
Department of Economics and Finance

Chair of Mathematical Finance

Optimization Techniques

for models of

Parimutuel Markets:

Application to Finance

Prof.ssa Sara Biagini

Supervisor

Elisa Carucci, 254131

Candidate

Academic Year 2022/2023

Acknowledgements

This work was conceived and organized under the supervision of Prof. Giovanni A. Zanco,

Chair of Mathematics 2 until 2022. As he moved to the University of Siena, Prof.ssa

Sara Biagini, Chair of Mathematical Finance, undertook the supervisor role. Prof. Zanco

continued to act as an advisor for the completion of the project.

2

Abstract

The aim of the thesis is to analyze the basics of optimization techniques from a theoretical

viewpoint and understand how different algorithms can be used to optimize parimutuel

models to be applied to real-world settings. The first part concerns an introduction to con-

strained optimization problems and the main theorems for equality, inequality and mixed

constraints. We focus on the formulation with the Lagrangian function and the Kuhn

Tucker variation for non-negativity constraints, as well as on the role of convexity in op-

timization. In the second part we analyze the main features of parimutuel models with

particular attention to two methods of optimization: PMM and CPCAM. These two meth-

ods are employed in an options trading setting and are solved with different techniques.

We focus on the CPCAM which is the convex formulation derived from the PMM and we

are able to solve this constrained optimization problem with the SLSQP method from the

Scipy library in Python. We believe that this algorithm is quite easy to implement, as

opposed to the classical technique of Lagrange multipliers and through a few trials we can

see how fundamental characteristics like number of iterations needed or objective function

value vary as the dimensions of the input increase.

Numerical algorithms allow to analyze cases with higher dimensions, which would have

been very difficult using the method of Lagrange multipliers. It is also interesting to note

that the above-mentioned methods have been applied to financial markets but parimutuel

models were actually introduced for bets to replace traditional fixed-odds betting settings.

So, there is flexibility for the kinds of data to be used as inputs and the kinds of betting

systems to implement.

The first part of the thesis is devoted to mathematical methods of optimization. In Chap-

ters 2 and 3 we introduce the main theorems about necessary conditions for equality and in-

equality constraints; we also present some examples to describe different cases (Section 3.2).

Then we deal with convexity (Chapter 4) and with convex optimization techniques (Chap-

ter 5), studying how convexity can be beneficial to apply the algorithms presented in

Chapter 6.

The second part of the thesis discusses parimutuel markets and the main models employed

in betting systems and financial markets (Chapter 7). We then proceed in Chapter 8

with the mathematical formulation of two methods: PMM and CPCAM. Finally we run

some simulations to test our algorithm on the CPCAM model and comment on the results

(Chapter 9).

3

Contents

Acknowledgements . 2

Abstract . 3

I 6

1 Introduction 7

2 Equality constraints 9

2.1 Critical points of the Lagrangian . 12

2.2 Multiple constraints and variables . 15

3 Inequality constraints 17

3.1 Necessary conditions for inequality constraints 20

3.2 Examples . 22

3.3 Mixed constraints . 23

3.4 Kuhn-Tucker formulation . 25

3.4.1 Examples . 27

3.5 Tangent cones and constraint qualification 29

4 Convexity 32

4.1 Convex sets . 32

4.2 Convex functions . 34

4.3 Quasi-convex and pseudo-convex functions 38

5 Convex optimization 40

5.1 Existence of a global minimum . 40

4

5.2 Convex Constrained Optimization . 41

5.3 Tangent cones and convexity . 43

6 Optimization algorithms 44

6.1 Gradient Descent . 44

6.2 Projected Gradient Descent . 47

6.3 Other methods . 48

6.3.1 Mirror descent . 48

6.3.2 Frank Wolfe . 48

6.3.3 Newton . 48

II 50

7 Betting systems 51

7.1 Fixed odds bettings . 52

7.2 Parimutuel markets . 53

7.3 Parimutuel Mechanisms in Financial Markets 54

8 Mathematical structure 57

8.1 PMM . 58

8.2 CPCAM . 59

8.3 Parimutuel markets in options trading . 59

8.4 Discussion . 61

8.4.1 PMM . 63

8.4.2 CPCAM . 65

9 Simulations 68

A Simulation codes 73

5

Part I

6

Chapter 1

Introduction

In the first part we introduce the main theorems concerning constrained optimization fo-

cusing mainly on multivariate cases, and we present a few examples. Then we shift our

focus towards convexity, describing convex functions and some variations such as quasi-

convex and pseudo-convex functions. After this analysis we study the basics of convex

optimization which leads to an introduction on the main optimization algorithms used for

constrained optimization problems. We dive deeper into the necessary conditions of the

constraint qualifications and convexity to see how it is possible to have sufficient condi-

tions for optimality in specific cases. All the information in this part come from two main

references: [Simon and Blume, 1987] and [Boyd and Vandenberghe, 2004].

Pictures have been realized by Giovanni Zanco using TeXmacs.

We are dealing with constrained optimization problems with equality and inequality

constraints to find the optimal values that maximize or minimize an objective function. In

mathematical terms, we have a function f we want to maximize or minimize assuming its

optimal values also have to satisfy constraints usually expressed by equations or inequalities.

We introduce here a generic formulation of a basic constrained optimization problem:
maxx f(x)

h1(x) = h2(x) = · · · = hk(x) = 0

g1(x) ≤ 0, g2(x) ≤ 0, . . . , gm(x) ≤ 0

(1.1)

f is the objective function, while the letter h refers to equality constraints and g to in-

7

equality constraints. Let C be the set of points that satisfy all equalities and inequalities;

this restricts the values to be taken as solution, imposing conditions or limitations to the

variables of the problem. We define the feasible region Ω as the set of points on which f is

defined that satisfy every equality and inequality in the constraint set C:

Ω = {x ∈ Dom(f) s.t. hi(x) = 0∀i, gj(x) ≤ 0∀j} .

A point x is feasible if it satisfies the constraints. The problem is said to be feasible if there

exists at least one feasible point, and infeasible otherwise. The feasible set is therefore the

set of all feasible points.

Typical inequality constraints are also found in the form of non-negativity constraints,

which just express the sign of a specific variable.

Sometimes it is easy to predict where we will find the maximum or minimum solution

for a function. For example, if we take the function f(x, y) = x2 + y2 subject to the

constraint 0 ≤ x ≤ 1, we know that the maximum must lie at the corner of the domain

where x and y are both at their maximum values of 1. However, we cannot always picture

a graph in our mind and most of the times we will have to solve the problem following

specific methods. In the next chapters we will explore basic concepts to understand how

to find a solution for different kinds of constrained problems.

8

Chapter 2

Equality constraints

Let’s consider a simple case of a two variable objective function f , differentiable everywhere,

with one equality constraint: maxx f(x1, x2)

h1(x1, x2) = 0
(2.1)

We call C the constraint, that is

C = {x ∈ R | h1(x1, x2) = 0} .

Imagine a xy plane where the objective function is visualized via its the level curves. To

solve problem (2.1), given an equality in C, we want to find the highest level curve of f

that intersects the constraint.

9

h(x; y)= 0

(x�; y�)
(a; b)

f(x; y)= k3

f(x; y)= k1

f(x; y)= k2

Figure 2.1: Optimality for equality constraints: if k1 > k2 > k3, the point
(a, b) is not optimal, while the point (x∗, y∗) is optimal.

We will have this condition at the optimal point x∗, where the tangent of f and h1 will

be the same.

When we discuss this topic we often refer to the slope of the curves, that is the slope of

the tangent lines. The slope of a tangent line of the function refers to the rate of change of

the function with respect to one variable; the gradient of a function is a vector that gen-

eralizes the concept of slope to multiple variables. The tangent of the objective function

and the constraint are equal at the optimal solution and so they have equal slope. At the

optimal point the gradient of f will be perpendicular to its tangent line and the gradient

of h1 will be perpendicular to its tangent line. Indeed, when we are looking for the optimal

solution, if the tangent of the constraint is steeper than the one of f we can move and reach

a higher point (Figure 2.1) and if it is less, again we need to move until we reach the point

of the tangent lines having the same slope. We can think of a general multivariate function

f where its gradient gives a vector perpendicular to the level curve and so perpendicular

to the tangent plane. So, the gradient of the function in set C and f line up and point in

the same or opposite direction (Figure 2.2). If all the partial derivatives are different from

zero, we can say that the tangent lines of f and h1 have the same slope and this is shown

in (2.2). This means that we can multiply one by some scalar to get the other and in our

case this multiplier is called µ and it is the result of the quotient in (2.3). The coefficient

µ describes the the relationship of the two gradients in terms of proportionality between

each other. We can think of the gradient as the direction the function is heading to. The

gradient points at the direction of the maximum increase of the function.

10

h(x; y)= 0

f(x; y)= k

(x�; y�)

rh(x�; y�)

rf(x�; y�)

Figure 2.2: Optimality for equality constraints: parallel gradients.

If we express the image in mathematical terms, we write the gradient of the objective

function f and h1 equating each other. In equation (2.2), the slopes of the tangents of

f and h are equal at x∗. Then, we find that the terms can be exchanged and thus the

division of the derivative of f with respect to x1 over the derivative of h over x1 is the

same as dividing with respect to x2 and we name the result of the division as µ. Here,

the derivatives of h with respect to x1 and x2 need to be different from zero, in order for

equation (2.3) to hold and we can define this condition as constraint qualification since it

is a restriction we put on the constraint.

∂f
∂x1

(x∗)
∂f
∂x2

(x∗)
=

∂h
∂x1

(x∗)
∂h
∂x2

(x∗)
(2.2)

∂f
∂x1

(x∗)
∂h
∂x1

(x∗)
=

∂f
∂x2

(x∗)
∂h
∂x2

(x∗)
= µ (2.3)

If we don’t assume that all the derivatives of h are different from 0, we can rewrite (2.3)

as two equations
∂f

∂x1
(x∗)− µ

∂h

∂x1
(x∗) = 0,

∂f

∂x2
(x∗)− µ

∂h

∂x2
(x∗) = 0.

We can then solve a system of three unknowns and three equations by including the

constraint. The system is expressed as

11


∂f
∂x1

(x)− µ ∂h
∂x1

(x) = 0

∂f
∂x2

(x)− µ ∂h
∂x2

(x) = 0

h (x1, x2)− c = 0.

(2.4)

Under some assumptions, any solution of problem (2.1) is a solution of system (2.4).

Assumption 1. The constraint function h1 is differentiable at x and the gradient of the

constraint function at x is different from 0, that is, at least one partial derivative of h1 is

not zero at x.

We refer to this assumption as non-degeneracy constraint qualifications (or NDCQ) at x.

Let us write equation (2.4) in the form of an unconstrained problem. We use the

Lagrangian function.

L (x1, x2, µ) ≡ f (x1, x2)− µ (h (x1, x2)− c) (2.5)

Theorem 2.0.1. Suppose the NDCQ conditions are satisfied and x∗ is a solution for

problem (2.1). Let f be a differentiable function at x∗. Then, there exists µ∗ such that

(x∗1, x
∗
2, µ

∗) is a critical point of the Lagrangian function, that is,

∂L

∂x1
= 0,

∂L

∂x2
= 0, and

∂L

∂µ
= 0.

The Lagrangian creates an unconstrained problem of three variables from a constrained

problem of two variables. It has the same result of problem (2.4), in fact when we differ-

entiate this function with respect to µ, we obtain the constraint. When the solution of

our maximization problem is not one of the critical points of h we conclude that there is a

number µ∗ such that our solution can be found from the Lagrangian (x∗1, x
∗
2, µ

∗).

2.1 Critical points of the Lagrangian

To solve optimization problems, we take the critical points of the constraints and include

them in the candidates for the optimal solution. We then check that the NDCQ conditions

and we write the Lagrangian to find other candidate points in addition to the ones found

with the gradient of h1. Let’s take an example where the gradient of h1 is (0, 0). Now

12

we formulate the Lagrangian with an alternative method, useful to verify the constraint

qualification conditions in a compact way. We insert a multiplier both in front of the

objective function and of the constraint.maxx1,x2 −(x− 1)2 − y2

h1(x1, x2) =
(
x2 + y2 − 1

)2
= 0

(2.6)

We compute the critical points of he constraint and we find that it is (0, 0) in all the

point of the circumference x2 + y2 = 1 and it lies in the constraint. Therefore, the NDCQ

are not satisfied. The generic Lagrangian for this kinds of problems would be in this form,

where we also include a multiplier µ0 for f .

L (x1, x2, µ0, µ1) ≡ µ0f (x1, x2)− µ1(h1(x1, x2))

Theorem 2.1.1. Suppose the objective function f and the equality constraint h are C1

and x∗ is the solution of the problem.

