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ABSTRACT

Road crashes are one of the deadliest plagues of contemporary times as they cause

approximately 1.3 million deaths each year worldwide with enormous associated costs.

Both the World Health Organization and the United Nations have often demonstrated

their profound concern on the matter.

This paper presents a complete machine learning study of road accidents that took

place on urban roads belonging to the province of Rome (Italy) during 2021. The anal-

ysis is structured as a binary classification task trying to differentiate between accidents

presenting casualties (either injuries or deaths) and crashes with no casualties. The data

for the study was retrieved directly from the official website of the municipality of Rome

and included more than 20,000 distinct crashes. An extensive preprocessing was applied

to the data to make them usable for classification purposes in order to be able to point

out the most important risk factors in crashes.

The most relevant characteristics when predicting the severity of an accident were

highlighted as being: the presence of two-wheeled vehicles in the crash, the involve-

ment of pedestrians and the specific type of accident. The best model for predicting the

severity of a crash according to the AUC statistic was an eXtreme Gradient Boosting

Tree model with one hot encoding for categorical variables. The results of this study

were insightful and could be the base for further in depth multinomial analysis in order

to provide benefits to all road users and companies heavily involved in the matter (e.g.,

insurance companies, car manufacturers).
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1 INTRODUCTION

1.1 Road Accidents Worldwide

Road accidents cause approximately 1.3 million deaths each year and are the most common

cause of death among people aged between 5 and 29 years, with a cost of 3% of the Gross

Domestic Product of a country in most cases. The World Health Organization (WHO) states

that the countries with a low to middle income are the stage for more than 90% of the deaths

in traffic accidents and, in general, people from a lower economic status are more likely to

be involved in a road crash. Besides that, it is also shown that the majority of traffic deaths

are among vulnerable road users like pedestrians, cyclists and motorcyclists (WHO, 2022).

For all these reasons combined, the United Nations General Assembly has set the target of

halving the number of road casualties by 2030 requesting the full collaboration of the World

Health Organization and Regional Commission of the United Nations (UnitedNations, 2020).

1.2 Road Accidents in Italy

The situation in Italy is in line with the global scenario regarding road crashes with ISTAT

(National Institute for Statistics) publishing yearly reports on the topic. In 2021 ISTAT results

reported 2,875 road fatalities (of which 2,397 died within 24 hours from the accident and 478

in the following 2 to 30 days), 204,728 injured people and 151,875 total road accidents,

with a percentage increase compared to 2020 of 20.0%, 28.6% and 28.4% respectively. The

numbers still show a strong decrease when compared with the year 2019 with -9.4% victims,

-15.2% injured and -11.8% accidents overall. One of the few aspects that goes against this

decreasing trend is the case of accidents involving electric scooters which have seen a rapid

ascent in popularity (ISTAT, 2022). These results highlight the big role of the pandemic

lockdowns in artificially changing the data associated with road traffic, making them look

far better than they really are. In 2022, the first truly post-pandemic year, on the other hand,

ISTAT presents an almost complete return to pre-pandemic levels of deaths, injuries and

accidents, with a respective decrease compared to 2019 of -0.4%, -7.4% and -3.7% (ISTAT,
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2023). These findings confirm a very weak positive trend over time which was inflated by the

influence of COVID-19 restrictive measures on the amount of traffic.

1.3 Predicting Crash Severity

Reducing the amount of road accidents appears to be a titanic undertaking, for this reason

in later years a parallel approach has been explored. Instead of trying to limit the number of

crashes with its immense complexity, the new procedure aims at analysing all the available

data from road accidents to predict their severity. For instance, it is possible to identify

which factor is the most influential in predicting whether someone got injured or died in a

car accident. Various machine and statistical learning approaches have been applied to data

gathered all over the world with results varying slightly depending on the geographical and

cultural area analysed. A common issue for this type of studies is the lack of a proper data

management system or the scarcity of adequate data in the first place, which could hinder the

validity of the researches: this was highlighted for some south-eastern European countries

(Laiou et al., 2017).

1.4 Benefits for Society

A definitive breakthrough in accident severity prediction could benefit all the stakeholders

involved. First, it would benefit hospitals and emergency services helping them in optimiz-

ing their resources to provide adequate medical treatments to the most urgent patients in a

more efficient and rapid way. Secondly, it would benefit transportation and road planners in

optimizing their efforts to build an infrastructure that is conductive to a reduction of high-

risk accidents performing a cost benefit analysis on the expected severity of future accidents.

Lastly, it would benefit insurance companies to better predict customer associated risks and

fine tune premiums thanks to a more comprehensive economic analysis of accidents which

is strongly dependent on the severity of the accident (Iranitalab & Khattak, 2017). All these

consequences combined would have a great impact for road users which would be part of

safer infrastructure with better access to emergency and insurance services in the case of any
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unforeseen motor accident.

1.5 Why Rome

Rome is the capital city of Italy and its most populous city with over 2.7 million inhabitants,

with a comprehensive area of 1,208 square kilometres. The city is also widely known for its

impressive road system which includes around 8,000 kilometres of roads that develop around

the historical city centre in almost every possible direction. Rome is also famous around

the world for its dramatic traffic congestions that can cause road users delays of hours when

trying to get from a place to another in the city.

According to the 2022 INRIX Global Traffic Scorecard (Figure 1) Rome is the 13th city

worldwide when considering the number of hours lost in traffic congestions during peak

hours with 107 hours lost for each citizen and an average city centre traffic speed of 20.92

kilometres per hour (INRIX, 2022). Given all these, Rome seemed the perfect subject for this

study also thanks to its very diverse environment and heterogeneity of road types.
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Figure 1: Global Traffic Ranking (2022). Source: INRIX, 2022.

1.6 Purpose of This Paper

This paper sets out to perform a statistics and machine learning based analysis on car acci-

dents located in the municipality of Rome thanks to the data published on the site: https://dati.comune.roma.it/.

Figure 2 shows a depiction obtained from the data of all the traffic accidents included in the

paper, represented by red dots, superimposed with a map of the main roads of Rome.

7

https://dati.comune.roma.it/


Figure 2: Traffic accidents in Rome (2021). Source: Self-elaboration.

These datasets include all the accidents in which any kind of law enforcement authority

was involved except for the crashes that happened on the highway A90, also known as Grande

Raccordo Anulare.

The final aim of this research is to give a first insight in understanding which are the most

important factors in predicting the advent of any kind of casualty in crashes that happen in

the city of Rome to gain a better understanding of the dynamics involved and possibly set out

future research with more comprehensive data interlacing also with databases from hospitals

and clinics. The data used for this modelling experiment regards accidents happened through-
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out 2021, since the data for 2022 is to this day incomplete because of the maintenance of the

digital infrastructure of the local police. The proposed models will use as predictors features

gathered by the local authority on its arrival on the accident site to classify the accidents based

on the occurrence or the lack of any kind of casualty (either deaths or injuries).
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2 LITERATURE REVIEW

2.1 Variety of Studies

The field of severity prediction in car accidents has become more and more popular in recent

years with studies popping up from all over the world analysing almost every possible dif-

ferent aspect of the matter. For this reason, the studies are very different from one another.

Some of them explore one specific type of road accidents while others analyse a predeter-

mined geographical area. The various studies also differ in the way the analysis is carried

out: in some cases, a regression like approach is applied, while some other researchers have

preferred a classification task depending on the specific aim of the paper and on the amount

and type of data that were analysed.

This chapter will be focussed on a systematic review of the scientific literature concerning

the prediction and evaluation of the severity of car crashes. The goal is to get some insights

that could prove valuable for the analysis in this study.

2.2 Studies by Data Subjects

This section will focus on the review of various studies concerning specific characteristics of

accidents or precise geographical areas, analysing in depth the kind of data that was subjected

to scrutiny and the sources of such data. A concise synthesis of the results will be given

alongside an overview of the learning methods used. A more in-depth analysis of common

methodologies used for crash severity prediction will be given in section 2.3.

2.2.1 Crash-specific Analysis

Al Mamlook et al., 2020, explores in depth accidents in which elderly people were involved

to grasp which are the most influential factors in predicting a severe injury for people over

the age of 60. They used a database retrieved from the Office of Highway Safety Planning in

Michigan containing over 100,000 crashes involving elderly drivers. They used a Synthetic

Minority Oversampling Technique to balance the classes in their dataset and compared vari-
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ous classification models: Logistic Regression, Decision Trees, Light-GBM, Random Forest

and Naive Bayes Algorithm. The best model (Light-GBM) achieved outstanding results hav-

ing an accuracy of around 87%. Figure 3 highlights the most relevant predictors according to

the Light-GBM model: the age of the driver, the volume of traffic and the age of the car.

