
1

Department of Economics and Finance

Chair of Mathematical Finance

MACHINE LEARNING AND THE GRADIENT

DESCENT ALGORITHM

Supervisor: Candidate:

Prof.ssa Sara Biagini Andrea Zanetti

Student ID: 262471

ACADEMIC YEAR

2022/2023

2

Table of Contents
1.0 Machine Learning ... 3

1.1 Introduction .. 3

1.2 Background .. 3

1.3 What is machine learning? ... 4

1.4 Types of models ... 8

1.4.1 Unsupervised Learning.. 8

1.4.2 Supervised Learning .. 10

1.4.3 Reinforcement Learning .. 11

1.5 Applications ... 12

2.0 Artificial Neural Networks ... 13

2.1 ANNs Overview ... 13

2.2 Structure ... 14

2.3 ANNs training .. 16

2.3.1 Data Preparation and Setup ... 16

2.3.2 Initialization and setup .. 17

2.3.3 Error calculation (loss function) .. 17

2.3.4 Backpropagation ... 18

2.3.5 Optimization ... 19

2.3.6 Convergence and Accuracy ... 19

3.0 The Gradient Descent Algorithm ... 20

3.1 Overview .. 20

3.3 How does it work?.. 25

3.4 Intuition Behind Gradient Descent... 27

3.5 Learning Rate ... 28

4.0 Conclusion .. 30

3

1.0 Machine Learning

1.1 Introduction

Today, machine learning is becoming an increasingly relevant topic, with estimations suggesting

that it will influence everyone’s life in the coming years. This technology allows machines to learn

and evolve from their own experiences without the necessity of programming them. The roots of

this “new’’ technology can be found in the early days of computer science when academics

attempted to design algorithms capable of autonomous decision-making resembling human

intelligence. The advent of the digital age and the growing collection of data was one of the primary

driving reasons behind the development of the first machines capable of autonomous learning. This

evolution was crucial since traditional scientific-based approaches proved ineffective as data

complexity and sophistication increased. Therefore, researchers realized that to acquire significant

insights and generate accurate forecasts, they required a more flexible and data-driven strategy.

1.2 Background

Arthur Samuel, an American pioneer in video gaming and artificial intelligence, coined the term

"machine learning" in 1959. He described it as the study of how machines can learn without manual

programming. Samuel's research focused on developing systems, which could learn to play

checkers and improve their performance over time with practice. This approach stands as an early

instance of reinforcement learning, in which an agent interacts with an environment, receives

feedback, and refines its behaviour in response. At that time, it was a relatively new concept, and

Samuel's work was a breakthrough in demonstrating the potential of computers to learn and

improve their performance through experience. However, real-world implementation of machine

learning techniques encountered difficulties because of inadequate processing resources and

scarcity of large, labelled data sets. It was not until the late 1990s and early 2000s that factors such

as the increasing availability of information and the advancing abilities of computers brought back

interest in machine learning. Therefore, a combination of the introduction of the internet and the

4

spread of digital technologies in the 21st century resulted in a rapid generation of data from sources

such as social media, e-commerce, scientific studies, and sensor networks. With this groundwork,

scientists had the opportunity to employ machine-learning models to extract valuable information,

achieve reliable forecasts, and simplify decision-making processes. Nowadays this technology has

entered various facets of our life. It powers recommendation systems, voice assistants, fraud

detection, autonomous vehicles, medical diagnosis, and many other applications. Even after

reaching significant improvements, machine learning still has issues such as bias in algorithms,

interpretability, and ethical concerns related to data privacy and fairness continue to be areas of

active research and development. However, with the advent of deep reinforcement learning and the

integration of other emerging technologies like Internet of Things (IoT) and blockchain, the

possibilities for further innovation and application seem limitless. Machine learning has

undoubtedly transformed industries, drove innovation and shaping the way we interact with

technology, and its potential continues to be an exciting area of discussion.

1.3 What is machine learning?

Machine learning is a branch of artificial intelligence, which focuses on the design and

implementation of models, allowing computers to gain knowledge from data and develop strategies

to make estimations. This system relies on the idea that machines can automatically learn and

produce significant output from streams of data, to maximize their performance over time. This

ability to learn and adapt based on experience distinguishes machine learning as one of the most

transformative tools of our era. Moreover, the capacity to generalize beyond the training data

enables models to make predictions also on new unseen examples. Now, since machine learning

heavily relies on data, we need to understand the importance of the quality and quantity of the

information we cluster. Data collection involves gathering relevant material from various sources,

ensuring its accuracy, completeness, and relevance to the problem at hand. Indeed, raw data often

requires pre-processing and manipulation to enhance its suitability for specific tasks. Two common

5

practices often employed by practitioners are data splitting and data cleaning. The former implies

dividing a dataset into three distinct groups, usually training, validation, and testing sets. The

separation enables the model to be trained on one set, validated on another, and tested on a different

one. By employing this approach, we can assess the model's proficiency with unseen data. This

serves as a safeguard against overfitting, a scenario in which the model memorizes the training data

but falters when faced with new examples. The usual splitting ratios are:

- Training set: The largest subset (e.g., 60-80% of the data) used to train the model and learn

the underlying patterns.

- Validation set: A smaller fraction (e.g., 10-20% of the data) used to adjust hyperparameters,

pick the best model, and evaluate its generalization performance.