Then, there exist multipliers such that

1. µ0 and µ1 are not both zero

2. µ0 is either 0 or 1

3. x∗1, x
∗
2, µ

∗
0, µ

∗
1 solves the system

∂L

∂x1
= µ1

∂f

∂x1
(x1, x2)− µ1

∂h

∂x1
(x1, x2) = 0

∂L

∂x2
= µ0

∂f

∂x2
(x1, x2)− µ1

∂h

∂x2
(x1, x2) = 0

∂L

∂µ1
= c− h (x1, x2) = 0.

Suppose we know the solution (x∗1, x
∗
2) and it satisfies the assumption of Theorem 2.1.1.

If it is not a critical point of h1 we can set µ∗
0 = 1 and deduce that (x∗1 , x∗2, µ

∗
1) satisfy

system. If it is a critical point of h and all the partial derivatives are equal to zero, we can

set µ∗
0 equal to zero and deduce that (x∗1 , x∗2, µ

∗
1, µ

∗
0) satisfy the constraint.

We apply what we have said to problem (2.6), Assumption 1 is not satisfied. We set

µ0 = 0 and so we cannot find the solution of the problem using the derivatives of the

13

Lagrangian function.

If Assumption 1 is not satisfied at some point x that does not lie in h1, we can still build

the Lagrangian to go on and solve the problem. For example, consider the problem of

optimizing a function subject to the constraint h(x, y) = 0. If you find the critical points

by taking the partial derivatives of f with respect to x and y, and solving the resulting

system of equations, you may obtain points (x∗, y∗) that satisfy the equations, but not

the constraint. In such cases, those points may not be valid solutions to the original op-

timization problem. In general, if the constraint set contains a critical point, we include

it in the candidates for the solution. This concept can be also explained geometrically by

picturing the gradients of f and h. The gradients are perpendicular to the tangent and

point in opposite or same direction. In either case, they are multiples of each other, where

the scalar multiple is µ∗.

In the following example we cannot apply any of the theorems described above because

the objective function is not differentiable everywhere.

Let us take a problem as examplemaxx1,x2 x1

h1(x1, x2) = x31 + x22

(2.7)

The function is not differentiable but we can see from Figure 2.3 that (0, 0) is the solution.

If we try to solve the problem following the setup of system (2.4), we will not find a solution

even though we know by visualizing the graph that the maximum exists and it is in the

origin.

x1

x2

h1(x1; x2)=0

Figure 2.3: Non differentiable constraint.

14

2.2 Multiple constraints and variables

Let’s consider this multivariate problem

maxx f(x)

h1(x) = 0

h2(x) = 0

...

hm(x) = 0

(2.8)

When we have m constraints, we can extend Assumption 1. We first define the Jacobian

of H = (h1, . . . , hm) at x as

DH (x) = rank


∂h1
∂x1

(x) · · · ∂h1
∂xn

(x)
...

. . .
...

∂hm
∂x1

(x) · · · ∂hm
∂xn

(x)

 (2.9)

The rank of a m× n matrix A is the number of linearly independent columns of A or

the number of nonzero rows in its row echelon form.

Assumption 2. The function H is differentiable at x and the rank of DH(x) is m

The rank needs to be m, to ensure that there is a tangent plane of the function at that

point, with n − m dimensions. Now, we look for candidate points in the constraint and

we assume x∗ maximizes our function and if the Jacobian matrix in x∗ has maximal rank,

then our constraint qualifications are satisfied. We write the Lagrangian

L(x, µ) ≡ f(x)− µ1h1(x)− µ2h2(x)− · · · − µmhm(x)

Theorem 2.2.1. If at x∗, Assumption 2 is satisfied and the objective function is C1, then

there are multipliers µµµ∗ = (µ∗
1, . . . , µ

∗
m) such that x∗, µ∗ is a solution of the system

∂L

∂x1
(x∗, µ∗) = 0, . . . ,

∂L

∂xn
(x∗, µ∗) = 0

∂L

∂µ1
(x∗, µ∗) = 0, . . . ,

∂L

∂µm
(x∗, µ∗) = 0

15

If the rank of the Jacobian ofH at x∗ is smaller than the number of constraint equations,

the rows of the Jacobian are linearly dependent. In this case Assumption 2 is not satisfied

for some rows, specifically for the functions in the constraint set that do not have at least

one partial derivative different from 0.

16

Chapter 3

Inequality constraints

In optimization problems we often deal with inequality constraints where we take into

consideration the region on one side of the constraint set, depending on the sign of the

inequality. Let’s take a two variable problem with one inequality constraint as reference:maxx f(x1, x2)

g1(x1, x2) ≤ 0
(3.1)

To find candidates for the maximization problem we still follow the same steps as with

equality constraints but we distinguish the types of inequality constraints. We check the

critical points of the constraint for our problem and we assume we know the solution of

our problem x∗. If x∗ satisfies the constraint as an equality, it is said to be binding. In

this case we treat it as an equality constraint. If the highest level curve of f meets the

constraint at a point x∗ = (x∗1, x
∗
2) laying on the boundary of the constraint, it means that

g(x∗1, x
∗
2) = 0 and so the constraint is binding. Suppose that the maximum of f occurs

not where g(x1, x2) = 0 but where g(x1, x2) < 0, in this case the constraint is said to be

not binding. The highest level curve of f meets the constraint set at the highest point

possible and so where it is binding. As for this, we only care for binding constraints to find

the optimal solution. At the optimum, the level sets of f and g are tangent and so their

gradients line up.

∇f(x1, x2)− λ∇g(x1, x2) = 0

17

Suppose the optimum is found where g(x∗1, x
∗
2) = 0, the gradients of f and g point in

either the same direction since the gradient of f points where the function increase and

the one of g points in the direction where g(x1, x2) ≥ 0. If the gradient of f pointed in the

interior region we could still keep g(x1, x2) ≤ 0 but the optimal solution would not be in

a point where the constraint is binding. So in this case, the gradients must point in the

same direction at the point x∗, opposite to the feasible region of the constraint set (see

Figure 3.1). The direction depends on the sign of the constraint. So, the multiplier λ ≥ 0.

If the maximum is in the interios region where g(x∗1, x
∗
2) < 0, in this pointg(x1, x2) = 0 the

gradients of f and g point in opposite directions. Here, the constraint is not binding and

the maximum is unconstrained.

f(x; y)= k3

g(x; y)=0

g(x; y)< 0

rf(x�; y�)

rg(x�; y�)

(x�; y�)

f(x; y)= k1

f(x; y)= k2

f(x; y)= k4

Figure 3.1: Optimality for inequality constraints: binding constraint.

we set up the Lagrangian function

L(x, y, λ) = f(x, y)− λg(x, y)

and we proceed as we did in the previous section. We find the gradient of g and check

if their critical points are candidates for the optimal solution of the problem following

assumption 1 and set up the Lagrangian function with Lagrangian multipliers denoted

with λ for inequality constraints. In the case of not binding constraint in (3.1), we can still

set up the Lagrangian. Since the constraint is not binding at the maximum we don’t take

it into account and put the λ associated with the constraint equal to zero. In this case

our problem (3.1) would turn out to be unconstrained since there is only one constraint

that is not useful to find the solution. When solving the Lagrangian we don’t consider

18

those candidate solutions that have negative λ associated, where λ is the multiplier for

inequality constraints. To explain this concept, we assume there are not internal solutions

in the feasible region where the problem would be simply unconstrained and g would not

be useful to solve. If lambda is negative, it means that the scalar multiplication leads the

gradients of f and g to point in opposite directions (see Figure 3.2). So, the constraint is

not binding as it will point towards the feasible region while the gradient of f will point

outside of it.

g(x; y)= 0g(x; y)< 0

rg(x�; y�)

rf(x�; y�)

(x�; y�) f(x; y)= k3

f(x; y)= k1

f(x; y)= k2

Figure 3.2: Optimality for inequality constraints: non binding constraint.

We can explain this concept graphically, why the constraint is not binding. The gradient

of g is pointing in the shaded region representing the part where the constraint in (3.1)

is less than 0. Since the gradient tells us the direction we have to follow to see where f

increases the most, we want to reach the highest point possible while still satisfying the

constraint and we will have this condition only on the border of the constraint since we

cannot go any

19

3.1 Necessary conditions for inequality constraints

Suppose we want to solve the problem

maxx f(x)

g1(x) ≤ 0

g2(x) ≤ 0
...

gk(x) ≤ 0

(3.2)

Suppose that x∗ is a maximizer satisfying suitable constraint qualification conditions, that

we discuss below.

We form the Lagrangian

L (x1, . . . , xn, λ1, . . . , λk) ≡ f(x)− λ1 [g1(x)− 0]− · · · − λk [gk(x)− 0]

However, the formulation of the problem is more extended as there are more conditions

to include. First of all if a constraint inequality gj(x) ≤ 0 is binding at x∗ we add the

condition of λj being nonnegative, as we discussed before. In this case we have gj(x
∗) = 0.

Then we define the concept of complementary slackness. When the inequality constraint

is not binding λ is equal to zero. Since we want to solve the Lagrangian system to find

candidate maximizers, we don’t know if the constraint will be binding at the maximizer

or not before solving the system; so we cannot use the condition of the derivative of the

Lagrangian function with respect to the multiplier of each constraint equal to zero as this

means saying that each gj is equal to zero, so binding. Thus, we insert two more conditions

with respect to the formulation in (2.4): the positive sign for all λj and the condition that

either gj is binding or λj = 0.

Since for inequality constraints we only consider binding constraints in the Lagrangian,

we proceed in the following way. We assume that x∗ is the solution for our problem

satisfying the constraints

gj(x) ≤ 0, j = 1, . . . , k

20

and only g1, ..., ge are binding. We set up the Jacobian matrix of the biding constraints
∂g1
∂x1

(x∗) · · · ∂g1
∂xn

(x∗)
...

. . .
...

∂ge
∂x1

(x∗) · · · ∂ge
∂xn

(x∗)


Assumption 3. The constraint functions g1, ...ge are differentiable at x and the rank is

equal to e and so it is as large as possible. The constraint qualification conditions in this

case are satisfied.

Theorem 3.1.1. Suppose Assumption 3 is satisfied and x∗ is a solution for problem

(3.2). Let f be a differentiable function at x∗. Then, there exists λ∗
1, . . . , λ

∗
k such that

(x∗, λ∗
1, . . . , λ

∗
k) is a critical point of the Lagrangian function and

(a) ∂L
∂x1

(x∗, λ∗) = 0, . . . , ∂L
∂xn

(x∗, λ∗) = 0,

(b) λ∗
1g1 (x

∗) = 0, . . . , λ∗
kgk (x

∗) = 0

(c) λ∗
1 ≥ 0, . . . , λ∗

k ≥ 0

(d) g1 (x
∗) ≤ 0, . . . , gk (x

∗) ≤ 0

Suppose we know the solution of our problem exists and is equal to x∗. Also in the

case of inequality constraints we can include the constraint qualification conditions in the

formulation by inserting a multiplier λ0 in front of the objective function.

L (x, λ0, λ1, . . . , λk) ≡ λ0f (x)− λ1g1 (x)− · · · − λkgk (x)

If x∗ is the solution, x∗, λ∗
0, λ

∗
1...λ

∗
k satisfy the system below.

(a)
∂L

∂x1
(x∗, λ∗) = 0, . . . ,

∂L

∂xn
(x∗, λ∗) = 0

(b) λ∗
1g1 (x

∗) = 0, . . . , λ∗
kgk (x

∗) = 0

(c) λ∗
1 ≥ 0, . . . λ∗

k ≥ 0

(d) g1 (x
∗) ≤ b1, . . . , gk (x

∗) ≤ bk

21

(e) λ∗
0 = 0 or 1, and

(f) (λ∗
0, λ

∗
1 . . . , λ

∗
k) ̸= (0, 0, . . . 0)

We would like to have λ0 = 1 otherwise the objective function will drop out of the first order

conditions of the Lagrangian function and so we want some other qualification conditions

that guarantee that λ0...λk = 1.

3.2 Examples

Let us solve a simple maximization problem
max
c1,c2

U(c1, c2)

p1c1 + p2c2 ≤ k

c1, c2 ≥ 0

(3.3)

where U is a given function and k > 0, p1, p2 ≥ 0 are fixed. This is the typical form of a

utility maximization problem with two commodities.