Figure 3: Feature importance according to Light-GBM. Source: Al Mamlook et al., 2020.

C. Lin et al., 2020, applies Random Forests and XGBoost models using both label encod-

ing and one hot encoding to explore which factors contribute the most to the severity of an

accident in which a driver aged between 15 and 20 years old is involved. They used a dataset

of approximately 9,000 crashes with young drivers involved which took place in Texas. The

results highlighted how the most important predictors of severity for young drivers are: un-

safe speed, failure to control speed and failure to yield right of way. Another interesting

finding pointed out in Figure 4 is that algorithms trained using one hot encoding perform

better than the ones that use a label encoding.
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Figure 4: Mean Absolutes Errors of the models. Source: C. Lin et al., 2020

Another interesting study for a particular category of accidents is Vajari et al., 2020,

which analysed over 7,500 road crashes involving motorcycles at intersections in the state of

Victoria, in Australia. A Multinomial Logit Model was used to perform a multilevel classi-

fication task dividing accidents in minor injuries, major injuries and fatal injuries. The most

relevant predictors of serious injuries were the age of the motorcyclist, the characteristics of

the intersection and the timing of the accident which reveals a particular relevance of crashes

taking place during morning rush hours and weekends. Another interesting finding of the

paper is that “it was observed that motorcycle crashes are about 3 times (RRR = 1/0.37) more

likely to result in fatal injuries at mid-night/early morning as compared to serious injuries.

Similarly, the results showed that the crashes occurring in morning rush hours are 1.37 times

(RRR = 1/0.73) and 3.3 (RRR = 1/0.30) more likely to result in fatal injuries as compared

to minor injuries and serious injuries respectively” (Vajari et al., 2020), where RRR stands

for Relative Risk Ratio which measures the influence of all independent predictors on the re-

sponse variable. M.-R. Lin and Kraus, 2008, also states how motorcycle users have a fatality

rate 30 times higher than car users.

The severity for accidents involving heavy trucks was analysed in Chang and Chien, 2013,

using a Classification and Regression Tree (CART) to build empirical connections between

crash factors and accident severity. A database of 1,620 accidents which have taken place

in the freeway system of Taiwan was analysed pointing out how drinking and driving, lack

of seatbelt use, the number of vehicles involved were the most important contributors to

severe or deadly injuries. Another study on the same matter is Hosseinzadeh et al., 2021,
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which analysed 8,390 crashes differentiating them into three types of accidents depending

on the number of vehicles involved and whether the truck driver was at fault or not. Using

both Support Vector Machine and Random Parameter Binary Logit models trained on the

three different categories of accidents (namely Multi-vehicle truck-involved crashes where

the truck driver is at fault, Multi-vehicle truck-involved crashes where the truck driver is

not at fault and Single-vehicle truck crashes), crashes were classified between fatal and non-

fatal. According to their conclusions, “Results reveal the differences between the models and

highlight the necessity of at-fault party classification” which poses the significant question of

how different types of accidents may very well have different risk factors and may require a

specialized approach.

Light Trucks rollovers were studied in Pillajo-Quijia et al., 2020, analysing data com-

ing from the combination of a database of crashes collected by the “Dirección General de

Tráfico” and a database of vehicle registrations to identify light trucks and access broader

information about them. The vehicles were subsequently classified in four categories de-

pending on their weight and a final dataset of approximately 9,000 accidents involving light

trucks implicated in rollover (RO) or run-of-runway (ROR) types of accidents. The chosen

methodology was to apply both RF and CART algorithms subsequently, exploiting the great

predicting performance of the RF to highlight the significant variables and the interpretability

of CART in order to clearly present results. Figure 5 presents the CART resulting from the

study for rollover crashes and highlights the use of seatbelt as the most important predictor

alongside physical and psychological conditions of the driver.
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Figure 5: Classification tree for RO collisions. Source: Pillajo-Quijia et al., 2020

Pedestrians may also be part of road accidents, and the consequences for them are often

very damaging since they are directly exposed to the forces involved in the impact (Mokhta-

rimousavi et al., 2020). Zajac and Ivan, 2003, analysed the cases of crashes involving motor

vehicles and crossing pedestrians in rural Connecticut since a greater percentage of country-

side accidents involving pedestrians results in fatalities. The study showed how the age of the

pedestrian as well as the type of vehicle involved and the general presence of alcohol in the

accident significantly impacted the severity of injuries suffered by its unwilling participants.

2.2.2 Geographical Analysis

Other studies on the matter are focussed on the analysis of the accidents in a particular geo-

graphical location without concentrating on any specific dynamic involved.

Chang and Wang, 2006, analysed a corpus of 12,604 accidents located in Taipei in 2001,

provided by the Taiwan Ministry of Transportation and Communications. The data available

was very diverse and concerned all aspects of the crash, from the age of the driver to the type

of collision and the circumstances of the event. A preliminary data selection was applied to

remove infrequent observations (e.g., snowy weather). A CART was used to avoid any pre-
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defined relationships between predictors and the target variable which could lead to biased

results. The results of the study validate many of the results achieved in crash-specific studies

presenting the type of vehicles involved as the most important and relevant predictor.

Lee et al., 2019, conducted a similar study regarding the city of Seoul with the particu-

larity of merging three different datasets to get more comprehensive results: one dataset on

road geometry, one dataset on accidents and the last one on weather. Decision Trees (DT),

Artificial Neural Networks (ANN) and Random Forests (RF) were applied to the data to val-

idate the reliability of machine learning based models for this kind of tasks. Figure 6 shows

how the results of the various models were in line with one another producing similar predic-

tions. The RF also highlighted the weather conditions and the road geometry as the two most

influential predictors.

Figure 6: Predicted Accident Levels for Each Model. Source: Lee et al., 2019

AlMamlook et al., 2019, based their research on a database of 271,563 traffic accidents

which took place on freeways in Michigan using data provided by the Office of Highway

Safety Planning of Michigan. The study was conducted under the KABCO framework using

SMOTE to create synthetic minority class observations. The classification methods used were

Logistic Regression (LR), RF, Naı̈ve Bayes (NB) and AdaBoost, with RF achieving the best

performance showing an Area Under the Curve (AUC) of 0.755 demonstrating a satisfactory

pattern recognition and prediction ability.

Another study was conducted by Evwiekpaefe and Umar, 2021, using the Waikato En-
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vironment for Knowledge Analysis (WEKA) on the accidents in Kaduna metropolis. Ap-

plying DT, K-Nearest Neighbours (KNN), J-Repeated Incremental Pruning (JRIP), NB and

Multi-layer Perceptron (MLP), KNN classifier demonstrates an outstanding superiority in

performance in this task.

2.3 Methodologies Applied in Previous Studies

This section will review the various techniques utilized for severity prediction. There are

various approaches to the task and the choice is influenced not only by the specific aim of

the researchers but also by type of data available for each single study. A common ground

for all studies is represented by categorical data representing most of the predictor variables

with very few datasets presenting a relevant number of continuous variables. As it has been

shown before, this outstanding prevalence has pushed many researchers to apply models that

are known to work best with categorical data (e.g., RF and NB).

2.3.1 The KBACO Framework

This kind of task possesses an implicit categorical independent variable since it is impossible

to evaluate the severity of an accident on a true continuous and objective scale because of the

immense variety of possible injuries and future complications. A common practice among

law enforcement users to evaluate the severity of an accident and partially circumvent this

problem is to use the KABCO scale. This scale has been developed by the National Safety

Council (NSC) in 1966 (Burdett et al., 2015) and exploits the intuitive ordinal properties of an

accident to create a framework in which each crash can be properly classified. The possible

levels on the KABCO scale are:

• K: Fatal Injury

• A: Incapacitating Injury

• B: Non-incapacitating Injury

• C: Possible Injury
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• O: Property-damage-only

Recent research in US pointed out how the KABCO is not ideal in determining injury

severity (Tarko et al., 2010). Tsui et al., 2009, found out also how only a very small percent-

age of the serious injuries reported by the Honk Hong police were confirmed as serious in

the hospital. This inefficiency could be due to overestimation or underestimation of injuries

by officers because of the lack of proper medical training. Burdett et al., 2015, states that

“Overestimations of KABCO assessments of injury severity were found when injuries with a

significant amount of bleeding were present. Conversely, underestimations of KABCO injury

severity ratings were found when occult (not initially apparent) injuries were incurred by the

crash victim”, which is a very plausible explanation of the phenomena. Despite this flaws

KABCO is still regarded as a satisfactory tool for differentiating severe crashes from modest

crashes.

