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Introduction

The subject considered in this thesis is a categorization problem: the ob-

jective is to utilize a model that takes documents as input and organizes

them based on whether or not they present a signature. The information

from this classification allows us to select and organize signed documents.

A scanned digital or handwritten signature is generally present on identity

documents like identity cards, which comprise most documents under ex-

amination. As a result, it’s essential to consider the document’s shape and

orientation, the background color, all of the items on the page, the type

of written sentences—handwritten and computerized—and a wide range of

other pertinent criteria. Since there are already several ways to accomplish

this, the issue of signature identification is considered straightforward and

quick to resolve. However, it’s crucial to highlight an essential component of

these procedures since it will clarify why I’ve chosen to take on this issue.

Nowadays, Machine Learning algorithms are applied to check the signature’s

authenticity. Banks’ mechanism to validate the signature when it is manually

entered at the desk to sign any form of the document is a typical illustration

of these procedures. In this instance, as with other signature processes, the

goal is to confirm the integrity of the signature rather than locate where it

is on the page. To guarantee the signature’s authenticity, it is considered

individually in each step and compared with a corresponding signature in
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the dataset. As a result, the signature position identification step uses more

straightforward and less accurate models. This phase sometimes misses, and

the model is trained directly using datasets that include only signatures with-

out considering the entire document page.

These factors should clarify why I chose to offer this research as a thesis

project. The organization of papers is the primary goal of this project, as

was already mentioned. We need to use a model whose main objective is

to locate the signature on a piece of paper, not to validate it: this is the

primary distinction between my research and current models in this area.

Finding the location of the signature on the documents is the real thing that

matters in this project; the subsequent procedures are nonessential and can

always be added in the future. Neural Networks are typically used in projects

for the process’s last step, validating the signature. The intermediate phases

of these undertakings only partially utilized Deep Learning models’ accuracy

and precision. Therefore, the signature selection stage on the sheet is usually

considered a step leading up to the final verification stage, as demonstrated

in the following few paragraphs, and needs more consideration: this is the

logic behind using Machine Learning models rather than Deep Learning ones.

The example that follows will clarify this statement.

The Connected Components method is one of the most often used models

for detecting a signature. It operates as follows: the model creates a “mask”

that divides the page into sections and, within each mask frame, performs an

analysis of these Connected Components. This method bases on the generally

accurate notion that when we sign, we tend to link all of the letters together,

yet when we type on a computer, all letters are separated. The study of

Connected Components assumes that if numerous letters are attached, the
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likelihood that it is a signature rises significantly. When I first tried this

method, it did not produce the desired results because I couldn’t observe

any marks on the page. As a result, the sheet’s sections corresponding to

printing, other handwriting, or scanning errors were frequently mistaken for

signatures. These circumstances explain why I didn’t think this approach

was trustworthy and moved on to look for a more accurate solution. After

conducting considerable research that consistently produced outcomes sim-

ilar to the ones just mentioned, I considered changing my perspective and

eventually discovered a fresh way to see the project’s aim. The goal is to

locate a signature on a sheet, which can also be interpreted as finding an

item within an image, as I have stated numerous times before. This real-

ization caused me to consider the potential for using some Object Detection

methods. Unfortunately, I could not locate any scientific publications in the

literature that may have explained to me on a theoretical and technical level

whether such a technique can be carried out or done previously. However, I

decided to give it a shot. I searched for several Object Detection models to

determine which was best. As we will see in the coming chapters, among the

existing approaches, I use a Convolutional Neural Network known as YOLO

(You Only Look Once). In addition to conducting this study, I was able to

locate a Notebook on GitHub that used YOLO to carry out the process I

needed [10]. All of these factors led me to choose this model. This Notebook

was extremely helpful to me in understanding how the selected model oper-

ates.

What distinguishes this work is the shift in perspective. I made an effort

to come up with a different solution to a problem that is already well-known

and frequently addressed using the same set of methods (such as Connected
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Components). As previously stated, the identification phase of current ini-

tiatives always played a minor role because the primary focus was on their

verification rather than the identification of signatures. In contrast to the

subsequent verification phase, which typically uses Deep Learning, this phase

has never been surpassed using more complicated Deep Learning models,

such as a Neural Network. Instead, I preferred to make signature detection

the project’s main objective and worked to implement a Deep Learning tech-

nique to do so. The outcome was very satisfying. Using the Neural Network,

Yolo allowed me to shift my perspective, which was the best option for my

project.

The usefulness of my research can also be emphasized, in addition to its value

explained in the previous paragraphs. For example, a significant corporation

that lacks a document cataloging system that meets its requirements could

need this project. Due to this, it’s crucial to emphasize that the implemented

model should also be considered innovative research and a useful cataloging

tool that avoids wasting time and money on manual document classification.

Furthermore, in the future, we can explain the beneficial applications of this

model; for example, in addition to the signatures’ location, we can add the

detection of identity images or the tax code. All of this is made possible by

using Yolo, which enables the inclusion of other object classes in addition to

signatures without requiring any other model changes, allowing it to adapt

to a company’s requests and change along with it as the tasks evolve.
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Chapter 1

YOLO

1.1 The Object Detection Method

Humans rely on their eyes to perceive everything; they take in data from

the world around them and send it to their brains for analysis and inference-

making. Well, it seems very easy, doesn’t it? Just by looking, we can learn

a great deal about the things we are seeing, including what they are, where

they are, and how they are used. But the processing that our brain performs

is simply incomparable. The researchers wondered if we would be able to give

a machine this intriguing brain function. With this, the machine’s duty will

be significantly easier since, if it can identify the items in its environment, it

can engage with them more effectively—which is the whole point of develop-

ing machines—to make them receptive to interaction with humans and more

human-like. How can we teach a machine to recognize an object? The field

of computer vision known as “Object Detection” was born out of this. It is

the study of finding instances of different classes of items (such as a person,

book, chair, automobile, bus, etc.) in digitally produced images and videos.

Recent years have seen major advancements in automated data processing
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and interpretation because to the development of Deep Learning. One of

the advantages of Neural Networks is the ability to adapt and progressively

learn how to compute the solution to a given problem with the aid of learn-

ing phases. Training entails adapting the parameters of the various levels

throughout the backward propagation phase in order to reduce the differ-

ence between the value generated and the expected value. The sub-domains

of this Object Detection include things like face detection, activity recogni-

tion, image annotation, and many others. Applications for Object Detection

can be found in a number of significant fields, including self-driving cars,

robots, video surveillance, object tracking, etc.

1.2 YOLO, You Only Look Once

As already said, Object Detection has a wide variety of uses, including au-

tonomous driving, the detection of aerial objects, text detection, surveillance,

search and rescue missions, robotics, the recognition of faces and pedestrians,

visual search engines, the calculation of things of interest, brand detection,

and many more.[5]

The main obstacles to object detection are:

• Processing of low-resolution visual contents.

• Handling varied sized multiple objects in an image.

• Availability of labelled data.

• Handling overlapping objects in visual content.

• The occupancy of an object in an image has an inherent variation, such

that objects in an image may occupy majority of the pixels, or 0,70 to

0,80, or very few pixels, or 0,10 or even less. [5]
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Fast, precise, and able to distinguish a range of items should all be charac-

teristics of general-purpose object detection. The advent of Neural Networks

has accelerated the speed and precision of detection frameworks. However,

the majority of detection techniques are still limited to a few types of objects.

Compared to datasets for other tasks, like classification and tagging, object

detection datasets currently available are small. The most popular detection

datasets include tens of thousands to several hundred thousand images along

with a few dozens to several hundred tags. Classification datasets have mil-

lions of images with tens of thousands or hundreds of thousands of categories.

Detection should be scalable to the level of object classification. [8]

The object detection field has advanced tremendously over the past few years

as a result of a significant amount of study. The performance of the algo-

rithms has attained levels of accuracy and precision that have never been

higher. The fundamental goal in this field is to mimic the functions and

skills of human eyes in terms of object recognition after only a single glance.

There are now several algorithms that are especially effective at doing this.

The detection accuracy is increasing significantly with the introduction of

YOLO algorithm (You Only Look Once) and its architectural descendants,

and it is occasionally better than two stage detectors. YOLO versions are

frequently used in a variety of applications due to their quick conclusions and

precise identification. For example, YOLO9000, one of the various YOLO

variations, is a real-time object detector that can recognize over 9000 dif-

ferent item types. The model is trained on more than 9000 classes from

ImageNet as well as detection data from COCO using the dataset combina-

tion approach and joint training algorithm. [8] In light of this, it is possible

to study this innovative model and its object identification technique.
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Figure 1.1: The Yolo Detection System [9]

YOLO is a special Neural Network because it has an architecture that is

incredibly fast. Because the entire detection pipeline consists of a single net-

work and can be improved end-to-end based solely on detection performance.

The model has undergone numerous iterations over the years in an effort to

increase accuracy and speed. This algorithm’s major objective is to mimic

how individuals perceive the world: after taking just one look at something,

it can promptly and accurately identify it. [9]

1.2.1 The Algorithm

As was previously said, the YOLO method is a real-time object recognition

system for images and videos. It is extremely quick while maintaining a high

level of accuracy and precision because of its architecture. YOLO is refresh-

ingly simple. A single neural network predicts multiple bounding boxes and

class probabilities for each box. While training on entire pictures, YOLO

instantly improves detection performance. It redefines object recognition as

a single regression problem by replacing image pixels with bounding box co-

ordinates and class probabilities. It is possible to see a general representation

of how it works in Figure 1.1.

It can tell what things are and where they are located by only taking a

single look at the image. Unlike classifier-based approaches, YOLO is in-
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credibly quick during testing because it only needs to evaluate one network.

As will be covered in more detail in the chapter’s following section, the grid

design requires spatial variation in bounding box predictions. Due to the fact

that it is frequently clear which grid cell an object belongs in, the network

can only predict one box for each object. [9]

As a result, J. Redmon et al. [9] provide a novel approach to the object

detection issue by integrating the various system components into a single

network and developing the first “one-stage” object detection system. By

simultaneously reasoning about the full image rather than just a few parts,

the network is able to better understand the environment in which the var-

ious object classes are situated. Additionally, by doing so, it establishes an

implicit connection between object classes that are actually connected.

The authors of YOLO [9] have changed the definition of the Object De-

tection problem from classification problem to regression problem. A single

Convolutional Neural Network is used to forecast the bounding boxes and as-

signing class probabilities to each of the detected objects shown in an image.

As said before, this algorithm just needs to look at the image once to rec-

ognize the objects and their locations using boundary boxes. The difficulty

comes from precisely identifying many items and determining their exact

locations within a single visual input. Two fundamental Convolutional Neu-

ral Network (CNN) characteristics, parameter sharing and multiple filters,

are capable of successfully addressing this Object Detection issue. When

discussing YOLO, a number of other criteria in addition to those already

mentioned must be taken into account. Different qualities that explain why

this model can be considered as innovative can be found.

• Speed: Because it doesn’t deal with complicated pipelines, it is incred-
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ibly quick. It has a 45 Frames Per Second (FPS) image processing

speed. YOLO is one of the best choices for real-time processing since

it can achieve more than twice the mean Average Precision (mAP)

compared to other real-time systems. [12]

• High accuracy: The YOLO prediction method provides precise findings

with few background mistakes. [6]

• Learning capabilities: The algorithm has great learning capabilities

that allow it to pick up on object representations and use them for

object detection. [6]

• Good generalization: This is especially accurate for the newest YOLO

iterations. With those improvements, YOLO went a little further and

offered improved generalization for new domains, making it ideal for

applications that require quick and reliable object identification. [12]

• Open source: Making YOLO open source encouraged the community

to continuously enhance the model. This is among the factors that

have contributed to YOLO’s rapid rise. [12]

Understanding what is actually being forecasted is crucial to comprehen-

sion of the YOLO algorithm. Predicting an object’s class and the bounding

box that specifies the object’s position is the ultimate goal. There are four

descriptors that can be used to describe each bounding box:

• x, y, the center of the box;

• Width of the box;

• Height of the box;
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Figure 1.2: The Model [9]

• Value c, corresponding to the class of an object.

Additionally, it is forecasted a real number Pc, which represents the prob-

ability that an object is present within the bounding box. Instead of looking

for potential object-containing regions in the input image, YOLO divides the

image into cells, usually on a 19 x 19 grid. Each cell is then accountable for

estimating K bounding boxes. Only when the anchor box’s centre coordi-

nates fall within a given cell is an object considered to be in that cell. This

parameter causes the height and width to always be calculated relative to the

entire image size while the centre coordinates are always calculated relative

to the cell. [14]

YOLO calculates the likelihood that a specific class is present in the cell

during the first run of forward propagation. The class with the highest prob-

ability is selected and put in that specific grid cell. For each of the grid

cells shown in the image, a similar process takes place. [14] This is shown in
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Figure 1.2.

The architecture of this Neural Network will be discussed in further detail in

the sections that follow, with an emphasis on both its advantages and dis-

advantages as well as comparisons to other object recognition models. The

framework used is another crucial factor to pay attention to when implement-

ing a Neural Network and working with Deep Learning in general. These are

open-source interfaces, frameworks, or technologies that even someone with

little background in AI and machine learning may simply integrate. It is pos-

sible to upload data and train a Deep Learning model with the support of

these frameworks, which will result in precise and understandable predictive

analysis.

Here we have some framework examples:

• A recent Deep Learning framework built on Torch is called PyTorch.

It was created by Facebook’s AI research team and made available on

GitHub in 2017 for applications involving Natural Language Process-

ing. The reputation of PyTorch is one of simplicity, use, adaptability,

effective memory usage, and dynamic computational graphs. Addition-

ally, it feels native, which speeds up processing and simplifies coding.

• A complete, open-source Deep Learning framework called TensorFlow

was created by Google and released in 2015. It is renowned for its sup-

port for many abstraction layers, scalable production and deployment

options, and compatibility for various platforms, including Android. It

is a symbolic math library for Neural Networks that works best with

dataflow programming for a variety of purposes. It offers a flexible,

complete ecosystem of community resources, frameworks, and tools

that simplify creating and deploying machine learning programs. It is
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a promising and quickly expanding entering into the Deep Learning

arena. Additionally, TensorFlow now uses Keras, making it difficult to

compare the two.

• Python-based Keras is a powerful high-level Neural Network Applica-

tion Programming Interface (API). This open-source Neural Network

framework can operate on top of CNTK, TensorFlow, and Theano and

is made to allow for quick experimentation with deep neural networks.

The three main goals of Keras are modularity, usability, and extensibil-

ity. Low-level computations are passed off to the Backend, a different

library, rather than being handled by it. In the middle of 2017, Keras

was adopted and incorporated into TensorFlow. It is accessible to users

through the tf.keras module. The Keras library can still function inde-

pendently and individually, though.

Both TensorFlow and PyTorch provide practical abstractions that sim-

plify model creation. They vary because TensorFlow provides a multitude

of options, whereas PyTorch takes a more “pythonic” and object-oriented

approach. Even though PyTorch is the least well-known of the three main

frameworks, it is still used for many Deep Learning projects today. Py-

Torch is the tool of choice for researchers that need flexibility, debugging

tools, and quick training times. TensorFlow is the preferred tool due to

its well-documented framework, amount of trained models, and tutorials.

Better visualization provided by TensorFlow enables developers to more ef-

fectively debug and monitor the training process. But PyTorch only offers

a small amount of visualization. Because of the TensorFlow Serving frame-

work, TensorFlow outperforms PyTorch when it comes to delivering trained

models into the real world.
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PyTorch and Keras are both excellent, but developers who want a plug-

and-play framework that enables them to design, train, and evaluate their

models rapidly should choose Keras over PyTorch. Additionally, Keras pro-

vides simpler model export and more deployment options, but PyTorch is

quicker and offers better debugging capabilities than Keras. Both platforms

are well-known enough to provide a wealth of educational content. PyTorch

offers an exceptional community and active development, while Keras has

excellent access to reusable code and tutorials.

While Keras is a high-level neural network library that runs on top of

TensorFlow, that is an open-sourced end-to-end platform, library for many

Machine Learning tasks. Both offer high-level APIs that make it simple to

design and train models, while Keras is more approachable due to the inclu-

sion of Python. When dealing with massive datasets and object detection

and needing top-notch functionality and fast performance, researchers turn

to TensorFlow. After weighing all of these frameworks, it was decided to

employ Yolo on Tensowflow to carry out the signature detection project.
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1.2.2 The Architecture

The model has undergone some improvements over time, but the dominant

model idea has not changed.