We have three constraints and two variables but we don’t know which ones are binding

in c∗ = (c∗1, c
∗
2), supposing that a solution to the problem exists. To check the constraint

qualification conditions we compute the Jacobian of the constraint functions and so we

will have a matrix with all the derivatives with respect to c1 in the first column and with

respect to c2 in the second one. We switch all the signs of the variables in the inequality

constraint, so that they read −c1 ≤ 0, −c2 ≤ 0. To satisfy Assumption 3 the rank needs

to be as high as possible so in the case two constraints are binding we need to have rank 2;

if only one is binding we need to have rank 1 and we check Assumption 1. In this example

we have

∇g(c1, c2) =

 p1 p2

−1 0

0 −1


so that the rank is always 2.

Now we check all the possible combinations of binding constraints. If there are two

binding constraints, we would need to have the rank equal to 2 and this would always be

the case for this problem. If we check individually if these conditions are satisfied we may

have some restrictions to make sure the constraint qualifications hold. For example if only

22

the first row is binding then the rank would need to be 1 and so either p1 or p2 or both

need to be nonzero but this will always be true since the constraint would not be binding

otherwise. We conclude that NDCQ are satisfied at all points (c1, c2). If we assume that

f is differentiable everywhere all the solutions of the maximization problem satisfy the

system.

Let us analyze a simple one variable problem to understand what kinds of problems we

might encounter when these conditions are not satisfied.maxx

x3 + 2x2 ≤ 0
(3.4)

We take the derivative of the constraint and see that it will be equal to zero when x = 0

and x = −4
3 . We need the condition of the gradient to be different from zero. If we solve the

Lagrangian we won’t find a solution to our system because the real solution of this problem

is actually x = 0 but earlier we saw that the constraint qualification conditions are not

satisfied in this point. So, our optimal point does not satisfy the first order conditions of

the Lagrangian function. When we find some points where the conditions are not satisfied

and we solve the Lagrangian system we have the risk of having the actual solution of the

problem in those points and so even though the solution exists we won’t be always able to

find it in this way.

3.3 Mixed constraints

When optimization problems have both inequality and equality constraints, we say they

have mixed constraints. In the case of mixed constraints we follow the steps taken with

problem (3.3) and so we check all the combinations of constraints being binding and in

what points this condition is not satisfied. When we are done with this process and start

solving the Lagrangian function we don’t know what constraints are going to be binding

at the solution x∗ but we analyze all the cases as before.

We take a generic problem with the following constraint set where we have k inequalities

23

and m equalities and the functions f, g1, ...gk, h1, ...hm are C1

g1 (x1, . . . , xn) ≤ b1, . . . , gk (x1, . . . , xn) ≤ 0

h1 (x1, . . . , xn) = c1, . . . , hm (x1, . . . , xn) = 0

we write the Lagrangian function

L (x1, . . . , xn, λ1, . . . , λk, µ1, . . . , µm) ≡ f(x)− λ1g1(x)− · · · − λkgk(x)

− µ1h1(x)− · · · − µmhm(x)

We assume that the first k0 inequality constraints are binding at x and we suppose that

the NDCQ are satisfied at x. So, the rank at x of the Jacobian matrix of the equality and

binding constraints is as large as it can be.

∂g1
∂x1

(x∗) · · · ∂g1
∂xn

(x∗)
...

. . .
...

∂gk0
∂x1

(x∗) · · · ∂gk0
∂xn

(x∗)
∂h1
∂x1

(x∗) · · · ∂h1
∂xn

(x∗)
...

. . .
...

∂hm
∂x1

(x∗) · · · ∂hm
∂xn

(x∗)


Theorem 3.3.1. If f, g1, ...gk, h1, ...hm are C1 and the NDCQ are satisfied, there exist

multipliers λ1, ...λk, µ1, ...µk such that

(a) ∂l
∂x1

(x∗, λ∗) = 0, . . . , ∂L
∂xn

(x∗, λ∗) = 0,

(b) λ∗
1 [g1 (x

∗)] = 0, . . . , λ∗
k ⌊gk (x∗)⌋ = 0,

(c) h1 (x
∗) = 0, . . . , hm (x∗) = 0

(d) λ1 ≥ 0, . . . , λk ≥ 0

(e) g1 (x
∗) ≤ 0, . . . , gk (x

∗) ≤ 0

24

3.4 Kuhn-Tucker formulation

Some problems have inequality constraints and non-negativity constraints in the form

maxx f(x)

g1(x) ≤ 0, . . . , gk(x) ≤ 0

h1(x) = 0, . . . , hm(x) = 0

x1, . . . , xd ≥ 0

(3.5)

where x ∈ Rn and d ≤ n.

Assuming that the constraint qualification conditions are satisfied, we then formulate

the problem with the Kuhn Tucker method which is similar to the way we approached these

problems before. Solving the problem following this formulation has some advantages such

as the symmetry of the required conditions with respect to xi and λi.

We write the Lagrangian for this problem

L̃ (x, λ1, . . . , λk, µ1, . . . , µm) = f(x)− λ1g1(x)− · · · − λkgk(x)− µ1h1(x)− · · · − µmhm(x)

Theorem 3.4.1. Suppose that f, g1, ...gk, h1, ...hk are C1 and the Jacobian matrix formed

by equality and binding constraints has maximal rank at x∗. Then, there exist non-negative

multipliers λ∗
1, ...λ

∗
k, µ

∗
1, ...µ

∗
k such that the following system is satisfied

(a)
∂L̃

∂x1
≤ 0, . . . ,

∂L̃

∂xd
≤ 0,

(b)
∂L̃

∂xd+1
= 0, . . . ,

∂L̃

∂xn
= 0,

(c)
∂L̃

∂λ1
≥ 0, . . . ,

∂L̃

∂λk
≥ 0,

(d)
∂L̃

∂µ1
= 0, . . . ,

∂L̃

∂µm
= 0,

(e) x1
∂L̃

∂x1
= 0, . . . , xd

∂L̃

∂xd
= 0,

(f) λ1
∂L̃

∂λ1
= 0, . . . , λk

∂L̃

∂λk
= 0,

(g) λ1 ≥ 0, . . . , λk ≥ 0.

Conditions (a) and (e) are equivalent to the non-negativity constraints because either

the non-negativity constraint is binding and so the variable is equal to zero or we can find

the derivative of the Lagrangian with respect to that variable; condition (f) is complemen-

25

tary slackness. With reference to condition (a) and (e), for any variable x1, ...xn we write

the first order conditions derived from the generic Lagrangian function

∂L

∂x1
=

∂f

∂x1
− λ1

∂g1
∂x1
− · · · − λk

∂gk
∂x1

+ ν1 = 0

∂L

∂xn
=

∂f

∂xn
− λn

∂g1
∂xn

− · · · − λk
∂gk
∂xn

+ νn = 0,

where v is a multiplier for non-negativity constraints. We rewrite them as

∂L

∂xj
=

∂L̃

∂xj
+ vj = 0

or
∂L̃

∂xj
= −vj

where j represents a generic index for the variables. From what we wrote just above and

v1x1 = 0

...

vnxn = 0

we derive that
∂L̃

∂xj
≤ 0 and xj

∂L̃

∂xj
= 0

If we think about a two variable maximization problem with two linear equality con-

straints h1 = 0, h2 = 0, intersecting at (x∗1, x
∗
2) we know the gradients of h1 and h2 have to

be linearly independent to satisfy the NDCQ conditions. In this case, the feasible region,

will be just one point, so it must be the maximization solution. On the other side, prob-

lems with more variables or inequality constraints or nonlinear constraints may be more

complicated and the Lagrange formulation is useful to solve them.

These conditions include the stationarity condition, which states that the gradient of the

objective function must be to the tangent plane of the equality and binding constraints.

The stationarity condition can be expressed as a linear combination of the gradients of

the constraints. Additionally, the feasibility conditions require that the constraints are

satisfied, and the regularity condition, which ensures that the gradients of the binding

26

constraints are linearly independent at the optimal solution.

When we locate the intersection point that will maximize our objective function, we can set

the λ corresponding to the constraint not in the solution, equal to zero as those constraints

will not be binding. This means that for each constraint we have one equality and one

inequality, representing the constraint and the λ corresponding to it. For example for the

maximum solution, the constraints intersecting will be binding (equalities) and the corre-

sponding λ will be an inequality (non-negative value) and the opposite for the constraints

not included in the intersection point representing the solution. This refers to the concept

of complementarity slackness. To summarize these conditions we include constraints in

the formulation of the optimization problem referring to the concept of complementarity

slackness, namely λ(g(x)− b) = 0.

Let’s see how we can use the conditions of this formulation to solve some optimization

problems. When we approach an optimization problems simply setting up and solving the

Lagrangian system, depending on the number and type of the constraint we can have mul-

tiple solutions. These solutions are candidates for being the maximizers; then we choose

which ones solve the maximization problem, if any. Then we will solve a problem with

non-negativity constraints.

3.4.1 Examples

For example let us take this problem
maxx1,x2 x

2
1 + x22 − 14x1 − 6x2

g(x1, x2) = x1 + x2 − 2 ≤ 0

g(x1, x2) = x1 + 2x2 − 3 ≤ 0

(3.6)

We proceed in the same way as the utility maximization example and check the con-

straint qualification conditions by checking the rank. In fact we don’t know at the beginning

what constraints are going to be active at the optimal solution. After we have explored all

the cases we check for optimality. We set up the Lagrangian and differentiate with respect

to x1, x2 and with respect to the λ. For example for one of the candidates the value of λ2

is negative and so we cannot consider it as a solution.

27

The Lagrangian in this case is

L(x1, x2, λ1, λ2) = x21 + x22 − 14x1 − 6x2 − λ1(x1 + x2 − 2)− λ2(x1 + 2x2 − 3)

The Jacobian matrix of the constraints is

which is constant and always has rank 2, so the NDCQ are satisfied at every point.

All the functions are differentiable, therefore all maximizers must be solutions of the system

∂L

∂x1
= 2x1 − 14− λ1 − λ2 = 0

∂L

∂x1
= 2x2 − 6− λ1 − λ2 = 0

λ1(x1 + x2 − 2) = 0

λ2(x1 + 2x2 − 3) = 0

λ1 ≥ 0

λ2 ≥ 0

x1 + x2 − 2 ≤ 0

x1 + 2x2 − 3 ≤ 0

One can then easily check that this system has no solutions. For example if both constraints

are binding the only feasible point is (x1, x2) = (1, 1), to which correspond a negative value

of λ1, so that it is not an acceptable point. Indeed the objective function is unbounded

above in the feasible region for this problem.

Let us now analyze a problem solved with the Kuhn-Tucker method. We present a

problem with both inequality and non-negativity constraints.

maxx1,x2 x
2
1 + x1 + 4x22

g(x1, x2) = 2x1 + 2x2 ≤ 1

x1 ≥ 0

x2 ≥ 0

(3.7)

In this case the feasible region is closed and bounded, therefore the problem has a solution

28

(see Theorem 5.1.1). We check the NCDQ conditions with the Jacobian matrix and

see that they are satisfied in every point. We write the Lagrangian and the complete

formulation following the Kuhn-Tucker method; At the end we will have candidate solutions

which can be substituted in the original function to maximize and select the candidate that

gives a higher value.

We have

L̃ (x1, x2, λ1) = x21 + x1 + 4x22 − λ1 (2x1 + 2x2 − 1)



∂L̃

∂x1
= 2x1 + 1− 2λ1 ≤ 0

∂L̃

∂x2
= 8x2 − 2λ1 ≤ 0

∂L̃

∂λ1
= −2x1 − 2x2 + 1 ≥ 0

x1(2x1 + 1− 2λ1) = 0

x2(8x2 − 2λ1) = 0

λ1(−2x1 − 2x2 + 1) = 0

The solutions of the system are the three points(
0,

1

2

)
,

(
1

2
, 0

)
,

(
3

10
,
1

5

)
;

the maximum of f among them is 1.

3.5 Tangent cones and constraint qualification

Definition 3.5.1. Let’s take a set A ⊂ Rn and a point x ∈ A; a vector y is tangent to A

at x if y = 0 or if ∃ {xn}n∈N ⊂ A such that xn ̸= x, xn → x and

xn − x

∥xn − xk∥
→ y

∥y∥ .

The set

TA(x) = {y tangent to A at x}

is called tangent cone to A at x.

29

In the tangent cone TA(x) there are all the vectors y tangent to A in x where a vector

y is tangent to A if y = 0 or there exists a sequence of vectors xk such that the directions

of xk − x converge to the direction of y. The definition is illustrated in Figure 3.3.

x

x1f
x1

f

x1

y

yf
y

f

(a) A tangent point y to A at a point x.

A

x TA(x)+x

(b) Tagent cone to a set A at a point x.

Figure 3.3: Tangent point and cone.

