


Abstract

Generative Adversarial Networks (GANs) represent a powerful tool for generating realistic

data samples, they have been used in multiple settings, both for regression and classification

tasks and for time series, even if the application in this field has proven challenging due to

the complex and dynamic nature of such data. In this thesis, it is proposed an evolutionary

approach to GAN optimization, using genetic algorithms. GANs are inherently unstable

for regression because of the adversarial part, and this research tries to investigate if evolu-

tionary algorithms can improve GAN performances. Overall, this work contributes to the

development of GAN-based methods for time series analysis and applies the optimization to

two types of GAN, a Wasserstein GAN, and a standard GAN. The proposed method has the

potential to be applied in various domains, including finance, healthcare, and environmental

monitoring.

Keywords: Generative Adversarial Networks, Genetic algorithms, Time Series, Evolution-

ary algorithms.
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Chapter 1

Introduction

Forecasting the market has always been an area that involved many techniques and different

approaches. Today, institutional investors are heavily investing in artificial intelligence and

machine learning cutting-edge technologies to achieve the most accurate results and predic-

tions. For instance, JPMorgan Chase invests 14 billion USD a year in Artificial Intelligence

technologies(Kahn, 2023).

Machine learning and artificial intelligence (AI) have a long history, with the concept

of a machine mirroring human cognition and behavior being a topic of discourse for many

decades. This discourse has led to remarkable advancements in diverse domains, ranging

from natural language processing to computer vision.

Arthur Samuel, as early as 1959, developed a program proficient in playing checkers, ri-

valing human players. This program was grounded in the principle of reinforcement learning,

where the computer leveraged its past experiences to enhance its performance. (Samuel,

1959)

Post Samuel’s pioneering work, machine learning evolved significantly. In the 1980s, the

emergence of neural networks, a class of algorithms inspired by the architecture of the brain,

initiated a revolution in computer science, leading to the current state-of-the-art image and

speech recognition systems.

The dawn of the 21st century witnessed the rise of Big Data and novel algorithms capable

of harnessing it, ushering in a new epoch of machine learning and AI. Deep learning, a

variant of machine learning rooted in multi-layered neural networks, laid the foundation for

advancements in image and speech recognition, natural language processing (NLP), and other

applications.

In parallel, the field of evolutionary computation, particularly genetic algorithms, has also

6
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made significant strides. These algorithms, inspired by the principles of natural selection and

genetics, have been used to solve optimization problems in various domains, including finan-

cial forecasting. They work by generating a population of possible solutions and iteratively

refining them through processes analogous to mutation, crossover, and selection.

Innovative algorithms and techniques, such as generative adversarial networks (GANs),

reinforcement learning, and genetic algorithms, are continually expanding the capabilities

of machine learning systems. These techniques have empowered machines to learn from a

handful of labeled examples and even without any labeled data.

The more the results of a model are close to the true ones, the more confident institutional

investors can be in their decision-making process. Accurate predictions can lead to more

effective investment strategies, better risk management, and potentially higher returns. In

the context of price prediction, this could mean more profitable trades, improved portfolio

performance, and a significant competitive advantage in the fast-paced financial market.

1.1 Research Objective and Motivation

The primary motivation behind this thesis is to explore a novel approach to optimizing

Generative Adversarial Networks (GANs) using genetic algorithms. This innovative approach

seeks to contribute to the existing body of knowledge by extending the application of GANs

to time-series data, a domain that has yet to be thoroughly explored.

In their work, Wang et al. (2018) employed a similar strategy, but their research did not

extend to the realm of time-series data. Time-series data possess unique characteristics that

set them apart from non-temporal data. They encapsulate patterns, trends, and seasonality

that require specialized techniques for identification and analysis. In contrast, non-temporal

data can be examined using traditional statistical techniques, such as measures of association

or group differences. Moreover, financial time series have high value for various industries.

The objective of this research is to continue on the research made by Lin et al. (2021),

specifically on the hyperparameters tuning of their models, which has been performed through

genetic algorithm. This comparison aims to provide a comprehensive understanding of the

performance of the proposed approach in relation to established models and investigate the

use of genetic algorithms applied to regression problems and neural network optimization,

since complex neural networks especially, GANs can suffer from instability and inconsistency.

(Nguyen et al., 2023)

The findings from this study could potentially pave the way for future research in this
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area, and open up new avenues for the application of GANs in time-series analysis.

1.1.1 Research Question

The development of this thesis is guided by the following research question:

Can the performances of a Generative Adversarial Network be improved by Ge-

netic Algorithms and better predict the stock price?

1.1.2 Thesis Outline

In Chapter 2 there is an introduction to Generative AI and the various models.

Chapter 3 describes the peculiarity of time series data and the various approaches that are

applied when dealing with them and in Chapter 4 while in Chapter 5 the methodologies

that have been used to carry out the objective of the research, the end part of Chapter

5 and Chapter 6 will discuss the results and the discussion on further improvements and

approaches.



Chapter 2

Generative AI

This chapter delves into the realm of Generative Artificial Intelligence, the main models be-

longing to this family, their characteristics, and what distinguishes them from discriminative

ones. A significant focus is placed on Generative Adversarial Networks (GANs), the neural

network utilized in the empirical research of this thesis. The chapter serves as an introduc-

tion to Generative AI and a precursor to the in-depth exploration of GANs in the empirical

research section

2.1 Generative vs Discriminative Models

The realm of Artificial Intelligence (AI) is in a state of perpetual evolution, continually

pushing the boundaries of what is possible.

Today, AI has progressed beyond merely processing vast amounts of data for regression

or classification tasks. It has ventured into the domain of generating new data from noise or

other examples fed into a model.

This new frontier is known as Generative AI, which includes models capable of producing

text, images, soundtracks, videos, or simply synthetic data. Generative models stand distinct

from discriminative models due to their explicit assumptions about the class conditional

distributions p(x | y). These assumptions inherently translate to assumptions about the

marginal p(x) as well as the joint distribution p(x, y). On the other hand, discriminative

models explicitly model the posterior p(y | x), making assumptions about the parametric

form of the same p(y | x), and utilize the training process to learn the parameters (Banerjee,

2007).

Among the various discriminative models, one can find linear and logistic regression, decision

9
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trees, Artificial Neural Networks, Recurrent Neural Networks, etc.

In this specific class of models statistical bias is a concept that warrants attention in this

context. Suppose we repeatedly draw training samples S1, . . . , Sl, each of size m, and apply

our learning algorithm A to construct hypotheses f̂S1, f̂S2, . . . , f̂Sl, where f̂Si denotes the

hypothesis A (Si). We can amalgamate all of these different hypotheses into a mean of

hypothesis:

f̂(x) = lim
l→∞

1

l

l∑
i=1

f̂Si
(x).

The value f̂(x) represents the expected predicted value of f(x), where the expectation is

taken over all possible training samples of fixed size m (Dietterich and Kong, 1995). Sta-

tistical bias is then defined as the error between f(x) and f̂(x), serving as a measure of

systematic error for a given sample size. As this error is systematic, it can be reduced.

Generative models, due to their stronger assumptions about the data given an output vari-

able, can lead to higher bias, resulting in higher asymptotic error (Banerjee, 2007). This

potential for higher bias underscores the need for careful consideration when choosing be-

tween generative and discriminative models, depending on the specific requirements and

constraints of the task at hand. In figure 2.1 the difference between the two classes is shown:

Figure 2.1: Discriminative and Generative Models (Amidi and Amidi, 2023)
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2.2 Generative AI models

Among the myriad of generative AI models, we find those based on game theory, such as

the family of Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), autoregres-

sive models like GPT, PixelRNN, WaveNet, and other approaches such as diffusion models,

Variational Auto Encoders (VAE), Hidden Markov Machines (HMM), and Latent Dirichlet

Allocation (LDA).

Autoregressive Models and GPT

Autoregressive models, including the Generative Pre-trained Transformer (GPT), have gar-

nered significant attention in recent years. Often referred to as Large Language Models

(LLMs), these models excel in performing complex natural language processing (NLP) tasks.

They are built upon deep neural networks and are typically trained on vast amounts of data

using unsupervised learning techniques. The advent of LLMs has been facilitated by the

exponential increase in computational power and the availability of large-scale datasets.

GPT, introduced by Radford et al. (2018), is an autoregressive and unidirectional model.

This means that it generates information in the order the text is presented. GPT models are

based on Transformer models, which were introduced by Vaswani et al. (2017).

Transformers are models that make exclusive utilization of attention mechanisms. These

mechanisms enable the model to assign different weights to specific parts of the input sequence

based on their relevance to the task. This weighted approach allows the model to focus

selectively on the most pertinent information.

One of the most common types of attention mechanisms employed is “self-attention” or

“intra-attention”. In this setup, the model generates a set of “query,” “key,” and “value”

vectors for each position in the input sequence. The dot product between the query and

key vectors is then used to compute a weight for each position. This process culminates

in a weighted sum of the values, which forms the output of the self-attention mechanism,

effectively providing a summary or representation of the input (Vaswani et al., 2017).

The key point to understand is that the attention mechanism allows the model to focus

more on the important parts of the input sequence, and less on the less important parts.

This is done by assigning higher weights to the important parts, and lower weights to the

less important parts. The weighted sum of the values then provides a summary of the input

sequence that takes into account the relative importance of each part. In figure 2.2, the

model architecture of a transformer.
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Figure 2.2: Transformer model architecture (Vaswani et al., 2017)

One of the key advantages of LLMs is their ability to perform a wide range of NLP

tasks, including language translation, question answering, text classification, and sentiment

analysis. These models can learn the underlying patterns and structures of language, allowing

them to generate coherent and grammatically correct text.

