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1. Introduction 

Rumours can be defined as pieces of unverified, or at least not entirely true, information that 

spread through a network. They can arise from a variety of causes and can spread quickly 

due to the complexities of social interactions. The fast propagation of information, due to the 

extensive use of the internet, has led to the widespread diffusion of those phenomena, which 

can have a significant impact on individuals, organisations and societies. Compared to true 

information, rumours can be, and are, debunked, as exposing false information is beneficial 

for society. As such, rumours can be modelled as two normal diffusion processes occurring 

at the same time, where one symbolises a false statement, while the other is the truth. Those 

two types of information are spread by different agents in a network as, usually, the ones 

who have an interest in spreading false statements do not want the truth to emerge. 

Moreover, it is safe to assume that the truth will start spreading through society only after 

the rumour is circulating and, more specifically, only after the agents who know the truth 

hear about the rumour. Understanding how diffusion processes in social networks work is 

crucial to drafting policies aimed at debunking or controlling the spread of rumours in order 

to mitigate their negative effects. In this study, we elaborate on the work of Akbarpour & 

Jackson [1] by focusing on modelling and analysing rumours propagation in line-shaped and 

star-shaped networks, using the Susceptible-Infected-Removed (SIR) model, with nodes that 

follow Markov chains to set activity levels that define whether or not they can transmit the 

information (both the rumour and the truth).  

The SIR model is a widely used tool in epidemiology for studying contagion processes. It 

categorizes the population as Susceptible (S), Infected (I), and Recovered (R): susceptible 

nodes are the agents not yet infected; infected nodes the ones that are infected and transmit 

the phenomenon; while recovered nodes are those that were infected and have now gained 

immunity, but are not capable to spread the phenomenon anymore. The model is then used 

to study the spread of a single piece of information or disease that travels through a network. 

Therefore, to model the spread of rumours and their debunking process, the model must be 

adapted to feature two pieces of information, one false and the other true, travelling through 

the network. For this reason, we call spreaders those who actively spread the rumour, and 

debunkers those who actively try to debunk it. 

Additionally, to make the model more realistic, we must take into consideration the fact that 

not all nodes are always able to transmit information or disease at the same time. A node is 
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an entity that can transmit and receive information - in our case, an individual in the 

population. The traditional SIR model presumes a homogenous population, where everyone 

has the same chance of getting infected or spreading the disease. However, this does not 

reflect the complexities of the real world. For example, consider an organization that 

operates in day and night shifts, with a brief period of overlap to ensure a smooth transition. 

A rumour spread by a day-shift employee can only reach a night-shift worker during that 

short window of interaction when they are both present in the building. To model this 

behaviour, we use the same framework developed by Akbarpour & Jackson [1] to define the 

activity levels of nodes in the social network. By adopting their approach, the model 

acknowledges the presence of activity patterns observed in human behaviour, such as the 

burst of activity followed by periods of inactivity, by assigning to nodes a Markov chain that 

dictates whether or not the node is able to spreading or receiving information. As a result, 

information can only propagate when both the transmitter and the receiver are active 

simultaneously. Moreover, by assigning Markov chains to nodes in the SIR model, we can 

get useful insights into how activity patterns influence the spread of rumours.  

By taking advantage of the Markovian SIR model, we aim to understand how activity 

patterns play a role in the diffusion of rumours, contributing to the more effective 

management of information propagation in the digital age. This improved understanding can 

help in the development of more effective policies and actions to counteract the negative 

effects of rumours on society.  

The outline of the work is the following: Section 2 reviews previous research in the field, to 

gather fundamental knowledge for future evaluations; Section 3 introduces the model that is 

used in this work, developed by Akbarpour & Jackson [1]; Section 4 shows the statements 

done by Akbarpour & Jackson [1] for the spread of information in a network; Section 5 and 

Section 6 presents our work on rumours; and Section 7 states the conclusions. Additionally, 

at the end of the document, there is a paragraph explaining the code used for simulations. 

 

2. Literature Review 

In a society, agents are heterogeneous and do not behave in all the same way. People can 

assume many different behaviours, like the burst one, documented in the diffusion processes 

such as emails or web browsing [2]. Indeed, when sending or answering emails, people 
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either dedicate an entire time slot for the day, or they check them frequently for smaller 

intervals of time.  

The focus of this study is on the activity pattern of nodes, and on how it impacts the 

diffusion of true and false information. Nodes can be either active or inactive, depending on 

their ability to spread or receive information, to more effectively capture the intricate 

complexity of our society. We assume also that individuals have the same average activity 

level, as generally everyone is active for the same amount of time during a day. Coming 

back to the email example presented earlier, the two behaviours can be represented as two 

activity patterns: one in which a node is active for long periods of time; and the other in 

which a node is active with a certain probability for each unit of time. The latter is an 

activity pattern that follows a Poisson behaviour, where an agent is active with a certain 

probability during each period. However, because people do not act randomly during the 

day, studying networks in which nodes follow activity patterns that are time or history-

dependent, i.e. do not only adopt the Poisson behaviour, yields more accurate results than 

applying homogeneous models. This has been demonstrated in the diffusion of email worms 

by Vazquez et al (2007) [3] in which the discrepancy between the simulations and the reality 

can be explained by the failure of the Poisson activity pattern to represent how individuals 

communicate. For such networks, new measures are possible, such as temporal distances 

(and paths), which although correlated with the static distances, have a wide spread [4]. 

There are several models to describe activity patterns. In this study, we use the model of 

Akbarpour & Jackson [1], whose aim was to find the implications of having heterogeneous 

nodes in a network for the spread of information. The model used is a modified version of 

the SIR model, where each node follows a Markov chain to define its ability to spread the 

phenomenon. They define three types of nodes, with different activity patterns, that however 

have the same average activity level, to represent the fact that individuals are usually active 

for the same amount of time in a day but in different ways. The authors then concluded that 

having a mix of nodes which follows different activity patterns is beneficial to the 

transmission of the information. Similar work was done by Laijun et al (2011) [6], with a 

modified SIR model in an attempt to better represent human behaviours. In this network, 

nodes can also assume the role of hibernators, which can remember the rumour after 

forgetting it, and susceptible nodes can become recovered without passing through the 

infected state. Those two added features should represent individuals who start spreading the 
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news when they are reminded of it and individuals who, thanks to their background, do not 

fall for the rumour.  

Stochastic models in rumours analysis have been used also in other ways than to determine 

activity levels. In their work, Isham et al (2009) [7], considered the change of state between 

susceptible, infected and recovered in a SIR model as a Markov chain. In this model, the 

probabilities to change state depend not only on the current state of a node itself, but also on 

the states of all the nodes to which it is connected. By applying this concept to the spread of 

rumours, they derived a set of equations for determining the size of a rumour on a 

homogeneous network.  

However, studying the debunking of rumours rather than their spread can be more 

interesting as while it is difficult to prevent rumours to spread, it is useful to draft policies to 

debunk them quickly and efficiently. Understanding how to represent this process in a 

network can help to create better strategies to inform quickly the population. Merlino et al 

(2022) [8] focused their paper on policy implementation by observing the spread of a true 

and a false message in a network. They used an SIS model in which nodes can decide to 

verify the truth of a rumour and found that the truth-to-rumour ratio depends on the level of 

verification and degree of homophily in the network. They concluded that incentivising 

individuals to verify information is the most likely to succeed as it can be shown that 

increases in verification rates drastically increase the truth-to-rumour ratio. Other studies on 

competing information in a network were done by Tabasco [9] and Campbell et al (2019) 

[10], with similar findings although not considering debunkable rumours. 

Regarding different models than the SIR, research was done on DK models, developed by 

Daley & Kendall [11], and on MK models, proposed by Maki & Thomson [12], which 

however are not able to describe rumour spreading on large-scale networks. Thresholds in 

the rumour spreading rate below which a rumour cannot be spread were defined by Nekovee 

et al (2006) [13] for ER random graphs (and others) with forgetting mechanisms, and are 

significantly different from results obtained with simpler models [14-17]. 