Figure 1.3: The Architecture [9]

Network Design

Convolutional Neural Networks are used to create this model, which Redmon

J. et al.[9] evaluate using data from the PASCAL VOC 2007 and 2012 detec-

tion dataset. While the fully connected layers of the network anticipate the

output probabilities and coordinates, the initial convolutional layers extract

features from the image.

The design of YOLO was heavily influenced by that of GoogleNet, al-

though instead of its initial modules, (1 x 1) convolution followed by (3 x 3)

convolutional filters were used, with a 7 x 7 filter only present in the first con-

volutional layer. As seen in Figure 1.3, YOLO has 24 convolutional layers, of

which only four are followed by max-pooling layers. These 24 convolutional

levels are then followed by 2 fully connected layers. The method makes use

of global average pooling and (1 x 1) convolution.

The final level of YOLO employs a linear activation function, while all
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other levels employ the following activation function: [7]

The authors simply use 11 reduction layers followed by 3 x 3 convolutional

layers in place of the inception modules utilized by Google Neural Network.

The 7 x 7 x 30 tensor of predictions is the network’s ultimate output. [9]

Unified Detection

The technique combines many elements of object detection into a single Neu-

ral Network, as was already stated in the previous section. To predict each

bounding box, this network takes features from the full image. Addition-

ally, it simultaneously predicts all bounding boxes for a picture across all

classes. This indicates that the network considers the entire image and all

of its objects when making decisions. The Yolo design maintains excellent

average precision while enabling end-to-end training and real-time speeds. [9]

The algorithm used in this Object Detection procedure divides the input

image/frame into S x S grid cells, and each grid cell predicts B bounding

boxes together with their locations and dimensions, the probability that an

object will be found in the underlying grid, and conditional class probabili-

ties. The basic idea behind an object being detected by any grid cell is that

the object’s centre must lie within that grid cell, and the cell in question is

responsible for detecting that object if its centre does so. Formally, it fore-

casts the bounding boxes and confidence levels for each box in a grid. The

model’s level of confidence in the box’s object-containment and how accu-

rately it thinks the box will be predicted are both shown by these confidence

scores.
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Bounding box-specific parameters include the following: pc represents the

probability of containing an object in the grid by the underlying bounding

box; bx and by indicate the center of the predicted bounding box; bh and

bw represent the predicted dimension of the bounding box, p(ci) means con-

ditional class probability that the object belongs to ith class for the given pc

and n is the number of classes/categories. A grid cell predicts (B × 5 + n)

values, where B is the number of bounding boxes per grid cell. The output

tensor shape would be S × S× (B × 5 + n) as the image is divided into S ×

S grid cells.

When the input image is divided into, for instance, 19 x 19 grids and four

bounding boxes are predicted for each grid, the final schematic of the output

tensor prediction is shown in the following figure, where class probabilities are

distributed among all the bounding boxes for a given grid. For each bounding

box within a grid, the confidence score cs is a value that is assigned to each

grid cell and predicts the bounding boxes. It represents both the probability

that an item will be located within the bounding box Pr(Object) and how

correctly the size and position of the bounding box are considered to be

related to the object, the IOU truth pred. It is calculated by multiplying

the probability pc by the intersection over union (Figure 1.4) between the

predicted and actual bounding box.

Formally, confidence is defined as Pr(Object) * IOU(truthpred). The

confidence ratings should be zero if there is no object present in that cell. If

not, the confidence score is needed to be the same as the Intersection Over

Union (IOU) between the predicted box and the actual data. The centre of

the box in relation to the boundaries of the grid cell is represented by the

(x, y) coordinates. Relative to the entire image, the width and height are

predicted. The IOU between the projected box and any ground truth box
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Figure 1.4: Dividing the image into grid cells and predictions corresponding

to one grid cell [5]

is represented by the confidence prediction, which is the last step. The C

conditional class probabilities, Pr(ClassijObject), are likewise predicted for

each grid cell. These probabilities depend on the grid cell in which an object

is located. [9]

Figure 1.5: IOU metrics representation [4]

These bounding boxes typically vary in size while taking into account

various shapes for capturing the various objects. A Bounding Box should

be used to identify an object in the image such that the object’s center

falls inside the Bounding Box. The centers of many objects could, however,

coexist in the same box. The boxes that correspond to a single grid cell were

referred to by the authors as Anchor Boxes, using a distinct terminology.

After examining the dataset and its underlying objects, a set of standard

bounding boxes known as “Anchor Boxes” were chosen.
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By taking into account various width and height combinations, such as

square, vertical or horizontal rectangle, etc., to suit the aspect ratio and size

of all the items available in the dataset, these selected anchor boxes should

reflect the majority of classes/categories. In order to forecast the overlapping

bounding boxes for the same object, adjacent grid cells may also predict that

object. Because neighbouring grid cells might suppose the item center falls

within of them, there would therefore be several predictions.

Figure 1.6a shows the multiple bounding box prediction for an object,

whereas Figures 1.6b and 1.6c show the high and low overlapping between

the predicted box and the actual ground truth, respectively. It is crucial to

find a solution to the problem of the same object being detected by several

grid cells or multiple bounding boxes of the same grid cell.

Figure 1.6: Multiple bounding boxes and their overlapping with the ground

truth (a) Multiple bounding boxes (b) high overlapping (c) low overlapping

[5]

Each bounding box in every grid will now have a class-specific score, box

coordinates, and classification output category associated with it. There will

be a total of S2 x B predicted boxes, and boxes with class scores below a

certain minimum threshold will be eliminated. In most Object Detection

algorithms, this threshold is typically fixed to 0.5, however it may change

based on the dataset and its properties. Low probability of an object being

present in that grid or low probability of any class category that optimizes the
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Figure 1.7: The effect of Non-Max Suppression in Object detection using

YOLO [5]

class score may be the cause of a low score. A smaller number of bounding

boxes remain, but their count is still very high after being eliminated with

the help of some threshold.

Non-max suppression, which also has the IoU as a foundation, is the second

criterion for eliminating the less important bounding boxes. Fig. X displays

the non-max suppression’s effect.

Internally, Non Max Suppression makes use of the crucial idea of IoU [4],

which may be computed for two boxes as shown in Figure 1.7. The box with

the highest-class score is initially chosen. All additional bounding boxes that

overlap the selected box will be ignored if their IoU exceeds a certain cutoff.

As previously mentioned, the model predicts each bounding box with

five values: x, y, w, h, and the confidence score Pr(Object) * IOUtruth pred,

where (x, y) are the coordinates of the bounding box’s centre with respect

to the grid cell’s edges, and w and h represent the bounding box’s width and

height, respectively, in relation to the entire image.[7]

Regardless of how many produced bounding boxes are generated, each

grid cell forecasts the C classes using its conditional probability Pr(ClassijObject).
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The model now calculates a class-specific confidence score for each bounding

box by multiplying the conditional probabilities of the classes of the cell by

the bounding box’s confidence score:

Pr(ClassijObject) ∗ Pr(Object) ∗ IOUtruth

= pred = Pr(Classi) ∗ IOUtruthpred

The result represents the likelihood of an object belonging to a particular

class occurring within the bounding box under consideration as well as the

accuracy with which the stated bounding box delimits the object’s spatial

contours.[7]

Training

The authors [9] claim that YOLO training is divided into two stages: a first

pre-training stage in which only the deeper layers are trained, and a second

training stage in which the entire network is trained.

Phase I: Pre - Training Only the first 20 convolutional layers, along

with an average-pooling level and a fully connected level, are trained when

the training process is first started, according to the authors of YOLO. The

ImageNet 1000-class competition dataset with input photos of size 224 x 224

pixels is used for this purpose. After about a week of training, the model

had an accuracy of about 88 percent on the ImageNet 2012 validation set.

Phase II At this point, J. Redmon et al.[9] removed the last two layers

of the network - added specifically for the first part of the training - to add
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four more convolutional layers, followed finally by two fully connected layers.

This time, the model is trained on images with twice the resolution (448 x

448 pixels), as accurate and generic object detection models need precise in-

formation to improve. According to the authors’ design, the second training

phase includes 135 iterations using the training and validation sets for PAS-

CAL VOC 2007 and PASCAL VOC 2012. A batch size of 64, a momentum of

0.9, and a decay of 5 x 10 x 4 were used during training. The model contains

a 50% dropout level after the first fully connected layer to prevent coadapta-

tion between fully connected levels, which reduces overfitting. Additionally,

data augmentation techniques were employed to reduce this phenomenon:

the model transforms the input pictures by adding translations and altering

the dimensions by up to 20% from their original features before using them.

Additionally, a factor of 0 to 1.5 is used to alter the photos’ exposure and

saturation. [7]

Both the probabilities of the classes and the coordinates of the bounding

boxes for the recognized objects are predicted by the network’s final layer.

According to the size of the input image, the model normalizes the bounding

boxes’ width and height so that their values fit inside the real range between

zero and one.

In order for the center of the bounding boxes to also fall into the range

between zero and one, it is normalized and expressed in reference to the

cell of the grid to which it is assigned. With regard to the learning rate,

the authors noted that the model often diverges towards unstable gradients

when trained from the beginning with high levels of this parameter. For this

reason, the learning rate starts from a low value, 10 x 3, and then according

to the following pattern: The learning rate gradually grows over the first few
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epochs until it reaches a value of 10 x 2, then it stays the same until epoch

75, before changing to a rate of 10x3 for the subsequent 30 epochs and a rate

of 10 x 4 for the final 30.

The Loss Function The function used to determine the error should be

carefully chosen given the model’s complexity. Because it is simple to op-

timize, the authors chose to employ a quadratic error; nevertheless, this

decision does not align well with the goal to maximize the mean accuracy of

the forecasts. Classification mistakes are compared to location errors using

this method. Additionally, many grid cells in each image can be empty. As

a result, these cells’ confidence score is pushed towards zero, frequently in-

creasing the influence of the gradients produced by them. According to the

authors, all of this can make the model more unstable and cause it to diverge.

The authors fix this issue by decreasing the gradient gained from bound-

ing boxes that do not contain objects and increasing the gradient obtained

from those that do. They use two parameters, lcoord and lnoobj, respec-

tively, to do this. These parameters are set to lcoord = 5 and lnoobj = 0.5

by default.

The loss functions have undergone changes over the years. The prediction

made by the model for nearby items was inadequate because the original

YOLO, version 1, makes the same mistake for both large and small objects.

Two objects can only be identified if they appear in the same grid, making

it difficult to detect little things. The new loss function is better and more

adaptable than the previous one. The proportionality takes the place of the

initial difference in the new loss function. YOLOv1’s initial loss function
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used a single loss function for both object categorization and bounding box

calculation. Now it is possible to divide the loss function in five parts, each

of them is focused on a different aspect of the model: parts 1 and 2 are

concerned with the loss of the bounding box coordinates; parts 3 and 4 are

concerned with the difference in the confidence that an object is present in

the grid; and part 5 is concerned with the difference in class probability.[2]

The loss function of YOLO consists of:

• The classification loss,

• The localization loss (the spatial error between the predicted and the

actual bounding box),

• The confidence loss (the overall error of the bounding box, i.e., the

error in the calculated confidence score).

We will see each of them in the next pages.

The Classification Loss It determines whether or not the recognized class

matches to the object specified in the image by computing the error in the

categorization of a particular object. If a grid cell is thought to be in charge

of a specific object, then it is also in charge of classifying that thing. The

quadratic function used to determine the conditional probabilities of the

recognized class with regard to each class is what causes the error in this

operation: [7]

S2∑
i=0

1obji

∑
c∈classes

(pi(c)− p̂i(c))
2 (1.1)
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The Localization Loss It measures the error in the prediction of bounding

boxes, i.e. the height, width and centre coordinates. Only bounding boxes

that are in charge of identifying an object are used by YOLO to calculate

this mistake. The localization error is computed as follows:

λ(coord)
S2∑
i=0

B∑
j=0

1obji

[
(xi − x̂i)

2 + (yi − ŷi)
2]

+ λ(coord)
S2∑
i=0

B∑
j=0

1objij

[(√
wi −

√
ŵi

)2
+
(√

hi −
√
ĥi

)2
]

The lambda coord and lambda noobj are scalars to weight each loss func-

tion, It is clear that the error with respect to the size of the bounding box

is calculated on the square root of the values. This is done so that faults of

different sizes will not be treated equally. For instance, a 2-pixel inaccuracy

can be significant in a bounding box of 30 pixels but insignificant in one of

500 pixels. [7]

The Confidence Loss It measures how objectively the forecast produced

with just one bounding box was made. If, given a bounding box, the model

detects an object within it, the following formula is used to determine the

confidence loss:

S2∑
i=0

1obji

B∑
i=0

(Cij − Ĉij)
2 (1.2)

The majority of bounding boxes are empty. As a result, the model be-

comes unbalanced and in reality, is trained more frequently to recognize

backgrounds than objects. To address this, the factor l noobj already seen
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before, with a default value of 0.5, is added to the confidence loss for bound-

ing boxes that do not contain objects. [7]

1.2.3 Comparison with Other Object Detection Mod-

els

To better understand what may be done to enhance the performance of the

studied model, it is useful to examine different Object Detection methods

in the pages that follow. This can be useful to determine which features of

YOLO need to be improved in order for it to outperform all other models.

• Deformable Parts Model (DPM) DPM detect objects using a Sliding

Window method. To extract static characteristics, classify regions, pre-

dict bounding boxes for high scoring regions, and perform other tasks,

DPM employs a disjoint pipeline. In YOLO, a single Convolutional

Neural Network takes the place of all of these various components.

The network simultaneously executes contextual reasoning, bounding

box prediction, Non-Maximal Suppression, and feature extraction. The

algorithm trains the features in-line and makes them more effective for

the detection task rather than using static features. The YOLO inte-

grated design produces a model that is faster and more precise than

DPM.

• R-CNN This algorithm is considered as one of YOLO’s main competi-

tors.

Instead of using sliding windows to find items in photos, it uses region

proposals. Potential bounding boxes are generated by Selective Search,

features are extracted by a Convolutional Neural Network, the boxes

are scored by an SVM, the bounding boxes are adjusted by a linear
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model, and duplicate detections are eliminated by Non-Max Suppres-

sion. The outcome is an extremely slow system that takes more than

40 seconds per image during test time because each stage of this in-

tricate pipeline must be carefully tuned independently. YOLO and

R-CNN have some parallels. Potential bounding boxes are suggested

for each grid cell, and those boxes are then scored using convolutional

features. To counteract multiple detections of the same object, YOLO,

however, places spatial constraints on the grid cell proposals. Addi-

tionally, YOLO suggests 98 bounding boxes per image as compared

to around 2000 from Selective Search. YOLO technology then merges

these various parts into a single, jointly optimized model.

• Other Fast Detectors Fast and Faster R-CNN They focus on acceler-

ating the R-CNN architecture by sharing computing and substituting

neural networks for selective search when proposing regions. Both fall

short of real-time performance despite being faster and more accurate

than R-CNN. The DPM pipeline’s speed is the topic of numerous re-

search projects. They leverage cascades, accelerate HOG computing,

and direct processing to GPUs. Only 30Hz DPM, though, operates in

real time. YOLO discards the entire detection pipeline instead of try-

ing to optimize individual parts of it and is quick by design. Since they

must deal with significantly less variation, single class detectors like

those for faces or individuals can be greatly tuned. YOLO is a general-

purpose detector that can simultaneously learn to detect a wide range

of objects.

• Deep Multibox Instead of using Selective Search, a Convolutional Neu-

ral Network is used to anticipate regions of interest. By substituting
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a single class prediction for the confidence prediction, MultiBox is also

capable of doing single object detection. Multi-Box is still only a com-

ponent of a broader detection pipeline and is unable to detect general

objects, necessitating additional picture patch categorization. Both

YOLO and MultiBox predict bounding boxes in an image using a Neu-

ral Network, while YOLO is a full detection system.

• OverFeat Convolutional Neural Networks are used in this system to

accomplish localization and then modify the localizer to carry out de-

tection. Although OverFeat effectively detects sliding windows, the

system is still fragmented. Not the performance of detection, but lo-

calization, is optimized by Over-Feat. The localizer, like DPM, only

considers local data while producing a prediction. Due of OverFeat’s

inability to reason about global context, extensive post-processing is

necessary to create coherent detections.

