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1. Introduction 

1.1 Football Analytics: A Game-Changing Revolution 

In the last decade, analytics have permeated every industry, redefining traditional practices 

and creating data-driven decision-making paradigms. Football (or soccer, as it's known in 

some parts of the world) is no exception. Once a game of intuition and gut-feeling, modern 

football has undergone a significant transformation, ushering in an era where analytics play a 

crucial role in understanding the complexities of the game.  

Analytics in football serve multiple purposes, ranging from player performance analysis and 

tactical scrutiny to injury prevention and market valuation. With the advent of technologies 

such as video analysis software, GPS tracking, and machine learning algorithms, football 

clubs, analysts, and coaches now possess a wealth of data at their fingertips. This quantitative 

approach has not only led to more effective strategies on the field but has also influenced 

scouting, talent identification, and even game-day decisions. 

1.2 Expected Goals (xG): The Cornerstone of Modern Football Analytics 

One of the most groundbreaking metrics that have emerged in football analytics is the concept 

of "Expected Goals" or xG. Expected Goals is a statistical measure that quantifies the 

probability of a given shot resulting in a goal. It takes into account various factors such as 

shot angle, distance from the goal, type of assist, and even the part of the body used to take 

the shot. The xG metric assigns a value between 0 and 1 to each shot, indicating the likelihood 

that it will result in a goal. For example, a shot with an xG value of 0.3 has a 30% chance of 

being converted into a goal. 

The xG metric has become indispensable in modern football analytics for several reasons: 

• Performance Evaluation: xG offers a more nuanced way to assess both individual player 

performance and team tactics. 

• Strategic Planning: Understanding xG can guide teams in optimizing their offensive and 

defensive strategies. 

• Fair Assessment: By considering the quality of chances created or conceded, xG provides 

a more balanced view of a match, beyond the basic scoreline. 

• Predictive Power: The metric is also used for predictive modeling, helping to forecast 

future performances and outcomes. 



By transcending the limitations of traditional statistics like shots or possession percentages, 

Expected Goals has become a cornerstone metric that provides a deeper, more accurate insight 

into the game's intricacies.  

More information on it can be finded in the article of Soccerment on xG and other advanced 

metrics[1]. 

1.3 The Limitations of Conventional xG Predictive Models 

In the burgeoning field of football analytics, machine learning models designed to predict 

Expected Goals (xG) often incorporate a variety of features. These can include metrics related 

to the player taking the shot, the team they belong to, or even the opposing team. While this 

approach may yield a model with high predictive power, it introduces a significant problem—

bias. 

When the goal is to predict whether a shot will result in a score, using attributes of the player 

or team might seem advantageous. However, this approach becomes problematic when the 

objective shifts to using the xG metric as a fair evaluation of individual or team performance. 

In such cases, the xG value becomes inherently biased, influenced not just by the quality of 

the shot opportunity but also by who took it or which team they belong to. This not only 

muddies the analytical waters but also undermines the very purpose of using a metric like xG 

to assess performance impartially. It would be like judging a movie's quality based on the lead 

actor rather than the story itself.  

1.4 The Goal: Creating an Unbiased xG Metric 

The primary objective of this thesis is to address the limitations of conventional xG predictive 

models by developing machine learning models that rely exclusively on situational features. 

This means that the predictors chosen for the models are intended to describe the 

circumstances under which the shot was taken, rather than attributes of the player or team 

involved. 

Examples of these situational features include: 

• Position of the Shot: The coordinates on the pitch where the shot was taken from. 

• Body Part Used: Whether the shot was taken with the foot, head, or any other body 

part. 

• Type of Preceding Event: What happened right before the shot? Was it a corner kick, 

a free kick, or perhaps a dribble? 



These features aim to create an xG metric that isolates the quality of the shot opportunity, 

thereby providing a fair and universal ground for performance evaluation. This objective is 

crucial for several reasons: 

• Fair Evaluation: By solely focusing on situational factors, the metric provides a level 

playing field for evaluating individual players and teams. 

• Analytical Purity: The metric remains true to the core purpose of xG, which is to 

quantify the quality of goal-scoring chances. 

• Universal Applicability: The exclusion of player and team attributes ensures the 

metric's reliability across diverse settings for comparative analyses. 

The ensuing chapters will delve into the methodology, data analytics, and machine learning 

models that underpin this pursuit. 

2. The Data 

2.1 Source 

One of the significant challenges in the realm of football analytics is the scarcity of publicly 

available data. Most datasets in this field are proprietary assets of private companies, which 

limits the scope for independent research and analysis. In contrast, the dataset utilized for this 

thesis is a notable exception. Sourced from Wyscout, a leading company in the soccer 

industry, the data have been made publicly available by Pappalardo et al.[2] under the CC BY 

4.0 License on figshare.com. This offers a unique advantage for comprehensive study and 

analysis in football analytics. 

2.2 Collection Methodology 

Wyscout's approach to data collection is both rigorous and meticulous, carried out by a team 

of expert video analysts using a proprietary software known as "the tagger." As described by 

Pappalardo et al.[1] the process can be broken down into three main steps: 

• Setting Formations: At the beginning of each match, operators set the starting 

formations for the participating teams, identify the players' positions on the field, and 

record their jersey numbers. 

• Event Tagging: Every ball touch in the match is tagged, creating a new event on a 

timeline. The operator then adds various attributes like the type and subtype of the 

event (e.g., pass, duel, shot), as well as its precise coordinates on the pitch. 

• Quality Control: Once the tagging is complete, a two-step quality control process is 

initiated. First, an algorithm automatically cross-checks the tagged data to identify and 



correct errors. This is followed by a manual review to further ensure the data's 

accuracy. 