Let’s call PA(x) the set of directions that starting from x ∈ A can be followed remaining

inside A:

PA(x) = {y : ∃α > 0 such that x+ ty ∈ A ∀t ∈ [0, α]}

We list here some fact about TA and PA:

Proposition 3.5.2. (i) if a vector is in TA all its multiples are also in TA;

(ii) if x is in the interior of A then TA(x)=Rn;

(iii) if f : A → R is C1 and x∗ is a point of local minimum for f then ∇f (x∗) · d ≥ 0,

∀d ∈ TA (x∗).

This last property extends the necessary condition for unconstrained local minima to

the case where f is restricted to some set A, so that the minimum could be on the boundary

of A.

Consider a generic problem with inequality and equality constraints
maxx f(x)

g1(x ≤ 0, . . . , gk(x) ≤ 0

h1(x) = 0, . . . , hm(x) = 0

(3.8)

30

and assume all functions are differentiable. As before we call Ω the feasible set,

Ω = Dom(f) ∩ {x : g1(x) ≤ 0, . . . , hk(x) ≤ 0, h1(x = 0, . . . , hm(x) = 0} .

We define the feasible direction cone at a point x ∈ Ω as

D(x) = {d ∈ Rn : ∇hj(x) · d = 0 ∀j = 1, . . . ,m,∇gi(x) · d ≤ 0 ∀i s.t. gi is binding at x} .

Then for every x ∈ Ω one has

TΩ(x) ⊂ D(x).

Assumption 4. We have TΩ(x) = D(x).

When Assumption 4 is satisfied we say that Abadie Constrain Qualification (ACQ)

holds at x.

The ACQ condition is one of the weakest conditions under which we can formulate results

about necessary conditions for constrained optimization with Lagrange multipliers:

Theorem 3.5.3. If x∗ is a point of minimum for f in Ω and Assumption 4 is valid at x∗

then there exist λλλ∗,µµµ∗ such that{
∇f (x∗,λλλ∗,µµµ∗) + λλλ∗ · ∇G (x∗) + µ∗ · ∇ϕ (x∗) = 0

λ∗ ·G (x∗) = 0, λ∗ ≥ 0, G (x∗) ≤ 0, H (x∗) = 0.

Assumption 4 is difficult to check on examples; the usual conditions that guarantee

that it is satisfied are the following. Note that they include the usual NDCQ conditions of

Assumptions 1,2,3.

Theorem 3.5.4. 1. If gj and hi are affine functions, ACQ is valid everywhere.

2. If ∇gj(x) for binding constraints and ∇hi(x) are all linearly independent, ACQ is

valid at x.

31

Chapter 4

Convexity

4.1 Convex sets

We call a subset X of a vector space V convex if for every two points x and y in X all the

points on the line segments that connects them are in X. Formally,

∀x, y ∈ X and ∀t ∈ [0, 1], (1− t)x+ ty ∈ X . (4.1)

X is a subspace, naming a set of points closed under addition and scaling. It can

be formally defined as a span V (v1, . . . , vn) = {∑n
i=1 αivi | αi ∈ R} where we can find

all the possible linear combinations. In matrix form, we can represent the same concept

by setting up matrix A with all the vectors v1...vk as columns and the range of A is the span.

Working in a convex set can be very useful in optimization problems as we will see later

on. If we take a point in a convex bounded set set and move along a direction, we will

reach the boundary at some point. In that case, we know we have explored all the points

in the set in the direction we chose. If instead we take a non-convex bounded set there may

exist straight lines moving along which we cross the boundary of the set multiple times

(see Figure 4.1).

32

(a) A convex set in R2. (b) A non-convex set in R2.

Figure 4.1: Convex and nonconvex sets.

Convex sets have the following property:

Proposition 4.1.1. If we have X1, X2, . . . , Xn convex sets, then their intersection
⋂n

i=1Xi

is also convex.

Proof. If we take two points x and y in the intersection
⋂n

i=1Xi and t between 0 and 1,

we will have x, y ∈ Xi ∀ i. Since Xi is convex ∀i, (1− t)x+ ty ∈ Xi ∀i and so (1− t)x+ ty

∈ ⋂n
i=1Xi.

If we have X1, X2, . . . , Xn convex sets, then their union is not necessarily a convex set;

for example this is not the case for different sets that have an empty intersection.

Now that we have seen some concepts related to convex sets we can look at two impor-

tant properties of functions of convex sets.

Proposition 4.1.2. 1. If X is a convex set and f : X → R is a linear function, then

the image of X through f is a convex set.

2. If D ⊂ R is convex and f : X → R is a linear function, also f−1(D) is convex.

Proof. 1. Let’s take two points x and y ∈ f(X) and t between 0 and 1. This means

they can be written as f of some elements in X. So we take x′ and y′ ∈ X such that

x = f(x′) and y = f(y′). Now we know that (1 − t)x′ + ty′ is also an element of X

and (1− t)x+ ty = (1− t)f(x′) + tf(y′) = f((1− t)x′ + ty′), which is in f(X).

2. To show that f−1(D) is convex, it has to hold that for any x, y ∈ f−1(D) and any

t ∈ [0, 1], the point tx + (1 − t)y is also in f−1(D). Since x, y ∈ f−1(D), we have

33

f(x), f(y) ∈ D, and since D is convex, for any t ∈ [0, 1], we have tf(x)+(1− t)f(y) ∈
D.

Now, let’s consider the point tx + (1 − t)y. Since f is a linear function, we have

f(tx + (1 − t)y) = tf(x) + (1 − t)f(y) and we know that tf(x) + (1 − t)f(y) ∈ D.

Therefore, tx+ (1− t)y ∈ f−1(D).

4.2 Convex functions

Let’s consider a vector space V , a subset U ⊂ V and a function f : U → R.

Definition 4.2.1. We say that f is convex if

1. U is convex;

2. For every x, y ∈ U

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y). (4.2)

We say that f is concave if the inequality in (4.2) is reversed.

We say that f is strictly convex if the inequality in (4.2) is strict, meaning that

f((1− t)x+ ty) < (1− t)f(x) + tf(y), ∀x, y ∈ U.

This means that the graph of a convex function is below the segment connecting any

two points (x, f(x)) and (y, f(y)). Indeed we can take two points in the domain of f and

take a convex combination of them; the value of f at any convex combination will be

smaller or equal than the combination of the values of f at the two points. Equivalently,

if we connect the values of the image of those two points and we draw a segment, it will

lie above the graph and this will be true for every two points taken and every value of t

between 0 and 1.

We can also say that a function is concave if −f is convex.

In a non-formal way we can say that convex functions curve up or do not curve (like affine

functions). In the case of affine functions, equality is attained in (4.2). An equivalent way

of defining convex functions is through the concept of epigraph:

epi(f) = {(x, y) ∈ U × R | y ≥ f(x)} . (4.3)

34

Here, we are expanding the formula to consider the pairs of x and y where the image of x

through y is is smaller of equal than the y coordinate.

Theorem 4.2.2. f is convex if and only if the epigraph of f is convex.

A second characterization of convex functions is given restricting to one-variable func-

tions.

Theorem 4.2.3. A function f : U → R is convex if and only if, restricted to every segment

in its domain, is convex as a function of a single variable. Formally: f : U → R is convex

if and only if ∀x, y ∈ U the function g(t) = f(tx+ (1− t)y) is convex.

Another useful concept is that of sub-level set: we call set of sub-level α for f the set

Sα = {x ∈ U : f(x) ≤ α} . (4.4)

Sα is the set of points in the domain of f where f(x) is less than α. This concept can be

useful for optimization problems.

Proposition 4.2.4. If f is a convex function then all its sub-level sets are convex.

The reverse implication, however, is not true. Consider the function f(x) = log(x). For

any constant c, the sub-level set is given by

Sc = {x > 0 | log10(x) ≤ c} = (0, 10c) . (4.5)

These sub-level sets are convex. Consider two points x1 = 2 and x2 = 4, and let’s take

the midpoint xm = 1
2(x1 + x2) = 3. We have f(xm) = f(3) = log10(3) ≃ 0.48. On

the other hand, the midpoint of the function values at x1 and x2 is 1
2(f(x1) + f(x2)) =

1
2(log10(2) + log10(4)) ≃ 0.45. the function violates the convexity property.

We consider here only the case V = Rn with n ≥ 1.

The most important link between convexity and optimization is the following result.

Theorem 4.2.5. Let f : U ⊂ Rn → R be a convex function. Then every point of local

minimum is a point of global minimum.

Proof. Suppose that x∗ is a point of local minimum for f ; this means that there exists

R > 0 such that

BR (x∗) := {y ∈ X : ∥x∗ − y∥ < R} ⊂ U

35

and ∀ y ∈ BR(x
∗) f(y) ≥ f (x∗). Now let z ∈ U be a point outside BR(x

∗) and suppose

that the function in z gives a lower value than in x∗. Consider the segment between the

two points x∗ and z; part of this segment is surely contained in BR(x
∗), therefore there

exists t̄ ∈ (0, 1) such that t̄x∗ + (1− t̄)z ∈ BR (x∗). Then we have

f (x∗) ≤ f (t̄x∗ + (1− t̄)z) ≤ t̄f (x∗) + (1− t̄)f(z) < f (x∗)

which is impossible.

We have not assumed differentiability of f until now, so we can investigate convexity

properties based on how many times a function is differentiable. If a one-variable function

f : U → R is C1 (continuously differentiable) then it is convex if and only if its derivative

f ′ is increasing. Equivalently, a C1 one-variable function f : U → R is convex if and only

if the graph of f is above its tangent lines at all points. Regarding secants, a one-variable

function f is convex if and only if given a point (x, f(x)) in the graph of f , the segments

that link it to any other point (y, f(y)) in the graph of f lies above the tangent line at

(x, f(x)). We can express this concept in mathematical terms:

f(y)− f(x) ≥ f ′(x)(y − x) ∀x, y ∈ U. (4.6)

In dimension n the concept is the same but the correct mathematical formulation is

Theorem 4.2.6. A differentiable function f on a convex and open set U ⊂ Rn is convex

if and only if

f(y) ≥ f(x) +∇f(x) · (y − x) ∀x,y ∈ U. (4.7)

It is strictly convex if and only if the inequality above is strict.

The right-hand side of (4.7) above is the first-order Taylor approximation of f at x.

We have that for a global point of minimum x∗, ∇f(x∗) = 0.

If for every point y in the domain of a convex function f we have

∇f(x) · (y − x) ≥ 0

then

f(y)− f(x) ≥ 0 ∀y ∈ U

36

so that x is a point of minimum for f . Therefore we have proved the following theorem.

Theorem 4.2.7. If f is C1 a convex function on an open convex set U , x∗ is a point of

global minimum if and only if ∇f(x∗) = 0.

The necessary condition of Fermat’s theorem is also sufficient if the function is convex.

If a one-variable functions f has second derivative then it is convex if and only if

f ′′(x) ≥ 0 for every x. In dimension n if f has all second derivatives then its Hessian is

Hf (x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

...
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n

 .

Theorem 4.2.8. A twice differentiable function f in a convex and open set U ⊂ Rn is

convex if and only if its Hessian is positive semi-definite.

If the Hessian is positive definite f is strictly convex but the opposite is not true.

Consider the function f(x, y) = x4 + y4, which is strictly convex. Taking the second

derivatives, we have:

∂2f

∂x2
(x, y) = 12x2,

∂2f

∂y2
(x, y) = 12y2,

∂2f

∂x∂y
(x, y) =

∂2f

∂y∂x
(x, y) = 0

and the Hessian matrix becomes

Hf (x, y) =

[
12x2 0

0 12y2

]
However, at the minimum point (0, 0), the Hessian matrix is

Hf (0, 0) =

[
0 0

0 0

]
Note that the signs of the formulas in the theorems above are reversed for concave

functions.

Another special case of convex functions are the strongly convex functions.

37

Definition 4.2.9. We say that function f : U ⊂ Rn → R is strongly convex if U is convex

and there exists τ > 0 such that f(x)− τ
2∥x∥2 is convex.

Every strongly convex function is strictly convex.

Theorem 4.2.10. A differentiable function f on a convex and open set U ⊂ Rn is strongly

convex if and only if

f(y) ≥ f(x) +∇f(x) · (y − x) +
α

2
∥x− y∥2 ∀x,y ∈ U . (4.8)

In dimension 1 This means that the graph of the function is above the tangent line the

gap between the tangent and the graph is quadratic. In particular the graph of a strongly

convex function cannot be flat anywhere.

4.3 Quasi-convex and pseudo-convex functions

Definition 4.3.1. A function f : U → R is quasi-convex if the sub-level set Sα(g) is convex

for every α ∈ R.