• MultiGrasp YOLO shares design elements with research on grip detec-

tion. The MultiGrasp method for regression to grasps serves as the

foundation for the grid approach to bounding box prediction. But un-

like object detection, grip detection is a lot easier task. For an image

with a single object, MultiGrasp simply needs to anticipate a single

graspable zone. Finding a region that is suitable for grabbing is all

that is required; it need not estimate the object’s size, location, or

borders or forecast its class. For many objects belonging to various

classes in an image, YOLO forecasts bounding boxes as well as class

probabilities. [9]

Since YOLO can also detect objects in real-time, it’s crucial to compare it
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to other real-time object detection algorithms by evaluating how well they

perform on PASCAL VOC 2007. Examining the errors made by YOLO and

Fast R-CNN, one of the most effective forms of R-CNN, on VOC 2007 is cru-

cial to comprehending the distinctions between YOLO and R-CNN variants.

Based on the different error profiles, it is possible to demonstrate that YOLO

may be utilized to improve the performance of Fast R-CNN detections by

rescoring them and reducing the mistakes from background false positives.

On two datasets of artwork, it is possible to demonstrate that YOLO gener-

alizes to new domains better than other detectors by presenting the results

from VOC 2012 and contrasting them with state-of-the-art techniques. [9]

Comparison to Other Real-Time Systems Making standard detec-

tion pipelines quick is a major focus of object detection research. Only a few

researchers have been successful in creating a real-time detection system, de-

spite several attempts. It is particularly helpful to compare the performance

of YOLO to the Deformable Parts Model system. There are some differences

between YOLO and the GPU implementation of DPM, which operates at

30Hz or 100Hz. Some elements are obvious even though the other efforts fall

short of the real-time benchmark when comparing their relative mAP and

speed to analyze the accuracy-performance trade-offs accessible to object de-

tection algorithms.

As far as we are aware, Fast YOLO is the quickest object detector cur-

rently in use. It is also the fastest object detection method on PASCAL. It

is more than twice as accurate at 52,7% mAP as previous real-time detec-

tion attempts. YOLO increases real-time performance while increasing mAP

to 63,4%. It is also used VGG-16 to train YOLO. This model is substan-
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tially slower than YOLO, but it is also more accurate. Although it is useful

for comparison to other VGG-16-based detection systems, the remainder of

the paper concentrates on faster models because it is slower than real-time.

Fastest DPM effectively increases DPM without significant mAP loss, but

real-time performance is still 2 times slower. Additionally, it is constrained

by DPM’s very poor detection accuracy in comparison to neural network

methods. Static bounding box proposals are used instead of Selective Search

in R-CNN. Even while it is far faster than R-CNN, it still lacks real-time

capabilities and suffers greatly in accuracy due to the poor quality of its

proposals. [9]

Fast R-CNN accelerates the classification phase of R-CNN, although it

still relies on Selective Search, which may generate bounding box proposals

after about two seconds per image. It has a high mAP as a result, but at

0,5 fps, it is still not real-time. The latest Faster R-CNN proposes bounding

boxes instead of selective search. Their most accurate model performs at

7 fps in the tests, while a smaller, less accurate model performs at 18 fps.

Faster R-CNN’s VGG-16 variant is 10 mAP faster than YOLO but 6 times

slower. Only 2.5 times as slow as YOLO, the Zeiler-Fergus Faster R-CNN is

also less accurate. [9]

1.2.4 YOLO’s Features

Error Performance Analysis

Redmon J. et al.[9] analyse the YOLO error performance, after completing

the training phase on the VOC 2007 dataset and contrasting it to Fast R-

CNN, one of the best models, with the best performance using PASCAL

setups. The N best forecasts for each object category can be determined
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Figure 1.8: Errors analysis Fast R-CNN vs. YOLO [7]

during the testing process.

It is possible to determine whether or not a category is accurate, if an

error exists, and what kind of error it is:

• Correct: the appropriate category, IOU higher than 0.5;

• Localization: the appropriate category, IOU between 0.1 and 0.5;

• Similar: a related class, IOU higher than 0.1;

• Other: the inappropriate class, IOU higher than 0.1;

• Background: IOU smaller than 0.1, independently from the category

type. [7]

The distribution of various error types on a sample of 20 object classes is

depicted in the following Figure 1.8.

It is instantly obvious from a comparison of the test results from YOLO

and Fast R-CNN that YOLO has some localization issues. These errors are

more prevalent in YOLO compared to all the others, whereas Fast R-CNN

produces less errors overall but more background errors. Since 13.6% of Fast
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R-CNN predictions are false-positives, no objects are present in the bounding

boxes. Looking back at this comparison it is evident that Fast R-CNN tends

to produce background forecasts three times more frequently than YOLO. [7]

In order to continue to consider the distinctions between these two ap-

proaches, we could compare the most recent release of YOLO, version 5, with

the latest and quickest version of Fast R-CNN, known as Faster R-CNN. The

performance of both models and their limits can be better understood from

the table that is presented below. It is clear from their weaknesses alone that

both have an issue with the presence of missing objects, those that the model

is unable to recognize. The table demonstrates that performance for YOLO

is good in all other aspects, while performance for the second model is not

considered as reliable. As a result, YOLO proves to be superior in terms of

the speed of inference, the detection of small or distant objects, and the issue

of overlapping boxes. Finally, both models are capable of locating items in

chaotic conditions, where it is more challenging to locate the target object

due to the abundance of other objects.

Features Yolo v5 Faster RCNN

Inference Speed YES NO

Detection of small or far away objects YES NO

Little to no overlapping boxes YES NO

Missed Objects NO NO

Detection of crowded objects YES YES

YOLO’s Generalizability

The generalization of the data is unquestionably one of YOLO’s best fea-

tures, second only to its speed. The same model, trained on images of the
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Figure 1.9: Generalization results on the Picasso dataset [7]

natural world, performs well even when used to categorize artistic images,

portraits of paintings, and more generally, artificial images. The Picasso

dataset and the People-Art Dataset, two datasets created to test person de-

tection algorithms on artistic works, were used by the authors to compare

YOLO’s performance with that of other object detection systems in order to

assess the generalizability of YOLO.

The comparison between YOLO’s performance and those of other object

detecting algorithms is shown in Figure 1.9. The VOC 2007 dataset was used

to train the models for the Picasso dataset training phase, while the VOC

2010 dataset was used to test the models on the People-Art dataset. R-CNN

performs exceptionally well on VOC 2007, but this performance significantly

declines when the model is applied to creative imagery. [7]

Using a method designed for natural images, R-CNN uses Selective Search

to find bounding box proposals. When applied to creative photos, DPM

retains its accuracy well. Because DPM has a very good spatial model for

identifying the shape and arrangement of objects, it is hypothesized that it
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functions well with aesthetic imagery. Although DPM does not lose accuracy

when applied to fake images like R-CNN does, the authors of YOLO point

out that it begins with less accuracy when evaluating natural photographs.

[7]

Limitations of YOLO

Since each grid cell can only predict two boxes and only have one class,

YOLO places substantial spatial limits on bounding box predictions. The

number of neighbouring items that the model can predict is constrained by

space. Small items that occur in groups, like flocks of birds, are difficult for

the model to handle. The model finds it difficult to generalize to objects

with novel or odd aspect ratios or configurations since it learns to predict

bounding boxes from data.

Given that the architecture comprises many down sampling layers from

the input image, the model also employs rather coarse features for predicting

bounding boxes. Last but not least, while being trained on a loss function

that roughly represents detection performance, the loss function treats errors

in tiny bounding boxes and large bounding boxes equally. The impact of a

tiny error in a small box on IOU is substantially greater than that of a

small error in a large box. Inaccurate localizations are the primary cause of

inaccuracy. [9]

Although YOLO performs well on VOC 2007, it doesn’t lose accuracy

as much when used on creative photos as the other models under consider-

ation. As DPM, YOLO considers the objects’ size, shape, relationship to

one another, and locations where they appear more frequently. The authors

also discuss how, when considering a small number of pixels, natural and

generated images differ greatly, although, at the same time, forms and pro-
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portions within the same image are highly similar. Given its design, this

contributes significantly to YOLO’s ability to generalize object classes and

produce effective results when used on simulated photos.[9]

Datasets’ availability

The availability of a smaller number of images to use, compared to other types

of machine learning algorithms, is another factor that must be considered

while analyzing the constraints of this model. Since there are fewer images

and datasets accessible for other Machine Learning applications, the majority

of object detection algorithms are actually trained on the same collection of

data and images. A few hundred photos make up the most well-known and

often used dataset in the field of object detection. The datasets utilized for

other classification or regression issues, on the other hand, contain hundreds

of thousands of data. Since one can train these algorithms with a significantly

bigger volume of data than object detection techniques, it is obvious that this

results in better results and performance. [9]

1.2.5 Why YOLO?

Understanding if YOLO is the appropriate model to apply in the current sce-

nario being studied is made much easier by all the strenghts and weaknesses

of the model that have been so far described. Yolo’s single pipeline, which has

already been stated, is what makes it so fast. In addition, the generalisability

component is very intriguing because it enables a more comprehensive under-

standing of the image. The employment of the Non-Maximum Suppression

approach, which enables the removal of superfluous and unnecessary boxes,

is the last factor to take into account. After considering all the features

emphasized in this first chapter, it is important to determine whether Yolo
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should be used instead of a faster or more accurate model. The final choice,

in my opinion, was not exclusively based on the mathematical conclusions

that have been put forth thus far. Yolo’s method of approaching an image,

as already said before, is one of the things that really stood out to me about

it, and it’s also one of the key reasons why I chose to utilize this particular

Neural Network for my project. What does this mean? The object detection

problem is first considered as a regression problem rather than a classifi-

cation one, which is an intriguing characteristic. The algorithm’s ability to

understand how the observed object interacts with the background and other

objects in the image by considering the complete scenario as a whole is a sec-

ond noteworthy innovation. Yolo can recognize objects much more quickly

in videos and more precisely in images if we think that it pays attention to

the entire context, which is in my opinion a very relevant component.

Because of all these aspects and how accurate and precise the model is

as a result, YOLO was picked.

The issue of signature detection is now very widespread, as will be seen

in the following chapter, therefore creative solutions are required to make a

genuinely fascinating contribution to this field of study. YOLO hasn’t yet

been used to recognize signatures on identity documents or to classify and

organize them, so it looks like an innovative and intriguing decision to take

advantage of its capabilities in this area. YOLO’s inability to recognize ob-

jects it has never seen before is one of its limitations, but in this case, it

is obvious that this is not an issue because the only thing that needs to be

recognized is the signature. As a result, there is no danger of YOLO encoun-

tering objects that are too small to be recognized.
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The next chapter will highlight the goal of this project and the practical

use of the algorithm after explaining and delving into how Yolo operates, as

well as its advantages and disadvantages.
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Chapter 2

The Process

2.1 The Project

Nowadays, the problem of detecting and validating signatures is regularly

encountered, and there are numerous ways to fix it. This is the reason why

this work may initially appear simple and straightforward to complete. How-

ever, it is a very intriguing process because there are many factors to take

into consideration, considering that many things could have a bad impact

on the results. The signatures’ issue is usually quite delicate because they

are typically written by hand and then scanned. Examples include how the

page is laid out, where and how the signature is placed, whether there is any

additional handwriting on the page, whether colored backdrops are used, and

how saturated and clear the background is. Because of this, it is difficult to

come up with a workable solution for this situation.

It is also essential to stress that the type of solution to be utilized must be

carefully chosen depending on the results we need and the project’s type of

aim. Why does this matter? We must choose which method best meets our

needs from the several techniques to identify and authenticate a signature.
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The process of recognizing a signature came with several challenges. The

algorithm is trained to recognize a handwritten sign that is typically found

in the bottom left-hand corner, which presents a first barrier. What tran-

spires then if there are additional handwritten signatures on the document

or if the signature is not in the usual position? This was the first thing that

was examined and, if necessary, corrected. It must be said that Yolo made

this situation easier to handle. Yolo is quite good at recognizing only the sig-

nature when it comes to other handwritings, and it is also possible to specify

a probability cutoff below which handwritings are not taken into account.

It must be acknowledged that Yolo still makes mistakes with regard to the

second challenge, the location of the signature, although this was solved by

adding more pictures to the dataset. This made it possible to increase both

the number of pictures used to train the algorithm and the number of pic-

tures used to test it.

The design of the page is still another challenge. The method yields great

results when detection is required to occur on vertical sheets with a white

background and black writing. However, the model’s performance noticeably

degrades when pages are used with colored backgrounds and the page orien-

tation is reversed. When the background is darker, Yolo has a very tough

time recognizing signatures, especially when the color green is present. Due

to this, as we shall see on the next pages, it was necessary to repeat the entire

procedure in order to increase the algorithm’s performance using a dataset

of colored images arranged on horizontal pages. The outcomes of all efforts

will be seen in the upcoming chapter.
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2.2 The Purpose

The idea of detecting signatures came up while I was looking for a system

that could classify papers, particularly identification documents, based on

the presence or absence of a signature. First, it is important to clarify some

project’s aspects in order to reveal its innovative nature. The first point that

needs to be emphasized is that this research and the solution it provided must

be seen in the context of a broader discussion of the field of signature recog-

nition. The signatures’ validation is now the most crucial phase in signature

verification efforts. As a result, finding their location on a page or document

is just a preliminary task that is addressed using less time-consuming and

effort-consuming methods and is consequently given less priority.

On the basis of this supposition, it is clear that the ultimate objective

of this initiative is not the same as signature verification. Due to the fact

that signature verification is a subsequent, and in this case superfluous, step

that may always be added later, and more traditional Machine Learning al-

gorithms won’t be used.

A neural network is typically used in projects that attempt to verify a signa-

ture after it has been trained with a signature dataset to enable it to assess

its legitimacy. The signature detection step is often solved using a Machine

Learning algorithm, which determines if the signature is there or not based on

the examination of the connected components on the document. Frequently,

this step is just skipped, and the Neural Network is trained directly for verifi-

cation using images of each signature that have already been extracted from

the document.

The identification of the signature on a document is equally a crucial step

in the process, particularly for companies that require it when classifying
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digital documents and was given full attention in this thesis topic. Due to

this, it was decided to use a Neural Network also during the identification

step in order to produce findings that were more accurate. Numerous tests

were run, taking into account numerous examples and papers found online,

in order to determine which algorithm was the best. A choice was done after

carefully examining the outcomes found about a dozen images. First, all

other potential Machine Learning algorithms that did not use Deep Learning

were excluded and the search was limited to the field of Neural Networks.

The most successful were then chosen, taking into account the four primary

performance metrics: precision, accuracy, recall, and F1-score.

Finally, the Convolutional Neural Network “YOLO” (You Only Look

Once) was selected. This is an Object Detection algorithm, as was already

seen in the previous chapter. The usage of a Neural Network appeared rea-

sonable because the goal is simply to identify an object (the signature) in a

picture or scanned document. When used, YOLO should produce a dataset

containing all the document’s metadata (including the document’s width and

length, location, length, and width of the signature, as well as the existence

and placement of the logo, along with a final column for specifying whether

the document is “signed” or “unsigned”).

2.3 The Process

In the next pages will be described all the steps that have been followed, in

details.
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Figure 2.1: Tobacco800 dataset

Data Pre - Processing

I referenced the notebook on Github [10] during the entire process, which

demonstrates how to utilize this technique to find signatures and logos on

scanned pages.

Data Description Finding a dataset that was appropriate for the project

was the first step. The Tobacco800 dataset consists of over 1,200 images of

scanned documents in black and white, some of which are signed, some of

which are not, some of which are misaligned, and some of which have addi-

tional pen writing. At least for the project’s initial goal, it was appropriate.

The metadata for each image is stored in XML files in a separate folder in

addition to the one holding the photos. The height and width of the page,

the presence or absence of signatures and logos, and, if any were included,

their coordinates (x, y, width, and height) were all included in each file. This

information was essential for the training process as well as for evaluating

the model’s effectiveness. In Figure 2.1 is shown a small part of the dataset.
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After locating the input data, a data cleaning procedure was required to

transform the images and text files into a format that the algorithm could

understand without causing errors.

The first step was to add all of this data into a dataset with the following

columns:

filename, category, xmin, xmax, ymin, ymax, labels, width,

height, xcenter, ycenter, width norm, height norm, xcenter norm

and ycenter norm.

At this point, it was possible to scale data. First, YOLO has an hight

and a width that must be the same for all the images: max height = 640 &

max width = 480. In the following lines of code, is shown the function that

pass through each image, read the image and set the maximum height and

width, reshaping the entire size of the images.