 

3. The Stochastic SIR model 

The model used to study the impact of the different timing of activity patterns of nodes is a 

variation of the SIR (susceptible, infected, recovered) model. In addition to the status of 

node (susceptible, infected, recovered), to each node in the model can be active or inactive. 
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The infection can only be spread if both the infected (the sender) and the susceptible (the 

receiver) nodes are active at the same time. Once a node is infected, it can spread the 

phenomenon for 𝑇 periods, after which the node stops being contagious and becomes 

recovered. We assume that nodes are either active or inactive in any period, with the same 

probability to be active on average of 𝜆 ∈ (0,1). To model activity pattern, we assume that 

every node follows a Markov chain determining if it is active tomorrow as a function of 

today. The different behaviours observed in a population are represented by changing the 

probabilities of switching state in the Markov chain. Figure 1 shows the general Markov 

chain, valid for any node: 

 

Figure 1: General Markov Chain 

An agent 𝑖 can switch from inactive to active with a probability of 𝑞𝑖, or stay inactive with a 

probability of 1 − 𝑞𝑖. Similarly, it can switch from active to inactive with a probability of 𝑝𝑖, 

or stay active with a probability of 1 − 𝑝𝑖. Because every node, regardless of its type, should 

be active with a probability of 𝜆 on average, 𝜆 should be the probability to be active at the 

steady state. At any point in time, this probability is the sum of the probability to stay active, 

given that in the previous period the node was already active, plus the probability to become 

active, given that in the previous period the node was inactive:  

𝜆(𝑡) = 𝑃(𝐴𝑐𝑡𝑖𝑣𝑒 | 𝐴𝑐𝑡𝑖𝑣𝑒) ∙ 𝜆(𝑡 − 1) + 𝑃(𝐴𝑐𝑡𝑖𝑣𝑒 | 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒) ∙ (1 − 𝜆(𝑡 − 1)) 

 since at the steady state 𝜆 does not depend on time, we can rewrite the equation as: 

𝜆 = 𝑃(𝐴𝑐𝑡𝑖𝑣𝑒 | 𝐴𝑐𝑡𝑖𝑣𝑒) ∙ 𝜆 + 𝑃(𝐴𝑐𝑡𝑖𝑣𝑒 | 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒) ∙ (1 − 𝜆) = (1 − 𝑝𝑖)𝜆 + 𝑞𝑖(1 − 𝜆) 

Thus, rearranging the equation, the balance equation of the model is: 

𝜆 ∙ 𝑝𝑖 = (1 − 𝜆)𝑞𝑖 

Some useful re-writings of this equation are: 
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𝜆

1 − 𝜆
=

𝑞𝑖

𝑝𝑖
          𝜆 =

1

1 +
𝑝𝑖

𝑞𝑖

          𝑞𝑖 = 𝑝𝑖 ∙
𝜆

1 − 𝜆
. 

The types of nodes mentioned above, differ in the values of the probabilities 𝑞𝑖 and 𝑝𝑖, but 

all nodes have the same 𝜆 at the steady state. We consider three types of nodes in order to 

create heterogeneous populations. A sticky node, named after the sticky behaviour, has both 

𝑞𝑖 and 𝑝𝑖 close to 0, and thus its Markov chain can be heuristically approximated to a 

Markov chain where it is not possible to switch state [Figure 2]: 

 

Figure 2: Markov Chain of a Sticky node 

In this way, this type of node is almost perfectly auto-correlated over time.  

A reversing node, named after its tendency to change state, has the maximal possible 𝑞𝑖 and 

𝑝𝑖, so that it has the maximal negative auto-correlation. As a result, if 𝜆 ≤
1

2
 then 𝑝𝑖 = 1 and 

𝑞𝑖 =
𝜆

1−𝜆
. On the other hand, if 𝜆 ≥

1

2
 then 𝑝𝑖 =

1−𝜆

𝜆
 and 𝑞𝑖 = 1, consequentially in the case 

in which 𝜆 =
1

2
, the agent will switch state every period. Thus, the state of a reversing agent 

is as negatively serially correlated as possible, moving between active and inactive states as 

frequently as possible.  

Finally, a poisson node, named after the Poisson distribution that it follows, is one that has 

𝑝𝑖 = 1 − 𝜆 and 𝑞𝑖 = 𝜆 and thus is active every period with a probability of 𝜆.  

Notice that, because of the way the Markov chain is defined, knowing the state of the node 

at time 𝑋 does not give any information on the state of the node at time 𝑋 + 1. Moreover, 𝜆 

does not assume the values of 0 and 1 as, for those two values, sticky, poisson and reversing 

nodes act in the same way. 
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To understand how heterogeneity of nodes influences the spread of information or rumours, 

those types of nodes will be concatenated to form line-shaped or star-shaped networks 

through which a phenomenon will spread.  

 

4. Statements and Comments on the Spread of Information 

When considering networks of nodes that follow an activity pattern, new important results 

arise. Mainly, the optimal configuration of nodes that maximizes the diffusion of a 

phenomenon, has mixed types of nodes. Indeed, heterogeneity can substantially increase the 

speed and the reach of diffusion processes. To prove this claim, we will recreate and 

comment on four of the five propositions illustrated by Akbarpour & Jackson [1].  

We show the results of those propositions with some insights on their proof, using the same 

notation they have used. Thus, the nodes’ type will be indicated by the capital letter S for 

sticky, P for poisson and R for reversing. 

In the following, statements 1 to 4 are taken from the work of Akbarpour & Jackson [1]. 

 

4.1. Normal contagion in line-shaped networks of 3 nodes 

Statement 1: In a line of three nodes, which once infected can transmit for a number of 

periods 𝑇 ∈ ℕ, the configuration of poisson and sticky nodes that maximises both the 

probability that all nodes become infected and the expected number of infected is: 

- PSP if 𝜆 < 𝜆∗ and; 

- PPP if 𝜆 >  𝜆∗ 

Where 𝜆∗is the unique solution in (0,1) for  

𝜆 = 𝑓(𝜆) = (
1 − (1 − 𝜆2)𝑇

1 − (1 − 𝜆)𝑇
)

2

(1), 

if we are maximizing the probability of total infection and 

𝜆 =
[1 − (1 − 𝜆2)𝑇][2 − (1 − 𝜆2)𝑇]

[1 − (1 − 𝜆)𝑇][2 − (1 − 𝜆)𝑇]
  (2), 

if we are maximizing the expected number of infected nodes.       □ 
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In a line of three nodes, if the agents have a high activity level, the best configuration is 

to have everybody following the poisson behaviour. On the other hand, heterogeneous 

sequences are preferred if the agents have low activity level. 

To find the optimal sequences that maximise the spread of a disease, notice that it is 

always better to have a poisson node as the first node of a line. If the second node is 

sticky, the probability of it becoming infected is 𝜆2, if the first one is sticky, and 𝜆(1 −

(1 − 𝜆)𝑇) > 𝜆2 if the first one is poisson. The same result holds if the second node is 

poisson. Thus, we can rule out all combinations starting with a sticky node. 

Then, we can look at the probability of a second node, adjacent to an infected one, to 

become infected. The possible combinations of nodes are: PS; SP; SS and; PP. For PS, 

the infection spreads only if, the sticky node is active, and the poisson node is active in at 

least one of the 𝑇 periods in which it is contagious. The probability to be active for the 

sticky is 𝜆 as if it is active in the first period it will remain active. The probability for the 

poisson node to be active at least once is just 1 minus the probability of never being 

active, which is (1 − 𝜆)𝑇. Thus:  

𝑃𝑆 = 𝜆 ∙ (1 − (1 − 𝜆)𝑇) 

The same reasoning is applied to the configuration SP, however as we are considering 

that the first node is infected, we must consider the probability to be active as 1 because 

the node needed to be active for it to become infected. Therefore:  

𝑆𝑃 = 1 − (1 − 𝜆)𝑇 

By setting the probability to be active of the first sticky node to 1, the probability of the 

configuration SS will therefore be:  

𝑆𝑆 = 𝜆 

Lastly, the probability for the combination PP is 1 minus the probability that the 

infection cannot spread. This happens either when the first is active and the second is not 

or the other way around, or when both are inactive at the same time. Thus:  

𝑃𝑃 = 1 − (𝜆(1 − 𝜆) + 𝜆(1 − 𝜆) + (1 − 𝜆)2)𝑇 = 1 − (2𝜆(1 − 𝜆) + (1 − 𝜆)2)𝑇 = 1 −

(1 − 𝜆2)𝑇  

Note that, 𝑆𝑃 > 𝑃𝑃 > 𝑃𝑆 and 𝑆𝑃 > 𝑆𝑆 > 𝑃𝑆. Now, 𝑃𝑃 > 𝑃𝑆 implies that 𝑃𝑃𝑃 > 𝑃𝑃𝑆 

and 𝑆𝑃 > 𝑆𝑆 implies that 𝑃𝑆𝑃 > 𝑃𝑆𝑆 since a configuration of three nodes can be split 
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into two subunits of two nodes that behave accordingly to the probabilities calculated 

above. Moreover, the inequalities hold as the first subunits of two nodes are the same for 

both 𝑃𝑃𝑃 > 𝑃𝑃𝑆 and 𝑃𝑆𝑃 > 𝑃𝑆𝑆, making the comparison effectively only on the 

second subunit. Because other orderings of three nodes yield a lower probability of total 

infection, due to sticky nodes having a lower probability to spread the disease to a 

second node, the maximal layout in terms of overall infection is either PPP or PSP. 