LLMs are also highly flexible and can be fine-tuned for specific tasks. For example, a pre-

trained language model like GPT can be fine-tuned to generate human-like text in a particular

domain, such as legal documents or medical reports. This makes LLMs a powerful tool for

a wide range of applications, including chatbots, virtual assistants, and automated content

creation.

Autoencoders and Variational Autoencoders

Autoencoders (AEs) are a type of neural network frequently used for unsupervised learn-

ing, dimensionality reduction, and generative modeling. The fundamental architecture of an

AE includes an encoder network, which maps the input data to a lower-dimensional latent

space, and a decoder network, which maps the latent representation back to the original

input space. The latent space is defined as “In artificial intelligence ‘Latent Space’ refers to

a mathematical space which maps what a neural network has learned from training images.

Once it has been trained it understands all images of trees as existing in a specific area, and
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all images of birds in another.” (Elwes, 2021).

Autoencoders are trained by minimizing a reconstruction loss, which measures the discrep-

ancy between the original input and the reconstructed output, as illustrated in Figure 2.3.

Figure 2.3: An autoencoder example. The input image is encoded to a compressed repre-
sentation and then decoded (Bank et al., 2020)

The loss function for an AE can be written as follows, which is also called Reconstruction

Loss:

Lrecon =
N∑
i=1

∥xi − x̂i∥2

Here, xi is the original input data, x̂i is the output of the decoder for the corresponding input,

and N is the number of training examples. L can be any metric such as Mean Squared Error

or Cross-Entropy.(Jordan, 2018)

One drawback of standard AEs is that they typically learn an unstructured latent space

that may not be useful for downstream tasks such as classification or generation. This is

where Variational Autoencoders (VAEs) come in.

VAEs introduce a probabilistic component to the latent space by modeling it as a probability

distribution, typically a Gaussian distribution. (Bank et al., 2020)

VAEs hence are a type of unsupervised learning model that differently from simple autoen-

coder can generate new data samples from a given dataset. VAEs are based on the same

mechanism of AEs and depend on the quality and the distribution of the latent space to

generate new data, it can happen that the quality of the latent space is not optimal, hence,

VAEs introduce regularization during the training, aiming at avoiding overfitting and ensur-

ing the latent space has good properties.(Rocca, 2019)

The encoder network in a VAE maps the input data to the parameters of the latent distribu-

tion, which are the mean and standard deviation of the Gaussian. The decoder network then

samples from this distribution to generate a latent representation, which is then decoded

back into the original input space.
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VAEs are trained by minimizing a loss function that consists of two parts: a Reconstruc-

tion Loss and a KL divergence term that measures the difference between the learned latent

distribution and the prior distribution.

Loss = L(x, x̂) +
∑
j

KL (qj(z | x)∥p(z))

We want our KL divergence and Reconstruction Loss to be as small as possible, with KL

Divergence > 0. Figure 2.4 shows the VAE is shown with the addition of the probabilistic

component.

Figure 2.4: The structure of a VAE (Rocca, 2019)

One advantage is that VAEs can generate new data samples that are similar to the training

data, while also exploring new regions of the data space. This is because VAEs are able to

interpolate between different regions of the latent space to generate new samples.

Hidden Markov Models

Another type of generative model is represented by Hidden Markov Models (HMMs).

HMMs are a statistical model that can be used to generate sequences of observations based

on a set of hidden states. HMMs have been used in a wide range of applications, such as for

NLP tasks, computational finance, but also speed analysis.

As the name suggests Hidden Markov Models are based on Markov Chain, in which future

observations are independent of the past but only dependent on the present. In other words,

given the present observation, the future is independent of the past.

P (xt+1 | x1, x2, . . . , xt) = P (xt+1 | xt)

In HMM both observed data and hidden states are considered causal factors in the probabilis-

tic model. The hidden states represent the underlying structure of the data sequence.(Daniel Ju-
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rafsky, 2023; Rabiner and Juang, 1986)

HMMs have several advantages over other generative models. One advantage is that HMMs

can model sequences with complex temporal dependencies. They are able to capture long-

term dependencies in the data sequence through the sequence of hidden states.

HMMs can generate new data sequences by sampling from the probability distribution over

the hidden states, while also recognizing existing sequences by computing the probability of

the observed data sequence given the model parameters.

2.3 Generative Adversarial Networks

In his seminal paper, Goodfellow et al. (2014) introduced a novel type of generative model

known as Generative Adversarial Networks (GANs). This marked a significant breakthrough

in the field of deep learning. GANs are grounded in the concept of game theory and employ

a dual neural network architecture, consisting of a generator and a discriminator.

These models are based on the adversarial modeling framework, where both models are

multilayer perceptrons. The generative model, or the generator, is put against an adversary:

a discriminative model, or the Discriminator. The discriminator learns to recognize whether a

sample originates from the generator or from the original data. The generator can be likened

to a counterfeiter, whose goal is to deceive the discriminator that the data it generates are

real.

During training, both models improve until the products generated by the generator

become indistinguishable from genuine data (Goodfellow et al., 2014).

A prior distribution on input noise variables, pz(z), is defined to learn the generator’s

distribution over data x. This represents a mapping to data space as G (z; θg), where G is a

differentiable function with parameters θg.

A second deep neural network, D (x; θd), with θd, is defined and represented by the

Discriminator. This outputs a number. Here, D(x) is the probability that x comes from real

input rather than from the generator p(g).

The discriminator is trained to maximize the probability of assigning the correct label to

both generated and real data. Simultaneously, G is tries to make log(1−D(G(z))) as little

as possible, implying that we want D(G(z)) to be as small as possible (Goodfellow et al.,

2014). Figure 2.5 depicts the classical GAN architecture
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Figure 2.5: Typical GAN architecture

In Goodfellow et al. (2014) paper the idea is that D and G play a two-player minimax

simoultaneously V (G,D).

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

Equation 1 that reaches the optimum when p(z) = p(data).

In Algorithm from Goodfellow et al. (2014) 1 is shown how the GAN is optimized.

If the discriminator is trained until it reaches its optimal state before every update of the

generator’s parameters, then the process of minimizing the value function effectively becomes

equivalent to minimizing the Jensen-Shannon divergence between the real data distribution

(Pdata ) and the generated data distribution (Pz)

Reaching the optimality P (z) = Pdata

First, the optimal discriminator D for any given output of G is given:

Proposition 1. For G fixed, the optimal discriminator D is

D∗
G(x) =

pdata (x)

pdata (x) + pz(x)

Inserting pdata (x) = pz(x) we get

D∗
G(x) =

pz(x)

pz(x) + pz(x)
=

1

2
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets

Require: Number of training iterations, number of discriminator steps k, batch size
m, generator G, discriminator D

1: for number of training iterations do
2: for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z)
• Sample minibatch of m examples {x(1), . . . , x(m)} from data generating distribution
pdata(x)
• Update the discriminator by ascending its stochastic gradient:

∇θd

1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)

)))]
3: end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z)
• Update the generator by descending its stochastic gradient:

∇θg

1

m

m∑
i=1

log
(
1−D

(
G
(
z(i)

)))
4: end for

The gradient-based updates can use any standard gradient-based learning rule. We
used momentum in our experiments.
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So, if the generator is able to trick the discriminator into producing data that are so similar to

real input then the discriminator is only able to label those data based on randomly guessing

the classification with a probability equal to 0.5.

The foundational concept of Generative Adversarial Networks (GANs) draws from the

idea of undirected graphical models featuring hidden variables. This encompasses models

like Restricted Boltzmann Machines (RBMs) and Deep Boltzmann Machines (DBMs).

They use a probabilistic approach to model the distribution of data and they are trained

using a method called maximum likelihood estimation (MLE). The key difference between

GANs and RBMs or DBMs is that GANs use a discriminative approach to train the generator,

while RBMs and DBMs use a generative approach to learn the underlying distribution of the

data. (Bengio et al., 2012) GANs have been shown to be highly effective in generating realistic

data, but they can be more difficult to train than RBMs or DBMs due to the minimax game

that is used to train the generator and discriminator.

2.3.1 Improving the GAN model

Wasserstein GAN and Wasserstein GAN with Gradient Penalty

As said before the architecture of the GAN implicitly tends to minimize the Jensen-Shannon

Divergence, so, various methods have been introduced to make the model more stable, since

as shown by Arjovsky et al. (2017) GAN training is delicate and unstable, and since the

whole base of these networks is the adversarial part, it is difficult for the model to achieve

Nash Equilibrium.

Another problem that affects GANs is low dimensionality, meaning that the dimension

of real data are kind of stuck in low dimension but they appear to be high, for example, a

certain object like a human face has to have some pre-defined characteristics and this pushes

also the generated data to have low dimensionality. (Weng, 2019)

When P (g) and Pdata are in low dimensional space they hardly overlap, they are disjoint,

meaning that can be a discriminator that always and with certainty will detect fake samples,

this is shown in Figure 2.6.
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Figure 2.6: Data having a low dimension in high dimension space can hardly have over-
lapped. (Left) Two lines in a three-dimension space. (Right) Two surfaces in a three-
dimension space.(Weng, 2019)

Another problem is given by the vanishing gradient problem, when the discriminator is

perfect, the loss function falls to zero, leading to no gradient for updating the loss during

learning iterations. This creates a dilemma: if the discriminator performs poorly, the genera-

tor lacks accurate feedback, and if the discriminator performs too well, the learning becomes

extremely slow or even halts.