- Test set: A separate portion (e.g., 10-20% of the data) used to evaluate the final model's

performance on completely unseen data.

Data cleaning, commonly referred to as data scrubbing, is the second phase. It involves removing or

fixing mistakes, inconsistencies, and useless data from the dataset. Clean data ensures that the

model is exposed to accurate and trustworthy data, lowering the likelihood of biases or misleading

patterns. Some typical issue that arises when clustering data are inconsistent recording, missing

data, unwanted observations, and outliers. Let us explore some of them and find possible solutions:

Figure 1: Data Splitting

6

1. Inconsistent Recording:

Inconsistent recording refers to inconsistencies or errors in data entry, formatting, or labelling.

These inconsistencies can hinder data analysis and modelling. To address this problem, we can

employ the following techniques:

- Standardization: Apply consistent formatting and labelling conventions to ensure uniformity

across the dataset. This may involve converting variables to a common unit, correcting typos

or misspellings, and aligning variable names.

- Data Validation: Conduct validation checks to identify and correct inconsistent or erroneous

data.

2. Missing Data:

Missing data occurs when values are absent for certain observations or variables. Missing data can

introduce bias or affect the representativeness of the dataset. Here are potential solutions for

handling missing data:

- Deletion: If missing data is minimal and randomly distributed, it may be reasonable to

remove the corresponding observations or variables.

- Imputation: Imputation techniques estimate missing values based on the available data.

3. Unwanted Observations:

Unwanted observations refer to data points that are irrelevant, duplicate, or contain errors. It is

important to identify and handle such observations appropriately:

- Duplicate Removal: Identify and remove duplicate observations to avoid redundancy and

prevent skewed analysis results.

- Error Detection and Correction: Implement data validation checks or algorithms to identify

and correct errors, such as incorrect measurements, outliers, or inconsistent values.

4. Outliers:

7

Extreme values, known as outliers, substantially diverge from the rest of the data. They have the

potential to skew statistical assessments and exert an influence on the effectiveness of models.

To gain a better understanding of why it is critical to handle data correctly during the algorithmic

learning process, we can look at some real-world examples.

Assume your inbox contains a spam email filter. It may initially only have simple criteria set up to

identify obvious spam emails based on keywords. These guidelines, however, become obsolete as

new spam emails with different features appear. Here is where machine learning comes in. The

automated learning system can uncover patterns, which distinguish spam from legitimate emails by

examining a dataset of labelled emails (both spam and non-spam). It learns how to generalize these

patterns and then uses them to determine whether incoming emails are spam or not. Another

example is image recognition. Here, in the same way, machines are trained on datasets of images to

recognize objects or identify specific features within images. For instance, a model can learn to

differentiate between pictures of cats and dogs by exposing the system to a diverse range of cat and

dog images. It learns to identify distinguishing characteristics, such as the shape of ears or the

texture of fur. After training, even pictures that the model has never seen before can be correctly

classified as either a cat or a dog. After going through these examples, we recognize the critical

importance of gathering data and the necessity to apply every technique that will help the model to

maximize its training.

Figure 2: Different type of model fitting

Source: datascience.eu

8

1.4 Types of models

This section will examine many machine learning models, each of which has a unique set of

features and applications. Let us explore the three main types: unsupervised learning, supervised

learning, and reinforcement learning.

1.4.1 Unsupervised Learning

Unsupervised learning entails identifying patterns, without any specific target or output labels.

Therefore, the goal is not to predict the value of a specific variable, but instead, it focuses to

uncover hidden trends, structures, or connections within the data. Unsupervised learning algorithms

are usually utilized to identify clusters, detect anomalies, or reduce the dimensionality of the data.

These practices are very useful for businesses. For instance, banks use unsupervised learning to

organize their customers based on some common features. A clustering algorithm is able to identify

different groups of individuals based on their purchasing behaviour, and sort customers with similar

buying patterns into different groups. As a result, the bank can provide targeted marketing strategies

and improve their level of services. A widely used technique for clustering is the k-means

algorithm, which aims to divide the data into k clusters. The algorithm operates through an iterative

process that involves two main steps: the assignment step and the update step. Initially, it randomly

places K cluster centroids, acting as the initial guesses for the cluster positions. During the

assignment step, each data point is allocated to the closest centroid using the Euclidean distance

metric, which is computed as, √(𝑥𝑎 − 𝑥𝑏)2 + (𝑦𝑎 − 𝑦𝑏)2. In this step, the metric computes the

direct distance between a data point and every cluster centre. Consequently, each data point is

allocated to the cluster with the nearest centre. Moving on to the updating phase, the centroids

undergo a re-evaluation through the computation of the mean of data points assigned to each

cluster. This new mean value becomes the updated cluster centre, and the process continues with

further iterations. These assignment and update procedures are carried out periodically until

convergence, which happens when the centroids no longer vary significantly or until reaching a

9

predetermined number of trials. At this stage, the algorithm has successfully determined k distinct

clusters, and each data point belongs to one of these clusters.

Unsupervised learning is also used in algorithms for anomaly detection, which look for instances or

data points that drastically vary from predicted behaviour. This can be helpful for fraud detection in

financial transactions, where unusual or fraudulent activities are flagged as anomalies.

