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Abstract 
The research discusses the relationship between industrial emissions of greenhouse gases 

(GHG) and financial markets, and how the latter can play a key role in reducing or increasing 

global carbon emissions. the study focuses on the effects that companies' GHG emissions can 

have on future cashflows and how this can impact stock market prices and returns. If this 

effect is large enough and statistically significant, GHG emissions are able to influence 

companies cost of capital and thus management decisions. Unlike other studies, this research 

makes no assumptions about the presence of different types of investors in the market, is fully 

empirical and uses Two Stage Least Squares regression to avoid estimation bias due to 

reverse causality between returns and GHG emissions 
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Abbreviations and Nomenclature 

 
CAPM – Capital Asset Pricing Model 

CESM – Community Earth System Model 

CO2 – Carbon Dioxide 

CO2e – Carbon Dioxide equivalent.  

CH4 – Methane 

CMIP – Coupled Model Intercomparison Project 

DEMETER – Decarbonisation Model for Endogenous Technologies Emission Reductions 

DICE – Dynamic Integrated Climate-Economy model 

EDGAR – Emissions Database for Global Atmospheric Research 

ESG – Environmental, Social, and Governance 

GDP – Gross Domestic Product 

GHG – Greenhouse Gases 

GMM – Generalized Method of Moments 

HadGEM – Hadley Centre Global Environmental Model 

kWh – Kilowatt-hour 

IAM – Integrated assessment models 

IV – Instrumental Variable 

IPCC – Intergovernmental Panel on Climate Change 

M&O – Maintainance and Operations 

N2O – Nitrous Oxide 

NASA – National Areonautic Space Administration 

NCAR – National Center for Atmospheric Reserch  

OECD – Organization for Economic Co-operation and Development 

OLS – Ordinary Least Squares 

R&D – Research and Development 

R&DICE – Research and Development Integrated Climate-Economy model 

REMIND – Regional Model of Investment and Development 

TSCS – Two Stage Cross-Sectional 

TSLS – Two Stages Least Squares 
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USD – United States dollars 

WCRP – World Climate Research Programme 
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Chapter 1 

Introduction 

 
Between 2012 and 2021 S&P 5001 and STOXX 6002 market capitalization increased by 

10,62% and 10,92% yearly, while the absolute emissions of companies that were publishing 

Carbon Dioxide equivalent 3 (CO2e) emissions in the two indexes from 2012 decreased by 

4,93% and 4,80% yearly, respectively (Refintiv, 2021). Over the same period, absolute CO2e 

emissions in the United States and Europe decreased by 0,02% and 2,35%, leading to 6 and 3 

billion tonnes of CO2e emitted in each territory (OECD, 2021). the research explained how 

industrial air pollution is the first driver of climate change which is the cause of the rising 

global temperature and sea level (IPCC, 2007). Nordhaus (2018) explains how Greenhouse 

gases (GHG) remain partially trapped in the atmosphere for short-term, long-term, and 

permanent. GHG in the atmosphere keep solar radiation longer over the globe, preventing them 

from going out into space. Higher radiation results in higher temperatures, which also 

contribute to polar ice melting, and thus rising sea levels. Rising sea and temperature levels 

generate a series of climate disasters such as the disappearance of some islands, severe 

droughts, famines, wildfires, and extreme weather events generated by storms such as floods 

and structure damages. the board of climate experts created to inform policymakers globally, 

named the Intergovernmental Panel on Climate Change (IPCC), explained how, if we want to 

mitigate and contain those disasters, we should reduce CO2e global emissions to keep the 

average global warming under 2°, preferably 1.5° if we want to avoid entire island states being 

covered by the water (IPCC, 2021). We will refer to carbon emissions as the atmospheric 

emissions of any GHG expressed in CO2e units for the purposes of this study. Since industrial 

 
1 S&P 500 is a stock index made with 500 leading publicly traded companies in the United States, and it is 

the representative stock index of the United States market 
2 STOXX 600 is a stock index made with 600 leading publicly traded companies in Europe, and it is the 

representative stock index of the European market 
3 It is a measurement of the potential for greenhouse gases to cause global warming. It is used to compare the 

global warming effects of the emissions of various GHG: for example 1 tonne of CO2 = 1 tonne CO2e, while 1 
tonne of Nitrous Oxide = 320 tonnes CO2e 
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emissions of GHG and their effect on solar radiation is the main driver of global warming, 

financial markets can play a key role in increasing or reducing global carbon emissions.  

Financial markets can embrace industry and company changes by discounting the effects 

that some companies’ features can have on future cashflows, reducing stock market prices 

today. As managers and shareholders are generally stock price maximizers, they tend to adapt 

the projects of the company to mitigate negative externalities and maximize profits (Harris, 

2022). Relatively to carbon emissions, the negative impact on future cashflows can be 

generated by regulations restricting certain practices, carbon tax, and competition with 

technological innovators. All these future externalities represent a risk for a company emitting 

GHG. Riskier future cash flows are discounted at a higher cost of capital, represented by the 

weighted sum of the cost of equity and debt (Cheema-Fox et al., 2019). A higher cost of capital 

for the company means that discounted future cashflows are lower, and so it is the fundamental 

stock price. This higher cost of capital should push managers to pursue projects that mitigate 

carbon emissions to reduce the cost of capital when the cost of mitigating carbon emissions is 

lower than the increased costs of capital due to the higher carbon emissions (Schmidt, 2014). 

Investing in projects that have lower carbon intensity than projects in the same industry, can 

instead reduce the cost of capital of a company and specifically the cost with which that project 

is financed. Carbon intensity is defined as the tonnes of Carbon dioxide (CO2) emissions over 

1 million United States dollars (USD) in revenues generated by an investment project or a 

company (Refinitiv, 2021). Financing a project with higher carbon intensity than the projects 

with which it competes, increases the carbon intensity of the industry, and may even reduce its 

absolute level of carbon emissions. Investing in projects that are less carbon intensive than the 

ones in the same industry, instead, reduces the carbon intensity of that industry and may also 

reduce its absolute carbon emissions (H. Hong and M. Kacperczyk, 2009).  

Since managers and shareholders are generally stock price maximizers, they take decisions 

to maximize companies’ profits. They do this either by increasing the scale of the activity or 

by launching new businesses. When these activities directly or indirectly emit GHG, these 

emissions grow together with profits.  

This research tries to answer the following questions: Relatively to secondary markets, how 

does a company's carbon emissions level influence its cost of capital? How can we observe the 

effect on the cost of capital by isolating the increase in carbon emissions from the increase in 

revenues?  
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To study the phenomena that regard investors’ climate change awareness, researchers rely 

on very different types of studies, but all of them can be included in the two following streams: 

Research is based either on economic equilibrium models to assess the presence of impact 

investors (Harris 2022, T. De Angelis et al. 2021), or on asset pricing models that assess ESG 

products features or ESG preferences and rely mostly on ESG scores or variables built through 

machine learning tools (J.B. Berk, and J.H. van Binsbergen, 2021). Sometimes the results of 

these models are contradictive. the model presented in the following research relies only on 

empirical data and on the Two Stages Least Squares (TSLS) estimation with an Instrumental 

Variable to overcome endogeneity biases. 

The presented model is purely empirical and relies on a TSLS estimation to avoid errors of 

a model that otherwise would suffer from endogeneity bias (James and Singh, 1978). the model 

may suffer from reverse causality, which is a mechanism that the research tries to explain: 

carbon emissions and the related externalities may influence the cost of capital, and this in turn 

may influence the level of carbon emissions.  
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Chapter 2 

Industry Contribution to Climate 

 

Human activity has generated significant global change, particularly through the emission 

of GHG into the atmosphere. the largest contributor to GHG emissions is the industrial sector, 

primarily by burning fossil fuels for energy production. 

According to the IPCC, in 2018, the industrial sector accounted for approximately 31% of 

total GHG emissions globally. Within the industrial sector, the consumption and production of 

energy, specifically through the burning of natural gas, coal, and oil accounted for nearly 75% 

of these emissions (IPCC, 2021). 

In addition to energy production, the industrial sector also emits GHG through processes 

such as deforestation and land-use change, chemical production, and waste management. 

The impact of industrial carbon emissions on the global climate can be seen through the 

increasing concentrations of atmospheric CO2 and other GHG, which trap heat and warm the 

planet. This leads to a range of environmental and socio-economic impacts, including rising 

global temperatures, melting glaciers, sea level rise, more intense and frequent natural 

disasters, and changes to ecosystems and biodiversity (World Bank, 2021). 

To mitigate the impacts of human-generated global change, it is crucial to reduce industrial 

GHG emissions through transitioning to cleaner, low-carbon energy sources, increasing energy 

efficiency, and reducing waste and deforestation (IPCC, 2007).  

There is a large body of scientific evidence that confirms the role of industrial emissions in 

contributing to climate change. This evidence comes from a variety of sources, including direct 

measurements of GHG emissions and atmospheric concentrations, climate models, and 

observational data on the impacts of climate change. 