Equation (1) is the result of the equation 𝑃𝑃𝑃 = 𝑃𝑆𝑃 as to compare the two 

configurations. The solution of this equation is unique as the function 𝑓(𝜆) has a unique 

fixed point in (0,1). Indeed, consider the functions 𝑔(𝜆) = (1 − (1 − 𝜆)𝑇)2 and ℎ(𝜆) =

𝑔(𝜆)

𝜆
. Because 𝑔(𝜆) is strictly increasing at the beginning and then becomes strictly 

decreasing with a unique inflexion point, as 𝑔′(0) = 𝑔′(1) = 0, 𝑔′(𝜆) > 0 for 𝜆 ∈

(0,1), 𝑔′′(0) > 0 and 𝑔′′(1) = 0, with 𝑔′′′(𝜆) < 0, then ℎ(𝜆) is monotonically 

increasing before the inflexion point, and monotonically increasing after. Therefore, as 

also lim
𝜆→0

ℎ(𝜆) = 0 and ℎ(1) = 0, the equation ℎ(𝜆) = ℎ(𝜆2), equivalent to 𝜆 = 𝑓(𝜆), 

will have a unique solution, denoted as 𝜆∗. 

The proof for the expected number of infected is similar to this one. The main result of 

this first proposition is that poisson nodes are good receivers while sticky nodes are good 

senders. Indeed, the conditional probability SP is the highest among the others. 

 

4.2. Normal contagion in line-shaped networks of an arbitrarily odd large length 

This statement is an extension of the previous one. 

Statement 2: In a line composed of an arbitrarily odd large number of nodes, who once 

infected can transmit for a number of periods 𝑇 ∈ ℕ, the configuration of poisson and 

sticky nodes that maximises the probability of total infection is: 

- PSSSS…SP if 𝜆 < 𝜆∗∗; 

- PSPSP…SP if 𝜆∗∗ < 𝜆 < 𝜆∗ and; 

- PPPPP…PP if 𝜆 > 𝜆∗ 

Where 𝜆∗ was defined in the previous proposition, 𝜆∗∗ is the interior solution of 𝜆 =

[1 − (1 − 𝜆)𝑇]2 and 0 < 𝜆∗∗ < 𝜆∗ < 1.         □ 
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The proof for this statement is just an extension of the first statement, so we will not 

detail the proof. However, it is interesting to run some simulations of this case in order 

to verify the proposition. Those simulations are programmed in Python where nodes are 

objects and the nodes’ types are classes. We compare the results of the infection 

processes for lines of five nodes in which all of the nodes are poisson to one in which 

nodes alternate between poisson and sticky (starting from poisson as they are better 

senders). The nodes stay contagious for 2 turns, after which they remain infected but can 

no longer spread the infection. 50,000 iterations were run over a range of 30 lambdas. 

To show the result, the ratio of the probabilities to get more than 50% of the population 

infected or a full infection for the alternating and poisson sequences are used, as it 

allows us to see which combination performs better and by how much.  

 

         Figure 3                   Figure 4 

In the graphs for those ratios, the red line shows the indifference point between the two 

configurations of nodes. Above the red line are cases in which we prefer heterogeneity 

while below are cases in which we prefer homogeneity. We can observe that, for small 

values of lambda, having poisson and sticky is far better for the spread of the disease, 

further confirming the results of the previous statement. For larger values, the difference 

is quite negligible even though the ratio falls below 1, which indicates that the layout 

will all poisson performs better as predicted by the proposition. From the graph, we can 

see that the benefits of having always a heterogenous population far outweigh the 

disadvantages. Indeed, even when a homogeneous population is preferred, the ratio is 

barely below 1, and thus if we need to choose a population without knowing 𝜆, it is 

always better to choose a heterogeneous one. 
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4.3. Normal contagion in star-shaped networks 

Statement 3: In a star-shaped network with 𝑛 leaves, with nodes that can transmit the 

disease for 𝑇 = 2 periods, the configuration that maximises the probability of a full 

contagion for any 𝜆 ∈ (0,1) is one such that all leaves are poisson and the centre is 

sticky.             □ 

In a star-shaped network with a large number of leaves, the preferred configuration is 

heterogeneous, characterized by a sticky centre and poisson leaves, regardless of the 

activity level of the agents. Indeed, consider a star-shaped network with 𝑛 leaves. In this 

configuration, a leaf is infected and can transmit the disease for two periods. Then, for 

any 𝜆, the layout which maximises the probability of full contagion has a sticky node as 

the centre and poisson nodes as the leaves. This can be easily proved by remembering 

that poisson nodes are good receivers and sticky nodes are good senders. Having a sticky 

node in the centre implies that for 𝑛 − 1 leaves, the sticky node will be the sender and 

the poisson nodes the receivers, provided that the centre gets infected. Calculating the 

theoretical probabilities of full contagion leads to the same conclusion. Indeed, if the star 

has a poisson node as a central node then this probability will be:  

𝑃𝑃: (1 − (1 − 𝜆2)2)(2𝜆(1 − 𝜆)𝜆𝑛−1 + 𝜆2(1 − (1 − 𝜆)2)𝑛−1) 

Computed by multiplying the probability of the first contagion between the leaf and the 

centre and, because 𝑇 = 2, the sum of the event in which the centre and the leaf are 

active and inactive or vice versa, and the event in which they are both active at the same 

time. On the other hand, if the star has a sticky node as its centre: 

𝑃𝑆: (𝜆(1 − (1 − 𝜆)2)(1 − (1 − 𝜆)2)𝑛−1 = 𝜆(1 − (1 − 𝜆)𝑛  

Calculated by considering the interactions 𝑃𝑆 for the contagion between the leaf and the 

core, and 𝑆𝑃 for the contagion between the core and the leaves. In this last case, it is 

possible to use the probabilities calculated in statement 1 as the sticky node does not 

have a chance to change its activity. With the two probabilities, it is possible to show 

that the limit as 𝑛 goes to infinity of the ratio between 𝑃𝑃 and 𝑃𝑆 is less than 1 for any 𝜆. 

Indeed: 

lim
𝑛→∞

𝑃𝑃

𝑃𝑆
= lim

𝑛→∞

(1 − (1 − 𝜆2)2)(2𝜆(1 − 𝜆)𝜆𝑛−1 + 𝜆2(1 − (1 − 𝜆)2)𝑛−1)

𝜆(1 − (1 − 𝜆)𝑛

=
1 − (1 − 𝜆2)2

2 − 𝜆
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Which is less than 1 for every 𝜆 ∈ (0,1). Thus, also when changing the shape of the 

network, having a heterogenous network is beneficial to the diffusion of a phenomenon. 

 

4.4. Normal contagion in networks with reversing nodes 

Statement 4: When introducing the reversing node type in a line graph, with the same 

characteristics as those in statement 2, then the optimal configurations involves always 

reversing nodes and never poisson ones. Those optimal layouts will be either a full 

alternation of the form RSRSR…SR for low levels of 𝜆, all reversing nodes for high 

levels of lambda and a mixture of RRRs and alternating SRSR…SR in between.    □ 

When considering reversing nodes, if agents have a high activity level, the best 

configuration is to have everybody following the reversing behaviour. On the other 

hand, for middle or low activity levels, heterogeneous sequences are preferred. The 

whole formal proof of this statement will not be reported here, however, some hints of 

its proof are.  

Firstly, the likelihood of transmission is increased when a sticky node is followed by a 

reversing node. The chance of transmission from an infected sticky to a reversing node, 

for instance, is 1 if 𝜆 >
1

2
. Indeed, if the reversing node is inactive during one period, it 

will be active during the following period and make contact during at least one of the 

two periods. As a result, the main disadvantage of alternating reversing and sticky nodes 

is using the latter as receivers, which becomes a problem for large values of 𝜆 thus it is 

preferable to use reversing nodes exclusively.  

Then, to see why the optimal configurations do not present any poisson nodes notice that 

the probability that a poisson node is never active is (1 − 𝜆)𝑇, while for the reversing 

node is (1 − 𝜆)(1 − 𝑞)𝑇−1 with 1 − 𝑞 < 1 − 𝜆, since a reversing node has a lower 

probability of staying inactive than its overall probability of being in that state, as it 

prefers to switch. In particular, 𝑞 = 𝑚𝑖𝑛 {1,
𝜆

1−𝜆
}, and so 1 − 𝑞 = max {0,

1−2𝜆

1−𝜆
} with 

1−2𝜆

1−𝜆
< 1 − 𝜆 for 𝜆 > 0. This implies that having RS at the start of the line always beats 

having PS. Similarly, having SR at the end of the line always beats having SP. 