Figure 3: K-means algorithm framework

Figure 4: Anomaly detection

Source: Google

10

1.4.2 Supervised Learning

Supervised learning entails training a model using classified data, where each data point

corresponds with a specific target. The model's aim is to establish a clear relationship between input

features and their corresponding labels, enabling it to make precise predictions or classifications on

unfamiliar data.

There are two widely recognized types of supervised learning:

a) Classification: This type aims to attribute a label or category to a given input, contingent on

its distinctive features. Looking at a previous example, such a model can learn how to

classify emails as either spam or non-spam based on various attributes such as the email's

content, sender, or subject line.

b) Regression: It is a method of predicting a continuous numerical value from input features.

The primary goal of regression is to evaluate the connection between independent and

dependent variables, enabling us to predict outcomes or interpret the impact of the

independent variables. For instance, a model can be trained to predict a house's price

considering factors like size, location, and the number of bedrooms. The model learns the

association between the features and the target variable in order accurately predict the price

of unseen homes. Now we look at some different kinds of regression.

- Linear Regression: 𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜀

In this method, it is assumed that there exists a linear correlation between the independent

variables (x) and the dependent variable (y). Here, β0 is the intercept term, βi are the

coefficients, and ɛ represents the error term. The ordinary least squares (OLS) approach is

used to estimate the coefficients (βi), which minimizes the sum of squared residuals

between the expected and actual values.

11

- Ridge Regression:

In order to deal with multicollinearity (high correlation) and avoid overfitting in linear

regression, ridge regression is a regularization strategy. The penalty term, which is the sum

of the squared coefficients times the regularization parameter λ, is added to the linear

regression model. The objective function of ridge regression is:

 𝑗(𝑏) =
1

𝑛
∑ (𝑌𝑖 − 𝑎 − 𝑏1𝑋𝑖1 − ⋯ − 𝑏𝑚𝑋𝑖𝑚)2 + λ ∑ 𝑏𝑗

2𝑚
𝑗=1 𝑛

𝑖=1

The regularization term shrinks the coefficients, reducing their magnitudes. The parameter λ

determines how much shrinkage occurs; higher values result in more severe shrinking.

- Lasso Regression:

This method incorporates a penalty term into the linear regression model. By constraining

some coefficients to absolutely zero, lasso regression creates sparsity by using the L1 norm

of the coefficients as the penalty term. The objective function of lasso regression is:

𝑗(𝑏) =
1

𝑛
∑(𝑌𝑖 − 𝑎 − 𝑏1𝑋𝑖1 − ⋯ − 𝑏𝑚𝑋𝑖𝑚)2 + λ ∑|𝑏𝑗|

𝑚

𝑗=1

𝑛

𝑖=1

Lasso regression performs automatic feature selection by effectively setting irrelevant

features' coefficients to zero.

1.4.3 Reinforcement Learning

Reinforcement Learning entails directing an agent to engage with an environment, gaining

knowledge through feedback, which manifests as either rewards or penalties. The agent understands

how to operate in such settings to maximize the cumulative rewards over time. It investigates its

surroundings, learns from the repercussions of its activities, and modifies its decision-making

method accordingly. A classic demonstration of reinforcement learning involves training an

autonomous entity to play in a gaming environment. The player engages in the game environment

and earns rewards (e.g., points for winning) or punishments (e.g., losing a life) based on the effects

12

of those decisions. The agent discovers optimal techniques that lead to higher rewards through trial

and error.

1.5 Applications

Machine learning, particularly neural networks, which we will explore in the following section, has

seen extensive adoption and integration across different sectors, leading to a significant revolution

in various industries, transforming decision-making processes. Its adaptability and capacity to

extract valuable insights from vast amounts of data have opened doors to game-changing

innovations, enhancing efficiency, accuracy, and overall performance in real-world applications. In

healthcare, the impact of AI, particularly through neural networks, has been profound. Medical

image processing is one area where these technologies excel, enabling neural networks to detect

anomalies in X-rays, MRIs, and mammograms with accuracy. By training on massive volumes of

labelled data, these networks empower radiologists with invaluable support in diagnosing diseases

at an early stage, which, in turn, leads to better patient outcomes and potentially life-saving

interventions. Additionally, AI-driven analysis of complex genetic data holds immense promise in

forecasting disease effects, tailoring personalized medical treatments, and even aiding in the

development of ground-breaking pharmaceuticals. The transformative potential of neural networks

in healthcare extends beyond diagnostics and treatment, as they can also allow patient monitoring,

optimize resource allocation in hospitals, and improve overall healthcare management. The banking

industry has been another pioneer in the adoption of those technologies, particularly in the realm of

fraud detection. Neural networks, with their ability to analyse vast and diverse financial datasets,

have proven crucial in spotting patterns indicative of fraudulent transactions. This capability has

revolutionized fraud prevention measures, empowering financial organizations to protect their

clients' assets and maintain the integrity of their operations. Furthermore, AI-powered credit scoring

has transformed the lending landscape, moving beyond traditional credit assessment methods to

consider a wide range of data points and past patterns. As a result, financial institutions can offer

13

more accurate and personalized credit evaluations, expanding access to credit for deserving

individuals and businesses. Beyond the mentioned industries, AI and machine learning have found

applications in diverse fields, including agriculture, energy, education, and entertainment. In the

field of healthcare, specialized algorithms can streamline patient care, treatment planning, and

medical imaging analysis, ultimately leading to improved outcomes and more efficient healthcare

delivery. The energy sector benefits from AI-driven predictive maintenance in power plants and

smart grid optimization, resulting in greater energy efficiency and reduced environmental impact. In

education, personalized learning platforms cater to individual students' needs, promoting a more

effective and engaging educational experience. The entertainment industry leverages AI-generated

content, virtual reality, and personalized content recommendations to enhance user experiences and

capture audience attention.

