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1. Introduction 

In recent years the world is going through the so-called Fourth Industrial Revolution, commonly 

known also as Industry 4.0, which sees the advances of digitalization as its driving force. Information 

technology has become a prerogative in every field, and it is enabling year after year to make all kinds 

of work easier and more efficient. Artificial Intelligence (AI) has become a widely discussed topic, 

leaving even insiders wondering how far its applications can go and how much it will change the 

labour world known today. These prominent AI systems often rely on the field of data science, which 

through complex statistical algorithms manage to learn from these data and work out answers to the 

tasks they are asked. It is not surprising that data science has become one of the most popular and in-

demand fields, offering innovative solutions to an innumerable amount of problems. 

As new technologies advances and digitalization pervades every aspect of our lives, as it is obvious, 

the potential risks to face in the digital world have also increased, and this is why one of the other 

fields that is having great interest is cybersecurity. There are many aspects to keep under control, 

from the correct functioning of technological infrastructures to the protection of personal data, and in 

some of these tasks, data-driven systems such as machine learning algorithms can play a crucial role. 

Organizations are just starting to see the potential advantages of these technologies. Consequently, 

machine learning and artificial intelligence are receiving increasing attention in the field of 

cybersecurity. Data-driven algorithms can be used to detect, identify, and react to threats, enabling a 

considerably faster response time, even real-time, and reducing the possibility of significant harm. 

AI-enabled systems can spot trends in data and predict potential outcomes, enabling proactive threat 

detection and the development of effective countermeasures. For instance, AI-based systems may 

search for system and network vulnerabilities as well as identify user behaviour anomalies that may 

be signs of criminal activity. 

In addition to detection and identification, machine learning and AI can be used to automate several 

of the time-consuming and laborious cybersecurity processes, such as security incident response. 

Processes can be automated to increase efficiency, cut costs, and free up resources for more 

demanding tasks. AI-powered systems can be used to examine historical events in order to find new 

attack vectors and trends, serving as the basis to new strategies and countermeasures. Data science 

can also help an organization's security posture overall by giving it more precise information and 

making it simpler to administer. Moreover, AI-based systems can generate reports, and warn 

businesses about potential hazards or harmful conduct. 
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This work examines a possible scenario where data science and cybersecurity are interconnected. A 

dataset of network traffic will be worked on using machine learning algorithms with the goal of 

developing an Intrusion Detection System (IDS). An IDS is a hardware or software technology 

designed to alert network administrators when potential threats or attacks are detected, assisting them 

in responding more quickly to prevent or minimize damages. After the system for detecting suspicious 

traffic has been developed, it will be tested performing a simulation of data poisoning, a cyberattack 

involving deliberate feeding of machine learning algorithms with malicious data, in an attempt to 

invalidate the models. 

This scenario is particularly relevant to study, due to its high likelihood of occurrence and its 

applicability to the Internet of Things (IoT) area: IoT defines a vast network of physical devices, 

including computers, vehicles, appliances, and other items that communicate one another and with 

other systems via the internet, though physical sensors and data exchange. These devices might be 

anything, from wearables and smart homes to smart cities and industrial equipment. As the prevalence 

of IoT devices increases, so does the need for robust cybersecurity measures to defend against 

cyberattacks. As these devices communicate among them through the exchange of huge quantity of 

data in a network, one of the most popular ways though which IoT systems defend themselves are 

intrusion detection systems, and since many of these systems are built through machine learning and 

artificial intelligence, even though their purpose is precisely to identify anomalies, they are 

susceptible to data poisoning. 

This study aims to assess the effectiveness of machine learning in detecting cyber-attacks and its 

resilience to another type of cyber vulnerability. By providing some examples in specific 

environments, such as the IoT descripted above, it will be then feasible to draw the required 

conclusions to identify practical solutions to implement, given the importance of the current network 

of these types of devices and the approaching threat. A general scheme of the different points included 

in this work are represented in Figure 1. 

In order to provide a basic framework for the creation of an IDS by machine learning and test its 

resistance to malicious data infiltration, this paper will focus on investigating the aforementioned 

scenario. It will be structured in several stages, carrying out the practical work on Python and 

analysing the outcomes with the appropriate measures; in addition, in the final sections of the work 

different methods of prevention against malicious data modification will be studied, to analyse their 

advantages and limitations. With the expectation of positive findings, this work will be relevant to a 

wide range of increasingly typical circumstances in contemporary cybersecurity. 
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1.1. Summary 

In a world currently undergoing pervasive digital transformation across various industries, Artificial 

Intelligence (AI), and the broader domain of data science, have emerged as highly requested 

disciplines, as they offer innovative solutions to a multitude of challenges. Concurrently, with the 

rapid technological advancements and widespread digitalization, the associated risks in the digital 

world have expanded significantly, and to effectively manage the critical aspects of these novel 

systems, the field of cybersecurity has also gained substantial importance. Data-driven systems, such 

as machine learning algorithms, can assume a pivotal role in addressing various cybersecurity tasks, 

such as attacks identification, proactive threat response, and process automation. 

This study delves into a plausible scenario in which data science and cybersecurity intersect, 

leveraging a dataset of network traffic to construct an Intrusion Detection System (IDS) designed to 

identify potential cyber threats, achievable through classifications. The system's resilience is then 

tested against diverse variations of the dataset, simulating data poisoning, an attack involving the 

deliberate injection of malevolent data to undermine machine learning models. This scenario holds 

relevance within the context of the Internet of Things (IoT), a network of interconnected devices that 

frequently employs IDS technology for self-defence, while simultaneously facing vulnerability to 

data poisoning attacks. Subsequently, after conducting practical simulations in Python, this study 

explores potential preventive measures against data poisoning. 

The second chapter of this work conducts a comprehensive review of technical literature concerning 

IDSs and data poisoning, aiming to provide a comprehensive understanding of the current state-of-

Figure 1: Conceptual framework 
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the-art of these systems and attacks. The analysis of pertinent research papers, including reviews and 

surveys, reveals that contemporary IDSs exhibit high efficiency in monitoring network traffic and 

detecting malicious activities, frequently employing complex algorithms, such as custom ensemble 

models and deep learning techniques. One review focuses on scenarios involving the deployment of 

IDSs within IoT environments, emphasizing their appropriateness due to the distributed nature of 

these infrastructures, as also showed in two articles exploring the branches of mobile devices and 

critical infrastructures, both closely tied to IoT, and susceptible to elevated threat exposure. A 

common challenge highlighted in the development of machine learning based IDSs is the imperative 

need for quality data, and for this reason the UNSW-NB15 dataset, a repository of network traffic 

encompassing both normal and malicious activities, developed for research purposes, has gained 

substantial popularity. The literature review not only addresses the dataset's features but also explores 

some of its noteworthy applications. 

The subsequent section of the literature review examines data poisoning attacks. Here, the analysed 

articles encompass surveys and studies explaining various methods through which these attacks can 

be executed, highlighting their danger as they can be applied to any algorithm, causing them to make 

harmful decisions. These works also explores several preventive measures against data poisoning, 

which are further explored in the subsequent chapter titled "Preventive Measures". Furthermore, some 

of these studies present again scenarios involving IoT, elucidating how these networks are particularly 

susceptible to adversarial attacks due to the presence of multiple vulnerable data access points. 

Having framed the literature pertaining to these two facets of cybersecurity and identified some 

primary areas for further exploration, the third chapter of this work defines its principal objectives, 

encapsulated in the following research questions: 

How good are the performances of machine learning and deep learning models in an IDS 

classification task? How much does their performance change between just detecting suspicious 

activity or recognising the type of attack in progress? 

What is the impact of a simple data poisoning simulation on these models? How much do their 

performances change according to the different methods and the several intensity levels of poisoning? 

What preventive measures against data poisoning can be implemented in the construction of this type 

of IDS? What are their advantages and limitations? 

The “Methods” chapter reviews in detail the code essential for conducting this study, categorizing it 

into various sections that elucidate the different procedural steps. Initially, an explanation of the 

dataset is provided, which includes a simulation of realistic network traffic, encompassing numerous 
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simulated attacks, from which are derived numerous features, covering fundamental traffic 

information, content-related characteristics, network flow attributes, and two label columns utilized 

for binary and multiclass classification tasks. The original dataset is notably large, and for the 

purposes of this study, the train and test splits provided by the dataset's authors were employed, 

following some basic preprocessing procedures. 

The preprocessing steps in the Python notebook include the transformation of all instance values into 

finite values and the conversion of categorical variables into numerical equivalents through ordinal 

encoding. Subsequently, a correlation matrix in the form of a heatmap is generated to identify factors 

most correlated with the target variables. The two originally provided files are merged to create new 

train and test splits, with labels stratified to mitigate imbalances among observations across different 

attack categories, and in the final step, the resulting dataframes undergo z-score normalization for 

scaling purposes. 

The second section of this chapter is dedicated to model selection, explaining the algorithms 

employed in this study for constructing the IDS. Initially, two baseline models are employed for the 

two distinct tasks: a logistic regression for the binary classification and a decision tree classifier for 

categorizing different types of attacks. The models in which the comparison between these two 

classification tasks is observed are two ensemble models, specifically the random forest and extreme 

gradient boosting, alongside two deep forward neural networks build with three dense layers and loss 

functions tailored to the respective classification tasks. Each model, both during its initial 

development as an IDS and subsequently with the different data modifications, undergoes evaluation 

based on accuracy, and additionally, considering their application in classification tasks, precision, 

recall, F1 score, and AUC metrics are employed. Together with these metrics, plots depicting 

confusion matrices and ROC curves are generated. 

Within this study, two distinct methods are employed to simulate poisoning attacks on the dataset. 

The first method, referred to as "label flipping," involves shuffling a portion of the label column: this 

improper association of targets with each row results in incorrect algorithm training, and to assess 

and compare the consequences of this manipulation, increasingly higher fractions of the label 

columns are examined. The second method of data poisoning simulation acts on the predictors and 

employs a technique known as "feature modification", and in this study, this involves introducing 

random noise to ten variables within the dataset, with tests conducted at varying levels of noise 

intensity. 

The evaluation measures obtained from the models across different dataset variations are analysed 

and compared in the “Results” chapter. With the clean dataset, the best results are achieved by the 
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neural network for both binary and multiclass tasks; also the ensemble models achieve acceptable 

accuracies, specifically, the second-best results are obtained by gradient boosting in the binary task 

and by random forest in the multiclass task, although gradient boosting outperforms random forest 

on the training set accuracy. Notably, the second classification task appears considerably more 

complex than the binary task, as indicated by the overall lower results, for instance, the decision tree 

performs inadequately, while logistic regression yields acceptable outcomes. The discrepancies in 

precision, recall, and F1 values between the two tasks highlight the challenges posed by class 

imbalance in the dataset, particularly for certain attack types, that are not identified by the models. 

Furthermore, the higher precision values relative to recall values suggest an elevated number of false 

negatives. 

Subsequently, the results of models subjected to label flipping are analysed, employing different 

percentages of shuffled labels. This type of attack significantly impacts model accuracy, with 

performance degradation decreasing steadily as the proportion of mixed labels increases. Notably, 

neural networks are those heavily impacted by label flipping, performing less effectively than 

ensemble models when 90% of labels are flipped. The decrease in performance is also evident in 

precision, recall, and F1 values, especially in the multiclass task, while AUC remains relatively 

higher. 

The second method employed for poisoning simulation, feature modification with random noise, 

shows a significantly lower impact on model performance: increasing the range of random values 

added to the features does not exhibit a consistent pattern of performance decrease, and the changes 

in metrics are very small compared to the previous attack method. Ensemble models appear to be the 

most affected, but the decrease in performance is also minimal for them. Specifically examining 

training accuracies reveals that the models have adapted well to these changes, showing minimal 

changes, with slightly higher variations in the test set. Other classification metrics also show minimal 

changes, with lower values observed in the same instances where accuracies declined. 