1 def scale_image(df):

2 df_new = []

3 file_name = data[’prev_filename ’]

4 X, Y, W, H = map(int , data.x), map(int , data.y), map(int ,

data.width), map(int , data.height)

5 for file , x, y, w, h in zip(file_name , X, Y, W, H):

6 image_path = BASE_DIR + file

7 img = cv2.imread(image_path) #return a numpy array

8 page_height , page_width = img.shape [:2]

9 max_height = 640

10 max_width = 480

At this point, it is needed to compute again all the images’ coordinates

and measures, related to the position of signatures and logos on the image.

How to do that? Creating a factor that must be multiplied with all the

original coordinates, named the Scaling Factor. As shown in the lines of

code below, the scaling factor is equal to (maximum height/height of the
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page) when the image’s height is greater than its width, and it is equal to

(maximum width/width of the page) when the image’s width is less than the

scaling factor.

1 # computes the scaling factor

2 if max_height < page_height or max_width < page_width

:

3 scaling_factor = max_height / float(page_height)

4 if max_width/float(page_width) < scaling_factor:

5 scaling_factor = max_width / float(page_width

)

Now we can reshape all the page’s measures using this factor: height ∗

scalingfactor and width ∗ scalingfactor. The scaling factor is then multi-

plied by each of the values of x, y, w, and h to recalculate them. Finally,

we generate a brand-new dataset containing all fresh values for the scaled

images. Additionally, the “category” column, which has the options Logo or

Signature, is changed to a numerical value: 0 for Logos and 1 for Signatures.

This is the most important column, because it represents the value that Yolo

will check when it has to determine if a document is signed or not.

1 # scale the image with the scaling factor

2 img = cv2.resize(img , None , fx=scaling_factor , fy

=scaling_factor , interpolation=cv2.INTER_AREA)

3 #INTER_AREA: method that decides which pixel gets

which value based on its neighboring pixels and the scale

at which the image is being resized.

4 jpg_filename = file [:-4] + ’.jpg’

5 new_file_path = SAVE_PATH + jpg_filename

6 cv2.imwrite(new_file_path , img) # write the scales

image

7

8 # save new page height and width
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9 page_height , page_width = page_height*scaling_factor ,

page_width*scaling_factor

10 # compute new x, y, w, h coordinates after scaling

11 x, y, w, h= int(x*scaling_factor), int(y*

scaling_factor), int(w*scaling_factor), int(h*

scaling_factor)

12 row = [jpg_filename , x, y, w, h, page_height ,

page_width]

13 df_new.append(row)

14 return df_new

15 scaled_data = scale_image(data)

The images can now be converted into the YOLO-required format. How?

The following lines of code provide four newly defined functions. Each one

reshapes a different measure. X center and y center functions will compute

the new coordinates for the signatures’ and logos’ central point. W norm and

h norm functions will compute the normalized signatures’ and logos’ width

and height.

1 def x_center(df):

2 return int(df.x_scaled + (df.w_scaled /2))

3 def y_center(df):

4 return int(df.y_scaled + (df.h_scaled /2))

5

6 def w_norm(df , col):

7 return df[col]/df[’page_width_scaled ’]

8 def h_norm(df , col):

9 return df[col]/df[’page_height_scaled ’]

At this point, we have almost 1200 images reshaped with the measures

needed by the Yolo. Another step is needed to prepare the dataset to the

training phase. The data that will be used for training needed to be prepared

after the pre-processing phase was finished. To train a Machine Learning
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model it is necessary to sort the data in two folders, one for the training and

one for the test phase, this will ensure that the data used in that training

won’t be used again in the testing phase, having an effect of the results and

the performance parameters. In this case, images are divided randomly by

default with percentage of around 60% for the training and around 40% for

the testing.

At this point, the situation is as follows:

• Folder with images, which contains “Valid” and “Train”

• Folder with labels, which contains “Valid” and “Train”

The training phase is now ready to begin.

2.3.1 Training

Another important step to ensure the realization of the process is the du-

plication of Ultralytics’ GitHub repository [11], which contains everything

needed to use YOLO, is the initial step in order to move forward with the

training. Additionally, all dependencies and necessary libraries must be in-

stalled. As said before, this project will use an algorithm that already exists,

we are only going to apply it to a specific case. The directories for the train

and test set, that is, the earlier generated folders “Train” and “Val”, the

number of classes to be identified, in this case two: signatures and logos, and

the class names “Signature” and “Logo” must now all be added to a .yaml

file. In this way the Neural Network will be able to find the right images

to train using this approach. Selecting the model needed is required before

training begin. It is possible to select the version of YOLO that best suits

the project because, as was demonstrated in the previous chapter, several
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variations have been created over time. All of the models that were made ac-

cessible on Github were tested to see which one generated the best outcomes.

The Yolov5s model, which is the fastest and seems to be the most accurate

of all the versions available, was chosen. Now it is possible to go on with the

training phase. The following line of code shows what the Neural Network

needs to start the process. First, the directory for the training python code in

the Yolo repository. Secondly, the image height and the number of batches.

Third, number of epochs. Then, the directory to the .yaml file. Finally, the

directory for the chosen version of the model, and the name of the .yaml file.

1 !python /content/yolov5/train.py --img 640 --batch 8 --epochs

100 --data /content/bcc.yaml --cfg /content/yolov5/models

/yolov5s.yaml --name BCCM

The choice of 100 epochs was made since, when a higher number was

tried, the findings remained the same and, when the number was increased

even further, there was a risk of overfitting. Additionally, the 100-epoch re-

sults were satisfactory, so there was no need to alter them.

It was required to select the appropriate model version before going on to

examine the results in more detail. There are different variations since accu-

racy and precision have been increased through numerous adjustments over

time. Due to this, a test was run throughout both the training and testing

phases to determine which model produced the best outcomes.

Every YOLO variant has a unique set of qualities and yields a unique

set of outcomes, as seen in the figure above. Yolov5s would seem to be the

fastest, while Yolov5x would seem to be the most accurate. It is best to con-

firm with the available data which version is truly the most suitable to ensure

that they are the versions most appropriate for the project’s objective. The
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Figure 2.2: Yolo Models performances [13]

four previously specified performance metrics for this model were computed,

and they will be covered in more detail on the next pages. You can see how

the same process was used for every variation of the model’s version 5 in

the accompanying figures. Although the performances in the tables are very

similar, the model with the best performance was chosen.

The first attempt has been done with the Yolov5x model, because it is slower,

but it seems to be also the more accurate.

The results for train and test are the same and are shown in the following

table:

Yolov5x Accuracy Precision Recall F1-score

Signature 0,79 0,61 0,99 0,76

Logo 0,84 0,71 0,90 0,79

After looking at the confusion matrix results, it was possible to compute

the four-performance metrics. Accuracy is quite good with 0,79 for signa-

tures and 0,84 for logos. Precision is lower, with a score of 0,61 for signatures

and 0,71 for logos. Recall is very high, with a score of 0,99 for signatures

and 0,90 for logos. Finally, the signatures’ F1 score is 0,76 and logos’ score

is 0,79.
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The first evident aspect is that the performance in detecting logos is higher

that signatures. And this is another aspect that must be checked, because

we are interested only in detecting signatures, not logos.

At this point we can go on with the second attempt: Yolov5m. This model

has been analysed because, as shown in Figure 2.2, it has a good accuracy,

even if it is lower than the previous model, but it also keeps a good speed in

detecting objects, even if also in this case it is slower than the previous one.
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For the train:

Yolov5x Accuracy Precision Recall F1-score

Signature 0,79 0,60 1 0,76

Logo 0,85 0,71 0,92 0,80

For the test:

Yolov5x Accuracy Precision Recall F1-score

Signature 0,79 0,60 0,84 0,75

Logo 0,85 0,70 0,92 0,80

Also, in this case it is possible to compare the results between the training

and the testing phase. As for the previous model, the results are better for

the logos’ detection than for signatures’ one. Another important aspect is

that there is not a big difference between training and testing, there is only a

slight decrease of logos’ precision, going from 0,71 to 0,70; and another small

decrease in F1 signature score that goes from 0,76 to 0,75. Comparing these

results to the previous one, it is possible to say that the best model between

these two is Yolov5x in detecting signatures.

The final test is done with the Yolov5s model. This version of Yolo is the

fastest, but it is also not as good as the others in detecting objects. As

shown in the following tables, we have slight differences between training

and testing phases.

For the train:

Yolov5x Accuracy Precision Recall F1-score

Signature 0,74 0,60 0,94 0,70

Logo 0,92 0,69 0,92 0,75

For the test:

52



Yolov5x Accuracy Precision Recall F1-score

Signature 0,79 0,62 1 0,76

Logo 0,85 0,70 0,92 0,80

Looking at signatures’ detection performance, we can say that there is

an increase in all the metrics, and this is a good sign, meaning that the al-

gorithm is trained in an efficient way, and it shows good results in the test.

The same happens also for the detection of logos. Comparing these results

also with the previous models, it seems to be the one with best performance.

For this reason, model 5S (“small”) was chosen.

Now that the model has been chosen, it is possible to go on with the training

phase, using the line of code previously explained. The results of this phase

can be visualize in two different ways, through the Tensorboard or by taking

a look at the images of the outcomes. First, the confusion matrix, through

which precision, accuracy, F1-score, and recall are determined. Overall, the

results are excellent, but they will be examined in further detail in the next

chapter.

2.3.2 Performance Measures

The confusion matrix, as shown in Figure 2.3, is especially useful when mea-

suring recall, precision, F1-score, accuracy, and the AUC of a classification

model.

• True Positives (TP): The model predicted positive, and the actual label

is positive.

• True Negative (TN): The model predicted negative, and the actual

label is negative.

53



Figure 2.3: An Example of Confusion Matrix

• False Positive (FP): The model predicted positive, and the actual label

was negative.

• False Negative (FN): The model predicted negative, and the actual

label was positive.

In the multi-class classification problem, there won’t be TP, TN, FP, FN

values directly as in the binary classification problem. How to find TP, TN,

FP and FN for each individual class?

• Accuracy = TP + TN/TP + TN + FP + FN

• Precision = TP/TP + FP

• Recall = TP/TP + FN

• F1-score = 2TP/2TP + FP + FN

These are the formulas that have been used to compute the four measures;

observing each of them it is possible to analyse the general performance of

the model.
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Accuracy For tasks requiring balanced classification, accuracy is a useful

statistic. When all classes are represented in comparably equal numbers, a

classification task is balanced. Examining an illustration of an unbalanced

classification task makes it clearer why this is the case. AI accuracy is the

ratio of correctly classified data that a trained Machine Learning model pro-

duces, or the proportion of correct predictions to all other forecasts combined.

It is frequently referred to as ACC. The fact that this metric directly cor-

relates with all values of the confusion matrix is a nice feature of it. These

four criteria—true positives, false positives, true negatives, and false nega-

tives—form the foundation of Machine Learning evaluation. Model accuracy

is a crucial parameter since it is a very straightforward measure of model

performance, as was previously said. It is also a straightforward metric of

model error. Accuracy can actually be thought of as 1− error.

Accuracy is a highly efficient and useful indicator to assess Machine Learn-

ing prediction accuracy in both of its forms. It is one of the metrics that

is most frequently employed in research, where it is typical to have clean

and balanced datasets to allow for attention on improvements in the algo-

rithmic approach. When datasets with comparable properties are available,

accuracy can also be helpful in practical applications. Model accuracy can

be easily correlated with a range of financial measures, such as revenue and

cost, thanks to its straightforward interpretation. This ease of reporting on

the model’s worth to all stakeholders increases the likelihood that an ML

endeavor will be successful. For tasks requiring balanced classification, accu-

racy is a useful statistic. When all classes are represented in roughly equal

numbers, a classification task is balanced. [1]
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F1 - Score A Machine Learning statistic that can be applied in classifica-

tion models is the F1 score. Using more accurate measures, like as the F1

score, which consider not only the quantity of prediction errors your model

generates but also the nature of those errors, can help address issues with

class imbalance. The harmonic mean of recall and precision is used to cal-

culate the F1 score. Given that the F1 score is the average of Precision and

Recall, Precision and Recall are given equal weight in this score:

• If a model’s Precision and Recall are both high, it will receive a high

F1 score.

• If Precision and Recall are both poor, the F1 score for the model will

be low.

• If one of Precision and Recall is low and the other is high, the model

will receive a medium F1 score.

A brief explaination of F1-score:

F1 score Interpretation

0.9 - 1 Very Good

0.8 - 0.9 Good

0.5 - 0.8 Ok

0 - 0.5 Not Good

Precision A model with more accuracy produces fewer false positives when

making predictions, which leads to more accurate outcomes overall. If you

want to reduce false positives, precision is a wonderful area to concentrate

on.
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Precision – Recall Curve By calculating and displaying the accuracy

versus the recall for a single classifier at various thresholds, the precision-

recall curve is created.

Figure 2.4: The optimal Precision-Recall Curve

Recall We may look at binary classification to better grasp recall, a metric

used for classification. The percentage of data samples that a Machine Learn-

ing model properly classifies as belonging to an interest class—the “positive

class”—out of all the samples for that class is known as recall, also known as

the True Positive Rate (TPR). The predicted labels may accurately or incor-

rectly classify the actual labels. A confusion matrix can be used to condense

this data. Information about true negatives (TN), false negatives (FN), false

positives (FP), and true positives (TP) is reported in the confusion matrix.

On top of these numbers, Machine Learning recall is computed by dividing

the true positives (TP) by all of the positive predictions that should have

been made (TP + FN). When attempting to determine “What percentage

of positive classifications was identified correctly?” using Machine Learning,

recall should be used. When minimizing false negatives is crucial, this metric

should be used. This frequently occurs when the opportunity cost of passing
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up a true positive is large and the cost of acting on a false positive is low.

When the use cases are uneven, this frequently occurs.

2.3.3 Inference

Once the results from the training phase are observed and we are satisfied

about it, it is possible to go on with the testing phase. This is the step in

which the algorithm will pass through new image, that he never saw before.

This is a fundamental step, because it is the moment in which we can un-

derstand if our model is capable of detecting objects in an image by himself,

using all the information he learned during the training phase. Prior to any-

thing else, the trained model must be saved as a file.pt. The directory to this

file will be inserted, as shown in the following line of code, in the function for

testing. Here, we need to insert the Yolo directory for the detection Python

code and the directory for the “Val” folder described before, that contains

all the image for the testing phase. The function also needs the weights,

represented by the file.pt saved after the training, that represent the trained

model with the best weights; and finally, a command to save a file text that

contains all the predicted coordinates for each image.

1 !python Yolov5/detect.py --source Bank_Checks_Database/

New_format/images/Val --weights Risultati/Checks/Train/

best.pt --save -txt

The outputs are formatted as class, x center norm, y center norm,

width norm, height norm in the text file. The outcomes, which are imme-

diately saved in a different folder, can then be seen. In order to understand

how the algorithm has discovered a signature and with what degree of cer-

tainty, it will be possible to go back and look at specific images. Alternately,

you can go and look at the results of the entire procedure to comprehend the
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model’s performance. Below there is an example of the outcomes in the form

of images.

Figure 2.5: Yolo result on a single image

This figure shows that Yolo only recognizes signatures and logos. Along

with detecting them, it also displays the percentage of accuracy, that means

how certain it is that a specific object is indeed a signature or a logo. The

creators of Yolo have incorporated a threshold that will be used to determine

what value Yolo will base its identifications on. Any object recognized by

Yolo with an accuracy of less than 0.25 will not be taken into account because

the threshold is by default set at 0.25. This threshold, which is still set at

0,25, can be changed before moving on to the inference step. Yolo also

creates images called batch labels in which it juxtaposes multiple images,

similar to Figure 2.6, to get a complete view of the output, in addition to

the images related to the results that we will see in the next chapter, such

as the confusion matrix. This eliminates the need to go and open each file

one at a time.

It was possible to enter the findings into a single Pandas data frame

once the results were in text file format, from which we could extrapolate
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Figure 2.6: Yolo results on images juxtaposed

the number of values that were successfully predicted and those that were

inaccurate. When the code is successfully executed, we can see the output

is saved in the inference folder. At the end of this process, we will have two

different data frames, one with the actual values and the second one with

the predicted ones. Using a function to produce an inner joint between the

two data frames, it will create a final unique dataset that contains only the

values that has been correctly predicted. Thanks to this final Excel file, it

will be possible to categorize each document as “Signed” or “Unsigned” after

reviewing the results, adding another column at the end called “Result”.