2.3.2 The AIS-90 Framework

The Abbreviated Injury Scale (AIS) describes over 2000 injuries in 9 different body areas, and

it is to this day the most used medical injury scale in the world, widely adopted in Europe,

North America, Japan, Australia, and New Zeeland. The scale works by assigning each

injury a numerical score from 1, indicating a minor injury, to 6, indicating a potentially fatal

injury. When multiple lesions are present the Maximum AIS (MAIS) approach is applied,

synthetizing the overall condition of a patient with his most deadly trauma. For example,

if a patient has three injuries with an AIS score 1, 4 and 5 respectively, his comprehensive

MAIS score would be 5 (Stevenson et al., 2001). From past research it was established that

MAIS classification of injuries is unquestionably better than KABCO classification (Tarko

et al., 2010). Despite this, the KABCO classification is more prominent since MAIS data is

often available only if there is some kind of intertwining between crash datasets and medical

datasets which is usually not the case.
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2.3.3 Binomial Classification

Binomial classification is a classic data analysis task based on supervised learning. An algo-

rithm gets fed with a large number of observations which possess some kind of identifier that

associates them with a predefined class. In a more formal fashion, there is a series of data

points with the form (x, y) where x = x1, x2, . . . ., xk represents all of the dependent vari-

ables, also known as predictors, and y is equal to one among two possible classes. The aim

of the classification algorithm is to approximate a function f(x) = y which, given x without

any information on y, can make predictions on previously unseen observations MIT, 2018. In

practice, the algorithm starts with the training phase in which it analyses the characteristics

of the various pre-labelled datapoints with the aim of discovering trends and relationships

among the data. The algorithm is then used to make predictions on some new and unlabelled

data: these predictions are then compared with the actual labels of the new data and the per-

formance of the algorithm is extrapolated via some specialized metrics like the Area Under

the Curve (AUC).

The choice of this binary approach in crash severity prediction is often determined by

the lack of specific enough data available regarding the consequences of the accident; it may

also be chosen because of its simplicity and intuitiveness allowing also for a wider variety of

models to be applied. An example of this method is Hosseinzadeh et al., 2021, in which the

response variable was considered as a simple indicator of fatality of the accident, where Y=1

corresponded to a fatal accident and Y=0 to a non-fatal accident. Also Beshah et al., 2013,

proposed a similar approach using the presence of injuries as response variable, training its

algorithms using Y=1 in the presence of post-crash injuries and Y=0 if they were absent.

2.3.4 Multinomial Classification

Multinomial classification, also known as multiclass classification, is a variant of classifica-

tion that allows for the presence of more than two different classes in the response variable.

This kind of tasks can be very easily achievable with some models that can naturally be

extended to a number of response classes higher than two. The easily extendable models in-
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clude Decision Trees, Neural Networks, K-Nearest Neighbour, Naive Bayes classifiers, and

Support Vector Machines. Other models, on the other hand, may require some specific for-

mulation to be adapted to the new kind of task. For example, it may be necessary to divide

the multiclassification problem into various binary classification problems or to put a total or-

dinal scale on the various classes before predicting them (Mehra & Gupta, 2013). In order to

decompose a binary classification problem into many binary classifications the most widely

used approaches are the following.

The most intuitive method is One-Versus-All (OVA) in which each single binary classifi-

cation task tries to differentiate between one singular class label and all the others. If there are

K classes, there will also be K classifiers each trained having one specific class as positive

outcome and all the others as negative cases (Rifkin & Klautau, 2004).

The other more complex approach is comparing all classes in a pairwise fashion, com-

monly called All-Versus-All (AVA) method. Having K classes this procedure requires K(K−1)
2

different binary models to be trained. When predicting the class of a new observation this

latter will be fed to all learners and it will be assigned the class that receives the most votes

among the models (Hastie & Tibshirani, 1997).

Multinomial classification seems to fit the purposes of crash severity analysis perfectly,

given the fact that accidents can be intuitively and practically classified in more than two

classes according to the amount of harm they cause. This property is also apparent from the

intrinsic structure of the KABCO and AIS scales described above. Almost all of the studies on

the matter who had access to a data corpus that was detailed enough to differentiate between

more than two classes of accidents have chosen to do so.

Wang and Kim, 2019, is an example of the most basic way to apply multinomial clas-

sification, dividing their observations into three classes of accidents: property damage only

crashes, crashes with injuries and fatal crashes, representing 60.87%, 38.66% and 0.47% of

the observations respectively. A multinomial logit model and a RF were used in the study to

differentiate between the three classes with the latter achieving better overall results. Despite

the multinomial logit model being specifically designed to tackle multiclassification prob-

lems, it may be strongly affected by multicollinearity among the variables, and it may be less
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effective in understanding nonlinear trends in the data.

Tang et al., 2019, applied the same concepts but with a more comprehensive framework,

starting with a dataset including details on the injuries based on KABCO scale. The two

most serious degrees of the scales were merged due to their scarcity in the dataset: 285 A-

level injuries and 51 K-level injuries. The final response variable was divided into 4 levels:

no-injury, invisible injury, non-incapacitating injury, highest level injury. Figure 4 illustrates

the two-layer stacking framework applied by the study in which the algorithms of the first

layer, namely RF, AdaBoost and Gradient Boosting Decision Trees (GBDT), are trained and

then used to make predictions on the test set. Said predictions are subsequently fed into a

meta-classifier in the second layer; in this case a “Logistic Regression model is designed to

fuse the classifying results from the first layer through establishing a sigmoid function to

minimize the loss function by using the gradient decent algorithm” (Tang et al., 2019).

Figure 7: Two-layer framework used in Tang et al., 2019 . Source: Tang et al., 2019
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2.4 Synopsis

As anticipated, the topic of crash severity prediction has been widely explored by researchers

especially in recent years after the aforementioned declaration of intent by the United Nations

General Assembly. The topic was subject to several different approaches regarding both dif-

ferent learning models and different data subjects. The most common learning techniques

utilized were models which do not need particular assumptions on the starting dataset and

are simultaneously able to detect nonlinear patterns and relationships in the data. The most

prominent examples of these kind of models are RF, Boosting Models, KNN and SVM. The

factors that presented themselves as most influential in classifying accidents were factors

regarding the vehicles involved with particular attention to vulnerable road users (e.g., mo-

torcycles and pedestrians), factors regarding driver’s psychophysical state (e.g., age, alcohol

consumption, fatigue) and some factors related with the road type (e.g., speed limit). All of

these findings will be taken into account when defining the methodology for this study.
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3 METHODOLOGY

This chapter will be focussed on the theoretical description of the methodologies applied in

this study exploring all parts of the process.

3.1 Data Description

The data analysed in this study was collected from the official site of the municipality of

Rome: https://dati.comune.roma.it/.

The datasets are in Italian with many of the categorical variables having italian descrip-

tions. During the study, each time an analysed categorical predictor will present itself in

Italian a brief English explanation of the latter will be also included.

The original dataset was divided in 12 .csv files, each corresponding to a month of the

year, in which each row represented a particular person or vehicle involved in a crash. Table

1 presents the number of observations in each individual dataset.

Dataset # Observations

January 4,610

February 5,073

March 4,538

April 5,274

May 6,467

June 6,514

July 6,392

August 4,468

September 6,691

October 7,770

November 7,848

December 7,443

Table 1: Number of observations in each dataset. Source: Self-Elaboration
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All of the datasets combined generated a corpus of 73,088 observations spanning through-

out all of 2021. In order to understand how data processing will be applied in future sections

to reach a situation in which each entry of the dataset is a different crash, it is important to

understand how the original data was composed. For this reason, a brief description of each

of the variables contained in the initial dataset will be presented here.

• Protocollo: A numeric variable which represents the protocol number assigned by law

enforcement authorities to each single road crash to distinguish them from each other.

It will be fundamental in order to complete the transformation of the dataset into a

one-crash-per-row style dataset.

