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The long shadow of racial segregation: Does it
affect the infrastructure development of a
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Pablo Mones

Abstract: This paper aims to disentangle the mechanisms underlying the well-documented
association between race and the location of waste management facilities (WMFs). To do so,
I first study whether WMFs were more likely to be located in neighborhoods with a higher
share of black population after controlling for relevant covariates. Secondly, I analyze the
socioeconomic consequences following the introduction of WMFs. Using historical data from
the 1920-1940 U.S. Censuses and GIS data from the Urban Transition Project, I focus on
the cities of Baltimore, Boston, Chicago, Cincinnati, Houston, and Nashville in the United
States.

The results suggest that, contrary to expectations, there was no targeting of predominantly
black neighborhoods for WMF placement after accounting for other geographic and socioe-
conomic factors. Instead, a more flexible model reveals an inverted U-shaped relationship,
indicating that neighborhoods with mixed racial compositions were most affected by the
presence of WMFs. These findings are consistent with the potential existence of blocking
coalitions based on race, implying that homogeneous racial neighborhoods could resist the
establishment of WMFs.

Furthermore, the study explores the consequences of WMF introduction on the affected re-
gions. I find a decrease in urban development, measured by a decline in population density,
following the construction of WMFs. Additionally, there is evidence of an increase in the share
of black population in the areas where WMFs were introduced. These findings are consistent
with a white flight from the affected neighborhoods.
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1 Introduction

Literature has demonstrated that exposure to environmental risks is unequally distributed on
the basis of race and socioeconomic status. Studies have established an association between
nearby residents’ racial and economic characteristics and the placement of hazardous environ-
mental infrastructure (Bullard, 2008). These findings contribute to the ongoing discourse on
environmental justice, revealing that marginalized social groups bear the consequences of the
adverse effects of environmental pollution, exacerbating pre-existing structural inequalities
within society.

Landfills and waste incinerators are essential for the proper functioning of every city. Even
though they contribute to increase the inhabitants’ overall social welfare, people living near
these facilities often experience negative consequences. Various factors influence decisions
regarding the location of waste management facilities (WMFs). Technical considerations play
a role, and they depend on the geographical characteristics of the specific city under consid-
eration. Additionally, political and socioeconomic factors come into play, as the allocation of
WMFs entails winners and losers.

The potential negative externalities associated with WMFs have been widely studied in
the literature. Waste incineration, for instance, leads to increased exposure to pollutants such
as particles, acidic gases, aerosols, metals, and organic compounds. This exposure has been
linked to elevated mortality rates and an increase in emergency hospital admissions (Dockery
et al. (1994); Katsouyanni et al. (1997)). Furthermore, studies by Elliott et al. (1996) and
Elliott et al. (2000) have identified a correlation between the distance from waste incinerators
and the probability of developing certain types of cancer.

Exposure to dumps or landfills has also been proven to pose health risks to the surrounding
inhabitants. Vrijheid (2000) conducted an in-depth literature review about the health effects
of residing near waste landfills. The review revealed a link between exposure to hazardous
waste sites and excess deaths from various types of cancers, as demonstrated by Griffith et al.
(1989). Additionally, Berry and Bove (1997) discovered that infants born from parents who
reside near landfills had a statistically significant lower average birth weight compared to the
rest of the population.

The relationship between the location of WMFs and the racial composition of the sur-
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rounding areas has been extensively studied in the literature. The U.S. General Accounting
Office (GAO, 1983) published one of the first technical reports on this topic in response to
protests by environmental justice movements. The report found a positive association be-
tween the location of four hazardous waste landfills in the southern United States and the
proportion of African-Americans living there. Subsequent studies have confirmed this trend,
with a summary of the results available in Mohai et al. (2009).

However, establishing an association between race and the location of landfills and waste
incinerators does not indicate a discriminatory process against minority populations. This
scenario presents a classic ‘Chicken and the Egg’ situation, where it is unclear whether the
racial composition caused the infrastructure’s placement or vice versa. On the one hand,
it is possible that authorities and private companies deliberately chose to locate WMFs in
neighborhoods predominantly inhabited by racial minorities, resulting in a positive association
in the data. On the other hand, it could be the case that the infrastructure was placed
irrespective of race, but subsequent socioeconomic forces led to an increase in the share of
black population. Alternatively, there may be other relevant socioeconomic and geographical
factors simultaneously influencing both the location of WMFs and the settlement decisions of
black inhabitants, thereby leading to the positive association observed in the data.

This study aims to disentangle these mechanisms and address two key research questions.
Firstly, I examine whether WMFs were situated in neighborhoods with a higher historical
proportion of black residents while controlling for a relevant set of covariates that capture other
factors influencing the location of WMFs. Secondly, I explore the changes in socioeconomic
characteristics within regions following the installation of a WMF. To address these questions,
I focus on a group of cities in the United States, utilizing data from the U.S. Censuses
conducted in 1920, 1930, and 1940, as well as GIS data from the Urban Transition Project
(UTP) to map the census data onto geographical space. Additionally, I collect historical data
on the locations of dumps, landfills, and waste incinerators operating before 2000 in these
cities.

Regarding the first question, Louis (2004) argues that most waste management decisions
were made at the municipal level during the 20th century. According to the author, waste
management had become an ‘institutionally organized, technology-focused, municipally op-
erated service’ by the 1930s. By the 1960s, sanitary landfills had become the predominant
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method of municipal refuse disposal. Therefore, it is reasonable to assume that regulated
WMFs were established under the supervision of municipal authorities. In contrast, unregu-
lated landfills may have emerged out of necessity, negligence, lack of regulation, or ineffective
political action. In many cases, these unregulated landfills were subsequently acquired by
cities and formalized as official dumping sites.

My main hypothesis posits that during the study period, when minorities were politically
underrepresented (Karnig, 1976), authorities may have chosen to impose the negative exter-
nalities associated with waste management infrastructure on these minorities (Mohai et al.,
2009), as the political costs were lower than those associated with placing these facilities in
predominantly white neighborhoods. If this hypothesis holds, it would be expectable to find
a higher likelihood of observing a WMF in a neighborhood predominantly inhabited by black
residents compared to a neighborhood with similar characteristics primarily inhabited by the
white residents.

The magnitude of these effects may vary depending on city-specific characteristics. For
instance, one might hypothesize that the effect could be less pronounced in cities with a
higher percentage of black population, as they may have possessed greater representation
power. Moreover, the political alignment of the municipal government could have influenced
this decision. Wolfinger (1965) shows that a person’s ethnicity is related to their likelihood
of supporting a particular political party, even after controlling for other characteristics.
Therefore, politicians may have chosen to place WMFs closer to neighborhoods associated
with ethnicities that were unfavorable toward them to maintain their primary voter base
content. Lastly, it is plausible that this effect was stronger in cities where the black population
was not economically or culturally integrated.

This paper does not find robust evidence supporting the aforementioned hypothesis after
controlling for relevant covariates that explain both the location of WMFs and the racial com-
position of neighborhoods. Houston, is the only city where there is a statistically significant
and positive effect from the proportion of black population to the location of WMFs. In other
cities, the effect is relatively weaker. The general pattern indicates an inverted U-shaped rela-
tionship between the variables, suggesting that neighborhoods with a mixed-race composition
were the most affected.

Regarding the second question, this paper provides evidence indicating that introducing
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a WMF leads to an increase in the share of black population. Hypothetically, this could
be attributed to two potentially complementary mechanisms: higher-income individuals may
have chosen to relocate, but at the same time, those with lower economic resources may have
moved in to take advantage of the decrease in land costs resulting from the WMF introduction
(Hite et al., 2001). Historically, the black population in the United States tended to have
lower income levels than the white population. Therefore, after establishing a WMF, white
residents may have decided to leave the area, while black residents may have opted to settle
there. I refer to the first case as the ‘white flight’ hypothesis and the second as the ‘black
settlement’ hypothesis.

The estimation results indicate an increase in the proportion of black residents following
the introduction of a WMF. Additionally, there is a significant decrease in population density,
and individuals with worse economic outcomes (measured by unemployment) appear to have
settled in the affected areas. These findings support the white flight hypothesis, suggesting
that people prefer to leave the area after a WMF is introduced. However, as white individuals
were, on average, wealthier than black individuals, they were more capable of doing so,
resulting in a lower population density and an increase in the proportion of black residents.

The paper is organized as follows: Section 2 presents the data used for analysis and
the methodology employed to ensure data comparability across years. Section 3 examines
whether WMFs were located in neighborhoods with a higher proportion of black residents
after accounting for various characteristics. Section 4 presents the empirical strategy and
results regarding the effect of introducing a WMF, while Section 5 concludes the paper.