One key line of evidence is the increase in atmospheric concentrations of GHG, particularly 

CO2, which is largely caused by human activities, particularly the burning of fossil fuels for 

energy production. the IPCC reports that CO2 concentrations have increased by about 40% 

since pre-industrial times and are continuing to rise (IPCC, 2018). 

Another important piece of evidence is the correlation between the increase in GHG 

emissions and the observed warming of the planet (IPCC, 2014).  
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Climate models 

Climate models have consistently shown that the warming trend observed in recent decades 

can only be explained by taking into account the increase in GHG emissions caused by human 

activities. 

Additionally, observational data has demonstrated the effects of climate change, including 

rising sea levels, melting glaciers, and changes to ecosystems and biodiversity (Shaftel et al., 

2021). These impacts are consistent with the predictions of climate models and the expected 

consequences of global warming. 

CMIP 

The Coupled Model Intercomparison Project (CMIP) is a collaborative effort between the 

international climate modeling community and the World Climate Research Programme 

(WCRP) to evaluate and compare the performance of climate models. In CMIP, simulations 

are run using multiple climate models, allowing for a systematic comparison of model 

performance and the assessment of uncertainties in future climate projections. 

CMIP is a protocol for coordinating and comparing the results of climate model simulations 

conducted by multiple climate modeling groups around the world. the goal of CMIP is to 

provide a standardized set of simulations that can be used to assess and compare the 

performance of different climate models, and to evaluate the models' ability to simulate the 

Climate system of the Earth and its response to changes in atmospheric composition (Climate 

Model Intercomparison Project, 2021). 

In CMIP simulations, climate models are run under a range of scenarios, including historical 

conditions and future projections of GHG emissions. the results of these simulations are then 

compared and analyzed to evaluate the models' performance and to assess the response of the 

Climate system of the Earth to different GHG emission scenarios.  

The results of CMIP simulations have consistently shown that the observed warming trend 

in recent decades is extremely unlikely to be due to natural climate variability alone and can 

be explained only by the increase in GHG emissions caused by human activities (IPCC, 2013).  

The CMIP models have also provided robust projections of future climate change, including 

an increase in global mean surface temperature, rising sea levels, and changes in precipitation 

patterns. These projections have been used to inform policy and decision-making at the national 

and international level (IPCC, 2014). 
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CESM 

A comprehensive and integrated computer model of the Climate system of the Earth is called 

the Community Earth System Model (CESM). Scientists from all around the world use it to 

study and comprehend the Earth's climate and how it responds to changes in the seas and 

atmosphere. It was created and is maintained by the National Center for Atmospheric Research 

(NCAR). 

The CESM depicts all of the interactions between the ocean, atmosphere, sea ice, and land 

surface and the exchange of gases and energy between the atmosphere and the ocean. the model 

includes information on past and present climatic circumstances, including temperature, 

precipitation, and air composition observations. It is based on the physical, chemical, and 

biological laws that govern how the Climate system of the Earth behaves (NCAR, 2021). 

The model is run in CESM simulations under different conditions, such as historical 

conditions and projected GHG emission levels in the future. Based on these simulations, 

scientists may predict future impacts of climate change and assess how the Climate system of 

the Earth will behave under various GHG emission scenarios (IPCC, 2014). 

The outcomes of CESM models have repeatedly demonstrated that the observed warming 

trend started from the end of the last century cannot possibly be explained by natural climate 

variability alone but rather must be attributed to the rise in GHG emissions brought on by 

human activity. the results are in accordance with numerous lines of evidence, like the observed 

rise in atmospheric GHG concentrations, the seen warming of the oceans, and the observed 

melting of the polar ice caps (IPCC, 2014). 

CESM is a particular climate model created by NCAR, whereas CMIP is a protocol for 

coordinating and comparing the outcomes of simulations carried out by other climate modeling 

groups. While CMIP is intended to assess and compare the performance of various climate 

models, CESM is employed to simulate the Climate system of the Earth and its reaction to 

changes in atmospheric composition (NCAR, 2021). 

HadGEM 

The Hadley Centre for Climate Change at the UK's Met Office created the Hadley Centre 

Global Environmental Model (HadGEM), a climate model. HadGEM is used, like other climate 

models, to mimic the Climate system of the Earth and forecast future climatic changes. 

HadGEM begins the modeling process by simulating the processes that take place on Earth, 

including those that affect the ocean, atmosphere, sea ice, and land surface. the model integrates 
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information on both current and historical climate conditions, and the representations of the 

passage of energy, water, and gases between the atmosphere and the ocean (Collins et al. 2010). 

HadGEM is engineered in way that makes it more computationally efficient than other 

climate models, like CESM and CMIP, which is one of their main differences. This enables to 

operate the model on different computer systems, from powerful supercomputers to basic 

desktop computers (Jones et al., 2012). 

HadGEM is made to have a higher geographic resolution, which is another distinction it has 

over other climate models. As a result, the model can more accurately capture details of 

smaller-scale features and processes, as individual storms (Jones et al., 2012). 

HadGEM is used in a variety of scenarios, including past circumstances and future GHG 

emission forecasts, just like other climate models. Predictions on how the Climate system of 

the Earths will react to various GHG emission scenarios are then based on the outcomes of 

these simulations. 

MIROC 

A complex climate model, the Model for Interdisciplinary Research on Climate (MIROC), 

mimics how the Climate system of the Earth reacts to various environmental conditions, such 

as GHG emissions. the model depicts the ocean, atmosphere, sea ice, and land surface as well 

as the flow of gases, water, and energy between these elements (Watanabe et al., 2011). 

Beginning with the entry of data on GHG emissions, land use, and other environmental 

variables, such as information on past and present climate conditions, the modeling process in 

MIROC can begin. Following that, the model emulates the natural processes, like atmospheric 

circulation, ocean currents, and the movement of energy, water, and gases between the 

atmosphere and the ocean, that control the behaviour of the climate on the Earth. 

MIROC employs a non-hydrostatic atmospheric model, which is one of its main distinctions 

from other climate models like CESM, CMIP, and HadGEM. By not assuming that the 

atmosphere is in hydrostatic equilibrium, the model enables more accurate simulation of small-

scale atmospheric processes as deep convection and storms (Watanabe et al., 2012). 

The non-hydrostatic equilibrium refers to the assumption that the atmosphere is not in a 

state of hydrostatic equilibrium, meaning that the atmosphere’s pressure and density are not in 

balance with the gravitational force acting on the atmosphere. In traditional climate models, 

the assumption of hydrostatic equilibrium allows to simplify the mathematical equations that 

describe atmosphere’s behaviour. However, this assumption can lead to errors in the simulation 
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of certain atmospheric processes, such as deep convection and storms, that are important for 

the Earth's climate (Watanabe et al., 2011). 

The term "non-hydrostatic equilibrium" describes the idea that the atmosphere isn't in a 

condition of hydrostatic equilibrium, meaning that its pressure and density aren't in a balance 

that's proportional with the gravitational force operating on it. the assumption of hydrostatic 

equilibrium is employed in conventional climate models to streamline the mathematical 

equations describing the atmosphere’s behaviour. However, this supposition may result in 

mistakes when simulating key atmospheric processes that are crucial to the Earth's climate, like 

deep convection and storms (Watanabe et al., 2011). 

The model, for instance, can simulate changes in vegetation cover and land use brought on 

by human activities like agriculture and deforestation, and it can forecast the effects these 

changes will have on the Earth's climate, such as adjustments to temperature, precipitation, and 

atmospheric carbon dioxide levels. 

The outcomes of the MIROC simulations are then utilised, as in the other instances, to assess 

the model's effectiveness and create forecasts regarding the future climate of the Earth, 

including temperature, precipitation, and other important factors. These projections are used to 

guide policy and decision-making to mitigate and adapt to climate change and its effects, 

because they are computed on several scenarios of GHG emissions and other environmental 

conditions (IPCC, 2018). 

Integrated Assessment Models 

While climate models study the impacts of possible scenarios of carbon emissions on the 

earth, there are other models that forecast carbon emissions depending on socioeconomic 

scenarios, and their subsequent effect on earth’s average temperature. To model the carbon 

emissions generated by human activity, the Integrated Assessment Models (IAM) are used by 

academics. IAM knowledge from more than one domain into a single framework to answer to 

research questions or model phenomena that require multidisciplinary comprehension. These 

models are thus suited for a complex subject such as climate change (Nordhaus, 2019). 

DICE 

Nordhaus (2016) presents the latest published Dynamic Integrated Climate-Economy 

(DICE) IAM. In this framework Uncontrolled industrial CO2 emissions are given by a level of 

carbon intensity or the CO2- output ratio, σ(t), times gross output. Total CO2 emissions, E(t), 
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are equal to uncontrolled emissions reduced by the emissions-reduction rate, μ(t), plus 

exogenous land-use emissions.  

𝐸(𝑡) =  (𝑡)[1 −  (𝑡)]𝑌(𝑡) + 𝐸(𝑡)                                                                               (1-DICE)   

According to the DICE model, global carbon intensity decays at the empirical historical 

rate, which is 1,5% each year.  