For quasi-concave functions, we change the sign of S or consider super-level set.

A convex function is also quasi-convex but the opposite is not true.

To show this we can refer to the same example given after Proposition 4.2.4.

Theorem 4.3.2. f ∈ C1 is quasi-convex if and only if

f(y)− f(x) ≤ 0⇒ ∇f(x) · (y − x) ≤ 0.

If f is quasi-convex, we cannot directly say that a local minimum is also a global

minimum. Let’s explore a second definition to find the condition we need to say that a

local minimzer is also global.

Definition 4.3.3. A C1 function f : U → R is pseudo-convex if

f(y)− f(x) < 0⇒ ∇f(x) · (y − x) < 0 ∀x, y ∈ U. (4.9)

Every convex function is pseudo-convex and every pseudo-convex function is quasi-

convex. Pseudo-convex functions are those for which the condition of having zero derivative

is sufficient for having a minimum.

38

Theorem 4.3.4. If f is pseudo-convex and x∗ is s.t. ∇f (x∗) = 0 then x∗ is a point of

global minimum.

If the set U is open and ∇f(x) ̸= 0,∀x ∈ U , then f is pseudo-convex if and only if it is

quasi-convex.

39

Chapter 5

Convex optimization

Now that we have analyzed some important properties of convex functions, let us use them

for optimization problems.

5.1 Existence of a global minimum

We recall that a set Ω is closed if the boundary is included in Ω. Also, it is bounded if the

distance between points is finite and so no distance goes to infinity. With two variables

this is usually easy to understand.

Theorem 5.1.1. If a function f is continuous and the set Ω is closed and bounded, then

f has global maximum and minimum on Ω.

As a corollary, if f is continuous and Ω is closed and there exists α such that

Sα(f) ∩ Ω ̸= ∅

is bounded, then f has a global minimum on Ω.

Two sufficient conditions for existence and uniqueness of a global minimum follow:

Theorem 5.1.2. 1. If f is strongly convex and Ω is closed, there exists a global mini-

mum of f on Ω.

2. If f is strongly convex and Ω is closed and convex the global minimum of f on Ω is

unique.

40

Theorem 5.1.3. If f is continuous and coercive and Ω is closed the global minimum of f

on Ω exists, where f : Rh → R is coercive if

lim
∥x∥→+∞

f(x) = +∞

Since the level set of a coercive function is bounded, we only say that the region Ω needs

to be closed. So, this first condition imposed recalls Theorem 5.1.1. More specifically, we

can choose a point x0 in the closed set ω; given x0 any minimizer must lie in

Ω ∩ Sf(x0)(f) = {x ∈ Ω : f(x) ≤ f (x0)} .

This set is closed and bounded, so the minimizer exists.

5.2 Convex Constrained Optimization

When we talk about a convex optimization problem, both the objective function f we want

to minimize and the constraint set have to be convex. The typical problem we want to

solve is 
min f(x)

G(x) ≤ 0

H(x) = 0

(5.1)

where we set G(x) = (g1(x), . . . , gn(x)), H(x) = (h1(x, . . . , hk(x) and equalities and in-

equalities involving G and H are to be intended component-wise (meaning that they are

applied to each element in the vectors). For example, linear programming problems are

convex because their objective functions are linear and linear functions are convex.

We define the Lagrangian function L(x,λλλ,µµµ) = f(x)− λλλ ·G(x)− µµµ ·H(x) and set up

the corresponding system: 

∇L(x,λλλ,µµµ) = 0

λλλ ≥ 0

G(x) ≤ 0

H(x) = 0

λλλ ·G(x) = 0

(5.2)

As with unconstrained optimization (Theorem 4.2.7), the necessary conditions of The-

41

orem 2.1 becomes also sufficient in the convex case, that is, if (x∗,λλλ∗,µµµ∗) solve the above

system, we can say that x∗ is a point of global minimum. We have indeed:

Theorem 5.2.1. Suppose the objective function f and the feasible set Ω are convex. If

(x∗,λλλ∗,µµµ∗) solves system (5.2) and satisfies the NDCQ, then x∗ solves problem (5.1).

Let’s take an example more related to the problem we are going to analyze later on.

Consider 
minx ·Qx+ c · x
Ax ≤ b

x ≥ 0

(5.3)

where Q is positive definite, A is any matrix and b, c are fixed vectors. As all constraints

involve affine functions, the constraint set is the intersection of translations of vector sub-

spaces of Rn, which are convex; therefore the feasible set is convex and closed, being the

intersection of convex closed sets. As, the matrix Q is positive definite, then the function

f(x) = x ·Qx+ c · x is strongly convex (second derivative test) and so problem (5.3) has

a unique solution.

Consider again the generic problem (5.1); its feasible set is

Ω = {x ∈ Dom(f) : g1(x) ≤ 0, . . . , gm(x) ≤ 0, h1(x) = 0, . . . , hk(x) = 0}

We assume that f is convex; by Proposition 4.2.4, if all the gj are convex the sub-level

set {x : gj(x) ≤ 0} is also convex ∀i and so their intersection
⋂m

i=1 S0 (gi) is convex as well.

Having all the functions hi convex, however, is not enough to say that {x : H(x) = 0} is
convex. For example the function g(x) = log x is not convex but the sub-levels are convex

while if h(x) = x2 − 1 then {x : h(x) = 0} = {−1, 1} which is not a convex set.

Therefore we must require something stronger, and the easiest condition that ensures

convexity of {x : H(x) = 0}; a typical condition is that all functions hi be affine, that

is, hi(x) = ci · x+ bi.

We state this facts as a corollary to Theorem 5.2.1:

Corollary 5.2.2. Assume that in problem (5.1) f is convex, the gi’s are convex and the

hj’s are affine. If (x∗,λλλ∗,µµµ∗) solves system (5.2) and satisfies the NDCQ, then x∗ solves

problem (5.1).

We can weaken the assumptions as we did in Theorem 4.3.4.

42

Corollary 5.2.3. Assume that in problem (5.1) f is pseudo-convex, the gj are quasi-convex

and the hi are affine. If (x∗,λλλ∗,µµµ∗) solves system (5.2) and satisfies the NDCQ, then x∗

solves problem (5.1).

5.3 Tangent cones and convexity

For convex sets we can say something more about convex cones and ACQ. We have:

Proposition 5.3.1. (i) if A is convex then also TA(x) is convex for every x;

(ii) if A is convex, then PA(x) is the set of all vectors with direction y−x for all y ∈ A;

(iii) if A is convex, then TA(x)=PA(x)(the closure of PA(x)) for every x;

(iv) if A is convex then A ⊂ TA(x) + x for every x.

(v) if in problem (5.1) the gj are quasi-convex and the hi are affine, ACQ is valid every-

where.

As it happens with general unconstrained optimization, if A is convex and also f is

convex then there is also a sufficient condition for optimality that extends Theorem 4.2.7:

Theorem 5.3.2. If a C1 function f is convex on a convex set A then x∗ is a point of

global minimum for f if and only if

∇f (x∗) · d ≥ 0 ∀d ∈ PA(x
∗).

This is useful when f is convex and the border of A is polygonal; in fact in this case

we have PA(x) = TA(x).

43

Chapter 6

Optimization algorithms

6.1 Gradient Descent

This general method is an algorithm used to solve unconstrained optimization problems.

We will explain it referring to maximization problems and we will go deeper in more specific

algorithms in subsequent paragraphs. By properties of directional derivatives, the gradient

of a function in a point indicates the direction in which the graph of the function grows

the most; therefore that should be the direction to follow in order to reach the maximum

in a faster way. When we want to find the minimum, we want to compute the negative of

the gradient. In a schematic way, the algorithm for the gradient method can be described

as:

• choose a random point x0

• calculate ∇ f(x0) and stop if it is equal to zero and if not choose another point

x1 = x0 + η∇f (x0) finding a η that maximizes f(x1)

• compute ∇ f(x1)

• repeat the scheme.

A general formula to summarize these steps can be written as

xt+1 = xt − η∇f(xt) (6.1)

where η is the step size and xt is where we are after t iterations. The step size corresponds

to the rate at which new information is accumulated by the algorithm. If it is too small, it

44

will be computationally expensive and if it is too big there is the risk to diverge from the

solution. As we mentioned above, this method is usually used for unconstrained problems;

main examples include ordinary least squares or lasso models. This method can be adapted

to deal with a constrained problem with a convex function f to maximize over a convex

set.

To apply the traditional method without variations and adjustments that we will ex-

plore later on, we need two sufficient conditions to make sure the algorithm will find the

optimal global minimum

• the function is differentiable so there exist a derivative everywhere

• the function is convex (4.2)

Let’s see an application with a single variable function f(x) = x2 − x + 3. We take first

and second derivative respectively equal to 2x − 1 and 2 and we notice that the second

derivative is always bigger than 0 so the function is strictly convex and with univariate

functions this condition is sufficient. If we take a quasi-convex function f(x) = x4−2x3+2

and take first and second derivative we will have x2(4x− 6) and 12x(x− 1). From the first

derivative we derive two candidate points: 0 and 1.5. If we substitute those points back in

the derivatives we will see that for the point equal to 0, those derivatives will be 0 and so

this is a saddle point while 1.5 is a minimum. This means that if the algorithm finds the

saddle point before the actual global minimum, it will not work. We can also summarize

infletion points with the following so since 1.5 is bigger than 0 we know that at that point

the function is convex.

• x < 0 convex

• 0 < x < 1 concave

• x > 1 convex

For multivariate functions we will test this using the hessian. If at an inflection point the

hessian is positive definite than the point is a minimum and if it is negative definite the

point is a maximum. The algorithm calculates the next point to reach with the gradient at

the current position and substracts in the case of minimization problems, to take a step.

A saddle point imposes a challenge so that is the reason why we need convex functions.

When we apply this algorithm we need to know if the function is differentiable.

45

While a necessary conditions to find a solution for a differentiable convex function is

that the gradient at our candidate solution is zero ∇f(x∗) = 0, this does not work when

f is not differentiable. In this case one can introduce the concept of subdifferential and

modify the algorithm accordingly. Let’s take the function f(x) = |x| as example and we

want to minimize it. We know that the function is not differentiable at the minimum

point.

Let us examine a few important theorems that connect the concepts we have seen on

convexity and gradient descent algorithm.

Theorem 6.1.1. If f is coercive and convex the sequence xt has a subsequence that con-

verges to a minimum point for f .

Theorem 6.1.2. If f is strongly convex the sequence xt converges to the global minimum

point for f , which is unique.

Let’s examine the case of convex constraints gi with a convex function f ; therefore the

feasible set Ω is convex. We can transform the constrained problem in an unconstrained

one. To do this we choose a new function f̃ such that f̃ = f in Ω e f̃ > f in Ω∁. We then

define a penalization function, for example

p(x) =
m∑
i=1

(max {0, gi(x)})2 ;

if x is in Ω then p(x) is zero, if x is not in Ω then p(x) is positive, meaning that it penalizes

when we are outside the feasible set: if we have a point outside, at least one constraint will

be violated. We will then solve the unconstrained for

f̃ε(x) = f(x) +
1

ε
p(x)

to find the minimum in Rn. We have:

• f̃ε(x) is convex.

• If x∗
ε is the solution for f̃ε(x) and it is in Ω, then we also have the solution for the

constrained problem.

• If x∗
ε is not in Ω we take ε′ < ε having that in Rn, f̃ε′(x) > f̃ε(x); we then choose a

sequence εk → 0 and ∀k we find the corresponding sequence x∗
ϵk

that, at some point,

we be inside Ω.

46

6.2 Projected Gradient Descent

Gradient descent improves strictly at every iteration and has a self tuning property. We

can expand the use of this algorithm using projection operators; given a set X if we have a

constrained minimization problem and need to stay in the set, we can use those operators

to iterate while finding points in X. More specifically, those points are defined as

xt + 1 = projX(xt − η∇f(xt)) (6.2)

where the projection on X, projX(x), is defined as the point y ∈ X closest to x, that

is, the one among all points of X that minimizes the distance ∥y − x∥. In the projected

gradient descent algorithm, we have a feasible set where the projection of a point x is a

point y belonging to the feasible region. When we iterate we follow the direction of the

gradient and land in point x and then we need to project that point in our set finding the

closest point y to x. We keep doing this until we find our solution. Projected points are

closer than original points:

∥y1 − y2∥ ≥ ∥projX(y1)− projX(y2)∥. (6.3)

If X is convex then the projection on X is unique.

As an example let us take a multivariate function f(x) = 1
2x

TQx with a matrix Q

positive definite. The constraint is ∥x∥ = 1. The projection operator is this case is defined

as

proj∥x∥=1 x =
x

∥x∥ .