2.3.4 Hyperparameters Analysis

YOLO is characterized by the presence of several parameters needed to en-

hance its performance, as with all Machine Learning models. An ideal selec-

tion of these parameters could mean the difference between a successful Deep

Learning model and an unsuccessful endeavor. The main hyperparameters

of this model will be presented and described in the lines that follow, and all
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the efforts made during this project to try to increase YOLO’s performance

in spotting signatures will subsequently be demonstrated.

The hyperparameters that have been analysed are:

• lr0: 0.01 , it is the initial learning rate the indicates how often the

neural network refreshes the notions it has learned.

• lrf: 0.01, final OneCycleLR learning rate (lr0 * lrf)

• momentum: 0.937, the SGD momentum/Adam beta1 is the tuning

parameter for the gradient descent algorithm; its work is to replace the

gradient with an aggregate of gradient.

• weight decay: 0,0005, the optimizer weight decay 5e − 4 is a regular-

ization technique, that works by adding a penalty term to the cost

function of a network, which has the effect of compressing the weights

during the backpropagation process.

• warmup epochs: 3.0, the warmup epochs (fractions ok) is a phase in the

beginning of the neural network training where it starts with a learning

rate much smaller, than the ”initial” learning rate and then increase it

over a few epochs until it reaches that ”initial” learning rate.

• warmup momentum: 0.8, warmup initial momentum

• warmup bias lr: 0.1, warmup initial bias lr

• box: 0.05, the box loss gain is a loss that measures how ”tight” the

predicted bounding boxes are to the ground truth object.

• cls: 0.5, the cls loss gain is a loss that measures the correctness of the

classification of each predicted bounding box.
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• cls pw: 1.0, cls BCELoss positive weight

• obj: 1.0, obj loss gain (scale with pixels)

• obj pw: 1.0, is the obj BCELoss positive weight; Increasing it, increases

Recall and reduce Precision (more objects are detected).

• iou t: 0.20, the IoU training threshold is a number from 0 to 1 that

specifies the amount of overlap between the predicted and ground truth

bounding box. An IoU of 0 means that there is no overlap between the

boxes. An IoU of 1 means that they are completely overlapping.

• anchor t: 4.0, anchor-multiple threshold

• anchors: 3, anchors per output layer (0 to ignore)

• fl gamma: 0.0, focal loss gamma (efficientDet default gamma=1.5)

• hsv h: 0.015, image HSV-Hue augmentation (fraction)

• hsv s: 0.7, image HSV-Saturation augmentation (fraction)

• hsv v: 0.4, image HSV-Value augmentation (fraction)

• degrees: 0.0, the image rotation (+/- deg) is used to increasing model

accuracy by randomly rotating images up to 360 degrees in whole train-

ing data.

• translate: 0.1, image translation (+/- fraction)

• scale: 0.5, the image scale (+/- gain) is used to resize an image either

to match with grid size or for optimization of results.

• shear: 0.0, image shear (+/- deg)
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• perspective: 0.0, image perspective (+/- fraction), range 0-0.001

• flipud: 0.0, the image flip up-down (probability) is used to flip images

up and down randomly from the complete dataset for achieving better

results.

• fliplr: 0.5, the image flip left-right (probability) is used to flip images

left and right randomly from the complete dataset for achieving better

results.

• mosaic: 1.0, the image mosaic (probability) is used to increase model

accuracy by creating a new image from a combination of multiple im-

ages, and then using newly created images for training.

• mixup: 0.0, image mixup (probability)

• copy paste: 0.0, segment copy-paste (probability)

To determine how each of them affected the model’s result, each was

examined separately. The following provides a general idea of the more than

twenty trials that were conducted. It was chosen to employ a zero case,

leaving the original parameter values unaltered, with 10 epochs, in order

to reduce the amount of time used when running these tests. To observe

the effects of each adjustment on these values, 10 epochs were used in all

following testing.

Numerous attempts were made, as can be seen, and the best and most

disappointing outcomes will be revealed in the following few lines. The first

example is the zero case, as can be seen, where no parameters were altered,

and the outcomes are as follows. As for logos:

• Accuracy: 0,83
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Figure 2.7: Results for the hyperparameters analysis

• Precision: 0,68

• Recall: 0,94

• F1: 0,79

And signatures:

• Accuracy: 0,80

• Precision: 0,64

• Recall: 0,98

• F1: 0,77

The values are not significantly different from those obtained with 100

epochs, as demonstrated in the following chapter. It is obvious that all at-

tempts were not conducted at random but rather in accordance with the

reasoning and descriptions provided for each parameter in order to increase

Precision and Accuracy. It should be noted that none of these tests were

found to be ineffective; in fact, the four error measurements were never lower

than 0.59. Despite this, it is obvious that the best-performing cases were
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chosen.

The example with the box parameter of 0.005 is one of the most disap-

pointing situations. Here are the outcomes. As for logos:

• Accuracy: 0,87

• Precision: 0,75

• Recall: 0,94

• F1: 0,83

And signatures:

• Accuracy: 0,77

• Precision: 0,59

• Recall: 0,98

• F1: 0,74

As can be seen, despite being one of the least successful attempts, the

outcomes are still excellent. Also keep in mind that the identification of sig-

natures, not logos, is the main focus of this study. I decided to concentrate

on the outcomes of the parameters that relate to signatures because of this.

As we can see, the results for logos are excellent, but this case study was put

on hold because the results for signatures were substantially lower.

The test run with the values lr0 and lrf of 0.1 and 0.01 respectively is another

illustration of the “worse” tests. In this instance, the signatures’ outcomes

were as follows:

65



• Accuracy: 0,78

• Precision: 0,61

• Recall: 0,94

• F1: 0,74

Although the results were overall positive, they are again rather disap-

pointing; nonetheless, this scenario was also ignored because we know the

model is capable of delivering better outcomes. Additionally, more success-

ful endeavors were made. These situations only slightly improved the four

performance metrics, with an increase of around 0.1. Two instances saw the

same outcome, raising the iou t to 1 and 1.5.

On the other hand, improvements were seen when the iou t was increased to

0.5 and 0.75. The outcomes in the first situation are:

• Accuracy: 0,81

• Precision: 0,64

• Recall: 0,98

• F1: 0,77

In the second case are:

• Accuracy: 0,81

• Precision: 0,64

• Recall: 0,98

• F1: 0,75
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When comparing the two, the F1 score is slightly different. For this rea-

son, it was chosen to maintain this parameter’s value of 0.5 during the entire

operation. This was obviously first and foremost a theoretical investigation

to fully comprehend the function of each parameter in the model. After thor-

ough study, it was feasible to go on to comprehending how to apply them to

boost performance. Although these are only minor upgrades, they can result

in more precise outcomes when employed with datasets that are far larger

than the ones being utilized right now, as was previously indicated.

2.3.5 Bank Cheques Dataset

It is vital to focus on a second stage of the process before going on to the fol-

lowing chapter, which will display all of the project’s results. As was stated

at the beginning of the chapter, when the procedure had been tested on the

Tobacco800 dataset, it was important to determine whether Yolo could also

recognize signatures on less “conventional” sheets and documents. It was

necessary to hunt for another dataset with horizontally colored pages as a

result. The project was excellently suited to the “Bank Checks Accounts”

dataset that was discovered on Kaggle [3].

The figure below shows an example of the images contained in this dataset.

Figure 2.8: Example of the bank cheques analysed

An early attempt was done to see how much poorer the performance was
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in terms of accuracy, precision, recall, and F1 score without first training

the model on these images. The performance was not as good when utiliz-

ing the model trained on the Tobacco800 dataset without going through the

training phase. With this new dataset, performance lost about 0.2 accuracy

compared to the Tobacco800, making it about 0.6 instead. The performance

did decline, but it did not fall to extremely low levels, even though the new

configuration had not made it more loose. This is why I believed that the

results will get better after the training phase was completed. With this

new dataset, a second attempt was made, and all the previously described

steps were repeated, but the results, as we will see in the next chapter, were

still unsatisfactory, even if they increased a bit. The dataset, which had 167

photos and was therefore insufficient to train a model, was the underlying

issue. In contrast to the training with Tobacco800, where a total of about

800 images were used, this first attempt’s training phase only used 80 im-

ages. Since there were obviously missing data, additional images had to be

manually added to the dataset to make up for the problem. The dataset has

now grown to about 500 photos, and by replicating them, it can be doubled

in the future.

The metadata of this dataset pose another issue. Since Tobacco800 is a

dataset created specifically for this kind of task, each image in the dataset

comes with an accompanying XML file that contains all of the image’s meta-

data. This kind of data is not present in the current Checks dataset, but it

is crucial since Yolo uses it to generate the findings and create the confusion

matrix and all other performance measurements by comparing predicted and

actual data. Due to this, it was required to manually enter all of the coordi-

nates and page measurements into text files, one for each image.
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It was feasible to repeat the entire process after these data processing pro-

cedures were finished. All of the outcomes will be revealed in the following

chapter.
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Chapter 3

Results

The outcomes of the project are described in this chapter. These will demon-

strate whether employing YOLO is an original and practical method for

accelerating and improving signature detection accuracy. As was already

discussed in the previous chapter, YOLO was put to the test on two separate

datasets to see how well it could recognize signatures on various types of

documents. Due to this, the chapter is split into four sections: the first two

for the training of both datasets and the last two for testing each one. The

first images are from Tobacco800, which was quite helpful because, as was

already indicated, it is a dataset made specifically for these kind of projects.

With the help of these pictures, the initial attempts were run, and they gave

us a practical understanding of how the algorithm works. Additionally, the

full study of hyperparameters was done with these images. Given that the

data and all the information required for the project are already present and

that there are a lot of images—roughly 1200—that are ideal for training a

Neural Network, it is evident that the dataset is very useful. Because it was

suitable for this job, we were able to thoroughly understand all of YOLO’s

properties without running the danger of making an error of data uncertainty.
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A folder of bank checks make up the second dataset. It could be argued

that the issue with these images was exactly the opposite of Tobacco800. In

fact, it is a dataset with roughly 160 total pictures that was hard to find

on Kaggle [3]. Additionally, not all of the metadata required to evaluate

the model’s performance is offered. Therefore, it is necessary to expand the

amount of images available as a first step. How? By copying the current

images and altering their colors, position, and shapes to distinguish them

from one another. The dataset now contains roughly 540 photos, however a

further 500 images might be added. The metadata must to be added at this

point as well; each image needs a text file that contains six values, including

the height and width of the page, the coordinates of the point at the top left

of the rectangle containing the signature, and the height and width of the

rectangle itself. Once this procedure is done, manually, it is simple to repeat

every step also applied to the first dataset.

Training - Tobacco800 Dataset The training phase is essential for the

model to obtain good performance, as described in the previous chapter. It is

the stage where YOLO learns the “game’s rules”. Both types of images un-

dergo this period. The procedure is slower and takes longer with Tobacco800.

Numerous tests have been tried because this is the first dataset used. The

training set is made up of about 800 documents on vertical sheets, each with

a white backdrop and black writing. The model’s output compares actual

and predicted values, and based on this comparison, numerical and graphi-

cal numbers that reflect the model’s overall performance are generated. The

Confusion Matrix, Recall, Score F1, and Precision are some measurements

that are frequently employed for this purpose, as demonstrated in the previ-
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Figure 3.1: Confusion Matrix for Tobacco800 training

ous chapter. We’ll now examine each of them separately.

The methods seen in the previous chapter are used to determine Accu-

racy, Precision, Recall, and Score F1 using the Confusion Matrix. Figure

3.1 illustrates how the model produces a matrix with three entries: DDL-

ogo, DDSingature, and Background. The model is trained for the logo and

signature detection; the third item is added automatically because all object

identification methods consider also the image’s background.

Using the equations from the previous chapter, performance metrics may

be generated from this matrix. Consequently, the outcomes of signature

detection will be:

• Accuracy: 0,79

• Precision: 0,61

• Recall: 0,98

• F1: 0,76
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Using the information from the previous chapter as a guide, it is feasible

to say that the degree of accuracy is quite high. The maximum value of

accuracy is 1, which denotes the number of accurate predictions the model

can make. On the other hand, Precision has a lower value, which, as already

indicated, needs to be kept in check in order to reduce the frequency of false

positives. It is a quality that can be improved. The third item describes the

Recall value. This is one of the most crucial indicators in a Deep Learning

model, as we all know, and in this instance, it has a high value. The ques-

tion that needs to be posed in this situation is what percentage of the values

have been accurately identified. By using this indicator, the likelihood of

false negatives is reduced. The only thing to keep in mind is that a sufficient

amount of each category to be classify, in this case logos and signatures, is

required in order to use Recall effectively. The F1 score, which is derived

from the Precision and Recall measures, serves as a final indicator of the

relationship between these two metrics. The score will decline if either one

is low, and the model’s overall performance won’t be good as a result. With

a score of 0.76, we can state that the outcome is acceptable by the standards

described in the previous chapter. Looking at the values of Accuracy and

Recall, we can say that Recall is quite high while Accuracy can be improved.

As a result, the model does a good job overall at identifying signatures.

Even if logos performance analysis is available too, since we have already

talked extensively about this before and since the classification of logos is

not the core of our project, the description and explanation in this case will

not be as detailed as for signatures. Therefore, the model’s performance in

the specific case of logo identification is as follows:

• Accuracy: 0,82
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• Precision: 0,69

• Recall: 0,86

• F1: 0,76

The F1 score is constant, the value of Recall decreases, while the values

of Accuracy and Precision rose when compared to the results obtained us-

ing the signatures. Therefore, we can say that the model recognizes logos

more readily than signatures. This is not surprising because logos are merely

small symbols, whereas signatures occasionally fail to be recognized and can

be confused with other writing.

The F1-Confidence Curve, depicted in the following graphic, is the model’s

second output.

Figure 3.2: F1 - Confidence Curve for Tobacco800 training

There will be a more complete description of the model’s performance

depending on how the next curves perform. The F1 score represents ideal

confidence level that balances the precision and recall values for a given

model. We may say that the link between the confidence level and these
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indicators is that, normally, as the confidence level rises, precision rises and

recall falls. It is feasible to find the point of balance between precision and

recall and choose it using the F1 score curve.

The confidence value that maximizes precision and recall based on the F1

curve is 0.366. A higher confidence value is preferred in many situations.

Given that the F1 value for this model seems to be about 0.66, using a

confidence level of 0.8 could be the best option. The precision and recall

numbers at a confidence level of 0.8 further support the idea that this would

be a good design point. The precision number is still nearly at its maximum

value and the recall value starts to degrade around 0.8.

Now we are able to observe how the Precision-Confidence and Precision-

Recall curves behave. Considering the first case, it is shown in the next

Figure 3.3:

Figure 3.3: Precision - Confidence Curve for Tobacco800 training

The precision will typically increase when the confidence level is raised,

while the recall will typically decrease. This phenomenon can be seen in

our situation as well: the model’s precision rises sharply as confidence rises.

The final curve, which is related to confidence, emphasizes the connection

between recall and confidence. Once more, Figure 3.4 shows that the curve
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moves significantly after a given degree of recall. The curve quickly shifts

and hits zero at a value of about 0.8. We can see that Confidence has a fairly

similar value to Recall when Recall is near 0.8.

Figure 3.4: Recall - Confidence Curve for Tobacco800 training

The Precision - Recall curve, which connects these two indicators, must

also be observed. Plotting the precision on the y-axis and the recall on the

x-axis for all threshold values between 0 and 1 yields the precision-recall

curve. The precision is very high and the recall is quite low for thresholds

that are very high (just below 1.0). By placing ourselves around a Precision

value close to 0.6, we can infer from this figure that the Recall will also have

a fairly comparable value. A balance between the two metrics is most likely

to be found at this position on the graph.

At this point, it is possible to continue with the analysis of the testing

phase’s findings using the Tobacco800 dataset.

Inference - Tobacco800 Dataset The stage of the process known as

inference allows the model’s performance to be evaluated using images that

it has never seen before and are, therefore, dissimilar to those it has trained

on thus far. The trained model is saved in a .pt file during the training stage
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Figure 3.5: Precision - Recall Curve for Tobacco800 training

and used in the testing stage. The line of code that follows demonstrates

how:

1 python Yolov5/detect.py --source Tobacco800/New_format/images

/Val --weights Risultati/Tobacco800/Traitn/best.pt --save -

txt

First things first, the detect.py file containing the detection function must

be invoked. Second, it is important to specify the location of the images

for the model to inspect; in such case, Yolo will discover the images in the

images ≥ V alid folder. These are the photos used following the initial format

conversion phase. Next, choose the template we want to use, and then insert

the best.pt file, which contains the template trained in the previous stage.

