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1.0 Machine Learning 

 

1.1 Introduction 

Today, machine learning is becoming an increasingly relevant topic, with estimations suggesting 

that it will influence everyone’s life in the coming years. This technology allows machines to learn 

and evolve from their own experiences without the necessity of programming them. The roots of 

this “new’’ technology can be found in the early days of computer science when academics 

attempted to design algorithms capable of autonomous decision-making resembling human 

intelligence. The advent of the digital age and the growing collection of data was one of the primary 

driving reasons behind the development of the first machines capable of autonomous learning. This 

evolution was crucial since traditional scientific-based approaches proved ineffective as data 

complexity and sophistication increased. Therefore, researchers realized that to acquire significant 

insights and generate accurate forecasts, they required a more flexible and data-driven strategy. 

1.2 Background  

Arthur Samuel, an American pioneer in video gaming and artificial intelligence, coined the term 

"machine learning" in 1959. He described it as the study of how machines can learn without manual 

programming. Samuel's research focused on developing systems, which could learn to play 

checkers and improve their performance over time with practice. This approach stands as an early 

instance of reinforcement learning, in which an agent interacts with an environment, receives 

feedback, and refines its behaviour in response. At that time, it was a relatively new concept, and 

Samuel's work was a breakthrough in demonstrating the potential of computers to learn and 

improve their performance through experience. However, real-world implementation of machine 

learning techniques encountered difficulties because of inadequate processing resources and 

scarcity of large, labelled data sets. It was not until the late 1990s and early 2000s that factors such 

as the increasing availability of information and the advancing abilities of computers brought back 

interest in machine learning. Therefore, a combination of the introduction of the internet and the 
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spread of digital technologies in the 21st century resulted in a rapid generation of data from sources 

such as social media, e-commerce, scientific studies, and sensor networks. With this groundwork, 

scientists had the opportunity to employ machine-learning models to extract valuable information, 

achieve reliable forecasts, and simplify decision-making processes. Nowadays this technology has 

entered various facets of our life. It powers recommendation systems, voice assistants, fraud 

detection, autonomous vehicles, medical diagnosis, and many other applications. Even after 

reaching significant improvements, machine learning still has issues such as bias in algorithms, 

interpretability, and ethical concerns related to data privacy and fairness continue to be areas of 

active research and development. However, with the advent of deep reinforcement learning and the 

integration of other emerging technologies like Internet of Things (IoT) and blockchain, the 

possibilities for further innovation and application seem limitless. Machine learning has 

undoubtedly transformed industries, drove innovation and shaping the way we interact with 

technology, and its potential continues to be an exciting area of discussion. 

1.3 What is machine learning? 

Machine learning is a branch of artificial intelligence, which focuses on the design and 

implementation of models, allowing computers to gain knowledge from data and develop strategies 

to make estimations. This system relies on the idea that machines can automatically learn and 

produce significant output from streams of data, to maximize their performance over time. This 

ability to learn and adapt based on experience distinguishes machine learning as one of the most 

transformative tools of our era. Moreover, the capacity to generalize beyond the training data 

enables models to make predictions also on new unseen examples. Now, since machine learning 

heavily relies on data, we need to understand the importance of the quality and quantity of the 

information we cluster. Data collection involves gathering relevant material from various sources, 

ensuring its accuracy, completeness, and relevance to the problem at hand. Indeed, raw data often 

requires pre-processing and manipulation to enhance its suitability for specific tasks. Two common 
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practices often employed by practitioners are data splitting and data cleaning. The former implies 

dividing a dataset into three distinct groups, usually training, validation, and testing sets. The 

separation enables the model to be trained on one set, validated on another, and tested on a different 

one. By employing this approach, we can assess the model's proficiency with unseen data. This 

serves as a safeguard against overfitting, a scenario in which the model memorizes the training data 

but falters when faced with new examples. The usual splitting ratios are: 

- Training set: The largest subset (e.g., 60-80% of the data) used to train the model and learn 

the underlying patterns. 

- Validation set: A smaller fraction (e.g., 10-20% of the data) used to adjust hyperparameters, 

pick the best model, and evaluate its generalization performance. 

- Test set: A separate portion (e.g., 10-20% of the data) used to evaluate the final model's 

performance on completely unseen data.  

 

Data cleaning, commonly referred to as data scrubbing, is the second phase. It involves removing or 

fixing mistakes, inconsistencies, and useless data from the dataset. Clean data ensures that the 

model is exposed to accurate and trustworthy data, lowering the likelihood of biases or misleading 

patterns. Some typical issue that arises when clustering data are inconsistent recording, missing 

data, unwanted observations, and outliers. Let us explore some of them and find possible solutions: 

Figure 1: Data Splitting  
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1. Inconsistent Recording: 

Inconsistent recording refers to inconsistencies or errors in data entry, formatting, or labelling. 

These inconsistencies can hinder data analysis and modelling. To address this problem, we can 

employ the following techniques: 

- Standardization: Apply consistent formatting and labelling conventions to ensure uniformity 

across the dataset. This may involve converting variables to a common unit, correcting typos 

or misspellings, and aligning variable names. 