2 Data

To investigate this phenomenon, I utilize the IPUMS data set (Ruggles et al., 2021) derived
from the censuses of 1920, 1930, and 1940. Additionally, I employ GIS data from the Ur-
ban Transition Project (Logan et al., 2011) to obtain historical Enumeration Districts (ED)
maps. It is important to note that the selection of cities for study is contingent upon the
availability of maps within the Urban Transition Project. Consequently, this study focuses
on four Northern cities—Baltimore (MD), Boston (MA), Chicago (IL), Cincinnati (OH)—as
well as two Southern cities—Houston (TX) and Nashville (TN). Therefore, it is imperative
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to recognize that the findings of this study may not generalize to the broader universe of US
cities.

To merge the two databases, I employ the Enumeration District (ED) variable. This
variable represents geographic areas designed to allow a census taker (enumerator) to visit
every house in the district within two-weeks (in rural areas, the time allowed was one month).
It is unique within the Counties of each State, and it enables localizing each person from the
census in their respective ED, thereby providing a granular measure of location within the
given time frame. The dataset derived from this approach yields detailed information at both
the individual and household levels, encompassing multiple characteristics. Consequently, it
permits a comprehensive understanding of the socioeconomic attributes of the EDs within
each city.

Throughout this project, I focus on infrastructure related to waste management. The
compilation of data on the locations of waste management facilities is accomplished by ex-
tracting information from various historical records, state and municipal technical reports,
newspapers, and government bodies such as the Environmental Protection Agency (EPA).
It is important to acknowledge that each information source may possess incomplete details
regarding individual establishments, necessitating data from multiple sources to gather all the
required information. Furthermore, in the case of irregular landfills—those developed with-
out the supervision of municipal authorities—the precise commencement and cessation dates
of operations remain unclear due to the absence of official records. Therefore, the sources
explored in this study provide approximate dates based on historical reports. For further
details on the infrastructure data, please refer to Appendix A, while the complete database
can be made available upon request.

2.1 Synthetic neighborhoods

An essential feature of our data is that EDs are not constant throughout the censuses, so they
are not comparable across years. In order to solve this problem, I follow the methodology
proposed by Shertzer and Walsh (2019) to work with stable units of analysis. The procedure
consists of creating a hexagonal grid of Synthetic Neighborhoods (SN) and then mapping
information from Enumeration Districts to Synthetic Neighborhoods.
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Figures 1 and 2 provide an example of why this is needed. As Baltimore’s EDs are not
comparable between 1920 and 1930, I create a hexagonal grid that is constant across years,
thus providing stable units of analysis.

(a) 1920 (b) 1930

Figure 1: Baltimore’s ED in 1920 and 1930

Figure 2: Baltimore’s Hexagonal grid

The number and size of SNs varies across cities, and SNs are chosen to have approximately
the same area as a city’s average ED in 1930. After this grid is created, I follow the procedure
of Shertzer and Walsh (2019) to map information from the EDs to the SNs.

Let i denote the SNs and j the EDs. First, I compute the spatial share of ED j included
in SN i as the ratio between the intersection of the regions composed by ED j and SN i, and
the area of ED j
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ai,j = areai∩j
areaj

Note that this fraction is always smaller or equal than 1, with the latter case occuring
when ED j is fully included in SN i. Then, I assign the fraction ai,j of the total population
of ED j, denoted as Pj, to SN i. After considering all the EDs that make up SN i, the total
population of SN i is given by:

Pi =
∑
j

ai,jPj

Note that this measure of population represents the expected population size of hexagon
i under the assumption that population within each ED is equally distributed across the
geographical space. Finally, the rest of the socioeconomic variables X are computed as a
weighted average (on the basis of the area included and the population size) between the
outcomes of all the EDs that make up SN i:

Xi =
∑
j

Xjwi,j

where wi,j = ai,jPj∑
j
ai,jPj

is the weight of ED j on the outcomes of SN i.

A graphical intuition behind the explained procedure is shown in Figure 3. After creating
this hexagonal grid, I can study a city’s racial division and socioeconomic characteristics at a
micro level with stable units of analysis. This enables me to use and compare the information
from the three censuses, 1920, 1930, and 1940.
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Figure 3: Procedure for creating the SNs. Source: Shertzer and Walsh (2019)

2.2 Area fixed effects

It is crucial to incorporate area-fixed effects into the analysis to account for the potential
area-specific characteristics of the city in which SNs are located. This requires dividing the
cities into distinct zones, where ideally, EDs within each zone exhibit similar characteristics.

I employ the ward variable available in the census databases and in the Urban Transition
Project to address this concern. This variable identifies the political ward in which households
were enumerated and represents a higher level of geographic aggregation than EDs, grouping
geographically proximate EDs. Consequently, it allows for a division of the city into a disjoint
number of areas. It is important to note that the ward variable is available for all cities under
study except Houston. Given its variation across censuses, I adopt the wards observed in 1930
as the basis for delineating distinct areas within the city. As an example, Figure 4 displays
the EDs of Baltimore in 1930 colored by their respective wards.
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Figure 4: Baltimore’s Wards in 1930

However, SNs do not inherently possess a ward, as they encompass multiple EDs. To
overcome this, if all the EDs within a particular SN belong to the same ward, I assign that
ward to the SN. Conversely, if the EDs constituting an SN span multiple wards, I assign the
SN to the ward where the highest percentage of its constituent EDs is located.

3 Are WMFs installed in zones with a higher share of

black population?

3.1 Empirical strategy

3.1.1 Framework

I estimate a linear probability model (LPM) for each city to examine the influence of the
racial composition within Synthetic Neighborhoods on their likelihood of being affected by a
waste management facility. Due to variations in institutional and geographical characteristics,
regression analyses need to be city-specific to account for differences in allocation patterns.
Ideally, it is desirable to study each SN’s racial composition before introducing each WMF.
However, since WMFs were implemented at different periods, incorporating corresponding
dates into a single LPM becomes unclear. Therefore, I adopt a common specification where
all variables are evaluated within the same period to ensure comparability across cities.
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To address this issue, I evaluate the treatment and control variables in 1930 while con-
sidering the construction of landfills and waste incinerators built from 1930 until 2000. This
approach allows for examining WMF introductions spanning different time periods within a
single regression, which is both parsimonious and analytically convenient. However, it as-
sumes that the racial composition in 1930 serves as a good predictor of WMF locations in
1930 + k. While some readers may question the extent to which the racial composition in
1930 influences the placement of a WMF in, for instance, 1970, I provide a comprehensive
discussion in subsection 3.1.3 to justify this reasoning and clarify the mechanism through
which I believe the desired effect can be captured. Moreover, this strategy helps mitigate
potential issues of reverse causality, as it would be hard to claim that the location of a landfill
in 1930 + k causes the share of black population or any other socioeconomic characteristic in
1930.

To capture the relationship between WMFs allocation and ethnic composition, I adopt a
selection on observables strategy. I control for the socioeconomic characteristics of each SN,
their geographic characteristics, the presence of previous WMFs in the area, and attempt to
account for unobservable SN characteristics using area-fixed effects determined by the ward
variable, as described in subsection 2.2. Appendix B provides a list containing the variables
included in the analysis. The data obtained from IPUMS is at the individual level, and I
follow the approach outlined in section 2.1 to map individual-level data onto SNs.∗

My identification strategy relies on the fact that after controlling for area-fixed effects and
SN individual characteristics, the racial allocation among SNs of the same ward is uncorrelated
with the error term. It is vital to note that the controls include several features of SNs that
are crucial for upholding this assumption. Additionally, the geographical characteristics of
SNs are incorporated to enhance the understanding of whether a particular SN is naturally
more suitable for hosting a waste incinerator or a landfill.

A general formulation of the LPM that will be employed is presented as follows in Equation
1:

Yi,w,c = αw,c + hc(Bi,w,c,30) + gc(zi,w,c,30) + εi,w,c (1)
∗In the case of the variable ‘value of the house,’ I trim the distribution to mitigate potential issues arising

from outliers associated with data coding errors.
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where i denotes the SN index, w the ward, and c the city. Yi,w,c is an indicator variable taking
value 1 if there was a WMF in a radius of 1 kilometer of SN i in ward w of city c installed
after 1930 and 0 otherwise. Bi,w,c,30 is the share of black population in SN i in ward w of
city c in 1930, αw,c represent area (ward) fixed effects, and zi,w,c,30 are the controls evaluated
at 1930. hc(Bi,w,c,30) and gc(zi,w,c,30) are city-specific unknown and potentially complicated
functions that express the relationship between the location of WMFs and the share of black
population, and the controls, respectively. Note that the units of analysis are the SNs so,
there are as many observations as SNs for each city.