These are the fundamental commands that need to be typed in. Additionally,

more commands may be inserted to enable the model to generate usable

results. Among them are:

• –conf-thres: “default=0.4” is the object confidence threshold

• –iou-thres: “default=0.5” is the threshold for NMS

• –device: is the “cuda device or cpu” command
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• –view-img: is the “display results” command

• –save-txt: is the “saves the bbox co-ordinates results to *.txt” com-

mand

• –classes: it permits to “filter by class: –class 0, or –class 0 2 3”

In order to store a .txt file containing all the coordinates and measures

predicted by the model for each image in a different folder, we chose to only

use the –save-txt option. We made the decision to save them so that we

could go back and evaluate the disparities between the actual data and the

data observed and determine whether or not the model is actually accurate.

Below is a sample of .txt files.

1 0.677083 0.292880 0.256250 0.108414

These values correspond to the class, height, and length of the signature

rectangle, as well as the x and y coordinates of the upper left point of the

rectangle. Below in Figure 3.6 there is a clear illustration of the rectangle

discovered.

The next stage adds a second line of code:

1 !python Yolov5/val.py --weights Risultati/Tobacco800/Train/

best.pt --data bcc.yaml

This is quite helpful since it enables to preserve the model’s results, which

calculate all the performance indicators seen in the previous phase. In this

way, it will be feasible to evaluate if the model performs better or worse after

training.

The path containing the val.py file, with the code needed to validate the

trained model, is the first item in the previous line of code. These two
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Figure 3.6: Example of signature detection through YOLO

Python files, along with the second detect.py file, make up the codes used

to assess the trained model. The directory of the .pt file created during the

training phase must be entered once again to specify which model will be

utilized. The .yaml file, which contains the paths to the directories “train”

and “val” described in the previous chapter, is then inserted. The figures

produced by this line of code are as follows:

These are just some of the pictures generated by the model, where the

detection of all the images are compared to give an overview of the outcomes.

It is clear whether or not the majority of the signatures were accurately

recognized at first glance. Following that, it will be feasible to determine

whether the model was actually efficient or not by going and measuring it

using numerical values.

79



Figure 3.7: Results of signature detection through YOLO

3.1 Performance Metrics

Figure 3.8, already observed, is the confusion matrix from which Accuracy,

Precision, Recall, and F1-score are obtained.

If the model can perform well on images other than those on which it is

trained, it can be determined by comparing the predicted results with the

training results. The outcomes in relation to logos are:

• Accuracy: 0,82

• Precision: 0,69

• Recall: 0,86

• F1: 0,70

These data can be compared to those from the logo training and it can be

seen that there are no differences. As a result, the model’s ability to recognise

logos retains its precision and accuracy. It is now important to verify that
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Figure 3.8: Confusion Matrix for Tobacco800 Inference

the model’s performance is unaffected when it comes to signatures. The

following are the outcomes for signature detection:

• Accuracy: 0,79

• Precision: 0,61

• Recall: 0,97

• F1: 0,75

If these findings are compared to the training outcomes, a small difference

is discernible. Accuracy and Precision remain the same while the Recall and

F1 score values both fall by 0,01. Thus, even in the context of signatures,

performance is still great.

With the confidence curves already seen in the training phase, it is possible

to observe these outcomes in much greater depth.

The F1 - Confidence curve’s trajectory closely resembles the training one.

To avoid a sharp decline in both Confidence and F1 Score, there is a value
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Figure 3.9: F1 - Confidence Curve for Tobacco800 Inference

around which we should maintain our F1-score. Therefore, to keep the confi-

dence level at 0.8, this score must stay close to 0.66. The relationship between

confidence and precision is shown in Precision - Confidence Figure 3.10, used

to evaluate the degree of confidence once more.

Figure 3.10: Precision - Confidence Curve for Tobacco800 Inference

The pattern always closely resembles the training stage. Once more, the

curve shows a significant increasing trend from a 0.8 Confidence level. The

link between recall and confidence is represented by the following curve.

Again, it is important to make an effort to maintain a Recall value that
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Figure 3.11: Recall - Confidence Curve for Tobacco800 Inference

ensures a Confidence level of roughly 0.8. The Recall number should be in the

range of 0.8, as shown in Figure 3.11. The values in each of these confidence

curves come out to be very similar to, if not exactly the same as, what was

seen at the conclusion of the training phase. This outcome, which is also

consistent with the confusion matrix data, confirms that there is little to no

performance difference between the two stages. This is a surprising result

since it shows that the model can detect new signatures and logos without

decreasing accuracy after being trained.

To be fully convinced of the outcomes so far, an additional image, Figure

3.12, can be observed; the relationship between recall and precision. This

is a crucial relationship, as already stated for the prior phase. These two

variables frequently follow opposing patterns; that is, when one rises, the

other falls, and vice versa. Finding an equilibrium point where both exhibit

satisfactory values is therefore necessary.

Once more, the curve shows a downward trend and is quite similar to the

training step. During the training, we claim that the Precision value stays

around 0.6 and the Recall value displays a fairly comparable value, finding

equilibrium. The situation following the inference step is extremely similar.
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Figure 3.12: Precision - Recall Curve for Tobacco800 Inference

The slope rapidly declines until 0.6 Precision and Confidence is obtained.

Because of this, we can assert that even in this final instance, the inference

and training outputs are nearly identical. After concluding the work with the

Tobacco800 images, it is time to test Yolo’s capabilities with another kind of

image to determine whether the selected Neural Network is actually the best

one for this project’s objective.

To continue on this road, a dataset with pictures that were more similar to

identity documents is required; these images must to be horizontal with a

colored background, much like identity cards, in order to grasp what Yolo’s

constraints are. On Kaggle [3], a dataset containing precisely these kind of

pictures is discovered. It is ideal, as it has 160 images of cheques with logos

and signatures.

There are several attempts with these images. In order to see if Yolo can rec-

ognize signatures even without being trained on other pictures, an attempt

is made directly on the test phase, without training the model with these

new images. The outcomes are displayed in Figure 3.13.

Let’s just say that the initial attempt is unsuccessful. Without the correct
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Figure 3.13: First Attempt with Bank Cheques’ Dataset

training, Yolo is unable to recognize trademarks or signatures on photos with

colored backgrounds. This is mostly because color obscures the signature and

prevents the Neural Network from recognizing it, especially when specific

colors, such as green, are used. The images below provide an illustration of

the issues.

Figure 3.14: First Results with Bank Cheques’ Dataset

These pictures offer a broad view of the identifications the model pro-

duces. As can be observed, Yolo is unable to find anything in the first set of

images, hence there are no results. These are images with a darker outline,

as already said, and the black letters on them usually tends to merge with

the background color.
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The full training and testing procedure outlined in the prior chapter is used

with these new photos to address this issue. The dataset’s availability of

163 photos presents another challenge. This number is not sufficient to effec-

tively train the model. In truth, Yolo would be trained with only about 80

photos when these few images are split into a train set and a test set. This is

insufficient to guarantee that the model is correctly trained. In order to man-

ually increase the amount of photos, this required further processing on the

dataset. Each image is copied, then altered to produce new versions of the

same image. The number of photographs created is in the neighborhood of

540, and each one comes with a .txt file holding all the coordinates required

for the first stage of data processing, which was covered in the previous chap-

ter. It must be emphasized that since each measurement is manually taken,

its accuracy cannot be completely guaranteed. However, it turns out to be

a useful process for our objectives. The outcomes significantly improve with

540 photos and they are described in the following sections.

Training Bank Cheques Dataset The data processing stage came be-

fore the training stage. In this case as well, all photos are resized to fit Yolo

standards and the coordinates in the .txt files are adjusted correspondingly.

The training can now go on as planned. The directory containing the modi-

fied photos, but the lines of code used are the same as for the prior dataset.

Let’s now discuss the outcomes.

We can already say from a quick glance of Figure 3.15 that the outcomes will

differ from those of the first dataset. This is due to the fact that the back-

ground in this instance is colored, making its detection levels significantly

higher than in Tobacco800. Performance metrics can still be computed in
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Figure 3.15: Confusion Matrix for Bank Cheques Dataset training

spite of this.

The following results regarding the firms are calculated:

• Accuracy: 0,78

• Precision: 0,61

• Recall: 0,92

• F1: 0,74

With regard to the logos, we can claim that the outcomes are extremely

comparable: Precision displays the same result of 0.61; the difference be-

tween all other measures is less than 0.01.

Since this is one of the first attempts using different documents than those

previously utilized, the results are satisfactory. It is also feasible to see the

variations between these outcomes and those attained during the Tobacco800

dataset’s training phase. Accuracy for Cheques and Tobacco800 are essen-

tially similar: the first is equal to 0.78 and the second to 0.79. Precision
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in both instances is the same, 0.61. Cheques’ recall slightly declines, while

Tobacco800’s recall increases to 0.98. The F1 score, which was 0.76 in the

first instance, is likewise slightly lower. As a result, it can be claimed that

the results are fairly similar and satisfactory for both datasets, showing that,

at least during the training stage, with the proper training, the model’s per-

formance is not much impacted by the layout and style of the image.

Now that the other curves have been examined, it is possible to determine

just how effective the model is.

The confidence curves let us determine the highest value that can be obtained

before the confidence level and our results collapse. The curves seems to re-

semble those of Tobacco800 quite a bit. Once more, the confidence level roses

to a peak of roughly 0.8 before abruptly dropping. This 0.8 is equivalent to

an F1 score of roughly 0.60. This score tends to fluctuate more, going into

a range between 0.53 and 0.64, in contrast to Tobacco800, where it tends to

remain more steady as confidence rose.

Figure 3.16: F1 - Confidence Curve for Bank Cheques Dataset training

The curve in Figure 3.17 showing confidence in respect to precision is

another significant curve. As with Tobacco800, the tendency of the curve is
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Figure 3.17: Precision - Confidence Curve for Bank Cheques Dataset training

upward also in this case. Upon achieving a Confidence value of roughly 0.9,

it can be observed a significant increase and a brief period of decline. The

orange curve illustrates this slight decline as a collapse of Precision in the

case of signatures, which rises extremely quickly in the following instant.

Despite everything, the curve in Figure 3.17 demonstrates that Precision’s

performance is lower than Tobacco800’s, but it is still a sufficient value for

the project’s needs.

The link between recall and confidence is depicted in Figure 3.18. Preci-

sion and recall are two values that need to be carefully monitored.

As it should, the curve shows a diminishing tendency. At first look, Fig-

ure 3.18 appears to have a trend worse than Tobacco800, with values that

are occasionally increasing and other times dropping when compared to the

curve of the first dataset. Overall, it is clear that the outcome is still positive

because the curve has the traditional form of a recall-confidence curve with

satisfactory values that are only marginally below Tobacco800’s ones.

Finally, in Figure 3.19 we have the relationship between Precision and Recall,
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Figure 3.18: Recall - Confidence Curve for Bank Cheques Dataset training

two values that must be balanced in order for the model to perform well.

The shape of the curve slopes downward as it should. We all know that

the ideal curve would incline toward the top right corner of the graph. The

performance in our situation is obviously inferior, as the curve typically swing

between 0.5 and 0.6. The outcomes are also less favorable than Tobacco800’s

curve, which tended to range between 0.6 and 0.7. In spite of this, the re-

maining parameters are excellent, and the model’s overall performance can

still be deemed satisfactory. We can now proceed to track the model’s per-

formance during the Inference phase.

Inference – Bank Checks Dataset The following image gives us a first,

more broad perspective. We can already detect a significant improvement

when comparing it to the images displayed prior to the training period, par-

ticularly in the images with a green backdrop where no elements were previ-

ously recognized.

Although we can see from Figure 3.20 that there are some irregularities,

overall we can claim that things have greatly improved since the last time.
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Figure 3.19: Precision - Recall Curve for Bank Cheques Dataset training

Figure 3.20: Results for Bank Cheques Inference

Let’s now discuss the outcomes.

Because these photos have a colored background, which influences how Yolo

views the items on the page, it is immediately obvious that the model in this

instance has given significantly more weight to the background.

Although the values may initially appear to be considerably different, as

we will see, the results are still satisfactory even though the matrix may ap-

pear to be very different. We have once more computed the four performance

indicators. The results are as follows in terms of the signatures:

• Accuracy: 0,72
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Figure 3.21: Confusion Matrix for Bank Cheques Inference

• Precision: 0,56

• Recall: 0,73

• F1: 0,63

The findings are lower than both the training phase and the first dataset,

when they were a bit higher, as was to be expected. This indicates that,

aside from conventional white documents, the model has some trouble iden-

tifying signatures on images. Let’s take a closer look at the curves to better

appreciate the challenges this performance presents.

The F1 score is taken into consideration in the first confidence curve we

see, Figure 3.22. The curve’s trend in this instance does not indicate any

issues.

As Confidence rises, the score tends to stabilize around 0.5. The latter

significantly falls about 0.9. The curve does not exhibit any anomalous or

dissimilar behavior from what has been observed thus far. Undoubtedly, the

score value continues to be a little lower than the others previously observed.
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Figure 3.22: F1 - Confidence Curve for Bank Cheques Inference

The following curve demonstrates how the model performs with lower results

than the others; in fact, the precision value, when compared to confidence,

is the lowest. Although the Precision number is not very high, the curve’s

tendency is remarkably similar to the other phases so far.

Figure 3.23: Precision - Confidence Curve for Bank Cheques Inference

Contrary to the preceding curves, the following Figure 3.24 displays values

inside the usual range. The curve trend is positive and the recall values are

satisfactory. Even in this location, it is still possible to see brief intervals
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where the curve fluctuates, but the curve’s overall tendency is still positive.

Figure 3.24: Recall - Confidence Curve for Bank Cheques Inference

The real issue with this performance is revealed by the curve in Figure

3.25. It displays extremely poor results, just barely passing the standard

required to qualify as a “good” model. The orange curve shows that signa-

tures typically do better than the average of the two classes, whereas logos

are the primary source of difficulty. We are aware that recall refers to the

percentage of instances from a given class that the model correctly identified

as belonging to that class, while precision refers to the proportion of right

predictions among all forecasts for a given class. A model with low precision

and high recall will produce numerous outcomes, but the majority of the

forecasts will be wrong. In contrast, a model with high accuracy and poor

recall will produce very few results, but the majority of the predictions will

be right. Since there is not a significant difference between those values in

our scenario, some predictions will be incorrect by a little margin.

Final Comments on the overall results Overall, it may be concluded

that the outcomes are consistent with expectations. Given that the To-

bacco800 dataset was created especially for this kind of activity, the first
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Figure 3.25: Precision - Recall Curve for Bank Cheques Inference

portion of the work, using it, yields better results. The ability to comprehend

the model’s behavior, outcomes, and performance without being concerned

that the data might contain errors was really helpful. As a result of the satis-

factory performance with this dataset, we can move on to the following phase.

The project’s second phase presents various challenges.

First, the data. The hardest part of the whole project was this. It is ex-

tremely dangerous to manually arrange data that will be used as input in

a model because there is a very high chance that something will go wrong

and affect the model’s performance. Although the task is not yet complete,

numerous tries were made, many mistakes and revisions were done, and ul-

timately good results were found. The training phase using the cheques is

incredibly fulfilling, with outcomes that are almost identical to those of the

project’s first phase. They are undoubtedly higher than we anticipated. On

the other side, the inference stage goes exactly as predicted. Results are less

favorable than in any of the other phases, with a decrease of 0,2 in one of the

performance metrics. Nevertheless, given that Yolo has more trouble identi-

fying signatures when they are on colored backgrounds, these are the kinds
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of results we might expect. The backdrop component becomes a significant

barrier to the project’s successful execution. It is clear that more work has

to be done, and there are still a number of actions that can be performed to

enhance the model’s performance and, hopefully, the outcomes of this final

stage.

3.2 Future Steps

Clearly, it goes without saying that the outcomes must be sufficient to pro-

duce a functional model that can be provided to the client. This means that

the project is still on going. The lack of any readily available datasets outside

Tobacco800 that can be utilized for this purpose, in my opinion, is the major

barrier. In the lack of data, the only option is to create the dataset manu-

ally, which has a very high risk. Even though there are just 163 photos in

the cheque dataset, finding more proved challenging. The dataset currently

contains 540 photos after being manually expanded. Comparing this figure

to Tobacco800’s 1250 photos, it is still too low. In future, there could also

be the possibility to create new images with the help of new AI tools raised

in the last months.