In the chapter on preventive measures, various defence strategies against data poisoning are explored, 

with practical examples of their application. The foremost preventive measure in this context is data 

authentication, encompassing data integrity and authenticity verification, often obtained involving 

cryptographic techniques. Additional defences explored rely on data science methods and include 

outlier detection, data augmentation to enhance training dataset variability, adversarial training 

designed specifically to counter noisy data or data poisoning, and the use of a validation set, an 

additional split of the dataset instances used to enhance model training robustness; moreover, the 



10 
 

concept of human in the loop and digital twins are mentioned, to define a complete cybersecurity 

framework. 

The main conclusions drawn from this study are summarized in the seventh chapter. It is evident that 

machine learning facilitates the creation of an efficient IDS system, with ensemble models and neural 

networks proving suitable for the task; however, distinguishing between different types of attacks is 

significantly more complex than just detecting suspicious traffic. It is then clear that data poisoning 

through label flipping has devastating effects on model performance, while feature modification, as 

applied in this study, has minimal impact. Exploring potential preventive measures underscores the 

strides made in cybersecurity against data poisoning, thanks to data science techniques, however, 

each defence strategy has its limitations, necessitating organizations to assess their risks and integrate 

multiple strategies into their defence systems. 
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2. Literature Review 

There is a vast amount of technical literature in the computer science field on the technologies that 

are the subject of the analysis in this work. The aim of this section is to frame the state of the art of 

both IDS, with a focus on those built with machine learning and their usage in IoT, and data poisoning, 

with its major risks and potential safeguards. 

 

2.1.  Intrusion Detection Systems  

Intrusion detection systems are a vital component in protecting communication networks due to their 

ability to monitor network traffic and spot any harmful or unauthorized activity within an IT 

environment. IDSs operate by examining all incoming and outgoing traffic to spot trends that might 

indicate malicious behaviour. They may accomplish this task by evaluating network traffic in 

comparison to a set of pre-established guidelines or standards that specify what kind of activity is 

normal or suspect. The system should then immediately notify the administrator of a potential 

intrusion whenever it detects any abnormal activity. 

In a comprehensive review, Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin and Kuang-

Yuan Tung (2013), provide an in-depth analysis of different IDSs available, presenting their features, 

architecture, and limitations. The aim of the authors was to provide a structured approach to analyse 

the IDSs, focusing on the methods used by the systems, that could be grouped in three areas: signature 

based, anomaly based, or specification based. 

Given their purpose and operating way, with proper data collection, an IDS can be constructed 

through a classification task operated by machine learning algorithms. This approach was explored 

by Hongyu Liu and Bo Lang (2019), in a review of 115 papers on the application of deep learning 

and machine learning techniques for the synthesis of IDSs. The authors divided the publications into 

three groups, namely supervised learning, unsupervised learning, and deep learning, and examined 

the contributions made by each category to the field. The results shows that supervised learning is the 

most popular approach, while for unsupervised techniques there is less literature even if the authors 

identified it as a promising direction for further development; deep learning is recently gaining 

popularity due to their ability to handle large amount of complex data, even if computationally 

expensive. The dependency of these techniques on the quality and quantity of data for the specific 

situations is still an issue. 
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Another paper, with an approach similar to the previous one but considering more complex 

techniques, is the work by Dilara Gümüşbaş, Tulay Yıldırım, Angelo Genovese and Fabio Scotti 

(2020); the authors discuss three types of databases used in IDSs: Packet-level databases, which focus 

on capturing individual data packets exchanged in a network, Flow-level databases, focusing on 

collecting flow statistics, such as the number of packets and bytes exchanged between hosts, and 

Host-level databases, that capture data at the endpoint, including variables such as the records of 

system logs and event logs. The paper discusses several deep learning methods, including 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), that seem to be 

very effective in identifying network traffic anomalies, while Autoencoders (AEs) have great 

performance in anomaly detection with compressed data. The main issues highlighted in the paper 

are data quality, high feature dimensionality and models’ interpretability. 

Therefore, according to the literature, it is possible to create excellent detection systems with machine 

learning, while keeping in mind how crucial it is to choose the best algorithm and data pre-processing 

methods. These methods come with numerous applications and the literature provides analysis of 

some of these uses in detail. 

The Internet of Things (IoT) has resulted in outstanding changes in the way we live, work, and 

communicate. However, with the increasing growth of connected devices comes an increase in 

security vulnerabilities. One of the most important aspects in protecting IoT security is detecting any 

malicious activity performed by possible intruders. Machine and deep learning-based intrusion 

detection systems are emerging as a potential remedy for IoT security challenges. Javed Asharf, Nour 

Moustafa, Hasnat Khurshid, Essam Debie, Waqas Haider and Abdul Wahab (2020) provide a 

systematic review of over 100 research papers, conference proceedings, and books published between 

2010 and 2020. The results show the differences in three different approaches to build an IDS: 

anomaly-based, signature-based, and hybrid detectors. Some issues in this context are represented by 

limited computational resources and unreliable network connectivity, but the authors provide some 

hints to overcome them, and propose as further directions the integration of IoT data with cloud 

computing and the use of federated learning for distributed IDSs. 

An interesting article focusing on a particular branch of IoT is that by Amar Amouri, Vishwa T. 

Alaparthy, and Salvatore D. Morgera (2020), that discusses the challenges of securing mobile devices, 

that have limited computational resources but are still, if not more, exposed to threats. A machine 

learning approach results suitable for this task, where the proposed system relies on a feature 

extraction module that collects data in an ordered way from the network traffic of the devices, to use 

then these data to classify traffic as normal or malicious. 
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One of the most recent publications in this field is by Andrea Pinto, Luis-Carlos Herrera, Yezid 

Donoso, and Jairo A. Gutierrez (2023), focusing on critical infrastructure, such as transportation 

systems or power grids, and the need for reliable and effective IDS to protect them from cyber-attacks. 

Here a summary of several machine learning-based IDS is provided, with a particular focus on 

ensemble models, with a complete review of their advantages and limitations. The authors highlight 

some of the major issues in these field, such as the lack of labelled datasets, data imbalances, and the 

need for real-time processing; they also stress how crucial it is to incorporate domain-specific 

expertise while creating these systems in order to increase their efficacy and accuracy. 

Another type of technology that is worth mentioning when discussing IDS are digital twins, virtual 

representations of a real-world infrastructure designed to reflect its behaviour, performance and 

characteristics in a highly detailed and dynamic manner. These systems are increasingly being 

implemented as fundamental cybersecurity tools, as they offer great advantages in managing the risk 

environment of complex systems, as explored by Andrea Salvi, Paolo Spagnoletti and Nadia Saad 

Noori (2021), proposing a model to provide cyber critical infrastructure’s actors with situational 

awareness, a common understanding of incidents and a greater ability to respond. Other industries, 

with the advent of digitalization, are also using AI based digital twins as their main defence measure, 

integrating IDS systems into these models, as shown in the industrial control system framework 

proposed by Seba Anna Varghese et al. (2022) 

According to many of these publications, researchers face an issue in finding good data to work with 

in order to create an effective IDS: for this reason, there exist some public collections that can be used 

for research purposes, and one of the most comprehensive and popular, the UNSB-NB15 dataset, will 

be used in this work. The UNSW-NB15 dataset is a network-based intrusion detection system (NIDS) 

dataset consisting in a collection of network traffic that includes both normal and malicious activity, 

and it was developed by The University of New South Wales in Sydney. The dataset contains 2.5 

million network flows and 49 network attributes (such as source and destination IP addresses, port 

numbers, packet size and so on). The malicious traffic in the dataset contains a variety of attacks, and 

each observation is labelled as normal or as the attack type it indicates, allowing for a supervised 

learning approach. The complete description of its features and the process to create the dataset can 

be found in the paper “UNSW-NB15: a comprehensive data set for network intrusion detection 

systems (UNSW-NB15 network data set)” By Nour Moustafa and Jill Slay (2015). 

The UNSW-NB15 dataset is an important resource for developing and testing NIDS algorithms and 

approaches, and there are consequently many articles showing works on it. The authors of the dataset 

themselves, Moustafa, Nour, and Jill Slay (2016), present an evaluation of IDS built on the NB15 in 
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comparison with a previous dataset, the KDD99, showing that it is more updated in term of attack 

types, but also more challenging. The authors in subsequent years continued to use the dataset in 

innovative research methods related to NIDS, explaining in some of these works further details of the 

dataset and presenting interesting application such as: “Novel geometric area analysis technique for 

anomaly detection using trapezoidal area estimation on large-scale networks.” (Moustafa, Nour, et 

al., 2017), “Big data analytics for intrusion detection system: statistical decision-making using finite 

dirichlet mixture models.” (Moustafa, Nour, et al., 2017), “NetFlow Datasets for Machine Learning-

Based Network Intrusion Detection Systems.” (Sarhan, Mohanad, Siamak Layeghy, Nour Moustafa, 

and Marius Portmann, 2020). 

Other studies show how the dataset is suitable for analysing IoT contexts. The paper again by Nour 

Moustafa, et al (2018) adapt the NB15 to this purpose by proposing a new set of statistical flow 

features that capture the unique characteristics of IoT traffic. The results show that the proposed 

ensemble model as a combination of some popular machine learning techniques (namely decision 

trees, neural networks, and support vector machines), trained with those data outperforms other state 

of art IDSs. Another specific issue investigated through these data, for which was necessary to 

manage challenges such as the heterogeneity of IoT devices and the lack of standardization in their 

protocols, is presented in the paper by Nickolaos Koroniotis, Nour Moustafa et al. (2017). Here, again, 

classification via machine learning models, along with suitable pre-processing and feature extraction, 

results effective, detecting botnet activities in the network traffic, and the study accomplish to provide 

a framework for this scenario of network forensic. 

 

2.2. Data Poisoning 

Data poisoning poses a growing challenge for machine learning and artificial intelligence systems. 

This kind of attack happens when malicious actors deliberately inject false or harmful data into a 

system, usually with the purpose of altering the results. Data poisoning can lead to incorrect 

conclusions, making the models useless, and in worst cases even to system failures. In whatever 

context the machine learning system operates, if carried out in such a way that corrupted data are not 

easily distinguishable from others and are thus taken into account in model training, data poisoning 

can be a huge threat: harmful decisions (if unfiltered) are not a potential danger only to researchers 

or companies, but to anyone. For example, an AI-powered financial trading system could be fooled 

to purchase stocks at inflated prices, or an AI-powered medical diagnostic system could be duped 

into producing incorrect diagnoses. 
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The literature on this type of attack is extensive, and one of the first works to provide a comprehensive 

framework, focused on one specific machine learning model, is that by Battista Biggio, Blaine 

Nelson, Pavel Laskov (2012), in which they discuss the different kinds of poisoning attacks that can 

be conducted against Support Vector Machines (SVMs), not only data poisoning, but also model 

poisoning, concerned on modifying the parameters of the algorithm, and their exploitation as 

backdoor assaults. The article describes how an attacker might alter training data by adding or 

removing specific features, changing the labels of instances, or constructing synthetic examples; it 

also goes into the various methods an attacker could deploy SVMs to fool the classifier during the 

testing phase. This work proposes some safeguard measures, among the strategies discussed are 

outlier detection and adversarial training. The authors investigate the advantages and disadvantages 

of each strategy and formulate some recommendations for their application in real world 

circumstances. 