An essential consideration in my empirical strategy is how to incorporate the share of black
population into the model, as the results and their interpretation depend on this decision.
Imposing a restriction on the functional form of hc(Bi,w,c,30) allows for easier interpretation of
the results but limits flexibility in the analysis. One possible approach to address this issue
is to introduce the share of the black population as a linear term in the regression. This
approach is straightforward and facilitates the interpretation of the results, albeit with the
restriction that the marginal treatment effect is constant across all possible values of the share
of the black population. Following this approach, I express the model specified in Equation
2 for each city as follows:

Yi,w,c = βcBi,w,c,30 + αw,c + gc(zi,w,c,30) + εi,w,c (2)

The primary parameter of interest in this regression analysis is denoted as βc. This
parameter is specific to each city and can vary based on their characteristics. It quantifies
whether the racial composition of an SN influences the likelihood of that SN hosting WMFs.
If βc is positive, it suggests an increase in the probability of observing a WMF in a given SN
when the share of the black population increases, all else being equal.

As previously mentioned, introducing the treatment variable as a linear regressor assumes
a constant marginal treatment effect across all possible values within its range. To account
for potential non-linearities in the relationship between Yi,w,c and Bi,w,c,30, while maintaining
linearity in parameters, a more flexible approach is adopted by partitioning the treatment
variable into group dummies.

To implement this approach, the observations are divided into four groups using the same
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cutoff points for all cities to ensure comparability in parameter interpretation. This enables
the definition of the following indicator variables:

– BG1
i,w,c,30 = 10≤Bi,w,c,30<5%

– BG2
i,w,c,30 = 15%<Bi,w,c,30≤15%

– BG3
i,w,c,30 = 115%<Bi,w,c,30≤30%

– BG4
i,w,c,30 = 1Bi,w,c,30>30%

The partitioning cutoffs were chosen to ensure a sufficient number of observations in each
group for every city. Moreover, the results presented in the subsequent subsections are robust
to variations in the cutoff values. By including these indicator variables as regressors, the
model can accommodate a more flexible alternative specification, as shown in Equation 3:

Yi,w,c = βc,2B
G2
i,w,c,30 + βc,3B

G3
i,w,c,30 + βc,4B

G4
i,w,c,30 + αw,c + gc(zi,w,c,30) + εi,w,c (3)

In this model I omit the variable BG1
i,w,c,30. Hence, the rest of the parameters represent

the differential change in the probability of being affected by a WMF with respect to the set
of neighborhoods with low share of black population. In case the hypothesized relationship
between the variables is true, βc,p should be greater than 0.

3.1.2 Control variables

Until now, I have not made any assumptions regarding the functional form through which
the control variables may affect the outcome variable. To address this concern, I adopt the
methodology proposed by Belloni et al. (2014), which provides a framework for performing
valid inference on the linear-in-parameters treatment variable Bi,w,c,30 affecting the outcome
variable Yi,w,c, given a set of controls zi,w,c,30 that may have an unknown and complex rela-
tionship with the outcome through the function gc.

The approach suggested in the paper involves approximating gc(zi,w,c,30) by a linear ex-
pansion of the original controls xi,w,c,30 = P (zi,w,c,30), that includes the constant, quadratic
terms, interactions, and dummies. This approximation allows maintaining linearity in the
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parameters while capturing the potential nonlinear relationship between the controls and the
outcome:

gc(zi,w,c,30) ≈ x>i,w,c,30δc

where xi,w,c,30 is a p-dimensional vector containing information about the expanded con-
trols P (zi,w,c,30), δc is a city-specific p-dimensional vector with the coefficients associated with
each term of the expansion. The approximation of gc(zi,w,c,30) by this linear expansion has
associated an approximation error ri,w,c,30.

This approach is convenient when dealing with potential non-linear relationships between
the control and outcome variables. However, it comes at the cost of increasing the model’s
dimensionality, as p can be quite large. A common but naive solution to address this challenge
is to apply traditional machine learning techniques, such as LASSO, in order to reduce the
dimensionality of the model specified in Equations 2 or 3 and then re-estimate the equations
anew by Ordinary Least Squares (OLS) using the selected coefficients obtained through the
LASSO procedure. This technique is known as ‘post-LASSO.’

Nevertheless, following this approach might not be suitable when the primary objective
is to infer the treatment’s effect on the outcome variable. This concern has been extensively
discussed and demonstrated by Belloni et al. (2014). The authors argue that a simple post-
LASSO estimator can lead to biased parameter estimates, primarily due to the potential
omitted variable bias that may arise from excluding a relevant regressor highly correlated with
the treatment. Moreover, a basic post-LASSO procedure fails to accurately estimate standard
errors since it does not account for the uncertainty resulting from the model selection step.

To address these limitations, Belloni et al. (2014) propose a post-double-selection estimator
that selects the included covariates through two separate regressions. In the first step, the
LASSO procedure is applied to identify the relevant controls that explain the treatment
variable. Subsequently, another LASSO procedure is employed to select the relevant controls
for explaining the outcome variable in the absence of treatment. Finally, an OLS regression
where the outcome variable is regressed on the treatment variable and the selected controls
from both previous regressions, is conducted. Additionally, the researcher can include another
set of controls based on ad-hoc knowledge about the problem. This comprehensive procedure
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allows for valid inference regarding the parameter associated with the treatment. It also
considers the uncertainty arising from the model selection step when estimating the standard
errors. Under regularity conditions, the estimator is consistent and asymptotically normal.

For further details on the methodology proposed by Belloni et al. (2014) and the underlying
assumptions, I refer interested readers to Appendix C.

After applying this procedure, the models for each of the two proposed specifications for
Bi,w,c,30 are represented by the following equations:

Yi,w,c = βcBi,w,c,30 + αw,c + x>i,w,c,30δ
1
c + εi,w,c (4)

Yi,w,c = βc,2B
G2
i,w,c,30 + βc,3B

G3
i,w,c,30 + βc,4B

G4
i,w,c,30 + αw,c + x>i,w,c,30δ

2
c + εi,w,c (5)

where δ1
c and δ2

c are city-specific p-dimensional vectors of coefficients associated with the
expanded controls for both proposed specifications. The coefficients in δkc,j will be non-zero if
the methodology proposed by Belloni et al. (2014) suggests that control j should be included
in specification k. Additionally, I include the area-fixed effects in the model.

It is important to acknowledge that employing a Linear Probability Model (LPM) may
present certain drawbacks. For instance, an LPM may struggle to capture potential non-linear
relationships between variables, particularly when values approach the distribution extremes.
Furthermore, an LPM cannot ensure that the predicted probabilities Ŷi,w,c are bounded within
the range of [0,1]. While these limitations exist, the LPM generally performs well for values
near the mean and, under regularity conditions, guarantees consistent estimation of the pa-
rameters of interest. Thus, considering that the primary objective of this paper is to infer the
value of the parameters associated with race rather than doing prediction, I believe that the
advantages of the LPM in terms of inference outweigh its potential limitations.

Moreover, it is crucial to note that this empirical strategy aims to capture a measure
of direct discrimination, which differs from discrimination itself. Following the insights of
Bohren et al. (2022), total discrimination can be divided into two categories: direct and
systemic discrimination. Direct discrimination refers to instances where individuals (in this
case, neighborhoods) with identical characteristics but different races experience disparate
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rewards or punishments (in this case, the presence of landfills or waste incinerators). On
the other hand, systemic discrimination encompasses disparities that arise indirectly through
race-based differences in the distribution of characteristics that are not specific to a particular
group but still influence outcomes among equally qualified individuals.

By including in the regression covariates potentially highly correlated with being black
(such as labor performance, unemployment, the share of house owners, and house values),
I face a limitation in capturing the effect of total discrimination. These covariates, while
informative, are not only associated with being black but are also consequences of past dis-
crimination. Let’s consider an example to illustrate this point: suppose that land value is the
sole factor determining the placement of WMFs, rendering all other information irrelevant
once I control for this variable. In a scenario of economic inequality between white and black
individuals, given the historical discrimination they have faced, the house value of a white
individual would be higher than that of a black individual. Even if the government were to
locate WMFs considering solely land value, it would still perpetuate systemic discrimination.
Therefore, finding statistically significant results would indicate the presence of direct dis-
crimination in the siting of WMFs. Conversely, the absence of statistically significant results
would suggest the absence of direct discrimination. However, the proposed methodology fails
to capture the effect of systemic discrimination and, thus, cannot conclude the presence or
absence of total discrimination.

