that the second methodology was significantly superior in performance, but 

the choice of optimization model will depend on the investors' risk aversion levels and 

investment objectives. 
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