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Abstract

The rise of blockchain technology and its widespread adoption as infrastructure for deploying financial

and non-financial decentralized applications brings the need for efficient and censorship-resistant

digital asset exchange mechanisms to the forefront. In response to this evolving landscape, this work

embarks on a comprehensive exploration of Constant Function Market Makers (CFMMs), pivotal

entities in the realm of decentralized finance (DeFi) and broader blockchain utility. This work

begins with an extensive primer on convex analysis, establishing the necessary notation that will

be later employed to frame CFMMs within the scope of convex analysis, and develops from there a

characterization of each core component of a CFMM. This work shows that every qualitative aspect

of a CFMM is mapped into a certain property of its core component. This characterization allows

to introduce a set of propositions which can be used as a toolkit in designing path-independent

CFMMs. Most of the propositions of the presented toolkit are based on a polar correspondence

between the invariant function and the portfolio value function of a CFMM, a correspondence which

is rooted on the fact the convex set generating the hypograph of one function corresponds to the

reverse polar of the convex set generating the hypograph of the other function. By designing one

core component is possible to induce all the remaining ones to obtain a fully functional CFMM. As a

practical application of the toolkit, this work shows how it is possible to induce the core components

of Uniswap V2-like CFMMs, one of the most popular types of CFMMs in the DeFi ecosystem.
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Chapter 1

Introduction

1.1 Decentralization and digital goods

The advent and proliferation of blockchain and distributed ledger technology (DLT) in general has ig-

nited a profound infrastructural revolution that is silently but dramatically altering the foundations

of industries, institutions, and economies. At its core, DLT embodies the promise of decentral-

ization—an unprecedented paradigm shift that holds the potential to reshape the very essence of

trust, governance, and economic exchange. In the traditional setting, the dynamics of trust and

authority have long been characterized by a burdensome reliance on central authorities. These au-

thorities, whether they take the form of financial institutions, governments, or intermediaries, have

been tasked with the solemn responsibility of ensuring the integrity and security of transactions and

records. However, this fiduciary role carries with it an inherent vulnerability: the dependence on

central entities to act honestly in order to safeguard the interests of participants. Most of the time

there is an alignment of incentives between such central authorities and the participants because a

damage to the integrity of the system would be detrimental to both parties. However, when this

alignment weakens or breaks down, the system is left vulnerable to the whims of the central au-

thorities. In essence, these central authorities are the linchpin that maintains the fragile balance of

trust within the system. Besides its efficiency, centralization has several points of failure both on

the micro and macro levels. On the micro level, trusting a central authority for getting access to a

particular service implies relying on the integrity, resilience and security of the platform on which the

service is provided and which, most of the time, is not directly knowable by the user. Any malicious

action or negligence on the part of the central authority that exposes the security of the platform to

external attacks could result in, at best, denial of service, but possibly also a total compromise of

the safeguarding of its users. On the macro level, the centralization of power in the hands of a few

entities can lead to the creation of monopolies that can exploit their dominant position to the detri-

ment of the users and the market in general. Having the same central authorities providing services
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CHAPTER 1. INTRODUCTION 5

to most of users generate negative network effects resulting in entry barriers for new competitors

and, consequently, in a reduction of the incentives in delivering the best possible service because of

the lack of competition. At the same time, in case of denial of service or other malicious actions, the

centrality of the platforms for most of people implies that the damage is spread to all the users of the

platform, inducing a systemic risk that could be avoided by a more distributed architecture. The rise

of distributed ledger technologies challenges this status quo in a distributed and censorship-resistant

fashion. It introduces a radical departure from the traditional centralized model by minimizing the

need for intermediaries and central authorities. Instead, DLT systems, such as blockchain, operate

as decentralized, censorship-resistant ledgers where trust is rooted in mathematics and consensus

algorithms rather than in the intentions of centralized entities. This shift fundamentally alters the

dynamics of trust, enabling economic interactions that are trustless in nature—transactions that

occur without the need to trust any single party.