2.0 Artificial Neural Networks

2.1 ANNs Overview

At the core of artificial intelligence and machine learning lie Artificial Neural Networks (ANNs),

engineered to replicate the structure and operations of the human brain. ANNs were first proposed

in the 1940s by neurophysiologist Warren McCulloch and mathematician Walter Pitts as a

mathematical representation of artificial neurons known as McCulloch-Pitts neurons. Successively,

Frank Rosenblatt invented the perceptron, an early type of neural network, in the late 1950s and

early 1960s. The perceptron was devised to imitate the functioning of a single neuron and was

designed to learn from training examples to make forecasts or decisions. However, only after the

introduction of deep learning in the late 2000s, neural networks consolidated. Deep learning, often

known as deep neural networks, is the development of neural networks having several hidden

layers. The effectiveness of deep neural networks relies on their adeptness at discerning intricate

patterns within unprocessed data. A standout advantage of deep learning lies in its capacity to

overcome the limitations faced by shallow neural networks. Shallow networks typically consist of

14

only one or two hidden layers, making them less effective at capturing and representing complex

patterns in data. On the other hand, deep neural networks possess the capability to iteratively

acquire various levels of abstraction, enabling them to discern advanced features from unprocessed

input.

2.2nStructure

Artificial Neural Networks are sophisticated structures comprising multiple elements, each playing

a crucial role in the network's functionality and learning capabilities. Let us explore each part in

detail to understand how they work. Neurons constitute the fundamental building blocks of ANNs.

They are responsible for recognizing input signals, conducting computations, and generating output

signals. Neurons are structured into layers, typically comprising one or more hidden layers, in

addition to an input and an output layer. The input layer takes the raw data, and the hidden and

output layers process it to provide predictions or classifications. Feedforward neural networks, also

known as single-layer hidden ANNs, consist of an input layer, one hidden layer, and an output

layer. On the other hand, multiple hidden layer ANNs, such as deep neural networks (DNNs), have

more than one hidden layer. The additional hidden layers allow for more complex representations

and hierarchical feature learning. Deep networks can capture and model intricate relationships in the

data by progressively extracting abstract features from lower to higher layers. The difference

between the single and multiple hidden layers underlies in their structure, as the former are simpler

and easier to train but limited in their capacity to learn intricate patterns, whereas the latter can learn

highly complex representations but are more challenging to train due to issues like vanishing

gradients and overfitting.

15

Weights are another key feature of ANNs since they represent the strength of the links between

neurons. Each neuronal connection has a weight, which defines the impact of the input on the

output. Weights change throughout training to improve the network's performance. The network

improves to allocate higher weights to connections that contribute more to correct predictions while

decreasing weights for less influential connections. Weights always combine with biases, which are

values that represent the weighted sums of each neuron's inputs. Biases allow the network to evolve

and model more complex connections than a simple linear translation. By incorporating them, the

network improves its flexibility and ability to discover intricate patterns in data. Then, we have

activations functions, mathematical functions, which are implemented to the weighted sum of inputs

in each neuron. These functions set a threshold for connections to react and generate an output.

They bring flexibility and non-linearity to the network, enabling it to capture and represent complex

patterns in the input data. Activation functions have their own characteristics, influencing how the

network learns and generalizes from the data. Here are a few illustrations:

- The sigmoid function: 𝑔(𝑥) =
1

1+𝑒−𝑥

It transforms input values into a range spanning from 0 to 1, generating a distinctive "S"-

shaped curve. The sigmoid function is used as an activation function in the output layer for

binary classification tasks, where it helps to interpret outputs as probabilities or make

decisions based on a threshold.

- Rectified Linear Unit (ReLU): 𝑔(𝑥) = max(0, 𝑥)

Figure 5: Single vs. multiple layers

Source: ResearchGate

16

If the supplied value is positive, it returns the value, otherwise, it returns zero. The

simplicity and effectiveness of ReLU in tackling the vanishing gradient problem have led to

its wide acceptance and use. It speeds up training and improves the network's capacity to

model complicated patterns.

- Hyperbolic Tangent (tanh): 𝑔(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

It maps input values to a range between -1 and 1, producing an "S"-shaped curve cantered at

0. Tanh enables the network to capture non-linear relationships in the data, making it

suitable for hidden layers in ANNs.

2.3 ANNs training

2.3.1 Data Preparation and Setup

Artificial Neural Networks undergo a multi-stage training process that iteratively enhances their

efficiency. It begins with the preparation of a dataset, establishing the groundwork for subsequent

stages. At this outset, a raw dataset is collected and organized, often necessitating pre-processing

steps like data cleaning, normalization, and feature scaling to ensure uniformity and enhance

convergence during training. For instance, in a dataset containing housing prices, features like

square footage and number of bedrooms might be normalized to a common scale to prevent one

Figure 6: Activation functions

Source: ResearchGate

17

feature from dominating others in the network's calculations. Thereafter the dataset is divided into a

training set and a validation set. This partitioning facilitates the evaluation of the network's

performance on unseen data and guards against overfitting.