- Data Validation: Conduct validation checks to identify and correct inconsistent or erroneous 

data.  

2. Missing Data: 

Missing data occurs when values are absent for certain observations or variables. Missing data can 

introduce bias or affect the representativeness of the dataset. Here are potential solutions for 

handling missing data: 

- Deletion: If missing data is minimal and randomly distributed, it may be reasonable to 

remove the corresponding observations or variables.  

- Imputation: Imputation techniques estimate missing values based on the available data.  

3. Unwanted Observations: 

Unwanted observations refer to data points that are irrelevant, duplicate, or contain errors. It is 

important to identify and handle such observations appropriately: 

- Duplicate Removal: Identify and remove duplicate observations to avoid redundancy and 

prevent skewed analysis results.  

- Error Detection and Correction: Implement data validation checks or algorithms to identify 

and correct errors, such as incorrect measurements, outliers, or inconsistent values. 

4. Outliers: 
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Extreme values, known as outliers, substantially diverge from the rest of the data. They have the 

potential to skew statistical assessments and exert an influence on the effectiveness of models. 

 

To gain a better understanding of why it is critical to handle data correctly during the algorithmic 

learning process, we can look at some real-world examples.   

Assume your inbox contains a spam email filter. It may initially only have simple criteria set up to 

identify obvious spam emails based on keywords. These guidelines, however, become obsolete as 

new spam emails with different features appear. Here is where machine learning comes in. The 

automated learning system can uncover patterns, which distinguish spam from legitimate emails by 

examining a dataset of labelled emails (both spam and non-spam). It learns how to generalize these 

patterns and then uses them to determine whether incoming emails are spam or not. Another 

example is image recognition. Here, in the same way, machines are trained on datasets of images to 

recognize objects or identify specific features within images. For instance, a model can learn to 

differentiate between pictures of cats and dogs by exposing the system to a diverse range of cat and 

dog images. It learns to identify distinguishing characteristics, such as the shape of ears or the 

texture of fur. After training, even pictures that the model has never seen before can be correctly 

classified as either a cat or a dog. After going through these examples, we recognize the critical 

importance of gathering data and the necessity to apply every technique that will help the model to 

maximize its training. 

Figure 2: Different type of model fitting 

Source: datascience.eu 
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1.4 Types of models 

This section will examine many machine learning models, each of which has a unique set of 

features and applications. Let us explore the three main types: unsupervised learning, supervised 

learning, and reinforcement learning. 

1.4.1 Unsupervised Learning 

Unsupervised learning entails identifying patterns, without any specific target or output labels. 

Therefore, the goal is not to predict the value of a specific variable, but instead, it focuses to 

uncover hidden trends, structures, or connections within the data. Unsupervised learning algorithms 

are usually utilized to identify clusters, detect anomalies, or reduce the dimensionality of the data. 

These practices are very useful for businesses. For instance, banks use unsupervised learning to 

organize their customers based on some common features. A clustering algorithm is able to identify 

different groups of individuals based on their purchasing behaviour, and sort customers with similar 

buying patterns into different groups. As a result, the bank can provide targeted marketing strategies 

and improve their level of services. A widely used technique for clustering is the k-means 

algorithm, which aims to divide the data into k clusters. The algorithm operates through an iterative 

process that involves two main steps: the assignment step and the update step. Initially, it randomly 

places K cluster centroids, acting as the initial guesses for the cluster positions. During the 

assignment step, each data point is allocated to the closest centroid using the Euclidean distance 

metric, which is computed as,  √(𝑥𝑎 − 𝑥𝑏)2 + (𝑦𝑎 − 𝑦𝑏)2. In this step, the metric computes the 

direct distance between a data point and every cluster centre. Consequently, each data point is 

allocated to the cluster with the nearest centre. Moving on to the updating phase, the centroids 

undergo a re-evaluation through the computation of the mean of data points assigned to each 

cluster. This new mean value becomes the updated cluster centre, and the process continues with 

further iterations. These assignment and update procedures are carried out periodically until 

convergence, which happens when the centroids no longer vary significantly or until reaching a 
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predetermined number of trials. At this stage, the algorithm has successfully determined k distinct 

clusters, and each data point belongs to one of these clusters. 

 

Unsupervised learning is also used in algorithms for anomaly detection, which look for instances or 

data points that drastically vary from predicted behaviour. This can be helpful for fraud detection in 

financial transactions, where unusual or fraudulent activities are flagged as anomalies. 

 

 

Figure 3: K-means algorithm framework 

Figure 4: Anomaly detection 

Source: Google 
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1.4.2 Supervised Learning 

Supervised learning entails training a model using classified data, where each data point 

corresponds with a specific target. The model's aim is to establish a clear relationship between input 

features and their corresponding labels, enabling it to make precise predictions or classifications on 

unfamiliar data. 