2.3 Dataset Overview 

The original dataset is a multifaceted resource, providing varied types of data ranging from 

match outcomes and player features to events, referees, coaches, and much more furnished in 

the JSON format. For the scope of this thesis, the emphasis is placed on the dataset pertaining 

to events, complemented by a mapping dataset for tag identifiers and tag names. 

The data covers the 2017/2018 season of the top-tier national soccer competitions in five 

leading European countries. Specifically, these are: Serie A in Italy, La Liga in Spain, Ligue 

1 in France, Bundesliga in Germany and Premier League in England. 

Furthermore, the dataset extends to encompass significant international tournaments, 

specifically the World Cup 2018 and the European Cup 2016, which are competitions for 

national teams. 

Our events dataset is not just rich in detail; it's also expansive in scale. It contains 3,251,294 

records, and, according to Pappalardo et al.[2] in 2019, represents the largest public collection 

of soccer-logs ever released to the best of their knowledge. This sheer volume provides us 

with an incomparable opportunity to draw statistically significant conclusions and develop 

robust machine learning models for predicting Expected Goals (xG). 

Each record provides a snapshot of a specific event in a football match, including the 

following features: 

• eventId: An identifier for the type of event 

• eventName: The name of the event's type (e.g. Pass, Shot, Duel, Foul) 

• subEventId: An identifier for the sub-type of the event 

• subEventName: The name of the sub-type of the event (e.g. Simple Pass, Cross, High 

Pass, Head Pass) 

• tags: A list of tags providing additional information about the event. (e.g. Accurate, 

Not Accurate, Key Pass, Assist) 

• eventSec: The time in seconds when the event occurs relative to the current half of the 

match 

• id: A unique identifier for the event 

• matchId: The identifier of the match to which the event belongs 

• matchPeriod: The period of the match when the event occurs (e.g., 1st Half, 2nd Half) 

• playerId: The identifier of the player who generated the event 

• positions: The x, y coordinates indicating the event's position on the field 

• teamId: The identifier of the player's team 



Our primary interest in this dataset revolves around shots. This emphasis is because shots, 

more than any other event type, will serve as the cornerstone for our predictive models. 

 

Figure 1: Frequency of Events and Shots 

When we dive into the visual representation of our dataset in Fig.1, two patterns emerge. Both 

the frequency distributions for events per match and shots (from open play) per match mirror 

the characteristics of a normal distribution. The average match showcases approximately 1675 

events, with a standard deviation of 110. Matches typically see an average of 22 shots and 

deviating by a standard deviation of 5.36. This suggests that most football games follow a 

common pattern with only a few standing out as exceptions. 

2.4 Feature Engineering 

To construct a model that accurately measures objective scoring chances without bias, it's 

essential to have the right features. While the raw Wyscout dataset provided a comprehensive 

view of football matches, specific modifications were necessary to tailor the dataset for our 

goal. 

The first step was to concentrate on the events central to our model – the shots. By filtering 

the data, we retained only the events specifically labeled as shots. Additionally, to ensure a 

comprehensive capture of all potential goal-scoring opportunities, shots originating from free-

kicks and penalties were also included. After this refinement, our dataset was narrowed down 

to 45,945 records. 

The Wyscout dataset is enriched with tags that contain valuable information about each event. 

Accompanying the data, Pappalardo et al.[2] provided a CSV file that establishes a mapping 

between tag IDs and their corresponding names. By leveraging this mapping dataset, we 

decoded the tags associated with each shot, transforming them from mere IDs to more 

descriptive and informative labels. This process allowed us to unearth several crucial 



attributes. For instance, we could ascertain if a shot stemmed from a counter-attack or if it was 

identified as a clear-cut opportunity. However, it's paramount to note our selective approach: 

tags that were directly related to the outcome of the shots, such as interceptions or blockages, 

were intentionally excluded to ensure that biases were not inadvertently introduced into our 

ensuing analysis. 

By analyzing events grouped by player IDs, we calculated the occurrences of events per foot 

for each player. This allowed us to assign a 'strong foot' for every player. Using this data, a 

new binary feature was crafted to indicate if a shot was taken with the player's strong foot. 

Interpreting the positional coordinates requires careful consideration of the context provided 

by the Wyscout API documentation[3]. 

 

Figure 2: Visual representation of Coordinates 

According to their guidelines, the coordinates are expressed as percentages, where the goal 

being defended is at x = 0% and the attacking goal is at x = 100%. Specifically, the center of 

the attacking goal is positioned at 100:50. Fig. 2 shows a visual representation of this. 

Given this configuration, from the raw coordinates provided we computed two essential 

features: distance and angle of each shot from the center of the attacking goal. 

In the pursuit of building robust predictive models for football analytics, it becomes 

imperative to blend depth of information with computational pragmatism. Delving deep into 

every event leading up to a shot undoubtedly furnishes richer context. However, it also brings 

forth challenges tied to complexity and computational demands. Recognizing these trade-offs, 



we strategically anchored our focus on the immediate event preceding each shot. This nuanced 

approach not only ensured we garnered significant context but also maintained an efficient 

analysis. 

Given the multifaceted nature of football matches, the events culminating in a shot can provide 

insights on the shot's prospective outcome. Thus, to gain insights into the circumstances 

immediately framing each shot, we turned our attention to the event preceding it. Employing 

a method where we grouped the data by matches and tapped into the time variable, we 

successfully pinpointed this precursor event. This exercise empowered us to extract and 

integrate pivotal features like: 

• Type and subtype of the previous event 

• Distance and angle of the previous event relative to the shot's position 

• Time difference between the shot and its preceding event 

To add depth to our understanding, we also looked at the tags associated with these preceding 

events. Given the myriad of possible events before a shot, there was a vast array of associated 

tags. While every tag provides a shade of context, not all would be vital for our predictive 

ambitions. To optimize our dataset without sacrificing critical nuances, we adopted a data-

driven criterion: only tags that featured in more than 10% of the records were included. This 

strategy ensured that our model had access to prevalent and significant patterns, filtering out 

potential noise. 