2.3.2 Initialization and setup

During the training phase, input data is fed into the network's input layer, and computations are

carried out within each neuron. For instance, in a feedforward neural network, let's consider a

neuron with inputs, x1, x2, x3 and weights w1, w2, w3. The weighted sum z is calculated as z =

w1x1+w2x2+w3x3. Biases b are then added, yielding z+b, which undergoes a non-linear activation

function such as the sigmoid function. By employing this activation function, non-linearity is

introduced, allowing the network to grasp intricate patterns within the data. By choosing

appropriate initial weights and biases, like w1=0.2, w2=−0.3, w3=0.5, and b=0.1, the network is

primed to better fit the data distribution. Proper initialization set the stage for forward and backward

computations, ultimately leading to the network's ability to learn and generalize from the training

data.

2.3.3 Error calculation (loss function)

Error calculation involves measuring the difference between the predictions made by the network

and the real target values. This process guides the network towards refining its parameters for

improved accuracy. The loss function, often denoted as L, serves as the mathematical measure of

this discrepancy. For instance, in a regression task predicting house prices, the mean squared error

(MSE) can be used as the loss function:

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖 ̂)

2

𝑁

𝑖=1

Where N is the number of examples, 𝑦𝑖 is the actual house price for the ith example, and 𝑦𝑖 ̂ is the

predicted price. The loss function assesses the mean squared difference between the anticipated and

real values across all cases. During forward propagation, as inputs pass through the network, the

18

predicted outputs are generated. Afterward, the loss function is employed to contrast these forecasts

against the genuine target values. This results in a singular metric indicating the network's overall

effectiveness in relation to the provided instances. Throughout the training process, the objective is

to systematically refine the network's parameters using optimization methods such as gradient

descent to reduce the loss function. In essence, error calculation and the associated loss function

provide a clear and quantifiable measure of the network's accuracy, enabling the optimization

process to steer the network towards better predictions

2.3.4 Backpropagation

The backpropagation stage is a pivotal step in the training of Artificial Neural Networks (ANNs),

responsible for refining the network's performance by adjusting its parameters based on the

calculated error. This process involves attributing the error backwards through each layer of the

network, determining how much each neuron contributed to the overall discrepancy between

predictions and actual values. For instance, in a multi-layer feedforward network, the error

attributed to a neuron j in a hidden layer is computed by considering its impact on the subsequent

layer's errors:

 𝛿𝑗 = 𝑓′(𝑧𝑗) ∑ 𝑤𝑗𝑘𝑘 𝛿𝑘

Here, 𝑓′(𝑧𝑗) represents the derivative of the activation function applied to the weighted sum zj of

neuron j, wjk signifies the weight connecting neuron j to neuron k in the subsequent layer, and δk

represents the error attributed to neuron k in the next layer. By considering how much each

parameter contributed to the error, the network learns to update its parameters in a direction that

reduces the overall discrepancy. Through this iterative process, the network refines its capacity to

detect intricate patterns within the data. Backpropagation, coupled with gradient descent

optimization, empowers ANNs to progressively improve their predictive accuracy over successive

training iterations. As part of the backpropagation process, the error is allocated to neurons in the

preceding layers, proportionate to their respective impact on the overall error. This assignment is

19

determined by the weights interconnecting the neurons. In parallel, the weights of the neurons

undergo refinement to reduce the error. This weight adjustment procedure frequently employs

optimization techniques, with the gradient descent algorithm being one of the most widely used

methods. This weight adjustment procedure frequently employs optimization techniques, with the

gradient descent algorithm being one of the most widely used methods.

2.3.5 Optimization

In the optimization process, adjustments are made to the network's parameters with the aim of

minimizing the specified loss function. Various optimization algorithms are used to achieve this,

each employing distinct strategies to adjust the parameters. These algorithms include not only

gradient-based methods like gradient descent but also more advanced approaches such as stochastic

gradient descent (SGD), mini-batch gradient descent. The fundamental principle behind these

optimization methods remains the same: iteratively update the network's parameters in a direction

that reduces the loss. The specific direction and step size are determined by the algorithm's

mechanics. Instead of focusing solely on gradients, these methods consider factors like historical

gradient information, adaptive learning rates, and momentum to navigate the parameter space

effectively. The iterative optimization process continues until a desirable level of accuracy is

reached.

2.3.6 Convergence and Accuracy

Convergence and accuracy mark the culmination of the intricate training process for Artificial

Neural Networks (ANNs). Convergence denotes the point at which the network's parameters have

been iteratively adjusted to minimize the loss function, resulting in the network's predictions

approaching a stable state. This implies that the network has effectively acquired meaningful

patterns and relationships within the training data. Simultaneously, accuracy refers to the network's

ability to make precise predictions on both the training data and unseen examples. As the training

advances, the loss diminishes, leading to enhanced accuracy hen making predictions on validation

20

or test datasets. Achieving convergence and high accuracy underscores the successful acquisition of

the underlying data patterns by the network, ultimately enabling it to generalize and make accurate

predictions on new and previously unseen data.

3.0 The Gradient Descent Algorithm

3.1 Overview

Gradient descent serves as a fundamental optimization method extensively employed in machine

learning. Its main objective is to systematically fine-tune a model's parameters with the aim of

minimizing a cost function. In the realm of artificial neural network (ANN) training, this cost

function quantifies the disparity between the network's predicted outputs and the true target values.