There are two widely recognized types of supervised learning: 

a) Classification: This type aims to attribute a label or category to a given input, contingent on 

its distinctive features. Looking at a previous example, such a model can learn how to 

classify emails as either spam or non-spam based on various attributes such as the email's 

content, sender, or subject line.  

b) Regression: It is a method of predicting a continuous numerical value from input features.    

The primary goal of regression is to evaluate the connection between independent and 

dependent variables, enabling us to predict outcomes or interpret the impact of the 

independent variables. For instance, a model can be trained to predict a house's price 

considering factors like size, location, and the number of bedrooms. The model learns the 

association between the features and the target variable in order accurately predict the price 

of unseen homes. Now we look at some different kinds of regression. 

- Linear Regression: 𝑦 =  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜀 

In this method, it is assumed that there exists a linear correlation between the independent 

variables (x) and the dependent variable (y). Here, β0 is the intercept term, βi are the 

coefficients, and ɛ represents the error term. The ordinary least squares (OLS) approach is 

used to estimate the coefficients (βi), which minimizes the sum of squared residuals 

between the expected and actual values.  
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- Ridge Regression:   

In order to deal with multicollinearity (high correlation) and avoid overfitting in linear 

regression, ridge regression is a regularization strategy. The penalty term, which is the sum 

of the squared coefficients times the regularization parameter λ, is added to the linear 

regression model. The objective function of ridge regression is:  

 𝑗(𝑏) =
1

𝑛
∑ (𝑌𝑖 − 𝑎 − 𝑏1𝑋𝑖1 − ⋯ − 𝑏𝑚𝑋𝑖𝑚)2 +  λ ∑ 𝑏𝑗

2𝑚
𝑗=1  𝑛

𝑖=1      

The regularization term shrinks the coefficients, reducing their magnitudes. The parameter λ 

determines how much shrinkage occurs; higher values result in more severe shrinking. 

- Lasso Regression: 

This method incorporates a penalty term into the linear regression model. By constraining 

some coefficients to absolutely zero, lasso regression creates sparsity by using the L1 norm 

of the coefficients as the penalty term. The objective function of lasso regression is: 

𝑗(𝑏) =
1

𝑛
∑(𝑌𝑖 − 𝑎 − 𝑏1𝑋𝑖1 − ⋯ − 𝑏𝑚𝑋𝑖𝑚)2 +  λ ∑|𝑏𝑗|

𝑚

𝑗=1

 

𝑛

𝑖=1

 

Lasso regression performs automatic feature selection by effectively setting irrelevant 

features' coefficients to zero. 

1.4.3 Reinforcement Learning 

Reinforcement Learning entails directing an agent to engage with an environment, gaining 

knowledge through feedback, which manifests as either rewards or penalties. The agent understands 

how to operate in such settings to maximize the cumulative rewards over time. It investigates its 

surroundings, learns from the repercussions of its activities, and modifies its decision-making 

method accordingly. A classic demonstration of reinforcement learning involves training an 

autonomous entity to play in a gaming environment. The player engages in the game environment 

and earns rewards (e.g., points for winning) or punishments (e.g., losing a life) based on the effects 
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of those decisions. The agent discovers optimal techniques that lead to higher rewards through trial 

and error. 

1.5 Applications 

Machine learning, particularly neural networks, which we will explore in the following section, has 

seen extensive adoption and integration across different sectors, leading to a significant revolution 

in various industries, transforming decision-making processes. Its adaptability and capacity to 

extract valuable insights from vast amounts of data have opened doors to game-changing 

innovations, enhancing efficiency, accuracy, and overall performance in real-world applications. In 

healthcare, the impact of AI, particularly through neural networks, has been profound. Medical 

image processing is one area where these technologies excel, enabling neural networks to detect 

anomalies in X-rays, MRIs, and mammograms with accuracy. By training on massive volumes of 

labelled data, these networks empower radiologists with invaluable support in diagnosing diseases 

at an early stage, which, in turn, leads to better patient outcomes and potentially life-saving 

interventions. Additionally, AI-driven analysis of complex genetic data holds immense promise in 

forecasting disease effects, tailoring personalized medical treatments, and even aiding in the 

development of ground-breaking pharmaceuticals. The transformative potential of neural networks 

in healthcare extends beyond diagnostics and treatment, as they can also allow patient monitoring, 

optimize resource allocation in hospitals, and improve overall healthcare management. The banking 

industry has been another pioneer in the adoption of those technologies, particularly in the realm of 

fraud detection. Neural networks, with their ability to analyse vast and diverse financial datasets, 

have proven crucial in spotting patterns indicative of fraudulent transactions. This capability has 

revolutionized fraud prevention measures, empowering financial organizations to protect their 

clients' assets and maintain the integrity of their operations. Furthermore, AI-powered credit scoring 

has transformed the lending landscape, moving beyond traditional credit assessment methods to 

consider a wide range of data points and past patterns. As a result, financial institutions can offer 
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more accurate and personalized credit evaluations, expanding access to credit for deserving 

individuals and businesses. Beyond the mentioned industries, AI and machine learning have found 

applications in diverse fields, including agriculture, energy, education, and entertainment. In the 

field of healthcare, specialized algorithms can streamline patient care, treatment planning, and 

medical imaging analysis, ultimately leading to improved outcomes and more efficient healthcare 

delivery. The energy sector benefits from AI-driven predictive maintenance in power plants and 

smart grid optimization, resulting in greater energy efficiency and reduced environmental impact. In 

education, personalized learning platforms cater to individual students' needs, promoting a more 

effective and engaging educational experience. The entertainment industry leverages AI-generated 

content, virtual reality, and personalized content recommendations to enhance user experiences and 

capture audience attention. 