Reshaping digital goods and digital currencies The blockchain revolution has ushered in

a transformative era for the concept of “digital goods", fundamentally redefining these intangible

entities and revolutionizing the notion of ownership. In the pre-blockchain era, digital goods often

existed solely as data files registered on third-party owned platforms, susceptible to replication

and easy dissemination, raising questions about their authenticity and the legitimacy of ownership.

With blockchain technology, digital goods become simple records registered on a decentralized ledger

typically via an account based model. The ownership of digital assets is now intricately woven into

the fabric of the blockchain and their validity is based on consensus among participating nodes. This

paradigm shift provides a deterministic and tamper-resistant proof of ownership for digital goods.

As a result, blockchain has not only redefined the concept of digital goods but has also introduced

a novel dimension of trust, where ownership is no longer a matter of trust in centralized authorities

but a product of mathematical certainty within a decentralized network. Before blockchain, digital

goods were typically registered on isolated and non-composable proprietary platforms, often closed-

ended in nature. This meant that all rights and ownership associated with these digital assets

were confined within the boundaries of these platforms and couldn’t transcend their proprietary

constraints. However, blockchain-based digital goods usher in a new paradigm, offering a shared

playground where ownership and rights are not confined to closed platforms built on top of a certain

blockchain. Instead, they become interoperable, portable, and exist independently of any specific

platform built on top of that particular blockchain. This shift empowers users with greater control

and flexibility over their digital assets, enabling them to traverse a broader digital landscape and

participate in a shared, decentralized economy. Digital currencies are the most prominent example of

fungible, divisible, blockchain-based digital goods and they are typically associated with the original

use of blockchain as a decentralized system of payments [Nak09]. Naturally, the existence of different

digital currencies surges with the need to find a way to exchange them in a decentralized fashion. Of
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course, interacting with a platform managed by a centralized exchange (CEX) which has the custody

of the digital accounts of its users is still a possible route for exchanging digital currencies. However,

even if this has been the most popular way of exchanging digital currencies so far, this approach is

not in line with the decentralized nature of blockchain and it is also subject to the same problems as

the traditional centralized model, most of the time exacerbated by the lack of regulations caused by

the difficulty of framing such entities from a regulatory perspective, resulting in financial collapses

like the FTX case in 2022 [CCH22].

1.2 Blockchain-based automated market makers

Decentralized exchange A decentralized venue for exchanging digital goods is typically called

“decentralized exchange” (DEX) and it comes with several issues. The most obvious is the lack of a

central entity managing it or the lack of a dedicated authority for liquidity provisioning via market

making activity. Moreover, there is also the problem of “importing” price information of such digital

currencies from external markets (like those ran by CEXs) to avoid arbitrage opportunities. This

problem is typically mentioned as the “oracle problem” [Cal20] and, generally speaking, refers to the

problem of importing in a decentralized ecosystem any information that is not natively available

on-chain: indeed, the figure of the oracle is typically associated with the one of a trusted third

party that provides information to the blockchain and this creates a centralization point exposed

to all the risks mentioned above. To avoid these issues, a desirable DEX should be a headless and

oracleless system which incentives individual market participants to provide liquidity to the market

in a decentralized fashion. These properties are typical of the so-called “automated market makers”

(AMMs) which are inventory-based systems allowing market participants to deposit, withdraw and

exchange goods according to a “scoring rule” which maps the inventory of the AMM to the marginal

prices of the assets which are negotiated [Han03]. The literature of AMMs is older than blockchain

itself but finds with this technology a practical application.

Constant Function Market Makers The term “Constant Function Market Maker” (CFMM) has

been introduced for the first time in [AC20] to describe a blockchain-based AMM which could be used

as a decentralized venue for exchanging digital currencies and so far it remains the most popular

approach for designing DEXs. Some working examples are Uniswap [AZR20] [Ada21], Balancer

[MM19], Curve [Ego21] which share the same core aspects of a CFMM but differ in the way they are

designed. Together with lending protocols and other blockchain-based financial applications, CFMMs

are part of the so-called “Decentralized Finance” (DeFi) ecosystem which is one of the most popular

use cases of blockchain technology. In its principles, a CFMM corresponds to a “smart contract” (i.e.