Thus, this approach relies on the idea of iteratively adjusting model parameters by traveling in the

direction of the loss function's steepest fall. This is accomplished by computing the loss function's

gradient with respect to the parameters and updating the parameters in the gradient's opposite

direction. In each iteration, the update's magnitude is governed by the learning rate, which

determines the size of the step taken. Throughout this cyclical process, the algorithm settles on the

collection of parameters which result in the least amount of loss. While gradient descent is a

Figure 7: Neural network training process

Source: ResearchGate

21

commonly used optimization technique in practical applications, it may encounter challenges in

finding the global minimum as it can sometimes get trapped in a local minimum or a saddle point.

Moreover, it offers some beneficial aspects that make it an ideal candidate.

Scalability: In the context of complex models with numerous parameters, such as deep neural

networks, gradient descent efficiently adjusts these parameters in a manner that is computationally

feasible even for large datasets.

Non-Convex Optimization: Many real-world loss functions are non-convex, possessing multiple

local minima. Gradient descent navigates this landscape by leveraging its iterative nature to find

promising parameter configurations.

Generalization: Properly configured gradient descent helps prevent overfitting by guiding parameter

updates towards regions of the parameter space that generalize well to unseen data.

3.2 Optimization Problems and Requirements

ANNs are composed of multiple interconnected layers, each containing numerous parameters

(weights and biases) that influence the network's behaviour. The purpose of training is to identify

the best parameter values that minimize a predetermined cost function. The cost function evaluates

the difference between the network's forecasts and the real target values within the training dataset.

Solving the optimization problem entails searching for parameter values that lead to the lowest

possible cost, thereby ensuring accurate and meaningful predictions on unseen data. Optimizing

ANNs poses several challenges due to the complex and non-convex nature of the parameter space.

High-Dimensional and Non-Convex Space: The vast number of parameters in ANNs results in a

high-dimensional parameter space, often characterized by numerous local minima, maxima, and

saddle points. This non-convex landscape complicates the optimization process, as traditional

methods may get stuck in suboptimal solutions.

22

Vanishing and Exploding Gradients: During backpropagation, gradients can either vanish (become

extremely small) or explode (become extremely large) as they propagate through multiple layers.

This phenomenon can hinder or accelerate the learning process, respectively.

Slow Convergence: The parameter space's complex geometry may lead to slow convergence, where

the optimization process takes a substantial number of iterations to reach an acceptable solution.

Gradient descent is applicable to functions that meet two key criteria: they must be both

differentiable and convex.

If a function is differentiable means, it has a well-defined derivative at every point within its

domain, allowing us to analyse how small changes in inputs affect the output. In optimization,

derivatives play a crucial role as they can signify critical points such as minima, maxima, or saddle

points when they equal zero. For a function having this characteristic is crucial for gradient descent

because it enables the calculation of the gradient, which provides the direction to update the

parameters. Functions that are not differentiable at certain points might have sharp corners, cusps,

or discontinuities, making the gradient undefined or misleading. In such cases, alternative

optimization methods may need to be considered. Let's begin by examining examples of functions

that satisfy these conditions.

Figure 8: Differentiable functions

23

While non-differentiable functions often exhibit features like steps, cusps, or discontinuities.

Now, let's move on to the next requirement, which is that the function must be convex. In the case of

a univariate function, a function is considered convex when, for any two points within its domain,

the straight line connecting those two points always remains above the graph of the function. In

simpler terms, the function always lies beneath the secant line formed between any two points in its

domain. Mathematically, a function 𝑓(𝑥) is convex if, for all 𝑥1 and 𝑥2 in its domain and for all λ in

the range [0, 1], the following inequality holds:

𝑓(λ𝑥1 + (1 − λ)𝑥2) ≤ λ𝑓(𝑥1) + (1 − λ)𝑓(𝑥2)

Convex functions play a crucial role in gradient descent optimization due to their well-behaved

nature. When dealing with a convex function, gradient descent is highly likely to converge to the

global minimum rather than getting stuck in local minima or saddle points. The fact that the entire

region around a point on a convex function lies above its tangent plane ensures that each step taken

by the gradient descent algorithm moves it closer to the optimal solution. Convexity also guarantees

that there is only one possible minimum, which simplifies the optimization process. This contrasts

with non-convex functions, where multiple local minima might exist, making it challenging for

gradient descent to find the best solution.

Below there are two functions with exemplary section lines.

Figure 9: Non differentiable functions

24

Another mathematical approach to determine the convexity of a univariate function is by evaluating

its second derivative and ensuring it remains greater than zero throughout its domain.

𝜕2𝑓(𝑥)

𝜕𝑥2
> 0

Let's explore this concept with a simple quadratic function:

𝑓(𝑥) = 𝑥2 + 3𝑥 − 1

Its first and second derivative are:

𝜕𝑓(𝑥)

𝜕𝑥
= 2𝑥 + 3,

𝜕2𝑓(𝑥)

𝜕𝑥2
= 2

Because the second derivative is always bigger than 0, our function is strictly convex.

For multivariate functions, assessing whether a point is a saddle point involves a more intricate

calculation, specifically the computation of a Hessian matrix.

Example of a saddle point in a bivariate function is show below.

