
 

 

 

 

Department of Economics and Finance 

Bachelor’s Degree Program in Economics and Business 

Course of Mathematical Finance 

 

 

 

“Quantitative Methods for Option Pricing and Financial 

Modeling: Black-Scholes Model, Monte Carlo Simulation, 

and Lévy Processes” 

 

 

 

                      Sara Biagini                                          Orlandi Francesco 

                           SUPERVISOR                                                      CANDIDATE 

 

 

 

 

 

ACADEMIC YEAR 2022-2023 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

Ai miei fratelli, i miei genitori e mia nonna. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

INDEX 

Introduction .....................................................................................................................1 

Chapter 1: Introduction to Stochastic Calculus ...................................................................2 

1.1.1 σ-algebra Definition ............................................................................................................................... 2 

1.1.2 Probability Space Definition .................................................................................................................. 2 

1.1.3 Stochastic Process Definition ................................................................................................................ 3 

1.1.4 Martingale Definition ............................................................................................................................ 4 

1.1.5 Markov Chain Definition ........................................................................................................................ 5 

1.1.6 Random Walk Definition ....................................................................................................................... 5 

1.2 Brownian Motion ............................................................................................................... 6 

1.2.1 Brownian Motion Definition .................................................................................................................. 6 

1.2.2 Brownian Motion Properties ................................................................................................................. 7 

Chapter 2: Black Scholes Model ....................................................................................... 12 

2.1 Introduction to the model ................................................................................................ 12 

2.2 Assumptions .................................................................................................................... 12 

2.3 Geometric Brownian Motion ............................................................................................ 14 

2.4 The Black-Scholes Differential Equation ............................................................................ 16 

2.5 Risk Neutral Evaluation..................................................................................................... 18 

2.6 The Black-Scholes Formula for Option Pricing .................................................................... 19 

2.6.1 Black Scholes model implications ........................................................................................................20 

2.7 Volatility Estimation ......................................................................................................... 21 

2.7.1 Historical Volatility Estimation ............................................................................................................22 

2.7.2 Implied Volatility Estimation ...............................................................................................................23 

2.8 Drawbacks and Limitations of the Black-Scholes Model ..................................................... 24 

2.8.1 Lognormal Distribution and Stock Market ..........................................................................................24 

2.8.2 Constant Volatility Assumption ...........................................................................................................25 

2.8.3 Volatility Smile .....................................................................................................................................25 



  

 

Chapter 3: Monte Carlo Simulation ................................................................................. 27 

3.1 Monte Carlo Method ........................................................................................................ 27 

3.2 Pseudorandom Sequences ................................................................................................ 28 

3.3 Geometric Brownian Motion for stock price simulation ..................................................... 28 

3.4 Monte Carlo simulation for option pricing on Excel ........................................................... 30 

3.5 Black-Scholes option pricing simulation on R-studio .......................................................... 34 

Chapter 4: Poisson Process and Lévy Process ................................................................... 38 

4.1 Poisson Process ................................................................................................................ 38 

4.1.1 Poisson Distribution.............................................................................................................................38 

4.1.2 Poisson Process Definition ..................................................................................................................39 

4.1.3 Compensated Poisson Process ............................................................................................................41 

4.2 Compound Poisson Process .............................................................................................. 42 

4.2.1 Compound Poisson Process Definition and Properties .......................................................................42 

4.2.2 Convergence to the Normal Distribution ............................................................................................44 

4.3 Lévy Process ..................................................................................................................... 45 

4.3.1 Introduction to Lévy Processes ...........................................................................................................45 

4.3.2 Stable Distribution ...............................................................................................................................46 

4.3.3 Lévy Distribution ..................................................................................................................................46 

4.3.2 Lévy Process Definition........................................................................................................................47 

4.4 The Merton Jump Diffusion Model .................................................................................... 48 

4.4.1 Introduction to the model ...................................................................................................................48 

4.4.2 Hedging Strategies in Incomplete Markets .........................................................................................49 

4.4.3 Formula derivation ..............................................................................................................................50 

Conclusion ...................................................................................................................... 56 

Bibliography ................................................................................................................... 57 

 

 



  

 

LIST OF FIGURES 

Figure 1: Symmetric Random Walk, Fair Coin Tossing ........................................................... 6 

Figure 2: Comparison between Brownian Motion and Random Walk (Holton, 2013) ............. 7 

Figure 3: Lognormal Vs Normal Distribution (Ma, 2015) ...................................................... 13 

Figure 4: Sample GBM values chart (Bhatia, 2016)................................................................ 15 

Figure 5: All time FTSE chart (Anon., 2023) .......................................................................... 15 

Figure 6: Volatility Smile (Mitchell, 2021) ............................................................................. 25 

Figure 7: Option Price Simulation on R .................................................................................. 36 

Figure 8: Black-Scholes Option Price computation on R ........................................................ 37 

Figure 9: Poisson Distribution (Anon., 2020) .......................................................................... 38 

Figure 10: Poisson Process (Tankov & Cont, 2003)................................................................ 41 

Figure 11: While on  the left two sample paths of a Wiener process with σ = 1 are illustrated, 

the graph on the right shows the sample path of a compensated Poisson process with intensity 

λ = 5, rescaled to have the same variance as the Wiener process (Tankov & Cont, 2003). .... 42 

Figure 12: Compound Poisson Process (Tankov & Cont, 2003) ............................................. 43 

Figure 13: Comparison between leptokurtic and normal distribution (Lumholdt, 2018) ........ 45 

 

LIST OF TABLES 

Table 1: Summary of the implications on option’s price of an increase in the value of each 

variable ..................................................................................................................................... 21 

Table 2: Option Pricing simulation inputs on Excel ................................................................ 31 

Table 3: Stock Price Simulation on Excel ............................................................................... 32 

Table 4: Option Payoff Simulation on Excel ........................................................................... 32 

Table 5: Option Price Simulation on Excel ............................................................................. 33 

Table 6: Black-Scholes Option Price Computation on Excel .................................................. 34 

Table 7: Option Price Simulation on R .................................................................................... 42 

Table 8: Black-Scholes Option Price computation on R ......................................................... 43



1 

 

Introduction 

The field of stochastic calculus plays a crucial role in the analysis and modeling of uncertain 

financial phenomena. This bachelor’s thesis delves into the realm of stochastic calculus and its 

practical applications in option pricing and risk management.  

Chapter 1 serves as an introduction to stochastic calculus. The fundamental concepts are 

defined, starting with the σ-algebra and probability space, which lay the mathematical 

groundwork for probability theory. Stochastic processes, martingales, Markov chains, and 

random walks are then introduced as key components of stochastic calculus. 

In Chapter 2, the focus shifts on the renowned Black-Scholes model. The model is introduced 

along with its assumptions, differential equation and the risk neutral evaluation framework. 

Additionally, Black-Scholes formula for option pricing and volatility estimation techniques are 

discussed.  

Chapter 3 delves into Monte Carlo simulation as an alternative approach to option pricing. An 

overview of the Monte Carlo method is provided, elucidating the use of pseudorandom 

sequences. The implementation of Monte Carlo simulation for option pricing is then showcased 

through Excel and R-studio. It has been decided to use R-studio for its well-established role in 

statistical modeling and data analysis, while Excel was chosen for its widespread adoption in 

the financial industry. 

Chapter 4 concentrates on Lévy processes. The Poisson process is explored, encompassing its 

distribution, definition, and properties. Then the compound Poisson process and its 

convergence to the normal distribution are examined. The Merton jump diffusion model, which 

combines Lévy processes with the Black-Scholes model, is investigated. Hedging strategies 

within the Merton framework in incomplete markets are explored, accompanied by a derivation 

of the model's formula. 

The aim of this bachelor’s thesis is to to contribute to the field of quantitative finance by 

providing a comprehensive analysis of the beforementioned concepts and models, through 

which valuable insights into the complexities of financial markets can be gained. 
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Chapter 1: Introduction to Stochastic Calculus 

This introductory section aims at clarifying some fundamental concepts of stochastic calculus 

that are needed for a comprehensive understanding of this thesis. 

 

1.1.1 σ-algebra Definition 

A σ-algebra ℱ on Ω is a family of subsets of Ω such that  

(1) Ø, Ω ∈ ℱ  

(2) if 𝐴 ∈ ℱ, then so does the complement set Ω − 𝐴  

(3) if 𝐴1, 𝐴2, … , 𝐴∞ is a sequence of sets in ℱ, then their union or intersection of countably 

many members of the algebra ⋃ 𝐴𝑖
∞
𝑖=1 , ⋂ 𝐴𝑖

∞
𝑖=1  ∈ ℱ. 

 

In other words, σ-algebra a is a collection of subsets of a set Ω that is closed under countable 

unions and contains the complements of its elements. Therefore, all the measurable sets in 

measure theory are factors of a given σ-algebra. The σ-algebra properties make sure that the 

collection of measurable sets forms a well-behaved structure for defining measures and 

conducting mathematical analyses in measure theory. 

In a financial modelling context, Ω usually represents the set of scenarios that can occur in the 

market, where each scenario ω ∈ Ω is described in terms of the evolution of prices of different 

instruments.  

 

1.1.2 Probability Space Definition 

A probability space is the triple (Ω, ℱ, 𝑃), where Ω is a nonempty set, ℱ is a σ-algebra of 

subsets of Ω and 𝑃 is a function that, to every set 𝐴 ∈ ℱ, assigns a number in [0,1], called the 

probability of A and written P(A).  

It is required that:  

• P(Ω) = 1  

• (Countable additivity) whenever 𝐴1, 𝐴2 , …  is a sequence of disjoint sets in ℱ, then P( 

⋃ 𝐴𝑛
∞
𝑛=1 ) = ∑ 𝑃(𝐴𝑛)∞

𝑛=1 . 
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When considering stochastic processes, the concept of a probability space is useful because it 

gives a precise framework for defining and quantifying probabilities associated with various 

events in the process. This framework enables the study and analysis of process behavior, as 

well as the capacity to generate probabilistic predictions and derive statistical features. The 

concept of a probability space provides a rigorous and mathematical foundation for the study 

of stochastic processes, allowing for the development of theories, models, and techniques to 

understand and predict random phenomena in a variety of fields including finance, physics, 

biology, and engineering. 

 

1.1.3 Stochastic Process Definition  

A stochastic process is a parameterized collection of random variables {𝑋𝑡}𝑡 ∈[0,𝑇] indexed by 

time, defined on a probability space (Ω, 𝐹, 𝑃) and assuming values in ℝ𝑛. 

𝑋𝑡 can be thought as the position of a particle X at time t, changing as t increases. 

Stochastic processes are adopted when working with phenomena that possess an aleatory term. 

The resulting mathematical models aim to mimic relationships between variables by including 

a randomized term into a deterministic function. 

Stochastic processes are mathematical models adopted when describing phenomena that 

involve randomness or uncertainty. They are often used to model real world systems, where 

the outcomes are not deterministic or completely predictable. These models typically involve 

a deterministic function that governs the evolution of the system over time, but they also 

include a probabilistic element that captures the effects of chance on the system. The 

randomness can arise from various sources, such as measurement errors, natural variability, or 

incomplete information. By incorporating stochasticity into the model, we can better 

understand the behavior of the system and make predictions about its future evolution. 

Stochastic processes are divided into two main categories: discrete-time stochastic processes 

and continuous time stochastic processes. The evolution of a continuous time stochastic process 

occurs over continuous time intervals represented by a continuous variable, often denoted as 

"t." The process's state can change on a continuous basis, and thus is frequently characterized 

by a continuous function, such as a stochastic differential equation. Brownian motion and 

geometric Brownian motion are two examples of continuous time processes. Discrete time 

stochastic processes, on the other hand, evolve over discrete time intervals represented by 
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discrete points or indices, which are frequently labeled as "n" or "k." At these discrete time 

periods, the state of the process is updated, which is commonly represented as a sequence of 

random variables or observations. Random walks and Markov chains are examples of discrete 

time processes. 

The primary difference is in the underlying temporal representation. Continuous time processes 

represent systems in which the state changes continuously, allowing for real-time dynamics in 

applications such as stock market fluctuations or physical events. Discrete time processes, on 

the other hand, update the state at precise time points, making them appropriate for modeling 

systems with discrete observations, such as daily market returns or queueing system events. 