In the past decade, poisoning attacks have been a popular topic in research, and a recent and extensive 

overview is provided in the paper by Miguel A. Ramirez et al. (2021). This comprehensive review of 

the existing literature includes many attack scenarios, on different type of models and performed with 

different techniques, analysing their effect on classifiers. The survey takes in account also the defence 

mechanisms, showing that there exists many countermeasures based on different methods, among 

which it is possible to find robust training, input verification, outlier detection, model-based defences, 

and detection-based defences; however, the authors conclude by highlighting the need to develop 

more robust and effective defences, since the existing ones are not always effective and this kind of 

attacks are still a big threat. 

As introduced in the previous section, IoT networks connect many devices through the internet, 

allowing them to share each other huge quantities of data; this type of networks imply multiple 

vulnerable points that have access to data, often sensitive, and for this reason data poisoning 

represents a major threat for IoT. Poisoning attacks can occur in several ways, ranging from changing 

sensors’ records, adjusting control signals, or inserting fake data into the IoT system, and as outcome, 

the attack can compromise the accuracy and reliability of the information on which systems rely on, 

leading to wrong or harmful decisions. An interesting paper that explores, among other threats, data 

poisoning attacks on IoT is that by Murat Kuzlu, Corinne Fair, and Ozgur Guler (2020). This work 

discusses many cyberattacks that could be conducted on these networks and provides insights on how 

AI can help combat them by providing real-time threat analysis and identification of zero-day attacks. 

Besides illustrating the potential of AI to create more secure IoT ecosystems in the future, it explains 
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how AI models themselves could be used by attackers, and one of the attacks that can be performed 

in this manner is precisely data poisoning or false data injection. 

Another very informative paper that relates to the IoT field is by Gan Sun, Yang Cong, Jiahua Dong, 

Qiang Wangand Ji Liu (2015), exploring the context of federated machine learning, that entails 

training machine learning models with data from different sources without explicitly sharing them. 

This approach is especially effective in businesses where data privacy is critical, such as healthcare. 

Despite its advantages, federated machine learning is vulnerable to data poisoning attacks, in which 

malicious parties attempt to feed corrupted data into the system in order to compromise its integrity. 

The authors claim that these assaults can be more severe since the dispersed nature of federated 

learning makes detection and mitigation more difficult. To demonstrate the consequences of data 

poisoning attacks, after explaining different types of them, the authors take the example of a malicious 

actor using a target attack to change the model's prediction for a specific input, that is misclassifying 

a cancer diagnosis in healthcare. 

The last publication in this literature review, which is still about data poisoning in the IoT 

environment, has among its authors the creator of the UNSW-NB15 dataset, and part of the work is 

carried out with these data. The aim of Corey Dunn, Nour Moustafa and Benjamin Turnbull (2020), 

is to present a framework for integrating classical machine learning approaches with anomaly 

detection and more complex deep learning algorithms, resulting in more robust and long-lasting 

machine learning models that can withstand malicious attacks. The authors evaluate then the 

effectiveness of this framework by conducting several experiments and use a real world IoT dataset 

to demonstrate its applicability; their results show an enhancement in the resilience of models to data 

poisoning, along with mitigation of the possible collateral damages. 
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3. Research Questions 

This chapter defines the questions that this thesis will attempt to answer, in order to trace the progress 

of the analysis that will be carried out in this work and clarify the main aims.  

The initial aim of this work is to demonstrate how effective machine learning algorithms and neural 

networks are for developing an IDS by classifying internet traffic data as pertaining to normal or 

malicious activities. Along with the first stages of data selection and pre-processing, the use of 

appropriate models will be critical in ensuring the task's success. In machine learning, the model 

selection stage has a substantial impact on the results: the choice of an algorithm for a task determines 

the prediction accuracy, the ability to interpret and explain outcomes, and the efficiency in dealing 

with big datasets or real-time applications. Furthermore, each model has its own characteristics that 

makes them suitable for specific tasks, and other aspects such as the system's robustness against noise 

and outliers, generalization capabilities to previously unseen data, and compatibility with certain data 

features are all affected by model selection. Model selection is even more critical when developing 

an Intrusion Detection System: the IDSs’ domain requires models capable of processing and 

analysing massive volumes of network traffic data in real-time while reliably discriminating between 

regular and malicious activity. It is critical to use Machine Learning and Deep Learning models that 

have high classification capabilities, solid feature representation, and the capacity to handle dynamic 

and developing attack patterns. 

In this work, two different classification tasks will be carried out: The first is a binary classification, 

therefore a task that involves classifying instances into one of two exclusive categories, in which the 

model's output typically represents the probability or confidence of belonging to one of the two 

classes; here, the goal is to predict the binary outcome of “normal activity” or “attack activity”, 

encoded in 0 or 1 values. In the dataset used for this work, there is also a more specific label column, 

specifying for the attack instances which kind of cyber threat is at stake; therefore, the second task is 

a multiclass classification, meaning that it involves classifying instances into one of many mutually 

exclusive categories, so to assign each single instance to the most appropriate class out of the normal 

activity or the possible cyber-attacks. 

The first part of the work is therefore concerned with the training and fitting of four models, with the 

goal of performing the two aforementioned classification tasks on the dataset. The algorithms used 

and the measures to evaluate their performance will be explained in the following chapter, and the 

research question to which the analysis tries to answer can be summarized as follows: 
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How good are the performances of machine learning and deep learning models in an IDS 

classification task? How much does their performance change between just detecting 

suspicious activity or recognising the type of attack in progress? 

As anticipated in the previous chapters, the second main aim of this work is to simulate a data 

poisoning attack on the previously trained algorithms and evaluate its effects. Data poisoning attacks 

attempt to modify training data in such a way that the integrity and performance of machine learning 

models are compromised; the primary goal of this kind of attack is to make the models worthless, 

compromising their performance and accuracy; a model compromised in this way will no longer be 

able to obtain good results for its purpose, making it unreliable and harmful, as it might lead to 

incorrect conclusions.  

Evaluating the effects of a specific kind of data poisoning attack is fundamental to have an idea of 

which and how serious the vulnerabilities of a machine learning system are, especially in a world 

where these are increasingly being used in particularly sensitive contexts, such as computer security 

in this examined scenario. Knowing the magnitude of a risk is always at the core of the process that 

leads to the development of appropriate defences against it. By building the intrusion detection system 

with different methods, it will be interesting to see how proportionally sensitive these algorithms are 

to a certain attack, always evaluating this with the proper measures.  

By means of data poisoning simulations with two different poisoning methods, both of which have 

been tested under increasingly difficult circumstances by leveraging some parameters that aim to 

incrementally decrease the effectiveness of the classifiers, it will be possible to precisely monitor 

their effect using the evaluation measures. The second key goal of this work can thus be summed up 

in the question: 

What is the impact of a simple data poisoning simulation on these models? How much do 

their performances change according to the different methods and the several intensity levels 

of poisoning? 

This work, and especially its practical component, intends to demonstrate how data science 

approaches is applicable in the field of cybersecurity, while also being capable to produce harmful 

situations. Once the results will be obtained, it will be necessary to investigate how, once again using 

data analysis techniques or manipulations during algorithm training, the danger generated by a 

potential data poisoning attack might be reduced. In the final section of the thesis, some of the most 

typical preventive countermeasures, employed to ensure the proper operation of an intrusion detection 

system, and related with the works examined in the literature review will be discussed. The last 
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objective of this work is therefore to understand the functioning of these possible defences, and to 

frame their usage is some possible real-life scenarios, as summarised in the question: 

What preventive measures against data poisoning can be implemented in the construction of 

this type of IDS? What are their advantages and limitations? 
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4. Methods 

The code required to carry out this study will be reviewed in detail in this chapter, beginning with the 

dataset and progressing through the algorithms employed, as well as the assessment measures and 

data poisoning approaches. The technical aspect was carried out entirely on Python notebooks, which 

can be found in this GitHub folder: 

https://github.com/DavideRosatelli/Intrusion-Detection-System-Data-Poisoning/tree/main 

Much of the technical work is focused on the training and testing of machine learning models and 

neural networks, for which Google Colaboratory Pro was utilized, which sped up the process by using 

a TPU and extensive RAM. 

 

4.1. Dataset Description and Preprocessing 

The UNSW-NB15 is a large cybersecurity dataset, created by researchers at the University of New 

South Wales (UNSW) in Australia to aid in the evaluation of IDSs and anomaly detection methods. 

Its complete description can be found in the paper “UNSW-NB15: a comprehensive data set for 

network intrusion detection systems (UNSW-NB15 network data set)” (Moustafa, Nour, and Jill Slay, 

2015). The dataset was produced in a controlled environment by simulating realistic network traffic 

and by integrating normal network operations and numerous simulated attacks. To generate this 

traffic, the researchers employed the IXIA PerfectStorm tool, which faithfully simulates real-world 

network activity, and then used multiple network assaults to generate instances of malicious traffic. 

The dataset is the outcome of capturing and recording this mixed network traffic, which provides a 

diversified and complex set of network flows. 

The dataset contains a diverse variety of features derived from network packets and logs, that can be 

categorized as follows: 

 Basic features: These features capture fundamental information about network traffic, such as 

source IP address, destination IP address, source port number, destination port number, 

protocol type (TCP, UDP, ICMP), packet length (in bytes), and timestamp. 

 Content-related features: This category includes features related to the content of network 

packets, such as payload data in hexadecimal format, flow duration, packet count, and byte 

count in a flow. 
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 Traffic features: These features focus on characteristics related to network flows, such as the 

number of packets or bytes in forward and backward direction, and the number of specific 

flag packets (e.g., FIN, SYN, RST, PSH). 

 Labels: There are two label columns in the dataset, making it suitable for supervised learning. 

Each instance is classified as ‘Normal’ or ‘Attack’ in the first label column, while in the 

second column the attack type is specified, and the dataset contains nine different cyberthreats. 

The UNSW-NB15 dataset contains a total of 2,540,044 instances, stored in several csv files that are 

available to download for research purposes; the full dataset is very big, and for this reason the authors 

provide also a subset of the full dataset already split into train and test samples, that are big enough 

to fruitfully train machine learning algorithms, and in this work those two files are used. 

The dataset is therefore very well structured, and no great effort was required for the preprocessing 

part. There are no missing values in the dataset, but it was necessary to transform all instances into 

finite values, as some had values in a form unsuitable for algorithms. The libraries used to manipulate 

the data in this code section were Pandas and NumPy. 

Almost all the variables are in numerical form (either integer or floating-point), except for the 

columns proto, state, service and the second label attack_cat; the former, indicating the protocol, has 

been eliminated, while all the others have been mapped to numbers using an ordinal encoding, via 

Python dictionaries. 