The final problem to note is mode collapse, a scenario in which the generator might default

to a state where it consistently produces identical outputs. This represents a frequent pitfall

for GANs, as they struggle to accurately capture the intricacies of real-world data distribu-

tions, thus getting trapped in a confined space exhibiting negligible variety. To counter these

challenges, Arjovsky et al. (2017) introduced an improved to classic GAN called Wasser-

stein GAN which instead of minimizing the JS Divergence has the objective of minimizing

the Wasserstein Distance or Earth Mover’s distance, and it can be informally interpreted as

there are two different piles of dirt representing two different distributions. Now, you want to

transform the first pile to look exactly like the second one. The EMD would be the minimum

amount of work you need to do to achieve this, where “work” is defined as the amount of

dirt you move multiplied by the distance you move it. (Weng, 2019)

Hence, the loss function is the following: from the “discriminator” w is learn to find a good

fw loss is set as measuring the Wasserstein distance between pr and pg

L (pr, pg) = W (pr, pg) = max
w∈W

Ex∼pr [fw(x)]− Ez∼pr(z) [fw (gθ(z))]

Hence, the “discriminator” has not more the task of telling the fake output from the real
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ones. Instead, it learnd a K-Lipschitz continuous function to help computing Wasserstein

distance. A function f : R → R is said to be Lipschitz continuous if there exists a constant

K ≥ 0 such that for all x, y ∈ R,

|f(x)− f(y)| ≤ K|x− y|

The smallest such L is called the Lipschitz constant of f . As the loss function diminishes

during the training phase, the Wasserstein distance contracts, bringing the output of the

generator model increasingly in line with the actual data distribution.

One big problem is to maintain the K-Lipschitz continuity of fw during the training one

trick presented by Arjovsky et al. (2017), is that following each gradient update, the weights

w are confined within a small interval, for instance, [−0.01, 0.01]. This results in a confined

parameter space W , ensuring that fw retains its lower and upper limits to maintain Lipschitz

continuity.

Still vanilla WGAN suffers from instability, slow convergence and vanishing gradient.

Different GAN models

• DCGAN: Deep Convolutional GAN: A type of GAN architecture that uses con-

volutional neural networks (CNNs) in both the generator and discriminator. It was

introduced by Radford et al. (2016) and has been widely used for generating high-

quality images.

• CycleGAN (CGAN): Can be used for image-to-image translation tasks, such as

converting images from one domain to another. It was introduced by Zhu et al. (2017)

and uses a cycle-consistency loss to ensure that the mapping is consistent in both

directions.

• StyleGAN: It can be used for generating high-quality images with diverse styles. It

was introduced by Karras et al. (2019) and uses a mapping network to control the styles

of the generated images.

• TimeGAN: A type of GAN that is designed to generate real time series data. It was

introduced by Yoon et al. (2019)and uses an autoregressive model in the generator and

a bidirectional RNN in the discriminator. TimeGAN also uses a modified form of the

Wasserstein loss function to train the model.
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Time Series and Time Series Analysis

This chapter discusses time series data, the inherent characteristics of this special class of

data, and the various methods that have been utilized, both from statistics and machine learn-

ing and Artificial Intelligence

3.0.1 Time Series data

Time series data differ from other kinds of data since they are collected sequentially over

time at regular or irregular intervals. Time series analysis is usually made to detect patterns,

anomalies, and trends in the data in order to make predictions.

Each data point is associated with a timestamp which can be of any magnitude possible,

seconds, weekly, daily, or in a different order. The order of the data points is crucial for

understanding the temporal dynamics and dependencies. Many time series exhibit repeating

patterns or cycles over fixed time periods, such as daily, weekly, or yearly patterns, this

can take the name of seasonality. An example of a repeating cycle or seasonality can be

represented by agricultural production, holiday seasons, energy consumption, etc.

Another important factor to take into consideration is the exhibition of long-term increases

or decreases in the mean level, known as trends, this can be upward or downward and can last

for a random period of time. Real-world time series data often contains random variations,

measurement errors, or other unexplained fluctuations, collectively referred to as noise.

Many techniques to analyze time series require that the temporal data that are being ana-

lyzed are stationary. A time series is considered stationary if its statistical properties remain

constant over time, hence they don’t present trends or seasonality patterns. The differences

are shown in Figure 3.1 Stationarity is often achieved through differentiation techniques.

Time series data often have correlations between successive observations, known as autocor-
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relation. Autocorrelation can help identify periodicities, seasonality, and persistence in the

data and inform appropriate models for forecasting or anomaly detection.

In conclusion, time series data and their particular characteristics can lead to extracting

meaningful insights and making informed decisions across various fields. There exists a

multitude of models and techniques that can be applied to time series.

Figure 3.1: Stationary vs non stationary time series (Bauer, 2021)

3.0.2 Statistical models for time series snalysis

There exist a multitude of models and techniques that can be applied to time series, classical

methods for time series analysis include autoregressive (AR) models, moving average (MA)

models, and autoregressive integrated moving average (ARIMA) models. These models cap-

ture linear relationships between successive observations and they usually function well for

stationary time series data.

Autoregressive models

An autoregression model of order p bases its fundamentals on regressing the time series over

itself and can be written as:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + εt



23

where ϵ is white noise. This can be referred to as AR(p) model.

Moving Average Models

A moving average term in a time series model is a past error time coefficient.

Let wt
iid∼ N (0, σ2

w), wt are iid, each with a normal distribution with 0 mean and equal

variance.

Here is a moving average model of order q or MA(q) model.:

xt = µ+ wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q

Autoregressive moving average model (ARMA)

As the name suggests ARMA models combine the strengths of AR(p) model and MA(q)

model, allowing it to capture a wider range of temporal dependencies in the data. The

ARMA(p, q) model is represented as:

Xt = c+ ϕ1Xt−1 + · · ·+ ϕpXt−p + ϵt + θ1ϵt−1 + · · ·+ θqϵt−q. (3.1)

By integrating both AR and MA components, the ARMA model can better describe com-

plex autocorrelation structures, such as those with both short and long-term dependencies.

In addition, ARMA models allow for choice between the order of q and the order of p.

Autoregressive Integrated Moving Average (ARIMA)

ARIMA models are usually denoted as ARIMA (p, d, q) where p is the order of the AR model,

d is the degree of differencing, and q is the order of the MA model.

ARIMA models can be written as:

y′t = c+ ϕ1y
′
t−1 + · · ·+ ϕpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt

where y′t is the differenced series, the degree of yt depends on how much is differenced, and

there is no limit on the amount of differencing. It can be said that the ARIMA(p, d, q) model

is defined as the ARMA(p, q) model applied to the d-th order differenced time series.

So, moving from ARMA to ARIMA it can be noted that by incorporating differencing,

the ARIMA model can handle a much larger range of time series data, including those with

trends and other non-stationary components.
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3.0.3 Machine Learning models for Time Series analysis

Machine learning and deep learning models have risen in popularity in dealing with temporal

data.

In deciding which model to use it needs to be kept in mind that it is still a heuristic

process and the performance of a certain model varies with data and number of training

iterations, in statistics and machine learning the No Free Lunch theorem by Wolpert (1996)

always apply.(Cerqueira et al., 2019)

Among the several machine learning models used in working with time series data can

be found models such as Random Forests, Support Vector Machines, Gradient Boosting

Machines, Deep Neural Networks such as ANN and mostly used Recurrent Neural Networks

like Long-Short Term Memory (LSTM).

Support Vector Machines (SVM)

Support Vector Machines were introduced by (Cortes and Vapnik, 1995), not initially thought

for time series analysis they can be extended to temporal data, they are a set of supervised

learning methods.

The main idea is to find a hyperplane that separates the different classes in the case of

classification, while in the case of regression that hyperplane minimizes the error.

The hyperplane in n-dimensional space is of dimension n−1, for example for a 2 dimension,

the hyperplane is a straight line. Since is not always possible to linearly separate data, SVMs

use something called the kernel trick, the kernel trick involves mapping the input data to

a higher-dimensional space where it becomes linearly separable. There are several types of

kernel functions, such as:

- Linear Kernel: K(x, y) = xTy

- Polynomial Kernel: K(x, y) = (xTy + c)d, where c is a constant and d is the degree of

the polynomial.

- Radial Basis Function (RBF) or Gaussian Kernel: K(x, y) = exp(−γ||x− y||2), where
γ is a positive parameter.

Random Forests

Random forests were introduced by (Breiman, 2001) and are an ensemble learning method

that generates multiple decision trees and aggregates their predictions. In building different
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trees on bootstrapped training samples but differently than in pure bagging, at each split it

chooses a random percentage of predictors k among all the possible predictors p, reducing

variance and thus making the model more stable and less susceptible to outliers.

Boosting and Gradient boosting machines

Like bagging boosting requires the combination of many decision trees, here as the name

suggest is not to fit a single tree but instead make a slow learning, here instead of fitting

trees on Y , they are fit on the residuals.

By fitting smaller trees to the residuals and updating the fitted function accordingly, the

boosting algorithm adapts progressively, and this augments the robustness of the model.

The shrinkage parameter λ, which usually takes a value of 0.001 or 0.10, further slows

down the learning process in boosting, enabling the algorithm to use more and diverse tree

structures to tackle the residuals. Generally, slow-learning methods yield better performance.

It’s important to note that, in boosting, the construction of each tree is strongly dependent

on the previously grown trees, unlike in bagging.