• Gruppo: A grouping of accidents which was later discarded because of its inconsis-

tency.

• DataOraIncidente: A timestamp of the accident precise to the minutes for most acci-

dents. The cases in which the timing was unclear retained only the date.

• Localizzazione1: A categorical variable indicating the type of road in which the crash

took place.

• STRADA1: A variable presenting the names of each street in which accidents took

place. There are 4,844 different streets in the comprehensive dataset.

• Localizzazione2, STRADA2, Strada02, Chilometrica, DaSpecificare: All of them

give additional details on the precise location of the accident in order to create an

almost complete address. Most of these auxiliary variables are left empty or present

very confused entries and were therefore left outside of the analysis.

• NaturaIncidente: A categorical variable indicating the type of accident occurred (e.g.,

Lateral Crash Between Moving Vehicles). It has 22 distinct values, some of which with

very few occurrences.
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• particolaritastrade: A categorical variable representing the particular road type in

which the accident took place (e.g., Roundabout). It possesses 21 different levels with

the same degree of sparsity as the previous variable.

• TipoStrada: A categorical variable indicating the way in which the road lanes are

organized (e.g., double carriageway road), with 5 different categories.

• FondoStradale: Represents the state of the road surface (e.g., wet), with 10 unique

levels.

• Pavimentazione: Represents the material composing the road surface (e.g, asphalt),

with 11 distinct values.

• Segnaletica: Represents the type of signage present at the location of the accident (e.g.,

vertical signage), with 5 different levels.

• CondizioneAtmosferica: Indicates the weather conditions at the time of the crash

(e.g., raining), with 8 unique levels.

• Traffico: Gives an overview of the traffic situation dividing accidents into low, average

and intense traffic scenarios.

• Visibilita: Indicates the visibility on the site of the crash differentiating between insuf-

ficient, sufficient and good visibility.

• Illuminazione: A variable which was completely composed of not Assigned (NA)

values but should have probably indicated the amount of lighting on the road.

• NUM FERITI, NUM RISERVATA, NUM MORTI, NUM ILLESI: They are four

numerical variables indicating respectively: the number of injured people, the number

of people with private medical records, the number of deceased people and the number

of unharmed people. These four variables will be essential in constituting the response

variable for this study.

• Longitude & Latitude: indicating precisely the location of the accidents.
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• Confermato: A binary variable indicating whether the crash has been confirmed by

law enforcers or not, taking values of -1 for a confirmed accident and 0 for a not con-

firmed one.

• Progressivo: A numerical variable which resets for each different protocol and in-

dicates as a progressively increasing number every different vehicle involved in the

accident. For example, a vehicle having four people inside will have 4 rows in the

dataset with all of them having the same protocol and same progressive number, while

a vehicle with no people inside will have only one row with one unique progressive

number.

• TipoVeicolo: A categorical variable representing the type of vehicles (e.g., car, truck),

with 46 distinct levels.

• StatoVeicolo: Representing the state of the vehicles in the accident, differentiating

between moving, parked and fled vehicles.

• TipoPersona: Representing the role of each person in the accident differentiating

among drivers, passengers and pedestrians.

• Sesso: A binary variable indicating the sex of the individuals involved in the accident.

• TipoLesione: A categorical variable presenting a very vague classification of the in-

juries resulting from the accident. It is incompatible with both the KABCO and the

AIS-90 scales therefore it was not considered in the final study.

• Deceduto & DecedutoDopo: The first one is a binary variable indicating whether a

person is deceased or not, while the second is a categorical variable indicating the time

elapsed between the crash and the death.

• CinturaCascoUtilizzato: A categorical variable indicating whether the seat belt or the

helmet were worn during the accident. It could have been a very interesting variable

but it takes values of ”Not Verified” in 53.37% of the cases and NA in 42.51% of the

cases, limiting useful values at 4.12% of the comprehensive number of observations.
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• Airbag: Reflecting whether the Airbag went off during the crash, however presenting

too many NA values just like in the case of the previous variable.

The dataset presents overall a non-trivial amount of NA entries, representing 15.06% of

the total number of cells in the data-frame. This factor may be due to various reasons spanning

from poor dataset maintenance by the data controllers to the very peculiar structure of the

dataset itself. Each row of the dataset, in fact, may represent a different type of participant in

the accident, for example a single row may resemble an occupant of a moving car or a parked

car that was involved in the accident or maybe even a pedestrian. Each of these different

categories has diverse characteristics and therefore generates NA entries in different columns

(e.g., a pedestrian would generate a NA in the StatoVeicolo column).

3.2 Data Pre-Processing

Given the findings of Section 3.1, it is evident how a correct handling of the data pre-

processing is of paramount importance for the success of the subsequent modelling phase.

The key idea for this task was that the final dataset needed each single row to present com-

prehensive information on a specific crash in order to be able to correctly perform the anal-

ysis. To pursue this objective, an in depth exploration of the possible cases in the dataset

was necessary and subsequently required a vast amount of Feature Engineering in order to

generate variables capable of synthesizing the characteristics of each accident. Due to the

strongly categorical nature of the data, an intensive Binning procedure has been applied on

some variables in order to produce more relevant and better represented categories that will

be much more useful in the later analysis.

3.2.1 Feature Engineering (FE)

Duboue, 2020, defines Feature Engineering as ”the process of representing a problem do-

main to make it amenable for learning techniques. This process involves the initial discovery

of features and their stepwise improvement based on domain knowledge and the observed

performance of a given ML algorithm over specific training data”.
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In a more practical way, FE requires a deep observation of the raw data to then extract the

most relevant information choosing a proper way to represent them for the expected recipi-

ents, which in the case of this study are classification algorithms. A very typical example of

FE in data analysis is creating ratios or interaction factors between some of the pre-existent

variables in order to capture the available information to a greater extent.

A widely known case of feature engineering is the Body Mass Index (BMI), whose for-

mula is shown in equation 1 with w indicating the weight in kilograms and h the height in

meters. The index takes as input the raw data available from the body (i.e., weight and height)

and creates a metric that is more relevant and intuitive when analysing risk factors of some

pathologies.

BMI =
w

h2
(1)

Another important aspect of FE is variable encoding which is especially relevant in the

case of categorical predictors which, as previously mentioned, correspond to the vast majority

of the available data for this study. The chosen approach followed the results coming from

C. Lin et al., 2020, which indicated One-Hot encoding as the best approach for crash severity

prediction resulting in a smaller Mean Absolute Error in their study.

One-Hot Encoding is an encoding process based on the subdivision of each discrete vari-

able in a number n of different binary predictors where n is equal to the number of possible

different realizations of the categorical predictor. Each of the created columns is a sparse

vector and indicates whether the initial variable presented a particular level. This process

leads to high dimensionality but it is widely used because of its simplicity and effectiveness

(Bagui et al., 2021). Figure 8 shows a very basic example of One-Hot encoding.
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Figure 8: Visualization of One-Hot Encoding. Source: Self-Elaboration

3.2.2 Binning

The term Binning commonly refers to the data pre-processing operation of converting a con-

tinuos or semi-continuos variable into a categorical variable (Zeng, 2014). This operation

is normally carried out by establishing a series of bins in which each observation can fit in,

the number of available bins can vary depending on the granularity needed for each specific

variable. This operation makes it so that values that are poorly represented in the data (e.g.,

extreme values) can be better included in the analysis without the need to remove them cre-

ating more significant and numerous classes. This is done also in the case of variables for

which a very subtle change in value may not have a significant effect (e.g, the age of cus-

tomers). Figure 9 shows a visualization of a classic binning example in which a normally

distributed variable ranging from 1 to 100 is divided into five equal-size bins.

In this paper the binning approach has been applied in a slightly different fashion, since

the dataset is composed of mostly categorical variables and some of them (e.g., NaturaInci-

dente, particolaritastrade) have many levels, some of which are very poorly represented in

the data having just a couple of occurrences. The binning technique has therefore been ap-

plied to this type of variables in order to reduce the number of different categories, grouping

together the ones that were either intuitively and logically similar or had similar effects on

the response variable.
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Figure 9: Visualization of Binning for a Continuos Variable. Source: Self-Elaboration

3.3 Applied Models

This section presents a brief theoretical explanation of all of the models employed in this

study. All of the learners were trained and validated using the caret framework for R. The

analysis was structured as a binomial classification task in which the models had to classify

accidents as Casualty in the case of injured or dead people and No casualty otherwise.