𝜎(𝑡) =  𝜎(0)𝑒𝑥𝑝(−𝜐𝑡),       𝜐 =  1,5%.                                                                           (2-DICE) 

The emission reduction rate depends on the substitution between labour, capital and carbon 

energy, which is energy produced with fossil fuel combustion. This model, thus, depends on 

the hypothesis that a rise in the price of carbon energy will force economic agents to use more 

capital and labour rather than carbon energy to obtain this economic global output. This model 

takes the future path of carbon intensity as a simple function of time while the consumption of 

carbon emissions is an endogenous variable depending on carbon emissions’ price (Nordhaus, 

2016). 

R&DICE 

The Research and Development Integrated Climate-Economy model (R&DICE) model 

(Nordhaus, 2014) contributes to the climate change IAM literature, adding an endogenous 

model to forecast carbon emissions dependending on technology investments. Technology 

change has an impact on carbon intensity in the R&DICE model. In this case, induced 

innovation—which functions quite differently from substitution—is the mechanism at play. A 

rise in the cost of carbon energy will encourage businesses to create new procedures and goods 

that use less carbon than their current offerings. As a result, they make unofficial investments 

in research, development, and new information. New items and processes are created by new 

knowledge, which reduces the output's carbon intensity. We have eliminated the processes of 

substitution from the R&DICE model to streamline the analysis and concentrate it on the 

induced-innovation mechanism. the emissions equation in the R&DICE model reflects the 

presumption that all increases in carbon intensity happen because of induced innovation rather 

than substitution. While in the common DICE model carbon emissions are depending on 

substitution effect, in the R&DICE, industrial carbon emissions depend only on output and 

endogenous carbon intensity (t). 

𝐸(𝑡)  =  𝜎(𝑡)𝑄(𝑡)  +  𝐸(𝑡)                                                                                        (1-R&DICE) 

The DICE model undergoes one final modification when calculating carbon intensity. 

Estimates of technology developments are plugged in the common model to compute the no-

controls carbon intensity, or the carbon intensity without any climate change policy in the form 
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of regulations or carbon taxes. the carbon intensity in the R&DICE model is endogenous and 

is governed by the equation for induced innovation. According to this specification, carbon 

intensity and its change is a function of the amount of money spent on research for technical 

advancement that reduces carbon emissions. 

[𝑑𝜎(𝑡)/𝑑𝑡]/𝜎(𝑡) = 𝛹ଵ𝑅(𝑡)అమ
− 𝛹ଷ                                                                         (2-R&DICE) 

R(t) represents the energy sector's Research and Development (R&D) inputs for carbon-

based energy (in induced-innovation approach); Ψ1 is the productivity of research; Ψ2 is the 

elasticity of technology to research; Ψ3 is the depreciation rate of technology. Given the 

specification, industry, and time frame, the elasticity is thought to range between 0.05 to 0.20. 

Given the technology and the time frame. the depreciation rate is variously estimated between 

1 and 10 percent every year. These estimates are used as broad limitations to guarantee that the 

calibration generates accurate results. the calibrated equation used in Nordhaus (2014) research 

is equal to 

[ఙ(௧)ି ఙ(௧ ି ଵ)]

ఙ(௧ ି ଵ)
=  0,415 𝑅(𝑡),ଵଷଽ − 0,20. 

REMIND 

The Regional Model of Investment and Development (REMIND), presented by Luderer 

(2013), is another IAM studying climate change that, differently from other IAM, models 

carbon emissions as a function of energy demand, types and sources of energy, and their carbon 

intensity, computed as a ratio between grams of CO2e and Kilowatt-hour (kWh) rather than 

tonnes of CO2e and million euros of revenues. the energy composition, source, technology of 

conversion into energy, and kind of energy are used to forecast the energy demand and the 

carbon emission for each place and period. 

There are three distinct techniques to model carbon emissions, each dependent on different 

sources of energy. Given the types and sources of emissions, REMIND accounts for emissions 

at various levels of detail. According to sources, it determines the CO2 emissions from fuel 

burning, the Methane (CH4) emissions generated by the extraction of fossil fuels and domestic 

energy usage, and the Nitrous Oxide (N2O) emissions generated by the provision of energy. 

the energy system includes data on regional fossil fuel and biomass usage for each era and 

technological advancement. REMIND utilizes particular emissions factors, published by the 

EDGAR, that are calibrated to match base year GHG inventories for each fuel, area, and 

technology. Methods for reducing CH4, N2O, and CO2 from land-use change are not 

dependent on energy use. Three different approaches are used to establish baseline emissions, 
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by source (and thus dependent on the emissions factors), by econometric estimate, or 

exogenously. the CO2 emissions from cement manufacture and the CH4 and N2O emissions 

from waste disposal are estimated using econometric tools. Either the growth of the Growth 

Domestic Product (GDP), which serves as a proxy for waste generation, or the capital 

investment determines the driver of emissions in each situation, as a proxy for cement 

production in infrastructure. For industry and transportation N2O emissions, REMIND uses 

exogenous variables retrieved from outsourced scenario data. 

DEMETER 

The Decarbonisation Model for Endogenous Technologies Emission Reductions 

(DEMETER), presented by B.C.C. van der Zwaana et al. (2015), takes into account different 

costs of carbon and non-carbon energy. Carbon energy technologies release GHG in the 

atmosphere during the production, such as fossil fuels. Non-carbon energy do not release any 

GHG. This type of technology includes wind and solar power. the model accounts for different 

technological level, technological improvement, and thus cost efficiency. Technological 

improvements are endogenous and depend on learning-by-doing, meaning that corporates 

become more efficient as they consumed more a certain type of energy. This efficiency is 

reflected in a lower cost for the same amount of energy produced. DEMETER assumes carbon 

intensity time-dependent and an empirical reduction rate, as in the DICE model. the use of 

carbon energy, is instead modelled as a function of the price of the two types of energy and the 

elasticity between the two. the price of non-carbon energy is reduced faster by the learning-by-

doing effect since it is a rather new technology, still developing, compared to carbon energy. 

A scaling function g(), which is dependent on the cumulative capacity or cumulated energy 

delivered, incorporates learning-by-doing into the model. This scaling function illustrates that 

in comparison to when a high level of cumulative capacity is available, producing a given level 

of energy requires considerably more capital and Maintenance and Operations (M&O) costs 

when there is little cumulative capacity deployed.  

The problem with this approach is that individual firms alone are not able, often, to 

internalize learning effects in their prices. Corporates can, anyway, learn from their peers. For 

the model that will be presented, the sector’s cumulated capacity will be considered to have 

learning effects internalized by individual companies. the company’s emissions will be a 

function of carbon intensity and activity. Carbon intensity is built for each industry, taking into 

account the carbon emissions that vary only due to changes in the size of the sales. the yearly 

change in the engineered carbon intensity is considered endogenous, and dependent on 
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industry’s R&D investments, cost of capital, and a time varying intercept. the size of the 

activity is considered to be endogenous as well and given the cost of capital and GDP as a 

proxy for energy demand. 
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Chapter 3 

Literature Review 
 

The impact of Finance 

To study whether carbon emissions influence the riskiness of a company and its cost of 

capital, previous literature on climate finance has been considered. Climate finance is the 

branch focused on the relationship between investments and the impacts of climate change or 

the reduction or limitation of greenhouse gas emissions. In this branch, literature is split 

between two general streams: the first stream focuses on impact investors and the outcome 

from having responsible investment preferences. To this first stream are applied equilibrium 

models; the second focuses on Environmental, Social, and Governance (ESG) literature, and 

uses most modern asset pricing techniques theoretically and empirically, but it takes ESG 

scores as given and studies whether ESG scores, and not carbon emissions, have an impact. 

Results from both streams generally lead to controversial results. 
In investing for impact in general equilibrium (Harris, 2022), investors with heterogeneous 

philanthropic preferences maximize their utility, which is a function of wealth, environmental 

impact, and impression of environmental impact, in an equilibrium model. This model 

considers both primary and secondary markets, and firms with heterogeneous impacts and 

endogenous size. It is crucial that firms have an endogenous size because the main channel 

through which investors have an impact in this model is the change of size. It’s also possible 

for firms to change behaviours, but it is really fundamental for firms to change size depending 

on investors reallocating their capital. the research concludes that that is only with pure 

altruism, and not with the urgency of looking altruist, that investors can choose to put most of 

their money in firms reducing negative social impacts. It does not mean that holdings based on 

this urgency have no impact. Urgency holdings rely on influencing other investors in the 

primary markets to respond to its preferences, because the warm glow is focused on the 

secondary market, so, in the author’s opinion, it can’t proactively mandate more capital and 

put it in firms with high positive social impacts. 