The final dataset for our analysis encompasses a diverse set of features, each offering unique 

insights into the dynamics of a football match: 

Spatial Features: 

• Distance: Continuous (0-100 meters). Measure the shot's proximity to the goal. 

• Angle: Continuous (0-90 degrees). Indicates the shot's angle relative to the goal's 

center. 

Temporal Features: 

• Time: Continuous. Denotes seconds elapsed since the start of the current match period. 

• Match Period: Categorical. Identifies the segment of the match (e.g., 1st Half, 2nd 

Half). 

Shot Context: 



• Situation: Categorical. Describes the context of the shot (Free Kick, Open Play, 

Penalty). 

• Body Part Used: Categorical. Classifies the shot's execution method (Strong Foot, 

Weak Foot, Head/Body). 

• Foot: Binary. Indicates which foot was used for the shot (Right or Left). 

Wyscout Video Analysis Tags: 

• Opportunity: Binary. Indicates if the shot was deemed an opportunity. 

• Counter Attack: Binary. Identifies shots originating from a counter-attack. 

Details of the Preceding Event: 

• Event Type and Subtype: Categorical variables. Depict the nature of the event. 

• Distance: Continuous (0-121 meters). Distance of the previous event from the shot. 

• Angle: Continuous (0-90 degrees). Angle of the previous event concerning the shot. 

• Inter-event Time: Continuous. Indicates the time gap between the shot and the 

previous event. 

• Accurate: Binary. A tag marking the event as precise. 

• Won: Binary. Present in duels, signifying if the duel was victorious. 

• Key Pass: Binary. Present in passes, indicating if the pass led to a dangerous move. 

Having refined and enriched our dataset, we've laid a robust foundation for the subsequent 

phases of this research. The careful selection and engineering of features are pivotal in 

ensuring the accuracy and reliability of our forthcoming predictive models. 

3. Exploratory Data Analysis (EDA) 

The process of data collection and preprocessing, though meticulous, is only half the battle. 

Equally, if not more important, is understanding the intricacies and patterns within the data. 

This chapter, the Exploratory Data Analysis (EDA), is where we embark on a journey to 

uncover those hidden insights, relationships, and anomalies. EDA serves as the bridge 

between raw data and the ensuing predictive models, ensuring we proceed with a well-

informed perspective. Through visualizations, distributions, and statistics, we'll dissect our 

dataset, focusing on each variable's influence on a shot's likelihood to result in a goal. 

3.1 Data Cleaning 



The EDA commences by examining three pivotal variables: 'Situation', 'Match Period', and 

'Distance'. These were selected as the initial focus because exploration of these variables 

influenced data cleaning decisions, particularly the removal of specific records. By starting 

with these features, the subsequent analyses are built on a more refined and relevant dataset. 

Situation: 

 

Figure 3: Distribution and Conversion Rate of Shots by Situation 

Our exploration of the situation variable in Fig. 3 uncovers several key insights: 

Distribution of Shots by Situation: 

• A vast majority of the shots in the dataset come from open play, constituting 93.76%. 

• Shots from free kicks represents 4.81%, while penalties comprise a smaller fraction, 

about 1.43%. 

Conversion Rates by Situation: 

• Penalties exhibit the highest conversion rate - 72.49%. 

• Open play shots, despite their dominance in frequency, have a conversion rate of 

10.43%. 

• Free kicks, even with their strategic significance, yield the lowest conversion rate of 

6.20%. 

Given these insights, a strategic decision has been made regarding our modeling approach. 

Recognizing the fixed nature of penalties, it's prudent to assign a static Expected Goals (xG) 

value of 0.72 to all penalty shots. This decision is grounded in the consistent conversion rate 

observed for penalties. Consequently, our predictive models will be tailored exclusively for 

non-penalty shots. This ensures a more nuanced and adaptable xG model that can account for 

the varied contexts of open play and free kicks. 



Match Period: 

 

Figure 4: Distribution of Shots across different Match Periods 

The distribution of shots across match periods shown in Fig.4 reveals 2 key insights: 

• Dominance of Regular Time: As the plot illustrates, most shots are taken during 

regular time, specifically during the 1st and 2nd halves. Extra time (E1 and E2) 

contributes only a minimal amount to the total shots. This is consistent with the nature 

of football matches, given that extra time is conditional and occurs less frequently. 

• Second Half Surge: The frequency of shots is notably higher in the second half 

compared to the first. This increase can be attributed to several factors. Tactical shifts 

often take place during half-time, potentially leading to more aggressive or open play. 

Additionally, player fatigue becomes more prominent as the match progresses, which 

can result in defensive vulnerabilities and, consequently, more shots. Lastly, the 

urgency of chasing a result, especially if a team is trailing, can result in a more forward-

leaning approach. 

Given the limited data from extra time periods (E1 and E2) it's prudent to focus our 

analysis on the regular time shots. This ensures a more robust dataset and avoids skewing 

results based on rare or exceptional circumstances. Hence, moving forward, our analysis 

and predictions will be based solely on shots taken during the 1st and 2nd halves. 

Distance: 

The distance from which a shot is taken plays a crucial role in determining its likelihood 

of resulting in a goal. To ensure the precision and relevance of our analysis, it's essential 

to address potential outliers in this variable. A boxplot was plotted to visually assess the 

distribution and identify outliers. 



 

Figure 5: Boxplot of Shots across Distance to Goal 

As seen in the boxplot in Fig. 5, the data exhibits a few extreme values that deviate 

significantly from the central tendency. To systematically address these outliers, the 

Interquartile Range (IQR) method was employed. This statistical technique defines an upper 

threshold, calculated as Q3+1.5×IQR. Any data points that lie beyond this threshold are 

considered outliers. 