We fix a step size η and compute the gradient ∇f(x) = Qx and take a step

xt+1 ← xt − ηQxt = (I− ηQ)xt

xt+1 ←
(I− ηQ)xt

∥(I− ηQ)xt∥ .

Notice however that the constraint is not convex, and indeed some points (like the origin)

cannot be projected on the circle in a unique way. This may lead to computational errors.

47

6.3 Other methods

6.3.1 Mirror descent

The direction used to chose the next point can also not be the gradient. Mirror descent

algorithms use other functions in place of the gradient.

6.3.2 Frank Wolfe

This algorithm is an alternative to projected gradient descent. Let us take the formula of

projected gradient descent for reference

xt + 1 = projX(xt − η∇f(xt)) (6.4)

Frank Wolfe algorithm (FW) always stays inside the set and follows the steepest direction

indicated until the border of the set to reach the solution. If we think of a typical LP

problem in two dimensions, when we define a convex set made of linear constraints we look

for the maximum or minimum is the corners. Here the concept is similar as FW explores

the corners but without always following the direction of the gradient. On the contrary

of projected descent, FW replaces projection with linear minimization or maximization

depending on the problem.

6.3.3 Newton

This algorithm employs quadratic convergence meaning that one iteration doubles digits

of accuracy. We need to assume that f has first and second derivatives while with gradient

descent we had a linear approximation of f . There are two phases, when we are close to the

solution there is no step size and so it is said to be undamped while when we are not very

close we use damped. We give the formulas for single variable and multivariate functions:

xt+1 = xt − f ′(xt)/f
′′(xt)

xt+1 = xt −H(xt)
−1∇f(xt)

Let’s see an example with a multivariate function f(x, y) = xy + 4y − 3x2 − y2 with a

random point to start equal to x0 = (1,−1). We then define the gradient of f evaluated

at point x− 0 with the partial derivatives with respect to all the variables and the Hessian

48

with all the second partial derivatives evaluated at x0.

∇f =

[
y − 6x

x+ 4− 2y

]

∇f (x0) =

[
−7
7

]

H (x0) =

[
−6 −1
1 −2

]
The we evaluate the first iteration following the formula and go on until we reach the

maximum number of iterations decided in advance.

49

Part II

50

Chapter 7

Betting systems

Models for parimutuel markets have been introduced as a different betting model, opposed

to the popular fixed odds ones that we usually see for bets in sports. In fixed odds betting,

there are fixed quotes (odds) available on returns on wagers and when bets are placed the

odd associated is the current one which will be fixed for that specific bet. This means that

when the odd changes depending on what other players do, the fixed odd a player saw at

the time of the bet does not change for his bet. On the other side, the odds in parimutuel

markets fluctuate as bets come in and the final odds are calculated at the end and those will

be the finalized ones. Parimutuel markets are modeled as specific betting settings where

the organizer does not incur any loss as all the money paid to bet are pooled together and

redistributed to players who bet on the event realized. This will result in a proportional

redistribution of money corresponding to the ratio of money bet initially. There are many

variations, especially regarding the payout rules but in any case, the condition of protecting

the organizer from losses is respected. The setting of these markets takes inspiration from

auctions. The two can be organized in a very similar manner but this always depends on

the specific rules and structure of the mechanisms. For example, in an auction, participants

typically bid on a single item or lot, and the highest bidder wins that item. In contrast,

in a parimutuel model, participants bet on a specific outcome of an event, such as a horse

winning a race or a particular team winning a game. However, both parimutuel models

and auctions involve participants placing bets on an outcome, with the total amount wa-

gered being distributed among the winners. Moreover, the setting of parimutuel models is

flexible in the sense that it is possible to place bets on more complex events rather than

just a single outcome. In any case, the strategy depends on what the other participants

51

do, as opposed to the case of fixed odds betting.

7.1 Fixed odds bettings

In fixed odds bettings, odds are calculated with the ratio of the probability of an event

happening by the probability of not happening and are showed with fractions, decimal

numbers or integers (money-line) number depending on the system adopted in each coun-

try. Fractional odds (e.g. 2:1) show the amount the player could win with respect to the

stake to be bet, to win that amount. Decimal odds (also called European odds) show the

return on a unit stake and the last form, money-line odds, show either the amount a player

can win with 100 dollars (plus odds) or the amount a player has to put at stake to win

100 dollars (minus odds). If for example I bet with the fixed odd of 2:1 and my stake is

10, I get 20 and my total return is 30 since i will get also my stake back. If I convert this

example in the other ways odds are showed, it would correspond to 3.0 for European odds

and +200 for money-line(plus odds).

From the odds it is possible to calculate the implied probability of an event happening. We

will show the formula to find implied probability for decimal odds, the system commonly

used in Europe. It is very simple as the only calculation is dividing 1 by the odds. If we

have odds equal to 3.0, the implied probability will be equal to 1/3 and so 0.33. For the UK

system, where fractional odds are used, this would correspond to the denominator divided

by numerator and denominator added together so 1/(1+2). For the American plus odds we

would need to take 100/(100+ 200). For American minus odds we would need to convert

the negative number in positive and suppose we have the same odds of the positive case,

we would take 200/(100+200). This means that for higher odds, the probability decreases.

It is very important to understand how odds change, knowing how money influence

movements in the market. At the beginning odds are calculated by the organizer of the

betting system taking into consideration the strenght of participants, specific information

and expectation on where money will be placed. As the betting goes on, odds are adjusted

on new information, market confidence (liquidity injected) and flow of money. When a

high amount of money is bet on at outcome, it means bettors are more confident and that

outcome will have a relatively high implied probability. In this case odds will be adjusted

to a lower value. This reflects the fact that when there is a higher probability for that

52

outcome to realize, the risk is lower and so the odds will be lower as for any unit of money

bet, the money gained will be proportionally less. At the beginning of the betting, there

won’t be much money in the system and the odds will not reflect the expectation of the

players much. As more information is reflected in the odds, confidence in betting increases

and the inflow of money will increase as well. When the game is about to start and the

betting period is closing, the odds will reflect more closely the sentiment of the players and

so it makes more sense to place bets at this moment.

From the point of view of the organizer, it is better to update the odds taking into

account where the money are bet as this will prevent arbitrage opportunities to arise. This

can happen when the probability of an event happening is different from the one reflected

by the odds. In this form of betting the organizer takes risks and so it is better not to

create riskier settings where he could lose more.

Suppose the players know the current fixed odds for a specific setting, let’s say 4:1.

Then, certain information come out and the probability for an event to happen increases,

in this case the odd (European method) will be a lower number let’s say 2:1. Suppose the

organizer sets the odd at 3:1 (probability equals 0.33) and does not move it for some time.

If players understand the difference in the probability of an event happening and the one

reflected by the odds, they will start to bet more for that outcome meaning that for every

unit bet they will receive 3 instead of the one closer to the appropriate which would be 2

in this example. In this case the organizer will be worse off since the players are getting

paid more than they should, and the money collected with the bets may be not sufficient

to pay the players out.

7.2 Parimutuel markets

In traditional parimutuel markets, the odds are continuously changing depending on what

the participants do. Also, the odds are not set at the beginning and are only available

at the end, when the betting ends and the game starts. The final odds will be used to

calculate the implied probability. All the money bet is put together and for every outcome

it is calculated the payoff to be divided among the participants who bet on that outcome.

It is found by dividing the money bet for that outcome by the total money bet. Even

though the odds fluctuate while the betting is open, the effective odds will be the ones

53

calculated at the end. In this case, it is like players are playing against each other and not

against the organizer as odds reflect only the relative volume of money in the system and

it is not something set by the organizer. This means that the final odds fully reflect the

market sentiment without considering direct information aggregation. In financial terms,

the implied probabilities are called prices and so we can say that in parimutuel markets

the relative prices equal the relative aggregate amounts wagered.

The implied probability is the probability distribution implied by (dollar) betting vol-

ume. In financial terms odds and prices reflect the relationship between supply and de-

mand. We can think of a random variable as a financial asset that has associated outcomes

with corresponding probabilities. The payoff can be expressed in probability as it will be

the same as the share of money bet with respect to the money in the pool to be distributed

among winners. Thus, the state price where the state is a specific outcome, is just the

probability of that outcome happening, that is, of the random variable taking a particular

value, and so the sum of prices over all the states is equal to 1. The worth of the financial

asset is equal to the expectation of the random variable. So, we can say that prices reflect

the distribution of the random variable.

7.3 Parimutuel Mechanisms in Financial Markets

In financial markets, the usage of centrally managed markets is very common. As opposed

to decentralized markets, there is a unique dealer that manages the market. In this form

it is possible to place different kinds of orders through brokers or the exchange. A broker

trades for others for commissions and a dealer trades for himself and profits for a markup.

The stock market in general is a dealer and broker market. For example, the NYSE is a

broker market in the form of a continuous double auction, where brokers represent their

clients’ orders and try to match them with orders from other clients or with orders in the

exchange’s central order book. The NASDAQ is a dealer exchange. The main difference

is how trades are transacted. At the NYSE the auction system is used to set prices at

the market open and close and participants transact directly between each other. Before

the official opening it is possible to submit orders that are then matched with the highest

bidding price paired with the lowest asking price. The market is maintained by desig-

nated market makers that are human points of contact on the trading floor and run the

54

opening and closing auctions even though nowadays most of it is computerized. On the

other side, in the NASDAQ system participants transact through dealers. Market makers

maintain inventories of stock to buy and sell from their accounts and to transact they give

two sided quotes with bid and ask prices. Given the similarity of some characteristics of

the parimutuel markets and some settings already present in trading systems in financial

markets, it had been possible to directly implement those models for financial transactions.

There are a variety of models for parimutuel markets implemented for different kinds of

financial settings. We will illustrate the most popular ones. As we have already mentioned,

the NYSE sets prices with a continuous double auction system (CDA). For this system

various models have been employed to set prices starting from the standard parimutuel

model and applying innovative variations as well. Recently, these models have been also

applied to different real-world markets like Yahoo, TheWSX and InklingMarkets. In the

typical CDA system after the opening and before the closing, offers are placed continuously

and whenever there is a cross-over of orders there will be a transaction. In reality, the

mechanism is much more complex than this, depending on the asset traded and the kinds

of orders available. In finance, we refer to the organizer of the market as the market

maker. An important characteristic is that the organizer does not encounter any risk as

the purpose is to find bilateral agreements. In fixed odds models, the bookmaker sets

the odds and adjusts for demand and information. Again liquidity is provided but this

time risk is involved. In parimutuel models for some specific settings like sports, the

events are mutually exclusive and traders put their money wagering on events. When the

winning event is declared the money is given proportionally to the people who bet on the

winning event. All the money put by the people who lost go to the people who won.

It is possible to think of the payoff in two ways, either the refund bet plus the money

taken from the people who lost or the share of money bet over the total amount in the

pool of money. The first to study a CDA applying a variation of the standard parimutuel

model was Bossaerts [Bossaerts et al., 2002], who solved a contingent claim call auction

market with a linear programming formulation. Then, these kinds of models have also

been applied to prediction markets with additional variations like the Logarithmic Market

Scoring Rule (LMSR) by Hanson[Hanson, 2002] and the Dynamic Pari-Mutuel Market

(DPM) by Pennock [Pennock, 2004], see also [Agrawal et al., 2009]. In this kind of market

it is easier to see similarities with other types of bets, in sports and horse racing. Both

mechanisms operate as automated market makers. Moreover, in the DPM, bets don’t have

55

to be placed before the game starts, as the prices (probabilities) will change so it has

the property of updating dynamic information. On the other side there is the problem

of liquidity, as when there is nobody willing to sell due to scarce interest there will be

also nobody willing to buy, so the DPM considers the amount of people willing to trade

in the market. This can happen mainly when the model is applied to sports events as

traders will be more willing to sell and buy despite real events. The concept is the same

and it is based on a call auction mechanism. This mechanism has been also employed by

many banks like Goldman Sachs which was based on a model developed by Lange and

Economides (PDCA)[Lange and Economides, 2003]. The organizer collects the orders and

closes the market to determine which orders to accept so traders cannot know if the order

is accepted until the market closes. While the other two models mentioned above, LMSR

and DPM, run as an automated posted price market maker, the PDCA is implemented as

a call auction where traders need to reveal prices. An interesting implementation of an

auction parimutuel model is the Sequential Convex Pari-Mutuel Mechanism(SCPM) where

the organizer takes immediate decisions on the orders. This model derives from the PDCA

which has also been solved with a convex formulation called CPCAM (see Chapter 8).

These kinds of models are based on the auction principle and are created to generate

liquidity and avoid thin market problems that can arise in CDA systems.