The first stage will therefore be to increase the quantity of photographs and

attempt to at least double them. Obviously, all of the signature coordinate

information in the images will also be manually entered throughout this pro-

cess. In this way, the dataset will have more than a thousand photos, and

the model’s performance should increase.

Working with more suitable datasets and a bigger number of images will be

required in the next weeks to optimize the model’s performance. This phase

is essential to comprehend both the nature of the documents to be catalogued
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and the kind of photos that will be used to optimize the model.
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Conclusion

After this procedure, we can summarize the goal of this project, emphasizing

several elements.

The project’s main objective is to classify papers of all kinds, notably iden-

tification documents, based on whether a signature is present or absent. As

a result, it is a classification issue. We tried to view the issue from a dif-

ferent angle among the several methods for identifying document signatures.

Rather than concentrating on the models currently used for signature recog-

nition, we use a yet-to-be-employed method. It is a novel approach to rec-

ognizing signatures using a Neural Network for Object Detection: a new

practical use of a model developed for different use.

Using two different datasets, the procedure breaks into multiple components

and thoroughly examines each process stage and the model architecture.

We choose Yolo from all available models because of its construction, which

makes it quick, precise, and accurate. The findings from the two datasets

produced using it also demonstrated its correctness and speed. The results

presented in this thesis are merely the first of many steps that will be taken

in the future because the journey is still long and unfinished.

The results observed so far highlight some of the algorithm’s advantages
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and disadvantages. As was already indicated, Yolo is speedy. It generates

inference results in minutes and contains all previously examined findings.

These findings demonstrate how precise and accurate Yolo is in determining

the location of the signature or logo. It also detects the background with

relatively little inaccuracy. The second dataset-colored backgrounds well il-

lustrated this last aspect, which Yolo could immediately recognize. These

colored backgrounds presented a challenge during the process, as was al-

ready noted, but an additional data cleaning and pre-processing step swiftly

resolved it.

The following actions are essential to enhancing the model’s performance

even further. First, it was a path built around uniqueness. The primary goal

was to devise an alternative solution to a common problem, which has since

been resolved in various ways but was usually seen as a passing phase and

given little consideration. Identifying signatures was the project’s primary

objective, allowing us to approach the problem fresh. We can include this

procedure in longer processes involving additional steps confirming these sig-

natures after detection, similar to how signature identification can be seen as

the project’s ultimate goal. Since the Neural Network is a learning process

that can constantly be enhanced or prolonged, implying that different classes

of things may be added that Yolo could recognize, including, for instance,

recognizing the signature and the photo in the documents. Given that the

processes outlined above can be completed entirely from scratch to guaran-

tee the project’s success, this model has a wide range of potential future

advancements.

Finally, it is crucial to clarify that this project is still in progress and that

we will keep working on it in the following months to enhance Yolo’s perfor-

mance. Therefore, after this thesis, we can state that although the findings
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are already satisfactory, they are only the project’s starting point.
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Chapter 4

Summary

The problem considered in this thesis is a categorization issue: the objective

is to utilize a model that takes documents as input and organizes them based

on whether or not they bear a signature. The signed documents can then be

selected and organized using the information from this classification. Most

of the documents in question are identity documents, such as identity cards,

on which a signature—typically a digital or handwritten one that has been

scanned—is present. As a result, it is essential to consider the document’s

shape and orientation, the background color, all of the items on the page,

the type of written sentences—both handwritten and computerized—and a

wide range of other fundamental criteria.

Since there are already several ways to accomplish this, the issue of signature

identification is now viewed as being straightforward and quickly resolved.

However, it is crucial to bring attention to an essential component of these

procedures since it will clarify why We have chosen to take on this issue.

Nowadays, signatures are used in Machine Learning algorithms that check

the signature’s authenticity.
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Banks’ mechanism to validate the signature when it is manually entered

at the desk to sign any form of the document is a typical illustration of these

procedures. In this instance, as with other signature processes, the goal is to

confirm the integrity of the signature rather than locate where it is on the

page. In order to confirm that the signature is authentic, it is considered in-

dividually in each of these steps and compared to a matching valid signature

that already exists in the dataset. As a result, signature position detection is

frequently done using more straightforward and less accurate models. Some-

times, however, this phase is skipped, and the model is trained directly using

datasets that include only signatures without considering the entire docu-

ment page. These factors make it more transparent why we developed this

research as a thesis project. The organization of papers is the primary goal

of this project, as was already mentioned. To do this, a model must be used

whose main objective is to locate the signature on a piece of paper, not to

validate it. This is the primary distinction between our research and current

models in this area.

Finding the location of the signature on the documents is the only thing

that matters in this project; the subsequent procedures are optional and

can always be added in the future. Neural Networks are typically used in

projects of such nature for the process’s last step, validating the signature.

For the intermediate phases of these undertakings, Deep Learning models’

accuracy and precision have never before been fully utilized. The signature

selection stage on the sheet is usually considered a step leading up to the

final verification stage, as demonstrated in the following few paragraphs, and

needs more consideration. This is the logic behind using Machine Learn-
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ing models rather than Deep Learning ones. The example that follows will

clarify this statement. The Connected Components method is one of the

most often used models for detecting a signature. It operates as follows: the

model creates a “mask” that divides the page into sections, and within each

mask frame, an analysis of these Connected Components is performed. This

method is based on the generally accurate notion that when we sign, we link

all of the letters together, yet when we type on a computer, all letters are

separated. The study of Connected Components is based on the assumption

that if numerous letters are attached, the likelihood that it is a signature

rises significantly.

When we first tried this method, it did not produce the desired results be-

cause any mark on the page could be observed. As a result, the sheet’s sec-

tions corresponding to printing, other handwriting, or scanning errors were

frequently mistaken for signatures. This is why we thought this approach

needed to be more trustworthy and moved on to look for a more accurate

solution.

After conducting considerable research that consistently produced outcomes

similar to the ones just mentioned, We considered changing our perspective

and eventually discovered a fresh way to see the project’s aim. The goal is

to locate a signature on a sheet, which can also be interpreted as locating an

item within an image, as we have stated numerous times before. This real-

ization caused us to consider the potential for using some Object Detection

methods. Unfortunately, we could not locate any scientific publications in

the literature that may have explained to us on a theoretical and technical

level whether such a technique could be carried out and whether it had been

done previously. However, we decided to give it a shot.
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We searched for several Object Detection models to determine which was

best. Many approaches might be used, as seen in the coming pages, but

we use a Convolutional Neural Network known as YOLO (You Only Look

Once). In addition to conducting this study, we were able to locate a Note-

book on GitHub that used YOLO to carry out the process I needed [10]. All

of these factors led us to choose this model. Furthermore, this Notebook was

extremely helpful to us in understanding how the selected model operates.

A new perspective

What distinguishes this work is the shift in perspective. We made an effort to

come up with a different solution to a problem that is already well-known and

frequently addressed using the same set of methods (such as Connected Com-

ponents). As previously stated, the identification phase of current initiatives

always played a minor role because the primary focus was on their verification

rather than the identification of signatures. In contrast to the subsequent

verification phase, where Deep Learning is typically used, this phase has

never been surpassed by using more complex Deep Learning models, such

as a Neural Network. Instead, we preferred to make signature detection the

project’s main objective and worked to implement a Deep Learning technique

to do so. The outcome was very satisfying. Using the Neural Network, Yolo

allowed us to shift our perspective, which was the best option for our project.

The usefulness of our research can also be emphasized, in addition to its

value explained in the previous paragraphs. A major corporation that lacks
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a document cataloging system that meets its requirements could need this

project. Due to this, it is crucial to emphasize that the implemented model

should also be considered innovative research and a useful cataloging tool

that avoids wasting time and money on manual document classification. The

beneficial applications of this model can be expanded in the future; for in-

stance, the detection of identity images or the tax code might be added in

addition to the detection of signatures. All of this is made possible, in large

part, by the use of Yolo, which enables the inclusion of further object classes

in addition to signatures without requiring any other model modifications.

This enables it to be adapted to a company’s requests and change along with

it as the tasks required evolve.

The Object Detection Problem

Humans rely on their eyes to perceive everything; they take in data from

the world around them and send it to their brains for analysis and inference-

making. Well, it seems very easy. Just by looking, we can learn a great deal

about what we see, including what they are, where they are, and how they

are used. However, the processing that our brain performs for it is simply

incomparable. The researchers wondered if we could give a machine this in-

triguing brain function. With this, the machine’s duty will be significantly

easier since, if it can identify the items in its environment, it can engage with

them more effectively—which is the whole point of developing machines—to

make them receptive to interaction with humans and more human-like. How

can we teach a machine to recognize an object? The field of computer vi-

sion known as “Object Detection” was born out of this. It studies finding

instances of different class items (such as a person, book, chair, automo-
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bile, bus, etc.) in digitally produced images and videos. Recent years have

seen significant advancements in automated data processing and interpreta-

tion because of the development of Deep Learning. One of the advantages

of Neural Networks is the ability to adapt and progressively learn how to

compute the solution to a given problem with the aid of learning examples.

Training entails modifying the parameters of the various levels throughout

the backward propagation phase to reduce the difference between the value

generated and the expected value. The sub-domains of this Object Detec-

tion include face detection, activity recognition, image annotation, and many

others. Applications for Object Detection can be found in several significant

fields, including self-driving cars, robots, video surveillance, object tracking,

etc.

YOLO, You Only Look Once

Fast, precise, and able to distinguish a range of items should all be character-

istics of general-purpose Object Detection. The advent of Neural Networks

has accelerated the speed and precision of detection frameworks. The Ob-

ject Detection field has advanced tremendously over the past few years due

to a significant amount of study. The performance of the algorithms has

attained levels of accuracy and precision that have never been higher. The

fundamental goal in this field is to mimic the functions and skills of human

eyes in terms of object recognition after only a glance. There are now several

algorithms that are especially effective at doing this.

The detection accuracy is increasing significantly with the introduction of

the YOLO algorithm (You Only Look Once) and its architectural descen-
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dants, and it is occasionally better than two-stage detectors. YOLO versions

are frequently used in various applications due to their quick conclusions and

precise identification. YOLO is a particular Neural Network because it has

a high-speed architecture. Because the entire detection pipeline consists of

a single network and can be improved end-to-end based solely on detection

performance. The model has undergone numerous iterations to increase ac-

curacy and speed over the years. This algorithm’s primary objective is to

mimic how individuals perceive the world: after looking at something, it can

promptly and accurately identify it. [9]

The Algorithm

Yolo is extremely quick while maintaining a high level of accuracy and pre-

cision because of its architecture. It is refreshingly simple. A single Neural

Network predicts multiple bounding boxes and class probabilities for each

box. While training on entire pictures, YOLO instantly improves detection

performance. It redefines object recognition as a single regression problem by

replacing image pixels with bounding box coordinates and class probabilities.

It can tell what things are present and where they are by only taking

a single look at an image. Unlike classifier-based approaches, YOLO is in-

credibly quick during testing because it only needs to evaluate one network.

As will be covered in more detail in the following section, the grid design

requires spatial variation in bounding box predictions. Due to the fact that

it is frequently clear which grid cell an object belongs in, the network can

only predict one box for each object. [8]

As a result, J. Redmon et al. [9] provide a novel approach to the Object

Detection issue by integrating the various system components into a single

network and developing the first “one-stage” Object Detection system. By
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simultaneously reasoning about the full image rather than just a few parts,

the network is able to better understand the environment in which the var-

ious object classes are situated. Additionally, by doing so, it establishes an

implicit connection between object classes that are actually connected.

The authors of YOLO [9] have changed the definition of the Object De-

tection problem from classification problem to regression problem. A single

Convolutional Neural Network is used to forecast the bounding boxes and

assigning class probabilities to each of the detected objects shown in an im-

age. As said before, this algorithm just needs to look at the image once to

recognize the objects and their locations using boundary boxes. The dif-

ficulty comes from precisely identifying many items and determining their

exact locations within a single visual input. Two key Convolutional Neural

Network (CNN) characteristics, parameter sharing and multiple filters, are

capable of successfully addressing this object detection issue.

The Architecture

The model has improved, but the dominant model idea has stayed the same.

Network Design

Convolutional Neural Networks are used to create this model, which Red-

mon J. et al.[9] evaluate using data from the PASCAL VOC 2007 and 2012

detection dataset. The design of YOLO was heavily influenced by that of

GoogleNet. YOLO has 24 convolutional layers, of which only four are fol-

lowed by max-pooling layers.
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Unified Detection

The technique combines the many elements of Object Detection into a sin-

gle Neural Network, as stated in the previous section. This network takes

features from the entire image to predict each bounding box. Additionally,

it simultaneously predicts all bounding boxes for a picture across all classes.

This indicates that the network considers the entire image and all of its ob-

jects when making decisions. The YOLO design maintains excellent average

precision while enabling end-to-end training and real-time speeds. [9]

The bounding boxes typically vary in size while considering various shapes

to capture the objects. A bounding box should be used to identify an object

in the image such that the object’s center falls inside the bounding box.

However, he centers of many objects could coexist in the same bounding

box. The bounding boxes that correspond to a single grid cell were referred

to by the authors as Anchor Boxes.

Comparison with Other Object Detection Models

To better understand what may be done to enhance the performance of the

studied model, it is helpful to examine different Object Detection methods

in the pages that follow. This can help to determine which features of YOLO

need to be improved in order for it to outperform all other models.

• Deformable Parts Model (DPM)

To extract static characteristics, classify regions, predict bounding boxes

for high scoring regions, and perform other tasks, DPM employs a dis-

joint pipeline. In YOLO, a single Convolutional Neural Network takes

the place of all of these various components. The network simulta-

neously executes contextual reasoning, bounding box prediction, non-
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maximal suppression, and feature extraction. The YOLO integrated

design produces a model that is faster and more precise than DPM.

• R-CNN

This algorithm is considered as one of YOLO’s main competitors. It

uses region proposals: potential bounding boxes are generated, features

are extracted by a Convolutional Neural Network, the boxes are scored

by an SVM, the bounding boxes are adjusted by a linear model, and

duplicate detections are eliminated by non-max suppression. The out-

come is an extremely slow system because each stage of this intricate

pipeline must be carefully tuned independently. YOLO and R-CNN

have some parallels. Potential bounding boxes are suggested for each

grid cell, and those boxes are then scored using convolutional features.

To counteract multiple detections of the same object, YOLO, however,

places spatial constraints on the grid cell proposals. YOLO technology

merges the various parts into a single, jointly optimized model.

• Other Fast Detectors Fast and Faster R-CNN

They focus on accelerating the R-CNN architecture. Both fall short

of real-time performance despite being faster and more accurate than

R-CNN. YOLO discards the entire detection pipeline instead of trying

to optimize individual parts of it and is quick by design. YOLO can

simultaneously learn to detect a wide range of objects.

• Deep Multibox

A Convolutional Neural Network is used to anticipate regions of inter-

est. Multi-Box is still only a component of a broader detection pipeline

and is unable to detect general objects. Both YOLO and MultiBox pre-

dict bounding boxes in an image using a Neural Network, while YOLO
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is a full detection system.

• OverFeat

Although OverFeat effectively detects sliding windows, the system is

still fragmented. Not the performance of detection, but localization, is

optimized by Over-Feat. It only considers local data while producing

a prediction.

• MultiGrasp

YOLO shares design elements with research on grip detection. For an

image with a single object, MultiGrasp simply needs to anticipate a

single graspable zone. For many objects belonging to various classes in

an image, YOLO forecasts bounding boxes as well as class probabilities.

[9]

Error Performance Analysis

Redmon J. et al.[9] analyse the YOLO error performance, and compare it

to Fast R-CNN. It is possible to determine whether or not a category is

accurate, if an error exists, and what kind of error it is:

• Correct: the appropriate category, IOU higher than 0.5;

• Localization: the appropriate category, IOU between 0.1 and 0.5;

• Similar: a related class, IOU higher than 0.1;

• Other: the inappropriate class, IOU higher than 0.1;

• Background: IOU lower than 0.1, independently from the category

type. [7]
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From a comparison of the test results from YOLO and Fast R-CNN

that YOLO has some localization issues. These errors are more prevalent

in YOLO compared to all the others, whereas Fast R-CNN produces less

mistakes overall but more background errors. [7] They both have an issue

with the presence of missing objects, those that the models are unable to

recognize. The Yolo performance is good in the majority of aspects, while

performances for the second model are not considered as reliable. As a result,

YOLO proves to be superior in terms of the speed of inference, the detection

of small or distant objects, and the issue of overlapping boxes. Finally, both

models are capable of locating items in chaotic conditions, where it is more

challenging to locate the target object due to the abundance of other items.