Based on this criterion, 241 records were identified as outliers and subsequently removed. 

While the decision to exclude data is always a significant one, it's important to note that these 

records represent a mere 0.5% of the entire dataset. Given this small proportion and the 

potential of these outliers to skew our analysis, their removal was deemed justified. 

The analysis of the feature proceeds with the Kernel Density Estimate (KDE) of Goals and 

Not Goals across values of Distance. 

 

Figure 6: KDE of Goals and Not Goals across Distance 

Two distinct distributions emerge from the kernel density plot in Fig. 6: one for shots that resulted 

in goals (green) and the other for shots that didn't (red). Several observations arise from this visual 

representation: 

• Peak Distribution for Goals: The green curve, reaches its maximum at a distance of 9.35 

meters from the goal. This pronounced peak highlights the most frequent distance from 



which goals are scored, suggesting a "sweet spot" for players around this peak. Possibly due 

to being close enough to bypass defensive obstructions effectively. 

• Peak Distribution for Not Goals: On the other hand, the red curve, peaks at about 25.90 

meters. This distance represents the most common point from which players attempt to 

shoot, but fail to find the back of the net. It might hint at a zone where, despite the 

frequent attempts, defensive strategies, goalkeeper interventions, or the sheer difficulty of 

shooting from such a range diminishes the success rate. 

• Shots decline after the peaks: For the goals, there's a significant decline in density post the 

peak, emphasizing the rarity and challenge associated with long-range goals. Similarly, the 

distribution for shots that didn't result in goals shows also decreasing density beyond the 

peak. This pattern indicates that while unsuccessful shots are more commonly attempted 

from longer distances than successful ones, teams regognize the decreasing odds of such 

shots leading to goals and make fewer attempts from these farther ranges. 

 

Figure 7: Conversion Rate across Distance 

The histogram of conversion rates by distance in Fig. 7 supplements our earlier observations 

from the kernel density plot: 

• Declining Conversion Rates: As we move farther from the goal, there's a notable 

decrease in the conversion rate. This trend confirms the challenges associated with 

long-distance shots. 

• Proximity and High Conversion: For shots within 4 meters of the goal, the conversion 

rate surpasses 50%. This rate remains significant, over 20%, for shots up to 9 meters 

away. 

• Approaching the Average: Around the 15-meter mark, the conversion rate aligns with 

the average rate of 10%. Beyond this point, the success likelihood further diminishes. 

The clear patterns and relationships observed between distance and shot outcomes strongly 

suggest that this feature will play a pivotal role in shaping our Expected Goals (xG) predictions 

in subsequent models. 

With the refined dataset in hand, the EDA progresses to the other features, beginning with an 

exploration of the remaining Categorical Variables. 



3.2 EDA on Categoricals 

Body Part: 

 

Figure 8: Shot Distribution and Conversion Rate by Body Part 

The distribution of shots by body part in Fig. 8 reveals that the strong foot significantly 

dominates the scene, accounting for 67% of all attempts. Following this, the weak foot 

contributes to 17% of the shots, while headers or other body parts make up the remainder, 

rounding to 15%. 

Diving into the conversion rates plot in Fig. 8, shots with the strong foot display a conversion 

rate of approximately 9.5%. Surprisingly, headers or shots taken with other parts of the body 

exhibit a slightly elevated conversion rate of around 12.5%. This could be a consequence of 

headers being more unpredictable for goalkeepers or originating from strategically 

advantageous set pieces.  

Notably, despite the common expectation, shots taken with the weak foot yield a higher 

conversion rate of 11%, even surpassing those executed with the strong foot. This 

counterintuitive trend might be rationalized by understanding player behavior. Players might 

be inclined to shoot with their strong foot even under unfavorable conditions. In contrast, 

opting for the weak foot might be a choice made only when they find themselves in more 

favorable or unguarded positions, leading to higher success rates. 

Foot: 

 

Figure 9: Shot Distribution and Conversion Rate by Foot 



The graph in Fig. 9 distinctly shows a higher frequency of shots taken using the right foot as 

compared to the left. This trend is in line with the general observation in football, where 

players predominantly have a right strong foot. Specifically, approximately 51% of shots are 

taken with the right foot, while 33% are executed with the left foot. 

Fig. 9 shows also comparable conversion rates for both feet, indicating that the foot's 

orientation isn't necessarily a decisive factor in converting a shot into a goal. The left foot, 

intriguingly, registers a slightly higher conversion rate, about 10%, compared to the right 

foot's 9.7%. 

A potential rationale behind this observation is consistent with our earlier findings about body 

parts. As the left foot is more commonly the weak foot among footballers, the data might 

suggest that players tend to attempt shots with their weak foot under more favorable 

conditions. This, in turn, leads to a marginally better conversion rate for shots taken with the 

left foot. 

Incorporating these findings, one can conclude that while the right foot is more commonly 

used for shooting, the success rate isn't heavily influenced by the foot's orientation. The subtle 

advantage for the left foot in terms of conversion rates further emphasizes the importance of 

situational context and decision-making in football. 

Opportunity: 

 

Figure 10: Shot Distribution and Conversion Rate by Opportunity 

As shown in Fig. 10 the data delineates a clear disparity in shot frequency based on their 

categorization as an 'Opportunity'. Specifically, a substantial majority, approximately 70%, of 

shots are tagged as opportunities. In contrast, the remaining 30% don't bear this classification. 

This signifies that a significant chunk of the shots taken during matches arise from situations 

deemed favorable. 



The conversion rates in Fig. 10 further accentuate the weight of the 'Opportunity' label. Shots 

that are labeled as opportunities have an impressive conversion rate of 14.5%. This rate is 

starkly higher than its counterpart, where shots not labeled as opportunities register a minimal 

conversion rate of just 0.20%. This vast chasm underscores the effectiveness and accuracy of 

the 'Opportunity' classification in determining the likelihood of a shot resulting in a goal. 