Climate Impact Investing (T. De Angelis et al. 2021) is another equilibrium model that 

studies the relationship between climate investments, which are investments made to reduce 
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the impacts on climate changes, and their impact. the equilibrium model accounts for the 

percentage of climate investors on stock exchanges and the carbon emissions plans of the 

companies. the model seeks to study the effect of climate investors' negative screenings4 and 

climate uncertainty5 on invested companies' carbon intensity. Particularly, they discover that 

climate externalities (positive or negative) raise awareness in climate investors, which, through 

their screening, will contribute to influencing the cost of capital of negatively screened 

companies. When cost of capital is increased, a company is sometimes incentivized enough to 

invest in less carbon-intensive projects, to lower its cost of capital. When this happens, the 

carbon intensity of the company is decreased. Inversely, increasing uncertainty about the 

climate future, in terms of externalities such as climate change physical risk, regulation and 

technological innovation, tends to reduce companies’ incentive to mitigate their emissions. 

Subsequently to climate uncertainty, carbon intensity increases. 

The model presented in this research aims to study the same effect of concerned investors 

on cost of capital of carbon-intensive corporates, relying on empirical econometric analysis, 

and without making a distinction between environmentally concerned and non-

environmentally concerned investors. We can observe that two general equilibrium models 

have controversial results on the role of secondary markets on the influence of corporates’ 

social impact. 

The impact of impact investing (Berk, and van Binsbergen, 2021) contributes to the 

literature of asset pricing models by studying the effect of ESG financial products. In the 

research, the quantitative impact of ESG divestitures is evaluated. For divestitures to have 

impact they must change the cost of capital of affected firms. Divestments must alter the cost 

of capital of companies in order to have an impact. the proportion of capital invested by socially 

conscious funds, the proportion of targeted firms in the economy, and the correlation between 

the targeted firms and the rest of the stock market are the three inputs that are used to derive a 

simple expression for the change in the cost of capital as a function of each. the authors show 

that the change in the cost of capital can be closely represented by a straightforward formula 

given the common assumptions that underlie the Capital Asset Pricing Model (CAPM), the 

basic model in financial economics. A divestment strategy will result in a change in the cost of 

capital that has a size depending positively on socially conscious investors group of target 

 
4 Negative screenings refer to the choice of ESG investor to not invest and to divest in companies harmful 

for the environment, the society, or their own corporate governance 
5 Climate uncertainty refers to the uncertain effects of climate change on natural disasters 
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companies as a percent of the economy, negatively on the correlation between these companies 

and the entire stock market, and positively on the historical market risk premium. 

Results of this research show evidence of ESG divestures not being able to affect materially 

the cost of capital. This happens for the high correlation of ESG-targeted stocks with the rest 

of the market as well as for the small size of the wealth of socially conscious investors 

compared to the rest of the wealth on capital markets.  

Differently from this study, the model that is going to be presented will not consider 

divestitures of socially concerned investors but will consider carbon emissions as a factor 

influencing the cost of capital of a company. Thus, the research considers carbon emissions 

rather than the fact of being in or outside a set of ESG target companies.  

Derwall et al. (2011) point out that profit-seeking investors who think there is a temporary 

upward shift in predicted cash flows choose green companies. Most impressively, by using the 

screening strategy, investors can more effectively reach their ESG aim, but at a high cost: the 

cost of investing into an undiversified portfolio.  

Instead, a sizable portion of socially conscientious investors pressure polluting corporations 

to make reforms, according to Heinkel et al. (2001). This study actually showed that the capital 

costs of socially irresponsible enterprises were higher than those of socially responsible 

businesses, which are excluded from the universe of eligible investments by investors. In his 

conclusion, he stated that an ESG factor will have a negative alpha if it holds a long position 

in green stocks and a short one in non-green stocks. 

Pastor et al. (2021) also deny the existence of an ESG premium, and their study shows that 

this negative alpha is most apparent when financial markets' ESG preferences are stable. 

The previously mentioned insight can be found in Pastor et al(2021) .'s empirical study of 

financial market equilibrium with green investors. Companies having a high overall ESG rating 

should, in equilibrium, have a negative alpha. the two components of a two-factor model are 

the ESG-specific and market factors. They also show how to develop the ESG factor, whose 

portfolio weights are determined by the target stocks' ESG ratings. the strategy used in this 

work for the production of the ESG factor is different from that used in Fama and French's 

(1992) methodology, which first identifies companies with high and low exposures to a 

business feature of interest before creating a long short portfolio. 

Indeed, it is common to employ risk models that differ from the Fama and French factor 

model. Instead of developing a long-short portfolio of equities that are sorted by this attribute, 

Bolton and Kacperczyk (2021) create a carbon factor whose portfolio weights are proportional 
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to enterprises' carbon emissions. Both utilising ESG ratings as a cardinal variable and using 

ESG ratings as an ordinal variable can be used to generate an ESG factor. This has been proven 

throughout time by empirical investigation. Using the ordinal variable technique, ESG ratings 

are utilised to determine a group of green and non-green stocks. Value-weighting is a common 

practise for stock returns within each cluster, and the return of the ESG is the difference 

between the returns of the green and non-green portfolios.  

As stated by J.B. Berk, J.H. van Binsbergen (2021), risk models should beware of the fact 

that companies considered to have a negative societal impact appertain to few industries that 

may have specific risks for which the stocks have on average higher excess returns. the same 

probably happens when considering CO2e emissions, which are mainly concentrated in the 

energy and extractive industry. For this reason, the presented model will contain explanatory 

variables that control for the fact of belonging to these industries. the model presented in this 

research will exploit the risk factor approach, isolating the belongingness to a specific industry 

from the level of carbon emissions. 
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Chapter 4 

Corporate carbon emissions 

 
Corporate carbon emissions are greenhouse gas emissions that are caused directly or 

indirectly by business operations. These emissions can originate from a number of processes, 

such as the creation and consumption of energy, transportation, and the manufacture and 

consumption of goods. Corporate carbon emissions can be measured under three different 

Scopes, each in CO2e units. Direct emitting sources that are owned or controlled of an 

organisation produce scope 1 emissions. For instance, scope 1 covers the emissions from a 

trucking company's fleet of internal combustion engines. Consuming purchased power, steam, 

or other energy sources upstream from a company's primary operations results in scope 2 

emissions. Scope 3 encompasses all other emissions associated with a company’s operations 

that are not directly owned or controlled by the company (S&P Global, 2022). Therefore, scope 

3 emissions include several sources of indirect emissions in both the company’s supply chain 

and downstream from the company’s owned or controlled operations (e.g., the emissions from 

the in-use phase of a company’s products or services, such as the driving of a truck produced 

by an automobile manufacturer).  

The most carbon-intensive companies appertain to few industries (Berk and van Binsbergen, 

2021). Because the carbon emissions of a given business depend on a number of variables, 

including the processes and technologies employed, the industry's location, and the specific 

goods or services it provides, it is challenging to rank industries by carbon intensity. 

Additionally, when regulations and technological advancements change over time, an 

industry's carbon intensity may alter considerably. the following are 8 sectors that are usually 

regarded as being the most carbon-intensive: 
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Since the information on the three Scopes is reported after the end of the financial year, the 

published information starts to influence investors starting from the next financial period. That 

is why the past year’s carbon emissions in the three different scopes are used in the presented 

model as explanatory variables of the current year’s return.  

Under the efficient market theory (Fama, 1962), investors should be able to price all 

company information that is available, thus, even corporate carbon emissions. These actors 

should all share the same information regarding GHG that are being emitted by past and future 

companies’ projects and price this information with the same model. the problem with the 

current year’s carbon emissions is the fact that they suffer from reverse causality with the 

company's stock return. In fact, carbon emissions and their increase are influenced by the size 

of the revenue and the increase in them, because higher revenues normally mean a larger 

company’s activity which in turn means higher carbon emissions if that activity is a polluting 

one. As revenues increase carbon emissions, they also increase returns as they signal company 

growth and mean higher cashflows if the company’s marginal profitability stays still. Is thus 

reasonable to think that higher revenues generate both higher carbon emissions and returns. 

Investors concerned with the risks coming from emitting GHG, carbon emissions price 

negatively the company, making returns lower. To overcome this issue of reverse causality, 

and still be able to include the effect that the current level of carbon emissions can have on the 

Industry Description

Energy production
The energy sector is a major contributor to global carbon emissions, with fossil 
fuel-based electricity generation being a particularly carbon-intensive activity.

Heavy manufacturing
Industries such as steel, cement, and aluminum production require significant 
amounts of energy to produce, leading to high carbon emissions.

Transportation
The transportation sector is a significant contributor to carbon emissions, with the 
burning of fossil fuels for transportation being a major source of CO2 emissions.

Agriculture 
Agricultural activities such as livestock production and fertilizer use can also 
contribute to carbon emissions.

Chemical and petrochemical 
industries

These industries rely on fossil fuels for the production of chemicals, plastics, and 
other products, leading to high carbon emissions.

Mining
The extraction and processing of minerals and other raw materials can be energy-
intensive, leading to high carbon emissions.

Refining and petrochemical 
processing

The refining and processing of oil and gas is a carbon-intensive activity.

Construction
The construction industry consumes large amounts of energy, particularly for the 
production of cement, steel, and other building materials.
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cost of capital, the TSLS estimation is used with instrumental variables. This estimation method 

allows to avoid the effect of reverse causality. 
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Chapter 5 

Empirical Analysis 
 

Cost of capital model 

To understand how carbon emissions price stocks and influence their cost of capital, an 

extension of the Fama and French (1992) three-factors model is used. In addition to the three 

factors, scope 1, scope 2, and scope 3 absoulte emissions are added to the model together with 

a dummy variable that signals whether the company appertains to a carbon-intensive industry. 