3.1.3 Segregation stability

To establish an economic interpretation of the findings in this paper, it is crucial to understand
how the racial composition in 1930 could impact the placement of WMFs in subsequent
decades, as it is reasonable to believe that the municipal authority would look at racial
composition at 1930+k to place a WMF in 1930+k. This explanation relies on the assumption
that settlement patterns in the cities under study remained relatively stable throughout the
study period. If this assumption holds, the racial composition of a city in 1930 will influence
its racial composition in the following decades due to path dependence. Consequently, the
current racial composition may affect the decision-making process regarding the siting of
WMFs. This theoretical framework provides a plausible channel through which the effect of
historical racial composition on infrastructure location can be claimed.
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The stability of black settlements in US cities is widely acknowledged in the academic
literature (see Taylor (1979); Sharkey (2013)). To assess the reasonableness of this assumption
in this specific case, I examine whether the racial settlement patterns of the black population
remained stable in each city during 1920, 1930, and 1940. An initial evaluation of this
issue can be conducted by studying maps of each city that illustrate the dynamics of black
population settlement patterns. These maps, presented in Figures A.1 to A.6 in Appendix
D, reveal the evolution of ethnic settlements throughout the study period and help identify
areas predominantly inhabited by black residents. These maps suggest that the assumption
of settlement stability holds true. While some changes in racial configuration are observed,
they tend to occur gradually and exhibit a high degree of persistence in the concentration of
the black population in specific areas of the cities.

Additionally, population data extracted from the censuses for each SN in each city, covering
1920, 1930, and 1940 for Northern cities and 1930 and 1940 for Southern cities, are available.
This data allows me to construct a panel dataset encompassing these years. It is possible
to investigate whether the past racial composition of an SN serves as a good predictor of its
present racial composition for the cities under study. Consequently, I estimate the following
regression for each city:

Bi,c,t = ρ0,c + ρ1,cBi,c,t−10 + δc,t + εi,c,t (6)

where Bi,c,t represents the share of black individuals in SN i of city c at time t, and δc,t is a time-
fixed effect (only for northern cities). Values of ρ1,c closer to 1 will provide evidence in favor
of the aforementioned assumption, as they will reflect persistence in the racial composition
of the SNs.

The results of regression 6 for the different cities are presented in Table 1. It is evident
from the table that the settlement patterns of the black population appeared to be stable
throughout our study period, as indicated by the ρ coefficient being close to 1. This result
remains robust when weighting each observation by the population size of the SN or not (see
Table A.2 in Appendix D).
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Baltimore Boston Chicago Cincinnati Houston Nashville
ρ̂0,c −0.001 0.001 0.019∗∗∗ 0.006∗∗ −0.013 0.000

(0.003) (0.001) (0.002) (0.003) (0.011) (0.006)
ρ̂1,c 1.035∗∗∗ 1.101∗∗∗ 1.095∗∗∗ 1.165∗∗∗ 0.926∗∗∗ 0.992∗∗∗

(0.017) (0.012) (0.009) (0.019) (0.040) (0.015)
δ̂1940 0.019∗∗∗ 0.000 −0.020∗∗∗ −0.007∗∗ - -

(0.004) (0.001) (0.002) (0.004) - -
R2 0.73 0.87 0.75 0.83 0.78 0.95
Num. obs. 1310 1222 4776 762 154 213

Note: Unweighted regression for Equation 6 specification for the percentage of Black population in each SN for
each city under study. Standard errors are reported in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 1: Results of unweighted stability specification

3.2 Preliminary analysis and descriptive statistics

As mentioned before, I only use data from the 1930 census for this part of the analysis. Given
the geographical nature of the problem, it is helpful to understand how the socioeconomic
characteristics of each city are distributed across the geographic space during that time. By
combining this information with the location of waste management facilities that started
their operations between 1930 and 2000, it is possible to gain initial insights into the possible
answer to the research question.

Presumably, certain variables may be determinants of the location of WMFs, to which I
pay particular attention to in this analysis. Firstly, it is reasonable to expect that WMFs are
placed in city areas that are not densely populated. This preference may stem both from the
local government’s desire to minimize the number of citizens affected by these infrastructures,
and the physical space required, particularly for landfills. It is also worth noting that, as all
hexagons have the same area, population density is proportional to population size, so I can
freely interchange the terms during the analysis.

Regarding physical space, it would be ideal to have an indicator measuring land avail-
ability across different city areas. However, this type of variable was not available in 1930.
Nevertheless, the census provides information that enables identifying farm households. To
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build this variable in the 1930 census ‘enumerators simply asked respondents whether the
house in which they lived was located on a farm.’ I employ this variable as a proxy for land
availability and to identify peripheral neighborhoods within the cities. It can be reasonably
expected that landfills were located in those areas of the cities with large availability of phys-
ical space, thus anticipating a positive relationship between the share of farm households and
the location of WMFs.

Literature in environmental justice has emphasized the importance of considering the
income dimension in the unequal distribution of pollution. It would be interesting to inves-
tigate whether this assessment seemed true in my initial data description. However, income
information for households was not available in the 1930 census. One potential approach to
address this issue would be considering educational attainment as a proxy for income. How-
ever, this variable is also unavailable for 1930. Instead, I employ the Duncan Socioeconomic
Index (SEI) (Duncan, 1961) as a proxy for economic performance. This index ‘is a measure
of occupational status based upon the income level and educational attainment associated
with each occupation in 1950.’

Finally, the main variable of interest is the share of black population. It is important to
understand how this variable is distributed across each city and its relationship with the other
previously mentioned potential determinants.

Figures 5 to 10 show the maps of each city under study, as well as the geographical
distribution of the variables mentioned before, all evaluated in 1930. The blue crosses indicate
the locations of landfills and waste incinerators constructed between 1930 and 2000. The
figures show that black communities tended to be located in areas with high population
density, typically near the city center. This pattern was strong and persistent across all the
cities under study. Moreover, there appears to be a strong relationship between population
density and the location of infrastructure: most landfills and waste incinerators were situated
in areas with low population density in 1930, while cases in which such facilities were installed
in neighborhoods with high population density were relatively rare. Therefore, any reasonable
model seeking to capture the effect of the share of black population on the location of WMFs
should incorporate population density as an explanatory variable. Failing to do so may lead
to downward biased estimates due to the positive correlation between population density and
the share of black inhabitants.
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Another noteworthy observation from the maps is the clear economic inequality between
black and white individuals during the 1930 census. The neighborhoods with higher con-
centration of black population also exhibited the lowest levels of SEI. Given my interest in
disentangling the effect of a higher share of black population from other factors, it is crucial
to include SEI as a covariate. Failure to account for this variable may lead to upwardly biased
estimations, as landfills and waste incinerators were more likely to be located in economically
disadvantaged neighborhoods.

Regarding farming households, as anticipated, they tended to be primarily situated near
the periphery of the cities. In cities such as Baltimore, Chicago, Cincinnati, and Nashville, it
appears that some WMFs were located in these peripheral areas.

Lastly, it is essential to acknowledge that in certain cities, some of the landfills and waste
incinerators constructed were outside the city limits, as defined by the Urban Transition
Project maps. This issue was more prominent in the southern cities. For instance, in Houston
(refer to Figure 9), there were at least four cases where I could not include the corresponding
information in this model due to the lack of data for those areas of the city. Consequently,
we must be cautious when interpreting the results obtained for the southern cities, as they
provide only a partial view of the situation.

Figure 5: Socioeconomic characterization of Baltimore in 1930
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Figure 6: Socioeconomic characterization of Boston in 1930

Figure 7: Socioeconomic characterization of Chicago in 1930

Figure 8: Socioeconomic characterization of Cincinnati in 1930

Figure 9: Socioeconomic characterization of Houston in 1930

20



Figure 10: Socioeconomic characterization of Nashville in 1930

To further assess the relationship between explanatory variables and location of WMFs,
I construct a conditional means table. This description provides an initial assessment of
whether the direction of the relationships aligns with initial expectations.

For the variables share of black population, SEI, and population, I divide the individuals of
each city into four different quartiles based on each variable. Specifically, for a given variable
Q, let Qp denote the p-th quartile, where Q1 denotes the group of observations within the
lower quartile and Q4 the group of observations within the higher quartile of variable Q. I
compute the share of SNs affected by a WMF (within a radius of 1 km) for each quartile of
each variable, denoted as E[Y |Qp].

Due to the high number of zero observations, quartiles are not appropriate for the share
of farm households. Instead, I split the sample into two categories: neighborhoods with more
than 1% of farm households (F>1%) and neighborhoods with less than 1% of farm households
(F<1%).

Tables 2 to 5 present the results of this analysis. In general, the results align with our
expectations. Table 2 reveals interesting patterns: with the exception of Chicago, there is a
higher proportion of SNs affected by landfills or waste incinerators when comparing the highest
quartile of the share of black population to the lowest quartile across all cities. Notably, these
differences are substantial in cities like Baltimore, Houston, and Nashville.