Given this pronounced difference in conversion rates it's evident that this variable will play a 

pivotal role in the predictive modeling. 

Counter Attack: 

 

Figure 11: Shot Distribution and Conversion Rate by Counter Attack 

Fig. 11 shows that counter-attack shots are relatively rare, representing just 5% of all shots. 

The remaining 95% of shots occur in other gameplay scenarios. This highlight the tactical 

nature of football, where organized attacks, rather than quick counters, dominate the play. 

Fig. 11 shows also how counter-attack shots convert at a higher rate, approximately 15%, 

compared to the 10% conversion rate for non-counter attack shots. This suggests that counter 

attacks often lead to clearer goal-scoring opportunities, possibly due to catching the defense 

off-guard. 

The data indicates that while counter attacks are infrequent, they are more potent in terms of 

goal-scoring potential. 

Having delved into the categorical variables, the exploration now shifts to the continuous 

features of the dataset. 

3.3 EDA on Continuous Variables 

We commence this phase by examining the 'Angle' feature, which represents the angle at 

which the shot is taken relative to the goal. 

Angle: 



 

Figure 12: KDE of Goals and Not Goals across Angle 

Two distinct distributions emerge from the kernel density plot in Fig. 12: one for shots that 

resulted in goals (green) and the other for shots that didn't (red). Several observations arise 

from this visual representation: 

The peak of the distributions for both goals and non-goals are quite close to each other, with 

goals peaking at 44.68 degrees and non-goals at 43.06 degrees. Shots taken around these 

angles are common, regardless of the outcome (goal or not). The closeness of the peaks 

indicates that the probability of scoring or not scoring from these angles is quite similar. 

Both distributions have very similar densities. The density stays up for angles up to around 60 

degrees indicating that these angles are common for taking shots. Going over this threshold 

the density gets lower and lower, this suggests that players might find more challenging to 

score or even attempt shots from such extreme angles. 

 

Figure 13: Conversion Rate by  Angle 

Fig. 13 shows that, across a wide range of angles, the conversion rate remains relatively 

consistent, fluctuating around the 10% mark. 

However, there are 2 notable exceptions on the intervals in the plot: 



• 80-85 degrees: The conversion rate drops significantly within this bin. However, it's 

crucial to interpret this with caution. Our earlier analysis demonstrated that the sample 

size for shots taken from such extremly big angles is quite limited. Therefore, the 

diminished conversion rate in this range might be more a reflection of the rarity of 

such events rather than a true indication of their improbability. The few cases present 

could disproportionately influence the observed rate. 

• 0-5 degrees: Another interesting deviation is observed in the 0-5 degree bin, where the 

conversion rate is notably lower, hovering around 5%. The density for this angle bin, 

although low, remains significant. This suggests that shots from such narrow angles 

might inherently be more challenging, possibly due to factors like limited goal view 

or intensified defensive pressures. 

From these observations, it's evident that the angle has a minimal impact on the likelihood of 

a shot resulting in a goal. 

Time: 

To gain a deeper understanding of the dynamics of the game with respect to shots taken, 

we've analyzed the 'Time' variable, representing the seconds elapsed since the start of each 

match period. For clarity, this data is presented in intervals of 5 minutes and is grouped by 

match period. 

 

Figure 14: Shot Distribution over Time in 5-minute intervals by Match Period 

The plot in Fig. 14 represents the frequencies of shots in our data at different intervals of the 

match and reveals different insights. 

The first half of the game shows an increasing trend in the number of shots taken. This trend 

persists until the end of regular time at 45 minutes. Post the 45-minute mark, there is a 

noticeable dip in the number of shots. This reduction can be attributed to the variability of 

extra time, which can sometimes be just a few minutes, thereby limiting opportunities for 

teams to shoot. 

The first 5 minutes appear to be a phase where teams are recalibrating, leading to fewer shot 

opportunities in both halves. 



In the second half the number of shots doesn't display a consistent trend. Instead, it fluctuates 

around an average of approximately 2500 shots until the conclusion of regular time. Unlike 

the first half, the initial segment of the second half's extra time maintains a higher number of 

shots. This suggests that the second half generally has a longer extra time duration, allowing 

for more shot opportunities. 

 

Figure 15: Conversion Rate over Time in 5-minute intervals by Match Period 

The analysis of the Time variable poceed in Fig. 15 with a histogram of conversion rates at 

the different intervals up to the 50th minute. The decision of this threshold was driven by the 

low number of shots observed after this minute. Relying on a limited number of observations 

could introduce bias, making the derived insights potentially less statistically significant. 

The conversion rate in the first half displays two noticeable peaks. An elevated conversion 

rate, surpassing 10%, is witnessed during the initial 5 minutes of the game. Another peak in 

conversion rate occurs midway through the first half, specifically in the [20-25) interval. For 

the remaining duration of the first half, the conversion rate predominantly remains below the 

10% threshold. 

Generally, the second half exhibits a superior conversion rate compared to the first half. The 

conversion rate consistently remains above 10%, with an exception noted in the [35,40) 

interval. The highest conversion rates in the second half are observed in the [25,30) interval 

and towards the end of the match, particularly in the intervals [40,45) and [45,50). 

This analysis offers a comprehensive view of how the likelihood of converting a shot into a 

goal varies over different intervals during a match. The fluctuation in conversion rates at 

different times could be influenced by multiple factors such as team strategies, player fatigue, 

or the urgency to score as the match nears its conclusion. 

3.4 EDA on Preceding Event 



Upon detailed analysis, it becomes evident that the immediate dynamics of a shot—its angle, 

distance, etc—have a more pronounced influence on the outcome than the preceding event. 

This underscores the intricate and multifaceted nature of football, a sport where the immediate 

context of a shot often dictates its success more than the buildup play. 