Another crucial step in the preprocessing phase is to determine the most significant variables for the 

task at hand, and a correlation matrix is a straightforward way to do this. Correlation is a statistical 

metric that expresses how closely two variables are associated, and so how much when one changes, 

the other is statistically likely to change, even if there is no direct cause-effect relationship. The 

variables most correlated to the target are generally the most important for machine learning models, 

and to identify them, the correlation matrix is represented by a heatmap in this work, where the names 

of the variables are on rows and columns, and the cell corresponding to their intersection is their 

correlation value, indicated by a dark colour tending to blue if low, and a brighter colour tending to 

yellow if high. The result, easily achievable with Python through the library Pandas, is shown in 

Figure 2. Identifying the factors that are most correlated with the target will be also critical for a 

specific type of poisoning simulation, as shown in the following sections. 
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Analysing the dataset, specifically the two train and test files provided by the authors, it is clear that 

these are not optimally balanced, most likely because the test is intended to be used as a final test 

after training the algorithms on the entire dataset: in fact, this contains mostly instances classified as 

attacks, and the number of observations is higher than in the train, which appears instead to be a 

random sample of the entire dataset. To avoid over- or underfitting due to this unusual distribution, 

the two dataframes were merged and then separated again in a train (70% of the observations were 

chosen at random, for a total of 172630 rows) and a test set (30% of the observations were chosen at 

random, for a total of 85028 rows), with labels’ stratification. As a result, the two target columns were 

separated, yielding a total of six different dataframes that were stored externally as csv as follows: 

X_train, X_test, y_train, y_test, y_multi_train, y_multi_test 

Figure 2: Correlation Matrix 
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The “X” family of dataframes contain all the decision variables, while the first two “y”s dataframes 

will be used for the binary classification of ‘Normal’ and ‘Attack’, and the “y multi” dataframes will 

be used for the multiclass classification in which also the attack category should be identified. To be 

aware of the distribution of the classes, especially in the test set in order to have the values to compare 

with the confusion matrices of the models, that will be explained later, using a simple function the 

number of occurrences for value in the set y_test and y_multi_test were printed, showing that there 

are 30685 instances of normal traffic and 54343 instances of attack classes, divided in:  

- 19493 Generic  

- 14798 Exploits 

- 7903 Fuzzers 

- 5312 DoS 

- 4653 Reconnaissance 

- 850 Analysis 

- 771 Backdoor 

- 509 Shellcode 

- 54 Worms  

In order to get a general idea of the values’ distribution in the variables of the dataset, they were 

represented one by one by line plots. These graphs, given the big number of values, are not very 

informative, but they are enough to note that the distributions of the features are very different. 

Furthermore, it is useful to standardize the magnitude of the values represented in the features as 

many statistical learning classifiers are sensitive to different features having different scales, yielding 

an implicit weighting phenomena. Feature scaling will also be important to carry one of the poisoning 

strategies described in the next sections. For these reasons, the final stage of preprocessing is to 

normalize the dataset using the StandardScaler provided by the Scikit-Learn library. Standardization, 

also known as z-score normalization, is a critical preprocessing step, especially when working with 

algorithms that are sensitive to feature scale, such as gradient descent or distance-based algorithms. 

The StandardScaler first calculates the mean (μ) and standard deviation (σ) of each feature 

independently; then, each feature is standardized by subtracting the mean and then dividing by the 

standard deviation. The formula for standardization is given by: 

z = (x - μ) / σ 

where x is the original feature value, z is its standardized value, μ and σ are the aforementioned mean 

and standard deviation of the feature itself. The StandardScaler returns a modified version of the 
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dataset after applying the formula to each feature, yielding features with zero mean and unit variance. 

After this step, the line plots of all the features show generally a better distribution of values, as can 

be seen in Appendix A. 

 

4.2. Machine Learning Models and Neural Network 

In order to build the intrusion detection system, and subsequently put it to the test with the data 

modified by the various poisoning techniques, several algorithms were used, which will be explained 

in this section, starting with the simplest and most interpretable, and proceeding with the most 

complex ones. 

The model used as baseline for the binary classification task is a logistic regression, a regression 

analysis that is specifically designed for predicting the probability of an instance belonging to one of 

two possible classes. Mathematically, a sigmoid or logistic function is used by the model, that is: 

f (z) = 
ଵ

ଵା௘ష೥
 

where z = ω0 + ω1x1 + ω2x2+ … + ωnxn 

This z is a linear combination of the input features and their associated weights, plus the bias term 

ω0; the output of the function represents the estimated probability of an instance to belong to positive 

class, and it is therefore assigned to it if above the 0.5 threshold. The logistic regression is widely 

used due to its interpretability and leads to good accuracy when the relationship between the features 

and the target variable is not overly complex; this type of model can easily be implemented in Python 

via the Scikit-Learn library. 

A logistic regression is the typical baseline model for a classification task, but it is only suitable for 

binary outputs; a simple algorithm that is instead suitable for any type of supervised output, and will 

therefore be considered as the baseline for the multiclass task in this work, is the decision tree, which 

in this work will be implemented using the DecisionTreeClassifier class of Scikit-Learn to categorise 

the different cyber-attacks in the dataset.  

A decision tree classifier can be imagined as a flow chart starting from the root node and progressing 

down the leaf nodes, in which each internal point entails a decision on which path to follow, based 

on one of the features’ values. The algorithm chooses the factor that best separates the data into 

various classes at a given node, with the goal of selecting features’ values that result in the best 

feasible separation of classes at each step, which is accomplished using loss methods such as 
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information gain and Gini impurity. Building a decision tree entails iteratively splitting data into 

subgroups, the splitting process continues until a requirement is met, in the code of this work the trees 

were set with a maximum depth of 10. Decision trees are widely used models due to several 

advantages, such us their interpretability and the ability to handle both categorical and continuous 

features; however, they are prone to overfitting and not suitable for complex tasks, and to cope with 

these limitations, alternative machine learning algorithms known as ensemble tree methods were 

developed, of which the two algorithms discussed below are part. Ensemble tree methods are 

powerful machine learning techniques that combine multiple individual decision trees to create a 

more robust and accurate predictive model, widely used for both classification and regression tasks. 

In this work, for both the binary and the multiclass task, random forests and extreme gradient boosting 

will be used. 

A random forest is an ensemble method that builds several decision trees during its training, to 

aggregate then their output and make the final prediction. Random forest employs a technique known 

as bootstrapping, that entails generating many random subsets of the training data with replacement, 

to train with each of them an individual decision tree. At the end of the training, the class that receives 

the most votes from the individual trees is the final prediction, as showed in Figure 3. Furthermore, 

a subset of features is chosen at random from the whole set at each split point of the decision trees, 

to prevent a single variable from dominating the decision-making process and encourage each tree to 

evaluate other features. In Python, this work used the RandomForestClassifier provided in the 

package Scikit-Learn, aggregating the results of 30 decision trees each with a maximum depth of 10. 

Random forests provide several advantages, such as robustness to overfitting and good handling of 

Figure 3: Random forest process scheme 
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noisy data, and it will be therefore interesting to compare its results with another popular ensemble 

method. 

The XGBoost or extreme gradient boosting is an advanced ensemble learning method, enhancing the 

gradient boosting algorithm, with the main idea of building several decision trees sequentially, where 

each new tree adjusts the weights provided by its predecessor, with the aim of optimizing an objective 

function. A simplified architecture of this model is showed in Figure 4. 

To minimize the objective function, XGBoost employs gradient descent optimization: it computes 

the gradients of the loss function with respect to the model's predictions and modifies the model's 

parameters (trees’ weights) to minimize the loss. Differently from the random forest, the XGBoost 

considers all features at each split in the trees, assigning different weights for them based on their 

importance, and the final predictions are obtained by updating the contributions of all the individual 

trees. The package xgboost allows users to choose the objective function in its Python 

implementation, and in this study, the logistic function was used for the binary task, while a softprob 

function, a modified version of the softmax, which will be further explained later, was used for the 

multiclass task. This model is popular due to its ability to generally get high accuracy, and its 

flexibility in loss functions, but respect to the algorithms seen above, is less interpretable. 

 

 

Figure 4: XGBoost process scheme 
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A feedforward neural network is the final type of algorithm employed in this work, and it was used 

for both the binary and multiclass tasks. A feedforward network, also known as a dense layer neural 

network or a multi-layer perceptron (MLP), is a fundamental structure in deep learning. It is made up 

of numerous layers of interconnected neurons (nodes) structured in a sequence, with each neuron in 

a layer is connected to all neurons in the preceding and following layers, as showed in Figure 5.  

In Python, neural networks are easily implemented through the Keras library, which makes it possible 

to order layers of different types and specify numerous hyperparameters. For both tasks, the networks 

are composed of 4 dense layers: the first two layers composed by 128 neurons each, and the next two 

by 64 neurons each, while the output layer will have size 1 for the binary case and 10 (i.e., the number 

of classes) in the multiclass case. Each dense layer needs an activation function, which for the input 

and hidden layers is in this case a rectified linear unit (ReLU), widely used because it is simple but 

effective due to its property of introducing non linearity in the relationships between the data; as far 

as the outputs are concerned, first a sigmoid activation will be used, the logistic function that maps 

input values to the range (0, 1), commonly used for binary tasks, while for the multiclass task a 

softmax will be used, an extension of the sigmoid function that generalises to multiple classes, that is 

mathematically: 

 

 

Figure 5: Feedforward neural network process scheme 
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where sj are the scores inferred by the network for each class in C. 

The loss function and the optimiser are the other two key parameters that must be set in a neural 

network. The loss function assesses the difference between the predicted outputs and the actual labels; 

it must thus be minimized and tailored to the type of work; for instance, in the first task, it is used a 

binary cross-entropy, while in the second, it is a categorical cross-entropy, that mathematically read 

as: 

Binary Cross-Entropy   

 

Categorical Cross-Entropy   

 

where ti and si are the probability score for each class in C. 

The optimizer, on the other hand, is the algorithm that updates the network weights to minimize the 

loss function, and in both tasks, the Adam optimizer, short for "Adaptive Moment Estimation" is 

used, which is popular due to its fast convergence, robustness to noisy gradients, and relatively low 

memory requirements. All the neural networks in this work are trained with a batch size of 128, and 

for 100 epochs, with a call-back required to stop the model when the loss increase. 

Given the non-linearity of the dataset, comprehending a big ecosystem of features, the classifications 

required in this work will surely be more accurate when performed by algorithms with a high level 

of complexity. For this reason, the two models described at the beginning of this section, namely the 

logistic regression and the decision tree, will be used as baseline to observe the behaviour of a simple 

algorithm in the binary and multiclass task, while the main focus of the analysis, entailing the 

comparison of the results in both the tasks, are the two ensemble models and the feedforward neural 

network. 

 

4.3. Evaluation Techniques 

Once the different machine learning models have been trained in the various data configurations that 

will be used throughout this work, it will be crucial to evaluate their performance. In order to have a 

comprehensive understanding of the model's performance and its strengths and weaknesses in 

different aspects of the classification tasks, various evaluation measures will be used; those measures 

are defined and explained in this section and will be used to compare the computational results, and 
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thanks to these comparisons, conclusions can finally be drawn, trying to answer the research 

questions. 

In machine learning, the basic, fundamental, and widely used evaluation metric is accuracy, 

measuring how well a specific model performs in its task, so, if as in this case the task is a 

classification, it measures how much a model correctly predicts the class labels of the input data 

points. Formally, accuracy is the ratio of the number of correct predictions made by the model to the 

total number of predictions it has made. For instance, if in a dataset of 1000 observations the model 

can correctly predict 800 labels, it will have an accuracy of 0.8, or 80%, so the higher the accuracy, 

the better is the model’s performance.  

In a classification task another fundamental tool to evaluate the models, is the confusion matrix, a 

table with combinations of predicted versus actual values. In a binary classification scenario, the 

confusion matrix is a 2x2 table, organized as can be seen in Table 1, while in multi-class classification, 

it has more rows and columns, depending on the number of classes. The values inside the binary 

confusion matrix are interpreted as follows: 

 True Positive (TP) represents the number of positive instances correctly identified as positive; 

 False Positive (FP or Type 1 Errors) represents the number of negative instances incorrectly 

identified as positive; 

 True Negative (TN) represents the number of negative instances correctly identified as 

negative; 

 False Negative (FN or Type 2 Errors) represents the number of positive instances incorrectly 

identified as negative. 

 

Table 1: Confusion matrix scheme for a binary task 

 Predicted positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

 

The values in the confusion matrix are the baseline to compute many others evaluation metrics: 

accuracy itself, in a classification task, can be mathematically defined as: 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 
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As previously stated, accuracy is almost always used in model evaluation, but it is not always 

sufficient to understand how effective a model truly is at its classification task, and this work is exactly 

one of those cases: if the dataset is not well balanced, meaning that there are many more instances of 

one class than the others, the model may only be able to classify those correctly and still have good 

accuracy. In a situation involving a dataset as the one used in this work, if for instance 90% of the 

observations were normal Internet traffic and just 10% were attacks, an IDS could fail to recognize 

any attacks while still having a 90% accuracy. When the dataset is unbalanced, different metrics must 

be used to provide a clearer picture of performance. 