Furthermore, the table suggests a nonlinear relationship between the share of black popu-
lation and the likelihood of SNs being affected. The conditional means do not monotonically
increase or decrease with an increasing share of black population. Instead, I observe discrete
jumps in the probability for different quartiles of the distribution. This pattern is particu-
larly notable in cities like Baltimore, Houston, and Nashville. In these cities, the relationship
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between the share of black population and the share of affected SNs does not appear to be
strictly increasing. Instead, white neighborhoods seem relatively ‘safe,’ while neighborhoods
with a medium or high share of black population are significantly more exposed. Therefore,
marginal increases in the share of black population when it is already ‘high enough’ do not
appear to have a substantial impact on the occurrence of landfills and waste incinerators.

Baltimore Boston Chicago Cincinnati Houston Nashville
E[Y |B1] 0.05 0.11 0.05 0.13 0.02 0.00
E[Y |B2] 0.14 0.17 0.02 0.11 0.12 0.00
E[Y |B3] 0.20 0.14 0.01 0.09 0.28 0.28
E[Y |B4] 0.17 0.16 0.02 0.11 0.17 0.19

Table 2: Share of affected SNs by quartiles of the share of black population

Baltimore Boston Chicago Cincinnati Houston Nashville
E[Y |P1] 0.28 0.12 0.06 0.12 0.10 0.19
E[Y |P2] 0.04 0.22 0.02 0.16 0.15 0.06
E[Y |P3] 0.14 0.08 0.02 0.14 0.12 0.13
E[Y |P4] 0.11 0.16 0.02 0.03 0.22 0.09

Table 3: Share of affected SNs by quartiles of population density

Baltimore Boston Chicago Cincinnati Houston Nashville
E[Y |S1] 0.27 0.20 0.08 0.10 0.26 0.22
E[Y |S2] 0.23 0.17 0.03 0.12 0.23 0.19
E[Y |S3] 0.05 0.09 0.01 0.11 0.09 0.06
E[Y |S4] 0.00 0.12 0.00 0.11 0.00 0.00

Table 4: Share of affected SNs by quartiles of SEI

Baltimore Boston Chicago Cincinnati Houston Nashville
E[Y |F≤1%] 0.14 0.14 0.02 0.11 0.17 0.08
E[Y |F>1%] 0.17 0.29 0.14 0.12 0.06 0.59

Table 5: Share of affected SNs by share of farm households
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The results for the population density align with our expectations. SNs in the lowest
quartiles of population density tended to have a higher proportion of affected neighborhoods.
This pattern is consistent across all cities, except for Houston. However, it is important to
note that our results for Houston may be biased due to the exclusion of four structures located
on the city’s periphery, for which I lack information.

The strongest results emerge when examining the SEI. In over half of the cities analyzed,
no affected neighborhoods were in the highest quartile of income performance in 1930. This
striking result highlights the presence of socioeconomic inequality in terms of exposure to
pollutants. Instead, a substantial probability of being affected is observed among neighbor-
hoods in the lowest income quartiles. Even if it might be argued that this is due to lower
land prices in low-income neighborhoods, it does not negate the fact that individuals starting
with initial disadvantages compared to the wealthier segments of the population are the ones
who will bear the brunt of the negative health consequences of environmental pollution, thus
exacerbating initial inequalities.

Regarding the relationship between the share of farm households and the location of
WMFs, the results mostly align with our expectations, except for Houston. In cities like
Chicago or Nashville, there is a substantial increase in the probability of being affected as the
share of farm households increases.

3.3 Results

The results of estimating Equation 4 using the methodology proposed by Belloni et al. (2014)
are presented in Table 6. The estimation was performed in R using the ‘hdm’ package
developed by one of the authors of the paper (Chernozhukov et al., 2016). The number of
observations corresponds to the number of SNs available in each city. Area-fixed effects were
included whenever the variable was available. The table also indicates the number of controls
selected by the procedure.

In order to comply with the requirements of the procedure, both the treatment variable
and the controls were standardized. Therefore, the βc coefficient can be interpreted as the
change in the probability of an SN being affected by a landfill or waste incinerator following
a one-standard-deviation increase in the share of black population.
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Baltimore Boston Chicago Cincinnati Houston Nashville
β̂c −0.030 0.011 −0.009∗∗ 0.001 0.064 −0.001

(0.034) (0.021) (0.003) (0.021) (0.053) (0.064)
Area fixed effects YES YES YES YES NO YES
Controls selected 19 6 20 14 14 12
Num. obs. 652 614 2384 459 161 213

Note: Results of linear treatment specification in Equation 4. Standard errors computed following Belloni et al. (2014)
are reported in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 6: Results from the linear specification

The estimated coefficients suggest that, in the cities examined, there is no strong evidence
of direct discrimination in the allocation of landfills and waste incinerators when assuming
a linear relationship between the variables. The point estimates for Boston, Cincinnati, and
Houston were positive but not statistically significant at the 10% level.

In the case of Chicago, however, the estimated coefficient is negative and statistically
significant. This finding is largely driven by the introduction of waste management facilities
in the Lake Calumet Cluster, in the Southern part of the city, during the 1960s and 1970s.
It is important to note that this area had a predominantly white population in 1930, which
changed in the 1950s and 1960s, just before the introduction of the facilities. This particular
case may highlight a limitation of the proposed methodology. When abrupt changes occur in
the share of black population, as in this case, the methodology may fail to accurately capture
the desired effect, as the racial composition used for the regression does not fully represent
the reality of the city at the time when the infrastructures were constructed. However, it is
worth noting that such abrupt changes are uncommon in the database.
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Baltimore Boston Chicago Cincinnati Houston Nashville
β̂2 −0.048 −0.103 −0.016∗∗ 0.130∗∗ 0.225∗∗∗ −0.022

(0.033) (0.064) (0.007) (0.045) (0.074) (0.032)
β̂3 0.078 0.015 −0.038 0.026 0.300∗∗∗ 0.078

(0.070) (0.044) (0.027) (0.049) (0.104) (0.049)
β̂4 −0.151 0.134 −0.024∗ −0.049 0.122 −0.111

(0.100) (0.339) (0.013) (0.033) (0.127) (0.083)

Area fixed effects YES YES YES YES NO YES
Controls selected 18 9 17 11 13 13
Num. obs. 652 614 2384 459 161 213

Note: Results from the categorical dummies treatment specification in Equation 5. Standard errors computed following
Belloni et al. (2014) are reported in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 7: Results from the categorical dummies specification

Table 7 presents the results of the regression specification employing group dummies for
the share of black population (Equation 5). This approach uncovers interesting insights
not captured by the linear treatment assumption of the previous model. To address poten-
tial multicollinearity issues and enhance interpretability, the coefficient associated to BG1

i,w,c

was excluded from the regression, implying that each coefficient representing the differential
change in the probability of being affected by a WMF compared to the group of SNs with
the lowest share of black population.

The findings from this model reveal a more nuanced pattern than those obtained from
the linear specification. In the case of Houston, all coefficients are positive, significant, and
substantial in magnitude, indicating a statistically significant increase in the probability of
being affected by waste management facilities for neighborhoods with higher shares of black
inhabitants. This effect, which was not fully captured by the previous model, appears to
be more pronounced for neighborhoods with intermediate levels of black population and
diminishes for neighborhoods with the highest shares of black population.

Furthermore, in Cincinnati, there is a positive effect for the second group, suggesting that
areas with intermediate shares of black population also experienced a significantly higher
probability of being affected by WMFs. This finding contrasts with the nearly negligible
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relationship observed in the previous linear model.

In Boston, the coefficients show an increasing trend, albeit with an initial negative coeffi-
cient that very likely influenced the low point estimation obtained in the initial specification.

Additionally, the estimation of coefficients in Table 7 reveals an inverted U-shaped rela-
tionship in many of the cities analyzed. This indicates that direct discrimination is stronger in
neighborhoods with mixed-race compositions (G2 and G3). In contrast, predominantly white
or black neighborhoods (G1 and G4) do not exhibit such a strong effect. This finding may be
explained by the presence of blocking coalitions based on race, whereby neighborhoods with a
more homogeneous racial composition were better able to mobilize and resist the introduction
of waste management facilities, while mixed-race neighborhoods faced greater challenges in
organizing against these facilities.

4 What happens after a WMF starts operating?

4.1 Empirical strategy

In this section, I study the effects of introducing a WMF on different socioeconomic vari-
ables. I study each city in which I have data availability separately, trying to provide some
institutional insight into each case.