Understanding the distinction between continuous and discrete time stochastic processes is 

critical for selecting acceptable models in a variety of domains. The decision is influenced by 

elements such as the process's nature, accessible data, computational concerns, and analytical 

aims. Both types have applications and advantages, and the choice should be based on the 

unique needs of the problem at hand. 

 

1.1.4 Martingale Definition 

An adapted stochastic process {𝑋0, 𝑋1, 𝑋2, … } is a Martingale if: 

 

𝑋𝑡 = 𝐸[𝑋𝑡+1 | ℱ𝑡] 

For all 𝑡 ≥ 0, ℱ𝑡 = {{𝑋0, 𝑋1, … , 𝑋𝑡} 

 

A Martingale is the formalization of the price process for a fair game. It is a sequence of random 

variables {𝑋0, 𝑋1, 𝑋2, … , 𝑋𝑛} in which the expectation of the next value, given all previous 

values, is equal to the current value. Therefore, the future behavior of the process is 

unpredictable and random, and there is no way to exploit any patterns or trends in the past data 

to predict future values.  
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1.1.5 Markov Chain Definition 

Where Ω is the finite state space and P is the transition matrix |Ω|  ×  |Ω| 

A sequence of random variables {𝑋0, 𝑋1, 𝑋2, … } is a Markov chain with finite state space Ω and 

transition matrix P if for all 𝑛 ≥ 0, and all sequences (𝑥0, 𝑥1, … , 𝑥𝑛 , 𝑥𝑛+1), we have that: 

 

ℙ[𝑋𝑛+1 =  𝑥𝑛+1| 𝑋0 = 𝑥0, … , 𝑋𝑛 = 𝑥𝑛] =  ℙ[𝑋𝑛+1 =  𝑥𝑛+1| 𝑋𝑛 = 𝑥𝑛] = 𝑃(𝑋𝑛+1, 𝑥𝑛+1) 

 

A Markov Chain is characterized by its memoryless property, by which the probability of a 

future event depends only on the current state and is completely independent from all past 

events. 

 

1.1.6 Random Walk Definition 

Suppose that 𝑋1, 𝑋2, … is a sequence of ℝ𝑑 valued independent and identically distributed 

random variables. A random walk started at  z ∈ ℝ𝑑 is the sequence (𝑆𝑛)𝑛≥0 where 𝑆0 = z  

and  

𝑆𝑛 = 𝑆𝑛+1 + 𝑋𝑛, 𝑛 ≥ 1 

 

The quantities (𝑋𝑛) are referred to as steps of the random walk. 

 

A special example of random walk, also called symmetric random walk, occurs in the case of 

the head or tails game, in which the player gains 1 with a probability p(gain)= ½ and loses 1 

with a probability p2 = ½.  

Building the random variable 𝑋𝑗 as: 

𝑋𝑗 = {
1      𝑖𝑓 𝑤𝑗 = "𝐻𝑒𝑎𝑑"

−1  𝑖𝑓 𝑤𝑗 = "𝑇𝑎𝑖𝑙"
 

 

Then the stochastic process {𝑀𝑘}𝑘=0
∞ , whose value at 𝑀0 = 0 and 𝑀𝑘 = ∑ 𝑋𝑗

𝑘
𝑗=1  can be graphed 

as: 
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Figure 1: Symmetric Random Walk, Fair Coin Tossing 

 

It is crucial to underline that for 0 = 𝑘0 <  𝑘1 < 𝑘2 < ⋯ < 𝑘𝑚  each and every increment 

(𝑀𝑘1
− 𝑀𝑘0

), (𝑀𝑘2
− 𝑀𝑘1

), …, (𝑀𝑘𝑚
− 𝑀𝑘𝑚−1

), is an independent random variable. 

 

1.2 Brownian Motion 

Brownian motion is the most well-known stochastic method for predicting price variations. It 

includes a random process, indicated as 𝑊𝑡, with independent and stationary increments that 

follow a Gaussian Distribution. 

Brownian motion holds a central position in stochastic analysis, captivating extensive research 

and serving as the foundation for modern advancements in the field. 

 

1.2.1 Brownian Motion Definition 

A Brownian motion, also denominated Wiener process, is a stochastic process W(t) with values 

in ℝ defined for 𝑡 ∈ [0, ∞) such that the following conditions hold: 

𝑊(0)  =  0. 

If 0 < 𝑠 < 𝑡 then 𝑊(𝑡) − 𝑊(𝑠) has a normal distribution ∼ 𝑁(0, 𝑡 − 𝑠) with mean 0 and 

variance (𝑡 − 𝑠).  
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5

H H H T T T T H H H T H H H

SYMMETRIC RANDOM WALK (COIN TOSSING)



 7 

 

If 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑢 ≤ 𝑣 (i.e., the two intervals [𝑠, 𝑡] and [𝑢, 𝑣] do not overlap) then 𝑊(𝑡) −

𝑊(𝑠) and 𝑊(𝑣) − 𝑊(𝑢) are independent random variables. In fact, the Wiener process is the 

only time-homogeneous stochastic process with independent and identically distributed 

increments that has continuous trajectories.  

The probability density function of W(t) is: 

𝑓𝑊(𝑡)(𝑥) =  
1

√2𝜋𝑡
𝑒−

𝑥2

2𝑡 

 

 

Figure 2: Comparison between Brownian Motion and Random Walk (Holton, 2013) 

 

From figure 1.2 the deep relationship that links a Brownian Motion to a Random Walk can be 

visually inferred. This strong similarity lays its roots on the notion that a Brownian motion can 

be defined as a continuous stochastic process that exhibits the properties of a simple random 

walk.  

 

 1.2.2 Brownian Motion Properties 

The Brownian motion is particularly popular among stochastic processes because of its special 

properties. Firstly, 𝑊𝑡 is a Gaussian process, and therefore for all 0 ≤  𝑡1 ≤ 𝑡2 ≤ ... ≤ 𝑡𝑘 the 

random vector Z = (𝑊𝑡1 , ..., 𝑊𝑡𝑘) ∈ ℝ has a multinormal distribution.  

Moreover, 𝑊𝑡 has stationary increments, which means that the distribution of the increments 

of the process is independent of time. More specifically, for any two time points t and 𝑡 + ℎ 

(with ℎ >  0), the distribution of the increment 𝑊𝑡+ℎ− 𝑊𝑡 only depends on the time difference 

ℎ and not on the specific values of t and t + h. This property implies that the statistical properties 
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of the process remain the same over time, making it a fundamental characteristic of Brownian 

motion. 

In addition, the Brownian motion is a stochastic process with two significant path 

characteristics. For starters, it has continuous paths, which implies that as time passes, its 

trajectory becomes a smooth, continuous curve. This means that there are no abrupt changes in 

its course, giving it a sense of continuity. Despite having continuous routes, the Brownian 

motion is not differentiable anywhere. This means that at any given point in time, it lacks a 

well-defined derivative. The cause for this is due to its irregular and random nature. Brownian 

motion is characterized by unpredictability and abrupt changes in direction, resulting in an 

irregular and jagged course. 

Furthermore, the Brownian motion is a martingale, which indicates that its predicted value does 

not change over time on average. This trait is an important feature of Brownian motion and 

holds true regardless of the time instance under consideration. Brownian motion's martingale 

property has several applications in finance mathematics and other domains. It enables the 

formulation of pricing models for different derivative securities, like options and futures, by 

building portfolios that mimic the behavior of these instruments. The martingale property 

ensures that these derivatives' pricing is fair and free from arbitrage opportunities. 

At last, the equation 𝐶𝑜𝑣 (𝑊𝑠, 𝑊𝑡) =  𝑚𝑖𝑛 (𝑠, 𝑡) suggests that the covariance grows as the time 

points being compared get closer together. When t and s are near in time, their minimum value 

is smaller, and so their covariance is reduced as well. If s and t are further apart, their minimum 

value will be greater, resulting in a higher covariance. This characteristic of Brownian motion 

covariance has practical implications. It means that as the time interval between increments of 

a Brownian motion process increases, they become less linked. In other words, the Brownian 

motion values at remote time points tend to be more independent. 

Furthermore, the resulting Brownian Motion distribution will have key properties as well. 

Firstly, the spatial homogeniety property, which states that the addition of a constant value 𝑥 

to the entire trajectory will result in a new Brownian Motion. 

𝑊𝑡  +  𝑥 for any 𝑥 𝜖  is a Brownian motion. 

This spatial homogeneity characteristic of the Brownian motion is beneficial because it allows 

us to shift the entire process along the spatial axis without changing its core statistical properties 

(randomness, continuity, stationary increments and gaussian distributed).  
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Secondly, the distribution is symmetric, which means that by mirroring the original Brownian 

motion process 𝑊𝑡  across the horizontal axis, the new process that is obtained will possess the 

same statistical traits. This is a desired property since, if we are interested in studying the 

behavior of a financial derivative under a certain pricing model based on Brownian motion, 

analyzing the corresponding derivative with negative prices can provide useful insights. 

Thirdly, its scaling property implies that the process appears qualitatively the same regardless 

of scale or time granularity. The statistical features and behavior of the process do not change 

as we zoom in or out on the time axis. Therefore: 

 

√𝑐𝑊𝑡/𝑐 ∀ 𝑐 > 0 is a Brownian motion. 

 

Furthermore, by reversing the direction of time, the new process that will be obtained still 

exhibits all the statistical traits of the original process (time inversion property). 

 

Zt = {
0,             t =  0
tB1

t

,          t >  0   is a Brownian motion. 

 

In practice, time inversion contributes to determining the sensitivity of option prices to time 

changes. The impact of time decay (expresses by the Greek theta) on the option's value can be 

evaluated by analyzing the behavior of options under time reversal. This knowledge is essential 

for option traders and investors to manage their positions and estimate the possible risks and 

rewards connected with temporal changes.  

At last, time reversibility asserts that the distribution of the process's trajectory up to time t is 

equal to the distribution of the time-reversed trajectory from time t back to 0. In other words, 

the distribution of these two paths is the same if we look at the road that the process takes from 

0 to t and then reverse time and look at the path from t to 0. 

 

Linear transform 

A fundamental concept of stochastic calculus is the linear transformation of a Brownian 

motion. It involves applying a linear function to the original Brownian motion process, which 
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results in a new stochastic process with distinct features. This transformation enables the 

investigation and modelling of a wide range of financial instruments and derivatives. 

When a linear transformation is implemented to a Brownian motion, the original process is 

altered by the introduction of a linear function. This transformation allows for the investigation 

of the link between the original Brownian motion and the converted process, revealing fresh 

insights about financial variable dynamics. 

The linear transform of the standard Brownian motion 𝑊𝑡, with drift b and volatility 𝜎 > 0 is: 

 

𝐵(𝑡) = 𝑏𝑡 + 𝜎𝑊(𝑡) 

 

However, despite its many desirable properties, the linear transform of the Brownian motion is 

still not the right transform for stock price modeling because it can take negative values, which 

is not consistent with the behavior of real-world financial assets. 

In order to address this issue, an alternative transform, also known as geometric Brownian 

motion, is adopted. 

 

Exponential transform 

The exponential transform resolves the negative prices issue by building the stochastic process 

as the Euler's number with the linear Brownian motion transform as its exponent.  

 

𝑌(𝑡) = 𝑒(𝐵(𝑡)) = 𝑒𝑏𝑡+𝜎𝑊(𝑡) 

 

Furthermore, 𝑌(𝑡), for any fixed 𝑡, is the exponential of a Gaussian variable, so its marginal 

distributions are lognormals, which is ideal for stock prices modeling since their return’s 

distribution is usually assumed to be normal (such as in the Black-Scholes model).  

The volatility 𝜎 measures the random fluctuations in the asset’s price, while the drift b estimates 

the expected rate of return of the underlying asset. 