Gradient boosting is an advancement since it employs a gradient descent algorithm to

minimize the loss when adding models to the ensemble. Instead of adjusting weights, sub-

sequent models are fitted to pseudo-residuals, defined as the negative gradient of the loss

function with respect to the model’s predictions.

In other words, they indicate the direction and magnitude of changes needed to minimize

the loss function.

With each iteration, the model improves by building an enhanced model that incorporates

an estimator, denoted as h, to deliver superior performance. This optimum h implies:

Fm+1(x) = Fm(x) + h(x) = y

Where y is the target. Or simply:

h(x) = y − Fm(x)

This is an error between the target and the predictions from the previous iteration’s model.Chadha

(2020)

Hence, the formula for pseudo residuals depends on the specific loss function being used.

ηj−1,t = − ∂L (yt,, fj−1 (xt) + h)

∂h

∣∣∣∣
h=0
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Among the various gradient boosting methods, there are XGBoost, which uses stochastic

gradient descent, Light GBM, and CatBoost.

Neural networks

Neural networks have proven also effective in dealing with temporal data, and among the

various type of neural networks, some are suited for time series data more than others.

Feedforward Neural Networks shallow or deep for example have been used for time series

forecasting but they may not be ideal for capturing long-term dependencies in the data.

Also, Convolutional Neural Networks have been used in forecasting time series data, this

type of model is mostly used in computer vision, classification, and recognition, but also used

inSezer and Ozbayoglu (2018) use a Convolutional Neural Networks in algorithmic trading,

creating a 15x15 image, with each image composed by using 15 financial indicators and 15

different intervals of these indicators. The images are labeled as “Hold”, “Buy”, or “Sell”

using a sliding window logic, the images are composed respecting a specific order of the

indicators.

Then the images are passed through a CNN for final classification.

Probably the most used type of neural network is represented by the family of Recurrent

Neural Networks or RNN for short, specifically Long-Short Term Memory (LSTM) and Gated

Recurrent Unit (GRU).

LSTM is a robust model to approach time series data since they have a more sophisticated

memory cell structure that enables them to learn and retain information from earlier time

steps. This fact of taking in account past information when trying to forecast future outcomes

makes the LSTM a good model.

This structure allows the LSTM to deal better than VAR models or ARIMA models in

the case of non-stationary time series data. Figure 3.2 shows the LSTM architecture.

Figure 3.2: The LSTM chain(Olah, 2015)
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Evolutionary Algorithms

This chapter provides an in-depth introduction to the concept of EAs, and the fundamental

principles that guide these algorithms, including the concepts of selection, mutation, and

crossover. The chapter also discusses the various types of EAs, their unique characteristics,

and their applications in different fields.

Evolutionary algorithm will be used to optimize the algorithms in the empirical section of this

thesis

Evolutionary algorithms (EAs) are computational strategies that imitate aspects of nat-

ural evolution. Over time, they have evolved to incorporate a variety of search mechanisms,

blending nature-inspired concepts with practical engineering needs. The basic function of all

EAs is to sustain and iteratively refine a pool of potential solutions, a process akin to artificial

’evolution’. Among the various types of EAs, Genetic Algorithms (GAs), Genetic Program-

ming (GP), and Evolution Strategies (ES) are some of the most recognized. These algorithms

have shown remarkable success in real-world applications, particularly in addressing combi-

natorial problems. The adaptability of EAs is one of their most significant advantages. They

can be customized to address any optimization problem without the need for simplification

or reformulation, unlike other methods.

However, this adaptability also presents a challenge. Fine-tuning the configuration and

parameters of an EA to achieve optimal performance for a specific set of tasks can be complex

and time-consuming. This process of fine-tuning is a key area of ongoing research in the

field of EAs.(Corne and Lones, 2018; Yu and Gen, 2010) In Figure 4.1 the various fields of

application are shown.
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Figure 4.1: The various fields of application of EAs are shown(Olah, 2015)

The concept of bionics, which involves applying principles from nature to human-made

systems, has led to numerous significant inventions. This approach has been used to create

radar systems inspired by bats and submarines modeled after fish. Similarly, the process of

natural evolution, which can be seen as a species learning to adapt and optimize its fitness,

has been mimicked in the design of optimization and learning algorithms. This has led to

the development of Evolutionary Algorithms (EAs).

EAs are unique in their ability to evolve while performing optimization or learning tasks.

They possess three main characteristics:

• Population-based: EAs operate on an ensemble of solutions, known as a population,

allowing them to optimize or learn about the problem in an alternative manner. This

population-based approach is a foundation principle of the process of evolution

• Geared Towards Fitness: Every solution within a given population has a unique

genetic representation (its own code) and a performance measure (its fitness score).

The basis for algorithm optimization lies in favoring instances with superior fitness

scores.

• Variation-centric: To emulate genetic changes, individual entities are subject to

different variation procedures. This is a vital aspect in exploring the solution landscape.
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(Yu and Gen, 2010) In essence, EAs represent a bionic approach to designing optimization

and learning algorithms, drawing inspiration from the principles of natural evolution. (Yu

and Gen, 2010)

4.1 Genetic Algoritms

Genetic Algorithms (GAs) are a group of Evolutionary Algorithms (EAs) that draw in-

spiration from the principles of genetics and natural selection. They are utilized to find

approximate solutions to problems of optimization. The fundamental components of a GA

include a population of chromosomes, genes, allele, fitness function, and operators such as

selection, crossover (recombination), and mutation.

• Population: A GA operates on a population of potential solutions to the problem

at hand. Each potential solution, also known as an individual or a chromosome, is

encoded as a string of genes. These genes can be binary, real-valued, or represent more

complex data structures, depending on the problem domain. The starting population

is randomly selected.

• Chromosome: Each potential solution.

• Gene: A gene is one element position of a chromosome.

• Allele: The value for a gene takes on a certain solution (chromosome).

• Fitness Function: The fitness function evaluates each individual in the population to

determine its quality or fitness. It quantifies the optimality of a solution in the problem

domain, thus guiding the search for the best solution. The fitness of an individual is

used to decide its likelihood of being selected for reproduction.

• Selection: The selection operator is used to select individuals from the current pop-

ulation to contribute to the next generation. Selection is typically biased towards

individuals with higher fitness, mimicking the survival of the fittest principle in natural

evolution.

In Figure 4.2 population, chromosomes, genes, alleles are depicted
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Figure 4.2: Population, Chromosome, Gene, and allele(Tutorialpoints, 2022)

Crossover (Recombination):

Crossover is a process utilized to amalgamate the genetic details of two progenitor entities

to spawn new offspring. It promotes the exploration of new regions in the search space by

creating individuals that are different from their parents, there are three primary methods

of crossover which are also shown in Figure 4.3:

• One-point crossover: In this method, a random index of a chromosome is selected

at each generation, and a swap of the solution between the parent chromosomes occur

at this point. This results in two offspring that carry genetic information from both

parents.

• Two-point crossover: This method involves the random selection of two indices of

a chromosome at each generation. The genes located between these two indices are

swapped between the parent chromosomes, resulting in two offspring that carry a mix

of genetic information from both parents.

• Uniform crossover: In this method, each gene can either be swapped or remain

in its current solution with a uniform probability at each generation. This is the only

crossover method in which each gene is treated separately from the others.(Sobeih et al.,

2010)
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Figure 4.3: Different types of crossovers(Sobeih et al., 2010)

Mutation:

The mutation is used to introduce little random changes in the individual’s genes. It ensures

to maintain genetic diversity in the population and prevents premature convergence to sub-

optimal solutions by allowing the exploration of new regions in the search space, mutation is

also a solution to increase randomness. Figure 4.4 shows various types of mutation.

• Adaptive mutation: In this method, a subset of genes is selected at each generation,

and their order is shuffled randomly.

• Inversion mutation: This method involves the inversion of the string of a subset of

the genes at each generation.

• Random mutation: At each generation, the algorithm changes the value of a subset

of genes in a random way, multiplying their value for a random value close to 1.

• Swap mutation: In this method, the algorithm interchanges the value of two different
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randomly selected genes at each generation. (Liu, 2014)

Figure 4.4: Different types of mutation(Liu, 2014)

Search termination:

The algorithm can terminate either if the difference between the maximum fitness function

between two consecutive generations is less than an , if the number of generations exceeds a

certain value, or if the computation time expires.

So, the GA begins with a randomly generated initial population. It then iteratively

applies the selection, crossover, and mutation operators to create a new population. The

performance or ’fitness’ of each entity within the population is assessed, and this procedure

continues until a predetermined termination criterion is fulfilled, such as hitting a specific

generation count or achieving an acceptable level of fitness. (Melanie, 1996)

In conclusion, genetic algortithms provide an interesting solution to optimize algortihms

in various fields but they are heavily dependent on the initial solution and implementing

a genetic algorithm to a problem could be difficult due to the increase of computational

resources required with the increment of generations or the size of the population taken in

the exam.



Chapter 5

Stock Price Prediction using

Evolutionary GAN

This chapter will describe step-by-step how the empirical part was carried out, including the

details on the various software and hardware used, the description of the data science workflow

implemented in this problem, the results and the discussion about them

5.1 Introduction

Generative Adversarial Networks are usually utilized for unsupervised tasks and developing

GANs for regression introduces two major challenges: (1) inherent instability in the GAN

and (2) performing regression and obtaining stability at the same time Nguyen et al. (2023).