For the sake of clarity and to sustain reader engagement, the findings have been streamlined. 

Instead of delving into every nuance, the focus is shifted to highlight only the most salient and 

intriguing aspects discovered during the analysis. This approach ensures a concise yet 

informative exploration of the topic. 

Impact of Previous Event Type vs. Event Sub-Type: 

The relationship between the previous event type and the previous event sub-type is 

hierarchical. The sub-type is essentially a finer categorization within the broader event type. 

Because the sub-type inherently carries information about its parent event type, including both 

in a predictive model could introduce unnecessary redundancy. Thus, only one will be 

selected. 

 

Figure 16: Shot Distribution by Previous Event Type 

 



Figure 17: Shot Distribution by Previous Event Subtype 

An examination of the frequency distribution of various categories, as depicted in Fig. 16 for 

the previous event type and in Fig. 17 for the previous event sub-type, provides valuable 

insights into the granularity of the data and its potential impact on model performance. 

Observing Fig. 16, it's clear that while there is some variability in the frequency of different 

event types, categories maintain a significant presence in the dataset. Only three categories 

have frequencies below 1%, with the least frequent still accounting for 0.18% of the data. 

Given that the dataset encompasses over 40,000 records, even these less frequent categories 

are represented by a substantial number of instances. 

Contrastingly, the frequency distribution of event sub-types in Fig. 17 paints a different 

picture. More than half of the categories are represented in less than 1% of the shots. 

Alarmingly, several categories dip to extremely low frequencies, with the rarest ones 

appearing in less than 0.01% of the records. This implies that these categories are present in 

very few instances. 

Considering this evidence, the choice becomes evident. Opting for the broader categorization 

provided by the event type helps mitigate the risk of overfitting the model. The event type, 

being more balanced and less fragmented than the sub-type, is better suited to capture the 

overarching trends in the data without being unduly influenced by rare outliers or anomalies. 

 

Figure 18: Conversion Rate by Previous Event Type 

Fig. 18 illustrates the conversion rates based on the previous event type. Opting for this 

broader categorization over the more granular sub-types achieves the ideal balance: it provides 

valuable insights while minimizing the risk of overfitting. The varied conversion rates across 

different event types further attest to the significance of this choice in our analysis. 

Impact of Key Passes: 



An intriguing aspect discovered during the analysis pertains to the influence of a 'Key Pass' 

on shots. In football lexicon, a 'Key Pass' typically refers to a pass that has the potential to 

directly lead to a goal-scoring opportunity for the receiving player. It is a decisive and 

impactful pass that breaks through the opponent’s defense, creating a clear chance for the 

attacking team. Its presence or absence can be a potential indicator of the quality or context 

of the buildup play leading to the shot. 

 

Figure 19: Shot Distribution and Conversion Rate by Key Pass 

Fig. 19 provides insights into the frequency distribution and conversion rates associated with 

the presence of a Key Pass. At a glance, the statistics seem contrary to conventional football 

understanding: about 89% of shots weren't preceded by a Key Pass, while only around 11% 

had a Key Pass leading up to them. More confounding is the conversion rate: a mere 0.19% 

when a Key Pass is present versus a substantial 11% in its absence. 

These statistics lead to a fundamental observation about the dataset's nature. In football, it's 

common for significant passes leading to goals to be labeled as 'assists'. It's plausible that in 

the dataset, passes labeled as assists aren't concurrently tagged as key passes. This separation 

might be the reason for the notably low conversion rate following key passes: the truly 

impactful passes (those that lead to goals) might predominantly be categorized as assists, 

leaving the 'Key Pass' tag for passes that lead to shots but not necessarily goals. 

This observation suggests a possible inconsistency in the dataset. If passes labeled as assists 

are not also tagged as key passes, it might unintentionally give away the result of the shot. 

Essentially, using this feature could unintentionally "spoil" the outcome, leading to a model 

that is misleadingly accurate. 

Given this revelation and to ensure the integrity of subsequent analyses, the decision is clear: 

the 'Key Pass' variable will not be included in the modeling process. 

3.5 Associative Analysis of Predictors 



To fully understand the relationships within our dataset, it's essential to investigate how the 

different predictors interact. We'll begin by examining the correlation matrix for continuous 

variables, providing insight into their linear relationships.  

 

Figure 20: Correlation Matrix 

The correlation matrix depicted in Fig. 20 reveals no immediate causes for concern. 

Most of the correlations are minor, suggesting that there's no significant linear relationship 

between most pairs of continuous variables. 

The most pronounced correlation appears between the 'previous event angle' and 'previous 

event distance', registering at 0.45. While this is the highest value in the matrix, it's still not at 

a level that would typically raise alarm regarding multicollinearity or redundancy. 

To understand the relationships between categorical variables instead, two primary metrics 

are considered: 

• Cramér's V [10]: This statistic measures the strength of association between two 

categorical variables. Its values range from 0 to 1. A value closer to 0 suggests a weak 

association, while a value closer to 1 indicates a strong association. 

• P-values: This is a statistical metric that helps determine the significance of the 

observed association. Generally, a P-value below 0.05 is considered statistically 

significant, implying that the observed association is unlikely due to random chance. 



 

Figure 21: Associations Between Event Categorical Features 

In Fig 21, the associations between various categorical variables are laid out, as quantified by 

Cramér's V and P-values. The table captures a subset of the data — specifically, those 

associations that have a Cramér's V exceeding 0.01, representing the stronger relationships in 

our dataset. 

Across the board, the p-values are exceedingly low, which suggests that the associations 

shown in the table are statistically significant and not mere coincidences. 

The previous event type demonstrates relatively strong associations with two specific tags: 

'Won' and 'Accurate'. This is because they are the predominant tags associated with the most 

common categories of the previous event type — 'Pass' and 'Duel', respectively. 