Therefore, it is always best to have a reversing node as the beginning and ending node 

and this is in line with statement 1, where poisson nodes were better than sticky as first 

components. These facts imply that  RSPS…PSR and RSSS…SSR dominate PSPS…PSP 
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and PSSS…SSP respectively, when 𝜆 < 𝜆∗. Thus, poisson nodes can only be found on 

the interior of the graph. However, by calculating the probability that a subsequent node 

gets infected given that the previous one was already infected, it can be shown that every 

interior sequence with poisson nodes gets dominated by one with only reversing and 

sticky. Those probabilities are calculated using the same reasoning showed in statement 

1 and statement 2. 

This result can also be shown empirically with simulations. For them, 50,000 iterations 

in which we test six combinations of five nodes in a line over the span of 30 values for 

𝜆. The metric to evaluate the performance of those layouts is the probability to reach a 

certain threshold of contagion. Also for this simulation, the contagion time is 2 and the 

infection starts randomly at one end. The result of this simulation is shown in [Figure 5] 

and [Figure 6]: 

 

                 Figure 5                     Figure 6 

From the graphs, it is clear that the layouts with only reversing or a combination of 

sticky and reversing nodes are the ones which performed the best. Moreover, looking at 

[Figure 6] we can confirm that alternating reversing and sticky nodes is best before a 

certain threshold of 𝜆, after which having all reversing become beneficial.  

 

In conclusion, we can affirm that heterogeneity in a network helps the diffusion of a 

phenomenon, as it boosts the probability of infection. Thus, when the aim is to maximise the 

diffusion process, like when the phenomenon is a piece of information, then having a 

diverse network is of help. On the other hand, when the objective is to minimise the number 

of infected nodes, an homogeneous structure is preferred, in particular one composed of 
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sticky nodes, which by far reduces the probability of infection under all metrics and 

outperforms all the other combinations.  

 

5. Rumours 

The kind of static information seen so far is not the only one that can travel through a 

network. More complex kinds of information can be transmitted, for example in the form of 

rumours. A rumour is defined as a false circulating story, spread by some node. 

Understanding the dynamics of how rumours spread and how they can be debunked is 

crucial in real-life scenarios, particularly in the context of organizations, where 

misinformation can have significant consequences on brand reputation, customer trust, and 

even financial performance. For instance, consider a pharmaceutical company that faces a 

rumour regarding the safety of one of its products. The rumour spreads quickly through 

social media, leading to widespread fear and reduced sales. By understanding the underlying 

network structures and the roles of spreaders and debunkers, the company can swiftly 

implement a targeted communication campaign to counteract false claims. 

The model used to study this new type of information features spreaders, which are the 

nodes that spread the false claim, debunkers, which are the nodes who know that the 

information is false and will try to debunk it, and simple nodes. Debunkers behave by 

spreading a counter-information in the network as soon as they hear the rumour, by 

following the same rules as the normal contagion process, converting neighbours to their 

version of the story and turning them into debunkers. Therefore, this counter-information is 

transmitted by nodes for 𝑇 periods, and can spread only if both the debunker and the 

receiver are both active. Once a node has heard that the information circulating is false, it 

cannot get infected and will no longer be able to spread the false information, but will start 

spreading the true one. Moreover, everyone in the network still acts according to the Markov 

chains defined before and can be either sticky, poisson or reversing.  

As those types of phenomena are present in real-life networks, it can be interesting to 

understand whether or not the heterogeneity of nodes helps with the contagion or not. As 

now information needs to travel in the network twice, the previous optimal structures for 

diffusion may no longer be optimal for debunking purposes. Indeed, new assumptions are 

possible considering that if the debunking process starts, sticky nodes that were active during 

the contagion process, are active with probability 1, and hence can play a key role in 
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exposing the truth. This knowledge can be invaluable in designing effective strategies for 

organizations to combat the spread of misinformation, promote fact-checking, and maintain 

their brand image. 

To investigate those new systems we first present theory and expectations, then confirming 

the results by running simulations. By doing so, we aim to shed light on the complex 

interaction between various factors influencing the spread and debunking of rumours, which 

can have practical applications in managing misinformation and fostering a more informed 

and responsible digital landscape for organizations and their stakeholders. 

 

6. Statements and Comments on the Debunking of Rumours 

The purpose of this section is to verify that heterogeneity is beneficial to debunking a 

rumour by checking if the statements for the spread of information apply also in this specific 

case. Even if heterogeneity makes a rumour spread faster, and thus reaching a debunker 

faster, it can be detrimental to the debunking process. As poisson nodes act with random 

behaviour, if we consider the probability of a rumour to get debunked knowing that it 

reached a debunker, the network would be better off with all sticky nodes, as the probability 

of fully debunking the rumour is 1, challenging the idea that heterogeneity is beneficial also 

for spreading the truth. As a matter of fact, in this section, we show how, for certain 

thresholds of 𝜆, homogeneity is preferable. 

The following statements are analogous to statements 1 to 4 that we explained in the 

previous section, but in the presence of rumours, which have been found in this work. For 

the first three statements a formal proof is provided, while for the last one only simulations 

are shown. 

 

6.1. Diffusion of rumours in line-shaped networks of 3 nodes 

Statement 1B: In a line of three nodes, who once infected can transmit for a number of 

periods 𝑇 ∈ ℕ, and where the first node is a spreader of a rumour, while the last node is 

a debunker, the configuration of poisson and sticky nodes that maximises the probability 

of fully debunking a rumour is: 

- 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 𝑓𝑜𝑟 𝜆 < 𝜆∗∗ 

- 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆∗∗ < 𝜆 < 𝜆∗∗∗ 𝑎𝑛𝑑 
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- 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆 > 𝜆∗∗∗ 

Where 𝜆∗∗ was defined previously and 𝜆∗∗∗ is the unique solution in (0,1) for: 

𝜆 = (
1 − (1 − 𝜆2)𝑇

1 − (1 − 𝜆)𝑇
)

4

. 

Moreover, the thresholds satisfy: 0 < 𝜆∗∗ < 𝜆∗ < 𝜆∗∗∗ < 1.                  □ 

Compared to normal contagion, sticky nodes have clearly gained an advantage over 

poisson nodes, making homogeneity beneficial, not only for high activity levels, but for 

low activity levels too. This can be observed by the presence of the sequence 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 

and by the fact that the threshold between 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 and 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 has shifted to the 

right as 𝜆∗ < 𝜆∗∗∗. In the context of rumours, sticky nodes gain this advantage because of 

their activity pattern. To understand why, consider that, to predict the outcomes of 

simulations, we can view this problem as a simple contagion process with lines of 5 

nodes. This is because, after the rumour reaches the third node (the debunker), the truth 

has to travel through two additional nodes for the rumour to be completely debunked. 

Notice that, due to this mirroring, some sticky nodes will be correlated as the first and 

second nodes are the same as the fourth and fifth. For example, if the second sticky node 

of a line is active, then the fourth one will be too. Those correlated nodes are indicated 

with 𝑆𝑛, where 𝑛 indicates the position of the one fixing their activity level. On the other 

hand, new poisson nodes can be considered as independent nodes because of their 

activity pattern. Consequently, sequences with sticky nodes gain an advantage from the 

correlation.  

Because of this advantage, having a sticky node as a starting or ending node is no longer 

a dominated strategy. To see why, notice that the probabilities to debunk a rumour at the 

start of a line are: 

- 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 … = 𝑆𝑆 … 𝑆2𝑆1𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛
: 𝜆2; 

- 𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 … = 𝑆𝑃 … 𝑃𝑆1𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛
: 𝜆(1 − (1 − 𝜆)𝑇)2; 

- 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 … = 𝑃𝑆 … 𝑆2𝑃𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛: 𝜆(1 − (1 − 𝜆)𝑇)2; 

- 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 … = 𝑃𝑃 … 𝑃𝑃𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛: (1 − (1 − 𝜆2)𝑇)2. 

Depending on lambda, a different initial sequence will be better. 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 … is better 

than 𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 … = 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 …, if and only if 𝜆 > (1 − (1 − 𝜆)𝑇)2 = 𝑔(𝜆). From 

statement 1 and statement 2, we know that the function 𝑔(𝜆) is initially convex and then 
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concave, with a unique fixed point in (0,1). Thus 𝜆 > 𝑔(𝜆) if and only if 𝜆 < 𝜆∗∗, where 

𝜆∗∗ is the solution to the equation 𝜆 = 𝑔(𝜆). On the other hand, 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 … is better 

than 𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 … = 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 …, if and only if 𝜆 < (
1−(1−𝜆2)

𝑇

1−(1−𝜆)𝑇
)

2

= 𝑓(𝜆). As already 

proven in statement 1, the function 𝑓(𝜆) has a unique fixed point in (0,1), thus 𝜆 < 𝑓(𝜆) 

if and only if 𝜆 > 𝜆∗, where 𝜆∗ is the solution to the equation 𝜆 = 𝑓(𝜆). Since from 

statement 2, 𝜆∗∗ < 𝜆∗, the order of optimal initial sequences is:  

 

Figure 7: progression of initial sequences when the second node is sticky 

 

Figure 8: progression of initial sequences when the second node is poisson 

Thus making sticky nodes a viable starter. 