Since the setting in which neural networks operate is an infinite space, Nash (1950) said that

infinite spaces need not have an equilibrium at all, and since the adversarial part is what

differentiates GANs from other architectures the network may never reach the optimality.

Hence, is interesting to investigate the use of these particular networks for regression prob-

lems, especially to time series data characterized by consecutive observations that could have

different degrees of dependency on one with the other. Moreover, the addition of an evolu-

tionary algorithm such as a genetic algorithm to optimize the performance of the network,

especially with time series, is an innovative approach.
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5.2 Related Work

Wang et al. (2018) introduced Evolutionary GAN that uses Genetic Algorithm to optimize

the network, the author didn’t focus on temporal data but instead on image data namely the

CIFAR-10, LSUN bedroom, and CelebA, but the author didn’t use mutation and crossover,

so is not a genetic algorithm in the strict sense, the approach is shown in Figure 5.1

Bate (2022) have used genetic algorithm on time series for the same problem, but the author

only focuses on the basic GAN, while this thesis will apply the optimization on 2 different

architectures of Generative Adversarial Network, the Vanilla GAN and the Wasserstein GAN

with Gradient Penalty.

Figure 5.1: The Evolutionary GAN as written by(Wang et al., 2018)

The steps of this research are mainly inspired by the paper from Lin et al. (2021) Stock

Price Prediction using Generative Adversarial Networks

5.3 Methodology

Materials and libraries used

All the operations were performed on Python, data pre-processing were made with Pandas

and scikit-learn, the Fourier transform was made thanks to NumPy and the sentiment score

was obtained thanks to FinBERT (Araci, 2019), the GAN implementation was performed

with Tensorflow (Abadi et al., 2015). The entire script was run on the Colab platform

leveraging the T4 GPU from Nvidia.
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Data collection

The data were obtained from the Github Repository published by Hungchun Lin the author

of the paper (Lin et al., 2021) https://github.com/hungchun-lin/Stock-price-predict

ion-using-GAN.

Dataset description

The dataset is composed of 2517 observations from 1st July 2010 to 24 June 2020, there are

37 features:

Open, High, Low, Close and Volume of Apple stock, then other columns where added: the

price of NASDAQ, NYSE, S&P500, FTSE1OO, Nikki225, BSE SENSEX, RUSSELL2000,

HENGSENG, SSE, CrudeOil, Gold, VIX, USD index, Amazon, Google, and Microsoft. Then

some financial indicators were built on Apple stock: MA7, MA21, 20SD, MACD, upper,

Lower, EMA, logmomentum.

Through Fourier transformation absolute of 3 comp, angle of 3 comp, absolute of 6 comp,

angle of 6 comp, absolute of 9 comp, and angle of 9 comp were obtained, then a last column

which is News.

Financial data were obtained through Yahoo Finance, the Dollar Index is downloaded

from the FRED website, news data were obtained from Seeking Alpha and the sentiment

score was computed as written before. The Fourier transform was performed with NumPy

and is done because the sine waves produced by the transformation can approximate the

original function and help the network to produce better outputs. Technical indicators were

obtained with Pandas. Figure 5.2 shows the Fourier transformation

Figure 5.2: The relative Fourier Transformation, sine waves produced approximate the
original price line in (red line), hence helping the model to represent the trend better

.

In Table 5.1 there is the description of the various variables

https://github.com/hungchun-lin/Stock-price-prediction-using-GAN
https://github.com/hungchun-lin/Stock-price-prediction-using-GAN
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Feature Name Feature Explanation Feature Name Feature Explanation

Open Opening price in the trading
day

Amazon Amazon stock Price

High Highest price in the trading
day

Google Google stock Price

Low Lowest price in the trading
day

Microsoft Microsoft stock Price

Close Closing price in the trading
day

MA7 7-day simple moving average

Volume Volume in the previous trad-
ing day

MA21 21-day simple moving average

NASDAQ NASDAQ Index Closing
Price

20SD Bollinger bands mid-rail

NYSE NYSE Composite Index
Closing Price

MACD Moving average convergence/divergence

S&P500 S&P 500 Index Close Price Upper Bollinger Band upper track

FTSE1OO FTSE1OO Index Close price Lower Bollinger Band lower track

Nikkei225 Nikkei Index Close Price EMA Exponential moving average

BSE SENSEX BSE Sensitive Index Closing
Price

logmomentum Logarithmic momentum indicator

RUSSELL
2000

RUSSELL 2000 Index Clos-
ing Price

abs of 3 comp 3-order reconstruction(absolute)

HANG SENG HK Hang Seng Index Closing
Price

angle of 3
comp

3-order reconstruction(angle)

SSE SSE Composite Index Clos-
ing Price

abs of 6 comp 6-order reconstruction(absolute)

CrudeOil Crude Oil Closing Price angle of 6
comp

6-order reconstruction(angle)

Gold Gold Closing Price abs of 9 comp 9-order reconstruction(absolute)

VIX CBOE Volatility Index angle of 9
comp

9-order reconstruction(angle)

USD index The US dollar index News Sentiment value of financial news

Table 5.1: Explanation of Features
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Data Preprocessing

First values equal to zero are transformed in null values and then forward and backward-

filled, the date column in the dataset is converted to a DateTime format and set as the index

of the dataset. The data is then rescaled using the MinMaxScaler from the sklearn library,

which scales each feature individually such that it is in the given range, i.e between -1 and

1 in this case. Then data are transformed into sequence data, based on the number of input

and output steps for the model, and creates the input and output datasets accordingly, in

this case, the amount of input steps is equal to 30, while the number of output steps is equal

to 3, namely we are trying to predict the price for the next 3 days considering the previous

30 days. Finally, data are split into training and testing sets with a ratio of 70/30.

Model outline

Four models have been developed:

- Basic GAN with GRU (G) + CNN (D): This model starts with a GRU layer

with 1024 units, followed by another GRU layer with 512 units, and a third GRU layer

with 256 units. Each of these layers uses recurrent dropout for regularization. After

these GRU layers, the model includes two dense layers, one with 128 units and the

other with 64 units. The generator concludes with a final dense layer that matches the

desired output dimension.

The discriminator, on the other hand, is a Convolutional Neural Network (CNN). It

begins with a 1D convolutional layer with 32 filters, followed by another 1D convolu-

tional layer with 64 filters, and a third 1D convolutional layer with 128 filters. Each of

these layers uses the LeakyReLU activation function. After these convolutional layers,

the model flattens the data and passes it through a dense layer with 220 units. This is

followed by a LeakyReLU activation function and another dense layer with 220 units

using a ReLU activation function. The discriminator concludes with a final dense layer

with a single unit and a sigmoid activation function, which outputs the probability that

the input data is real or fake. In Figure 5.3 the structure of this GAN is shown
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Figure 5.3: Here the real price is added to the output of the Generator to enhance data
length and offer more context, the discriminator receives only prices as input and not all
the other variables Lin et al. (2021)

- Wasserstein GAN + GP with GRU (G) + CNN (D): It starts with a GRU layer

with 256 units, followed by another GRU layer with 128 units. Each of these layers uses

recurrent dropout and L2 regularization for regularization. After these GRU layers, the

model includes three dense layers with 64, 32, and the same units respectively, each with

L2 regularization, and concludes with a final dense layer that matches the desired output

dimension. The Discriminator has the same structure as the previous model, what is

changed between this model and the other is that here the Discriminator is trained 3

times more than the Generator in this case, as for (Arjovsky et al., 2017). Moreover,

here a gradient penalty is applied, first, the discriminator gradient is computed and

then subtracted from 1, this difference is then squared to ensure it’s always positive,

and then it’s multiplied by a penalty coefficient (a hyperparameter that you can adjust).

This value is then added to the original loss function of the discriminator.

In practice, this means that if the discriminator’s function has gradients that are too

steep or too flat (i.e., not close to 1), it gets penalized, and its loss increases. This

encourages the discriminator to have gradients of roughly 1, helping to satisfy the 1-

Lipschitz condition and making the training process more stable and reliable.(Gulrajani
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et al., 2017)

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]︸ ︷︷ ︸
Original critic loss

+λ E
x̂∼Px̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]
︸ ︷︷ ︸

Our gradient penalty

- Baseline GRU and Baseline LSTM: The model is composed by two GRU layers,

one with 128 units and another with 64 units. After the GRU layers, a dense (fully

connected) layer with 32 units is added. This layer can help the model learn more

complex representations. Finally, a dense layer with a number of units equal to the

output dimension is added.

The model is compiled with the Adam optimizer, the other baseline model is a Long

Short Term Memory with a Bidirectional LSTM as a first layer and two dense layers.

These will be the two models that Lin et al. (2021) used as a baseline of its GANs.

Genetic Algorithm implementation

The genetic algorithm implemented here operates on the hyperparameters of the Generator

and just on the learning rate of the Discriminator. The purpose of the genetic algorithm

is to optimize these hyperparameters with respect to the Root Mean Square Error (RMSE)

metric.

The algorithm starts by initializing a population of hyperparameters. Each individual in

the population is a set of hyperparameters, defined by the Hyperparams class. The size of

the population is set by the popsize parameter. The algorithm then proceeds over a certain

number of generations.

For each generation, the algorithm assesses the fitness of each individual (set of hyper-

parameters) in the population. This is done by constructing the GAN model with the given

hyperparameters, training it on the training data, and evaluating the model’s performance in

terms of RMSPE, here the following hyperparameters are evaluated: the number of neurons

for each layer, batch size, discriminator, and generator learning rate.