Shertzer and Walsh (2019) procedure enables having panel data at the SN level for 1920,
1930, and 1940 for the northern cities, and for 1930, and 1940 for the southern ones. This per-
mits to study the effects of introducing a waste management facility on several socio-economic
aspects of the city. In particular, I analyze the effect of their introductions on the share of
black population, total population, and economic performance of the inhabitants of the SN.
However, it is important to note that, due to the lack of information on income and education
for 1920 and 1930, identifying the economic performance variable can be challenging. Nev-
ertheless, I have data on the employment status of the censused individuals from 1930 and
1940, which allows me to compute the unemployment rate per SN as a proxy for economic
performance.

It is important to acknowledge that this analysis is limited to waste management facility
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introductions between 1920 and 1940 in northern cities and between 1930 and 1940 in southern
cities. However, such cases are relatively rare in my database, with only a few instances
available for analysis. Given the data availability constraint, I can only explain the short-
term impact of these introductions. However, it is still useful to obtain a first understanding
of this phenomenon and gaining valuable insights into population dynamics.

I employ different methodological approaches based on data availability to explore the
relationship between WMFs introductions and socio-economic variables. Specifically, for cases
where information is only available for the 1930 and 1940 censuses, I adopt a simple Difference-
in-Differences (DiD) approach.

Yi,t = β0 + β1Di + β2T1940 + β3(Di * T1940) + εi,t (7)

where Yi,t is an outcome of interest in SN i in year t, Di is an indicator variable taking the
value 1 if SN i was among those affected by the WMF (i.e. if SN i was among a 1 km radius
from the installed WMF) and 0 otherwise, and T1940 is an indicator variable taking the value
1 if t = 1940 (post-treatment) and 0 if t = 1930 (pre-treatment). Di * T1940 is the interaction
term. The parameter of interest is β3, which captures the differential change in the outcome
after introducing a WMF in that city area.

When there is information on all 3 years, I introduce a more flexible approach, allowing
units to get treated in different periods:

Yi,t = αi + γt + βT1IKit=1 + βT2IKit=2 + εi,t (8)

where the census years are represented by t = {1920, 1930, 1940}, αi are individual fixed
effects, γt are time-fixed effects, and Kit indicates the time difference between t and the
treatment. Kit = 1 when the WMF was introduced in between census t − 10 and t, and
Ki,t = 2 represents the case when the WMF was introduced in between census t − 20 and
t−10 (in this case, this is only possible when t = 1940 and the WMF was introduced between
1920-1930). βT1 captures the effect of the introduction after one period, whereas βT2 captures
the effect of the introduction after 2 periods.
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4.2 Results

In this subsection, I present the results of the effects of introducing waste management facil-
ities (WMFs) in the cities of Baltimore and Houston separately. †

The results go in the expected direction. The introduction of WMFs produces an in-
crease in the share of black population and a negative effect in terms of the total population.
Regarding the economic status of the affected inhabitants, no statistically significant effect
was found, although the point estimates suggest that individuals with higher unemployment
settled in those SNs. This seems to support the white outflow hypothesis: people left the
neighborhood after the introduction of the landfill or waste incinerator. However, given that
white individuals were, on average, wealthier than black individuals, they could more easily
afford to relocate, increasing the share of black inhabitants.

4.2.1 Houston

In the case of Houston, I study the effect of the introduction of the Velasco Incinerator.
The Velasco Incinerator operated from the 1930s to the 1950s and was situated in the East
downtown area of Houston. Historical sources, such as Bullard (1983), indicate that it was
located in a predominantly black neighborhood, as depicted in Figure 11. Additionally, Figure
12 illustrates that the area surrounding the incinerator had a moderately high population
density. The red cross on the figures represents the exact location of the incinerator, while
the red circle represents the 1 km radius defining the affected area.

†While WMFs were also introduced in the 1930s in Cincinnati, the Urban Transition Project map for the
city in 1940 does not provide information about peripheral neighborhoods (see Figure A.4 in Appendix D)
where one of the WMFs was introduced. Therefore, Cincinnati is excluded from the analysis to ensure the
completeness and accuracy of the results.
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(a) 1930 (b) 1940

Figure 11: Percentage of Black Population in Synthetic Neighborhoods in Houston 1930-1940

(a) 1930 (b) 1940

Figure 12: Population in Synthetic Neighborhoods in Houston 1930-1940

Figure 11 does not show major changes in the share of black population in the incinerator-
surrounding SNs from 1930 to 1940. Instead, Figure 12 shows a decrease in population density
after introducing the incinerator.

To accurately estimate this effect, I employ a DiD approach, as described in Equation 7.
Table 8 presents the DiD estimation results for the various outcomes of interest. The esti-
mated parameter signs align with expectations, but most of them lack statistical significance,
except for population, which is significant at the 10% level. Regarding the share of black in-
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habitants, the effect is non-statistically significant, and the point estimation suggests that the
introduction of the Velasco incinerator led to an increase of less than 2% in the share of black
population in the neighborhoods located 1 km away, which is statistically indistinguishable
from 0.

Furthermore, Table 9 displays the same results after standardizing the variables, allowing
for a direct comparison of the effect of this introduction across the three different outcomes
considered. The most substantial impact is observed in terms of population, with the intro-
duction of the incinerator resulting in a decrease of approximately one-third of a standard
deviation in that variable. Conversely, the effects on the share of unemployed inhabitants and
the share of black population are less sizable.

Share of Black Population Unemployment
β̂3 0.016 −763.47∗ 0.002

(0.041) (392.27) (0.006)
Num. obs. 308 308 308

Note: Difference-in-Differences estimation for the effect of introducing the Velasco
Incinerator in Houston. Variables are in levels. Robust standard errors are reported
in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 8: DiD estimations in levels for the effects of introduc-
ing the Velasco Incinerator, Houston

Share of Black Population Unemployment
β̂3 0.074 −0.348∗ 0.101

(0.176) (0.179) (0.329)
Num. obs. 308 308 308

Note: Difference-in-Differences estimation for the effect of introducing the Velasco
Incinerator in Houston. Variables are standardized. Robust standard errors are
reported in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 9: Standardized DiD estimations for the effects of in-
troducing the Velasco Incinerator, Houston

4.2.2 Baltimore

Baltimore is an interesting city to study this phenomenon, as four WMFs were introduced
between 1920 and 1940. Regarding the projects, in 1927, Baltimore acquired the Bowley’s
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Lane Landfill site and used it as an unpermitted landfill until 1984. In the 1930s, the Reedbird
Avenue Landfill and Incinerator started operations in South Baltimore. Moreover, the Pulaski
Incinerator, located in East Baltimore, started its operations in 1931 after being constructed
by the municipal government in 1927. Additionally, the Quarantine Road Landfill, located in
the South of the city, started being used as an open dump during the 1930s, and it was later
institutionalized as a sanitary landfill by the city of Baltimore.

These events provide an ideal framework for implementing a staggered DiD approach,
allowing us to understand both the short and medium-run effects of the WMFs.

Data on population size and the share of black population is available for 1920, 1930,
and 1940, while information on the unemployment rate is available only for 1930 and 1940.
Therefore, for the first two variables, I use the specification described in Equation 8, while
for unemployment, I employ the same Difference-in-Differences approach used for Houston
(Equation 7).

Figures 13 and 14 show the evolution of the share of black population and the population
size in the city of Baltimore for the 1920-1940 period. The figures also indicate the locations
of newly introduced landfills and waste incinerators during this period (red crosses) and the 1
km radius around them (red circle), providing insight into the geographical areas of the city
where these facilities were situated. It appears that population density played a significant
role in determining the placement of these WMFs in Baltimore, as all the introduced WMFs
were located in low-population-density neighborhoods.

(a) 1920 (b) 1930 (c) 1940

Figure 13: Percentage of Black Population in Synthetic Neighborhoods in Baltimore 1920-
1940
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(a) 1920 (b) 1930 (c) 1940

Figure 14: Population in Synthetic Neighborhoods in Baltimore 1920-1940

The results of the estimation derived from Equation 8 are visualized in Figure 15, while
Table 10 presents the estimated coefficients for the share of black inhabitants and the pop-
ulation. The introduction of WMFs appears to have an impact on the population dynamics
of the affected neighborhoods. In the short term (T1), there is a statistically significant in-
crease in the share of black population, accompanied by a decrease in the overall population.
This finding aligns with the white flight hypothesis, suggesting that as WMFs are introduced,
residents tend to leave the neighborhood, as indicated by the negative coefficient estimated
for population. However, the racial composition of those departing residents is not balanced;
primarily, white individuals leave, resulting in an increase in the share of black population.
These dynamics reinforce initial racial inequalities, as white residents can avoid the negative
consequences associated with WMFs by leaving the neighborhood. However, this option is
only available due to pre-existing disparities across households. This mechanism exacerbates
racial inequalities, considering that residing near waste management facilities has known ad-
verse health effects.