Next, to understand what are the optimal sequences of 3 nodes, we need to define the 

probabilities to debunk a rumour after the start. For this, we assume that the first node is 

infected for the contagion process, while the second node is counted as a debunker for 

the debunking process. In the contagion process, as the first node is assumed to be 

infected, any first sticky node is considered also active, as its activity level is set at time 

0. Similarly, in the debunking process, as it happens after the contagion, any sticky node 

(regardless of the position), is considered active. On the other hand, because poisson 

nodes set their activity level each turn, they are never considered active with probability 

1, and behave according to their Markov chain for contagion and debunking processes. 

This way of defining the probability to fully debunk a rumour works not only for ending 

sequences, as they have an actual debunker, but also for intermediate sequences, as when 

the contagion reaches the end, the truth will start spreading, thus making new debunkers 

in the line. 
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Figure 9: probability of middle and end sequences 

Hence, these probabilities are: 

- 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟: 𝜆; 

- 𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟: (1 − (1 − 𝜆)𝑇)2; 

- 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟: 𝜆(1 − (1 − 𝜆)𝑇)2; 

- 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟: (1 − (1 − 𝜆2)𝑇)2. 

In this way, the probability of fully debunking a rumour in a line can be calculated as the 

probability of fully debunking the rumour for the initial sequence, times the probability 

for any other -intermediate or ending- sequence. As an example, the sequence 

𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 can be divided into two subunits 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 … and 𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟, so the 

probability of fully debunking a rumour is 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 … ∙ 𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟. To define the 

configurations that maximise this probability for lines of three agents, we extend the 

intermediate sequences by adding a sticky or a poisson node at the beginning as it is no 

longer possible to exclude the presence of sticky nodes at the start. Because of this, we 

need to analyse every possible combination of three nodes and exclude the dominated 

sequences. The possible sequences that can be made with three nodes are: 

- 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟: 𝜆3; 

- 𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟: 𝜆2(1 − (1 − 𝜆)𝑇)2; 

- 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟: 𝜆2(1 − (1 − 𝜆)𝑇)2; 

- 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟: 𝜆(1 − (1 − 𝜆)𝑇)4; 

- 𝑆𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟: 𝜆2(1 − (1 − 𝜆)𝑇)4; 

- 𝑃𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟: 𝜆(1 − (1 − 𝜆)𝑇)2(1 − (1 − 𝜆2)𝑇)2; 

- 𝑆𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟: 𝜆(1 − (1 − 𝜆)𝑇)2(1 − (1 − 𝜆2)𝑇)2; 

- 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟: (1 − (1 − 𝜆2)𝑇)4. 

Notice that, 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 > 𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 = 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟  for 𝜆 < 𝜆∗∗, while 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 >

𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 = 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 for 𝜆 > 𝜆∗∗, making 𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 and 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 always 
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dominated by other sequences. A similar argument can be used to exclude the 

combinations 𝑃𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 and 𝑆𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 as they are dominated by 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 for 𝜆 <

𝜆∗, and are dominated by 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 for 𝜆 > 𝜆∗. Moreover, 𝑆𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 is always 

dominated by 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 as 𝜆(1 − (1 − 𝜆)𝑇)4 > 𝜆2(1 − (1 − 𝜆)𝑇)4 for any 𝜆 ∈ (0,1). 

In conclusion, we expect the configuration that maximises the number of debunked 

nodes to be: 

- 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 𝑓𝑜𝑟 𝜆 < 𝜆∗∗ 

- 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆∗∗ < 𝜆 < 𝜆∗∗∗ 𝑎𝑛𝑑 

- 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆 > 𝜆∗∗∗ 

Where 𝜆∗∗ is the unique solution to:  

𝜆 = 𝑔(𝜆) = (1 − (1 − 𝜆)𝑇)2 

And 𝜆∗∗∗ is the unique solution to:  

𝜆 = 𝑘(𝜆) = (
1 − (1 − 𝜆2)𝑇

1 − (1 − 𝜆)𝑇
)

4

 

To obtain the equations presented, one must compare the probabilities of the three chains 

that are: 

𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 = 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 … ∙ 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 = 𝑆𝑆𝑆𝑆2𝑆1𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛
: 𝜆3 

𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 = 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 … ∙ 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 = 𝑃𝑆𝑃𝑆2𝑃𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛: 𝜆(1 − (1 − 𝜆)𝑇)4 

𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 = 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 ∙ 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 = 𝑃𝑃𝑃𝑃𝑃𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛: (1 − (1 − 𝜆2)𝑇)4 

To prove that the solutions of the equations are unique, it is necessary to prove that the 

functions 𝑔(𝜆) and 𝑘(𝜆) have a unique fixed point. As already proven in statement 1, 

𝑔(𝜆) has a unique fixed point. 

To prove that the other equation has a unique solution, notice that finding the fixed point 

of 𝑘(𝜆) is equivalent to solving 𝑙(𝜆) = 𝑙(𝜆2), where 𝑙(𝜆) =
(1−(1−𝜆)𝑇)

4

𝜆
. Since 𝑙(𝜆) is 

monotonically increasing for 𝜆’s smaller than its interior inflexion point and 

monotonically increasing after, with 𝑙(1) = 0 and lim
𝜆→0

𝑙(𝜆) = 0, the equation must have 

a unique solution in the interval (0,1).  

Next, notice that when 𝑔(𝜆) = 𝜆, then 𝑔(𝜆2) < 𝜆2, since 𝑔(𝜆) < 𝜆 for 𝜆 < 𝜆∗∗. This 

implies that 𝜆 > 𝑓(𝜆) > 𝑘(𝜆), which means that 𝜆 < 𝜆∗∗∗ and so 𝜆∗∗ < 𝜆∗∗∗. Moreover, 
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𝜆∗∗∗ > 𝜆∗ as 𝑘(𝜆) < 𝑓(𝜆) and thus 𝑘(𝜆∗) < 𝜆∗ = 𝑓(𝜆∗), proving the shift of the 

threshold between 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 and 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟. 

To confirm the theory, we performed 50,000 simulations for different levels of lambda 

and of every combination of three nodes and compared them to a normal contagion 

process. The results of them are shown below: 

 

                           Figure 10: probabilities of total debunking               Figure 11: focus on the best combinations for debunking 

 

Figure 12: SSS for low lambdas 

As expected, the empirical results confirm the theory. Another interesting fact about the 

scenario is that the optimal configurations seem to be the same as the original statement 

1 except for the presence of the line 𝑆𝑆𝑆 at the very beginning. Indeed, the best 

configurations for the spread of a piece of information are 𝑃𝑆𝑃 and 𝑃𝑃𝑃 were: 
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               Figure 13: probabilities of full infection                            Figure 14: focus on the three combinations 

This difference is because when the information needs to travel back if the network has 

only 𝑆, they will be active with probability 1, and thus shortening the line to an 

equivalent of 5 to a line of 3 nodes.  

After establishing a theoretical framework and conducting simulations, it is crucial to 

verify that the theory holds up against the simulated data, as to ensure the validity of the 

model. By calculating the theoretical 𝜆∗∗ and 𝜆∗∗∗ for a model where 𝑇 = 2, it is found 

that they are very close to what the simulations are showing. Indeed, 𝜆𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
∗∗  and 

𝜆𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
∗∗∗ : 

 

            Figure 15: simulated level of lambda for PSP > SSS        Figure 16: simulated level of lambda for PPP > PSP 

are very close to 𝜆𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
∗∗ = 0.38197 and 𝜆𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

∗∗∗ = 0.90166 > 𝜆𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
∗ =

0.75996.  

 

6.2. Diffusion of rumours in line-shaped networks of arbitrarily large odd length 

As for normal contagion processes, this statement is an extension of the previous one. 
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Statement 2B: In a line composed of an arbitrarily large finite odd number of nodes, 

where the first node is a spreader of a rumour, while the last node is a debunker and, 

who once infected can transmit for a number of periods 𝑇 ∈ ℕ, the configuration of 

poisson and sticky nodes that maximises the probability of fully debunking a rumour is: 

- 𝑆𝑆𝑆 … 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆 < 𝜆∗∗; 

- 𝑃𝑆𝑆 … 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆∗∗ < 𝜆 < 𝜆∗∗∗∗; 

- 𝑃𝑆𝑃 … 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆∗∗∗∗ < 𝜆 < 𝜆∗∗∗; 

- 𝑃𝑃𝑃 … 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆 > 𝜆∗∗∗. 