Moreover, it can be proven that the geometric Brownian motion differently from the simple 

Brownian motion, isn’t always a Martingale. Therefore, after some computation, it can be 
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demonstrated that the only scenario in which the geometric Brownian motion is a martingale 

is if its parameters satisfy the equation: 

𝑏 = −
𝜎2

2
 

Therefore, the initial formula of a Geometric Brownian motion that is also a Martingale can be 

rewritten as: 

𝑌(𝑡) =  𝑒− 
𝜎2𝑡

2  + 𝜎𝑊(𝑡)
 

 

This last expression is crucial to determine the fair option price. In fact, after the construction 

of a portfolio that combines the underlying asset and the financial derivative, the 

implementation of the martingale property will allow the determination of the appropriate 

weights for the underlying asset and the option such that the portfolio value is independent of 

changes in the underlying asset (perfectly hedged portfolio). 
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Chapter 2: Black Scholes Model 

2.1 Introduction to the model 

In the early seventies, Fisher Black and Myron Scholes published, under the title “The Pricing 

of Options and Corporate Liabilities” on the Journal of Political Economy, the work from 

which they obtained the differential equation that revolutionized derivatives pricing. The 

Black-Scholes model was widely adopted by analysts to evaluate the price of European put and 

call options on non-income paying assets. Another common use for this formula was to derive 

the discount rate that corporate bonds should adopt because of the default possibility. 

Nowadays, it is still frequently used by financial markets operators because it only requires the 

estimation of one parameter: volatility. 

 

2.2 Assumptions 

The assumptions put forward to obtain the Black-Scholes differential equation are: 

1. The underlying asset prices follow a geometric Brownian motion.  

As a result, the stock price of the underlying will be log-normally distributed with both 

mean and variance constant.  

When modelling stock returns, a normal distribution is usually chosen as stock returns 

can be either positive or negative. However, since stock prices cannot be negative, the 

lognormal distribution is more appropriate. 

A lognormal distribution has two important properties: 

• It has a lower bound of zero. 

• The distribution is right-skewed (i.e. it has a long right tail). 

Additionally, log-normality has been proven consistent with many observed 

phenomena in capital markets, such as the volatility clustering and the "fat tails" of 

returns. 
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Figure 3: Lognormal Vs Normal Distribution (Ma, 2015) 

 

2. The short-term interest rate is known and constant through time. 

3. Constant volatility of the underlying stock 

4. The option is “European” 

This model focuses on European-style options, which is a specific type of options that 

can only be exercised on the expiration date. Their counterpart are the American-style 

options which can be exercised at any time during the life of the option. 

5. The underlying stock pays no dividends. 

During the lifespan of the option, no dividends are paid out. 

6. There are no transaction costs nor commission costs for buying or selling either stocks 

or options.  

7. Short selling is allowed. 

8. Asset trading is continuous.  

9. There are no arbitrage opportunities. 

Markets are assumed efficient; the stock price behavior is assumed to follow a random 

walk. Therefore, it is impossible to predict future market movements and that future 

stock prices are independent of the past.  
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2.3 Geometric Brownian Motion 

In 1900, the French mathematician Louis Bachelier completed his doctoral thesis 

titled “Théorie de la spéculation” (Theory of Speculation), modernly considered one of the 

founding research paper of quantitative finance. In this document he outlined that if stock prices 

exhibited any identifiable pattern (other than the long-term growth trend associated with 

macroeconomic expansion), speculators would find it and exploit it, thereby eliminating it. 

Therefore, after speculators have incorporated all the special insights into their trades, prices 

are expected to show unpredictable fluctuations, independent of their past history. This would 

thus behave like a Random Walk, or in certain contexts, a Martingale. The equations obtained 

by Bachelier from this model correspond to the Brownian Motion, which was later 

mathematically formalized by Norbert Wiener. 

The Brownian motion is acclaimed by financial researchers because it is both the mathematical 

model that most securities markets are assumed to follow, and the tool on which all financial 

asset pricing and derivatives pricing models are based.  

The Brownian motion is the leading mathematical model to work on financial securities 

because it introduces a random component into the financial model (since stock prices can be 

considered as random). Nevertheless, there are ways to adjust the random pattern followed by 

the Brownian motion. In fact, mean and variance can be calibrated to better fit the asset that is 

being modelled, since it is a random variable with a normal distribution. For instance, if we are 

modelling stock prices, and we know that they have a tendency to rise, the mean could be set 

as positive and different from 0, such that the Brownian motion will have a tendency to grow. 

On the other hand, when implementing the Brownian Motion for option pricing, we are not 

looking for the real stock prices but just for the fair ones, therefore the Brownian motion will 

lead to the best estimates if the mean is set to 0. 

The Geometric Brownian (GBM) motion is widely adopted because it has several fundamental 

similarities with security prices.  

1. The expected returns from GBM processes are independent of the values of the process  

just like it happens in financial markets. 

2. GBM processes can only take positive values (same as equity prices). 

3. GMB values exhibit volatility similar to equities. 
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Figure 4: Sample GBM values chart (Bhatia, 2016) 

The Blue sample path has lower standard deviation but more drift while the green one has 

higher volatility and lower drift. 

 

 

Figure 5: All time FTSE chart (Anon., 2023) 

There is a clear similarity between the chart in Figure 5 and the green line of the Figure 4 above.  

However the GMB usage must be followed by solid due diligence since in three main scenarios 

it fails stock market common sense: 

• In the first chart, the volatility for both lines are assumed constant, that's just an 

unrealistic assumption to make in the real markets. 

• GBM processes are continuous, and assumes no jumps. On the other hand, stock prices 

open gap up or down 2 to 3% all the time, due to many reasons such as earnings release 

after market closure, holidays, or just unexpected macroeconomic events. 

• GBM processes do not assume any extra 'costs' associated with changing values; stock 

returns are a function of transaction costs. 
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2.4 The Black-Scholes Differential Equation 

The Geometric Brownian motion, adopted by the Black-Scholes model, allows for the 

representation of the evolution though time of the stock price and is described by the following 

stochastic differentiation equation: 

 

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡) 

(2.1) 

Where 𝜇 and 𝜎 are constant values that represent respectively the drift and the volatility of the 

stock price. The volatility 𝜎 is always greater than zero and from a financial perspective it is 

the standard deviation of the annual log return. On the other hand, the drift 𝜇 can be described 

as the exponential growth of the average stock price. Furthermore, 𝑆(𝑡) is the function 

describing the price of the underlying asset at time t. At last, the term 𝑊(𝑡) is a Wiener Process, 

the stochastic component of the equation, that characterizes its usage to model problems of 

probabilistic random nature. 

Supposing now that 𝑓 is the value of a particular option (i.e. either 𝑐𝑡 or 𝑝𝑡) based on the 

underlying S and time t and assuming that 𝑓 is continuous with respect to S and t, the Ito’s 

Lemma can be applied(which is often used to compute the differential of an equation in 

stochastic calculus) and the following equation obtained:  

 

𝑑𝑓(𝑡) = (
𝜕𝑓

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑓

𝜕𝑆2
+ 𝜇𝑆

𝜕𝑓

𝜕𝑆
) 𝑑𝑡 + 

𝜕𝑓

𝜕𝑆
𝜎𝑆𝑑𝑍 

(2.2) 

At this point the stochastic term 𝑑𝑍 can be eliminated by choosing a portfolio P with value 

defined as: 

𝑃𝑣 =  −𝑓 +  
𝜕𝑓

𝜕𝑆
∗ 𝑆 

(2.3) 

Respectively for each derivative contract shorted the analyst must be long 
𝜕𝑓

𝜕𝑆
 of the underlying 

asset. The variation in portfolio value during the time interval ∆𝑡 is equal to: 
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∆𝑃𝑣 =  −∆𝑓 + 
𝜕𝑓

𝜕𝑆
∗ ∆𝑆 

(2.4) 

Substituting equations (2.1) and (2.2) in (2.4) it becomes: 

 

𝑑𝑓(𝑡) =  (−
𝜕𝑓

𝜕𝑡
−  

1

2
𝜎2𝑆2

𝜕2𝑓

𝜕𝑆2
) 𝑑𝑡 

(2.5) 

It’s noticeable from this last equation that the term 𝑑𝑍 has been eliminated, which means that 

the resulting expression is no longer stochastic, but it is deterministic. The absence of stochastic 

terms in the last formula implicates that the portfolio is riskless, and therefore that its 

performance is equal to the risk-free rate 𝑟𝑓. Otherwise, there would be arbitrage opportunities 

to exploit, which would conflict with assumption 9 of the model. It is crucial here to underline 

that the portfolio P is riskless only for an infinitesimal moment, and that frequent adjustments 

of the proportion of the derivative to the underlying ( 
𝜕𝑓

𝜕𝑆
) is necessary to keep the portfolio risk-

free. This practice is known as delta hedging. 

Furthermore, equation (2.5) shows that the variations in portfolio value are independent of the 

drift 𝜇, this is because the component representing the call option is perfectly offset by the 

effect that 𝜇 has on the underlying. 

Therefore, the variation of portfolio value can be rewritten as the the risk-free rate times the 

current value of the portfolio and the narrow time interval ∆𝑡. 

 

∆𝑃𝑣 =  𝑟𝑓 ∗ 𝑃𝑣 ∗ ∆𝑡 

(2.6) 

The combination of formulas (2.1), (2.2) and (2.6) leads to the Black-Scholes Merton 

differential equation: 

 

𝑟𝑓𝑓 =
𝜕𝑓

𝜕𝑡
+ 𝑟𝑓𝜎2𝑆2

𝜕2𝑓

𝜕𝑆2
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(2.7) 

Equation (2.7) has a unique solution for every derivative contract boundary condition.  

For example, the boundary condition for a European Call option with strike price K and price 

𝑆𝑡 is: 

𝑐 =  𝑚𝑎𝑥 (𝑆𝑡 − 𝐾, 0) 

(2.8) 

In the case of a European put option the boundary condition would become: 

 

𝑝 =  𝑚𝑎𝑥 (𝐾 − 𝑆𝑡 , 0) 

(2.9) 

 

2.5 Risk Neutral Evaluation 

The notion of neutral risk evaluation, which is based on the binomial model, is critical when 

examining financial derivatives. This notion stems from a crucial aspect of the Black-Scholes-

Merton differential equation (2.7), which excludes variables influenced by investors' risk 

preferences. The variables in the equation (current price of the underlying asset, time, volatility, 

and the risk-free interest rate) are all independent of investors' risk preferences. 

However, if the expected return of the underlying asset (μ) were to be included in the equation, 

it would depend on investors' risk preferences, as more risk-averse investors would require a 

higher expected return. The fact that the differential equation is risk-free means that we can 

make any assumptions we like about investors' risk preferences, including the assumption that 

they are all risk neutral. 

If this assumption is correct, the expected rate of return on all assets should be equal to the risk-

free interest rate 𝑟𝑓, because investors do not demand a risk premium. This would simplify 

drastically the computation of future values and expected payoffs. 

However, it is crucial to emphasize that this assumption is a simplification of reality, and the 

Black-Scholes equation can still be solved without it. When investors go from risk-neutral to 

risk-averse, two things happen: the expected return rate of the security changes, and the 
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discount rate for calculating present values changes. These two impacts perfectly cancel each 

other out. 

 

2.6 The Black-Scholes Formula for Option Pricing 

The Black-Scholes expression that is drawn from equations (2.7) and (2.8) evaluates the 

theoretical price of a European, non-income paying call option at time 𝑡 ≤ 𝑇 is: 

 

𝑐𝑡 = 𝑆𝑡Φ(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)Φ(𝑑2) 

(2.10) 

The put theoretical price is derived from the same procedure but adopting as a boundary 

condition the equation describing the option payoff. 

 

𝑝𝑡 = 𝐾𝑒−𝑟(𝑇−𝑡)Φ(−𝑑2) − 𝑆𝑡Φ(−𝑑1) 

(2.11) 

Where K is the strike price, 𝑆𝑡 is the price of the underlying asset at time t, 𝜎 is the asset price 

volatility and, 𝑟 is the risk-free interest rate (equal to the rate of return of a riskless asset with 

duration 𝑇 − 𝑡, the maturity of the option). Φ is the cumulative distribution function of the 

standard normal distribution with null mean and unitary standard deviation. The values 𝑑1 and 

𝑑2 are respectively equal to: 

 

𝑑1 =  
𝑙𝑛 (

𝑆𝑡
𝐾) + (𝑟 +

1
2 𝜎2) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

 

𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡 

 

Φ(𝑑2) is the probability that the option will be exercised at maturity, which is risk-neutral 

under the assumption put forward by Black and Scholes. Φ(𝑑1) describes the slope of the Black 

Scholes curve relatively to 𝑆𝑡, which represents the sensibility of the option’s price relatively 
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to movements in the underlying financial asset. Both Φ(𝑑1) and Φ(𝑑2) must have values that 

are included between 0 and 1. 