2.0 Artificial Neural Networks 

2.1 ANNs Overview 

At the core of artificial intelligence and machine learning lie Artificial Neural Networks (ANNs), 

engineered to replicate the structure and operations of the human brain. ANNs were first proposed 

in the 1940s by neurophysiologist Warren McCulloch and mathematician Walter Pitts as a 

mathematical representation of artificial neurons known as McCulloch-Pitts neurons. Successively, 

Frank Rosenblatt invented the perceptron, an early type of neural network, in the late 1950s and 

early 1960s. The perceptron was devised to imitate the functioning of a single neuron and was 

designed to learn from training examples to make forecasts or decisions. However, only after the 

introduction of deep learning in the late 2000s, neural networks consolidated. Deep learning, often 

known as deep neural networks, is the development of neural networks having several hidden 

layers. The effectiveness of deep neural networks relies on their adeptness at discerning intricate 

patterns within unprocessed data. A standout advantage of deep learning lies in its capacity to 

overcome the limitations faced by shallow neural networks. Shallow networks typically consist of 
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only one or two hidden layers, making them less effective at capturing and representing complex 

patterns in data. On the other hand, deep neural networks possess the capability to iteratively 

acquire various levels of abstraction, enabling them to discern advanced features from unprocessed 

input.                                                                                                                                                        

2.2nStructure                                                                                                                                          

Artificial Neural Networks are sophisticated structures comprising multiple elements, each playing 

a crucial role in the network's functionality and learning capabilities. Let us explore each part in 

detail to understand how they work. Neurons constitute the fundamental building blocks of ANNs. 

They are responsible for recognizing input signals, conducting computations, and generating output 

signals. Neurons are structured into layers, typically comprising one or more hidden layers, in 

addition to an input and an output layer. The input layer takes the raw data, and the hidden and 

output layers process it to provide predictions or classifications. Feedforward neural networks, also 

known as single-layer hidden ANNs, consist of an input layer, one hidden layer, and an output 

layer. On the other hand, multiple hidden layer ANNs, such as deep neural networks (DNNs), have 

more than one hidden layer. The additional hidden layers allow for more complex representations 

and hierarchical feature learning. Deep networks can capture and model intricate relationships in the 

data by progressively extracting abstract features from lower to higher layers. The difference 

between the single and multiple hidden layers underlies in their structure, as the former are simpler 

and easier to train but limited in their capacity to learn intricate patterns, whereas the latter can learn 

highly complex representations but are more challenging to train due to issues like vanishing 

gradients and overfitting.  
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Weights are another key feature of ANNs since they represent the strength of the links between 

neurons. Each neuronal connection has a weight, which defines the impact of the input on the 

output. Weights change throughout training to improve the network's performance. The network 

improves to allocate higher weights to connections that contribute more to correct predictions while 

decreasing weights for less influential connections. Weights always combine with biases, which are 

values that represent the weighted sums of each neuron's inputs. Biases allow the network to evolve 

and model more complex connections than a simple linear translation. By incorporating them, the 

network improves its flexibility and ability to discover intricate patterns in data. Then, we have 

activations functions, mathematical functions, which are implemented to the weighted sum of inputs 

in each neuron. These functions set a threshold for connections to react and generate an output. 

They bring flexibility and non-linearity to the network, enabling it to capture and represent complex 

patterns in the input data. Activation functions have their own characteristics, influencing how the 

network learns and generalizes from the data. Here are a few illustrations:  

- The sigmoid function: 𝑔(𝑥) =
1

1+𝑒−𝑥 

It transforms input values into a range spanning from 0 to 1, generating a distinctive "S"-

shaped curve. The sigmoid function is used as an activation function in the output layer for 

binary classification tasks, where it helps to interpret outputs as probabilities or make 

decisions based on a threshold. 

- Rectified Linear Unit (ReLU): 𝑔(𝑥) = max(0, 𝑥) 

Figure 5: Single vs. multiple layers 

Source: ResearchGate 
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If the supplied value is positive, it returns the value, otherwise, it returns zero. The 

simplicity and effectiveness of ReLU in tackling the vanishing gradient problem have led to 

its wide acceptance and use. It speeds up training and improves the network's capacity to 

model complicated patterns. 