3.3.1 K Nearest Neighbours (KNN)

As stated in Guo et al., 2003, KNN is a very intuitive yet often effective model for classi-

fication, based on the assumption that similar observations will reside close to one another

according to whichever distance metric is chosen. In order to classify a new data-point, its

k nearest neighbours are taken into consideration and the majority vote is considered as the

outcome; it is also possible to produce probability predictions based on the ratios of votes

among neighbours. As an obvious consequence of the process of the KNN algorithm, which
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is intrinsically distance based, the model has a strong sensitivity to the magnitude of involved

variables, making scaling numerical predictors crucial for valid results. KNN is a lazy learner,

meaning that it defers its learning process to the prediction phase, resulting in very long clas-

sification times for new observations. The one and only hyper-parameter for KNN is k, which

indicates how many neighbours to take into account, influencing heavily the performances of

the model.

3.3.2 Classification and Regression Trees (CART)

Classification and Regression Trees are the base for all tree based models and work by recur-

sively splitting the data in the attempt of minimizing some defined error metric (Loh, 2011).

CART models stop creating splits when a certain stopping criteria is met: the most common

method used for this purpose is to set a minimum number of observations in each leaf node.

The splits applied by a CART are not random and depend normally on an impurity measure

based on some variation of misclassification cost; their quality is measured by the decrease of

said impurity metric that occurs between parent and child node: the greater the decrease the

better the split. In particular, for CART models trained within the caret framework, the im-

purity of the splits is measured according to the Gini Index developed by the Italian Corrado

Gini. Equation 2 shows the typical formulation of the Gini Index for decision trees, which

represents basically the total variance between the various available classes. The lower the

index the purer the split is, its lower-bound is 0 which means that all observations in a certain

region (Rm) belong to the same class. The highest value possible, on the other hand, is 1− 1
k
,

where k is the number of possible classes, occurring when classes are uniformly distributed

in the analysed region.

G(Rm) =
∑
k

p̂mk(1− p̂mk) = 1−
∑
k

p̂2mk (2)

After the CART tree has been built with the proper splits, a pruning protocol is normally

applied in order to avoid over-fitting to the training data. A very deep tree normally presents

an high degree of variance because of the few observations in each leaf while shallow trees
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present higher bias since their structure is very rigid.

One of the greatest feats of CART and all tree-based models in general is that they handle

well categorical variables even without encoding and can easily detect non-linear patterns.

CART however fail in detecting simple linear patterns.

3.3.3 Random Forest (RF)

Howard and Bowles, 2012, stated “ensembles of decision trees—often known as “random

forests”—have been the most successful general-purpose algorithm in modern times”.

RF were ideated by Breiman in the early years of the twenty-first century (Breiman,

2001), but in order to understand their functionality it is necessary to start from their closely

related ancestor: Bagging Trees (BT).

Bagging trees were ideated in order to fight the high variance that is normally attributed

to CART, approaching this task in the most intuitive way: by taking the average of the pre-

dictions of various CART. In order to do this, a large number of trees needed to be trained

on the data belonging to the same population, for this purpose bootstrap resampling was ap-

plied. Equation 3 shows the formula for the prediction of a BT system, basically taking the

average of the prediction of various learners f̂n that are trained on a number N of different

bootstrapped samples. The biggest weakness of this approach resides in the apparent corre-

lation between the various trees which are trained on semi-different data and use all the same

predictors.

f̂bag(X) =
1

N

N∑
n=1

f̂n(X) (3)

RF mitigate this correlation problem by considering only a subsample of the total number

of available predictors in each different tree (Biau & Scornet, 2016). In the caret framework

this parameter is called mtry and normally considering m total independent variables it is

necessary to include either
√
m or m

3
in each tree. The biggest concern with RF is normally

their block-box nature which makes rigorous analysis of the model very intricate. At the

same time, despite their notable computational complexity, RF are quite simple to optimize.
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Another interesting feature is the built-in variable importance ranking which is obtained by

calculating the average decrease in impurity for trees that include a specific predictor.

3.3.4 eXtreme Gradient Boosting Trees (XGBtree)

XGBtree is a tree boosting model, meaning that the base concept behind it is to ensemble

numerous trees in order to get more stable and accurate predictions capturing even com-

plex non-linear relations. It is in principle very similar to the RF approach (also based on

ensembling) with a crucial difference in the training method. While RF trains the trees inde-

pendently in a parallel manner, boosting algorithms work by training learners in an additive

fashion, one after the other. Each learner is individually considered weak but their cumula-

tive effort should create a comprehensively strong learner represented by the entirety of the

boosted model. Each tree is in fact trained on a manipulation of the residuals of the previous

one, basically trying to correct the errors of its predecessor. In simple terms, boosting models

try to tackle a machine learning problem by learning its intricacies step by step.

XGBtree is a very popular model and has been widely known for performing very well

in both regression and classification tasks. It is based on Gradient boosting which attempts

at optimizing an objective function through a Gradient descent approach. Equation 4 shows

the typical formulation of an objective function, composed by L(θ) representing the training

loss, which is an indicator of goodness of fit, and Ω(θ) representing the regularization term

which prevents over-fitting.

obj(θ) = L(θ) + Ω(θ) (4)

XGB in particular has various characteristics that make it so effective: it enables users to

define custom loss functions for specific tasks while automatically handling the regularization

of the model facilitating generalization to new data. It also comes with the capability of

estimating feature importance and it is very well optimized for parallel processing, speeding

up the training process for very large datasets.

When training an XGBtree model with the caret framework, the user has access to mul-
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tiple hyper-parameters which can be cross-validated and tailored to each specific task. Avail-

able parameters are:

• nrounds: number of boosting iterations

• max depth: maximum depth of each weak learner

• eta: shrinkage factor determining also the learning rate

• gamma: minimum loss reduction between learners

• colsample bytree: ratio of columns used in each tree

• min child weight: minimum weight of a leaf node (if said node has a inferior weight

no further splitting will be applied)

• subsample: ratio of the available data used for each tree

Each of these parameters is important in some capacity when trying to get the best avail-

able model, for this reason all of their combinations should be cross-validated at the same

time. This validation process of course elongates running times in a tremendous manner,

even considering the general efficiency of the XGBtree algorithm. As a consequence, in the

context of this study the hyper-parameters for this model have been cross-validated in pairs,

which is not as optimal but enormously less computationally expensive and time demanding.

3.4 Validation

K-fold Cross Validation (CV) was used as validation mechanism for every analysis in this

paper. The CV approach requires the training dataset to be divided into k independent folds

in which the ratios of classes remain similar to the original dataset (stratified sampling with

no replacement). Each algorithm is then trained on k − 1 folds and attempts at predicting on

the last available fold. This process is then repeated until the same algorithm has been trained

on all the k possible combinations of folds. Performance measures are then calculated each

time thanks to the usage of the unused fold as pseudo test set and lastly a final CV score
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is calculated taking the average performance over all combinations. This method allows the

user to better approximate what will be the performance of each algorithm on new unseen data

since it reduces dramatically the bias in the validation set. Figure 10 shows a visualization

of a 5-fold Cross Validation. In this paper a 10-fold approach was chosen because of it’s

increased precision.

Figure 10: Visualization of 5-fold CV. Source: scikit-learn.org, n.d.

3.5 Performance Metrics

In order to measure the performances of the various models, the chosen performance metric

was the Area Under the Curve (AUC) associated with the Receiver Operating Characteristics

(ROC) curve.

In the case of a binary classification problem, the ROC curve plots Sensitivity ( TP
TP+FN

)

against 1-Specificity (1 − TN
TN+FP

) by moving the classification threshold between the two

extremes of the classification boundaries. The AUC is simply the area that lies under the

ROC curve, bounded from above to 1 and from below to 0; it has been described as ”closely
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related to the ranking quality of the classification”(Cortes & Mohri, 2003). In the case of

a random classifier, the ROC curve will be a straight line connecting the origin to the point

(1, 1), with an AUC of exactly 0.5. Figure 11 shows a sample ROC curve in blue and its AUC

of 0.795, highlighting also the ROC for a random classification in red.

Figure 11: A Sample ROC curve and its AUC. Source: Self-Elaboration

The AUC method was chosen since it gives a more comprehensive view on classification

models compared to confusion matrices and standard metrics due to its manipulation of the

threshold and eye-catching nature.
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4 ANALYSIS

In this chapter all of the procedures applied at all steps of the analysis will be presented and

discussed in depth with a final presentation of the numerical results of the modelling phase.