 

2.6.1 Black Scholes model implications 

According to the Black-Scholes option pricing equation, there are precisely 5 factors affecting 

the price of an option: underlying stock price, strike price, time to maturity, volatility, and the 

risk-free interest rate.  

The underlying stock price is positively correlated with the price of a call option since if the 

stock price rises the probability that the option will be exercised will increase. Therefore, this 

movement is reflected with an increase in the price of the option. The same applies for put 

options. 

The strike price defines the moment from which the option holder starts to earn from the 

contract. Moreover, if the holder is expected to profit from a rise in the stock price (call option) 

a higher strike price would erode those profits, which would make the option seller better off, 

who is therefore willing to sell the option at a lower price. A similar reasoning can be conducted 

for put options, where a higher strike price would be riskier for the option market maker, who 

is therefore asking for a higher option price in return for the contract. 

The time to maturity for European options has an ambiguous effect on their price. In fact, 

differently from American options, whose prices often rise as the time to maturity increases 

due to a longer time interval during which the option can be exercised, European options do 

not possess a strict direct relationship with residual time to maturity. For example, in a scenario 

in which dividends are paid, if two call options with respective maturities of 3 months and 5 

months are considered, and the dividend is paid out in 4 months, the option with the longer 

maturity will have a lower value than the one with a 3-month maturity.  

Volatility is a key input in options pricing models, and changes in volatility can have a 

significant impact on option prices. When the volatility of the underlying asset rises, larger 

price moves occur, increasing the likelihood that the option will be in-the-money by the 

expiration date. This increase in the probability of the option becoming profitable improves its 

value because the option holder has the potential to profit more, causing the price of both call 

and put options to increase. 
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There are two main effects of a rise in risk-free interest rate. First, for option holders it 

decreases the present value of the future cash flows. On the other hand, an increase in the risk-

free interest rate often leads to a greater expected rate of return for stocks. Both these effects 

tend to lower the value of a put, whose price will decrease. However, it can be proven that for 

call options the second effect positively outweigh the decrease caused by the first effect, 

therefore resulting in a price increment. 

 

 

Variables 
European Call 

Option Price 

European Put 

Option Price 

Stock Price + - 

Strike Price - + 

Time to Maturity ? ? 

Volatility + + 

Risk Free Interest Rate + - 

 

Table 1: Summary of the implications on option’s price of an increase in the value of each variable 

 

Among all the parameters included in the Black-Scholes option pricing expression, the only 

one that needs estimation is the volatility. In the next section, this intriguing problem will be 

addressed, illustrating several options available to financial analysts to evaluate a feasible 

solution. 

 

2.7 Volatility Estimation 

Usually denoted by σ, the volatility of a security is a measure of the dispersion of its returns 

across their mean. It is defined as the standard deviation of logarithmic returns observed over 

fixed time intervals. 

As previously stated, the only factor of the Black-Scholes model that cannot be observed 

directly on the market is the volatility of the underlying asset return. Therefore, its estimation 

is crucial for a correct implementation of the model and for realistic, unbiased final option 
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prices. The two most widely adopted methods to do so are historical volatility estimation and 

implicit volatility estimation. 

 

2.7.1 Historical Volatility Estimation 

Historical Volatility is the annualized standard deviation of stock prices and measures the 

intensity by which past securities prices deviated from their average over a chosen period of 

time. 

Its estimation begins with setting three key parameters: the basic period on which we compute 

the returns (1 day), the amount n of periods considered for the calculation (21 days – number 

of trading days in a month) and the quantity T of periods in a year (252 days – average number 

of trading days in a year), which will be used for annualizing the volatility in the end.  

After that, follows the calculation of the continuously compounded logarithmic returns for each 

period (𝑃𝑖 is the closing price and 𝑃𝑖−1 is the previous day closing price). 

 

𝑅𝑖 = 𝑙𝑛 (
𝑃𝑖

𝑃𝑖−1
) 

 

The third and last point involves first the evaluation of the average of the returns obtained in 

the previous step and then the computation of the annualized sample standard deviation 

thorough a small twist of the formula (the Excel function STDEV.S could be used as well to 

carry out this last step). 

�̅� =
∑ 𝑅𝑖

𝑛
𝑖=1

𝑛
 

 

𝜎 = √
𝑇

𝑛 − 1
∑ (𝑅𝑖 − �̅�)2

𝑛

𝑖=1
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2.7.2 Implied Volatility Estimation 

Implied volatility describes the market sentiment on the likelihood of future changes in a 

security price. Differently from historical volatility, which is computed from past, realized data, 

implied volatility is forward looking, because it manages to reflect the beliefs of investors on 

how much volatility is expected in the future. 

Unfortunately, it is not possible to find an explicit formula for 𝜎 from the Black-Scholes 

expression. One of the several approaches to solve this issue is to adopt an iterative procedure 

to find the implicit 𝜎. It can be showed for example, that starting with 𝜎 = 0.3, having all the 

remaining data available, (𝑆𝑡, 𝐾, 𝑟, 𝑇 − 𝑡, and 𝑐𝑝𝑟𝑖𝑐𝑒), and computing the call price from the 

Black-Scholes equation, if the result obtained is greater than 𝑐𝑝𝑟𝑖𝑐𝑒 then, since 𝑐𝑝𝑟𝑖𝑐𝑒 is 

positively correlated with 𝜎, we know that 𝜎 should have a lower value (e.g. 𝜎 = 0.2). 

Moreover, if when trying 𝜎 = 0.2 the value of 𝜎 is too small, we can logically draw the 

conclusion that 0.2 < 𝜎 < 0.3, and therefore try with the midpoint 𝜎 = 0.25. This procedure 

continues until the value for 𝜎 that is found is deemed specific enough (e.g. 𝜎 = 0.2569847). 

Often, financial markets operators extrapolate several implied volatilities from options with the 

same underlying, aiming to evaluate a general implied volatility. There are various approaches 

that apply this last strategy in order to obtain a final value that incorporates more information 

and is therefore more reliable. 

 

Weighted Implied Standard Deviation (WISD) 

Latané and Rendleman (1976) suggested a methodology that considers all the options with the 

same underlying, and computes the implied volatilities for each exercise price. After that, they 

build a weighted average that takes as weights the volumes of transactions occurred.  

𝑊𝐼𝑆𝐷𝑖,𝑡 =  
1

𝑉
∑ 𝜎𝑖(𝑡, 𝑇)𝑛𝑖

𝑉

𝑖=1

 

V: total amount of transactions observed at t and with maturity T 

𝜎𝑖(𝑡, 𝑇): implied volatility computed at t of the option with strike price 𝐾𝑖 and maturity T. 

𝑛𝑖: volume of transactions on the option with specific strike price 𝐾𝑖 
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Moreover, the findings provided in Latané and Rendleman (1976) underlines both a strong 

correlation between WISD and actual standard deviations and that WISD is generally a a better 

predictor of future variability than standard deviation predictors based on historical data. On 

the other hand, the instability of WISD caused by factors that appear to affect all options in the 

same way, suggests that the model may not fully capture the process determining option pricing 

in the actual market. 

 

Arithmetic Mean 

Schmalensee and Trippi (1978) follows a similar approach, but excludes both deep in the 

money and deep out of the money options, underlying that those options barely reflect the 

general market sentiment on future volatility. Therefore, the authors only consider the most 

traded options and focus their attention on computing the arithmetic mean of the implied 

volatilities obtained from those options. For every stock s and week t, it is supposed to exist a 

value 𝜎𝑠,𝑡 that correctly captures the market's expectation of future volatily. 

𝜎𝑠,𝑡 =  
1

𝑁𝑠,𝑡
∑ 𝜎𝑖,𝑠,𝑡

𝑁𝑠,𝑡

𝑖=1

 

𝑁𝑠,𝑡: number of options available for some (s,t). 

𝜎𝑖,𝑠,𝑡: value of 𝜎 computed on the 𝑖th option. 

 

2.8 Drawbacks and Limitations of the Black-Scholes Model 

2.8.1 Lognormal Distribution and Stock Market 

While the Black-Scholes model assumes that stock prices are lognormally distributed, in 

practice, they are not perfectly lognormally distributed. There are various reasons for this. 

Firstly, stock prices exhibit “fat tails” (Westerfield, 1977), which means that extreme price 

movements occur more frequently than as predicted by a lognormal distribution, usually due 

to unexpected news and other macroeconomic factors. Secondly, stock prices possess skewness 

and kurtosis, suggesting that their distribution is not symmetrical and has a more profound peak 

than a lognormal distribution. This could be because favorable news, such as earnings 

announcements, can affect stock prices, resulting in a more significant positive skew. At last, 

security prices exhibit volatility clustering and non-stationarity (meaning that their statistical 
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properties change over time) which are not accounted by the lognormal distribution of the 

Black-Scholes model. 

 

2.8.2 Constant Volatility Assumption 

Empirical studies have proven that the constant volatility assumption does not hold in practice. 

For example, in "The Variance Gamma Process and Option Pricing" (Madan, et al., 1998) is 

shown that the Black-Scholes model's assumption of constant volatility is inconsistent with 

observed option prices and proposes an alternative model that incorporates a stochastic 

volatility process. This inconsistency is agreed upon by a substantial body of academic 

research, including (Taylor, 1986). 

 

2.8.3 Volatility Smile 

The volatility smile effect is a phenomenon found in the implied volatility surface of options. 

It refers to the shape of the implied volatility curve that typically exhibits an upward sloping 

convex shape as a function of strike price, resulting in a "smile" or "smirk" shape. This indicates 

that the implied volatility of options with the same expiration date, but different strike prices 

is not constant, which is in contrast with the Black-Scholes model's assumption of constant 

volatility. 

 

Figure 6: Volatility Smile (Mitchell, 2021) 

 

The volatility smile effect occurs due to inefficiencies in the Black-Scholes model. Firstly, the 

Black-Scholes model suggests that the price of the underlying asset follows a geometric 
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Brownian motion with constant volatility. However, this assumption is not always correct since 

stock prices display volatility clustering and jumps, which can result in time-varying volatility. 

Furthermore, the volatility smile effect is correlated to market participants' risk perceptions. 

The implied volatility of an option represents the market's assessment of the future volatility 

of the underlying asset. When the implied volatility of options with different strike prices 

differs significantly, it indicates that market players perceive distinct levels of risk for different 

options. This could be due to a number of causes, including market sentiment, 

unexpected news, or market players' anticipation of future price changes. Lastly, the volatility 

smile may be linked to the erroneous assumption of normal distribution of underlying asset 

returns. As already mentioned, in practice the stock market returns are fat-tailed, meaning that 

by adopting the normal distribution the Black-Scholes model is underestimating the probability 

of extreme price movements. In conclusion, when the underlying asset's volatility is not fixed, 

the Black-Scholes model's supposition of constant volatility leads to option mispricing, 

resulting in the observed volatility smile effect. 

Nevertheless, despite all the potential flaws in the model assumptions, analyses of market 

option prices do indicate that the Black-Scholes equation gives a very good approximation of 

market prices, especially for short-dated options.  
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Chapter 3: Monte Carlo Simulation 

3.1 Monte Carlo Method 

The Monte Carlo simulation is a computational technique for the analysis of complex systems 

that use random sampling. It is used to represent a system's behavior over time by simulating 

a large number of random events, which may then be used to assess the likelihood of certain 

outcomes occurring. 

Monte Carlo simulation is frequently used to model and analyze complex systems that are 

difficult or impossible to evaluate analytically in finance, engineering, physics, and numerous 

other fields. It is extensively used in finance to mimic the behavior of stock prices and other 

financial assets, as well as to assess the value of financial derivatives like options. 

The first stage of the Monte Carlo simulation involves the definition of the problem or system 

under consideration together with the identification of all the relevant variables that may 

influence its behavior.   