Beyond the aforementioned strong associations, the table reveals a couple of moderate 

associations and several weaker ones.  

To conclude, the observed strong associations deserve careful consideration during model 

development. While fitting our predictive model, it will be crucial to evaluate its performance 

with and without these associated features to ascertain their individual and combined 

predictive powers. Nevertheless, based on the current analysis, there aren't any associations 

that raise immediate concerns about multicollinearity or the potential to inappropriately 

influence the model. 

4. Predictive Models 

After a thorough exploration of our data, we've gained a clear picture of its many aspects. 

Now, we're set to tackle the core of this study: building predictive models for Expected Goals. 



To ensure a robust evaluation of our models, the dataset was divided into a training set and a 

test set, using an 80-20 split. Such a division balances the need for ample training data while 

reserving a significant portion for unbiased model evaluation. 

The decision to abstain from resampling techniques was made consciously. The primary 

objective of this research is not merely to identify as many goals as possible, but rather to 

assign a meaningful metric that genuinely reflects the scoring potential of a given shot. In this 

context, resampling might distort the natural balance and frequencies of the data. By 

preserving the original distribution, the model is better aligned with real-world scenarios, 

ensuring that the xG metric offers a fair evaluation of a player's chance. 

4.1 Metrics 

To evaluate the performance of our predictive models, it's essential to choose the right metrics. 

For this study, we've selected three primary evaluation metrics: 

• ROC AUC Score [17]: The Receiver Operating Characteristic Area Under the 

Curve (ROC AUC) measures the model's ability to differentiate between the two 

classes. An AUC score of 1 indicates perfect predictive power, while a score of 0.5 

suggests that the model's predictions are no better than random guessing. It's robust 

against imbalanced datasets because it evaluates the model's performance across all 

possible thresholds. However, it might sometimes give an overly optimistic view of 

the model's performance, especially if one class (Goal in this case) is very rare. 

• Precision-Recall AUC [11]: Precision and Recall are two critical metrics for 

evaluating the performance of models, especially when dealing with imbalanced 

datasets. Precision measures the accuracy of the positive predictions, while Recall (or 

Sensitivity) measures the percentage of actual positives that were identified correctly. 

The Precision-Recall curve plots Recall on the x-axis and Precision on the y-axis for 

different thresholds. The area under this curve (AUC) gives us a single value that 

captures the overall performance of the model. In scenarios having a significant class 

imbalance like this, the Precision-Recall AUC often provides a more realistic 

evaluation of the model's performance compared to the ROC AUC. 

• Log Loss [18]: Quantifies the accuracy of a classifier by penalizing false 

classifications. Lower log loss indicates better predictive accuracy. 

Given that our predictive models aim to estimate a probability of the binary outcome 

(Goal vs. Not Goal), log loss is a proper metric as it directly evaluates the quality of 

these probability predictions. 



By employing these metrics, we aim to comprehensively evaluate the model's performance, 

ensuring that it's both robust and accurate in predicting Expected Goals. 

4.2 Models 

To predict Expected Goals, a selection of machine learning models was employed: 

1. Logistic Regression [12] 

2. Random Forest [13] 

3. Gradient Boosting Machine (GBM) [14] 

4. Support Vector Machines (SVM) [15] 

5. Neural Networks [16] 

Each model underwent meticulous fine-tuning for optimal performance. Hyperparameters 

were adjusted, and feature selection was applied when beneficial. The table in Fig. 22 provide 

a comparative analysis of their performance metrics, offering insights into their effectiveness 

for this dataset. 

 
Logistic 

Regression 
Random 
Forest 

GBM SVM 
Neural 

Networks 

ROC AUC Score 0.825 0.820 0.827 0.760 0.810 

Precision-Recall AUC 0.364 0.368 0.377 0.250 0.332 

Log Loss 0.261 0.262 0.259 0.290 0.273 

 

Figure 22: Models Performances 

The Gradient Boosting Machine (GBM) emerges as the standout model, excelling in all 

three metrics: with a ROC AUC Score of 0.827, a Precision-Recall AUC of 0.377, and a Log 

Loss of 0.259.  

Other models offer also competitive performances, closely trailing GBM. Support Vector 

Machines (SVM) instead have less impressive metrics, particularly its Precision-Recall AUC 

of 0.250, suggesting it struggles with the imbalanced nature of the dataset. 

Evaluating our best model, the GBM, the results are promising. The ROC AUC Score suggests 

a relatively strong discriminative power, The Precision-Recall AUC approaching 0.38 in an 

imbalanced dataset highlights its capability in capturing the Goal outcomes. The Log Loss of 

0.259 further attests to its accuracy in delivering probability estimations. 

Following the performance evaluation, we turn our attention to the calibration of our best-

performing model. 



 

Figure 23: Calibration and Histogram of Predicted xG 

The calibration plot in Fig. 23 offers a visual assessment of our model's predictions against 

actual outcomes. Impressively, for predictions of xG below 0.5 — which constitute the vast 

majority of our predictions — the GBM's calibration is nearly impeccable, closely aligning 

with the ideal calibration. As we shift to higher xG predictions, there's a slight deviation from 

the optimal calibration curve. Yet, given the limited instances of such high xG predictions 

shown in Fig. 23, this divergence is relatively minor, suggesting that the model's calibration 

remains robust across the spectrum of predictions. 

In our pursuit of understanding the underlying mechanisms of our best model feature 

importances are shown. 

 

Figure 24: Feature Importance Barplot 

The visual representation in Fig. 24 shows coefficents of the importance given by GBM to its 

top 10 most important features. Distance shows a clear dominance, its importance value 

exceeding 0.5 define its pivotal role in determining Expected Goals. Opportunity also stands 

out with a substantial importance score of over 0.1. These two features collectively play a 

considerable role in the model's decision-making process. 