In terms of medium-term effects, I can only analyze the Bowley’s Lane landfill case,
as it was the only facility constructed between 1920-1930. Hence, I can identify the effect
two decades post-introduction from a single landfill study, so we must be cautious when
extrapolating these results. The estimation reveals no significant effect on the share of black
population, but a decrease in the overall population. This finding also supports the white
flight hypothesis, suggesting that there was no significant movement of new black residents
into these neighborhoods, as evidenced by the population decline and minimal changes in the
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racial composition. As for the unemployment rate of inhabitants, the point estimate for the
1930s landfills and waste incinerators is positive but not statistically significant (see Table
A.3 in Appendix E).

Figure 15: Staggered DiD point estimation and confidence intervals at the 90% level for the
introduction of landfills and waste incinerators in Baltimore during 1920-1940

Share of Black Population
β̂T1 0.312∗ −0.042∗

(0.171) (0.022)
β̂T2 −0.099 −0.095∗∗∗

(0.145) (0.023)
Num. obs. 1965 1965

Note: Staggered Difference-in-Differences estimation for
the effect of the introduction of landfills and waste incin-
erators in Baltimore. Variables are standardized. Clustered
standard errors at the Ward-year level are reported in paren-
thesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 10: Staggered DiD estimations for
standardized variables for Baltimore
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5 Conclusions

Throughout this paper, I disentangle the possible confounding channels that could potentially
explain the positive association between the location of landfills and waste incinerators and
the share of black population. I employ historical data from the 1920, 1930, and 1940 censuses
combined with maps from the Urban Transition Project to obtain a geographical description
of the cities under study. This data was mapped at the Synthetic Neighborhood level to
obtain stable units of analysis and perform meaningful comparisons across different censuses.
Finally, I apply modern econometric techniques to pursue the analysis and to try to reduce
the bias derived from model selection and functional form as much as possible.

Initially, I investigate whether landfills and waste incinerators were placed in predomi-
nantly black neighborhoods after controlling for other geographical and socioeconomic co-
founders. The proposed methodology tries to capture the presence of direct discrimination
in the allocations, which occurs when, after controlling for geographical and socioeconomic
characteristics of the zones, there is still a statically significant effect of the share of black
population. However, my results show that there did not seem to be targeting in terms of
the share of black population regarding the location of waste management facilities, as mea-
sured by the linear specification: a marginal increase in the share of black population did
not increase the probability of being affected by a WMF. Instead, when considering a more
flexible model, I found an inverted U-shaped relationship between the variables. This result is
consistent with the potential presence of blocking coalitions based on race, as neighborhoods
with a homogeneous racial composition prevented the introduction of WMFs. In contrast,
mixed-race ones were the most affected. Further exploration of this hypothesis is left as part
of future research.

Additionally, I examine the consequences of WMF introduction on the affected regions.
The most notable finding is a decrease in urban development, as measured by a decline
in population density, following the introduction of these infrastructures. Furthermore, my
analysis reveals an increase in the share of black population after the implementation of WMFs
in Baltimore and Houston. The effect is more pronounced in Baltimore, while in Houston,
the effect is positive but small in magnitude and statistically insignificant. These findings
suggest that white flight from these neighborhoods was the factor that primarily drove the
channel linking WMF location to race.
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Appendix

A Landfills and Waste Incinerators

Name City Position Open Close Status

Bowley’s Lane LF Baltimore 39.31,-76.54 1927 1985 Closed
Pennington Avenue LF Baltimore 39.22,-76.59 1973 1981 Closed
Norris Farms LF Baltimore 39.29,-76.48 1968 1985 Closed
Buck’s Auto Dump Baltimore 39.25,-76.62 1966 1975 Closed
Cylburn Park Dump Baltimore 39.35,-76.65 1900s 2015 Closed
Fairfield SC Dump Baltimore 39.24,-76.59 1955 Unknown Closed
Coldspring Lane LF Baltimore 39.34,-76.65 1930s Active
Pulaski WI Baltimore 39.31,-76.54 1927 2004 Closed
Reedbird Avenue WI Baltimore 39.25,-76.62 1930s 1977 Closed
Reedbird Avenue LF Baltimore 39.24,-76.62 1930s 1977 Closed
Wheelabrator WI Baltimore 39.27,-76.63 1985 Active
Quarantine Road LF Baltimore 39.2,-76.56 1930s Active
Monument Street LF Baltimore 39.3,-76.57 1973 1980 Closed
Barry Quarry Boston 42.28,-71.11 1984 2014 Closed
Gardner Street LF Boston 42.28,-71.18 1954 1999 Closed
Hallet Street LF Boston 42.28,-71.04 1948 1966 Inactive
Reenergy Roxbury LLC Boston 42.33,-71.07 1992 Active
Howard Transfer Station Boston 42.33,-71.07 1999 Active
Spectacle Island LF Boston 42.32,-70.99 1918 2006 Closed
South Bay WI Boston 42.33,-71.07 1959 1975 Closed
CID Recycling and Disposal Chicago 41.66,-87.58 1966 2007 Closed
Land & Lakes Chicago 41.67,-87.57 1977 1998 Closed
Paxton LF Chicago 41.68,-87.57 1976 1992 Closed
Stearn’s Quarry Chicago 41.84,-87.65 1969 1990 Closed
River Bend Prairie LF Chicago 41.65,-87.59 1974 2014 Closed
Alburn WI Chicago 41.68,-87.62 1967 1982 Closed
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Promontory Point Chicago 41.8,-87.58 1920s 1937 Closed
ELDA RDF Cincinnati 39.19,-84.51 1973 1998 Closed
Rumpke SLF, Inc. Cincinnati 39.27,-84.6 1945 2065 Active
Amberley Village LF Cincinnati 39.22,-84.43 1950s 1980s Closed
Anderson Township LF Cincinnati 39.14,-84.32 1963 1986 Closed
Arlington Heights Cincinnati 39.22,-84.46 1940s 1970s Closed
Bass Island Cincinnati 39.14,-84.36 1960s 1960s Closed
Cheviot Closed LF Cincinnati 39.13,-84.69 1954 1975 Closed
Cincinnati Milicron Cincinnati 39.17,-84.43 1956 1970s Closed
Village of Elmwood LF Cincinnati 39.19,-84.49 1930s 1960s Closed
Evendale LF Cincinnati 39.24,-84.43 1960s Closed
Glenway Crossing LF Cincinnati 39.13,-84.61 1950s 1973 Closed
Dunbar WI Cincinnati 39.16,-84.41 1931 1972 Closed
Gest street dump Cincinnati 39.11,-84.54 Before the 30s
Bellfort Boulevard LF Houston 29.67,-95.37 1954 1970 Closed
Blue Bonnet LF Houston 29.82,-95.24 1979 1998 Closed
McCarty Road LF Houston 29.83,-95.24 1972 2037 Open
Whispering Pines LF Houston 29.88,-95.27 1978 2047 Open
Velasco (and navigation) WI Houston 29.76,-95.34 1930s 1950s Closed
Fourth Ward/Gillette Street WI Houston 29.76,-95.38 1920s 1940s Closed
Holmes Road Houston 29.67,-95.41 1930s Closed
Kirkpatrick LF Houston 29.81,-95.29 1971 1972 Closed
Sunnyside LF (Reed Road) Houston 29.67,-95.43 1964 1970s Closed
Acres Homes dump Houston 29.84,-95.43 1960s 1970s Closed
Northwest WI Houston 29.86,-95.54 1972 Unknown Closed
Kelley street WI Houston 29.81,-95.34 1972 Unknown
Westpark WI Houston 29.73,-95.48 1972 Unknown
Bordeaux LF Nashville 36.17,-86.84 1973 1994 Closed
Thermal Transfer Corporation Nashville 36.17,-86.78 1974 2004 Closed

Table A.1: List of some of the considered Landfills and Waste Incinerators
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B List of variables

B.1 Geographical variables:

Variable Description Availability Source
ENUMDIST Enumeration District 1920-1940 IPUMS - UTC
STATEICP State 1920-1940 IPUMS
COUNTYICP County 1920-1940 IPUMS
CITY City 1920-1940 IPUMS
WARD Ward of the ED 1920-1940 IPUMS
DCEN Distance from SN to the city center 1920-1940 UTP
LAKE 1 if SN is next to a lake 1920-1940 MyGeodata
RIVER 1 if SN is next to a river 1920-1940 National Weather Service
ELEVATION Average elevation of the SN 1920-1940 worldclim.org

PREVIOUS Indicator taking the value 1 if there
was a LF or WI in a radius of 1km 1920-1940 Self-constructed

B.2 Socioeconomic variables:

Variable Description Availability Source
RACE Race of the individual 1920-1940 IPUMS
POPULATION Population Size of SN 1920-1940 IPUMS
FARM Whether the household was a farm 1920-1940 IPUMS
IND Industry of occupation 1930-1940 IPUMS
PRIM Share of workers in primary sector 1930-1940 IPUMS
MANU Share of workers in manufacture sector 1930-1940 IPUMS
SERVICE Share of workers in service sector 1930-1940 IPUMS
DOMESTIC Share of workers in domestic sector 1930-1940 IPUMS

SEI Duncan Socioeconomic Index: Attach to each occupation a
ranking 1920-1940 IPUMS

VALUEH Value of the House 1930-1940 IPUMS
OWNERSHP Whether the house is owned or not 1920-1940 IPUMS
AGE Age of the individual 1920-1940 IPUMS
EMPSTAT Employment status (employed, unemployed, etc) 1930-1940 IPUMS
IMM Share of immigrants in SN 1920-1940 IPUMS
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C Selecting controls

This section of the Appendix provides a resume of the selection on observables procedure
proposed by Belloni et al. (2014). Throughout this chapter, I maintain the notation used
by the authors: the outcome variable is denoted by y, the treatment by d and the vector of
controls by z.