After assessing the fitness of the individuals, the algorithm selects a subset of the pop-

ulation to survive to the next generation. The top 20% of individuals, i.e., the individuals

with the lowest RMSE, are chosen. The rest of the individuals are discarded.

The algorithm then replenishes the population by generating new individuals. Each new

individual is created either by mutating an existing individual (survivor) or by crossing over

two existing individuals. The choice between mutation and crossover is made randomly, with
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a 50% chance of each.

Mutation involves selecting an individual from the population and modifying its hyper-

parameters. Each of the parameters is multiplied by a random factor between 0.9 and 1.1,

effectively allowing the parameter to slightly decrease or increase. The new mutated pa-

rameters are then returned in a new Hyperparams object. This slight mutation allows the

genetic algorithm to explore a localized area in the hyperparameter space around the par-

ent individual. Crossover takes in hyperparameters from two-parent individuals and applies

a crossover operation. It randomly selects each parameter from either parent1 or parent2,

effectively creating a new set of hyperparameters that is a mix of the two parents. This new

set of hyperparameters is returned in a new Hyperparam object. The crossover operation

allows the genetic algorithm to combine the traits of two well-performing individuals in the

hope of creating an even better-performing offspring.

The algorithm repeats this process for a number of generations specified by the generations

parameter. In the end, it returns the hyperparameters of the individual with the lowest

RMSE. In this case, the population size is set to 10 and the number of generations to 5,

so the process of creating new individuals, selection, etc. will be performed 5 times. The

number of epochs is set to 25, meaning that each training sample will be passed 25 * 5 *

10 times or 1250 times. This low number was a tradeoff between the time available for the

research and the computation capacity of the hardware available. In Figure 5.4 is process is

summarized.

Figure 5.4: The Diagram of the proposed model
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Evaluation metrics

Each GAN and baseline model is evaluated based on the RMSE:

RMSE =

√∑N
i=1 (xi − x̂i)

2

N

Other metrics used include the Jansen-Shannon Divergence that was introduced by Lin

(1991) and has its fundamentals on the KL (Kullback-Leibler) Divergence that measures how

one distribution p is far from a second expected distribution q. (Weng, 2019)

DKL(p∥q) =
∫
x

p(x) log
p(x)

q(x)
dx

DKL reaches the zero when p(x) == q(x) everywhere.

So, Jensen-Shannon Divergence is another measure of similarity between two probability

distributions ∈ [0, 1]. JS divergence is symmetric and smoother.

DJS(p∥q) =
1

2
DKL

(
p∥p+ q

2

)
+

1

2
DKL

(
q∥p+ q

2

)
Another tool often employed is t-Distributed Stochastic Neighbor Embedding (t-SNE), a

popular method for reducing the dimensions and enhancing the visualization of datasets

with high dimensionality. t-SNE accomplishes this by preserving the similarities between data

points in a low-dimensional space, usually two or three dimensions, making it particularly

useful in the evaluation of different distributions.(Van der Maaten and Hinton, 2008)

t-SNE aims to reduce the discrepancy between two key sets of data: one which analyzes

the mutual characteristics of the original input entities, and the other that assesses mutual

characteristics of the related points in a simpler, low-dimensional representation. This goal

is accomplished by leveraging the principles of Kullback-Leibler (KL) divergence.(van der

Maaten, 2014)
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5.3.1 Training and results

Baseline LSTM

The model is run for 50 epochs and has a batch size of 64 and a learning rate of 0.001. The

result of the test set is shown in Figures 5.5 and 5.6.

Figure 5.5: The result on the test set with the Baseline LSTM

It achieved a test RMSE of 8.34

Figure 5.6: The plot of train and validation loss for LSTM
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Baseline GRU

The model is run for 50 epochs and has a batch size of 128 and a learning rate of 0.0001.

The result of the test set is shown in Figures 5.7 and 5.8.

Figure 5.7: The result on the test set with the Baseline GRU

It achieved a test RMSE of 6.02

Figure 5.8: The plot of train and validation loss for GRU
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Basic GAN

Here, the GAN has a 0.00016 learning rate for both discriminator and generator, the batch

size is 128 and the model is trained for 165 epochs. In Figures 5.8 and 5.9 the predicted time

series and the losses are shown.

Figure 5.9: The result on the test set with the Baseline GRU

The model achieved a 5.82, beating the baseline

Figure 5.10: Plot of losses for the Discriminator and the Generator

Here the losses tend to stay flat over the entire number of iterations.
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Optimization with Genetic Algorithm - Basic GAN

As explained in the subsection regarding the proposed model, the hyperparameters that

are going to be examined are the neurons in the several layers of the Generator, except

the last Dense layer, the batch size, the learning rate of both the Discriminator and the

Generator. After the optimization process, the new hyperparameters are printed:

Hyperparameter Original Optimized

GRU 1 Units 1024 1152
Dense 1 Units 128 116
Batch Size 128 140
Discriminator LR 0.0001 0.0001
Generator LR 0.0001 0.0000916
GRU 2 Units 512 477
Dense 2 Units 64 57
GRU 3 Units 256 269

Table 5.2: Comparison of Original and Optimized Hyperparameters of Basic GAN

Figure 5.11: The result on the test set for the Basic GAN optimized with GA

Figure 5.11 shows the predicted vs. real price

The model achieved a 5.02 RMSE on the test set, with an improvement of 13% with

respect to the non-optimized one, the loss plot behaves in the same way, from the tSNE plot

it appears that the generated data are closer to the true distribution reflecting the lower

RMSE as shown in Figure 5.12.
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Figure 5.12: Left: the tSNE plot of the Basic GAN with no optimization, Right: the one
optimized with the evolutionary approach

Wasserstein GAN with Gradient Penalty

Here, the WGAN GP has a 0.0001 learning rate for both the discriminator and genera-

tor, the batch size is 128, and the model is trained for 100 epochs. Here the Generator is

trained 3 times more than the Discriminator. In Figures 5.13 and 5.14 the predicted time

series and the losses are shown.

Figure 5.13: The result on the test set for the Wasserstein GAN with Gradient Penalty

The model achieved a 5.15, beating the baseline and the previous GAN
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Figure 5.14: Plot of losses for the Discriminator and the Generator

Here the loss of the Discriminator collapses after 50 epochs, this is a totally different

behavior with respect to the basic GAN.

Optimization with Genetic Algorithm - Wasserstein GAN GP

As explained in the subsection regarding the proposed model, the hyperparameters that are

going to be examined are the neurons in the several layers, except the last Dense Layer, of

the Generator, the batch size, the learning rate of both the Discriminator and the Generator.

After the optimization process, the new hyperparameters are printed:

Hyperparameter Original Optimized

GRU 1 Units 256 255
Dense 1 Units 64 64
Batch Size 128 119
Discriminator LR 0.0001 0.000096
Generator LR 0.0001 0.0001
GRU 2 Units 128 138
Dense 2 Units 32 26

Table 5.3: Comparison of Original and Optimized Hyperparameters WGAN GP
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Figure 5.15: The result on the test set for the Wasserstein GAN with Gradient Penalty
optimized with GA

Figure 5.16: Left: the tSNE plot of the WGAN GP with no optimization, Right: the opti-
mized one

Figure 5.15 shows the plot of the predicted and the real price.

The model achieved a 4.99 RMSE on the test set, with an improvement of 3% with respect

to the non-optimized one, the loss plot behaves in the same way, also from these two tSNE

plots in Figure 5.16 it can be observed how the distribution after the optimization seems to

better overlap the real one.
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Summary of results and discussion

To summarize, these are the final results both on the train and the test set.

Model Train RMSE Test RMSE

WGAN GP with GRU 2.36 5.15
WGAN GP with GRU + GA 2.13∗ 4.99∗

Basic GAN GRU 1.61 5.82
Basic GAN GRU + GA 1.829 5.02∗

Baseline GRU 1.055 6.02
Baseline LSTM 4.08 8.34

Table 5.4: Comparison of Models Performance

Metric Basic GAN Basic GAN + GA WGAN GP WGAN GP + GA

JS Divergence t 1 0.2264 0.1732∗ 0.2293 0.1449∗

JS Divergence t 2 0.2585 0.2218∗ 0.2065 0.2275
JS Divergence t 3 0.1716 0.2199 0.1658 0.1887

Table 5.5: JS and KL Divergence of the various models, the asterisk underline where the opti-
mization reduced one of the two metrics

The results confirm the findings from Lin et al. (2021), that WGAN with penalty general-

izes better on unseen data on this time series, but what can be observed is that the proposed

method improves the performance of the GAN on both train and test for the Wasserstein

GAN. It can also be observed that the optimization with the Genetic Algorithm drastically

reduced the JS Divergence for the next day’s closing price, while it didn’t have a significant

effect on t 2, t 3, it even significantly increases on t 3 for the optimization on Wasserstein

with Gradient Penalty. This result can mean that a model that tries to predict the next

day’s observation can benefit more from this type of optimization. Hence genetic algorithms

can be a solution for the optimization of GANs applied to the regression of time series data.
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Conclusion and further developments

The present study has explored the potential and efficacy of Generative Adversarial Networks

(GANs) in predicting stock prices, further enhanced by the application of genetic algorithms.

With the aim of improving the performance of GANs, the findings point to an interesting

and promising direction for enhancing machine learning models for financial market pre-

dictions. The results are significant for the computational finance field, highlighting how AI

and machine learning techniques can be harnessed to model and predict complex and volatile

financial markets.

Genetic algorithms (GAs) have proven to be effective in enhancing GANs’ performance.