All the remaining features have importance values below 0.1. This highlights the 

comparatively lesser impact they have in shaping the model's predictions. 

4.3 Benchmarking Against Literature 

In the subsequent table, we compare the performance of our models against those documented 

in academic papers [4], [5], [6], [7], [8], [9]. The metrics of comparison are the ROC AUC 

Score and the Log Loss. Regrettably, the models from these studies did not employ the 

Precision-Recall AUC, limiting our comparative analysis to the two metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Paper Model AUC Log Loss 

Eggels et al. (2016) [4] 

Logistic Regression 

Random Forest 

Gradient Boosting (adaboost) 

Neural Network 

0.697 

0.814 

0.670 

- 

- 

- 

- 

- 

Pardo (2020) [5] 

Logistic Regression 

Random Forest 

Gradient Boosting (xgboost) 

Neural Network 

- 

- 

- 

- 

0.256 

- 

0.254 

0.255 

Anzer and Bauer (2021) [6] 

Logistic Regression 

Random Forest 

Gradient Boosting 

Neural Network 

0.807 

0.794 

0.822 

- 

- 

- 

- 

- 

Haaren (2021) [7] 

Logistic Regression 

Random Forest 

Gradient Boosting 

Neural Network 

- 

- 

0.793 

- 

- 

- 

0.288 

- 

Cavus et al. (2021) [8] 

Logistic Regression 

Random Forest 

Gradient Boosting (catboost) 

Neural Network 

- 

0.975 

0.823 

- 

- 

0.173 

0.261 

- 

Mead J et al (2023) [9] 

Logistic Regression 

Random Forest 

Gradient Boosting (xgboost) 

Neural Network 

- 

- 

0.800 

- 

0.286 

0.290 

0.282 

0.283 

Our models 

Logistic Regression 

Random Forest 

Gradient Boosting 

Neural Network 

0.825 

0.820 

0.827 

0.810 

0.261 

0.262 

0.259 

0.273 

*In bold are highlighted the best metrics for each model 

Figure 25: Models Comparison with Literature 

The table in Fig. 25 provides a comparative snapshot of our models against those documented 

in a selection of prominent academic papers. Some initial observations from the table are: 



Among the six papers referenced, [4], [5], and [9] incorporate measures of player or team 

ability in their models. This introduces a potential bias, as we discussed at the outset of our 

thesis, especially when xG is used to evaluate player or team performances. 

On the contrary, papers [6], [7], and [8] avoid such potential pitfalls by not relying on 

measures of player and team ability. 

Best performing models: 

• Our GBM model stands out with top-tier performance, showing the highest scores in 

both AUC and Log Loss. 

• Our logistic regression model achieves the highest AUC, though it's slightly edged out 

in Log Loss by [5], which, as noted, incorporates player ability metrics. The unreported 

AUC for [5] is likely to be higher, given its superior Log Loss. 

• The best Random Forest model is presented by [8], excelling in both metrics. 

• For Neural Networks, our model again leads in AUC but is marginally outperformed 

in Log Loss by [5]. Given the Log Loss results, [5]'s AUC is presumably higher. 

A striking revelation is the performance of the Random Forest model by Cavus et al. [8]. It 

not only surpasses our models but also all the others, without the inclusion of player/team 

predictors. 

Our models have demonstrated strong performance, even surpassing some models that 

leverage player and team predictors. This underscores the efficacy of our approach and the 

quality of our dataset. 

The standout performance of the Random Forest model by Cavus et al. [8] is both impressive 

and puzzling. Their model relies on basic features, many of which overlap with ours, yet it 

achieved superior results. Despite our extensive feature engineering, their simpler approach 

delivered better benchmarks. The specifics of their model fitting process aren't detailed, 

making it challenging to pinpoint the exact reasons for its exceptional performance. 

5. Conclusion 

The realm of football analytics has witnessed the meteoric rise of the Expected Goals (xG) 

metric, offering a lens to evaluate and understand the game's dynamics beyond mere goal 

counts. Yet, a critical bottleneck has persisted. As outlined in the initial chapters, many extant 

xG models, in their quest for predictive accuracy, inadvertently introduce bias by 

incorporating player and team attributes. Such an approach, while possibly elevating 



prediction rates, undermines the xG's core value: offering an objective, unbiased measure of 

shot quality. When the xG metric is muddled with influences of who took the shot or which 

team they played for, its efficacy as a neutral evaluator wanes. 

Our research was galvanized by this very challenge. The aim was clear: to create an xG model 

rooted solely in situational features, excluding potentially biasing attributes. The results, as 

revealed in the subsequent chapters, have been both heartening and revelatory. We've not only 

demonstrated the viability of such an unbiased approach but, in many instances, our models 

have matched or even eclipsed the performance of their conventional, more biased 

counterparts. This accomplishment underscores the robustness of situational features in 

capturing the essence of shot quality, without the need for potentially confounding player or 

team metrics. 

What does this mean for football analytics? First and foremost, it reinforces the potential of 

xG as a transparent, impartial tool for player, team, and match assessments. Such an unbiased 

metric opens avenues for deeper, more nuanced analyses, allowing stakeholders to dissect 

performances without the shadow of inherent biases. Furthermore, by emphasizing the shot's 

situational context over individual attributes, the findings set a precedent for future research, 

nudging the football analytics community towards more bias-free model constructions. 

Imagine the profound implications: evaluations of players based not on their reputation, but 

on their ability to carve out genuine goal-scoring opportunities; assessments of teams that 

focus on the quality of chances they create or concede, rather than just the star power in their 

ranks. In essence, we're championing a paradigm shift, nudging football analytics towards a 

more objective, situational lens. 

As we march forward in the analytical age of sports, let this be our guiding light: to understand 

the game in its purest form, celebrating every nuance, every strategy, and every unrewarded 

hero. The Beautiful Game deserves nothing less. 
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