Where 𝜆∗∗ and 𝜆∗∗∗ were defined in the previous propositions, 𝜆∗∗∗∗ is the interior 

solution of 𝜆 = (1 − (1 − 𝜆)𝑇)4 and 0 < 𝜆∗∗ < 𝜆∗∗∗∗ < 𝜆∗∗∗ < 1.     □ 

The length of the line analysed in the previous statement may have a significant impact 

on the presence of homogeneous sequences. Therefore, it is crucial to extend the 

analysis to lines with an arbitrarily large, but still odd, number of nodes, in order to rule 

out the length of it as a factor that determines the optimal configuration.  

We now proceed to the proof of this result. In order to deduce the best sequences for an 

arbitrarily large lines of nodes with an odd amount of nodes, it is mandatory to exclude 

some categories of lines as there exists an infinite number of possible combinations. 

First, we can demonstrate that an optimal sequence of agents must start and end with the 

same node type. Let us consider two sequences with the same interior nodes, but one 

starting and ending with the same node type, and the other with a different start and end. 

The comparison between the two would be equal to comparing just the beginning or the 

ending sequence as the rest of the sequence would be the same. Indeed, consider the 

sequences 𝑆𝑃 … 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 and 𝑆𝑃 … 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟. The latter would be better than the 

former if and only if 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 > 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟, or when 𝜆 > 𝜆∗. Then, because 𝜆 > 𝜆∗, 

𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 … > 𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 … as starting sequence, thus making 𝑆𝑃 … 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 dominated 

by 𝑃𝑃 … 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟, which has the same type of node at the start and end. Considering 

that all the other cases (poisson nodes at the beginning or end, sticky nodes at the end 

and poisson at the beginning,…) can be proven to not be optimal in the same way, we 

can conclude that it is impossible for an optimal sequence to start and end with different 

types of agents. 

Next, we will mirror the proof of Akbarpour & Jackson [1] done for the normal 

contagion process, as their method works for this situation too. Thus, we can first 
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exclude all sequences containing both 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 and 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟. Consider a sequence 

starting and ending with poisson nodes that has some instances of 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟. Then, in it, 

there must exist both 𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 and 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 somewhere. If the sequence were to be 

optimal, it would imply that 𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 > 𝑃𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 and that 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 >

𝑆𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟, and therefore would not be possible for 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 to exists in the sequence. 

Indeed, if instead the sequence contained instances of 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟, then, because it 

contains also single sticky nodes, 𝑃𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 > 𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 or 𝑆𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 > 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟, 

thus making the presence of 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 impossible. The same argument can be made for 

sequences starting and ending with sticky nodes. Indeed, if the sequence contained 

instances of 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 and it were to be optimal, then there must exist somewhere the 

sequences 𝑆𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 and 𝑃𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟. This implies that 𝑆𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 > 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 and 

𝑃𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 > 𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟, thus making impossible for 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 to exist in the 

sequence. Again, if there were a 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟, then since the sequence has also poisson 

nodes, somewhere there is at least one 𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 or 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟, making impossible for 

𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 to exists. 

Finally, we can prove that if there are instance of 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟, it is impossible to have 

isolated poisson nodes on the interior. If in an optimal sequence there are two instances 

of 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟, then it means that 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 > 𝑆𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 (as 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 is 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 ∙

𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟), so isolated poisson nodes cannot exist in the sequence. If instead those two 

instances had an isolated poisson node between them, or more than one, separated by 

isolated sticky nodes, the optimal sequence would have somewhere an 𝑆𝑆𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟, 

𝑆𝑆𝑃𝑆𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟, etc.. In the first case, to justify the presence of 𝑆𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 in the 

sequence, 𝑆𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 > 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟, meaning that 𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 ∙ 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 > 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟
2 . 

However, if that was the case, 𝑆𝑃𝑆𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 would always be better that 𝑆𝑆𝑃𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 

as 𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟
2 ∙ 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟

2 > 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟
2 ∙ 𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 ∙ 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟, thus making impossible for 

one isolated poisson node to be between two instances of 𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟. All the other cases 

are extensions of the first one and can be proven with the same logic. 

Thus, the only sequences left are: 

- 𝑆𝑆𝑆 … 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟; 

- 𝑆𝑃𝑃 … 𝑃𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟; 

- 𝑃𝑆𝑆 … 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟; 

- 𝑆𝑃𝑆 … 𝑆𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟; 



25 
 

- 𝑃𝑆𝑃 … 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟; 

- 𝑃𝑃𝑃 … 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 . 

However, 𝑆𝑃𝑃 … 𝑃𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 is dominated by 𝑃𝑃𝑃 … 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟, for 𝜆 > 𝜆∗, as in that 

range 𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 … > 𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 …, and is dominated by 𝑆𝑃𝑆 … 𝑆𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 for 𝜆 < 𝜆∗, as 

𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 > 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 for 𝜆 < 𝜆∗ as 𝜆∗ < 𝜆∗∗∗, as proven in the previous statement. 

Furthermore, 𝑆𝑃𝑆 … 𝑆𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 is always dominated by 𝑃𝑆𝑃 … 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 as both 

𝑆𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 … and 𝑆𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 are always dominated respectively by 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 … and 

𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟. Therefore, the remaining sequences are: 

- 𝑆𝑆𝑆 … 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟; 

- 𝑃𝑆𝑆 … 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟; 

- 𝑃𝑆𝑃 … 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟; 

- 𝑃𝑃𝑃 … 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 . 

From the previous statement we already know that 𝑃𝑃𝑃 … 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 will be better than 

𝑃𝑆𝑃 … 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 when 𝜆 > 𝜆∗∗∗. Next, note that the comparison between 

𝑃𝑆𝑆 … 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 and 𝑃𝑆𝑃 … 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 is the comparison between 𝑃𝑆𝑟𝑢𝑚𝑜𝑢𝑟 and 

𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟, both following an infected sticky node. Thus, alternating nodes is better only 

if: 

𝜆(1 − (1 − 𝜆)𝑇)4 > 𝜆2 

𝜆 < 𝑢(𝜆) = (1 − (1 − 𝜆)𝑇)4 

Or when 𝜆 > 𝜆∗∗∗∗. Finally, the comparison between 𝑃𝑆𝑆 … 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 and 

𝑆𝑆𝑆 … 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟, is just the comparison 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 and 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟, as they are 

different only at the start and the end. For this we already know that 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 >

𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 if and only if 𝜆 > 𝜆∗∗. Moreover, note that when 𝑢(𝜆) = 𝜆, then 𝑢(𝜆2) < 𝜆2, 

since 𝑢(𝜆) < 𝜆 for 𝜆 < 𝜆∗∗∗∗. This implies that 𝜆 > 𝑘(𝜆), which means that 𝜆 < 𝜆∗∗∗ and 

so 𝜆∗∗∗∗ < 𝜆∗∗∗. Also, 𝜆∗∗∗∗ > 𝜆∗∗ as (1 − (1 − 𝜆)𝑇)4 < (1 − (1 − 𝜆)𝑇)2. 

Therefore, the order of the different sequences is going to be: 

- 𝑆𝑆𝑆 … 𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆 < 𝜆∗∗; 

- 𝑃𝑆𝑆 … 𝑆𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆∗∗ < 𝜆 < 𝜆∗∗∗∗; 

- 𝑃𝑆𝑃 … 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆∗∗∗∗ < 𝜆 < 𝜆∗∗∗; 

- 𝑃𝑃𝑃 … 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟  𝑓𝑜𝑟 𝜆 > 𝜆∗∗∗. 
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To confirm the theory, simulations were carried out testing all the possible combinations 

for lines of 5 nodes, the results of which are shown below: 

 

Figure 17 & 18: probabilities of fully debunk a rumour in lines of 5 nodes 

 

 

As already predicted, the order and thresholds are the same as those theorised. 

 

6.3. Diffusion of rumours in star-shaped networks 

Statement 3B: In a star-shaped network with 𝑛 leaves, where both spreader and 

debunker are both leaves, and with nodes that can transmit the disease for 𝑇 = 2 periods, 

the configuration that maximises the probability of fully debunking a rumour for any 𝜆 ∈

(0,1) is one such that all leaves are poisson and the centre is sticky.     □ 

 

In line-shaped networks, for the debunker to learn about the rumour, all the other nodes 

had to hear it first. Instead, because in our model debunkers spread the truth also to 

nodes who have not heard the rumour, in star-shaped networks, as spreader and 

debunker are leaves, only the centre needs to hear the rumour for it to be spread to the 

debunker. For this reason, if we care to completely debunk a rumour, it does not matter 

if the other nodes hear the rumour in the first place. Therefore, the probability of fully 

debunking a rumour, is the probability that the debunker hears the rumour, times the 

probability that the truth spreads to all other nodes, accounting for correlated sticky 

nodes that we consider active during the rumour spread. The former is the probability of 

full infection, under normal contagion processes, in a line of three nodes -spreader, 

centre and debunker-. The latter is instead is the probability of full infection in a star-
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shaped network, as the counter-information behaves as a normal contagion, accounting 

however for the sticky nodes counted as active for the rumour spreading process.  