Next, probability distributions are assigned to the system's unknown variables. These 

distributions describe the possible values for each variable as well as the chance of their 

occurrence.  

Following the definition of the input distributions, random samples are generated from these 

distributions for each unknown parameter. The required degree of accuracy often determines 

the number of samples.  

After that, simulations are run for every set of random samples. The defined mathematical 

model is used to calculate the desired output or outcomes. This entails passing the sampled data 

through the model to acquire the system responses. 

The findings obtained from the simulations are then pooled and examined. This includes the 

computation of summary statistics such as the mean and the standard deviation of the 

outcomes.  

To draw conclusions and make educated decisions, the aggregated results are examined and 

interpreted. Monte Carlo simulations provide information on the likelihood of various 

outcomes, the system's sensitivity to various variables, and the system's potential dangers. 
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The quantity of random samples created, and the quality of the probability distributions used 

to generate the samples determine the accuracy of a Monte Carlo simulation. The accuracy of 

the simulation generally improves as the number of samples grows, but at the expense of 

increasing computational time. 

 

3.2 Pseudorandom Sequences 

In essence, only a natural random source can produce truly random sequences of integers. It is 

nearly impossible to obtain entirely random sequences of numbers without any of errors and 

correlations while building software or programs using mathematical approaches. 

As John Von Neumann (1951) affirmation further clarifies: “anyone who considers 

arithmetical methods of producing random digits is, of course, in a state of sin”. 

This concept matters because it emphasizes the reality that producing fully random sequences 

of numbers using mathematical procedures without error is impossible. A true generator is a 

tool that can generate a non-deterministic (and consequently unpredictable) number sequence. 

When exploiting a totally deterministic computer, mathematical approaches must be used, 

resulting in sequences that are not entirely random. As a result, no computer can generate a 

purely random sequence of numbers, only pseudo-random sequences (all sequences generated 

by mathematical algorithms are called pseudorandom) using generators that can generate 

sequences of numbers that appear random and pass a series of statistical tests. These sequences 

are referred to as pseudorandom since the entire generated sequence can be determined if the 

algorithm and first element utilized (known as the seed) are known. The seed is the only fully 

random element in the entire number sequence. 

 

3.3 Geometric Brownian Motion for stock price simulation 

The financial instruments needed in the Black-Scholes model are only two, the bond B and the 

stock S. The Bond represents the riskless asset that is continuously paying a constant interest 

rate 𝑟 ≥ 0 by assumption, whose payoff is given by: 

 

𝐵(𝑡) =  𝑒𝑟𝑡 
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One the other hand, the stock S represents the risky asset, which is required to satisfy both the 

initial condition and the SDE. 

 

{
 𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(𝑡)

𝑆(0) = 𝑆0
 

 

According to SDEs general theory, this Cauchy problem has a unique solution, a GBM with 

appropriate parameters. 

𝑆(𝑡) = 𝑆0𝑒
(𝜇 − 

𝜎2

2 )𝑡+𝜎𝑊(𝑡)
 

(3.1) 

Where: 

- 𝑆0 is the observed initial market price. 

- 𝑊(𝑡) is a Weiner process ~ 𝑁(0,1) 

- 𝜇 is the constant drift. 

- 𝜎 is the constant volatility (𝜎 > 0). 

 

Moreover, the mean and standard deviation of the logarithm of the stock price are well-defined 

in a geometric Brownian motion (GBM) process and may be easily determined using the GBM 

equation. 

Taking the natural logarithm on both sides of the equation (3.1) the following is obtained: 

 

ln (𝑆(𝑡)) = ln (𝑆0) + (𝜇 − 
𝜎2

2
) 𝑡 + 𝜎𝑊(𝑡) 

 

Since the mean is the expected value of  ln (𝑆(𝑡)) it can be computed as: 

 

𝐸[ln(𝑆(𝑡))] = ln (𝑆0) + (𝜇 − 
𝜎2

2
) 𝑡 
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From this result it can be concluded that the logarithm of the stock price rises at an expected 

rate of (𝜇 − 
𝜎2

2
) 𝑡 per unit time. 

 

The variance is given by: 

𝑉𝑎𝑟(ln(𝑆(𝑡))) =  𝜎2𝑡 

 

Therefore, the standard deviation, that is computed as the square root of the variance is: 

 

𝑆𝐷(ln(𝑆(𝑡))) =  𝜎√𝑡 

 

Now that standard deviation and mean of the Geometric Brownian motion are defined, the 

equation for the stock price of an option at maturity date T can be rewritten as: 

 

𝑆(𝑇) = 𝑆0𝑒
(𝜇 − 

𝜎2

2 )𝑇+𝜎√𝑇𝑍)
 

(3.2) 

 

3.4 Monte Carlo simulation for option pricing on Excel 

Excel is a spreadsheet tool that is well-known for its versatility and functionality. Its value in 

finance arises from its ability to manipulate and analyze data, conduct sophisticated 

computations, and generate visuals. 

Excel is used in finance for a variety of objectives. It enables users to organize and manipulate 

data in an organized fashion, making it easier to evaluate and interpret financial data. It has an 

extensive number of formulas and procedures that allow users to execute financial modeling, 

valuation, and analysis computations. Excel's charting tools enable the production of visual 

representations of data, which aids in the identification of trends, patterns, and linkages. 
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For the purpose of this thesis, this software will be adopted to implement the Monte Carlo 

simulation on the Black-Scholes option pricing formula. 

It all begins with fixing the parameters of the Black-Scholes equation: the risk-free rate, the 

time to maturity T, the volatility 𝜎, the spot market price 𝑆0 and the strike price K. 

 

INPUTS 

RISK FREE RATE 2.5% 

ST. DEV. 0,2 

So 100 

K 101 

T 1 

Table 2: Option Pricing simulation inputs on Excel 

It is assumed that the stock is lognormally distributed, and therefore the stock price at time T=1 

is described by the equation: 

𝑆1 = 𝑆0𝑒(𝑟 − 
𝜎2

2
+𝜎𝑍)

 

(3.3) 

Where Z is the random parameter, which is standard gaussian. The computation of this factor 

begins with the implementation of the function RAND(), which pseudo randomly generates a 

number between 0 and 1. 

The next step involves the implementation of the INV.NORM() function on that cell, 

specifying the mean and standard deviation of the normal distribution (𝑚𝑒𝑎𝑛 = 0 and 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 1 ). This function returns the value of the inverse normal distribution 

function for the pseudo random value obtained in the previous step. 

Since Z has been computed, it is now possible to calculate the stock price 𝑆1 by implementing 

equation (3.3).  
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Table 3: Stock Price Simulation on Excel 

 

The following step is concerned with the simulation of the put and call option payoffs that are 

recalled from the previous chapter to be: 

 

𝑐 =  𝑚𝑎𝑥 (𝑆1 − 𝐾, 0) 

𝑝 =  𝑚𝑎𝑥 (𝐾 − 𝑆1, 0) 

 

In order to simulate their payoffs, the IF function is implemented. 

The IF function is a common Excel function that allows logical comparisons between a 

number and its expected value. As a result, an IF statement can have two outcomes. So an IF 

statement can have two results. The first result is if your comparison is True, the second if your 

comparison is False.  

In this scenario it first compares 𝑆1 with the strike price K, and then computes the payoff only 

if complies with the condition specified. In the case of the call option payoff the IF function 

will compute the payoff (𝑆1 − 𝐾) only if the stock price 𝑆1 is greater than the strike price K, 

otherwise it will automatically set the payoff equal to 0. 

 

Table 4: Option Payoff Simulation on Excel 
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At this point the beforementioned steps are repeated for a minimum of 1000 times; the more 

the better, but Excel might not have enough computing power for vast numbers. 

Below there is an illustration of how the Excel spreadsheet should look like at this point. 

 

Random 

(0,1) 
Z S1 

CALL 

PAYOFF 
PUT PAYOFF 

0,618023125 0,300292898 106,722154 5,722153995 0 

0,298672239 -0,52822313 90,4254324 0 10,57456758 

0,376670462 -0,314237158 94,379393 0 6,620607041 

0,719676424 0,581880535 112,904948 11,90494759 0 

0,58014044 0,202252771 104,649926 3,649925838 0 

Table 5: Option pricing simulation table 

 

The last step is concerned with the computation of the option price.  It is evaluated as the 

present value of the average of all the option’s payoffs. Where the average is obtained through 

the AVERAGE() function and the discount factor is simply 𝑒−𝑟𝑇. 

 

Table 6: Option Price Simulation on Excel 

 

The computation of the predicted option prices through the Black-Scholes expressions (2.10) 

and (2.11) is essential to determine whether the results obtained are realistic or not. 

This procedure begins with the computation of d1 and d2 through their corresponding formulas. 

Then it follows with the execution of the function NORM.DIST() to standardize d1 and d2 

(null mean and unitary standard deviation) and find Φ(𝑑1), Φ(−𝑑1), Φ(𝑑2) 𝑎𝑛𝑑 Φ(−𝑑2). At 

last, all the values found are inputted in the Black-Scholes formula to obtain the predicted 

option prices. 
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Table 7: Black-Scholes Option Price Computation on Excel 

 

The approximation obtained is quite accurate since the simulated call price is 8,642 and the 

one predicted by the Black-Scholes equation is 8,675. However, by running again the same 

Excel sheet, different final values will be obtained, always in the same range but sometimes 

they might be slightly far from the predicted ones. 

In the next section, where the same procedure will be carried out on R, the results obtained will 

acquire stability and accuracy because of the higher number of simulations run. This is thanks 

to the heavy computing power that programming languages such as R possess. 

 

3.5 Black-Scholes option pricing simulation on R-studio 

R is a programming language designed for statistical computing and data analysis. It provides 

a large range of tools and packages designed expressly for statistical analysis and data 

manipulation. R's main advantages are its vast functionality, great data processing skills, and 

sophisticated data visualization options. It interfaces well with other programming languages 

and software systems, allowing for quick data import/export and maximizing the strengths of 

multiple tools. 

The algorithm begins the setting of a seed for reproducibility of the results. This makes sure 

that the same set of random numbers will be generated every time the code is run with the same 

seed value. 

> set.seed(123)  

 

After that, the input parameters for the option pricing model are fixed.  

> S0 <- 100  
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> K <- 101  

> r <- 0.025  

> sigma <- 0.2  

> T <- 1  

 

Where S0 is the initial stock price, K is the strike price, r is the risk-free interest rate, sigma is 

the volatility of the stock price, and T is the time to maturity of the option. 

In order to simulate the stock prices, the amount of Monte Carlo simulations to run (n) needs 

to be chosen. Usually, any number greater than one thousand leads to feasible results, but since 

it has been empirically proven that the greater n the more accurate the results and R grants 

enough computing power to do so, n is set to be 1mln. 

> n <- 1000000  

 

Furthermore, for the purpose of this simulation, a generator of n random numbers from a 

normal distribution with a mean of 0 and a standard deviation of 1 is required. This is 

accomplished through the rnorm function. 

> Z <- rnorm(n) 

Since all the parameters are set, it is now possible to execute the formula for the geometric 

Brownian motion (3.3) to simulate stock prices. 

> S1 <- S0*exp(r - 0.5*sigma^2 + sigma*Z) 

 

After that, since both the simulated 𝑆1 and the strike price K are known, the call option payoff 

is computed with the pmax function, which takes the maximum value among those specified 

in the arguments. In the case of call option pricing, it evaluates 𝑆1 − 𝐾 if 𝑆1 > 𝐾 (scenario in 

which the option is ITM and therefore exercised at maturity), or it just gives 0 if 𝑆1 ≤ 𝐾 (ATM 

or OTM option that is not exercised). This process is repeated for each of the n stock prices 𝑆1. 

> payoff <- pmax(S1 - K, 0) 
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At this point, the discount factor is defined, and the option price is computed as the mean of 

the payoffs obtained previously times the discount factor. 

> discount_factor <- exp(-r*T) 

> C0 <- discount_factor*mean(payoff) 

 

At last, the cat function is adopted to print the results in a user-friendly manner. 

> cat("Call price by simulation:", C0, "\n") 

 

In summary, when the option price simulation algorithm is run on the R console the result 

obtained is shown below. 