This last variable is used in order to isolate industry-specific risks that are not linked to carbon 

emissions. Companies expected excess returns are explained by the following stochastic 

equation: 

𝑟 =  𝛽
ᇱ𝐹𝐹 + 𝛾𝐸 + 𝛿𝐷 + 𝜀  (1) 

𝑟 is the vector of excess returns of the stocks belonging to the considered market index 

𝛽 is the vector of slope coefficients of the excess returns of asset i on the 3 factors excess 

returns (Fama and French 1992) and an intercept, and 𝐹𝐹௧is the matrix made of an intercept 

and the vectors of the three factors excess returns. 

𝛽 = [𝛽, 𝛽ଵ, 𝛽ଶ,    𝛽ଷ];                                                                                                        

𝐹𝐹௧ = [1, 𝑀𝐾𝑇௧, 𝑆𝑀𝐵௧,   𝐻𝑀𝐿௧]; 

𝑀𝐾𝑇௧ is the excess return of the market in year 𝑡. This value is the value weighted average 

excess return of the index. 

𝑆𝑀𝐵௧ is the excess return made by the value weighted portfolio long on the first decile of 

stocks ordered in decreasing market capitalization size minus the last decile. 

𝐻𝑀𝐿௧ is the excess return made by the value weighted portfolio long on the first decile of 

stocks ordered in decreasing value of book to market ratio minus the last decile. 

𝛾 is the slope coefficient of the estimation of the excess returns of asset i on the sum of the 

three scopes of carbon emissions, and 𝐸,௧is the time series of the sum of the three scopes of 

carbon emissions.                                                                                        

𝐸,௧ = ൣ𝑆𝑐𝑜𝑝𝑒,௧
ଵ + 𝑆𝑐𝑜𝑝𝑒,௧

ଶ + 𝑆𝑐𝑜𝑝𝑒,௧
ଷ ൧; 

𝑆𝑐𝑜𝑝𝑒,௧
ଵ  are the tonnes of CO2e Scope 1 emissions of company 𝑖 in year 𝑡. 
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𝑆𝑐𝑜𝑝𝑒,௧
ଶ  are the tonnes of CO2e Scope 2 emissions of company 𝑖 in year 𝑡. 

𝑆𝑐𝑜𝑝𝑒,௧
ଷ  are the tonnes of CO2e Scope 3 emissions of company 𝑖 in year 𝑡. 

𝛿 is the slope coefficients of the excess returns of asset i on the intensive industry dummy 

variable, and 𝐷is the vector made of the carbon intensive industry dummy variable. the 

industry dummy variable is equal to 1 if the company appertains to carbon intensive 

industries, otherwise it is 0. the carbon intensive industries are the 8 reported in Table 1.  

𝐷 = [𝐷ாேீ + 𝐷ுெ + 𝐷்ோே +     𝐷ீோ + 𝐷ுா + 𝐷ெூே +    𝐷ோாி +    𝐷ைே] 

𝐷ாேீ  is a vector made of many elements as the number of companies. Each element is equal 

to 1 if the corresponding company belongs to the Energy Production industry, otherwise it is 

equal to 0. 

𝐷ுெ is a vector made of many elements as the number of companies. Each element is equal 

to 1 if the corresponding company belongs to the Heavy Manufacturing industry, otherwise it 

is equal to 0. 

𝐷்ோ  is a vector made of many elements as the number of companies. Each element is equal 

to 1 if the corresponding company belongs to the Transportation industry, otherwise it is equal 

to 0. 

𝐷ீோ is a vector made of many elements as the number of companies. Each element is equal 

to 1 if the corresponding company belongs to the Agricultural industry, otherwise it is equal to 

0. 

𝐷ுெ is a vector made of as many elements as the number of companies. Each element is 

equal to 1 if the corresponding company belongs to the Heavy Manufacturing industry, 

otherwise it is equal to 0. 

𝐷ுா is a vector made of as many elements as the number of companies. Each element is 

equal to 1 if the corresponding company belongs to the Chemical and Petrochemical industry, 

otherwise it is equal to 0. 

𝐷ெூே is a vector made of as many elements as the number of companies. Each element is 

equal to 1 if the corresponding company belongs to the Mining industry, otherwise it is equal 

to 0. 

𝐷ோாி is a vector made of as many elements as the number of companies. Each element is 

equal to 1 if the corresponding company belongs to the Refining and Petrochemical processing 

industry, otherwise it is equal to 0. 
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𝐷ைே is a vector made of as many elements as the number of companies. Each element is 

equal to 1 if the corresponding company belongs to the Construction industry, otherwise it is 

equal to 0. 

Unique Estimation 

Each coefficient in (1) is first uniquely estimated for every company and time period in the 

study through a Two Stage Cross Sectional (TSCS) regression. the TSCS regression is 

computed by averaging each variable in each period of time, and by regressing the time-varying 

average of the dependent variable on the time-varying average of the independent variables. 

Before averaging each variable, a time-series regression is done on 𝐹𝐹௧, the 3 French and Fama 

factors with an intercept for each company.   

In this way, it is possible to compute the coefficients over the three factors for each 

company. These coefficients are multiplied to the French and Fama factors for each year before 

being averaged. the estimation model used is an Ordinary Least Squares (OLS) regression, and 

is performed on the following expression: 

𝐸௧[𝑟] =  𝛽𝐸௧ൣ𝛽
ᇱ

𝐹𝐹൧ + 𝛾𝐸௧[𝐸] + 𝛿𝐸௧[𝐷]  (2) 

Time-varying estimation 

Each coefficient in (1), is then computed uniquely for every company, but once for each 

time period, in order to observe how coefficients change over time. To estimate time varying 

coefficients, a Cross Sectional regression is performed in each period. 

Before regressing the whole dataset in each period, a time-series regression is performed on 

𝑋௧, the 3 French and Fama factors with an intercept for each company.   

In this way, it is possible to compute the coefficients over the three factors for each 

company. Then, in each Cross-sectional regression, French and Fama Factors are multiplied 

by the company’s coefficients in each observation. 

The estimation model used is the Ordinary Least Squares (OLS) regression, and it is 

performed on the following expression: 

𝑟 =  𝛽ൣ𝛽
ᇱ

𝑋൧ + 𝛾𝐸 + 𝛿𝐷 + 𝜀  (3) 

The cross-sectional estimation is repeated in each period. Thanks to the Cross-sectional 

estimation, it is possible to observe whether estimated coefficients vary over time in value and 

statistical significance. 

The reverse causality of Greenhouse Gas emissions and returns 
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The expression (1), if estimated through a linear regression, would suffer of reverse 

causality. This happens because, when a company grows, its revenues increase together with 

its carbon emissions. When its revenues grow, the excess returns of a company generally 

increase, although the cost of capital may be influenced negatively by the increased carbon 

emissions. Reverse causality is a source of endogeneity, meaning that the error term will be 

correlated with the explanatory variable, and will thus make a linear regression model biased. 

To avoid reverse causality, the model relies on a Two Stage Least Square Estimation (TSLS) 

estimation made with an instrumental variable (James and Singh, 1978). In a stochastic 

function, an instrumental variable (IV) is a variable that has a correlation with the relevant 

explanatory variable but is not correlated to the error term. In other words, the explanatory 

variable is "instrumented" using an IV to obtain accurate estimates of its effects on the response 

variable. 

In this model, the endogenous explanatory variable is the sum of the 3 Scopes of absolute 

carbon emissions since they are correlated with the company’s growth and thus its returns. the 

instrumental variables will be the 3 Scopes of carbon intensity. Carbon intensity is the ratio 

between corporate’s carbon emissions and revenues. It can be computed for each of the three 

scopes. the carbon intensity of Scope s and company i is equal to 

𝐶𝐼
௦ =

𝑆𝑐𝑜𝑝𝑒
௦

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠
      𝑓𝑜𝑟 𝑠 = [1, 2, 3] 

Carbon intensity, in fact, must be highly correlated with carbon emissions, but since it does 

not take into account the growth of the company, and thus will not be influenced by growing 

revenues and returns. Wi is the vector of company’s i sum of 3 Scopes of Carbon intensity. 

𝑊 = [𝐶𝐼
ଵ + 𝐶𝐼

ଶ + 𝐶𝐼
ଷ] 

In this model the vector of coefficients resulting from the Cross-Sectional TSLS regression 

is equal to the following variable 𝛽௧
்ௌௌ 

𝛽௧
்ௌௌ =  ൫𝑋௧′𝑃௭,௧𝑋௧൯

ିଵ
𝑋௧′𝑃௭,௧𝑌௧ 

Where 𝑃௭ and 𝑋 are defined as follows 

𝑃௭,௧ =  (𝑍௧
ᇱ𝑍௧)ିଵ𝑍௧

ᇱ𝑍௧ 

𝑍௧ =  𝛽ᇱ
𝐹𝐹௧ + 𝑊௧ + 𝐷௧ 

𝑋௧ =  𝛽ᇱ
𝐹𝐹௧ + 𝐸௧ + 𝐷௧ 

As in the OLS estimation, the TSLS cross-sectional estimation is repeated in each period. 