This approach is grounded in the principles of natural selection and evolution, encouraging

the development of optimal GAN models by iterating through generations. The research

implemented GAs for five generations, with an iteration limit of 25 epochs, which yielded

notable improvements in prediction accuracy and stability.

However, the application of GAs, albeit successful, is not the solitary path to optimiza-

tion. There are still other evolutionary computation techniques that might be beneficial.

For instance, Particle Swarm Optimization (PSO) is an evolutionary algorithm that could

potentially enhance the GANs’ performance. Its unique trait of emphasizing social interac-

tion within the swarm for determining the best solution could be a worthwhile exploration,

considering the swarm’s interdependencies could mirror market complexities and dynam-

ics.(Kennedy and Eberhart, 1995)

Another promising development in GAN optimization is the implementation of fuzzy logic.

Nguyen’s2023 research on FuzzyGAN proposed the integration of a differentiable fuzzy logic

system in a GAN, which was reported to improve its regression capabilities. The fuzzy logic

system uses the output of either the generator or the discriminator to predict output and
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evaluate the generator’s performance. Applying this concept to the current model could

enhance its ability to handle uncertainty and noise, common characteristics in financial time

series data.

While the present study has successfully applied GAs to improve GANs performance

in predicting stock prices, several limitations arose. The computational resources available

placed constraints on the number of generations and epochs that could be executed. Increased

computational resources might allow for a more extensive exploration of the model’s genetic

and evolutionary parameters, potentially yielding even greater accuracy and robustness.

Moreover, the present study focused on a specific financial time series, which might limit

the generalizability of the results. Future work could involve applying the model to different

time series with varying characteristics, such as volatility and the Hurst exponent. This

will offer a broader perspective on the applicability and adaptability of the model, further

establishing its robustness in varying market scenarios.(Qian and Rasheed, 2004)

Lastly, there is a promising avenue in hybridizing fuzzy logic and evolutionary algorithms

in optimizing GANs. Fuzzy logic could enhance the model’s ability to handle uncertainty and

noise, while evolutionary algorithms could improve the model’s adaptability and robustness.

The fusion of these techniques could possibly lead to a high-performing GAN model capable

of accurate and robust financial market predictions.

In conclusion, the current study underscores the remarkable potential of GANs in financial

forecasting, demonstrating their ability to be improved by genetic algorithms. As we advance,

it is evident that harnessing the power of other optimization techniques such as PSO, Fuzzy

Logic, and possibly, a hybrid approach, offers a fascinating direction for future research.

Undoubtedly, the application and continuous refinement of these computational techniques

will shape the future of financial forecasting, aiding in the mitigation of risks and harnessing

potential economic opportunities.
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Final Summary

The objective of this thesis is to expand the literature on applying Generative Adversarial

Networks on regression problems and especially financial time series with the utilization of

genetic algorithms to optimize the architecture of the GAN and improve the performances.

This thesis is organized into two main parts, the first one introduces the concept of generative

AI models and the models that belong to this class, it will continue with an exam on the

characteristics of time series data and the most common techniques utilized to forecast and

analyze them, then this part will end with a general introduction to genetic algorithms and

the main features that characterize them. The second part of this thesis is dedicated to the

empirical part of this research that has applied 6 different models to the stock price fore-

casting, with two baseline models, two different types of GANs and finally the optimization

on these two. As said the first part of my thesis explores the intricate and innovative field

of Generative Adversarial Networks (GANs), a pioneering contribution to deep learning un-

veiled by Goodfellow. in 2014. Taking inspiration from game theory, GANs utilize a unique

dual neural network architecture, featuring a generator and a discriminator. These two en-

tities operate on the adversarial modeling framework and are characterized as multilayer

perceptrons, signifying their advanced nature and capacity for complex calculations.

The dynamic between the generator and the discriminator can be thought of as an excit-

ing adversarial interaction. The generator’s role resembles that of a forger, endeavoring to

produce data so convincing that it dupes the discriminator into acknowledging it as genuine.

The discriminator, meanwhile, is a vigilant inspector that learns to differentiate between

samples derived from the model distribution and the real-world data distribution.

Training is an evolutionary journey for both entities. As they improve and refine their

capabilities, there comes a point where the discriminator can no longer distinguish between

the actual data and the counterfeit data created by the generator. This signifies a significant

breakthrough, highlighting the power and potential of this class of models.

The GAN model pivots around the concept of input noise variables, symbolized as pz(z).
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These variables form the basis for the generator’s data distribution, embodying a mapping to

data space depicted as G(z; θg). In this representation, G stands for a differentiable function,

while θg constitutes its parameters.

Parallelly, a secondary multilayer perceptron is defined as D(x; θd), wherein θd is the con-

trolling parameter. This definition represents the discriminator, producing a single scalar.

The discriminator’s primary objective during training is to maximize the probability of cor-

rectly labeling both generated and real data samples.

The interaction between the generator and the discriminator manifests as a two-player

minimax game, with the value function V (G, D) depicting the relationship between the two.

The game reaches an optimum state when p(z) equals p(data), as demonstrated by Equation

1.

The training process, as shown in Algorithm 1, is delicate and intricate, requiring careful

balance. The discriminator’s performance directly impacts the learning potential. If the

discriminator is too good, it results in a vanishing gradient, hindering the learning process.

Conversely, a poorly performing discriminator provides insufficient feedback for the generator,

disrupting its learning.

GANs, fundamentally, are extensions of the concept of undirected graphical models with

latent variables. This broader category includes models such as Restricted Boltzmann Ma-

chines (RBMs) and Deep Boltzmann Machines (DBMs). These models use a probabilistic

approach to model the distribution of data, with a focus on maximum likelihood estimation

(MLE).

The unique aspect of GANs is their discriminative approach to training the generator,

which diverges from the generative approach employed by RBMs and DBMs to learn the

underlying data distribution. Despite their higher complexity and potential challenges during

training, GANs have demonstrated remarkable efficacy in generating realistic data.

However, GANs are not without their challenges. These include issues like low dimension-

ality, where the real data’s dimension appears deceptively high but is actually confined to a

low-dimensional space. Mode collapse, a condition where the generator consistently outputs

identical or near-identical samples, also threatens the diversity and richness of the generated

data.

The inception of the Wasserstein GAN aimed to address these challenges. This model

tweaks the standard GAN setup by replacing the Jensen-Shannon Divergence with the

Wasserstein Distance, also known as the Earth Mover’s Distance. This change increases

stability and robustness during training, effectively reducing the incidence of problematic

issues.
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Several GAN variants have emerged over the years, expanding the potential applications of

this framework. These include the Deep Convolutional GAN (DCGAN), CycleGAN (CGAN),

StyleGAN, and TimeGAN. Each of these models brings unique features and capabilities to

the table, continually pushing the envelope of what GANs can achieve.

The advent and ongoing refinement of Generative Adversarial Networks signify a land-

mark development in the field of deep learning. They not only demonstrate the extent to

which neural networks can mimic and reproduce complex data but also open up new avenues

for generating synthetic data for a wide range of applications.

The first part continues with Chapter 3 delves into the intricate realm of time series data,

a distinct category of data that is collected in a sequential manner over time, either at regular

or irregular intervals. Time series data stands out from other types of data due to its temporal

nature, representing observations recorded across a continuum of time. This specific form of

data analysis is an essential aspect of numerous domains, ranging from financial markets to

meteorology, where it is used to detect patterns, spot anomalies, predict trends, and inform

decision-making processes.

Each data point within a time series is intrinsically associated with a timestamp that can

vary in granularity - from seconds to days, weeks, or even longer. The order of these data

points, which might seem inconsequential in other data types, is vital when dealing with time

series, as it informs our understanding of the temporal dynamics and dependencies at play.

Many time series datasets exhibit repeating patterns or cycles over fixed periods, referred

to as ’seasonality’. For instance, data related to agricultural production, energy consumption,

and holiday seasons often demonstrate clear seasonal trends that repeat annually. On the

other hand, time series data may also reveal long-term increases or decreases in the mean

level, a characteristic known as ’trends’. These trends can be either upward or downward

and may persist over various time spans.

Time series data often contain random variations, measurement errors, or unexplained

fluctuations, which are collectively termed ’noise’. Despite their random nature, these noise

components are crucial to understanding the intricate dynamics of time series data.

A central aspect of time series analysis is the concept of ’stationarity’. A time series

is considered stationary if its mean and variance, don’t change over time, implying the ab-

sence of trends or seasonality patterns. Stationarity is often achieved using differentiation

techniques, thereby helping certain time series analysis methods to function effectively.

Moreover, time series data often exhibit ’autocorrelation’, where successive observations

are correlated. This property can help identify periodicities, seasonality, and persistence in

the data, informing appropriate models for forecasting or anomaly detection.
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The analysis of time series data and its unique characteristics can generate valuable

insights, guiding informed decisions across diverse fields. To this end, there exists a multitude

of models and techniques, ranging from statistical to machine learning methods, that can be

applied to time series data.

The traditional methods of time series analysis encompass statistical models such as

autoregressive (AR) models, moving average (MA) models, autoregressive moving average

(ARMA) models, and autoregressive integrated moving average (ARIMA) models. These

models capture linear relationships between successive observations and typically function

well for stationary time series data.

In addition to statistical models, there has been a growing interest in the application of

machine learning and artificial intelligence to time series analysis. This includes algorithms

like Support Vector Machines (SVMs), Random Forests, and Gradient Boosting Machines,

as well as Deep Neural Networks such as Artificial Neural Networks (ANN) and Recurrent

Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) networks.