 

 

Figure 7: Option Price Simulation on R 

Now that the simulated option price is known, for comparison purposes the Black-Scholes 

predicted call price is calculated.  

The procedure for this computation starts with the evaluation of d1 and d2 through their 

corresponding formulas.  

> d1 <- (log(S0/K) + (r + 0.5*sigma^2)*T) / (sigma*sqrt(T)) 

> d2 <- d1 - sigma*sqrt(T) 



 37 

 

 

After that the function N is defined, such that from an input x it will output the standardized 

values Φ(𝑑1) and Φ(𝑑2). Then it is implemented on the values d1 and d2. 

> N <- function(x) {pnorm(x, mean = 0, sd = 1)} 

> Nd1 <- N(d1) 

> Nd2 <- N(d2) 

 

Finally, the predicted call option price is computed through the Black-Scholes formula and the 

results are printed. 

> C0_BS <- S0*Nd1 - K*exp(-r*T)*Nd2 

 

> cat("Black-Scholes call price:", C0_BS, "\n") 

 

The implementation of the R code is illustrated below. 

 

 

Figure 8: Black-Scholes Option Price computation on R 

 

In conclusion, through the R simulation algorithm the call price is 8.668 which is extremely 

close to the predicted price of 8.675. Moreover, this result, differently from the one in Excel, 

is extremely stable due to the vast number of simulations that are run (1mln on R versus 2 

thousand on Excel). 
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Chapter 4: Poisson Process and Lévy Process 

4.1 Poisson Process 

4.1.1 Poisson Distribution 

In probability theory and statistics, the Poisson distribution is a fundamental concept. It is 

named after Siméon Denis Poisson, a French mathematician who developed it in the early 

nineteenth century.  

The distribution is defined by a single parameter, frequently represented as 𝜆, which reflects 

the average rate or intensity of the event occurring. This parameter determines both the 

distribution's mean and variance. When dealing with events that are independent of each 

other, and exhibit a constant average rate, the Poisson distribution comes in handy. 

 

Figure 9: Poisson Distribution (Anon., 2020) 

An integer valued random variable N is said to follow a Poisson distribution with parameter λ 

if:  

∀ 𝑛 ∈  ℕ, ℙ(𝑁 = 𝑛) =  𝑒−𝜆
𝜆𝑛

𝑛!
 

 

An interesting feature of the Poisson distribution is its property of stability under convolution. 

It implies that when two independent Poisson variables, 𝑌1 and 𝑌2, with their corresponding 

parameters λ1and λ2, are added together, the resulting sum, 𝑌1 +  𝑌2, follows a Poisson 

distribution with the parameter λ1 +  λ2.  

As a consequence of the stability under convolution attribute, it can be proven that for any 

integer n, a Poisson random variable Y with parameter λ can be represented as the sum of n 

independent Poisson random variables, denoted as 𝑌𝑖 , each with a parameter of λ/n. This last 
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property, known as infinite divisibility, suggests that a Poisson random variable can be divided 

into any desired number of independent and identically distributed (i.i.d.) random variables. In 

practice, this means that a Poisson distribution allows for the possibility to be decomposed into 

a collection of smaller and independent Poisson distributions. Infinite divisibility is a crucial 

property through which researchers and practitioners can effectively analyze complex systems 

involving event occurrences.  

 

4.1.2 Poisson Process Definition 

Let(τ𝑖)i≥1be a sequence of independent exponential random variables with parameter λ and 

𝑇𝑛 = ∑ τ𝑖
𝑛
𝑖=1 .  

The process (𝑁𝑡 , 𝑡 ≥  0) defined by: 

𝑁𝑡 = ∑ 1 𝑡 ≥ 𝑇𝑛

𝑛≥1

 

is called a Poisson process with intensity λ.  

The conditions that must be satisfied by a counting process to be a Poisson process are: 

1. 𝑁(0) = 0 

2. ∀ 𝑡1 ≤ 𝑡2 ≤ 𝑠1 ≤ 𝑠2 the random variables 𝑁(𝑡2) − 𝑁(𝑡1) and 𝑁(𝑠2) − 𝑁(𝑠1) are 

independent.  

The number of occurrences in one time interval is unrelated to the number of 

occurrences in other time intervals (independent increments). 

3. There ∃ a 𝜆 > 0 such that given any 0 ≤ 𝑡1 ≤ 𝑡2, 𝐸[𝑁(𝑡2) − 𝑁(𝑡1)] = 𝜆(𝑡2 − 𝑡1) 

The expected number of occurrences between intervals of the same size is constant, 

known as stationary increments. 

4. If 𝑃(𝑠) = 𝚸{[N(t + s) − N(t)] > 2}, then lim
𝑠→0

𝑃(𝑠)

𝑠
= 0 

Formalization of the notion that events happen one at a time, where the limit affirms 

that the probability of two or more events occurring in an interval of length s is much 

smaller than s. 

 

Therefore, the Poisson process is random process that counts the number of random times (𝑇𝑛) 

which occur between 0 and 𝑡, where (𝑇𝑛  −  𝑇𝑛−1)n≥1 is an i.i.d. sequence of exponential 

variables.  
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The online sales made by Amazon is a simple example of this type of process, assuming that 

the number of purchases occurring in each consecutive time interval is independent and that 

the price of each sale is the same. 

The Poisson process is commonly adopted by researchers and practitioners to model patterns 

whose arrivals occurs in a completely random way.  

The properties that make this stochastic process so popular are several. 

Firstly, the process is memoryless (Markov property), implying that future behavior is 

determined solely by the current state and is unaffected by previous events. The next event's 

timing is independent of all previous events, which simplifies analysis and modeling. 

Secondly, a Poisson process's number of events within a given time interval follows a Poisson 

distribution. This distribution describes the likelihood of a given number of events occurring 

within a given time interval, providing a probabilistic framework for comprehending event 

occurrences. 

Moreover, by its homogeneous intensity property, the process maintains a constant intensity 

over time, with the probability of an event occurring in a short interval proportional to the 

length of the interval. This property enables the modeling of systems with a consistent pattern 

of event arrival. 

Furthermore, the Poisson process increments are independent, meaning that the number of 

occurrences in disjoint time intervals is unrelated.  

In addition to being independent, the process’s increments are also stationary, implying that 

statistical properties are unaltered for intervals of the same length. The distribution of events 

and the average event rate remain constant over time, allowing for consistent analysis across 

time periods. Here its crucial to emphasize that it is the only counting process with stationary 

independent increments. 

Moreover, by knowing that the sum of independent Poisson random variables is Poisson 

distributed, it can be empirically proven that the addition or merger of independent Poisson 

processes is a Poisson process.  

Another interesting feature of Poisson processes is the so-called thinning property. If a Poisson 

process (𝑁𝑡)𝑡≥1 is considered, and a new process 𝑋𝑡 is defined by “thinning” 𝑁𝑡, which means 

that having taken all the jump events, they are kept with probability 𝑝 or deleted with 
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probability 1 − 𝑝, independently from each other. At this point, the points that haven’t been 

eliminated are ordered 𝑇1
′, … , 𝑇𝑛

′, … and 𝑋𝑡 is defined as: 

𝑋𝑡 = ∑ 1𝑇𝑛
′≥𝑡

𝑛≥1

 

Then the process X is a Poisson process with intensity 𝑝𝜆 

Stated in a simpler manner, when a Poisson process is thinned, it means that events are removed 

or filtered selectively based on certain chosen criteria. It is therefore a powerful property that 

allows for the selective inclusion or exclusion of events based on specific criteria, which can 

have far-reaching implications in a variety of fields. 

 

 

Figure 10: Poisson Process (Tankov & Cont, 2003) 

 

In figure 9 above, two sample paths of a Poisson process can be seen. On the horizontal axis 

there is time, while on the vertical axis the number of arrivals. It is crucial to notice that each 

jump is of equal intensity 𝜆.  

 

4.1.3 Compensated Poisson Process 

It is crucial to underline that the simple Poisson process is not a Martingale. However, if 

suitable adjustments are applied to the process, it can become a Martingale.  

Such is the case for a compensated Poisson process, where through a compensator 𝜆𝑡 the 

Poisson process (𝑁𝑡)𝑡≥1 is modified to possess the martingale property.  
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By definition, the compensated Poisson process is a more centered version of the Poisson 

process (𝑁𝑡)𝑡≥1 and is described by the equation: 

𝑁�̃� = 𝑁𝑡 −  𝜆𝑡 

Furthermore, it is relevant to emphasize that this new process 𝑁�̃� is no longer a counting 

process. 

 

Figure 11: While on  the left two sample paths of a Wiener process with σ = 1 are illustrated, the graph on the right shows 

the sample path of a compensated Poisson process with intensity λ = 5, rescaled to have the same variance as the Wiener 

process (Tankov & Cont, 2003). 

In Figure 11 the rescaled version 𝑁�̃�/𝜆 is compared to standard Wiener process. A solid bond 

between the two graphs can be inferred. This is because, as the intensity of its jumps increases, 

the (interpolated) compensated Poisson process's distribution converges to that of a Wiener 

process. 

Next the compound Poisson process will be outlined, where together with the time of arrival, 

even the intensity of the jump will vary. 

 

4.2 Compound Poisson Process 

4.2.1 Compound Poisson Process Definition and Properties 

A compound Poisson process with intensity 𝜆 > 0 and jump size distribution 𝑓 is a stochastic 

process 𝑋𝑡 defined as: 

𝑋𝑡 = ∑ 𝑌𝑖

𝑁𝑡

𝑖=1
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𝑌𝑖 is referred to as the jump size, which is i.i.d. with distribution 𝑓. Furthermore, 𝑁𝑡 is a Poisson 

process with intensity 𝜆, independent from (𝑌𝑖)𝑖≥1. 

 

Figure 12: Compound Poisson Process (Tankov & Cont, 2003) 

From Figure 12, the main trait that makes the compound Poisson process different from the 

simple one can be deduced: the possibility of having non-constant jump sizes. The Poisson 

process can be seen as a compound Poisson process whose 𝑌𝑖 is constant and equal to 1. 

One crucial property of the compound Poisson process states that its sample paths are cadlag 

piecewise constant functions. Cadlag is an abbreviation for right continuous with left limits, 

meaning that the process has a right limit at each point and a left limit, which may differ from 

the right limit. The term piecewise constant refers to the fact that the process remains constant 

between consecutive event times and changes only when the Poisson process arrives. 

Considering how 𝑋𝑡 accumulates the intensities of the events at the arrival times, the process 

remains constant between consecutive events, reflecting the absence of any additional events 

during that time interval, but when an event occurs, the process jumps to a new value based on 

the magnitude of the event, and then remains constant until the next event occurs. This is what 

causes the left limit to differ from the right one. 

Moreover, the jump times (𝑇𝑖)𝑖≥1 follow the same law as the jump times of the Poisson process 

𝑁𝑡. Therefore, they can be expressed as partial sums of independent exponential random 

variables with parameter λ. 

At last, the jump sizes (𝑌𝑖)𝑖≥1 are independent and identically distributed random variables, 

whose intensity is drawn from the same probability distribution f. Therefore, the value of one 
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jump size is completely uncorrelated to the value of another jump size, while their statistical 

properties are identical. 

A simple and intuitive example of compound Poisson process is described by the cumulative 

sales made on Amazon. In fact, the time at which sales take place is completely random and 

the purchase price differs from sale to sale, therefore resulting in non-constant jumps in the 

total revenue earned. 