This shows how the coefficients vary over time in value and statistical significance. 
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The TSLS estimation with IV is applied to the TSCS model as well. In this case the 

endogenous variable is the average of the sum of the three scopes CO2e emissions, while the 

IV is the average of the sum of the three scopes carbon intensities. 

Testing the Instrumental Variable 

There are two requirements to be an acceptable IV. the first is to be correlated with the 

endogenous variable, the second is to be uncorrelated with the error of the explanatory equation 

of the model.  

The Hausmann Test 

A statistical technique called the Hausman test is used to decide whether to adopt a data 

model of panels with fixed effects or random effects. the test compares the variation in the 

coefficient estimates between the two models. It is used to decide if the unobserved effects are 

correlated with the model's independent variables, in which case a fixed effects model would 

be ideal, or whether they are not correlated, in which case a random effects model would be 

more suitable. 

The test is based on the variance in the coefficient estimates between the two models, and 

the variance is assessed to see if it is statistically significant by comparing it to a chi-squared 

distribution. It is concluded that the two models are not different and that either one can be 

utilised if the difference is not statistically significant (Hausmann, 1981). 

In econometrics and other subjects that employ panel data, the Hausman test is frequently 

employed. It can help to ensure that the estimates of the coefficients are accurate and efficient, 

making it an effective tool for choosing the right model to apply when evaluating panel data. 

The Hausman test can also be used to gauge an instrumental variable's effectiveness in an 

economic model. the main benefit of using an IV is that it makes it possible to determine the 

causal connection between an independent variable and a dependent variable even when the 

model incorporates endogeneity (i.e., a correlation between the independent variable and the 

error term). This is due to the fact that the IV should be associated with the independent variable 

of interest rather than the error term in order to assist eliminate the bias caused by endogeneity. 

The Hausman test can be used to determine whether the IV is a reliable instrument by 

comparing the estimates of the coefficients produced from an IV model with a reduced form 

model. When estimating the reduced form model, the dependent variable used is the 

endogenous variable, which is a function of the employed IV. the IV model uses this 

Instrumental Variable as the independent variable, which determines partially the endogenous 

ones, and other control variables. 



 
30 

 

The IV is probably a good instrument if there is a statistically significant difference between 

the coefficients from the two models because it can account for the endogenous variable’s 

change. 

To determine if the IV is a useful instrument, the Hausman test compares the estimates of 

the coefficients obtained from an IV model with a reduced form model, with statistically 

significant difference indicating a strong IV and small difference indicating a weak IV. 

𝐻𝑎𝑢𝑠𝑚𝑎𝑛𝑛 𝑇𝑒𝑠𝑡 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 

=  (𝛽்ௌௌ  −  𝛽ைௌ)′[𝑉𝑎𝑟(𝛽்ௌௌ)  −  𝑉𝑎𝑟(𝛽ைௌ)]ିଵ (𝛽்ௌௌ  −  𝛽ைௌ) 

Where 𝑉𝑎𝑟(𝛽்ௌௌ) and 𝑉𝑎𝑟(𝛽ைௌ) are the corresponding variance-covariance matrices of 

the TSLS and OLS estimates respectively. 

The chi-squared distribution of the test statistic has the same number of degrees of freedom 

as the coefficients in the model. If the test statistic overcomes the crucial value from the chi-

squared distribution, the null hypothesis that the coefficients in the IV model are equal to the 

ones in the reduced form model is rejected, and the goodness of fit of the IV is proven. 

The Hausman test's crucial value for the strength of an instrumental variable would be 

provided by the analysis's p-value. A p-value is a probability that expresses the level of 

significance of a test statistic. If the null hypothesis is true, there is a chance that the test statistic 

will be just as extreme as the one derived from the data, if not more so. In other words, if the 

null hypothesis is true, it is not possible to state with statistical confidence that the estimates 

made employing the IV fit the observations of the dependent variable better than the estimation 

made without using it. 

The p-value is considered statistically significant and the null hypothesis is rejected if it is 

less than 0.05, which is a common threshold. 

It is significant to remember that the p-value of 0.05 serves as the cutoff for deciding whether 

the null hypothesis should be accepted or rejected in many scientific fields. the researcher must 

decide what level of significance is appropriate for their topic because this value is arbitrary. 

The Cragg-Donald Test 

The Cragg-Donald test is a statistical procedure used to assess the reliability of an 

instrumental variable (IV). the Hausman test, which compares estimates of the coefficients 

from an IV model with a reduced form model, is a development of this test. 

When doing the Cragg-Donald test, the dependent variable used is the endogenous variable, 

while the explanatory variable employed is the IV. Then, to perform the IV model’s estimation, 
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the endogenous variable is employed as the independent variable, and a set of control variables 

are utilised (Cragg and Donald, 1993). 

The Cragg-Donald test statistic is determined as follows: 

𝐶𝑟𝑎𝑔𝑔 − 𝐷𝑜𝑛𝑎𝑙𝑑 𝑇𝑒𝑠𝑡 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  
ඥ[𝑉𝑎𝑟(𝛽்ௌௌ) +  𝑉𝑎𝑟(𝛽ைௌ)]

(𝛽்ௌௌ  −  𝛽ைௌ)
 

The test statistic is followed by a typical normal distribution. If the test statistic is overcomes 

the threshold of the critical value from the traditional normal distribution, the null hypothesis 

that the coefficients of the IV model are equal to the ones of the reduced form model is rejected, 

and the better fit of the IV is proven. 

Since the Cragg-Donald test is less prone to over-identification bias, it is particularly useful 

when there are more instruments than there are participants in the study. the test is employed 

in situations when the instruments are subpar because it does not require as much exogeneity 

as the Hausman test. 

The reliability of instrumental variables is examined using both the Cragg-Donald test and 

the Hausman test, although each test has its own set of assumptions and limitations. the 

researcher must decide which test best fits their study issue and data collecting. 

The threshold for accepting estimates in both the Cragg-Donald and Hausman tests is 

determined by the p-value, a measurement of the test statistic's statistical significance. the null 

hypothesis would be disregarded if the p-value was less than 0.05, a conventional requirement 

for determining statistical significance. 

The Cragg-Donald test's null hypothesis states that the coefficients resulting from the 

employment of the IV are equal to the ones obtained in the reduced form model, whereas the 

alternative is that they differ. the test statistic has a conventional normal distribution. the IV is 

a reliable tool if the p-value is less than 0.05, which indicates that there is a statistically 

significant difference between the estimations of the coefficients of the IV and the reduced 

form model. 

It is significant to remember that the p-value of 0.05 serves as the cut-off to decide whether 

accepting or rejecting the null hypothesis in many scientific fields. the researcher must decide 

what level of significance is appropriate for their topic because this value is arbitrary. 

It's crucial to remember that a p-value of less than 0.05 does not necessarily imply that a 

study's findings are accurate; rather, it just indicates that they are unlikely to be the result of 

chance. So, one of the requirements for proof is a p-value lower than 0.05, but other factors 

like external validation and replication should also be taken into account. 
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Data Calibration 

This script is written in MATLAB and performs a data calibration on a dataset taken by 

Refinitiv over the time frame of 2012-2021. the dataset is made of the biggest publicly traded 

firms in Europe and the United States, respectively, is reflected in the STOXX 600 and the 

S&P 500 stock market indices. the S&P 500 is made up of 500 firms listed on American stock 

exchanges, whereas the STOXX 600 is made up of 600 companies listed on stock exchanges 

in the European Economic Area. It is possible to learn about the economic climate and market 

trends in Europe and the United States by observing the returns of the stocks included in these 

two indices. There are probably many missing numbers in the dataset of the STOXX 600 and 

S&P 500 firms' absolute carbon emissions, which can complicate analysis and interpretation. 

One significant problem is that missing data may impact the size of the dataset and its 

representativeness, which may result in skewed or erroneous results. Furthermore, missing 

values can cause issues with the necessary assumptions and computations, making it 

challenging to conduct some analyses or statistical tests. the dataset is been retrieved in excel 

and then loaded into MATLAB. the script loads the data from a .mat file that contains the data 

for the European and American stocks in the two respective indices. the data is then converted 

into arrays and stored in variables containing the name of the stock, revenues, returns, scope 1 

CO2e emissions, scope 2 CO2e emissions, scope 3 CO2e emissions, the index weighted return, 

the High minus Low factor (Fama and French 1993), the Small minus Big factor (Fama and 

French 1993), and the industry of each company. 

The script then creates new variables by performing calculations on the loaded data. the 

variables "CI1", "CI2", and "CI3" are created by calculating the carbon intensity of Scope 1, 

2, and 3 respectively. These variables are obtained by dividing the three scope emissions by 

the revenues of the company in each period.  