56

Chapter 8

Mathematical structure

We have n traders and i possible outcomes (states). Trader j provides an order made of a

bet, that is a vector aij , i = 1, . . . , S, with aij = 1 if he wants to bet on outcome i occuring

and aij = 0 otherwise. He also provides a limit quantity qj corresponding to the maximum

number of identical bets he is willing to submit and the maximum price πj he is willing to

pay for each bet. The market organizer has to find the order fill xj for each trader, that

is, how many of trader j’s bets are accepted, the price pi for each state and the price cj

requested to trader j for his bet. We denote by A the matrix formed by row vectors aij .

Notation is recalled in table 8.1.

Variable Name Description

ai,j State Order Trader j’s order on state i
qj Limit Quantity Trader j’s maximum number of orders requested
πj Limit Price Trader j’s maximum price for order
cj Equilibrium price Trader j’s equilibrium bid price
pi Price Organizer’s price level for state i
xj Order Fill Number of trader j’s orders accepted

Table 8.1: The variables for the PMM and CPCAM models.

When applying these models to a setting specific to options, each aij represents the

potential payout for the order j if the state i is realized. In the following examples we will

concentrate on digital options as the setting is much easier and we have a fixed payoff of

1 for each order in the realized states. In this case matrix A is filled with binary elements

with 1 if the trader wants to bet in that state and 0 in the other case.

57

Models in parimutuel markets are similar in terms of the constraints as they all endow

the defining features of those markets, listed below:

• riskless funding of claim payouts

• equilibrium pricing conditions requiring the relative prices of contingent claims equal

the relative aggregate amounts wagered on such claims

• endogenous determination of unique state prices

• call auction, non-continuous trading

8.1 PMM

One of the most famous modifications of the traditional implementation is the model

developed by Lange and Economides in [Lange and Economides, 2003] (PMM) which will

be explored more in the detail in the next chapter.

maxx,pM =
∑n

j=1 cjxj +
∑s

i=1 θi∑
i pi = 1

cj =
∑

i ai,jpi ∀j
M =

∑
j xjai,j +

θi
pi
∀i

cj − πj + yj ≥ 0

xj (cj − πj + yj) = 0

yj (qj − xj) = 0

0 ≤ x ≤ q

p > 0

y ≥ 0

Here we are maximizing the variables p and x. cj represents the equilibrium price of the

option in order j so we can say that

cj ≡
S∑

s=1

aj,sps

58

Now let’s define the total premium paid in the auction

M ≡

 J∑
j=1

xjcj

+

S∑
s=1

θs

and ys is the payout order trader j receives if the state occurs represented as aggregated

customer payout.

ys ≡
J∑

j=1

aj,sxj

8.2 CPCAM

We now introduce the CPCAM model which is a convex formulation similar to the previous

model. 

maxx,M,s
∑n

j=1 πjxj −M +
∑S

i=1 θi log(si)∑
j ai,jxj + si = M

0 ≤ x ≤ q

s ≥ 0

Here we are solving for M , x and s. We will show in the next chapter that s is equal to θθθ
p .

θ is the vector of starting orders and πTx−M is the profit for the organizer.

The second term can be also expressed in the following way, representing a disutility

function ∑
i

θi log (si) =
∑
i

θi log

M −
∑
j

ai,jxj


So, the value of the objective function will increase when the organizer is able to maximize

the profit while maintaining the parimutuel properties.

8.3 Parimutuel markets in options trading

In finance, parimutuel models are mainly applied to prediction settings but this is flexible

depending on the purpose of the application. The main purpose for the creation of these

markets in finance is to help generate liquidity. This is usually done through a central-

59

ized organizer who facilitates trades between participants. In OTC markets, for example,

parties trade directly between each other and for specialized or unique financial assets like

customized options, it may be hard to find a counter-part.

We are interested in studying a similar setup but for contingent claims and limit orders.

Note that all trading strategies are implemented with orders in the form of notional amounts

since derivatives contracts are based upon the notional amount to be bought or sold. How-

ever, in the specific examples we won’t introduce details on more complex structures of

contracts. In reality, the purchase of an option will correspond to a desired size of the

position in notional terms.

Let us define the setup of a PDCA parimutuel contingent claim microstructure which

can be also extended to other setups. The strategies can be implemented with a buy or

sell order and as result we will have a vector of payout ratios corresponding to a range of

states and a limit price. We denote the value of an underlying variable as U , for example

referring to an economic index. Before the start, the exchange or market will typically set

a range of strike prices based on various factors, such as the current market conditions, the

underlying asset being traded, and the expiration date of the option. They are set across

the range of likely outcomes of the asset and denoted as k1, ...ks − 1. S states are formed,

paying out only if that state occurs. We can imagine the underlying asset to have a pricing

range and each strike price represents an interval in that range. We have S − 1 states

because the strike prices are placed at the boundaries between the trading states. Before

opening the auction the opening orders denoted as θ are entered for each of the S state

contingent claims to ensure parimutuel prices are unique. Then customers denoted with

j1, ...jn submit orders and request a specific amount of contracts denoted with qj . Con-

tracts have different type and each type has a different payout, for example digital options

pay 1 if the option expires in the money. For vanilla options the payout is 1 per point of

the option being in the money. In reality, it is possible for a trading post to trade different

kinds of options that refer to the same underlying variable. Also in parimutuel markets

different betting options with different payout structures can be offered even though the

majority of models developed in academia treat only digital options as the structure is

easier to implement. In this model both digital and vanilla options are allowed. Customers

can specify limit prices for each order, representing the maximum price when they are

trying to purchase and the minimum price when they are trying to sell. It will be denoted

60

as πj for customer order j. In our notation, aj , s will represent the order of trader j for

state s in terms of the notional payout amount which depends on the type of option. For

example, if the type of option for the contingent claim for trader j is a digital put option

and the outcome is that U < K1, aj , 1 will be 1, in the first entry of a vector aj , s with all

the replication weights of the whole order. If trader j has a buy order, then the claim pays

out if the strike price at a particular state is kv and U is greater of equal. If the order is

vanilla, the claim pays depending on the spread kv and kw. The vector ps represents the

implied probability that the state occurs and that the claim expires in the money.

8.4 Discussion

We can think of solving the following models by first identifying the optimal vector p and

then solve for the optimal xj or viceversa. In the CPCAM the market organizer collects

the limit prices for the accepted orders and in the PMM, the optimal prices are taken. It

has been showed that if we collect the parimutuel prices also in the CPCAM model the

optimal prices don’t chnage. In general we denote the parimutuel price of participant j

with the variable cj in the case this is the price charges and not the limit price. Here are

the two ways to approach this

πj < cj → xj = 0

πj = cj → 0 ≤ xj ≤ qj

πj > cj → xj = qj

xj = 0→ pTaj ≥ πj

0 ≤ xj ≤ qj → pTaj = πj

xj = qj → pTaj ≤ πj

61

or written to solve the PMM model which charges the parimutuel prices

xj = 0→ pTaj = cj ≥ πj

0 ≤ xj ≤ qj → pTaj = cj = πj

xj = qj → pTaj = cj ≤ πj

One of the variables of interest is the vector of prices for each state. Prices represent

implied probabilities and reflect the pricing of the specific assets in the model. Let as

define the vector y as the vector of elements representing the aggregate payout of each

state, so the total amount paid for the claim in each state. One important equality is that

relative prices are equal to the aggregate relative amount paid. Also unique prices are

determined endogeneously. In the usual setup orders are expressed with notional amounts

(explain) and orders are limit orders. If we imagine this call auction mechanism in a fi-

nancial setting, we will have a non continuous trading situation and a risk free funding

of payouts using the amounts paid for all the claims during the auction. Moreover, the

total amount paid for the claims, is exactly sufficient to pay for contingent claims having

positive return. So, the mechanism is self-funded and risk-neutral since the total premium

paid for the claims is equal to the state contingent payouts. After the betting is closed,

we will have a vector of prices as outcome which will represent an elemental state outcome

and will be S dimentional. In the models we will describe for parimutuel markets, the odd

refers to the payout system. Let as remind that in the traditional game, the organizer

quotes the odds on specified wagers while in parimutuel games, the prices fluctuate until

the betting is closed. The prices are set depending on relative amounts. So, for every state

i, pi will tell us how much the investors whose claim is in the money has the probability of

earning.

In these kinds of event-based settings, liquidity may be a problem especially when the

set of traders is small and the kinds of tradeable securities is diverse. That is why these

markets are usually centrally organized. In this way it will be easier to create specific

claim payouts. Moreover, we can specify some features like the kinds of orders and assets

traded. In this way the organizer knows how to manage trades and can decide what to

accept or reject. In the case of limit orders traders express limit prices to buy or sell the

security in question. This is usually a feature that is included since it results in less trades

and more efficiency consequently. Another important feature we would like to have in a

62

balanced book for the organizer, so that there can never be a liquidity risk for availability

of assets to trade. In fact, in a usual setting traders will be able to buy and sell. An

important specification for this model is the objective function which can be either in

terms of number of orders accepted or value of orders. The trader will know if the order is

being considered at the end, when prices will be announced. At this point for every order

the the trader will see what the order state price is, namely the sum of prices of individual

states. Then, the order fill will be communicated as well. Orders can be accepted fully,

in part or not accepted depending on the optimal price calculated and the limit price of

the order. This way to solve the model is different from the traditional setting, where all

orders are accepted and participants are charged a fixed amount of money. The problem

is that the odds are continuously changing while in the varied settings, the acceptance of

orders depends on the optimal prices and the odds will not vary when the auction is open

because the optimal order fill is still not determined. Both models we are going to analyze

will represent auctions with limit orders.

8.4.1 PMM

The model will be run in a call auction setting. Now we will explain the main variables

and some conditions. First of all, the vector of optimal prices obtained from the model

follows to normalization condition of

s∑
i=1

pi = 1,p > 0.

Then, the total amounts paid for all contingent claims are equal to the total contingent

payouts.
ps
pk

=
ysps
ykpk

=

(
yTp

)
ps

(yTp) pk
s, k = 1, 2, . . . , S

where ps and ys are the s
th elements of vectors p and y. This means that the relative prices

of each fundamental state contingent claim is equal to the aggregate relative amounts paid

for the respective claims as we said before. In general, the parimutuel markets are designed

with contingent claim prices derived endogenously and so, the demand of the investors has

an effect on the price. This is what connects these models with the so-called market games.

With respect to the optimization problem introduced above, in order for the contracts

63

to be accepted by the market organizer, some conditions have to hold

πj < cj → xj = 0

πj = cj → 0 ≤ xj ≤ qj

πj > cj → xj = qj

and this relates to one of the most important properties of parimutuel markets, which is

to bet truthfully with respect to the valuation of the option.

One important condition is that there is sufficient premium to fund any state

ys +
θs
ps

= M s = 1, 2, . . . , S

where on the left-hand side we have the total amount of customer payout plus the notional

payout amount of the opening order. This side represents the the total payout to be made

if state s occurs, so the amount collected is equal to the amount needed to settle the total

filled requests. Also, the lower the payouts ys, the lower the price of the state contingent

claim ps. Thus the aggregate demand for a particular state can be explained as follows

ms = psys + θs, s = 1, 2, . . . , S

which implies
ms

mk
=

ps
pk

s, k = 1, 2, . . . , S

Given the demands for the orders, there exists a unique parimutuel equilibrium. We now

proceed to setup a more specific model with limit orders. To reflect the reality of how cen-

tralized markets work, we conceptually aggregate liquidity in the same state space allowing

bets for any type of contingent claim. This is not usually the case for non-financial bets.

For example in horse races, pools of money will be separate for ”win” bets and ”place”

bets. The model is formulated as an optimization problem with an objective function that

aims at maximizing the volume of orders, so we want to have as much liquidity as possible.

We can write the same problem in more ways, depending on how we modify the payout

system. For example if we want to solve the PMM introducing the traditional payout of

parimutuel models, we will introduce the variable ys representing the optimal payout of

each state but if we want to work with a simpler case we can set a fixed payout equal to

64

1, as in the second problem down below where yj is a slack varibale.