C.1 Framework

Belloni et al. (2014) start from a partially linear model in which both the outcome and
treatment variable depend on the controls:

yi = diα0 + g(zi) + ζi, E[ζi|zi, di] = 0 (A.1)

di = m(zi) + υi, E[υi|zi] = 0 (A.2)

where g(zi) and m(zi) are unknown potentially complicated functions of the controls; ζi
and υi are the error terms and α0 is the parameter in which we are interested in making
inference about. Although the functional relationship between the controls and the outcome
can be potentially non-linear, the authors assume a linear relationship between the treatment
and the outcome variable.

Thereafter, they proceed employing linear combinations of the control terms xi = P (zi)
a p-dimensional vector in which there are included transformations of the original controls
(polynomials, interactions, splines, dummies) in order to approximate both g(zi) and m(zi).
The approximations are linear in the parameters and have approximation errors rgi

and rmi

respectively:

yi = diα0 + xi
>βg0 + rgi

+ ζi (A.3)

di = xi
>βm0 + rmi

+ υi (A.4)

In order for this approximation to be valid and provide a framework where it is possible
to carry out inference we require the original model to be sparse. Sparsity can be defined
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in terms of two conditions: Firstly, we require that there exist approximations xi
>βg0 and

xi
>βm0 to g(zi) and m(zi) that require only a small number of non-zero coefficients to make

the approximation errors rgi
and rmi

small relative to the estimation error. Formally, we
require the existence of βg0 and βm0 such that at most s = sn � n elements of them are
non zero and the resulting approximation errors should be small compared to the size of the
estimation error:

[
Ē
(
r2
gi

)] 1
2 .

√
s/n and

[
Ē
(
r2
mi

)] 1
2 .

√
s/n

C.2 Least squares after double selection

This subsection describes the procedure that needs to be followed in order to obtain the
post-double selection estimator. Start by writing the reduced form of the model:

yi = xi
>β̄0 + r̄i + ζ̄i (A.5)

di = xi
>βm0 + rmi

+ υi (A.6)

Where the second equation is the same as before and the first one was obtained by simply
substituting equation A.2 into A.1, where β̄0 = α0βm0 , r̄i = α0rmi

, and ζ̄i = α0υi + ζi.

The post-double selection estimator uses both reduced form equations A.5 and A.6 to
select the set of controls. In particular, it will incorporate the controls that are relevant to
explain either the outcome in absence of treatment (Equation A.5) and the treatment by
itself (Equation A.6). The steps required to obtain the post-double selection estimator are
described as follows:

Step 1: Apply a variable selection procedure (the authors use LASSO) to select the
controls relevant to explain the outcome in absence of the treatment (Equation A.5). Denote
by Î1 = {j ∈ 1, 2, . . . p s.t ˆ̄β0,j 6= 0} the controls whose coefficients were non-zero in the model
selection procedure

Step 2: Apply a variable selection procedure (the authors use LASSO) to select the
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controls that are relevant to explain the treatment (Equation A.6). Denote by Î2 = {j ∈
1, 2, . . . p s.t β̂m0,j 6= 0} the controls whose coefficients were non-zero in the model selection
procedure

Step 3: Based on their knowledge of the problem, the researcher has the option of
selecting another set of controls on an ad hoc basis that she believes are relevant to avoid
bias in the estimation These controls are denoted by Î3. In our case, we imposed the area
fixed effects to be included into the model.

Step 4: Define by Î = Î1 ∪ Î2 ∪ Î3 the union of the controls selected in the previous three
steps and by ŝ = ‖Î‖0 the estimated dimension of the model. Now, regress by OLS yi into di
and the group of controls included in Î and define the post-double selection estimator as:

(α̌, β̌) = arg min
α∈R,β∈Rp

[
En[(yi − diα− xi

>β)2] : βj = 0,∀j /∈ Î
]

(A.7)

The main results established by the authors is that under sparsity conditions and a rich
set of data-generating processes our post-double selection estimator is:

• Consistent: α̌ p→ α0

• Asymptotically normal
([

Ē(υ2
i )
]−1

Ē(υ2
i ζ

2
i )
[
Ē(υ2

i )
]−1

)− 1
2 √

n(α̌− α0) d→ N(0, 1)

C.3 Selection of controls via feasible LASSO

Although the results presented in the previous section are valid for a wide group of model
selectors, the authors use the LASSO selection procedure for most of the results of the
paper. In this subsection, I will present some aspects of the LASSO procedure employed by
the authors and the calibration of the parameters used in their R package hdm Chernozhukov
et al. (2016).

For this part, the authors employ a version of the LASSO geared for heteroscedastic,
non-Gaussian cases (Belloni et al., 2012) that solves:

min
β∈Rp

En
[
(yi − xi

>β)2
]

+ λ

n
‖Ψ̂β‖1 (A.8)
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where ‖.‖1 is the l− 1 norm, λ is the LASSO penalty coefficient, Ψ̂ = diag(l̂1, . . . , l̂p) is a
diagonal matrix of penalty loadings, and ‖Ψ̂β‖1 = ∑p

j=1 |l̂jβj|. Following Belloni et al. (2012)
we set the penalty level λ and loadings l̂j to:

λ = 2c
√
nΦ−1

(
1− γ

2p

)
and l̂j = lj + op(1), lj =

√
En
[
x̄2
ijε

2
i

]

where c > 1 and 1 − γ is a confidence level. Following the package designed by one of
the authors (Chernozhukov et al., 2016), we set the value of these parameters as c = 1.1 and
γ = 0.05 (the default value of the package). Once these parameters are set, we obtain l̂j by
iteration following Belloni et al. (2012) .

44



D Segregation stability

Figure A.1: Share of Black population in Baltimore 1920-1940

Figure A.2: Share of Black population in Boston 1920-1940
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Figure A.3: Share of Black population in Chicago 1920-1940

Figure A.4: Share of Black population in Cincinnati 1920-1940

Figure A.5: Share of Black population in Houston 1930-1940
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Figure A.6: Share of Black population in Nashville 1930-1940

Baltimore Boston Chicago Cincinnati Houston Nashville
Constant 0.034∗∗∗ 0.001 0.039∗∗∗ 0.033∗∗∗ −0.001 0.003

(0.004) (0.001) (0.002) (0.004) (0.011) (0.006)
Bi,c,t−10 1.177∗∗∗ 1.107∗∗∗ 1.142∗∗∗ 1.242∗∗∗ 1.000∗∗∗ 1.011∗∗∗

(0.011) (0.012) (0.008) (0.017) (0.032) (0.015)
It=1940 −0.044∗∗∗ −0.001 −0.041∗∗∗ −0.035∗∗∗ - -

(0.005) (0.001) (0.003) (0.006) - -
R2 0.90 0.87 0.81 0.88 0.87 0.96
Num. obs. 1310 1222 4776 762 154 213

Note: Weighted regression for Equation 6 specification for the percentage of Black population for each city under
study. Population weights correspond to the average population size of the Synthetic Neighborhoods in 1930-1940.
Standard errors are reported in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table A.2: Results of unweighted stability specification
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E Other Tables and Figures

Unemployment Rate
β 0.133

(0.292)
Num. obs. 1310

Note: Difference-in-Differences estimation for the
effect of the introduction of landfills and waste in-
cinerators on the unemployment rate of the af-
fected inhabitants in Baltimore in between 1930
and 1940. Variables are in standardized. Clus-
tered standard errors at the Ward-year level are
reported in parenthesis. ∗∗∗p < 0.01; ∗∗p < 0.05;
∗p < 0.10

Table A.3: Difference-in-Differences
estimations for unemployment for
Baltimore
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