The script also creates a "dummy matrix" of intensive industries by creating a new array 

"I_D" of zeros and then looping through the "Industry" array to identify and mark the 

companies that belong to intensive industries listed in Chapter 4. 

The script then loops through each stock, and uses a linear regression model for each 

company to compute the vector 𝛽. If the company does not have any data available, the script 

assigns zeros to the beta value for that company. 

To overcome the fact that many data are missing in the dataset, a particular data calibration 

is performed before computing the OLS and TSLS Cross-Sectional estimates. This code is 

performing a loop over a range of periods, from 2012 to 2021, and within each iteration it is 
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performing several steps to avoid missing data in the dataset and still being able to perform the 

two regressions. 

The code avoids to consider missing values by using functions to identify any missing or 

infinite value in the returns, in the sum of the three scopes emissions, and in the sum of the 

three carbon intensities. Any row containing a missing or infinite value is then removed from 

all the variable of that company in that time frame. 

The normalisation phase in the procedure is used to give the total of the scopes and carbon 

intensities with the same scale of variance of returns. Each value of the explanatory variable X 

is divided by the square root of the sum of the squared differences between X and the sample 

average of X to achieve this. In this way, each variable is standardised. 

Standardizing a variable is a common data pre-processing step that makes sure all the 

variables are on the same scale and can be directly compared in a regression analysis. Without 

standardisation, variables that are evaluated on different scales (for instance, in different units) 

may have a disproportionate impact on the regression analysis due to their scale. 

The variance of the explanatory variable and the instrumental variable are adjusted to have 

a mean of zero and the same variance of the excess returns by normalising the sum of the three 

scopes of carbon emissions and the three scopes of carbon intensity. 

The use of standardised explanatory and instrumental variables in the regression would be 

incorrect since the research examines the impacts of carbon emissions and carbon intensities 

on excess returns throughout a range of time periods, and because the variance of excess returns 

varies over time. For this reason, the excess returns’ standard deviation of each period is 

multiplied by the standardised sum of the three scopes of carbon emissions and carbon 

intensities for each time frame. 

As a result, the influence of X and Z on the dependent variable can be compared because 

they are engineered to have the variance of the excess returns. This also makes it easier to 

interpret the regression coefficients because they will be interpreted as the variation of the 

dependent variable per unitary variation of the standardised explanatory variable. 
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Chapter 6 

Empirical Results 
 

TSCS Regression with Carbon emissions  

Ordinary Least Squares Regression 

The Coefficients resulting from the TSCS OLS regression containing the three French and 

Fama factors, the intensive industry dummy variable, the sum of the three scopes of absolute 

CO2e emissions, and an intercept are as follows: 

TSCS OLS Regression Coefficients EU 

Explanatory Variable Coefficient Value 

Intercept α 116.43 

MKT Factor β1 -0.07 

SMB Factor β2 -0.61 

HML Factor β3 0.11 

Intensive Industry Dummy δ 309.66 

3 Scopes CO2e sum γ 3.31 

 

TSCS OLS Regression Coefficients US 

Explanatory Variable Coefficient Value 

Intercept α 34.64 

MKT Factor β1 0.55 

SMB Factor β2 0.77 

HML Factor β3 0.00 

Intensive Industry Dummy δ 96.06 

3 Scopes CO2e sum γ -0.95 

 

We can already observe that the results of the regression suggest the non-predictivity of the 

model. In fact, in both cases α is very far from 0, and in the STOXX 600 dataset the sum of the 

three French and Fama factors coefficients is not close to 1. 
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Two Stages Least Squares Regression 

The Coefficients resulting from the TSCS TSLS regression containing the three French and 

Fama factors, the intensive industry dummy variable, the sum of the three scopes of absolute 

CO2e emissions, the sum of the three scopes carbon intensity, and an intercept are the 

following: 

TSCS TSLS Regression Coefficients EU 

Explanatory Variable Coefficient Value 

Intercept α 5.92 

MKT Factor β1 0.06 

SMB Factor β2 -1.02 

HML Factor β3 -0.13 

Intensive Industry Dummy δ -1211.26 

3 Scopes CO2e sum γ 2.36 

 

TSCS TSLS Regression Coefficients US 

Explanatory Variable Coefficient Value 

Intercept α -20.77 

MKT Factor β1 -0.03 

SMB Factor β2 -2.93 

HML Factor β3 -0.46 

Intensive Industry Dummy δ -1033.98 

3 Scopes CO2e sum γ 11.71 

 

It is possible to observe from the results of the regression that the model foes not appear to 

be predictive. In fact, in both cases α is very far from 0, and the three French and Fama factors’ 

coefficients is negative or close to 0. the value of the resulting coefficient of the intensive 

industry dummy variable is exceptionally high. That is why it is possible to wonder that the 

source of bias in the predictive regression is exactly this dummy variable. 

 For this reason, the same estimation models should be performed on the same stochastic 

function, without the intensive industry dummy variable. Unhopefully, an estimation model 

without that variable may not account for a higher riskiness of carbon intensive industries that 

is not directly linked to carbon emissions. 
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Cross-Sectional Regression with Carbon emissions 

Ordinary Least Squares Regression 

The coefficients resulting from the Cross-Sectional OLS regression made in the time frame 

2012-2021 are displayed in a 6 by 10 matrix, where there are 6 different coefficients in 10 

observed periods, hence once per year. the objective of this study is to observe the behaviour 

of gamma (γ), the Carbon emissions coefficient, and its significance over time. the followings 

are the results of gamma between 2012 and 2021 for the STOXX 600 and the S&P 500 

companies:  
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It is possible to observe that in both indexes coefficients are really flat after 2017. In both 

datasets, coefficients are negative except for the year 2016. When the gamma coefficient is 

negative, higher absolute carbon emissions bring to lower returns. In years when gamma is 

negative, the risk linked to high carbon emissions lowers the price of stock price of companies 

with high carbon emissions through investors’ divestments. 

In years where the coefficient is positive, companies with high carbon emissions are already 

undervalued because their risk is been accounted and thus they will overperform. This 

overperformance is not free of risk since those companies underperform in periods when 

investors tend to be more conscious of and adverse to risks linked with high carbon emissions. 

It is thus understandable that periods with negative coefficients anticipates periods with 

positive coefficients, just as in the estimated results. It is thus possible to observe that between 

2012 and 2015, investors expectations regarding carbon emissions risk, made lower the price 

of companies with high CO2e absolute emission. This resulted in an overperformance of these 

companies in the next years, when this risk is not materializing. Gamma coefficients are 

between the bounds of -0,02 and 0,02 in the S&P 500 dataset, while they can variate between 

-0,08 and 0,08 in the STOXX 600 dataset. 

Two Stages Least Squares Regression 

The coefficients resulting from the Cross-Sectional TSLS regression made in the time frame 

2012-2021 are displayed in a 6 by 10 matrix, where there are 6 different coefficients for 

10different observed periods, hence once per year. the objective of this study is to observe the 

behaviour of gamma (γ), the coefficient of Carbon emissions projected on Carbon intensities, 

and its significance over time. the followings are the results of Gamma between 2012 and 2021 

for the STOXX 600 and the S&P 500 companies: 
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It is possible to observe that in both indexes coefficients become flat after 2019. In the 

STOXX 600 dataset, coefficients are negative until year 2015. In 2016 and 2018 the 

coefficients are slightly positive, while in the remaining years the coefficients are zero or very 

close to zero. In the S&P 500 dataset, instead, coefficients are negative in 2012, 2013 and 2015, 

and positive in 2014 and 2018, being close to zero in the rest of the observations. 

Differently from the coefficients resulting from the OLS estimations, the TSLS estimated 

coefficients vary between -0,3 and 0,2. Specially for the S&P 500 dataset, it is possible to 

observe that coefficients are not flat to 0 over time, when accounting for carbon intensity as 

Instrumental Variable. 
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Greater absolute carbon emissions projected on carbon intensity reduce returns when the 

gamma coefficient is negative. the risk associated with companies that report high carbon 

emissions, and divestitures made on them, affects the price of the stocks in years when gamma 

is negative. 

Companies with large carbon emissions are already undervalued in years when the 

coefficient is positive because their risk has already been accounted, and thus their returns will 

outperform. Since these companies underperform during times when risks linked to high 

carbon emissions materialize, their overperformance is not risk-free, but is a compensation for 

risk.  
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Chapter 7 

Robustness 

TSCS Regression with Carbon emissions  

Ordinary Least Squares Regression 

TSCS OLS Regression Coefficients US 

Explanatory Variable Coefficient P-value 

3 Scopes CO2e sum γ 0.9260 

 

TSCS OLS Regression Coefficients US 

Explanatory Variable Coefficient P-value 

3 Scopes CO2e sum γ 0.8828 

 

Two Stages Least Squares Regression 

TSCS TSLS Regression Coefficients EU 

Explanatory Variable Coefficient P-value 

3 Scopes CO2e sum γ 0.9356 

 

TSCS TSLS Regression Coefficients US 

Explanatory Variable Coefficient P-value 

3 Scopes CO2e sum γ 0.8049 

 

As it is possible to observe from the p-value of the TSCS Regressions performed on the 

two datasets, neither the OLS estimation nor the TSLS estimation are able to compute a 

carbon emission coefficient that is significantly different from zero. 