- Hyperbolic Tangent (tanh): 𝑔(𝑥) =  
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 

It maps input values to a range between -1 and 1, producing an "S"-shaped curve cantered at 

0. Tanh enables the network to capture non-linear relationships in the data, making it 

suitable for hidden layers in ANNs. 

 

 

2.3 ANNs training  

2.3.1 Data Preparation and Setup 

Artificial Neural Networks undergo a multi-stage training process that iteratively enhances their 

efficiency. It begins with the preparation of a dataset, establishing the groundwork for subsequent 

stages. At this outset, a raw dataset is collected and organized, often necessitating pre-processing 

steps like data cleaning, normalization, and feature scaling to ensure uniformity and enhance 

convergence during training. For instance, in a dataset containing housing prices, features like 

square footage and number of bedrooms might be normalized to a common scale to prevent one 

Figure 6: Activation functions 

Source: ResearchGate 
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feature from dominating others in the network's calculations. Thereafter the dataset is divided into a 

training set and a validation set. This partitioning facilitates the evaluation of the network's 

performance on unseen data and guards against overfitting. 

2.3.2 Initialization and setup 

During the training phase, input data is fed into the network's input layer, and computations are 

carried out within each neuron. For instance, in a feedforward neural network, let's consider a 

neuron with inputs, x1, x2, x3 and weights w1, w2, w3. The weighted sum z is calculated as z = 

w1x1+w2x2+w3x3. Biases b are then added, yielding z+b, which undergoes a non-linear activation 

function such as the sigmoid function. By employing this activation function, non-linearity is 

introduced, allowing the network to grasp intricate patterns within the data. By choosing 

appropriate initial weights and biases, like w1=0.2, w2=−0.3, w3=0.5, and b=0.1, the network is 

primed to better fit the data distribution. Proper initialization set the stage for forward and backward 

computations, ultimately leading to the network's ability to learn and generalize from the training 

data. 

2.3.3 Error calculation (loss function) 

Error calculation involves measuring the difference between the predictions made by the network 

and the real target values. This process guides the network towards refining its parameters for 

improved accuracy. The loss function, often denoted as L, serves as the mathematical measure of 

this discrepancy. For instance, in a regression task predicting house prices, the mean squared error 

(MSE) can be used as the loss function: 

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖  ̂)

2

𝑁

𝑖=1

 

Where N is the number of examples, 𝑦𝑖 is the actual house price for the ith example, and 𝑦𝑖  ̂ is the 

predicted price. The loss function assesses the mean squared difference between the anticipated and 

real values across all cases. During forward propagation, as inputs pass through the network, the 
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predicted outputs are generated. Afterward, the loss function is employed to contrast these forecasts 

against the genuine target values. This results in a singular metric indicating the network's overall 

effectiveness in relation to the provided instances. Throughout the training process, the objective is 

to systematically refine the network's parameters using optimization methods such as gradient 

descent to reduce the loss function. In essence, error calculation and the associated loss function 

provide a clear and quantifiable measure of the network's accuracy, enabling the optimization 

process to steer the network towards better predictions 

2.3.4 Backpropagation 

The backpropagation stage is a pivotal step in the training of Artificial Neural Networks (ANNs), 

responsible for refining the network's performance by adjusting its parameters based on the 

calculated error. This process involves attributing the error backwards through each layer of the 

network, determining how much each neuron contributed to the overall discrepancy between 

predictions and actual values. For instance, in a multi-layer feedforward network, the error 

attributed to a neuron j in a hidden layer is computed by considering its impact on the subsequent 

layer's errors: 

 𝛿𝑗 = 𝑓′(𝑧𝑗) ∑ 𝑤𝑗𝑘𝑘 𝛿𝑘 

Here, 𝑓′(𝑧𝑗) represents the derivative of the activation function applied to the weighted sum zj of 

neuron j, wjk signifies the weight connecting neuron j to neuron k in the subsequent layer, and δk 

represents the error attributed to neuron k in the next layer. By considering how much each 

parameter contributed to the error, the network learns to update its parameters in a direction that 

reduces the overall discrepancy. Through this iterative process, the network refines its capacity to 

detect intricate patterns within the data. Backpropagation, coupled with gradient descent 

optimization, empowers ANNs to progressively improve their predictive accuracy over successive 

training iterations. As part of the backpropagation process, the error is allocated to neurons in the 

preceding layers, proportionate to their respective impact on the overall error. This assignment is 
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determined by the weights interconnecting the neurons. In parallel, the weights of the neurons 

undergo refinement to reduce the error. This weight adjustment procedure frequently employs 

optimization techniques, with the gradient descent algorithm being one of the most widely used 

methods. This weight adjustment procedure frequently employs optimization techniques, with the 

gradient descent algorithm being one of the most widely used methods. 