Moreover, in contrast to the spread of information, we cannot exclude that the optimal 

star-shaped configuration has sticky leaves, as we cannot exclude that the infection can 

start with a sticky node (proven in statement 1B). The notation used to indicate the 

configuration is of the form 𝐶𝐿,𝑡𝑦𝑝𝑒 𝑜𝑓 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛, where in the place of 𝐶 there is the 

centre’s type, and in the place of 𝐿, the leaves’ type. Therefore, the possible 

configurations are: 

- 𝑆𝑆,𝑟𝑢𝑚𝑜𝑢𝑟: central node is sticky, leaves are sticky; 

- 𝑃𝑆,𝑟𝑢𝑚𝑜𝑢𝑟: central node is poisson, leaves are sticky; 

- 𝑆𝑃,𝑟𝑢𝑚𝑜𝑢𝑟: central node is sticky, leaves are poisson; 

- 𝑃𝑃,𝑟𝑢𝑚𝑜𝑢𝑟: central node is poisson, leaves are poisson. 

Additionally, we use the amount of ′ to count the number of correlated sticky nodes in 

the debunking process, as the sticky nodes involved in the contagion process are 

correlated to the ones in the debunking process. Therefore, the probability of fully 

debunking a rumour when the central node and leaves are sticky, is given by the 

probability of the rumour to spread in a line of three sticky nodes, times the probability 

of the truth to spread in the whole network accounting for the three sticky that are active: 

𝑆𝑆,𝑟𝑢𝑚𝑜𝑢𝑟: 𝑆𝑆𝑆𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛 ∙ 𝑆𝑆,𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛
′′′ = 𝜆3 ∙ 𝜆𝑛−2 = 𝜆𝑛+1, 

In a similar way, the probability of fully debunking a rumour when the central node is 

poisson and the leaves are sticky, is: 

𝑃𝑆,𝑟𝑢𝑚𝑜𝑢𝑟: 𝑆𝑃𝑆𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛 ∙ 𝑃𝑆,𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛
′′ = 𝜆2(1 − (1 − 𝜆)2) ∙ 𝜆𝑛−2(1 − (1 − 𝜆)2)

= 𝜆𝑛(1 − (1 − 𝜆)2), 

the probability of fully debunking a rumour when the central node is sticky and the 

leaves are poisson, is: 

𝑆𝑃,𝑟𝑢𝑚𝑜𝑢𝑟: 𝑃𝑆𝑃𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛 ∙ 𝑆𝑃,𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛
′ = 𝜆(1 − (1 − 𝜆)2)2 ∙ (1 − (1 − 𝜆)2)𝑛

= 𝜆(1 − (1 − 𝜆)2)𝑛+2, 

and the probability of fully debunking a rumour when the central node and leaves are 

poisson, is: 

𝑃𝑃,𝑟𝑢𝑚𝑜𝑢𝑟: 𝑃𝑃𝑃𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛 ∙ 𝑃𝑃,𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛

= (1 − (1 − 𝜆2)2) ∙ (1 − (1 − 𝜆2)2)(2𝜆𝑛(1 − 𝜆) + 𝜆𝑛+1(2 − 𝜆)𝑛−1)

= (1 − (1 − 𝜆2)2)2(2𝜆𝑛(1 − 𝜆) + 𝜆𝑛+1(2 − 𝜆)𝑛−1). 
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To understand which structure is more convenient to our aim when the number of leaves 

grows to infinity, we first study the limit for 𝑛 going to infinity of the ratio of the 

probabilities of networks with the same leaf type but different centres. The limit of 

𝑃𝑃,𝑟𝑢𝑚𝑜𝑢𝑟

𝑆𝑃,𝑟𝑢𝑚𝑜𝑢𝑟
 is a number between 0 and 1, thus making the configuration with a sticky 

centre better. Indeed: 

lim
𝑛→∞

𝑃𝑃,𝑟𝑢𝑚𝑜𝑢𝑟

𝑆𝑃,𝑟𝑢𝑚𝑜𝑢𝑟
= lim

𝑛→∞

(1 − (1 − 𝜆2)2)2(2𝜆𝑛(1 − 𝜆) + 𝜆𝑛+1(2 − 𝜆)𝑛−1)

𝜆(1 − (1 − 𝜆)2)𝑛+1

= lim
𝑛→∞

(1 − (1 − 𝜆2)2)2 ∙
2𝜆𝑛(1 − 𝜆) + 𝜆𝑛+1(2 − 𝜆)𝑛−1

𝜆𝑛+2(2 − 𝜆)𝑛+1

= lim
𝑛→∞

(1 − (1 − 𝜆2)2)2 ∙ (
2𝜆𝑛(1 − 𝜆)

𝜆𝑛+2(2 − 𝜆)𝑛+1
+

𝜆𝑛+1(2 − 𝜆)𝑛−1

𝜆𝑛+2(2 − 𝜆)𝑛+1
)

= lim
𝑛→∞

(1 − (1 − 𝜆2)2)2 ∙ (
2(1 − 𝜆)

𝜆2(2 − 𝜆)𝑛+1
+

1

𝜆(2 − 𝜆)2
)

=
(1 − (1 − 𝜆2)2)2

𝜆(2 − 𝜆)2
= 𝜆3 (

2 − 𝜆2

2 − 𝜆
)

2

. 

which for 𝜆 ∈ (0,1) is a number between 0 and 1. To prove this, notice that: 

𝜆3 (
2 − 𝜆2

2 − 𝜆
)

2

< 𝜆2 (
2 − 𝜆2

2 − 𝜆
)

2

 

for 𝜆 ∈ (0,1), and thus proving that: 

𝜆2 (
2 − 𝜆2

2 − 𝜆
)

2

< 1, 

proves also that the result of the limit is less than 1. If we take the square root of both 

sides of the inequality we get: 

−1 < 𝜆 (
2 − 𝜆2

2 − 𝜆
) < 1 ⇔ 𝜆 − 2 < 𝜆(2 − 𝜆2) < 2 − 𝜆, 

or 

𝜆3 − 3𝜆 + 2 > 0  

𝜆3 − 𝜆 − 2 < 0. 

Because the function 𝑣(𝜆) = 𝜆3 − 3𝜆 + 2 is decreasing between 0 and 1, 𝑣(0) = 2 and 

𝑣(1) = 0, then 𝑣(𝜆) > 0 in that interval. Moreover, because the function 𝑤(𝜆) = 𝜆3 −

𝜆 − 2 is decreasing between 0 and 
√3

3
, is increasing between 

√3

3
 and 1, and 𝑤(0) =

𝑤(1) = −2, then 𝑤(𝜆) < 0 in the interval, proving that the result of the limit is a 

number between 0 and 1.  
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This result is to be expected, as the correlation brings an advantage to the already 

optimal heterogenous configuration. 

Similarly, the limit of 
𝑆𝑆,𝑟𝑢𝑚𝑜𝑢𝑟

𝑃𝑆,𝑟𝑢𝑚𝑜𝑢𝑟
 is a number between 0 and 1: 

lim
𝑛→∞

𝑆𝑆,𝑟𝑢𝑚𝑜𝑢𝑟

𝑃𝑆,𝑟𝑢𝑚𝑜𝑢𝑟
= lim

𝑛→∞

𝜆𝑛+1

𝜆𝑛(1 − (1 − 𝜆)2)
=

𝜆

1 − (1 − 𝜆)2
=

1

2 − 𝜆
 

As 0 <
1

2−𝜆
< 1 for 𝜆 ∈ (0,1), making the configuration with a poisson centre better.  

Lastly, we must compare the two heterogeneous star-shaped networks: 

lim
𝑛→∞

𝑆𝑃,𝑟𝑢𝑚𝑜𝑢𝑟

𝑃𝑆,𝑟𝑢𝑚𝑜𝑢𝑟
= lim

𝑛→∞

𝜆(1 − (1 − 𝜆)2)𝑛+1

𝜆𝑛(1 − (1 − 𝜆)2)

= lim
𝑛→∞

𝜆 (
1 − (1 − 𝜆)2

𝜆
)

𝑛

= 𝜆 ∙ lim
𝑛→∞

(2 − 𝜆)𝑛 = ∞ 

As 2 − 𝜆 ∈ (1,2) for 𝜆 ∈ (0,1).  

In conclusion, the network with a sticky centre and poisson leaves is the best star-shaped 

network to debunk rumours.  