4.1 Data Pre-Processing

As remarked in the previous section of this paper, data pre-processing is essential for any data

analysis task. The data available for this study are a perfect example of data that would be

nearly impossible to analyse without some specialized processing.

The aim of this phase is to get the data from their original form, which was extensively

presented in Section 3.1, to a more manageable and compact structure which will facilitate

the modelling process. The finalized dataset will be composed of one single observation for

each distinct accident including some new engineered features that try to capture the most

relevant peculiarities of each single case.

4.1.1 Data Loading and Handling of Missing Values

The first step towards the aforementioned goal was to load the 12 datasets and create a new

categorical variable month in each of them representing the month in which the accident took

place in order to be able keep track of the origin of each observation.

After this preliminary step, the datasets were merged and all of the non-confirmed crashes

were discarded according to the Confermato variable leaving 69,260 confirmed cases. The

handling of missing values was performed on variables that urgently needed it; for example

the variable regarding the sex of the people involved presented various missing values in the

cases in which a row represented a parked car, which of course has no sex attribute. In this

case the value of ND was assigned to fix the problem. The structure of the dataset in which

each row does not always represent the same type of entity created various situations in which

similar problems occurred(e.g., TipoPersona and TipoVeicolo). All of them were fixed in a

similar fashion, by inserting a new variable level which avoids missing values and makes the

dataset more coherent.
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The next important step was to delete the variables that presented an abnormal percentage

of NA due to their excessively specific nature or lack of information. Table 2 shows the

variables that were removed in this step and their associated percentage of NA values.

Variable Name Percentage of NA values

STRADA2 64.08%

Strada02 22.45%

Chilometrica 58.37%

DaSpecificare 77.55%

Illuminazione 100%

DecedutoDopo 82.33%

CinturaCascoUtilizzato 40.91%

Airbag 56.56%

Table 2: Variables with notable NA percentages. Source: Self-Elaboration

Some other variables were also removed due to other specific reasons:

• STRADA 1 & Localizzazione1: indicated the name of the street in which the accident

took place which is not beneficial for this particular study case.

• TipoLesione: did not present sufficient information on the injuries to transform the

study in a multinomial classification problem and was therefore useless, being basically

a duplicate of the response variable.

• Deceduto: for the purpose of this study the variable did not give any additional infor-

mation compared to the NUM MORTI variable.

The last step in this phase is to remove all of the accidents which presented any remaining

NA values. Only 53 entities were removed from the dataset in this last process which is an

infinitesimal portion of the initial number of rows in the dataset (0.08%) testifying the efficacy

of the missing value handling performed.
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4.1.2 Data Transformation and FE

The actual transformation of the dataset in the desired one-row-per-accident form will take

place in this section. In order perform this task, a dataset specific iterative algorithm has been

designed. The algorithm works by extracting a unique vector containing all of the protocols

in the dataset: as explained in Section 3.1 the Protocollo variable acts as unique identifier of

each distinct accident. Thanks to this new vector we can scan the dataset in an accident by

accident fashion, analysing at each iteration all of the data-entries belonging to a single crash,

regardless of what they represent (e.g., pedestrian, parked car, driver, etc.).

This approach allows for an in depth analysis of each case and for the creation of new

variables that will summarize the most important characteristics of the accidents that would

be otherwise lost when converting multiple rows into a single one. During this iterative

process almost all of the FE variables are created with the aid of Regular Expression for

string matching. The generated predictors in this section revolve around characteristics of the

vehicles and people involved in the accidents and are described in the following list:

• nummotoinvolved: a numerical predictor indicating how many moving two-wheeled

vehicles were involved in the crash. This aspect was deemed important also due to

the results of previous research on the matter (M.-R. Lin & Kraus, 2008; Vajari et al.,

2020).

• numheavyinvolved: a numerical predictor indicating how many moving heavy vehi-

cles(e.g., buses, trucks, etc.) were involved in each crash.

• numcarinvolved: a numerical predictor indicating how many moving cars were in-

volved in each crash.

• NumMalesInvolved: a numerical predictor indicating how many males were involved

in each crash.

• NumFemalesInvolved: a numerical predictor indicating how many females were in-

volved in each crash.
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• NumNDInvolved: a numerical predictor indicating how many people with unknown

sex were involved in each crash.

• maledriver: a boolean variable indicating whether one ore more of the drivers involved

in the accident were males.

• occupancyindex: a continuos variable that was created with the aim of representing

the number of people for each moving vehicle in the accident. Equation 5 shows the

formula used to create this variable, #MovingVehicles is represented by the sum of the

nummotoinvolved, numheavyinvolved and numcarinvolved variables.

#MalesInvolved+#FemalesInvolved+#NDInvolved

#MovingV ehicles
(5)

• timeofday: a categorical variable deriving from the DataOraIncidente predictor. The

resulting variable has 4 levels which were split based on the hour of the accident ac-

cording to Table 3. This binning approach was applied to keep the most relevant in-

formation contained in the original predictor while avoiding excessive details. Some

accidents which presented incoherent timestamps were removed in the process.

hour range timeofday value

0 ≤ hr < 6 night

6 ≤ hr < 12 morning

12 ≤ hr < 18 afternoon

hr ≥ 18 evening

Table 3: Splits applied in the timeofday variable. Source: Self-Elaboration

• Casualties: The binary response variable of this analysis, taking values of ”No casualty”

in the cases in which nobody was injured or died and ”Casualty” otherwise.

After the transformation of the dataset we got a comprehensive data corpus of 26,243

different accidents.
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4.1.3 Data Cleaning

The next step was to remove accidents that presented people with unknown medical records

and accidents that did not take place on urban roads due to their excessive scarcity.

Binning was subsequently applied on some specific categorical variables:

• FondoStradale: presented 10 levels with one indicating dry road surface (the most

prevalent with 22,101 occurrences) and the other 9 all indicating some variations of

a slippery or wet surface. For this reason the variable was binned to create a binary

predictor with levels ”Asciutto” (dry) and ”Scivoloso” (slippery). Figure 12 shows a

visualization of the new binned variable.

Figure 12: The binned Fondostradale variable. Source: Self-Elaboration

• Pavimentazione: presented 11 levels of which 10 them represented some very pecu-

liar imperfection or characteristic of the road surface with a very low number of oc-

currences (cumulatively 939): for this reason the variable was binned in a similar way

as in the case of FondoStradale. Figure 13 presents the bar-plot of the two remaining

levels after binning which are Asfaltata (”paved”) and Con problematiche (”presenting

problems”).
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Figure 13: The binned Pavimentazione variable. Source: Self-Elaboration

• NaturaIncidente: presented 21 levels with some of them representing very similar ac-

cident dynamics; for example ”moving vehicle against parked vehicle” and ”moving

vehicle against parked vehicles” are two distinct levels in the original data. The binning

approach for this variable was aimed at reducing the total number of levels grouping

together these very similar levels and also grouping all accidents in which the vehicle

did not hit anything during the accident and was simply damaged by road character-

istics or exited the road by accident. The final version of this variable presented 14

levels.

The last step in cleaning the data was to eliminate all observations that presented some

very peculiar labels for some variables that were too sparse to be used in the modelling phase

and to remove also all of the variables that did not make any sense in this new organization of

the data (i.e., TipoVeicolo, Progressivo, StatoVeicolo, NUM RISERVATA, DataOraIncidente,

Localizzazione1, NUM MORTI, NUM FERITI,NUM ILLESI, Gruppo, Sesso, TipoPersona).

4.1.4 Data Summary

Table 4 shows a brief schematic summary of the data corpus after Pre-Processing operations.
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Variable Symbol Type Description

Protocol Protocollo Numerical Unique identifier of crashes

Type of accident NaturaIncidente Categorical 1, Collisione contro auto ferme; 2, Collisione contro auto in arresto;

3, Collisione contro auto in sosta; 4, Collisione contro oggetto fisso;

5, Incidente a solo; 6, Investimento di pedone; 7, Scontro frontale fra

veicoli in marcia; 8, Scontro frontale/laterale DX fra veicoli in marcia;

9, Scontro frontale/laterale SX fra veicoli in marcia; 10, Scontro laterale

fra veicoli in marcia; 11, Tamponamento; 12, Tamponamento Multiplo;

13, Veicolo in marcia che urta buche nella carreggiata; 14, Veicolo in

marcia contro ostacolo accidentale.