 

4.2.2 Convergence to the Normal Distribution 

A compound Poisson process arises when events follow a Poisson process, and each event adds 

a random amount Y to the cumulative sum. Considering an event of type j, that is realized each 

time that the amount 𝛼𝑗 is added, with 𝑗 ≥ 1. Meaning that the ith event of the Poisson process 

is of type j if it has 𝑌𝑖 = 𝛼𝑗. Furthermore, denoting with 𝑁𝑗(𝑡) the number of type j events by 

time t it can be demonstrated that 𝑁𝑗(𝑡), 𝑗 ≥ 1 are independent Poisson random variables with 

mean described as: 

𝐸[𝑁𝑗(𝑡)] = 𝜆𝑝𝑗𝑡 

 

At this point, since the amount 𝛼𝑗 is added to the cumulative sum a total of 𝑁𝑗(𝑡) times by time 

t, the cumulative sum at time t can be expressed as: 

𝑋𝑡 = ∑ 𝛼𝑗𝑁𝑗(𝑡)

𝑗

 

(4.1) 

Computing now the mean of 𝑋𝑡 as: 

 

𝐸[𝑋𝑡] = 𝐸 [∑ 𝛼𝑗𝑁𝑗(𝑡)

𝑗

] = ∑ 𝛼𝑗𝐸[𝑁𝑗(𝑡)] 

𝑗

= ∑ 𝛼𝑗

𝑗

𝜆𝑝𝑗𝑡 = 𝜆𝑡𝐸[𝑌1] 

 

It is now crucial to explain that in the case of a Poisson random variable, its distribution 

becomes more symmetrical and bell-shaped as its mean increases. This results from the notion 
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that the mean of a Poisson distribution determines its shape, with larger means producing more 

concentrated distribution around the mean. Moreover, as the mean of a Poisson distribution 

increases, so do the number of individual events that contribute to the sum. 

Therefore, equation (4.1) allows for the conclusion that as t increases, the distribution of 𝑋𝑡 

converges to the normal distribution. This is because, as t increases, each of the random 

variables 𝑁𝑗(𝑡) converges to a normal random variable. In addition, since they are independent, 

and the sum of independent normal random variables is also normal, 𝑋𝑡 approaches a normal 

distribution as t increases. 

 

4.3 Lévy Process 

4.3.1 Introduction to Lévy Processes 

As anticipated in chapter 2, there is strong empirical evidence indicating that most financial 

asset prices exhibit a distribution with heavy tails and a high peak. This kind of distribution is 

denominated leptokurtic, and it is used to describe distributions characterized by a large 

kurtosis, usually greater than three. To make a comparison with the normal distribution, that 

has a kurtosis equal to three, the leptokurtic distribution will differ for the higher peak and the 

heavier tails as shown in Figure 13 below. 

 

 

Figure 13: Comparison between leptokurtic and normal distribution (Lumholdt, 2018) 

 

The traditional geometric Brownian motion model, which prices the stock as 𝑆(𝑡) =

𝑆0𝑒
(𝜇 − 

𝜎2

2
)𝑡+𝜎𝑊(𝑡)

, fails to take into account this feature, since as assumed by the model the 
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returns follow a normal distribution. Lévy processes on the other hand, have been proposed to 

incorporate the leptokurtic attribute. 

Among the simplest examples of Lévy process are the Brownian motion, the standard Poisson 

process, and the compound Poisson process. However, one of the most well-known Lévy 

process is probably the jump diffusion process that combines the Brownian motion with the 

compound Poisson process. 

Similarly to the Brownian motion, Lévy processes are adopted in modeling continuous 

movements, while, like the Poisson process, they capture sudden changes through jumps. This 

ability to incorporate abrupt moves by jumps is a crucial characteristic with significant 

implications for many practical scenarios. 

 

4.3.2 Stable Distribution 

A random variable is said to be stable if a linear combination of two independent copies of it 

has the same distribution as the random variable. X is said to be stable if for any positive 

numbers a and b, there exist a positive number c and a real number d such that: 

𝑎𝑋1 + 𝑏𝑋2 ~ 𝑐𝑋 + 𝑑 

Where 𝑋1 and 𝑋2 are independent copies of X and the symbol ~ means that they have the same 

identical distribution. 

 

4.3.3 Lévy Distribution 

Among the most popular stable distributions, there is the Lévy distribution, that has 𝛼 = 1/2 

and 𝛽 = 1. Therefore, the probability density function (PDF) of X would be given by: 

 

𝑓𝑥 (𝑥; 
1

2
, 1, 𝜎, 𝜇) = (

𝜎

2𝜋
)

1/2 1

(𝑥−𝜇)3/2
𝑒

−
𝜎

2(𝑥−𝜇)   with   𝜇 < 𝑥 < ∞ 

 

This distribution is leptokurtic which gives it a huge advantage over the Gaussian PDF when 

modelling stock prices, since their distribution has been proven to be highly leptokurtic. For 

instance, if we were to model the SPX from Jan 2, 1980 to Dec 31, 2005 and compute the 
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kurtosis it would be about 42 (Kou, s.d.), which is extremely higher than the kurtosis of 3 of 

the normal distribution. 

Furthermore, while a GBM can adequately describe stock price evolution most of the time, it 

was discovered that a large jump may occur from time to time (for instance when the stock 

market closes for holidays and new information is made known to market participants), which 

cannot be adequately captured by a GBM. 

 

4.3.2 Lévy Process Definition 

A cadlag stochastic process (𝑋𝑡)𝑡≥1 on (Ω, ℱ, ℙ) with values in ℝ𝑑 such that 𝑋0 = 0 is called 

a Lévy process if it possesses the following properties: 

1. Independent increments: for every increasing sequence of times 𝑡0, … , 𝑡𝑛, the random 

variables 𝑋𝑡0
, 𝑋𝑡1

− 𝑋𝑡0
, … , 𝑋𝑡𝑛

− 𝑋𝑡𝑛−1
 are independent. 

2. Stationary increments: the law of 𝑋𝑡+ℎ − 𝑋𝑡 does not depend on t. 

3. Stochastic continuity: ∀𝜀 > 0 lim
ℎ→0

ℙ(| 𝑋𝑡+ℎ − 𝑋𝑡|≥ 𝜀) = 0 

 

Lévy processes constitute a wide class of stochastic processes whose sample paths can be 

continuous, continuous with occasional discontinuities, and purely discontinuous.  

A noteworthy property of the Lévy process is the infinite divisibility, which states that its 

distribution can be expressed as the convolution of infinitely many i.i.d. random variables. This 

property adds to the flexibility of the Lévy processes in capturing complex dynamics.   

Moreover, furtherly adding to the flexibility, Lévy processes are time homogeneous, meaning 

that their statistical features are constant over time. This property allows the usage of time-

independent statistical measures which are crucial to correctly analyze the data and capture its 

characteristics. 

Furthermore, as a consequence of having independent and stationary increments, the Lévy 

process has the Markov property, which states that conditionally on 𝑋𝑡, the evolution of the 

process in the future is completely independent of its past. 

As previously mentioned, Lévy processes are stable processes. Therefore, the sum of 

independent Lévy processes remains a Lévy process when appropriately scaled and shifted. In 

other words, if two or more independent Lévy processes were taken, their parameters were 



 48 

 

adjusted, and then they were summed together, the resulting process will still have the 

characteristics of a Lévy process. 

A key element to gain understanding of the tail behavior of the Lévy process and its moments 

it the Lévy measure, which is defined as: 

Let (𝑋𝑡)𝑡≥1 be a Lévy process on ℝ𝑑. The measure 𝜐 on ℝ𝑑 defined by: 

𝜐(𝐴) = 𝐸[⋕ {𝑡 ∈ [0,1]: ∆𝑋𝑡 ≠ 0, ∆𝑋𝑡 ∈ 𝐴}], 𝐴 ∈ 𝔅(ℝ𝑑) 

Is called the Lévy measure of X: 𝜐(𝐴) is the expected number, per unit time, of jumps whose 

size belongs to A. 

Through the Lévy Khintchine representation, which is a specific form of the Lévy characteristic 

function, it can be understood that a d dimensional Lévy process X distribution is determined 

by the characteristic triplet (𝐴, 𝜐, 𝛾). The Lévy Khintchine representation is as follows: 

 

𝐸[𝑒𝑖𝑧.𝑋𝑡] = 𝑒𝑡𝜓(𝑧), 𝑧 ∈  ℝ𝑑 

𝑤𝑖𝑡ℎ 𝜓(𝑧) =  
1

2
𝑧. 𝐴𝑧 + 𝑖𝛾. 𝑧 + ∫ (𝑒𝑖𝑧.𝑥 − 1 − 𝑖𝑧. 𝑥1|𝑥|≤1)𝜐(𝑑𝑥)

 ℝ𝑑

 

 

In this expression, 𝛾 is the drift term, the positive semidefinite matrix A describes the Brownian 

motion component of X, and 𝜐 is a measure on ℝ𝑑 such that 𝜐(𝐴) is the rate at which jumps 

∆𝑋 ∈ 𝐴 of X take place. Therefore, the Lévy Khintchine representation encodes key 

information about the process's drift, diffusion, and jump characteristics. 

 

4.4 The Merton Jump Diffusion Model  

4.4.1 Introduction to the model 

The Black-Scholes equation has worked as a solid foundation of many option pricing models. 

In fact, it has been demonstrated (Merton, 1973), that with the right adjustments the model 

could be adopted even in scenarios such as where the stock pays dividends, when the option is 

American and when the interest rate is stochastic. Moreover, it has been furtherly proven 

(Thorp, 1973), that the model is still a valid base in the case of stock dividends and of 

restrictions against the use of proceeds of short sales. However, the model fails to be consistent 
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if the stock price dynamics are not representable by a stochastic process with continuous 

sample path. In essence, the Black-Scholes formula's validity is determined by whether or not 

stock price changes satisfy a 'local' Markov property (i.e. the stock price can only move by a 

small amount in a short period of time).  

A jump stochastic process defined in continuous time would be the antipathetic process to this 

continuous stock price motion, because it would mean that, an unexpected jump large in 

magnitude could occur with a probability greater than zero. 

The jump diffusion model, developed by Robert Merton in 1976, is a stock price behaviour 

model that incorporates small day-to-day "diffusive" movements (geometric Brownian motion) 

as well as larger, randomly occurring "jumps" (compound Poisson process). Because the 

inclusion of jumps allows for more realistic "crash" scenarios, the standard dynamic replication 

hedging approach of the standard Black-Scholes model no longer works. This causes option 

prices to rise in comparison to the Black-Scholes model and to be dependent on investors' risk 

aversion.  

 

4.4.2 Hedging Strategies in Incomplete Markets 

To introduce the jump, the Merton model considers one notable feature that distinguishes it 

from the standard Black-Scholes model: it makes the market incomplete, and there is no perfect 

hedging of options in this case.   

Furthermore, when the jump size is continuous, the set of probability measure under which the 

discounted stock price is a martingale is infinite. Therefore, an infinite number of derivatives 

on the underlying would be needed for a perfect hedge to exist. Since the number of available 

derivatives on the underlying asset are finite and the transaction costs that would arise from 

this trading would be extreme, it is impossible to perfectly hedge the jump risk under a jump 

diffusion framework. 

A common approach to hedging is through the usage of option Greeks. It involves adjusting 

options or their underlying assets to lessen the impact of changes in certain risk factors known 

as the Greeks. Delta, gamma, vega, theta, and rho are Greeks that measure an option's 

sensitivity to underlying price, volatility, time decay, and interest rate changes. The most 

popular Greeks hedging technique is the delta hedging outlined in the Black-Scholes model. 

However, adopting a hedging approach bases on Greeks has a major drawdown in jump 

diffusion frameworks. This is because the Greek letters are only effective for hedging the 
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diffusive part of the process, and since the hedger is unable to rebalance the portfolio through 

a jump, the positions in the hedging instrument will be incorrect, resulting in significant 

hedging errors.  

Adopting the Gauss-Hermite Quadrature, a different hedging technique that uses options with 

shorter maturity than the target option can be developed (Carr & Wu, 2004). Unlike dynamic 

delta hedging, which may struggle when confronted with significant random jumps in price 

dynamics, the static hedge suggested in this paper performs well under both continuous and 

discontinuous price movements. The results of this paper show that when the price dynamics 

are purely continuous, discretized static hedges with as few as three to five options outperform 

dynamic delta hedging with underlying futures and daily updating. When the underlying price 

process includes random jumps, static hedges significantly outperform the daily delta hedge. 

To back up their findings, the authors conducted a historical analysis on S&P-500 index options 

spanning over 13 years. This analysis confirms the static hedging strategy's superior 

performance in real-world scenarios. 