𝑧 = 𝑥2 − 𝑦2

Figure 10: Convex vs. non-convex function

25

3.3 How does it work?

Intuitively, the gradient represents the rate of change of a function at a specific point, but it also

considers a specified direction. In the context of a single-variable function, it's essentially the first

derivative calculated at a chosen point. However, when dealing with multivariable functions, it

becomes a vector that describes the derivatives along each of the coordinate axes. These individual

derivatives are referred to as partial derivatives since they capture the slope along one axis while

disregarding the others. The gradient of an n-dimensional function, denoted by ∇𝑓(𝑝), at a given

point p is defined as follows:

To gain a clearer understanding of how to compute it, let's work through a manual calculation for a

two-dimensional function provided below.

𝑓(𝑥) = 𝑥2 + 3𝑦2

Figure 11: Saddle point of a bivariate function

26

Let’s assume we are interested in a gradient at point p (5,5):

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
= 2𝑥,

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
= 6𝑦

so consequently:

∇𝑓(𝑥, 𝑦) = [
2𝑥

6𝑦
]

∇𝑓(10,10) = [
10

30
]

By looking at these values we conclude that the slope is three times steeper along the y axis. The

Gradient Descent Algorithm iteratively approximates the next point by utilizing the gradient at the

current position, rescaling it using a designated learning rate, and then subtracting this value from the

present position, effectively taking a step forward. Because we want to minimize the function, it

subtracts the value. The formula for this process is:

𝑝𝑛+1 = 𝑝𝑛 − η∇𝑓(𝑝𝑛)

27

There is a crucial parameter which adjusts the gradient and, thus, regulates the step size. It is known

as the learning rate, and it holds a significant influence on performance outcomes.

In brief, the various steps of the Gradient Descent algorithm are:

1. Begin by selecting an initial position at random (initialization).

2. Define a loss function that needs to be minimized.

3. Calculate the gradient and take a step in the opposite direction, scaled accordingly

(aiming for minimization).

4. Continue with steps 3 and 4 until one of the following conditions is met:

- The step size falls below a specified tolerance due to scaling or a shallow

gradient, and the maximum allowed iterations have been reached.

- The optimizer reaches an absolute minimum.

3.4 Intuition Behind Gradient Descent

To gain a better understand of the gradient descent algorithm, picture a drone capturing footage as it

descends from a high altitude or a paper airplane gliding down from a tall building. Throughout

their descent, both the drone and the paper airplane are drawn in the direction of the steepest

decline, consistently moving towards the lowest point.

The concept underlying gradient descent shares a similarity: it initiates from an arbitrarily chosen

position represented by the point or vector 𝐯 = (𝑣₁, …, 𝑣ᵣ) and gradually shifts it towards the

direction of the steepest decline in the cost function. As previously mentioned, this direction

corresponds to the negative gradient vector, −∇𝐶.

Upon establishing an initial point 𝐯 = (𝑣₁, …, 𝑣ᵣ), the update process begins, propelling it towards a

new position following the path of the negative gradient: 𝐯 → 𝐯 − 𝜂∇𝐶, where 𝜂 is a small positive

value known as the learning rate. This learning rate essentially governs the size of the step taken

28

during the update, making it a crucial parameter. Its significance will become evident in the

upcoming section.

Should 𝜂 be exceedingly small, the algorithm may converge at a sluggish pace. Conversely, overly

large 𝜂 values can lead to convergence difficulties or even cause the algorithm to diverge.

3.5 Learning Rate

The learning rate, as a hyperparameter, governs the magnitude of adjustments made in the

parameter space when updating the model's parameters in every cycle of the gradient descent

algorithm. A carefully chosen learning rate is crucial for achieving efficient and stable convergence,

while an inappropriate learning rate can hinder progress or even cause the algorithm to fail.

Effect of Learning Rate:

Large Learning Rate: When the learning rate is excessively large, there's a risk of the algorithm

surpassing the optimal solution. This can lead to oscillations around the optimal point or even cause

the algorithm to diverge entirely, preventing convergence. In such cases, the algorithm might keep

bouncing between different points without getting closer to the minimum of the cost function.

Small Learning Rate: On the other hand, an extremely small learning rate slows down the

convergence process. The algorithm takes tiny steps, which could make it get trapped in local

minima or saddle points for a long time. This results in slow progress towards the optimal solution,

increasing the time required to achieve convergence.

Figure 12: Big vs. Small learning rate

29

Choosing the right learning rate

The choice of learning rate plays a pivotal role in determining the effectiveness and efficiency of

optimization algorithms, particularly in the context of machine learning and deep learning models.

It directly impacts the convergence speed and stability of these algorithms, ultimately influencing

the model's ability to find an optimal solution. A suboptimal learning rate can lead to several issues,

such as slow convergence, overshooting, or even divergence, hampering the entire optimization

process. Hence, selecting an appropriate learning rate is essential for achieving reliable and

effective optimization outcomes.

Strategies for Determining the Optimal Learning Rate:

Learning Rate Schedules: Fixed learning rates might work in simple cases, but they can be limiting

when dealing with complex optimization landscapes. Learning rate schedules offer a more flexible

approach. By adjusting the learning rate dynamically as the optimization progresses, these

schedules strike a balance between quick initial progress and fine-tuning as the algorithm gets

closer to the optimal solution. This adaptive adjustment mitigates the risk of overshooting and

enables a smoother convergence trajectory.