2.3.5 Optimization 

In the optimization process, adjustments are made to the network's parameters with the aim of 

minimizing the specified loss function. Various optimization algorithms are used to achieve this, 

each employing distinct strategies to adjust the parameters. These algorithms include not only 

gradient-based methods like gradient descent but also more advanced approaches such as stochastic 

gradient descent (SGD), mini-batch gradient descent. The fundamental principle behind these 

optimization methods remains the same: iteratively update the network's parameters in a direction 

that reduces the loss. The specific direction and step size are determined by the algorithm's 

mechanics. Instead of focusing solely on gradients, these methods consider factors like historical 

gradient information, adaptive learning rates, and momentum to navigate the parameter space 

effectively. The iterative optimization process continues until a desirable level of accuracy is 

reached. 

2.3.6 Convergence and Accuracy 

Convergence and accuracy mark the culmination of the intricate training process for Artificial 

Neural Networks (ANNs). Convergence denotes the point at which the network's parameters have 

been iteratively adjusted to minimize the loss function, resulting in the network's predictions 

approaching a stable state. This implies that the network has effectively acquired meaningful 

patterns and relationships within the training data. Simultaneously, accuracy refers to the network's 

ability to make precise predictions on both the training data and unseen examples. As the training 

advances, the loss diminishes, leading to enhanced accuracy hen making predictions on validation 
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or test datasets. Achieving convergence and high accuracy underscores the successful acquisition of 

the underlying data patterns by the network, ultimately enabling it to generalize and make accurate 

predictions on new and previously unseen data. 

3.0 The Gradient Descent Algorithm 

3.1 Overview 

Gradient descent serves as a fundamental optimization method extensively employed in machine 

learning. Its main objective is to systematically fine-tune a model's parameters with the aim of 

minimizing a cost function. In the realm of artificial neural network (ANN) training, this cost 

function quantifies the disparity between the network's predicted outputs and the true target values. 

Thus, this approach relies on the idea of iteratively adjusting model parameters by traveling in the 

direction of the loss function's steepest fall. This is accomplished by computing the loss function's 

gradient with respect to the parameters and updating the parameters in the gradient's opposite 

direction. In each iteration, the update's magnitude is governed by the learning rate, which 

determines the size of the step taken. Throughout this cyclical process, the algorithm settles on the 

collection of parameters which result in the least amount of loss. While gradient descent is a 

Figure 7: Neural network training process 

Source: ResearchGate 
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commonly used optimization technique in practical applications, it may encounter challenges in 

finding the global minimum as it can sometimes get trapped in a local minimum or a saddle point. 

Moreover, it offers some beneficial aspects that make it an ideal candidate. 

Scalability: In the context of complex models with numerous parameters, such as deep neural 

networks, gradient descent efficiently adjusts these parameters in a manner that is computationally 

feasible even for large datasets.  

Non-Convex Optimization: Many real-world loss functions are non-convex, possessing multiple 

local minima. Gradient descent navigates this landscape by leveraging its iterative nature to find 

promising parameter configurations.  

Generalization: Properly configured gradient descent helps prevent overfitting by guiding parameter 

updates towards regions of the parameter space that generalize well to unseen data. 

3.2 Optimization Problems and Requirements 

ANNs are composed of multiple interconnected layers, each containing numerous parameters 

(weights and biases) that influence the network's behaviour. The purpose of training is to identify 

the best parameter values that minimize a predetermined cost function. The cost function evaluates 

the difference between the network's forecasts and the real target values within the training dataset. 

Solving the optimization problem entails searching for parameter values that lead to the lowest 

possible cost, thereby ensuring accurate and meaningful predictions on unseen data. Optimizing 

ANNs poses several challenges due to the complex and non-convex nature of the parameter space. 

High-Dimensional and Non-Convex Space: The vast number of parameters in ANNs results in a 

high-dimensional parameter space, often characterized by numerous local minima, maxima, and 

saddle points. This non-convex landscape complicates the optimization process, as traditional 

methods may get stuck in suboptimal solutions.  
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Vanishing and Exploding Gradients: During backpropagation, gradients can either vanish (become 

extremely small) or explode (become extremely large) as they propagate through multiple layers. 

This phenomenon can hinder or accelerate the learning process, respectively.  

Slow Convergence: The parameter space's complex geometry may lead to slow convergence, where 

the optimization process takes a substantial number of iterations to reach an acceptable solution.  

Gradient descent is applicable to functions that meet two key criteria: they must be both 

differentiable and convex. 

If a function is differentiable means, it has a well-defined derivative at every point within its 

domain, allowing us to analyse how small changes in inputs affect the output. In optimization, 

derivatives play a crucial role as they can signify critical points such as minima, maxima, or saddle 

points when they equal zero. For a function having this characteristic is crucial for gradient descent 

because it enables the calculation of the gradient, which provides the direction to update the 

parameters. Functions that are not differentiable at certain points might have sharp corners, cusps, 

or discontinuities, making the gradient undefined or misleading. In such cases, alternative 

optimization methods may need to be considered. Let's begin by examining examples of functions 

that satisfy these conditions. 

 

 

Figure 8: Differentiable functions 
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While non-differentiable functions often exhibit features like steps, cusps, or discontinuities. 