Another strategy proposed to address this hedging issue involves the minimization of the 

squared change in portfolio value at some specific future point in time (He, 2006).  The authors 

emphasize that in real markets, the availability of options with a specific maturity is limited to 

a few strikes. Since no other options can be chosen in the application, the strategy uses these 

strikes to minimize hedging error for a range of possible future stock prices, each weighted by 

some probability density function (PDF). The hedger can express the importance of minimizing 

the hedging error arising for specific values of Y using the PDF. 

 

4.4.3 Formula derivation 

The Black-Scholes model assumed that the stock price followed a diffusion process (geometric 

Brownian motion) defined as: 

 

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 + 𝐽𝑈𝑀𝑃 𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇 

(4.1) 

The Merton jump diffusion model adds a jump component to this equation, which has to be 

defined in size and arrival time. The size is denoted as 𝑌𝑡 and is lognormally distributed (so 
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𝑌𝑡 > 0). Therefore, the stock price will be 𝑆𝑡 before the jump and  𝑌𝑡𝑆𝑡  after the jump. This 

means that if  𝑌𝑡 > 1 the jump will be positive, while if 𝑌𝑡 < 1 the jump will result in a lower 

final stock price. Knowing this, the change in price caused by the jump can be written as: 

𝑑𝑆𝑡 =  𝑌𝑡𝑆𝑡 − 𝑆𝑡  

 

So, the percentage change in price due to the jump will be: 

𝑑𝑆𝑡

𝑆𝑡
= 𝑌𝑡 − 1 

 

Now that the size of the jump has been defined, there is the need to model when the jump will 

take place. This can be easily done through a simple Poisson process 𝑁𝑡. Recalling that the 

probability of a jump is equal to 𝜆Δ𝑡, the change in 𝑁𝑡 can be modelled as: 

𝑑𝑁𝑡 = {  
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜆𝑑𝑡

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜆𝑑𝑡
 

 

At this point equation 4.1 can be rewritten as: 

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 + (𝑌𝑡 − 1)𝑑𝑁𝑡 

 

Where (𝑌𝑡 − 1)𝑑𝑁𝑡 represents the jump component that will be added to the relative change in 

stock price if the jump occurs (𝑑𝑁𝑡 = 1), otherwise it will be negligible (𝑑𝑁𝑡 = 0). Moreover, 

it can be inferred that (𝑌𝑡 − 1)𝑑𝑁𝑡 is exactly a compound Poisson process, and therefore that 

the stock price change is determined by a combination of the geometric Brownian motion and 

the compound Poisson process. 

However, it is important to notice now that the jump component that has been added introduces 

a drift as well. This can be seen by taking the expected value of the jump component as 

following: 

𝐸[(𝑌𝑡 − 1)𝑑𝑁𝑡] = 𝐸[𝑌𝑡 − 1] ∗ 𝐸[𝑑𝑁𝑡] = 𝑘 ∗ 𝜆𝑑𝑡 

 

Where k is the expected value of the relative jump size and is computed as: 
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𝑘 = 𝑒𝜇𝑦+
1
2𝜎𝑦

2
− 1 

 

The drift component is subtracted so that the jump component contribution can now be purely 

random jumps. 

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 + (𝑌𝑡 − 1)𝑑𝑁𝑡 −  𝑘 ∗ 𝜆𝑑𝑡 

 

At this point, in order to make the model flexible for larger time intervals, where more than 

one jump can occur, (𝑌𝑡 − 1) is adjusted as following: 

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 + ∏(𝑌𝑗 − 1)

𝑑𝑁𝑡

𝑗=1

−  𝑘 ∗ 𝜆𝑑𝑡 

 

Factorizing by dt and multiplying by 𝑆𝑡 it becomes: 

𝑑𝑆𝑡 = (𝜇 − 𝑘𝜆)𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 + 𝑆𝑡 (∏(𝑌𝑗 − 1)

𝑑𝑁𝑡

𝑗=1

) 

 

Implementing the Ito’s Lemma and making some computations it converts to: 

𝑑  𝑙𝑛(𝑆𝑡) = (𝜇 − 𝑘𝜆 −
1

2
𝜎2)𝑑𝑡 + 𝜎𝑑𝑊𝑡 + ∑ 𝑙𝑛 (𝑌𝑗)

𝑑𝑁𝑡

𝑗=1

 

 

Now integrating from 0 to t: 

 𝑙𝑛(𝑆𝑡) −  𝑙𝑛𝑆0 = (𝜇 − 𝑘𝜆 −
1

2
𝜎2)𝑡 + 𝜎(𝑊𝑡 − 𝑊0) + ∑ ln(𝑌𝑗)

𝑁𝑡−𝑁0

𝑗=1

 

 

Since both the Brownian motion and the compound Poisson process begin at zero, both 𝑊0 and 

𝑁0 are equal to 0. Rewriting the above expression, to reflect this information: 
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𝑙𝑛(𝑆𝑡) −  𝑙𝑛𝑆0 = (𝜇 − 𝑘𝜆 −
1

2
𝜎2)𝑡 + 𝜎𝑊𝑡 + ∑ ln(𝑌𝑗)

𝑁𝑡

𝑗=1

 

(4.2) 

Recalling now that 𝑌𝑗 was assumed to follow the log-normal distribution, it can be stated that 

ln(𝑌𝑗) follows a normal distribution ~𝑁(𝜇𝑦 , 𝜎𝑦
2). Furthermore, since ∑ ln(𝑌𝑗)

𝑁𝑡
𝑗=1  is a sum of 

normally distributed random variables, the result will be still normally distributed with mean 

𝑛𝜇𝑦  and variance 𝑛𝜎𝑦
2. 

Furthermore, since it’s known that 𝑊𝑡~𝑁(0, 𝑡), the linear transform 𝜎𝑊𝑡 will keep the normal 

distribution with mean zero but variance 𝜎2𝑡. 

Therefore, since the sum of independent normals is still normally distributed, the summation: 

𝜎𝑊𝑡 + ∑ ln(𝑌𝑗)
𝑁𝑡
𝑗=1  is  ~𝑁𝑜𝑟𝑚𝑎𝑙(𝑛𝜇𝑦 , 𝜎2𝑡 + 𝑛𝜎𝑦

2). 

By factorizing the variance for t, it becomes: 

~𝑁𝑜𝑟𝑚𝑎𝑙 (𝑛𝜇𝑦 , (𝜎2 +
𝑛𝜎𝑦

2

𝑡
) 𝑡) 

 

Which now can be redrafted in terms of the standard normal variable Z as: 

~ 𝑛𝜇𝑦 + √𝜎2 +
𝑛𝜎𝑦

2

𝑡
√𝑡 ∗ 𝑍 

 

In addition, since √𝑡𝑍 has the same distribution of 𝑊𝑡 it can furtherly be rephrased as: 

~ 𝑛𝜇𝑦 + √𝜎2 +
𝑛𝜎𝑦

2

𝑡
𝑊𝑡 

 

At this point, the two random components in equation 4.2 can be replaced by the linear 

transform of a single Brownian above and the expression would be: 
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𝑙𝑛(𝑆𝑡) −  𝑙𝑛𝑆0 = (𝜇 − 𝑘𝜆 −
1

2
𝜎2)𝑡 +  𝑛𝜇𝑦 + √𝜎2 +

𝑛𝜎𝑦
2

𝑡
𝑊𝑡 

(4.3) 

 

At this stage, in order to obtain a final equation easily comparable to the Black-Scholes 

expression, 𝜎𝑛 is defined as: 

𝜎𝑛 = √𝜎2 +
𝑛𝜎𝑦

2

𝑡
 

 

𝜎𝑛 represents the total volatility per unit time due to the diffusion and the jump. 

This would further simplify equation (4.3) that after some simple computations would become: 

𝑙𝑛(𝑆𝑡) −  𝑙𝑛𝑆0 = (−𝑘𝜆 +  𝑛𝜇𝑦 +
𝑛𝜎𝑦

2

2
) + (𝜇 −

1

2
𝜎𝑛

2)𝑡 + +𝜎𝑛𝑊𝑡 

 

Exponentiating both sides: 

𝑆𝑡 = 𝑆0𝑒
(−𝑘𝜆+ 𝑛𝜇𝑦+

𝑛𝜎𝑦
2

2 )+(𝜇−
1
2𝜎𝑛

2)𝑡++𝜎𝑛𝑊𝑡
 

(4.4) 

Absorbing the extra terms in the initial price defined as: 

𝑆0
𝑛 = 𝑆0𝑒

(−𝑘𝜆+ 𝑛𝜇𝑦+
𝑛𝜎𝑦

2

2
)
 

 

𝑆0
𝑛 is defined as the scaled version of the initial stock price to account for some of the effects 

of the jumps. Substituting it in equation (4.4) the following is obtained: 

𝑆𝑡 = 𝑆0
𝑛𝑒(𝜇−

1
2𝜎𝑛

2)𝑡++𝜎𝑛𝑊𝑡 

 

 



 55 

 

Which is now extremely akin to the Black-Scholes equation (3.1): 

𝑆(𝑡) = 𝑆0𝑒
(𝜇 − 

𝜎2

2 )𝑡+𝜎𝑊(𝑡)
 

 

Comparing the two it can be inferred that they match perfectly except for the definition of 

initial stock price and the volatility. These differences are caused by the fact that the Merton 

model embeds the jumps into the process. 

According to the Merton jump diffusion model the call option price of a European option is: 

𝐶(𝑆0
𝑛, 𝑇 | 𝑁𝑇 = 𝑛) 

 

Notice that this is conditional to having n jumps, but this can be adjusted by taking the iterated 

expectation such that the following is obtained: 

𝐶(𝑆0
𝑛, 𝑇) = ∑ 𝐶(𝑆0

𝑛, 𝑇 | 𝑁𝑇 = 𝑛)

∞

𝑛=0

 𝑃[𝑁𝑇 = 𝑛] 

 

Where the number of possible jumps is conditioned, the option price is calculated, then 

weighted by the probability of jumps taking that value and at last summed across all possible 

values. 

Since in the Merton model the number of jumps follows a Poisson process, and the Poisson 

density is given by: 

𝑃[𝑁𝑇 = 𝑛] =
𝜆𝑇𝑛

𝑛!
𝑒−𝜆𝑇 

 

The Poisson density can be substituted in the formula such that the final Merton formula for 

the price of a European call option is obtained.  

𝐶(𝑆0
𝑛 , 𝑇) = ∑ 𝐶(𝑆0

𝑛, 𝑇 | 𝑁𝑇 = 𝑛)  
(𝜆𝑇)𝑛

𝑛!
𝑒−𝜆𝑇

∞

𝑛=0
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Conclusion 

In this thesis a quantitative approach is undertaken to model financial instruments and evaluate 

options fair price. It all begins in chapter one with a foundation of stochastic calculus that will 

be useful when analyzing more complex stochastic models. In particular, the concept of Wiener 

process is introduced, which through the right adjustments mimics the stock price fluctuations 

and lays the base for one of the key assumptions of the Black-Scholes framework. In the 

following chapter, the Black-Scholes model is examined in detail through its assumptions, 

implications, and limitations. Some of the most popular methodologies to estimate volatility 

(the only parameter that cannot be directly observed in the markets) are illustrated, together 

with relevant research papers in which they are implemented, and the results analyzed. 

Moreover, benefits and drawbacks of adopting the geometric Brownian motion to model 

securities prices are discussed. In chapter three the Monte Carlo simulation approach is adopted 

to price derivatives (call and put options) and the notion of pseudo-random sequences is 

introduced. This method is implemented both through an algorithm on R and in an Excel 

spreadsheet, to illustrate the accuracy that a higher computing power can obtain. In the last 

chapter of this thesis Lévy processes (Poisson and compound Poisson processes) are examined 

and their properties outlined. Moreover, the Merton jump diffusion model is presented, together 

with the new hedging strategy for incomplete markets and the formula derivation. The Merton 

framework is introduced as an advanced Black-Scholes model since it holds for stock price 

jumps thanks to the implementation of a Lévy process that combines the geometric Brownian 

motion with the compound Poisson processes to model the security’s price. The objective of 

this bachelor’s thesis is to contribute to the field of quantitative finance by conducting an 

exhaustive analysis of the beforementioned concepts and models. By doing so, this thesis offers 

valuable insights into the intricate nature of mathematical finance. 
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