Precision, recall, and F1 score are important evaluation metrics used in classification tasks. They 

provide valuable insights into a model's performance, especially when dealing with imbalanced 

datasets, and they can be derived from the values in the confusion matrix; their definition is derived 

from a binary classification context, but they could be applied also in a multiclass context. 

Precision, also known as positive predictive value, assesses the model's accuracy in making positive 

predictions, estimating the proportion of true positive predictions out of all positive instances 

predicted by the model. A high precision score suggests that the model has a low false positive rate, 

which means it predicts fewer wrong positives, so the closer it is to 1 the better the model works. 

Precision is calculated mathematically as: 

Precision = TP / (TP + FP) 

Recall, also known as sensitivity or true positive rate, measures the capacity of the model to properly 

identify positive observations from the total number of actual positive instances in the dataset; again, 

the closer this value is to 1 the better the model works. Calculating the proportion of true positive 

predictions among all positive instances, it is determined mathematically like follows: 

Recall = TP / (TP + FN) 

The F1 score is the harmonic mean between precision and recall, mathematically calculated as: 

F1 Score = 2 * (Precision * Recall) / (Precision + Recall) 

The F1 score has a maximum value of 1 (with precision and recall both perfect) and a minimum value 

of 0. It is especially useful when there is a trade-off between precision and recall. For example, a 

model classifying most of the observations as positive while have a lower precision, due to the number 

of false positives, but an high recall, and the opposite can also happen with high precision and low 

recall indicating more false negatives. As a result, the F1 score represents a more balanced measure 

of model performance. 
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The last evaluation method used along the analysis, is still derived from the values in the confusion 

matrix, and it is a graphical representation of a classification model’s performance called “Area Under 

the Receiver Operating Characteristics Curve”, or AUC-ROC curve. The ROC curve plots the 

relationship between the true positive rate and the false positive rate as the classification threshold 

varies, meaning that the values on its axis are: 

y: TPR (recall) = TP / (TP + FN) 

x: FPR = FP / (FP + TN) 

The resulting curve can be graphically interpreted by stating that the nearest the elbow is at the top 

left corner, the better is the models performing; the scalar value resulting from the graph is instead 

the AUC, so the area under the curve, spanning from 0.5 (a random guessing) to 1 (a model with 

perfect discrimination ability). 

Throughout the Python code, all those evaluation metrics were provided by the library Scikit-Learn, 

using the function classification_report included in its metrics. By means of a few adjustments to the 

data objects and the use of other libraries such as itertools and yellowbrick, all of these have been 

calculated for each model and neural network. In the cases with more classes to identify, the measures 

of precision, recall, F1 and AUC are computed for each of the different classes, and the same applies 

to the confusion matrix which will have dimensions 10x10, as many as the total number of categories. 

 

4.4. Data Poisoning Techniques 

This section describes in detail the approaches used to simulate data poisoning, which, as said, is an 

attack in which the attacker attempts to introduce properly designed malicious samples into the 

training dataset in order to affect the model's behaviour. 

Two very distinct strategies will be employed in this work, both of which are simple but effective in 

demonstrating the influence of a data modification on model training. What will be done in both 

cases, in order to replicate a hypothetical real-life situation, is to make slight changes on the training 

set used to train the various models, so that their prediction accuracies decrease, leading to even less 

successful predictions on the test set. The key difference between the two methods is that the first 

will be applied to the labels of the training set, while the second will change the values of the features; 

both will be performed with multiple levels of intensity in order to monitor their effects by looking 

at the algorithms’ evaluation measures. 
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The first method to obtain a simulation of data poisoning is known as label flipping, which involves 

as main idea to change the order of the target column: as a result, the model will no longer have 

confident references, as the instances in the training set will no longer be associated with their true 

label, but with a different one. The ability to find suitable parameters that associate a given label with 

specific predictor values is what allows machine learning models to produce accurate predictions and 

classifications, therefore, associating improper targets with each row will lead to an incorrect training 

of the algorithm. In the real world, to carry out a cyber-attack of this nature, one must be aware of the 

structure of the dataset, specifically the target column, and have the ability to modify it separately 

from the predictors; modifying the target is one of the most direct, simple, and effective ways to 

compromise a machine learning system, and the alterations can be even more specific, in order to 

train the classifier to make the most incorrect decisions. 

In this work, the label flipping is accomplished in Python by simply shuffling a particular percentage 

of the label column. To examine and compare the consequences of this alteration, increasingly 

compromised dataset fractions will be examined, and all models will be retrained with the following 

percentages of randomly shuffled y_train: 15%, 30%, 45%, 60%, 75%, and 90%. The shuffling is 

obviously conducted on both the binary and multiclass label columns in order to run the analysis on 

all the previously descripted classifiers. 

The second technique investigated in this work to replicate data poisoning is known as feature 

modification, since the values of the predictors in the training set are changed rather than the labels. 

In general, this type of assault is less direct than the one described above, but it is arguably more 

subtle, and if executed correctly, it is both difficult to detect and highly successful at decreasing the 

model performance. An attacker who wishes to undertake feature modification must be aware of the 

structure of the dataset and possess the ability to identify what to modify in order to make these 

alterations difficult to detect while being effective. When working on predictors, the changes that can 

be made are numerous, and inserting specific values into some or all the variables can force the model 

to predict exactly what is desired; to reduce the overall performance of a classifier, however, changing 

the covariates’ values in a random manner should be sufficient.  

In this study, the ten most correlated variables to the target columns were chosen by looking at the 

correlation matrix (Figure 2), namely: 

service, sbytes, rate, sttl, sload, ct_state_ttl, ct_src_dport_itm, ct_dst_sport_ltm, ct_src_ltm, 

ct_srv_dst. 
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Then, to all the instances of these variables, a certain level of noise is added, meaning that their 

original value is summed with a random number within a certain range. To achieve an incremental 

level in the changes, the various classifiers were trained again more than once, testing different noise 

ranges, specifically, the ranges are between 0 and: 1, 2, 3, 4, 5 and 6; random numbers chosen within 

these ranges may seem small,  but all the variables were standardised in the preprocessing, therefore 

they had all originally a mean of 0 and a standard deviation of 1, and after this alteration many 

instances in the modified variables will therefore become outliers. 
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5. Results  

The acquired evaluation measures are analysed and compared in this section, after going through all 

the code stages and with a few hours of execution to train the models with the distinct altered datasets. 

First, the focus is the construction of the IDS, specifically the performance of the models trained on 

the legitimate data, with the aim to answer to the first research question. The first metric to consider 

is accuracy, which is provided separately for the binary and multiple classification tasks in Figure 6. 

The first observable result is that all models achieve good accuracy in the first task, in all the four 

cases higher than 90%. Looking at the values in the first plot, a little improvement in accuracy is 

shown as the complexity of the models grows, so first there is the logistic regression with 

approximately 0.9, then the two ensemble models with about 0.95 and 0.97, and finally the neural 

network with an accuracy score just below 0.98. The outcome acquired through neural learning is 

better, but it is not too dissimilar to that of gradient boosting, and so, in terms of computing time and 

complexity, the latter can also be a good alternative. 

 

 
Figure 6: Scatterplots of accuracies of the models in the IDS, divided for tasks 
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As far as the classification into several attack categories is concerned, given the more complex task, 

worse results are expected, but some models still reach acceptable accuracy here; by looking at the 

bottommost plot of Figure 6, it can be seen that the general trend is similar as in the previous graph, 

with a difference in the ensemble models, with the random forest performing slightly better than the 

boosting, but in general the scores grow together with the complexity of the algorithms, in this case 

even with a much wider discrepancy between the accuracies of the models: the decision tree does not 

reach an acceptable score, with less than 0.5, the ensemble models far exceeds it with scores of about 

0.8, and at the top there is the approximate value of 0.85 for the neural network. 

As explained in the evaluation measures section, accuracy alone is not enough to analyse the 

performance of a classificatory, especially in a problem of this kind. To assess the complete picture 

of how these models performs in identifying attacks, the confusion matrices and the ROC curves of 

all of them are visualized in the Appendices B and C, and all their classification metrics are reported 

in the Table 2 below. Here, all the values are truncated to the second decimal digit, and in the first 

column, the models used in the binary task are indicated with (b), while those used in the multiclass 

with (m). 

 

Table 2: Evaluation measures of the models in the IDS 

 
Accuracy 

(test set) 

Accuracy 

(train set) 
Precision Recall F1 score AUC 

Logistic Regression 0.90 0.90 0.91 0.88 0.89 0.96 

Random Forest (b) 0.94 0.95 0.94 0.94 0.94 0.99 

Xgboost (b) 0.96 0.99 0.97 0.96 0.96 0.99 

Neural network (b) 0.97 0.98 0.98 0.98 0.98 0.99 

Decision Tree 0.46 0.81 0.28 0.23 0.20 0.75 

Random Forest (m) 0.81 0.82 0.73 0.42 0.41 0.95 

Xgboost (m) 0.79 0.89 0.63 0.46 0.48 0.95 

Neural network (m) 0.85 0.87 0.72 0.55 0.59 0.97 
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In the table, the accuracy of the model is reported in two columns, indicating its score both for the 

train and test set. Regarding precision, recall and F1 score, a value for each of them is assigned to 

each predicted class, and the value reported in the table refers to the macro average of them, meaning 

that is does not take in account the number of observations in each class, but only the final value 

computed for each of them on the test set. Also, in the ROC curves the AUC is computed separately 

for each class, and again the resulting value reported in the table is the macro average of them, while 

the specific numbers for each class are reported in the plots within the code.  

Considering the complete set of evaluation measures, and looking also at the ROC curves, it is 

possible to conclude that in both tasks the ensemble models perform way better than the logistic 

regression or the decision tree, and among the two ensemble models, if considering the accuracy score 

on train, the gradient boosting outperforms the random forest; however, considering that the neural 

networks used here have a very simple structure and still get good results, deep learning methods are 

probably the most suitable for these tasks. When the accuracy values in the train and test sets are 

compared, it is remarkable to note that during the training phase the gradient boosting model 

outperforms the deep learning model in both tasks, but not in the test set, indicating that the neural 

networks are less prone to overfitting. Regarding the other classification metrics, their scores are 

generally lower in the multiclass task, but the discrepancy from the binary task for them is much 

bigger compared to the accuracies. Looking at the confusion matrices of the models in the second 

task, it is possible to understand that such low values in precision, recall, and F1 are due to the fact 

that the models fail in classifying many of the attack classes, especially those at the end of the matrix, 

and they assign to the majority of the instances the labels ‘Normal’ or ‘Generic’. Those 

misclassifications, that do not appear to follow a specific trend since each model has different classes 

with poor performance, are most likely due to a class imbalance, which means that there are not 

enough observations in the dataset for each class of attacks to allow the algorithms to classify them 

all; however, if taken all together as a generic cyber-attack, as in the binary task, the performances 

are good. The class imbalance also explains why accuracy scores stay high even when other metrics 

are not, since the classes with higher number of observations are correctly identified.  

One final detail to observe in those measures is that, in general, all the models have greater precision 

and lower recall, implying that the rate of false negatives is substantially higher than the rate of false 

positives. Looking at the confusion matrices again, these numbers may be better understood, since 

the models properly classify all non-attack occurrences but incorrectly classify many others; this 

behaviour can be again explained by the class imbalance in the dataset. 
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After evaluating the results of the models in developing an IDS, the same measurements produced by 

the algorithms when trained with the changed datasets will be analysed, in order to answer the second 

research question.  