8.4.2 CPCAM

The CPCAM model is a convex modification of the PMM model. It is employed in call

auction settings, as the PMM model. It has been introduced mainly in order to over-

come two issues in the original PMM formulation: the non-convexity of the optimization

problem, which leads to difficulties in solving it (one of the main drawbacks is that there

is no guarantee that solving algorithms converge in polynomial time), and the difficulty

in quantifying the influence of the starting orders θi on the solution of the system. The

CPCAM model has been proposed and studied in [Peters et al., 2006]. It has been shown

that it models lead to the same solutions as the PMM and since we have two variables

of interest we can also think of solving this model with respect to prices first and use the

solution of the price vector for the PMM model to then go on and solve for the other

variable representing the optimal order fill. If we do this, the PMM model will be solved

as a linear program. This interchangeability of solution with respect to prices is possible

because of the property of price uniqueness of both models. This means that if we input

the same seed of money to fund the auction at the beginning, the solution is unique. So,

we would need to start the two models with the same seed vector of starting orders θ. In

the original paper where the CPCAM method is presented, it is shown how the constraints

present in the PMM formulation can be analytically derived following the steps needed to

solve the constrained problem with Lagrange. After the optimal values are communicated

are the realized outcomes are clear, traders get a fixed payout if the order is accepted,

as in the PMM. This is like saying that from the beginning traders know what the odds

will be and the actual payout will depend on the optimal values. We can view the fixed

payout as a scaling factor for the results to adjust the proportionality of bets on the total

amount bet. In the traditional model this is equal to 1 but we can easily modify the payout

mechanism and adapt it to the level of risks of specific settings in the financial markets. In

the application of this model we assume that there are limit orders so that traders know

the payout if the order is accepted and the states are realized. There us a requirement of

nonzero starting orders. There is a difference with the PMM model where traders will pay

pTaj for the order if it is accepted, not the limit price. We also have the price consistency

constraint of pTaj ≤ πj for accepted orders, so the organizer could change a higher price

than the optimal and keep profits. These are the price consistency constraints for the PMM

65

model

xj = 0 −→ pTaj = cj ≥ πj

0 < xj < qj −→ pTaj = cj = πj

xj = qj −→ pTaj = cj ≤ πj

Traders will be charged their limit price but it is also demonstrated that the vector of

unique optimal prices does not change in case we decide to charge the optimal state prices

instead. The optimization problem is convex and can be solved deriving the Lagrangian

and the associated KKT conditions.

L(x,M, s) =πTx−M +
∑
i

θi log (si)

−
∑
i

µi

∑
j

ai,jxj + si −M


+
∑
j

λj (xj − qj)

and we derive the KT conditions which include some of the constraints of the PMM model.

πj −
∑
i

piai,j + γj ≤ 0 for 1 ≤ j ≤ n

xj

(
πj −

∑
i

piai,j + γj

)
= 0 for 1 ≤ j ≤ n∑

i

pi = 1

θi
si
− pi ≥ 0 for 1 ≤ i ≤ S

si

(
θi
si
− pi

)
= 0 for 1 ≤ i ≤ S

γj (xj − qj) = 0 for 1 ≤ j ≤ n

γ ≤ 0

One important condition we derive is the relationship of optimal variables of interest which

can be derived from the complementarity slackness property of KT. It has the application

as in the PMM model but following this conditions we derive the optimal variables in the

66

opposite way as before. However, as we have specified above this does not change anything

in the solution. Moreover, the organizer collects the limit prices for the accepted orders

but it has been shown that collecting the optimal prices p does not change the optimal

solution.

67

Chapter 9

Simulations

We have solved the CPCAM optimization problem using the SLSQP method in the Scipy

library of Python. We have seen how in the paper of [Peters et al., 2006] the main proper-

ties of the parimutuel model are explicitely shown by solving the problem with Lagrange.

With the KT formulation, some of the constraints of the PMM have been derived through

this formulation while in the PMM they had been manually introduced. The aim of trying

build in algorithms from Scipy is to analyze how these properties hold with other methods

even though they don’t appear in the mathematical formulation. To check this, we col-

lected results from three trials, all with the same algorithm but with different dimensions.

In this way we were also able to monitor the increasing number of iterations with increas-

ing dimension of inputs. SLSQP stands for sequential least square quadratic programming

and it minimizes a function of several variables with any combination of bounds, equality

and inequality constraints. SLSQP is ideal for mathematical problems for which the ob-

jective function and the constraints are twice continuously differentiable. Note that the

wrapper handles infinite values in bounds by converting them into large floating values.

It is a gradient based algorithm which converges to the solution starting from initial values.

We have defined the specific problems being consistent with the kinds of data used both

in the PMM and CPCAM model without specifying a specific betting setting as the focus

of this thesis is to solve those models with a diffrent algorithm. However, it is interesting

to note that the rules of the settings have unlimited flexibility as long as the fundamental

rules of parimutuel models are respected. The kinds of data we used are more consistent

with a setting for digital options but the same model can be applied to more complex types

68

of options.

Now we will show the results of the first trials and discuss some interesting findings. Specif-

ically we share the first case where we only optimize for the optimal orders and specify

manually the optimal price and the liquidity (p,M). This is the only case where we don’t

solve for s but we write it directly as si = θi
pi
. Note that this was derived by the KT

conditions for solving the CPCAM model with Lagrange. We present a few results with

the aim of monitoring how optimal values change as the inputs change, in particular the

specified values of p. Note that we decide the values of p making sure their sum is 1,

as it is specified in the fundamental conditions derived though Lagrange in the CPCAM

formulation. We share results from three trials where we start by specifying the prices

equal to each other (0.5, 0.5), then with some variation (0.3, 0.7) and finally with a lot

of variation between each entry (0.01, 0.99). We notice that a higher optimal value for

our objective function is reached where prices are set equal to each other, with the lowest

possible variation between each entry.

Figure 9.1

Figure 9.2

69

Figure 9.3

In the following two trials we are solving for s,M, x. The only bounded variable is

x as this represents the optimal number of contract accepted and it is set following the

preferences declared by the traders (q). In this setting every trader nmakes one order j and

for everyone the optimal order size is 1 so q is a vector filled of ones. In the results showed

in the following table we have a vector of five entries representing the optimal solutions.

The first two entries of the optimal solution vector are the optimal orders accepted (x),

then M and the last two are the entries of the vector s. Since every trader asks for one

order accepted and the first entry of this vector is out of bound, we interpret it like that

order was not accepted while the second order was, since the bounds were clearly specified

in the code.

Figure 9.4

In the following table we ran the same experiment with a 7× 8 matrix as input for a.

Since the columns represent the numbers of orders we count the first eight entries in the

optimal solution vector and see that almost all the orders were accepted.

70

Figure 9.5

Now we summarize some findings and share result about number of iterations, orders

accepted and optimal objective value all varying with the dimension of inputs. In particular

we plot on the x-axis the number of rows of the matrix a, as a proxy for dimensions in the

setting. The number of columns in these trials will be all 50 percent more than the rows.

On the y-axis there will be our dependent variable.

Figure 9.6

The curve represents how the number of iterations change as the dimensions in the

setting increase. On the other side Figure 12 below shows hoe the maximization problem

returns a lower value for the objective function as the dimensions increase. This is because

of how the objective function is, since the value of the liquidity M is subtracted. Finally for

71

the orders accepted in Figure 13, we have not found a particular trend. This is probably

due to the fact that entries are set randomly in the inputs.

Figure 9.7

Figure 9.8

72

Appendix A

Simulation codes

We will share three Python codes, the first one is the one used to optimize only the variable

x while the second and third ones are used to optimize x,M,p. The last one is used for

high dimensions problems.

from scipy.optimize import minimize

import numpy as np

define the objective function

def objective(x, a, theta, pi, M):

s = np.array([theta[0]/p[0], theta[1]/p[1]]) # calculate s

obj = np.dot(pi, x) - M + np.sum(theta*np.log(s))

return -obj # we need to minimize the negative of the objective

define the constraints

def constraint(x, a, theta, pi, M):

s = np.array([theta[0]/p[0], theta[1]/p[1]]) # calculate s

constraints = []

for i in range(len(a)):

constraints.append(np.dot(a[i], x) + s[i] - M)

return constraints

define the bounds and initial guess

q = np.array([1, 1, 1])

bounds = [(0, q[0]), (0, q[1])]

x0 = np.array([0.5, 0.5])

73

define the other parameters - set M and p

a = np.array([[1, 0], [0, 1]])

theta = np.array([1, 1])

pi = np.array([0.3, 0.7])

M = 2

p = np.array([0.5, 0.5])

solve the problem

sol = minimize(objective, x0, method=’SLSQP’, args=(a, theta, pi, M),

bounds=bounds,

constraints={’type’: ’ineq’, ’fun’: constraint, ’args’: (a, theta, pi, M)})

from scipy.optimize import minimize

import numpy as np

define parameters

a = np.array([[1, 0], [0, 1]])

theta = np.array([1, 1])

pi = np.array([0.3, 0.7])

lp=len(pi)

lth=len(theta)

la=len(a)

define the objective function

def objective(x, a, theta, pi):

obj = np.dot(pi, x[:lp]) - x[lp] + np.sum(theta*(np.log(x[lp+1:lp+lth+1])))

return -obj

define the constraints

def constraint(x, a, theta, pi):

constraints = []

for i in range(len(a)):

constraints.append(np.dot(a[i], x[0:lp]) + x[i+lp+1] - x[lp])

return constraints

74

define the bounds and initial guess

q = np.array([1, 1])

bounds = [(0, q[0]), (0, q[1]),(0,np.inf),(0,np.inf),(0,np.inf)]

x0 = np.array([0.9, 0.9, 0.9, 0.9, 0.9])

solve the problem

sol = minimize(objective, x0, method=’SLSQP’, args=(a, theta, pi), bounds=bounds,

constraints={’type’: ’eq’, ’fun’: constraint, ’args’ : (a, theta, pi)})

from scipy.optimize import minimize

import numpy as np

Define the dimensions

m = 95

n = 143

Generate random inputs

a = np.random.randint(2, size=(m, n))

theta = np.ones(m)

pi = np.random.rand(n)

q = np.ones(n)

Define the lengths

lp = len(pi)

lth = len(theta)

la = a.shape[0]

Define the objective function

def objective(x, a, theta, pi):

obj = np.dot(pi, x[:lp]) - x[lp] + np.sum(theta * np.log(x[lp + 1 : lp + lth

+ 1]))

return -obj

Define the constraints

def constraint(x, a, theta, pi):

constraints = []

for i in range(la):

constraints.append(np.dot(a[i], x[0 : lp]) + x[i + lp + 1] - x[lp])

75

return constraints

Define the bounds and initial guess

bounds = [(0, q[i]) for i in range(lp)] + [(0, np.inf)] * (la + lth)

x0 = np.array([0.9] * lp + [0.9] * (la + lth))

Solve the problem

sol = minimize(

objective,

x0,

method="SLSQP",

args=(a, theta, pi),

bounds=bounds,

constraints={"type": "eq", "fun": constraint, "args": (a, theta, pi)},

)

76

Bibliography

[Agrawal et al., 2009] Agrawal, S., Delage, E., and Peters, M. (2009). A unified framework

for dynamic pari-mutuel information market design.

[Bossaerts et al., 2002] Bossaerts, P., Fine, L., and Ledyard, J. (2002). Inducing liquidity in

thin financial markets through combined-value trading mechanisms. European Economic

Review, 46:1671—-1695.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex optimiza-

tion.

[Hanson, 2002] Hanson, R. (2002). Logarithmic market scoring rules for modular combi-

natorial information aggregation.

[Lange and Economides, 2003] Lange, J. and Economides, N. (2003). A parimutuel market

microstructure for contingent claims. European Financial Management, 11(1):25–49.

[Pennock, 2004] Pennock, D. (2004). A dynamic pari-mutuel market for hedging, wagering,

and information aggregation.

[Peters et al., 2006] Peters, M., So, A. M., and Ye, Y. (2006). A convex parimutuel for-

mulation for contingent claim markets. 1(1):1–10.

[Simon and Blume, 1987] Simon and Blume (1987). Mathematics for economists.

14(3):342–351.

77

	Acknowledgements
	Abstract
	I
	Introduction
	Equality constraints
	Critical points of the Lagrangian
	Multiple constraints and variables

	Inequality constraints
	Necessary conditions for inequality constraints
	Examples
	Mixed constraints
	Kuhn-Tucker formulation
	Examples

	Tangent cones and constraint qualification

	Convexity
	Convex sets
	Convex functions
	Quasi-convex and pseudo-convex functions

	Convex optimization
	Existence of a global minimum
	Convex Constrained Optimization
	Tangent cones and convexity

	Optimization algorithms
	Gradient Descent
	Projected Gradient Descent
	Other methods
	Mirror descent
	Frank Wolfe
	Newton

	II
	Betting systems
	Fixed odds bettings
	Parimutuel markets
	Parimutuel Mechanisms in Financial Markets

	Mathematical structure
	PMM
	CPCAM
	Parimutuel markets in options trading
	Discussion
	PMM
	CPCAM

	Simulations
	Simulation codes