We can confirm this statement by simulating the configurations and looking at the 

different probabilities to fully debunk a rumour. The simulated star-shaped networks 

have 100 leaves and are evaluated 50,000 times: 

 

Figure 19: probabilities in star-shaped networks 

As calculated before, the network with a sticky centre and poisson nodes dominates all 

the other configurations. Moreover, notice that it is generally unlikely to achieve the 

total debunking of a rumour in such networks, as the centre acts as a bottleneck for the 

process. Indeed, a sticky centre offers an advantage over a poisson centre, as if it is 

active during the contagion process, it will be active also during the debunking one. On 

the other hand, poisson leaves offer an advantage over sticky leaves, as in contrast to 
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line-shaped networks, star-shaped networks do not benefit from correlation, as leaves are 

important only in the debunking process. Therefore, poisson nodes that are inactive 

during the first turn in which the centre actively debunks, may turn active during the 

second turn, increasing the probability of fully debunking a rumour. 

 

6.4. Simulations of line-shaped networks with reversing nodes 

Statement 4B: Consider a line-shaped network with five nodes composed of a mix of 

sticky, poisson or reversing nodes. Then, when 𝑇 = 2, the configuration that maximises 

the probability of fully debunking a rumour is 𝑆𝑆𝑆𝑆𝑆𝑟𝑢𝑚𝑜𝑢𝑟 for low levels of lambda, 

𝑅𝑆𝑅𝑆𝑅𝑟𝑢𝑚𝑜𝑢𝑟 for middle levels of lambda, and 𝑅𝑅𝑅𝑅𝑅𝑟𝑢𝑚𝑜𝑢𝑟 for high levels of 

lambda.              □ 

Since the results from the other statements were still partially valid even with the added 

complexity of the rumour, the next step is to test the hypothesis of heterogeneity in 

statement 4. Here, the lines are composed of 5 nodes and include also reversing nodes. 

Because reversing nodes add complexity to the model, we present only simulation 

without any formal proof. Before running the simulations it is possible to make some 

predictions about the results. Based on the results obtained for lines of 3 nodes, we can 

expect the line composed of only sticky nodes to perform better, for low levels of 

lambda, as they gain an advantage from correlation. Thus, at least in the beginning, we 

expect that to be the dominant line. However, since reversing nodes have a negative 

correlation to their previous activity status, we can also expect to pick up quite fast. For 

this reason, in the middle range of lambda, we can expect a combination of reversing 

and sticky nodes, while for higher lambda, a line composed of all reversing nodes. The 

results of the 50,000 simulations are presented in the graphs below: 

 

           Figure 20: 25% know that the rumour is false                 Figure 21: 50% know that the rumour is false 
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      Figure 22: Restriction for low lambdas (> 0.5 prop.) 

As expected, initially the line performing the best is the one composed of all sticky 

nodes, then a line of alternating reversing and sticky nodes takes the lead and finally the 

line with all reversing catches up and surpasses the others. Moreover, like for the normal 

diffusion, for middle level of lambdas the best combination is a mix of 𝑅𝑅𝑅s and 𝑆𝑅s: 

 

Figure 23: best configuration on middle levels of lambdas 

 

7. Conclusions 

The key difference between the spread of rumours and the spread of classic phenomena, like 

a piece of information is the debunking process. This process, absent in classic diffusion 

models, introduces a second piece of information that replaces the original, travelling 

through the network in an effort to debunk false data. Studying how the introduction of a 

counter-information alters the results obtained with classical contagion models is relevant, 
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as two messages instead of one makes a difference in the network. This dynamic in the 

rumour contagion model highlights the complexity of modern information exchange. 

Central to our findings is the role of heterogeneity within these two models. As our study 

and the study of Akbarpour & Jackson [1] illustrate, heterogeneity helps the spread of true 

information and the debunking of false ones. Indeed, despite the inherent risk of accelerating 

the spread of a rumour, heterogeneity facilitates its debunking as well. As the fast spread of 

true and reliable information, and the correction of false data are crucial to society, 

heterogeneity ensures both better diffusion and debunking.  

In relation to the activity levels of nodes, our study revealed interesting insights about the 

role of sticky agents. As they maintain their activity status over time, in rumour diffusion, 

they benefit from correlation, making them more desirable in the sequences. This result can 

be observed in multiple ways. First, in statement 1B, statement 2B and statement 4B, we 

observed that in contrast to statement 1, statement 2 and statement 4, the sequences 

composed by all sticky nodes are optimal under certain thresholds of lambda (low 𝜆), 

showing that sticky agents have gained an advantage over the other types of nodes. 

Nonetheless, as sticky nodes are present in heterogeneous sequences, they too gain an 

advantage, making them more effective. Indeed, we observed in statement 1B, that the 

threshold between 𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟  and 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟 has shifted to the right, meaning that 

𝑃𝑆𝑃𝑟𝑢𝑚𝑜𝑢𝑟 has gained an advantage over 𝑃𝑃𝑃𝑟𝑢𝑚𝑜𝑢𝑟, thanks to the presence of a sticky 

node. Moreover, the benefits of having always a heterogenous population far outweigh the 

disadvantages also in the situation in which a rumour is being spread. Heterogenous 

sequences proved to be much more efficient, guaranteeing a higher probability to spread for 

most levels of lambda. This is evident by plotting the ratios of the probabilities to fully 

debunk a rumour in heterogeneous sequences over the probability to fully debunk in 

homogeneous ones: 
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Figure 24: ratios of probabilities of full debunking in heterogeneous over homogeneous sequences 

In the graph, the red line shows the indifference point, the blue line the ratio between 

alternating nodes and a sequence with all poisson nodes, and the green one is the same but 

the homogeneous sequence has all sticky nodes. Whenever the blue or green line is below 

the red, the homogeneous sequence is better than the heterogeneous one. Notice that, 

alternating nodes in a line-shaped network can be better (even more than 120 times) than 

having all poisson nodes. However, as sticky nodes have an advantage under our model, the 

advantages of heterogeneity are dampened compared to heterogeneous sequences of sticky 

nodes. Still, we can conclude that, if we need to choose a population without knowing 𝜆, it 

is always better to choose a heterogeneous one. 

To encapsulate, our study leans towards the necessity of heterogeneity in social networks as, 

despite its complexities, they offer unique advantages over homogeneity in the context of 

contagion models. As we venture deeper into the age of information, the understanding of 

those complex systems will significantly enhance our capacity to promote information flow, 

debunk misinformation and foster a healthier information ecosystem. 

 

8. The Code 

To support and verify the correctness of the statements made and to recreate the ones made 

in the paper written by Akbarpour & Jackson [1], it was developed a Python script to 

perform all the simulations shown. The code utilizes an object-oriented approach with 

classes to represent nodes, allowing for the incorporation of an update function to determine 

their activation status and for the storage of relevant information such as if the node is 

infected, how many turns still has left to infect or if it is a debunker. Every type of node has 
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its own class, that inherits the general characteristics of the node from the parent class 

Node. Each child class contains an update function to determine whether the node becomes 

active or not, based on specific criteria defined within the class. Some code snippets for the 

classes are shown below: 

 

Figure 25: code for general class "Node" 

 

Figure 26: code for reversing nodes 

Here, the rumour is represented by two Boolean values. If the node has not heard the rumour 

and is not a debunker, both the attributes disease and debunker assume the value 

“False”. When a node hears for the first time the rumour, the attribute disease changes to 

“True” and, depending on the activity level, the node starts spreading it to its active 

neighbours. When the debunking process starts, the attribute debunker assumes the value 
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“True”, while the attribute disease the value “False”. This ensures that we can always 

track correctly the contagion process at every step.  

The code also includes functions to set up the simulation environment, such as creating a 

network of nodes and spreading a disease or a rumour. In particular, the latter is a recursive 

function that stops when there are no more spreaders and debunkers that are able to either 

spread or debunk the rumour. The lists of possible spreaders and debunkers are updated at 

every iteration by checking if the nodes have been in the list for more than the turns they are 

supposed to. The spread and the debunking are done by selecting a node from one of the two 

lists and, if they are active, checking the activity of their neighbours. As all these 

characteristics are either stored as lists or Boolean values, it is quite easy to perform these 

operations and update the nodes with their new status.  
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Figure 27: function handling the contagion and debunking processes 
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Also, the function update directly the network so that, after performing the simulation, is 

easy to do other operations in the graph such as visualising the effects of the process. 

Indeed, all the graphs realised were made outside the functions using the Matplotlib 

library.  

The results of the simulations were obtained after running 50,000 individual graphs for 30 

different values of 𝜆s, to ensure that the results do not change after rerunning the code 

(except on simulations for statement 3B due to the extensive duration required for their 

completion). Moreover, as different and non-related simulations are performed throughout 

the work, the code is presented in a Jupiter Notebook, where each experiment can be run 

independently so as to facilitate their replicability. 

In conclusion, by employing an object-oriented approach with classes to represent nodes and 

their update functions, the code is flexible and adaptable, allowing for easy modification to 

test different scenarios and assumptions. In this way, the work done can be employed for 

further research on the topic, as this serves as the main framework for rumour analysis. 
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