Limitations of YOLO

YOLO places substantial spatial limits on bounding box predictions. The

number of neighbouring items that the model can predict is constrained

by space. Small items that occur in groups are difficult to handle. The

model needs help generalizing objects with novel or odd aspect ratios or

configurations since it learns to predict bounding boxes from data.

Given that the architecture comprises many down sampling layers from the

input image, the model also employs rather coarse features for predicting

bounding boxes. Last but not least, while being trained on a loss function

that roughly represents detection performance, the loss function treats errors

in tiny bounding boxes and large bounding boxes equally. The impact of a

tiny error in a small box on IOU is substantially more significant than that

of a small error in a large box. Inaccurate localizations are the primary

cause of inaccuracy. [9] As DPM, YOLO considers the objects’ size, shape,

relationship to one another, and locations where they appear more frequently.
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The authors also discuss how natural and generated images differ significantly

when considering a small number of pixels. At the same time, forms and

proportions within the same image are highly similar. Given its design, this

contributes significantly to YOLO’s ability to generalize object classes and

produce effective results when used on simulated photos.[9]

Data Availability

The availability of a smaller number of images to use, compared to other types

of Machine Learning algorithms, is another factor that must be considered

while analyzing the constraints of this model. Since there are fewer pictures

and datasets accessible for other Machine Learning applications, the majority

of Object Detection algorithms are actually trained on the same collection of

data and images. A few hundred photos make up the most well-known and

often used dataset in the field of Object Detection. On the other hand, the

datasets utilized for other classification or regression issues contain hundreds

of thousands of data. Since one can train these algorithms with a significantly

volume of data than Object Detection techniques, it is evident that this

results in better outcomes and performance. [9]

Why YOLO?

Understanding if YOLO is the appropriate model to apply in the current sce-

nario being studied is made much easier by all the features and restrictions

of the model described so far. Yolo’s single pipeline, which has already been

stated, is what makes it so fast. In addition, the generalisability component

is very intriguing because it enables a complete understanding of the image.

The employment of the Non-Maximum Suppression approach, which enables

the removal of superfluous boxes, is the last factor to consider. After all the
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factors emphasized in this first section, it is essential to determine whether

Yolo should be used instead of a faster or more accurate model. The final

choice was not exclusively based on the mathematical conclusions that have

been put forth thus far. Yolo’s method of approaching an image, as already

said before, is one of the things that really stood out to us about it, and it’s

also one of the key reasons why we chose to utilize this particular Neural Net-

work for the project. What does this mean? The Object Detection problem

is first considered as a regression rather than a classification problem, which

is an intriguing characteristic. The algorithm’s ability to understand how

the observed object interacts with the background and other objects in the

image by considering the complete scenario as a whole is a second notewor-

thy innovation. Yolo can recognize objects much more quickly in videos and,

more precisely, in images if it pays attention to the entire context, which is,

in our opinion, a very relevant component. Because of all these aspects and

how accurate and precise the model is as a result, YOLO was picked.

The issue of signature detection is prevalent nowadays. Therefore creative

solutions are required to make a genuinely fascinating contribution to this

field of study. YOLO has yet to be used to recognize signatures on identity

documents or to classify and organize them, so it looks like an innovative and

intriguing decision to take advantage of its capabilities in this area. YOLO’s

inability to recognize objects it has never seen before is one of its limitations,

but in this case, it is obvious that this is not an issue because the only thing

that needs to be recognized is the signature. As a result, there is no danger

of YOLO encountering objects that are too small to be recognized.
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The Project

Nowadays, the problem of detecting and validating signatures is regularly en-

countered, and there are numerous ways to fix it. This is the reason why this

work may initially appear simple and straightforward to complete. However,

it is a very intriguing process because there are many factors to consider;many

things could hurt the results. For example, signatures are usually quite deli-

cate because they are typically handwritten and scanned. Examples include

how the page is laid out, where and how the signature is placed, whether

there is any additional handwriting on the page, whether colored backdrops

are used, and how saturated and transparent the background is. Because of

this, it is not easy to come up with a workable solution for this situation.

It is also essential to stress that the solution to be utilized must be carefully

chosen depending on the results we need and the project’s type of aim. Why

does this matter? We must choose which method best meets our needs from

the several techniques to identify and authenticate a signature.

The process of recognizing a signature came with several challenges. First,

the algorithm is trained to recognize a handwritten sign typically found in the

bottom left-hand corner, presenting a first barrier. What transpires if there

are additional handwritten signatures on the document or if the signature is

not in the usual position? This was the first thing that was examined and,

if necessary, corrected. Yolo made this situation easier to handle than we

had anticipated. Yolo is quite good at recognizing only the signature when

it comes to other handwritings, and it is also possible to specify a probabil-

ity cutoff below which handwritings are not taken into account. It must be

acknowledged that Yolo still needs to improve on the second challenge, the

location of the signature, although this was solved by adding more photos to
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the dataset. This made it possible to increase both the number of pictures

used to train the algorithm and the number of pictures used to test it.

The design of the page is still another challenge. The method yields excellent

results when detection is required on vertical sheets with a white background

and black writing. However, the model’s performance noticeably degrades

when pages are used with colored backgrounds and the page orientation is

reversed. When the background is darker, Yolo has an adamant time rec-

ognizing signatures, especially when the color green is present. Due to this,

as we shall see on the folowing pages, it was necessary to repeat the entire

procedure to increase the algorithm’s performance using a dataset of colored

images arranged on horizontal pages. The outcomes of all efforts will be seen

in the next pages.

The Purpose

The thought of using this kind of algorithm as a thesis project first emerged

during the research for a system that could classify papers, particularly iden-

tification documents, based on the presence or absence of a signature. First,

it is essential to clarify some project’s aspects in order to reveal its innovative

nature. The first point that needs to be emphasized is that this research and

its solution must be seen in the context of a broader discussion of the field

of signature recognition. The signatures’ validation is now the most crucial

phase in signature verification efforts. As a result, finding their location on

a page or document is just a preliminary task that is addressed using less

time-consuming and effort-consuming methods and consequently given less

priority.
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Based on this supposition, it is clear that the ultimate objective of this ini-

tiative is not the same as signature verification because signature verification

is subsequent, and in this case superfluous, step that may always be added

later; more traditional Machine Learning algorithms will not be used.

A Neural Network is typically used in projects that attempt to verify a sig-

nature after being trained with a signature dataset to enable it to assess its

legitimacy. The signature detection step is often resolved using a Machine

Learning algorithm, which determines if the signature is there or not based on

the examination of the connected components on the document. Frequently,

this step is just skipped, and the Neural Network is trained directly for verifi-

cation using images of each signature that have already been extracted from

the document.

Identifying the signature on a document is equally a crucial step in the pro-

cess, particularly for companies that require it when classifying digital doc-

uments and we were given full attention in this thesis topic. Due to this, it

was decided to use a Neural Network also during the identification step in

order to produce more accurate findings.

Numerous tests were run, taking into account numerous examples and papers

found online, in order to determine which algorithm was the best. Finally,

a choice was made after carefully examining the outcomes found in about a

dozen images. First, all other potential Machine Learning algorithms that

did not use Deep Learning were excluded and the search was limited to the

field of Neural Networks. The most successful ones were then chosen, taking

into account the four primary performance metrics: precision, accuracy, re-

call, and F1-score.
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Finally, the Convolutional Neural Network “YOLO” (You Only Look Once)

was selected. This is an Object Detection algorithm, as was already seen

in the previous section. Using a Neural Network appeared reasonable be-

cause the goal is to identify an object -the signature- in a picture or scanned

document. When used, YOLO should produce a dataset containing all the

document’s metadata (including the document’s width and length, location,

length, and width of the signature, as well as the existence and placement of

the logo, along with a final column for specifying whether the document is

“signed” or “unsigned”).

The Process

The following pages will describe all the steps that have been followed in

detail.

Data Pre - Processing

We referenced the notebook on Github [10] during the process, demonstrating

how to utilize this technique to find signatures and logos on scanned pages.

Data Description

Finding a dataset that was appropriate for the project was the first step.

The Tobacco800 dataset consists of over 1,200 images of scanned documents

in black and white, some of which are signed, some of which are not, some of

which are misaligned, and some of which have other pen writing. At least, for

the project’s initial goal, it was appropriate. The metadata for each image

is stored in XML files in a separate folder in addition to the one holding the

photos. The height and width of the page, the presence or absence of sig-
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natures and logos, and, if any were included, their coordinates (x, y, width,

and height) were all included in each file. This information was essential for

training and evaluating the model’s effectiveness.

After locating the input data, a data cleaning procedure was required to

transform the images and text files into a format that the algorithm could

understand without causing errors.

After choosing all the needed features, it was possible to go on with the

next step, the training phase. First, the correct version of the model was

choosen, the Yolov5s or “small”, that presented the best performances: it is

the fastest and one of the more accurate version. After this choiceand the

proper organization of folders that divide images in the train and test set, it

was possible to start the training phase.

At the end of this process, the model will compute the performance met-

rics. First is the confusion matrix which determines precision, accuracy,

F1-score, and recall. The results are excellent, but they will be ex-examined

in further detail in the following pages. Then, all the curves that describe

the confidence level are also available: the Precision-Confidence curve, the

Recall-Confidence curve, the F1-Confidence curve.

Once the results from the training phase are observed and we are satisfied

with it, it is possible to go on with the testing phase. This is the step in

which the algorithm will pass through a new image, that it has never seen

before. This is a fundamental step, because it is the moment in which we

can understand if our model can detect objects in an image by himself, using

all the information he learned during the training phase.

Focusing on a later stage of the process is vital before going on to the fol-

119



lowing sections, which will display the project’s results. As was stated at

the beginning of the chapter, when the procedure had been tested on the

Tobacco800 dataset, it was essential to determine whether Yolo could also

recognize signatures on less “conventional” sheets and documents. It was

necessary to hunt for another dataset with horizontally colored pages as a

result. The project was excellently suited to the “Bank Checks Accounts”

dataset that was discovered on Kaggle [3]. Repeating the entire process af-

ter these data processing procedures were finished was feasible. All of the

outcomes will be revealed in the following sections.

Results

The outcomes can be seen in this part after all the computational procedures

and the project, in general, have been thoroughly detailed. This will demon-

strate whether YOLO is an original and practical method for accelerating

and improving signature detection accuracy. As discussed in the previous

chapter, YOLO was tested on two separate datasets to see how well it could

recognize signatures on various types of documents.

The first one is Tobacco800, which was quite helpful because, as was already

indicated, it is a dataset explicitly made for this kind of activity. With the

help of these kind of documents, the initial tests were run, and they also

gave us a practical understanding of how the algorithm functions as a whole.

Additionally, this kind of paper was done with the complete study of hy-

perparameters. Given that it already contains all the data and information

required for the project and that there are roughly 1200 images in it that are

ideal for training a Neural Network, it is evident that the dataset is simple to

utilize. Because the dataset was so simple to be used, we could thoroughly
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understand all of YOLO’s properties without running the danger of making

an error owing to data uncertainty.

Bank cheques make up the second dataset. The issue with these images

was precisely the opposite of Tobacco800. It was a dataset with roughly 160

total pictures that was hard to find on the Kaggle site. [3] Not all of the

metadata required to evaluate the model’s performance was offered. There-

fore, expanding the number of photographs available was necessary as a first

step. How? Copying the current images and altering their colors, position,

and shapes to distinguish them. The dataset now contains roughly 500 pho-

tos. However a further 500 images might be added. The metadata had to be

added at this point as well; each image had a text file with the same name

that contained six values, including the height and width of the page, the

coordinates of the point at the top left of the rectangle containing the signa-

ture, and the height and width of the rectangle itself. Once this procedure

was finished, repeating every step with the first dataset was simple.

Overall, the outcomes are consistent with expectations. Given that the To-

bacco800 dataset was created especially for this activity, the first portion of

the work, which used it, yields better results. The ability to comprehend

the model’s behavior, outcomes, and performance without being concerned

that the data might contain errors was really helpful. As a result of the

satisfactory performance with this dataset, we can move on to the following

phase. The project’s second phase presented various challenges. First, the

data. The hardest part of the whole project was this. It is hazardous to

manually arrange data that will be used as input in a model because there

is a high chance that something will go wrong and affect the model’s per-
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formance. Although the task was incomplete, numerous tries were made,

mistakes and revisions were made, and ultimately good results were found.

The training phase using the checks was incredibly fulfilling, with outcomes

almost identical to those of the project’s first phase. They were undoubtedly

higher than we expected. On the other side, the inference stage went pre-

cisely as predicted. Results are less favorable than in any of the other phases,

with a decrease of 0,2 in one of the performance metrics. Nevertheless, given

that Yolo has more trouble identifying signatures when they are on colored

backgrounds, these are the kinds of results we might have expected. The

backdrop component becomes a significant barrier to the project’s successful

execution. More work has to be done, and several actions can still be per-

formed to enhance the model’s performance and, hopefully, the outcomes of

this final stage.

Future Steps

The project is still ongoing. The primary barrier is the lack of any readily

available datasets outside Tobacco800 that can be utilized for this purpose.

In the need for more data, the only option is to create the dataset manu-

ally, which has a very high risk. Even though there are just 163 photos in

the cheque dataset, finding more proved challenging. The dataset currently

contains 540 pictures after being manually expanded. Comparing this figure

to Tobacco800’s 1250 photos, it still needs to be higher. The first stage is

to increase the number of photographs and attempt to double them at least.

This could also be done using the new AI tools to generate new cheque pic-

tures automatically. The signature coordinates information in the images

will be manually entered during this process. The main objective is to reach
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more than a thousand photos in the dataset, and the model’s performance

should increase. Working with more suitable datasets and more images will

be required in the following weeks to optimize the model’s performance. This

phase is essential to comprehend the nature of the documents that need to

be cataloged and the images that will need to be used to optimize the model.

Conclusion

After this procedure, we can summarize the goal of this project, emphasizing

several elements.

The project’s main objective is to classify papers of all kinds, notably iden-

tification documents, based on whether a signature is present or absent. As

a result, it is a classification issue. We tried to view the issue from a dif-

ferent angle among the several methods for identifying document signatures.

Rather than concentrating on the models currently used for signature recog-

nition, we use a yet-to-be-employed method. It is a novel approach to rec-

ognizing signatures using a Neural Network for Object Detection: a new

practical use of a model developed for different use.

Using two different datasets, the procedure breaks into multiple components

and thoroughly examines each process stage and the model architecture.

We choose Yolo from all available models because of its construction, which

makes it quick, precise, and accurate. The findings from the two datasets

produced using it also demonstrated its correctness and speed. The results

presented in this thesis are merely the first of many steps that will be taken

in the future because the journey is still long and unfinished.
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The results observed so far highlight some of the algorithm’s advantages

and disadvantages. As was already indicated, Yolo is speedy. It generates

inference results in minutes and contains all previously examined findings.

These findings demonstrate how precise and accurate Yolo is in determining

the location of the signature or logo. It also detects the background with

relatively little inaccuracy. The second dataset-colored backgrounds well il-

lustrated this last aspect, which Yolo could immediately recognize. These

colored backgrounds presented a challenge during the process, as was al-

ready noted, but an additional data cleaning and pre-processing step swiftly

resolved it.

The following actions are essential to enhancing the model’s performance

even further. First, it was a path built around uniqueness. The primary goal

was to devise an alternative solution to a common problem, which has since

been resolved in various ways but was usually seen as a passing phase and

given little consideration. Identifying signatures was the project’s primary

objective, allowing us to approach the problem fresh. We can include this

procedure in longer processes involving additional steps confirming these sig-

natures after detection, similar to how signature identification can be seen as

the project’s ultimate goal. Since the Neural Network is a learning process

that can constantly be enhanced or prolonged, implying that different classes

of things may be added that Yolo could recognize, including, for instance,

recognizing the signature and the photo in the documents. Given that the

processes outlined above can be completed entirely from scratch to guaran-

tee the project’s success, this model has a wide range of potential future

advancements.

Finally, it is crucial to clarify that this project is still in progress and that

we will keep working on it in the following months to enhance Yolo’s perfor-
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mance. Therefore, after this thesis, we can state that although the findings

are already satisfactory, they are only the project’s starting point.
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