Each of these models and techniques has its unique strengths and applicability, making

them suited to address different challenges presented by time series data. However, the

selection of an appropriate model for a specific task still remains a heuristic process, as it

largely depends on the nature of the data, the problem at hand, and the computational

resources available.

In conclusion, this chapter has provided an overview of time series data and the unique

complexities it presents. From discussing its inherent characteristics to outlining various

statistical and machine learning techniques used for its analysis, the chapter elucidates the

significance of time series analysis in extracting meaningful insights and informing decision-

making processes across a multitude of domains. While the choice of the right model or

technique is still a matter of ongoing research and debate, the existing array of methods

offers a promising toolset for handling the unique challenges posed by time series data.

Chapter 4 continues with a description of what are Evolutionary algorithms (EAs) that

constitutes a unique class of computational methods that emulate natural evolution, cre-

ating powerful problem-solving strategies. These algorithms have continued to evolve, in-

tegrating diverse search techniques that amalgamate nature-inspired ideas with engineering

requirements. They are designed to maintain and progressively refine a collection of possible

solutions, a process akin to artificial evolution.

Among the assortment of EAs, Genetic Algorithms (GAs), Genetic Programming (GP),

and Evolution Strategies (ES) have garnered the most recognition. These algorithms have

demonstrated exceptional success in real-world applications, particularly in dealing with com-
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binatorial problems. A defining feature of EAs is their adaptability. They can be customized

to tackle any optimization problem, without necessitating simplification or reformulation, in

contrast to other methods. However, this adaptability also presents challenges. Fine-tuning

the configuration and parameters of an EA to optimize performance for a specific task can be

complex and time-consuming. This fine-tuning process is a crucial area of ongoing research

in the EA domain.

Bionics is a concept that applies principles from nature to human-made systems, leading

to several significant inventions. This approach has been used to create radar systems inspired

by bats and submarines modeled after fish. Similarly, the process of natural evolution, seen

as species learning to adapt and optimize their fitness, has been mirrored in the design of

optimization and learning algorithms, leading to the development of Evolutionary Algorithms

(EAs).

EAs have three distinct characteristics: they are population-based, fitness-oriented, and

variation-driven. EAs operate on a group of solutions, a population, allowing them to opti-

mize or learn about the problem in a parallel manner. Each solution in a population, known

as an individual, has its gene representation and performance evaluation. EAs favor individ-

uals with higher fitness values, which forms the basis for the optimization and convergence of

the algorithms. Individuals undergo various variation operations to mimic changes in genetic

genes, which is vital for exploring the solution space.

Genetic Algorithms (GAs), a subset of EAs, take inspiration from the principles of natural

selection and genetics. They are used to find approximate solutions to optimization and

search problems. GAs operate on a population of potential solutions, with each potential

solution, or individual, encoded as a string of genes. These genes can be binary, real-valued,

or represent more complex data structures, depending on the problem domain. The initial

population is usually randomly selected.

GAs have a fitness function that evaluates each individual in the population to determine

its quality or fitness. This fitness quantifies the optimality of a solution in the problem

domain, thus guiding the search for the best solution. The fitness of an individual is used to

decide its likelihood of being selected for reproduction.

GAs employ operators like selection, crossover (recombination), and mutation. The se-

lection operator selects individuals from the current population to contribute to the next

generation. Selection is usually biased towards individuals with higher fitness, mirroring the

survival of the fittest principle in natural evolution. The crossover operator combines the ge-

netic information of two parents to generate new offspring, promoting the exploration of new

regions in the search space. The mutation operator introduces small random changes in the
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individuals’ genes, maintaining genetic diversity in the population and preventing premature

convergence to suboptimal solutions.

GAs start with a randomly generated initial population, then apply selection, crossover,

and mutation operators iteratively to create a new population. The fitness of the individuals

in the population is evaluated, and the process continues until a termination condition is

met, such as reaching a maximum number of generations or achieving a satisfactory fitness

level.

In conclusion, while genetic algorithms provide an intriguing solution for optimizing al-

gorithms in various fields, they do have their limitations. They heavily rely on the initial

solution and implementing a genetic algorithm to a problem could be challenging due to the

increase in computational resources required with the increment of generations or the size

of the population examined. This is the diagram of the genetic algorithm utilized in the

empirical part of this thesis that is contained in Chapter 5.

The Diagram of the proposed model

The second part of this thesis contains the steps that were performed to answer to the

research question:

Can the performances of a Generative Adversarial Network be improved by Genetic Algo-

rithms and better predict the stock price?
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The dataset is composed of 2517 observations from 1st July 2010 to 24 June 2020, there

are 37 features:

Open, High, Low, Close and Volume of Apple stock, then other columns where added: the

price of NASDAQ, NYSE, S&P500, FTSEIOO, Nikki225, BSE SENSEX, RUSSELL2000,

HENGSENG, SSE, CrudeOil, Gold, VIX, USD index, Amazon, Google, and Microsoft. Then

some financial indicators were built on Apple stock: MA7, MA21, 20SD, MACD, upper,

Lower, EMA, logmomentum.

Through Fourier transformation absolute of 3 comp, angle of 3 comp, absolute of 6 comp,

angle of 6 comp, absolute of 9 comp, and angle of 9 comp were obtained, then a last column

which is News.

The prices regarding the financial indices, stocks, and commodities were obtained through

Yahoo Finance, the Dollar Index is downloaded from the FRED website, news data were

obtained from Seeking Alpha and the sentiment score was computed as written before. The

Fourier transform was performed with NumPy and is done because the sine waves produced

by the transformation can approximate the original function and help the network to produce

better outputs.

Data were preprocessed, first normalizing them between -1 and 1 and then transformed

into sequence data, specifically the previous 30 observations are taken into consideration by

the model to forecast the next 3 days

Left: the input step, previous 30 days. Right: the output step, next 3 days

Then 4 models were built, two baseline models namely a GRU and a LSTM that are

commonly used in time series forecasting thanks to their ability to handle sequence data, the

other 2 models were two Generative Adversarial Networks:

• a vanilla GAN with a Generator with 3 GRU layers and 2 Dense Layers and a Discrim-

inator with 3 Convolutional Layers and 2 Dense Layers
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• a Wasserstein GAN with Gradient Penalty

The main difference between the twos is the utilization of a different loss function, a GAN is a

network that has its roots in Game Theory, Generator and Discriminator “fight” participate

in a game in which the Generator that needs to produce fake outputs tries to trick the

Discriminator, and this is called the adversarial part of the game, to accomplish that the

network tries to minimize the Kullback-Leibler Divergence. In the Wasserstein GAN instead

is the Wasserstein distance that is being minimized, Roughly speaking let’s imagine two

piles of sand representing the two probability distributions. Each grain of sand has a certain

weight, and the goal is to move the sand from one pile to the other while minimizing the

total amount of work done.

Here the real price is added to the output of the Generator to enhance data length and of-
fer more context, the discriminator receives only prices as input and not all the other vari-
ables

These models were run for different epochs, the real price and the predicted price were

plotted on a line plot, then the hyperparameters of the Generator of two GANs were tuned

with a genetic algorithm, the hyperparameters chosen are the number of units for the various

layers, the batch size and the learning rate, here I’ve chosen to focus on the Generator because

is the member of the GAN that performs the regression.

To check if the optimization was successful a t-SNE (t-distributed stochastic neighbor

embedding ) plot for each model was produced, this is a robust statistical method for visu-

alizing high-dimensional data and allows it to confront two different distribution and their

similarity.
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The results are shown here:

Baseline GRU and Baseline LSTM

Left : Baseline LSTM. Right : Baseline GRU

Basic GAN and Basic GAN + Evolutionary Algorithm

Left : Basic GAN. Right : Basic GAN + GA
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Figure 6.4: Left: the tSNE plot of the Basic GAN with no optimization, Right: the one
optimized with the evolutionary approach

WGAN with Gradient Penalty and WGAN GP + Evolutionary Algorithm

Left : WGAN GP. Right : WGAN GP + GA
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Left: the tSNE plot of the WGAN GP with no optimization, Right: the optimized one

Model Train RMSE Test RMSE

WGAN GP with GRU 2.36 5.15
WGAN GP with GRU + GA 2.13∗ 4.99∗

Basic GAN GRU 1.61 5.82
Basic GAN GRU + GA 1.829 5.02∗

Baseline GRU 1.055 6.02
Baseline LSTM 4.08 8.34

Comparison of Models Performance
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Metric Basic GAN Basic GAN + GA WGAN GP WGAN GP + GA

JS Divergence t 1 0.2264 0.1732∗ 0.2293 0.1449∗

JS Divergence t 2 0.2585 0.2218∗ 0.2065 0.2275
JS Divergence t 3 0.1716 0.2199 0.1658 0.1887

JS and KL Divergence of the various models, the asterisk underline where the optimization re-
duced one of the two metrics

In conclusion, the answer to the research question is positive and the genetic algorithm

has been successful in improving the performance of the model


	Introduction
	Research Objective and Motivation
	Research Question
	 Thesis Outline 


	Generative AI
	Generative vs Discriminative Models
	Generative AI models
	Generative Adversarial Networks
	Improving the GAN model


	Time Series and Time Series Analysis
	Time Series data
	Statistical models for time series snalysis
	Machine Learning models for Time Series analysis


	Evolutionary Algorithms
	Genetic Algoritms

	Stock Price Prediction using Evolutionary GAN 
	Introduction
	Related Work
	Methodology
	Training and results


	Conclusion and further developments