Adaptive Methods: Adaptive optimization methods have gained popularity due to their ability to

autonomously modify the learning rate during training. Techniques like AdaGrad, RMSProp, and

Adam maintain a history of past gradient magnitudes and adjust the learning rate accordingly. This

approach ensures that each parameter receives an appropriate learning rate based on its individual

behaviour during optimization. This adaptivity allows these methods to converge faster and more

reliably across a wide range of problems.

Grid Search and Random Search: Hyperparameter tuning methods, such as grid search and random

search, are valuable tools for identifying an optimal learning rate. By systematically or randomly

exploring a predefined range of learning rates and observing their impact on convergence,

30

practitioners can gather insights into the learning rate's behavior within the context of their specific

problem. This empirical approach guides the selection of a suitable learning rate, helping avoid the

guesswork associated with a fixed value.

4.0 Conclusion

In conclusion, the remarkable efficacy of gradient descent solidifies its status as the heart of

Artificial Neural Network training, orchestrating a dynamic force that shapes the landscape of

optimization. Its iterative finesse stands as a pivotal bridge connecting the realms of prediction and

reality, seamlessly navigating the intricate, nonlinear terrains that characterize modern machine

learning challenges. Notably, it demonstrates a profound adaptability, effortlessly accommodating

an array of architectures and loss functions.

Balancing on the fine line between convergence and divergence, gradient descent expertly guides

the training process. It catalyses efficient parameter updates, a vital mechanism in the relentless

pursuit of model refinement. In doing so, it deftly steers neural networks away from local minima,

mitigating the challenges posed by gradients and, in the process, accelerates the path to

convergence.

Beyond its mechanical function, gradient descent emerges as an embodiment of the art of

optimization itself. It signifies a ceaseless quest for efficiency and accuracy in the expansive realm

of machine learning, driving researchers and practitioners to continually seek innovative ways to

harness its potential. In this light, the algorithm transcends its technical nature, representing a

profound dedication to excellence that characterizes the ever-evolving landscape of artificial

intelligence.

As we delve deeper into the intricate world of neural network training, gradient descent remains not

only a powerful tool but also a testament to the unwavering commitment to pushing the boundaries

31

of what is possible. Its legacy continues to influence the trajectory of artificial intelligence, shaping

the future of innovation and discovery in this dynamic field.

32

Bibliography

Mirko Stojiljković (2020), Stochastic Gradient Descent Algorithm with Python and NumPy.

Retrieved from: https://realpython.com/gradient-descent-algorithm-python/

Robert Kwiatkowski (2021), Towards Data Science: Gradient Descent Algorithm - a deep dive.

Retrieved from: https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21

Niklas Donges (2023), Gradient Descent in Machine Learning: A Basic Introduction

Retrieved from: https://builtin.com/data-science/gradient-descent

Joris Langeveld (2021), Machine learning in quay wall design, KTH Royal Institute of Technology

Retrieved from: https://www.diva-portal.org/smash/get/diva2:1598164/FULLTEXT01.pdf

Arwa E. Abulwafa (2022), Nile Journal of Communication & Computer Science, Volume 3, Number 1.

Retrieved from: https://njccs.journals.ekb.eg

Nijiati Abulizi (2023), Exploring the Differences Among Linear Models: From Ordinary Least Squares to

Polynomial Regression.

Retrieved from: https://nijat.medium.com/exploring-the-differences-among-linear-models-from-ordinary-

least-squares-to-polynomial-regression-687ed4a05d9e

Arun Kumar Pandey (2022), Regression algorithms.

Retrieved from: https://medium.com/@arunp77/regression-algorithms-29f112797724

https://realpython.com/gradient-descent-algorithm-python/
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://builtin.com/data-science/gradient-descent
https://www.diva-portal.org/smash/get/diva2:1598164/FULLTEXT01.pdf
https://njccs.journals.ekb.eg/
https://nijat.medium.com/exploring-the-differences-among-linear-models-from-ordinary-least-squares-to-polynomial-regression-687ed4a05d9e
https://nijat.medium.com/exploring-the-differences-among-linear-models-from-ordinary-least-squares-to-polynomial-regression-687ed4a05d9e
https://medium.com/@arunp77/regression-algorithms-29f112797724

33

Marcin Frąckiewicz (2023), AI Data Partitioning: A Critical Step in the Machine Learning Pipeline.

Retrieved from: https://ts2.space/en/ai-data-partitioning-a-critical-step-in-the-machine-learning-pipeline/

Tahera Firdose(2023), Understanding Outliers: Impact, Detection, and Remedies.

Retrieve from: https://tahera-firdose.medium.com/understanding-outliers-impact-detection-and-remedies-

ea2192174477

Leonid Vadim (2023), Neural Networks: How they Work and Why they Matter.

Retrieved From: http://web.archive.org/web/20230601100519/https://manandtech.com/neural-networks/

John C Hull (2021), Machine Learning in Business: An Introduction to the World of Data Science, third

edition.

https://ts2.space/en/ai-data-partitioning-a-critical-step-in-the-machine-learning-pipeline/
https://tahera-firdose.medium.com/?source=post_page-----ea2192174477--------------------------------
https://tahera-firdose.medium.com/understanding-outliers-impact-detection-and-remedies-ea2192174477
https://tahera-firdose.medium.com/understanding-outliers-impact-detection-and-remedies-ea2192174477
http://web.archive.org/web/20230601100519/https:/manandtech.com/neural-networks/