To begin, label flipping with various percentages of the label column shuffled will be looked at as a 

poisoning method. Figure 7 shows scatter plots of the models' accuracies on the test set in binary 

classification, where each point represents the score at a specific flipping rate; is immediately 

noticeable that, except for few points in the ensemble models, the degradation of performance 

decreases steadily, meaning that as expected, by increasing the part of mixed labels, the models 

become less and less capable of producing accurate results. Furthermore, the overall trend in the 

graphs shows how the algorithms are less impacted by the attack in the initial levels, indicating a 

general resilience of machine learning to a small portion of wrong labels. 

The logistic regression, which set up the lowest accuracy among the models used in this task, appears 

to suffer less impact between the different levels, since its accuracy remains nearly identical between 

the flipping rates from 15% to 60%; in any case, this model trained with the most severe level of 

poisoning shows a decrease in accuracy of 26% when compared to the original one. The impact of 

the attack is proportionately greater in the more complex models, for instance, the score of 0.63, the 

lowest ever for binary classification, is obtained with 90% flipping by the neural network, and when 

compared to the deep learning accuracy value in this task with clean data, its overall decrease is 35%. 

The impact of the attack with more than half of the label switched is also very strong for the two 

ensemble models: under this attack, the gradient boosting performs worse than the random forest at 

low rates of flipped labels, but in the final level the boosting performs better, and these models reach 

unacceptable accuracies of 0.75 and 0.70, corresponding to a total decrease rate of 24% and 25%, 

respectively. 
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Figure 7: Scatterplots of accuracies of binary models with flipped labels 
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flipping 

Figure 8: Scatterplots of accuracies of multiclass models with flipped labels 
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Figure 8 show the same type of scatter plots for the models used in the multiclass task, where the 

trend of constant decrease in accuracy repeats itself, except for the decision tree and for a couple of 

points in the gradient boosting, where the accuracies scores in the test does not follow a strong pattern. 

The decision tree, on the other hand, behaves completely differently than the other models: its highest 

accuracy is obtained when 60% of the labels are shuffled, and it is interesting to note how here the 

model achieves a higher score than it did with the clean dataset; label flipping thus has an unusual 

effect on this model, as can be observed as well from the other points in its scatterplot, and this 

behaviour is most likely due to the fact that the model, given its simplicity, is in no case suitable for 

the task. In the more sophisticated models, as in the binary task, the impacts of this attack are 

disastrous starting from the 60% flipping rate. The random forest and gradient boosting, which had 

originally accuracy levels of 0.81 and 0.79 respectively, do not manage to exceed 0.4 with the greatest 

flipping rate. Even in the multiclass task, the neural network suffers the most from the attack, with an 

almost 50% loss in accuracy when comparing the accuracy gained from the clean dataset to that 

obtained from the 90% modified dataset. 

Table 3 displays the results of all the other evaluation measures for each model in both tasks and for 

each flipping rate level, employing the identical columns used for the models without any changes to 

the dataset, again indicated with (b) or (m) if the algorithm was employed in both the classification 

tasks. To begin, it is crucial to note how the impact of the attack and its rise with the various flipping 

rates can be better seen by examining the train set's accuracies: Initially, with a low flipping rate, as 

expected, the accuracies in the train are generally higher than those of the test, but starting from the 

levels with 30% and 45% of modified labels are examined, the decrease in performance is much more 

visible in the train; this phenomenon indicates the models' ability to avoid overfitting and to identify 

the types of classes quite well even if some of those on which they are trained are incorrect. 

Furthermore, the score for each model in the second column of the table demonstrates a consistent 

drop, even in the exceptions indicated before. 
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Table 3: Evaluation metrics of the models with flipped labels 

 
 

  
Flipping 

rate 
Accuracy 
(test set) 

Accuracy 
(train set) Precision Recall F1 score Auc 

Logistic 
Regression 

0.15  0.89  0.84 0.91 0.86 0.88 0.96 
0.3 0.89 0.79 0.92 0.85 0.88 0.96 

0.45 0.89 0.74 0.92 0.85 0.87 0.96 
0.6 0.89 0.69 0.92 0.85 0.87 0.95 

0.75 0.82 0.64 0.89 0.76 0.78 0.95 
0.9 0.64 0.63 0.77 0.50 0.39 0.95 

Random Forest 
(b) 

0.15  0.93 0.89 0.94 0.92 0.93 0.98 
0.3 0.94 0.83 0.95 0.93 0.94 0.98 

0.45 0.93 0.76 0.94 0.92 0.93 0.98 
0.6 0.90 0.70 0.93 0.87 0.89 0.98 

0.75 0.76 0.66 0.86 0.67 0.67 0.97 
0.9 0.70 0.64 0.84 0.60 0.57 0.92 

Xgboost (b) 

0.15  0.81 0.92 0.86 0.75 0.77 0.91 
0.3 0.81 0.85 0.86 0.75 0.77 0.90 

0.45 0.82 0.78 0.86 0.77 0.79 0.92 
0.6 0.87 0.73 0.91 0.83 0.85 0.96 

0.75 0.71 0.68 0.81 0.60 0.58 0.78 
0.9 0.75 0.66 0.73 0.72 0.72 0.78 

Neural network 
(b) 

0.15  0.97 0.91 0.97 0.97 0.97 0.99 
0.3 0.96 0.85 0.96 0.96 0.96 0.98 

0.45 0.95 0.78 0.95 0.94 0.95 0.97 
0.6 0.93 0.72 0.94 0.92 0.93 0.97 

0.75 0.85 0.67 0.87 0.81 0.82 0.93 
0.9 0.63 0.65 0.56 0.51 0.42 0.86 

Decision Tree 

0.15  0.43 0.73 0.34 0.25 0.23 0.75 
0.3 0.40 0.64 0.32 0.22 0.21 0.74 

0.45 0.48 0.56 0.40 0.22 0.20 0.78 
0.6 0.64 0.48 0.40 0.30 0.30 0.86 

0.75 0.41 0.41 0.36 0.20 0.20 0.69 
0.9 0.40 0.36 0.15 0.13 0.11 0.76 

Random Forest 
(m) 

0.15  0.80 0.74 0.47 0.39 0.39 0.94 
0.3 0.75 0.65 0.54 0.37 0.37 0.94 

0.45 0.74 0.56 0.48 0.32 0.33 0.93 
0.6 0.65 0.48 0.51 0.26 0.26 0.94 

0.75 0.56 0.40 0.41 0.20 0.19 0.92 
0.9 0.37 0.36 0.38 0.11 0.07 0.82 

Xgboost (m) 

0.15  0.54 0.79 0.48 0.36 0.37 0.88 
0.3 0.49 0.69 0.59 0.32 0.32 0.88 

0.45 0.53 0.59 0.56 0.31 0.32 0.91 
0.6 0.53 0.50 0.54 0.29 0.29 0.83 

0.75 0.36 0.43 0.41 0.16 0.17 0.82 
0.9 0.37 0.39 0.19 0.12 0.10 0.77 

Neural network 
(m) 

0.15  0.84 0.77 0.69 0.52 0.55 0.95 
0.3 0.83 0.67 0.71 0.51 0.54 0.94 

0.45 0.82 0.58 0.67 0.48 0.51 0.93 
0.6 0.79 0.49 0.62 0.39 0.41 0.90 

0.75 0.69 0.41 0.54 0.31 0.33 0.88 
0.9 0.38 0.37 0.25 0.12 0.09 0.77 
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Among the various evaluation measures, the AUC has the least impact: in general, this measure also 

follows the trend of constant decrease as the flipping rate increases, but the values from one level to 

another change much less than those of accuracy; it should also be noted that the greatest variation of 

AUC occurs in the more complex models, specifically gradient boosting and neural networks, and in 

general it is possible to observe a significant decrease in AUC almost only in the highest flipping 

rates, particularly the last one. The ROC curves and confusion matrices of the various models 

subjected to label flipping at the 90% level can be found in the Appendices F-I, where it is possible 

to witness how, for those used in the multiclass task, the last types of attacks and so the less common 

classes, have generally lower scores. Regarding precision and recall, except for the same points in 

which some models had unusual decrease in accuracies, the decrease of the values proceeds with the 

increase of the flipping rate in the various models; it is also interesting to notice that to those 

unexpected points with higher test accuracy outside the decreasing trend, is associated an higher 

precision, while the recall continuously decrease with the higher flipping rate levels. As in the basic 

IDS algorithms, the precision has generally higher values than the recall; additionally, when 

observing the various levels of flipping, the precision’ scores decrease proportionally faster than those 

of the recall. The F1 score, which is a weighted average of the two preceding measures, similarly 

reveals an overall decline in performance, for instance, in the multiclass neural network falls from 

0.55 to the insignificant value of 0.09. 

In the following paragraphs the outcomes of the second method used to simulate data poisoning will 

be investigated, to understand the effects of an addition of random noise within a specific range, on 

all occurrences but only on the values of ten of the predictors. 

To begin, the scatter plots showing the accuracy of the models in the numerous attempts to modify 

the dataset are reported, in a manner similar to the other technique, with the noise range on the x-axis, 

indicating the greatest number of random noises that might be introduced to any instance. The scores 

of the models utilized in the binary task are presented in Figure 9, and the first thing to note is that 

there is no pattern of decreasing accuracy with the rise of noise range. In general, the initial levels 

generally achieve higher accuracies in all the models, but looking at the y-axis of all the graphs, the 

differences between the various dataset adjustments are extremely tiny. Analysing the graphs one by 

one, it is shown that the logistic regression accuracies all remain at 0.89, the random forest accuracies 

have slightly changes remaining between 0.93 and 0.95, the gradient boosting oscillates between 0.96 

and 0.97, and the neural network also remains fixed at 0.97, but with a very slow constant decrease 

along with the levels, appearing to be the model that follows more the expected trend. Figure 10 

shows parallel graphs for the models used in multiclass classification, and again, no common pattern 
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can be identified, and the differences in accuracy between the various noise range levels are small. 

The decision tree appears to be the model that has the biggest changes in accuracies’ values, with a 

range between 0.81 and 0.75, and it is surprising to note that these values are much higher than those 

of the model trained with the clean dataset; the random forest also, compared to the other algorithms, 

shows great variations between one level and another, even if its scores remain between 0.79 and 

0.74, while the boosting accuracies remain between 0.81 and 0.84, and the neural network have 

almost irrelevant variations, remaining always 0.84 and below 0.85. Furthermore, under this sort of 

assault, the xgboosts outperforms the random forests, while the deep learning models remain those 

with higher accuracies. 

All the classification metrics of the various models for the two tasks are presented in Table 4, as was 

done for the basic IDS models and the previous poisoning strategy, with the noise range levels 

indicated in the first column. Looking first at the accuracy in the train sets, it can be noted that there 

are essentially no changes in values across the different levels in all models of both tasks, with the 

exceptions of the random forest in the binary task, which drops after the first level from 0.95 to 0.94, 

and of the neural network in the multiclass task, which oscillates between 0.86 and 0.85. This result 

is not surprising after examining the accuracies on the test set, but the scores on train show even less 

variation, even for the models that had some accuracies’ decrease on the test, which as previously 

mentioned were some of the simpler ones, for instance the two random forests and the decision tree; 

this may indicate a tendency of these models to be less resistant to this type of attack, as the 

algorithm's training has adapted well to the changes in value, however leading to slightly worse results 

when evaluated on the test set, just as expected by this method of poisoning. It is also interesting to 

note that in both the classification tasks the boosting is the model obtaining higher accuracy scores in 

the training, even if when this measure is computed on the test set, it is often outperformed by the 

neural network. 