  

Now, let's move on to the next requirement, which is that the function must be convex. In the case of 

a univariate function, a function is considered convex when, for any two points within its domain, 

the straight line connecting those two points always remains above the graph of the function. In 

simpler terms, the function always lies beneath the secant line formed between any two points in its 

domain. Mathematically, a function 𝑓(𝑥)  is convex if, for all 𝑥1 and 𝑥2 in its domain and for all λ in 

the range [0, 1], the following inequality holds:  

𝑓(λ𝑥1 + (1 − λ)𝑥2) ≤ λ𝑓(𝑥1) + (1 − λ)𝑓(𝑥2) 

Convex functions play a crucial role in gradient descent optimization due to their well-behaved 

nature. When dealing with a convex function, gradient descent is highly likely to converge to the 

global minimum rather than getting stuck in local minima or saddle points. The fact that the entire 

region around a point on a convex function lies above its tangent plane ensures that each step taken 

by the gradient descent algorithm moves it closer to the optimal solution. Convexity also guarantees 

that there is only one possible minimum, which simplifies the optimization process. This contrasts 

with non-convex functions, where multiple local minima might exist, making it challenging for 

gradient descent to find the best solution. 

Below there are two functions with exemplary section lines. 

Figure 9: Non differentiable functions 
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Another mathematical approach to determine the convexity of a univariate function is by evaluating 

its second derivative and ensuring it remains greater than zero throughout its domain. 

𝜕2𝑓(𝑥)

𝜕𝑥2
> 0 

Let's explore this concept with a simple quadratic function: 

𝑓(𝑥) = 𝑥2 + 3𝑥 − 1 

Its first and second derivative are: 

𝜕𝑓(𝑥)

𝜕𝑥
= 2𝑥 + 3,         

𝜕2𝑓(𝑥)

𝜕𝑥2
= 2 

Because the second derivative is always bigger than 0, our function is strictly convex. 

For multivariate functions, assessing whether a point is a saddle point involves a more intricate 

calculation, specifically the computation of a Hessian matrix.  

Example of a saddle point in a bivariate function is show below. 

𝑧 = 𝑥2 − 𝑦2 

Figure 10: Convex vs. non-convex function 



25 
 

 

 

3.3 How does it work? 

Intuitively, the gradient represents the rate of change of a function at a specific point, but it also 

considers a specified direction. In the context of a single-variable function, it's essentially the first 

derivative calculated at a chosen point. However, when dealing with multivariable functions, it 

becomes a vector that describes the derivatives along each of the coordinate axes. These individual 

derivatives are referred to as partial derivatives since they capture the slope along one axis while 

disregarding the others. The gradient of an n-dimensional function, denoted by ∇𝑓(𝑝), at a given 

point p is defined as follows: 

 

To gain a clearer understanding of how to compute it, let's work through a manual calculation for a 

two-dimensional function provided below. 

𝑓(𝑥) = 𝑥2 + 3𝑦2     

Figure 11: Saddle point of a bivariate function 
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Let’s assume we are interested in a gradient at point p (5,5): 

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
= 2𝑥,

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
= 6𝑦  

so consequently: 

∇𝑓(𝑥, 𝑦) = [
2𝑥

6𝑦
] 

∇𝑓(10,10) = [
10

30
] 

By looking at these values we conclude that the slope is three times steeper along the y axis. The 

Gradient Descent Algorithm iteratively approximates the next point by utilizing the gradient at the 

current position, rescaling it using a designated learning rate, and then subtracting this value from the 

present position, effectively taking a step forward. Because we want to minimize the function, it 

subtracts the value. The formula for this process is: 

𝑝𝑛+1 = 𝑝𝑛 −  η∇𝑓(𝑝𝑛) 
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There is a crucial parameter which adjusts the gradient and, thus, regulates the step size. It is known 

as the learning rate, and it holds a significant influence on performance outcomes. 

In brief, the various steps of the Gradient Descent algorithm are:  

1. Begin by selecting an initial position at random (initialization). 

2. Define a loss function that needs to be minimized. 

3. Calculate the gradient and take a step in the opposite direction, scaled accordingly 

(aiming for minimization). 

4. Continue with steps 3 and 4 until one of the following conditions is met:  

- The step size falls below a specified tolerance due to scaling or a shallow 

gradient, and the maximum allowed iterations have been reached. 

- The optimizer reaches an absolute minimum.  

3.4 Intuition Behind Gradient Descent 

To gain a better understand of the gradient descent algorithm, picture a drone capturing footage as it 

descends from a high altitude or a paper airplane gliding down from a tall building. Throughout 

their descent, both the drone and the paper airplane are drawn in the direction of the steepest 

decline, consistently moving towards the lowest point.  

The concept underlying gradient descent shares a similarity: it initiates from an arbitrarily chosen 

position represented by the point or vector 𝐯 = (𝑣₁, …, 𝑣ᵣ) and gradually shifts it towards the 

direction of the steepest decline in the cost function. As previously mentioned, this direction 

corresponds to the negative gradient vector, −∇𝐶.  