Cross-Sectional Regression with Carbon emissions 

Ordinary Least Squares Regression 

These are the plots of the p-values of the Cross-sectional OLS regressions over the observed 

periods. 
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Is it possible to observe that, while in the STOXX 600 dataset there are multiples statistically 

significant observations of the coefficient gamma, in the S&P 500 dataset there is one 

statistically significant coefficient. 

The statistically significant gamma coefficient of the S&P 500 dataset is observed in year 

2014. the coefficient computed in this period is approximatively equal to -0,02. 

For the STOXX 600 dataset, instead, the statistically significant results are 5 out of 10. the 

first years in which the estimated gamma coefficient is statistically significant are 2012 and 
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2013. During these periods the coefficients are equal to -0,04 and -0,02 respectively. In 2014 

the coefficient is not significant, and it comes back to be significant in 2015 and 2016, when 

its value passes from -0,06 to 0,06. the coefficient is then significant again in 2020, when the 

estimation is still very close to 0. 

Two Stages Least Squares Regression 

These are the plots of the p-values of the Cross-sectional TSLS regressions over the 

observed periods. 
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After plotting the p-value of the gamma coefficient estimation in the TSLS Cross-Sectional 

regression, it is possible to understand visually how the regression’s fit improved, especially 

for in the S&P 500 dataset.  

While in the OLS Cross-Sectional regression only one estimated coefficient is significant 

over ten observed periods, in the TSLS Cross-Sectional regression four observations out of ten 

are statistically different from 0. 

In the estimation of gamma made with the TSLS regression on the STOXX 600 dataset, five 

estimations out of ten are significant. the estimated coefficients are significant in the years 

when they are significantly estimated in the OLS regression except for one period. In this 

model, the coefficient estimated in 2020 is not significant anymore, but the one estimated in 

2019 is significant.  

During the years 2012 and 2013, the STOXX 600 gamma coefficient is statistically 

significant and equal to -0,35 and -0,03 respectively. In years 2015 and 2016 the significant 

gamma passes from -0,12 to 0,11. In 2019 the coefficient is almost zero. 

In 2013 the gamma estimated for S&P 500 companies is significant and equal to -0,1. the 

coefficient comes back to be significant in 2015 when its value is still negative and equal to -

0,22. Then it is significant again in 2018 and 2021 when its value is equal to 0,14 and very 

close to 0 respectively.  

Tests for the goodness of the Instrumental Variable 

Hausmann Test 

The Hausmann Test has a p-value that is below 0.05 for each observation both in the 

STOXX 600 and in the S&P 500 dataset. the test’s null hypothesis is accepted in each period 

of the two observed dataset, and thus carbon intensities are valid Instrumental Variables. 

Cragg-Donald Test 

Even the test for weak Instrumental Variables, the Cragg-Donald Test, has a smaller p-value 

than the null hypothesis’ threshold in each observation of the STOXX 600 and S&P 500 

datasets. the null hypothesis of the test is rejected for the two observed datasets in each period 

observed. It is possible to state that, in this model, carbon intensities cannot be considered 

weak instrumental variables, because the coefficients estimated using carbon intensities as IV 

are statistically different from coefficients estimated with the OLS regression. 
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Chapter 8 

Conclusions 
In conclusion, the research aims to study the relationship between a company's carbon 

emissions level and its cost of capital. the research finds out that carbon emissions level has a 

significant and positive impact on the cost of capital of a company in some years. This result 

must be interpreted as a support to the idea that the stock market accounts for the negative 

externalities of carbon emissions, and incorporates them into the cost of capital of companies. 

the research also attempted to isolate the impact of carbon emissions on the cost of capital by 

controlling for other factors that may influence the cost of capital such as revenues, the Fama 

and French factors, and industry dummies. 

To further analyze the robustness of the estimates, the research performed several 

regression models using different estimation techniques, including OLS and TSLS, on two 

datasets, the S&P 500 and STOXX 600. the results showed that the carbon emissions level 

had a significant positive impact on the cost of capital even after controlling for other factors 

in both datasets. However, the significance of the estimates varied between the two datasets 

and the different regression models used. 

For example, in the OLS Cross-Sectional regression of the S&P 500 dataset, only one 

estimated coefficient was significant out of ten periods of observation. the TSLS Cross-

Sectional regression performed on the same dataset showed four significant observations out 

of ten periods. In the STOXX 600 dataset, the significant observations remained relatively 

consistent between the OLS and TSLS models, with five significant observations out of ten 

periods in both models. the coefficient values for the significant observations also varied 

between the two datasets and the different regression models. 

Additionally, the research performed a Hausmann test, which confirmed the validity of the 

instrumental variable employed in the TSLS regression. This supports the conclusion that the 

significant positive impact of carbon emissions on the cost of capital is robust and not due to 

any potential endogeneity biases or reverse causality. It also shows the evidence that the 

reverse causality between carbon emissions and returns exists, and using carbon intensity as 

Instrumental Variable is a possible way to avoid the estimation bias. 
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In summary, the findings of this research provide evidence that the stock market is 

accounting for the negative impact of carbon emissions on the cost of capital and that 

companies that emit higher levels of carbon have a higher cost of capital. This finding has 

important implications for companies, managers, and investors as they can use it to make 

more informed decisions about investing in low-carbon projects and reducing carbon 

emissions. Additionally, it highlights the need for policymakers to implement measures that 

encourage companies to reduce their carbon emissions, such as carbon taxes and regulations. 
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Chapter 9 

Appendix 
OLS Cross-Sectional Regression Coefficients – STOXX 600 

Coefficient 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

α 
23.88 32.88 6.24 8.27 11.86 23.25 

-

4.55 
26.38 0.50 24.85 

β1 0.00 -0.06 0.04 1.10 0.32 1.82 0.09 0.28 0.05 0.01 

β2 0.03 0.18 0.48 0.82 0.54 0.65 0.23 0.30 -0.02 0.07 

β3 
0.04 0.12 0.90 

-

0.32 
0.61 0.51 0.19 0.42 -0.04 0.12 

δ 
7.29 -9.78 -1.32 

-

2.88 
-1.99 -6.78 9.71 -9.25 10.08 4.48 

γ 
-0.04 -0.02 0.00 

-

0.06 
0.06 0.00 0.00 0.00 0.00 0.00 

 

OLS Cross-Sectional Regression Coefficients – S&P 500 

Coefficient 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

α 
23.21 32.43 15.23 1.12 16.15 18.88 

-

1.36 
33.36 12.53 30.59 

β1 0.01 0.01 0.03 0.08 0.39 0.29 3.12 -0.09 0.00 -0.04 

β2 
0.45 0.81 0.19 -0.07 -0.35 1.58 

-

0.06 
0.10 0.01 0.17 

β3 0.68 0.52 0.15 0.15 0.60 0.94 0.08 0.33 2.05 0.04 

δ 
-7.29 0.73 9.66 

-

17.33 
-0.90 -5.80 

-

4.54 

-

13.09 

-

16.19 
1.68 

γ -0.01 -0.02 -0.02 -0.01 0.01 -0.01 0.00 0.00 0.00 0.00 
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TSLS Cross-Sectional Regression Coefficients – STOXX 600 

Coefficient 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

α 
23.82 32.86 6.02 8.26 11.74 23.24 

-

4.16 
26.57 0.57 24.85 

β1 0.00 -0.06 0.03 1.10 0.31 1.83 0.08 0.31 0.05 0.01 

β2 0.02 0.18 0.50 0.82 0.55 0.66 0.24 0.33 -0.02 0.07 

β3 
0.04 0.12 0.93 

-

0.32 
0.64 0.51 0.18 0.43 -0.04 0.12 

δ 
10.21 -9.14 -0.91 

-

2.87 
-1.50 -6.12 7.19 

-

14.49 
8.74 4.78 

γ 
-0.35 -0.03 0.00 

-

0.12 
0.11 -0.01 0.05 0.00 0.00 -0.01 

 

TSLS Cross-Sectional Regression Coefficients – S&P 500 

Coefficient 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

α 22.80 32.19 16.72 -0.43 16.17 19.00 -0.81 33.37 12.57 30.70 

β1 0.01 0.01 0.03 0.09 0.39 0.29 3.23 -0.09 0.00 -0.04 

β2 0.45 0.79 0.20 -0.11 -0.35 1.57 -0.10 0.10 0.01 0.17 

β3 0.69 0.51 0.20 0.13 0.60 0.93 0.07 0.33 2.05 0.04 

δ 
-4.77 3.86 1.46 -8.37 -1.13 -6.53 -7.72 

-

13.19 

-

16.60 
0.62 

γ -0.04 -0.10 0.07 -0.22 0.01 0.00 0.14 0.00 0.00 0.00 

 

TSLS Cross-Sectional Regression Hausmann Test p-vaules – STOXX 600 

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Test         

p-value 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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TSLS Cross-Sectional Regression Hausmann Test p-vaules – S&P 500 

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Test         

p-value 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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