Observing Precision, Recall, and F1 score computed on the test set, on the other hand, it is possible 

to notice some slightly greater variations in values in some models, as can also be seen in the 

confusion matrices of those with the highest range of noise in the Appendices J and K, which present 

slightly different numbers of false positives and negatives from time to time; however, none of the 

models shows a constant decreasing pattern, meaning that the two measures representing the two 

types of statistical errors never fall with the noise’s levels. The precision in the logistic regression 

remains between 0.91 to 0.90, and the recall goes from 0.87 to 0.86, but the F1 remains constant at 

0.88. The random forest in the binary task has precision values between 0.95 and 0.94, and recall 

values between 0.94 and 0.93, which leads to an F1 with similar tiny deviations; the same algorithm 
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in its multiclass form has precision values between 0.60 and 0.43, which are way higher than the 

recall values, more similar to those of the F1, between 0.38 and 0.34. The gradient boosting in the 

binary task maintains precision and F1 scores of 0.97, while the recall drop to 0.96 at some noise 

levels, and in the multiclass classification the model values drop to the range 0.71-0.66 for precision, 

0.53-0.51 for recall, and 0.56-0.53 for F1; when discussing the performance of the neural network, 

the binary task values in these three measures remain fixed at 0.97, while in the multiclass task there 

is slightly more variations as in the other metrics, with a precision between 0.66 and 0.61, in which 

is possible to note lower values respect to the gradient boosting, while recall and F1 remains slightly 

above 0.50. 

Regarding the ROC curves, which can be consulted in the Appendices L and M, and the AUC of the 

various models, the numbers per model change very little between the different levels of the noise 

range, and if present, the variations roughly follow the patterns described by the other evaluation 

measures described. 
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Figure 9: Scatterplots of accuracies of binary models with random noise 
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Figure 10: Scatterplots of accuracies of multiclass models with random noise 
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Table 4: Evaluation metrics of the models with random noise 

 
 

  
Noise 
range 

Accuracy 
(test set) 

Accuracy 
(train set) Precision Recall F1 score Auc 

Logistic 
Regression 

1  0.89  0.89 0.91 0.87 0.88 0.95 
2 0.89 0.89 0.90 0.86 0.88 0.95 
3 0.89 0.89 0.90 0.86 0.88 0.95 
4 0.89 0.89 0.90 0.87 0.88 0.95 
5 0.89 0.89 0.90 0.87 0.88 0.95 
6 0.89 0.89 0.91 0.87 0.88 0.95 

Random Forest 
(b) 

1  0.95 0.95 0.95 0.94 0.95 0.99 
2 0.93 0.94 0.94 0.93 0.93 0.98 
3 0.94 0.94 0.94 0.94 0.94 0.98 
4 0.94 0.94 0.94 0.94 0.94 0.98 
5 0.93 0.94 0.94 0.93 0.93 0.98 
6 0.94 0.94 0.94 0.94 0.94 0.98 

Xgboost (b) 

1  0.97 0.99 0.97 0.96 0.97 0.99 
2 0.97 0.99 0.97 0.97 0.97 0.99 
3 0.96 0.99 0.97 0.96 0.97 0.99 
4 0.97 0.99 0.97 0.97 0.97 0.99 
5 0.96 0.99 0.97 0.96 0.97 0.99 
6 0.96 0.99 0.97 0.96 0.97 0.99 

Neural network 
(b) 

1  0.97 0.98 0.97 0.97 0.97 0.99 
2 0.97 0.98 0.97 0.97 0.97 0.99 
3 0.97 0.98 0.97 0.97 0.97 0.99 
4 0.97 0.98 0.97 0.97 0.97 0.99 
5 0.97 0.98 0.97 0.97 0.97 0.99 
6 0.97 0.98 0.97 0.97 0.97 0.99 

Decision Tree 

1  0.80 0.83 0.63 0.43 0.45 0.93 
2 0.75 0.83 0.49 0.38 0.39 0.92 
3 0.80 0.83 0.53 0.42 0.43 0.94 
4 0.80 0.83 0.53 0.42 0.43 0.94 
5 0.80 0.83 0.52 0.42 0.43 0.94 
6 0.76 0.83 0.51 0.40 0.42 0.92 

Random Forest 
(m) 

1  0.75 0.81 0.48 0.34 0.34 0.94 
2 0.79 0.81 0.56 0.36 0.37 0.95 
3 0.79 0.81 0.60 0.38 0.38 0.97 
4 0.79 0.81 0.46 0.37 0.37 0.95 
5 0.77 0.81 0.46 0.35 0.35 0.95 
6 0.74 0.81 0.43 0.34 0.36 0.94 

Xgboost (m) 

1  0.83 0.90 0.69 0.53 0.56 0.97 
2 0.83 0.90 0.71 0.53 0.56 0.97 
3 0.84 0.90 0.70 0.52 0.55 0.97 
4 0.82 0.90 0.67 0.51 0.53 0.97 
5 0.81 0.90 0.67 0.51 0.53 0.96 
6 0.84 0.90 0.66 0.52 0.55 0.97 

Neural network 
(m) 

1  0.84 0.86 0.61 0.53 0.54 0.96 
2 0.84 0.86 0.63 0.52 0.54 0.96 
3 0.84 0.86 0.66 0.53 0.56 0.96 
4 0.84 0.85 0.68 0.51 0.52 0.96 
5 0.84 0.86 0.66 0.52 0.55 0.97 
6 0.84 0.85 0.65 0.51 0.53 0.96 
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6. Preventive Measures 

After conducting the practical analysis of this work and having the results of the impacts suffered by 

an IDS built through machine learning when subjected to two simple data poisoning simulations, in 

this chapter it is time to explore the possible preventive measures that can, and often must be 

developed to counter the threat of possible data tampering. The attack simulations explained in the 

previous chapters can give a better idea of the objectives and techniques used by a potential attacker, 

and in real life situations, a malicious user with computer skills and the ability to access the data of a 

system can lead to really serious consequences, in even more subtle and complex ways than those 

explored in the technical part of this paper; as a result, it is essential to look at the situation from the 

point of view of those who are entitled to protect systems from these threats, and to delve into the 

several possible defence strategies, mentioned in the studies considered in the literature review. Some 

of the most popular and effective preventive measures will now be explained, giving them context, 

and imagining how they would handle the data modification presented above, analysing their 

advantages and limitations. 

When constructing a machine learning system, there are numerous components and stages to consider 

in order to maintain its security. The first of these, and perhaps the most crucial when addressing the 

issue of poisoning, is to ensure the quality of the data. There are several aspects to consider when it 

comes to data quality, since the entire preprocessing stage through which they go through before 

being fed to the algorithms is designed to improve quality, but from a cybersecurity standpoint, what 

is most meaningful is data authentication, which is the process that ensures that the data have not 

been altered or compromised during their transmission, storage, or processing. It is also possible to 

identify two major components in the data authentication process: data integrity, which refers to the 

assurance that the data remain unchanged throughout their lifecycle, and data authenticity, which 

involves verifying the origin of the data and ensuring that they come from trusted and legitimate 

sources.  

Verification of data sources must be the foundation of any secure system and given the massive 

amount of data that businesses today have to deal with, and the fact that those data are sent to them 

from a variety of sources, one of the best ways to ensure data integrity is to use cryptographic 

techniques, such as hash functions or so-called checksums. Hash functions generate fixed-length 

digests based on the data's content that are unique to the data and will result in a different hash if the 

data is changed, these functions are therefore feasible to determine whether the data have been 

modified by comparing the computed hash of the received data to the original hash provided by the 

sender. Checksums, on the other hand, are values calculated from the sum of all data bytes in a file, 
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and, like hash functions, changes in the data will result in different checksums. In terms of data 

authenticity, here again cryptography provides very valid methods to ensure the origin of the data, 

one of which is the use of keys associated with the identity of a specific entity, to be used for example 

in a system of digital signature, which uses asymmetric cryptography to verify the data and works 

briefly as follows: the sender uses their private key to encrypt a hash of the data, then the receiver can 

use the sender's public key to decrypt the signature and compare it to a recalculated hash of the 

received data. 

The methods outlined above are applicable in many systems for a wide range of uses, for instance, it 

is sufficient to consider that hash functions and digital signatures constitute the foundation of all 

blockchain technologies. Furthermore, given their applicability to any type of data, the usage of such 

techniques in IoT systems is not difficult to imagine: one possible example is a connected healthcare 

monitoring system, in which it is critical to ensure the security and authenticity of health-related data 

transmitted between wearable health devices and a central healthcare server, and this goal is achieved 

through an integrity verification with hash function used in conjunction with a public key 

infrastructure; moreover, to ensure that the people who have access to such data are only those who 

are allowed to do so, additional authentication mechanisms, such as the use of credentials and a 

secondary authentication factor, can be introduced. 

The main benefit of implementing these data authentication measures is that they provide a strong 

security foundation, without which any system would be extremely vulnerable, and this leads to 

increased data trustworthiness; additionally, a great reason to implement these defences is early 

detection, which means that by actively monitoring data integrity and authenticity, suspicious 

activities or data tampering attempts can be detected in the early stages of the whole data science 

process. There are currently several limitations to consider regarding these measures, such as the 

reliance on data sources, which if themselves compromised, could undermine the authenticity of the 

data, along with the fact that implementing cryptographic measures is very resource intensive and not 

affordable for many organizations. It should also be noted that data authentication methods may be 

ineffective against novel or sophisticated data poisoning attacks that leverage weaknesses not 

addressed by existing authentication approaches. 

Outlier detection is an operation that can be performed on data before using it in machine learning, 

which is typically inserted between the various steps of the preprocessing stage and can be highly 

beneficial in detecting data poisoning. Outliers are points in a dataset that deviate significantly from 

the rest of the data, and regardless of the task, it is critical to identify the presence of these points and 

treat them appropriately, as they frequently represent anomalies, can induce bias, or are simply better 
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eliminated for the sake of model accuracy. Outlier detection, which aims to find anomalous points, is 

extremely useful in identifying malicious data injection by a potential attacker: as seen in the practical 

part of this work, particularly in the second method used to simulate an attack, poisoning attacks 

frequently involve introducing noisy or incorrect data points to degrade the performance of a model, 

and thus outlier detection can help identify and remove such points, ensuring that the model's 

performance is not degraded. Outlier detection can also be utilized dynamically during model 

deployment to continuously monitor incoming data: if the system identifies an unexpected surge in 

the number of abnormal inputs, it can generate alarms and briefly suspend the model's execution for 

additional investigation. Even for this defence technique, there are numerous scenarios of complex 

real-world systems in which its application becomes critical, for example, consider a fleet of trucks 

transporting specific materials that, using IoT sensors, monitors some parameters to be respected, 

such as temperature or humidity: if one of the vehicles is altered in a malicious way, the outlier 

detection system would immediately detect the anomaly. 

Among the primary benefits of implementing outlier detection are improved model performance and 

bias mitigation; in terms of its specific use as a preventive measure against poisoning, outlier 

detection allows for early detection, so to prevent the danger before the model training phase, and at 

the same time it can be implemented as a real-time monitoring method. In terms of limitations, it is 

needed to recognize that there is a need for contextual interpretation to identify outliers, given that 

unusual points can occur naturally in datasets, and that with some types of scaling or high 

dimensionality of the data, which is frequently required to represent data with complex distributions, 

the technique is not always effective. 