Upon establishing an initial point 𝐯 = (𝑣₁, …, 𝑣ᵣ), the update process begins, propelling it towards a 

new position following the path of the negative gradient: 𝐯 → 𝐯 − 𝜂∇𝐶, where 𝜂 is a small positive 

value known as the learning rate. This learning rate essentially governs the size of the step taken 
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during the update, making it a crucial parameter. Its significance will become evident in the 

upcoming section. 

Should 𝜂 be exceedingly small, the algorithm may converge at a sluggish pace. Conversely, overly 

large 𝜂 values can lead to convergence difficulties or even cause the algorithm to diverge. 

3.5 Learning Rate 

The learning rate, as a hyperparameter, governs the magnitude of adjustments made in the 

parameter space when updating the model's parameters in every cycle of the gradient descent 

algorithm. A carefully chosen learning rate is crucial for achieving efficient and stable convergence, 

while an inappropriate learning rate can hinder progress or even cause the algorithm to fail. 

Effect of Learning Rate: 

Large Learning Rate: When the learning rate is excessively large, there's a risk of the algorithm 

surpassing the optimal solution. This can lead to oscillations around the optimal point or even cause 

the algorithm to diverge entirely, preventing convergence. In such cases, the algorithm might keep 

bouncing between different points without getting closer to the minimum of the cost function. 

Small Learning Rate: On the other hand, an extremely small learning rate slows down the 

convergence process. The algorithm takes tiny steps, which could make it get trapped in local 

minima or saddle points for a long time. This results in slow progress towards the optimal solution, 

increasing the time required to achieve convergence.  

Figure 12: Big vs. Small learning rate 
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Choosing the right learning rate 

The choice of learning rate plays a pivotal role in determining the effectiveness and efficiency of 

optimization algorithms, particularly in the context of machine learning and deep learning models. 

It directly impacts the convergence speed and stability of these algorithms, ultimately influencing 

the model's ability to find an optimal solution. A suboptimal learning rate can lead to several issues, 

such as slow convergence, overshooting, or even divergence, hampering the entire optimization 

process. Hence, selecting an appropriate learning rate is essential for achieving reliable and 

effective optimization outcomes. 

Strategies for Determining the Optimal Learning Rate: 

Learning Rate Schedules: Fixed learning rates might work in simple cases, but they can be limiting 

when dealing with complex optimization landscapes. Learning rate schedules offer a more flexible 

approach. By adjusting the learning rate dynamically as the optimization progresses, these 

schedules strike a balance between quick initial progress and fine-tuning as the algorithm gets 

closer to the optimal solution. This adaptive adjustment mitigates the risk of overshooting and 

enables a smoother convergence trajectory. 

Adaptive Methods: Adaptive optimization methods have gained popularity due to their ability to 

autonomously modify the learning rate during training. Techniques like AdaGrad, RMSProp, and 

Adam maintain a history of past gradient magnitudes and adjust the learning rate accordingly. This 

approach ensures that each parameter receives an appropriate learning rate based on its individual 

behaviour during optimization. This adaptivity allows these methods to converge faster and more 

reliably across a wide range of problems. 

Grid Search and Random Search: Hyperparameter tuning methods, such as grid search and random 

search, are valuable tools for identifying an optimal learning rate. By systematically or randomly 

exploring a predefined range of learning rates and observing their impact on convergence, 
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practitioners can gather insights into the learning rate's behavior within the context of their specific 

problem. This empirical approach guides the selection of a suitable learning rate, helping avoid the 

guesswork associated with a fixed value.  

4.0 Conclusion 

In conclusion, the remarkable efficacy of gradient descent solidifies its status as the heart of 

Artificial Neural Network training, orchestrating a dynamic force that shapes the landscape of 

optimization. Its iterative finesse stands as a pivotal bridge connecting the realms of prediction and 

reality, seamlessly navigating the intricate, nonlinear terrains that characterize modern machine 

learning challenges. Notably, it demonstrates a profound adaptability, effortlessly accommodating 

an array of architectures and loss functions. 

Balancing on the fine line between convergence and divergence, gradient descent expertly guides 

the training process. It catalyses efficient parameter updates, a vital mechanism in the relentless 

pursuit of model refinement. In doing so, it deftly steers neural networks away from local minima, 

mitigating the challenges posed by gradients and, in the process, accelerates the path to 

convergence. 

Beyond its mechanical function, gradient descent emerges as an embodiment of the art of 

optimization itself. It signifies a ceaseless quest for efficiency and accuracy in the expansive realm 

of machine learning, driving researchers and practitioners to continually seek innovative ways to 

harness its potential. In this light, the algorithm transcends its technical nature, representing a 

profound dedication to excellence that characterizes the ever-evolving landscape of artificial 

intelligence. 

As we delve deeper into the intricate world of neural network training, gradient descent remains not 

only a powerful tool but also a testament to the unwavering commitment to pushing the boundaries 
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of what is possible. Its legacy continues to influence the trajectory of artificial intelligence, shaping 

the future of innovation and discovery in this dynamic field. 
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