Road characteristic particolaritastrade Categorical 1, Curva a visuale libera; 2, Curva senza visuale libera; 3, Incrocio; 4,

Instersezione non regolata/non segnalata; 5, Intersezione semaforizzata;

6, Intersezione stradale segnalata; 7, Rettilineo; 8, Rotatoria

Type of runway TipoStrada Categorical 1, Una carreggiata a senso unico di marcia; 2, Una carreggiata a doppio

senso; 3, Due carreggiate; 4, Più di due carreggiate

Road condition FondoStradale Categorical 1, Asciutto; 2, Scivoloso

Road pavement Pavimentazione Categorical 1, Asfaltata; 2, Con problematiche

Signage Segnaletica Categorical 1, Assente; 2, Orizzontale; 3, Verticale; 4, Verticale ed orizzontale

Weather CondizioneAtmosferica Categorical 1, Sereno; 2, Nuvoloso; 3, Pioggia in atto

Traffic Traffico Categorical 1, Scarso; 2, Normale; 3, Intenso

Visibility Visibilita Categorical 1, Insufficente; 2, Sufficiente; 3, Buona

Longitude Longitude Numerical Min:8.539; 1stQu.:12.45; Median:12.494; Mean:12.496; 3rdQu.:12.55;

Max:13.704

Latitude Latitude Numerical Min:38.10; 1stQu.:41.86; Median:41.89; Mean:41.89; 3rdQu.:41.92;

Max:45.70

Month month Categorical 1, Jan; 2, Feb; (...) 12, Dec

Number of two-wheeled nummotoinvolved Numerical Min:0; 1stQu.:0; Median:0; Mean:0.2798; 3rdQu.:1; Max:3

Number of heavy v. numheavyinvolved Numerical Min:0; 1stQu.:0; Median:0; Mean:0.05443; 3rdQu.:0; Max:2

Number of cars numcarinvolved Numerical Min:0; 1stQu.:1; Median:1; Mean:1.448; 3rdQu.:2; Max:7

Number of other v. numotherinvolved Numerical Min:0; 1stQu.:0; Median:0; Mean:0.006381; 3rdQu.:0; Max:1

Number of unknown people NumNDInvolved Numerical Min:0; 1stQu.:0; Median:0; Mean:0.0486; 3rdQu.:0; Max:1

Number of males NumMalesInvolved Numerical Min:0; 1stQu.:1; Median:2; Mean:1.619; 3rdQu.:2; Max:10

Number of females NumFemalesInvolved Numerical Min:0; 1stQu.:0; Median:1; Mean:0.7747; 3rdQu.:1; Max:7

Male driver inv. maledriver Categorical 1, False; 2, True

Time of the day timeofday Categorical 1, morning; 2, afternoon; 3, evening; 4, night

Occupancy index occupancyindex Numerical Min:1; 1stQu.:1; Median:1; Mean:1.384; 3rdQu.:1.5; Max:7

Casualties Casualties Categorical Response Variable. 1, No casualty; 2, Casualty

Table 4: Summary of the available data after Pre-Processing. Source: Self-Elaboration
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4.2 Data Exploration

This section will be devoted to exploring the available data to get some initial insights in the

characteristics of the observed phenomena.

4.2.1 Geographical Analysis

A geographical analysis was conducted in order to ensure that all of the analysed accidents

belonged to the appropriate region. Figure 14 was realized thanks to the maps and osmdata

packages for R and presents on the left all of the accidents appearing in the pre-processed

dataset. It is apparent from the plot that some observations were erroneously inserted in the

dataset since they are not even remotely close to the municipality of Rome. All of the 28

occurrences residing outside of the province of Rome were subsequently removed and the

remaining crashes were plotted again on a smaller map.

Figure 14: accidents before and after removal of outliers. Source: Self-Elaboration

4.2.2 Time Analysis

In order to understand whether the temporal aspects of the accidents could have an impact,

both the month and timeofday variables were analysed deeply. Figure 15 shows a stacked
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bar-plot of the number of accidents that took place during each month of the year. Each bar

is subdivided into two colors: light-green, representing accidents with casualties and dark-

green, representing accidents with no casualties. The percentages inside the bars represent

how accidents were split during each single month. It is apparent from the bar-plot that

months that included less accidents (e.g., January, March, etc.) tend to have also a lower

casualty rate with the notable exception of August in which the number of accidents is quite

low but the casualty rate is the highest in the dataset. The reason behind the low amount

of accidents may very well be explained by the notorious decrease in Rome traffic during

August, but the high casualty rate appears counter-intuitive. In general, the trend for casualty

rate seems to follow the temperatures during the year, with warmer months presenting on

average higher values. August is one of the hottest months of the year and also the one in

which most of the people go for vacations: these factors may affect drivers’ behaviour and

focus on the road. In order to understand whether this factor is actually relevant the month

variable will be kept in the study during modelling.

Figure 15: Number of accidents and casualty rates by months. Source: Self-Elaboration

A similar approach was applied for the timeofday variable in Figure 16, which presents
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the number of accidents subdivided by the time of the day in which the crash took place, using

the same colour scheme as Figure 15. The number of accidents follows the expected trend,

peaking during the afternoon and dropping dramatically during the night: just like traffic

levels in the city of Rome. Casualty rates, on the other hand, face a substantial increase in

the later parts of the day, which is reasonable due to accumulated fatigue and worse lighting

conditions when driving at night. This increase could also be due to possible differences in

the emergency handling systems during the day and the night.

Figure 16: Number of accidents and casualty rates by time of the day. Source: Self-

Elaboration

4.2.3 Gender Analysis

The gender of the people taking part in the accident was included in the dataset and, in or-

der to understand whether there are actual differences between males and females during car

crashes, an analysis of the new FE variables numMalesinvolved, numFemalesinvolved, Num-

NDInvolved and maledriver was conducted. Figure 17 highlights the enormous prevalence of

males in the observed crashes: they compose comprehensively 66% of the people involved in

car accidents (38,256) while females represent only the remaining 32% (18,311). This strong

imbalance is coherent with the results of previous studies (Chang & Wang, 2006; C. Lin et al.,

2020) and considering also the fact that in Italy 83.3% of the victims of car crashes in 2021
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were men (ISTAT, 2022), this gender skewness may be very significant for the analysis.

Figure 17: Percentages of males and females involved in crashes. Source: Self-Elaboration

In order to further explore the aforementioned dynamic, Figure 18 was plotted highlight-

ing an evident co-occurrence between the presence of at least one male driver and the advent

of casualties in a crash. This graphical intuition is also backed up by a Pearson’s Chi-squared

test with Yates’ continuity correction presenting a p-value very close to 0.

Figure 18: Mosaic plot of maledriver and Casualties. Source: Self-Elaboration
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4.3 Modelling

In this section the training and validation of each of the utilized models will be presented. Af-

ter some additional standard processing (e.g., standardization of numerical variables, one hot

encoding of categorical variables, etc.), the comprehensive number of accidents was 22,653

which received a 80/20 split into training and testing set maintaining the same response class

percentages.

4.3.1 KNN

KNN was the only non-tree based model employed in this study. Due to its lazy nature it was

the fastest model in training, allowing for the CV of many possible values for the number

of neighbours to consider in each prediction. Figure 19 shows the tested values for the k

parameter highlighting the value of k = 41 as the best option with a CV score of 0.808

in the AUC regards. The performances are remarkable for such a simple model, however

its notorious inefficiency in prediction and its high reliance on distances may lead to some

degree of bias when facing new data. The best k value is relatively high which should counter

to some degree this innate bias.

Figure 19: KNN model CV plot. Source: Self-Elaboration
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4.3.2 CART

The first trained algorithm was the CART, which was implemented using the rpart caret

model. The only hyper-parameter for this model is the so called complexity parameter (CP)

which determines the entity of the pruning applied to the tree after training: a value of 1% in

CP will prune the tree to find a subtree that is at most 1% worse in training performance in

order to improve generalization. Figure 20 illustrates the tested values for CP and highlights

how the best CV scores were achieved with a CP < 0.101.