Another intriguing option to investigate is data augmentation, which was not expressly created as a 

preventive measure for data modifications but is very beneficial in minimizing the effect of potential 

data poisoning. The purpose of data augmentation is to increase the variety of the training dataset, 

creating new, slightly modified examples from the original data by applying various transformations, 

in order to improve model generalization and robustness. Image recognition or categorization are 

typical tasks in which augmentation techniques are employed, in which pictures are rotated, flipped, 

resized, or subjected to other alterations to replicate real-world differences among the standard data 

and add variability. Because of its function, that is to incorporate a higher level of diversity and 

randomness into the data, data augmentation can become an effective preventive measure against 

poisoning, not only because it makes the model more accurate and capable of handling higher 

variability, but also because, given that these attacks frequently try to insert a specific type of 

malicious pattern on which to train the models, these will appear more diluted in the augmented 
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dataset, making the impact of the data modification weaker. Although not a true barrier, this approach 

is quite beneficial for minimizing the symptoms of a poisoning, and one of its key advantages is its 

ease of implementation. In a similar vein to the preceding strategies, the more targeted and subtle the 

attack is, the less helpful augmentation will be in fighting it. 

Among all the techniques that can be used in machine learning to make systems more robust and 

secure, one in particular is well suited to countering data poisoning: adversarial training, which, as 

the name implies, derives from adversarial attacks and acts as a defence against them. The adversarial 

training process can be seen as a voluntary poisoning of the dataset, obtained through the creation of 

adversarial examples using optimization techniques: these are often much more specific and complex 

than the methods used to simulate the attack seen in this paper, such as the Fast Gradient Sign Method 

(FGSM) or the Projected Gradient Descent (PGD), to name a few. The adversarial instances are added 

to the training dataset, in form of unnoticeable alterations that cause the model to make inaccurate 

predictions, and its resilience is improved by retraining it iteratively with fine tuning capable of 

managing the changes. Adversarial training is a very versatile technique that can be incorporated into 

data science architectures of any sector, such as an intrusion detection system, which, as previously 

explained, is widely utilized in IoT domains as well as other infrastructures based on the analysis of 

internet traffic. As a result, the adversarial training method is among the most effective in boosting 

systems’ robustness, and it is also compatible with any kind of model. Being a method based on data 

modification, it may be the best to mitigate the danger of data poisoning, but it is also very specific, 

and would be ineffective, for example, in facing a label flipping; among its limitations there is also a 

significant increase in the need for computational resources, which is due to the fact that a very 

meticulous fine tuning must be included in its process. 

Another technique worth mentioning, which is frequently used during model training and has the 

main goal of selecting the best model architecture and tuning hyperparameters to improve 

generalization, is the use of a validation set: this term refers to a small part of the dataset kept separate 

from the train, on which to evaluate the model's performance, observe if the results are satisfactory, 

and if they are not, iteratively adjust hyperparameters. A supplementary split in addition to train and 

test sets may appear unnecessary on a theoretical level, but in practice, the test may not be 

representative of the entirety of the data, or it may only be utilized after the system is deployed, and 

fine-tuning is obviously required first. The validation set can indirectly help mitigate the impact of 

poisoned data by making the models more robust in general and, more importantly, by identifying if 

the model's performance drops dramatically on the validation data due to the inclusion of attacked 

training samples. Because its primary function is not that of a preventive measure, this technique is 
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not always effective, as it can detect the presence of poisoned data only if the attack is quite severe 

in terms of performance loss, and furthermore, the validation set itself may be reachable by the 

attacker and poisoned. 

A brief examination of the various prevention measures listed in this section demonstrates how useful 

and effective data manipulation techniques are in preventing potential cyber attacks, and how, thanks 

to growing innovation, these methods are becoming increasingly effective and widespread; however, 

at the same rate of research in these areas, the capacity of potential attackers grows, and the statistical 

rules that govern data science techniques, no matter how complex, can be circumvented, and this is 

where the human aspect, or the concept of Human-in-the-Loop, comes into play and remains vital. 

What can truly make a difference in IT security, particularly in the case of zero-day assaults, is the 

systems’ monitoring by experts at various stages of the process, who, through domain knowledge and 

expertise, can fully use the potential of the machines and support them in any instance of tampering. 

The human aspect is not a true preventive strategy, but it is what best allows to reduce damage in the 

case of an emergency, by establishing an iterative feedback loop in which human experts cooperate 

closely with the machine learning system. 

Data security is a subject that all businesses must face, and as seen, just for a specific form of attack 

several possible protection measures have been developed, based on different necessities. However, 

each of them has significant limits, through which an attacker with considerable adaptability might 

hunt for vulnerabilities in the system to exploit. Despite the advancement of security systems, it is 

not possible to be completely safe from cyber risks, and data poisoning is one of these unpredictable 

threats: as highlighted in this section, some preventive measures can be excellent on one type of data 

modification but can on the other hand be completely ineffective on others. The wisest thing to do, 

especially in sensitive areas where the precision of machine learning systems is critical, is therefore 

to incorporate more than one of these safeguards together, to make the models as secure as possible. 

 In modern infrastructures, it is then critical to first have a clear perspective of the organization's risks, 

and attempt to create an adequate defence network, while also being prepared to react in the case of 

a breach and mitigate as much as possible the damages. In order to create such defence systems that 

are robust and ready to respond to all types of threats, more and more organizations are relying on 

digital twins, which are created by combining AI methods with organizational architectures in order 

to improve cybersecurity measures and overall system resilience. By simulating the consequences of 

various actions, digital twins are extremely effective in developing response strategies, and by 

incorporating IDSs into their development, it would be possible to achieve a comprehensive defence 

system adequate for each stage of possible attacks, from prevention to recovery. The ability of digital 
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twins to simulate system behaviour by providing accurate contextual information can be very useful 

to an IDS in identifying the type of activity considered normal, and thus to identify deviations that 

may indicate security threats more accurately; additionally, the IDS can adapt its detection algorithms 

to the evolving behaviour patterns in the digital twin, and the digital twin can learn from real-world 

security incidents, allowing for the development of a continuous learning feedback loop in 

cybersecurity practices. 
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7. Conclusions 

Understanding how data science techniques can improve security measures is critical for effective 

risk management, in an era where cyber threats are always changing and becoming more 

sophisticated: as organizations increasingly rely on digital infrastructure and data-driven decision-

making, the integrity of their data and the effectiveness of their security systems are critical. 

Conducting a study in this domain can therefore help in providing executives with the knowledge and 

tools needed to make informed decisions that strengthen cybersecurity strategies and ensure the 

resilience of their operations in the digital age. Moreover, understanding the interaction between 

intrusion detection systems and data poisoning is critical for managers tasked with protecting their 

networks and sensitive data. In this last chapter, the overall conclusion that can be draw from this 

paper are summarized.  

The first part of the practical investigation conducted in this study demonstrated how an efficient 

intrusion detection system can be built using machine learning algorithms trained on a suitable 

dataset. Several conclusions can be drawn from the comparative analysis of the different models, the 

first of which is that binary classification, that is, the distinction between normal and suspicious 

Internet traffic activity, is a goal that can be achieved with good results without too much difficulty. 

All four models examined attained at least 90% accuracy in the binary task and performed well in the 

assessment measures; among them, the logistic regression is the least effective due to the nonlinearity 

of the data, while the two ensemble models and neural network are more efficient. Moving on to the 

multiclass task, meaning the recognition of the type of cyber-attack in each specific case, the 

complexity increases, and as a result the performance of the models suffers; here, a simple model 

such as the decision tree fail in completing the task with acceptable performance, however, the 

random forest and the neural network are not completely ineffective, as they achieve respectively 

81% and 85% accuracy, despite failing to recognize some classes with few instances. The differences 

between the various models are therefore obvious, and for a job of this type, it is necessary to use 

complex algorithms, sacrificing some interpretability. In the future, we should expect outstanding 

outcomes in the development of these types of systems, which can be achieved by fine-tuning the 

ensemble models or through more complicated and longer trained neural networks. 

Proceeding with the practical analysis, it was possible in this work to observe the impact of two simple 

modifications on the dataset, simulating data poisoning, on the performance of the models initially 

observed. As explained in detail in the results section, by using label flipping and gradually increasing 

the portion of the modified dataset, a constant decrease in model performance is observed, and the 

effects of this attack appear destructive on the quality of the models' predictions; on the other hand, 
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in the second method used, that is the addition of noise in some of the variables of the dataset, there 

is no significant decrease in performance, and furthermore, as the range in which this noise is 

produced increases, the decrease in the quality of the models is not incremental. With a little technical 

context, it is not surprising that the first method produces such noticeable results: the association of 

the respective labels with the observations of the dataset is what allows any supervised model to learn, 

and eliminating this association in more than half of the instances makes the training of the algorithms 

completely inefficient. One noteworthy finding in these simulations is that neural networks are more 

heavily impacted by this first attack than ensemble models, while still producing the best results in 

nearly every case.  

Although the addition of noise is a change that is quite similar to actual data poisoning, it does not 

produce astonishing results when carried out as done in this study, most likely because it is 

accomplished by adding random values, and only on 10 variables of a dataset that comprises more 

than 40. Furthermore, the difference between the various levels in this second method is represented 

only by an increase in the range in which the possible added random value is taken, and the results 

show that these increases have no significant impact on the evaluation measures in the various 

algorithms. Future studies could investigate towards utilizing noise to modify a dataset in a more 

precise way, such as forcing the model to predict a specific type of erroneous class, or perhaps 

applying this modification to all the variables. 

Following the investigation of the tangible consequences of data changes on models, some of the 

most widespread prevention strategies were presented in the previous chapter to provide a 

comprehensive picture of a potential attack and defence scenario. Many of the strategies discussed 

are themselves based on data science, proving once again the enormous flexibility of this field of 

study, and its effectiveness in many environments, as illustrated by the examples provided, entailing 

the usage of IoT technologies.  In the future, it would be interesting to put these various preventive 

measures to the test, in a practical way, on the various possible methods of attacking a dataset, 

resulting in a complete and measurable framework useful for associating the specific risks of each 

organization with the development of a suitable defence system. 
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8. Appendices 

In this section are reported the appendices, a set of plots, that except for the first, show the Confusion 

matrices and the ROC curves of the original IDS built with the different models, and then those of 

the highest level of both methods of poisoning, to observe in a graphical way the decrease 

performance. The plots for each of the other level of poisoning could be find in the code. 

 

Appendix A: Line plots of the dataset divided for features, before and after standardization. 
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Appendix B: Confusion matrices of binary models (logistic regression top-left, random forest top-

right, xgboost bottom-left, neural network bottom-right). 
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Appendix C: Confusion matrices of multiclass models (decision tree top-left, random forest top-

right, xgboost bottom-left, neural network bottom-right). 
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Appendix D: ROC curves of the binary models. 
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Appendix E: ROC curves of the multiclass models. 
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Appendix F: Confusion matrices of binary models with 90% of flipped labels (logistic regression 

top-left, random forest top-right, xgboost bottom-left, neural network bottom-right). 
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Appendix G: Confusion matrices of multiclass models with 90% of flipped labels (decision tree top-

left, random forest top-right, xgboost bottom-left, neural network bottom-right). 
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Appendix H: ROC curves of the binary models with 90% of flipped labels. 
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Appendix I: ROC curves of the multiclass models with 90% of flipped labels. 
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Appendix J: Confusion matrices of binary models with added random noise in range 0-6 (logistic 

regression top-left, random forest top-right, xgboost bottom-left, neural network bottom-right). 
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Appendix K: Confusion matrices of multiclass models with added random noise in range 0-6 

(logistic regression top-left, random forest top-right, xgboost bottom-left, neural network bottom-

right). 

 

 

 

 

 

  

 

 

 

 

 

 



67 
 

 

Appendix L: ROC curves of the binary models with added random noise in range 0-6. 
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Appendix M: ROC curves of the multiclass models with added random noise in range 0-6. 
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