Figure 20: CART model CV plot. Source: Self-Elaboration

Given the generally simple interpretability of CART models, Figure 21 was used to vi-

sualize the final tree. The results are quite surprising: with the use of just two variables

the model is able to get a decent CV score of 0.746 when considering AUC. It is apparent

how pedestrians and motorcyclist incur in much greater risks when compared to other road

users, also confirming the results of previous studies on the matter (M.-R. Lin & Kraus, 2008;

Mokhtarimousavi et al., 2020; Vajari et al., 2020).
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Figure 21: Final CART model. Source: Self-Elaboration

4.3.3 RF

The results of the previous section generated great expectations for more complex tree based

models, especially for RF which are typically very efficient in surpassing simple CART mod-

els in performances when there a few very influential predictors in the dataset. Each tree will

be trained on a different subset of variables hence the model will be able to analyse deeply

the contribution of a wider variety of predictors. Figure 22 shows the number of randomly

selected predictors in each single tree of the RF and their respective AUC: the best CV score

was achieved with 5 variables for each tree and presented an AUC of 0.8113. This non-trivial

improvement confirms the great capabilities of RF models.
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Figure 22: RF model CV plot. Source: Self-Elaboration

Figure 23 shows the variable importance plot for the RF model with its 9 most relevant

predictors. The variables that were deemed important by the CART model were confirmed

as important also by the RF; other predictors regarding the number of people in the accident

and the time of the crash were also included.

Figure 23: Variable importance plot for the RF model. Source: Self-Elaboration
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4.3.4 XGBTree

Given its intrinsic additive structure, the XGBTree model was trained including only 20%

of the total number of predictors for each boosting iteration in order to reduce correlation

between individual trees. This approach allowed the algorithm to focus not only on the few

most relevant features, like nummotoinvolved, but on a wider scheme just like in the RF

model. Countless iterations of the algorithm were evaluated for the purpose of this study

thanks to a personalized script which handles CV of parameters in a slightly less rigorous

but much faster method. In said script the algorithm is first trained with some generic values

for each of its 7 hyper-parameters and then an additive approach is applied to get to the final

model. Instead of cross-validating all parameters at once, generating an extreme number

of possible combinations and enormous running times, each parameter was cross-validated

subsequently building on previously optimal values, progressively refining the algorithm.

The optimization of the algorithm consisted in five rounds which are summarized in Table 5;

it is important to notice how the number of boosting iterations was included in all rounds to

enhance the flexibility of the algorithm.

Optimization Round Cross-Validated Parameters

Round 1 nrounds; eta; max depth

Round 2 nrounds; max depth; min child weight

Round 3 nrounds; colsample bytree; subsample

Round 4 nrounds; gamma

Round 5 nrounds; eta

Table 5: CV stages for the XGBTree model. Source: Self-Elaboration

After this semi-automated procedure, the parameters were analysed and other empirical

tests were conducted in order to reach the final form of the XGBTree algorithm employed in

this paper, which is presented in Table 6. This permutation of the model presents a CV score

of AUC = 0.832, which is a non trivial improvement compared to the RF model.
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Hyper-Parameter Value

nrounds 5000

max depth 3

eta 0.01

gamma 0.1

colsample bytree 20%

min child weight 3

subsample 100%

Table 6: Final parameters of the XGBTree model. Source: Self-Elaboration

Just like in the case of RF, caret implemented XGBTree models come with an integrated

feature importance metric which was plotted in Figure 24. The similarity with Figure 23 is

evident, with many of the most relevant predictors being the same and in a similar order.

This second plot confirms the paramount importance of the number of cars and two-wheeled

vehicles as well as the fragility of pedestrians on the road.

Figure 24: Variable importance plot for the XGBTree model. Source: Self-Elaboration
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4.4 Performance Evaluation

After extensive model validation the performances of the employed models were the ones in

the following table:

Model Validation AUC

KNN 0.808

CART 0.746

RF 0.811

XGBTree 0.832

Table 7: Validation performances of the various models. Source: Self-Elaboration

The XGBTree model is clearly the superior, displaying a 2.6% increase in AUC compared

to the second best model (RF) and a 11.5% increase with respect to the worst performing

model (CART). Due to its superiority in validation, XGBTree was also used for making

predictions on the testing set, composed of 4,530 previously unseen crash observations.

Figure 25 shows the achieved AUC of 0.842 in the testing set which surpasses the valida-

tion AUC by a non-trivial amount, confirming once again the great capabilities of XGBTree

models in avoiding over-fitting, which facilitate the generalization to new data.

Figure 25: XGBTree model testing AUC. Source: Self-Elaboration

53



5 CONCLUSIONS

5.1 Results of the Analysis

The machine learning analysis of Rome road crashes happened in 2021 highlighted how tree

based models, and in particular ensemble tree based models like RF and XGBTree, appear

to be the best options when trying to model the severity of a car accident. This may be

due to their intrinsic flexibility and innate capacity to be adapted to almost any data analysis

task but it may also be a direct consequence of the way this kind of models are structured.

The fact that ensemble tree based models are designed and optimized to be trained with a

subset of the total number of predictors makes it so that they are able to comprehend even

very complex phenomena where the variables come from different aspects of the problem

and interact differently with one another. Car crashes are a perfect example of this kind of

entities since their data include all of the aspects of the crash, from vehicle related features

(e.g., vehicle type, age of the vehicle, etc.) to road specific features (e.g., type of road, speed

limit on the road, etc.) and accident specific features (e.g., travelling speed, type of accident,

people involved, etc.).

In the case of this study, considering the results from all of the models with a particular

regard to the XGBTree one, which was the best performing, the most important risk factors

in predicting the severity of a crash were the presence of two-wheeled vehicles and, to lesser

extent, pedestrians. This result is completely in line with previous findings in the scientific

literature and highlights the paramount importance of appropriate measures to safeguard the

weakest road users. Other important characteristics for severity prediction were factors re-

lated to the entity of the accident, such as the number of cars involved, and factors related

to the interaction between the number of people involved and the number of moving vehi-

cles involved (i.e., occupancyindex). The type of the accident was also quite relevant with

accidents that usually happen at higher speeds or normally involve more cars presenting an

higher intrinsic risk.

The results of the analysis were comprehensively more than satisfactory from both a
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performance and from an insight perspective, especially considering the questionable quality

of the original input data and the computational limits of the employed machines.

5.2 Limitations of the Study

5.2.1 Data Limitations

The limitations of this paper reside mostly in the lack of more complete and coherent input

data. Some of the variables that were present in the original dataset and could have been

very interesting to analyse presented in fact some critical issues that precluded their study.

This was the case for illuminazione (lighting condition), CinturaCascoUtiltizzato (safety belt

and helmet use) and Airbag variables, which would seem, at least intuitively, very relevant

for severity prediction but their prominent level of NA or Not Specified values prevented any

further analysis on them.

Another limiting factor was the inability to extract more classification levels for crashes

from the data. It was in fact impossible to determine or derive a proper severity scale for

crashes given the initial data. This shortcoming transformed the analysis in a binomial clas-

sification which was definitely successful and coherent with previous research but which

however will never be able to produce an understanding of the phenomena as deep as it could

have been with more specific data.

The lack of some specific crash features also hindered the possible results of the analysis:

the data was lacking any information on the people involved in the accident besides their

gender and in particular there was no indication of the age of the participants in the accident,

which has been discovered as a very influential factor in previous research (Al Mamlook et

al., 2020).

5.2.2 Hardware Limitations

Hardware capabilities were also a limiting factor for this paper. Given the limited compu-

tational power of the employed machines, it was impossible to optimally fine tune some

specific models (e.g, XGBTree) due to extreme running times of more than twelve hours in
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some cases. Some complex and specialized methods such as kernel support vector machines

and weighted KNN were inapplicable to the analysis due to repeated and unavoidable system

crashes caused by lack of memory or cooling power.

5.3 Future Prospects

Future prospects for this analysis include a reiteration of the analysis process considering a

wider variety and quantity of data. In addition it would be beneficial to analyse car accidents

having access to a wider number of data sources: the collaborative effort of regulatory au-

thorities, hospitals and local administrations would be needed for the creation of what could

be defined as a complete crash dataset including all crash factors and medical records of the

participants. Thanks to the interaction between different institutions it would be possible to

perform an in depth specialized analysis, employing multinomial classification, in order to

understand deeply what are the prominent risk factors for all categories of road users. As

stated in Section 1.4, an in depth statistical and machine learning understanding of car acci-

dents would provide enormous benefits for society, especially for the end users of the road

system, which would be assisted by insurance companies and hospitals that are as prepared

as possible in assessing risks and complications of each individual case.
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