a program running on a blockchain) which collects a set of methods through which market agents are

capable of depositing and withdrawing digital currencies to and from the CFMM and exchanging
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them according to a certain pricing rule. The platform charges a fee for each exchange and the

collected fees are typically distributed pro-rata to the market agents who provided liquidity to the

CFMM, also called “liquidity providers” (LPs): this corresponds to the main incentive for market

agents to provide liquidity to the CFMM. Even if the main purpose remains to be a decentralized

venue used for exchanging digital currencies, the CFMM itself becomes a price oracle and, at the

same time, it becomes a device for passive replication of concave payoffs for liquidity providers.

However, the surge of lending protocols allowing users to borrow and repay loans within a single

blockchain transaction (flash-loans) made it unsafe for a blockchain application to rely naively on a

single CFMM for collecting price information of a certain asset. Indeed the capability offered by such

lending protocols in disposing temporarily of huge amounts of assets at low cost could be exploited

by malicious agents to manipulate temporarily the price “oracled” (in the sense of “signaled”) by the

CFMM and hack the blockchain application relying on that CFMM as price oracle [CZC21]. At the

same time, being a blockchain-based AMM, the general architecture of a CFMM expands its scope

also to a wide range of financial applications besides being a decentralized venue for exchanging

digital currencies, like prediction markets [FPW23].

Portfolio value function Providing liquidity to the CFMM implies that LPs expose their portfolio

holdings to a certain adverse-selection effect. Indeed, as a result of the trading activity performed

by external agents, the portfolio dynamics of the assets deposited in a CFMM increase the exposure

on the worst performing assets by decreasing the exposure on the best performing assets, simply

because market participants have the incentive of pulling out from the CFMM the assets which are

being appreciated on an external market in exchange of the assets which are relatively depreciating.

This implies that the value of the portfolio of assets dedicated to the pool experiences eventually

sublinear growth as the prices of the assets increase and, because of that, liquidity providers suffer

the opportunity cost of providing liquidity compared to simply holding the assets in their portfolio

(in this case, the portfolio value would experience linear growth). This opportunity-cost is typically

defined as “impermanent loss” [AEC20] and the fees collected by the CFMM could be seen as a

compensation for it. On the other hand, because of trading activity and arbitrageur forces, it is

possible to recover deterministically the amounts of each asset at any price level and, from there, the

value of the resulting portfolio of assets dedicated to the pool. The mapping between the external

prices and the value of the portfolio of assets dedicated to the pool is typically called “portfolio value

function” V̂ : Rn
+ → R+ and it is a fundamental component of a CFMM. Because of the way a

CFMM is designed, this work shows that any closed, non-negative, non-decreasing, origin-vanishing,

positive-homogenous concave function could be conceived as a portfolio value function of a CFMM.

Feasible trades, reachable reserves and invariant function Taking the perspective of a

CFMM, the trading activity is nothing more than a sequence of rebalance operations of the portfolio
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of assets dedicated to the pool such that the resulting portfolio satisfies always a certain condition.

In the common case, introducing L̂ : Rn
+ → R+ as a utility function mapping the inventory of the

CFMM to some utility level, the condition is that the utility associated with the portfolio of assets

x1 ∈ Rn
+ after a trade is performed is greater or equal than the utility associated with the portfolio

of assets x0 ∈ Rn
+ before the trade is performed. In other words y ∈ Rn is a feasible trade and

x1 = x0+y ∈ Rn
+ is a reachable reserve if and only if L̂(x1) ≥ L̂(x0): this simple condition defines at

the same time the set of “feasible trades” T (x0) ⊂ Rn
+ (i.e. portfolio rebalances potentially accepted

by the CFMM) and the set of “reachable reserves” C ⊂ Rn
+ (i.e. the set of portfolio holdings of

the CFMM which could be potentially reached by performing feasible trades). In this work, the

utility function just mentioned will be denoted as “invariant function” and it will be characterized

as a closed, non-negative, non-decreasing, origin-vanishing, positive-homogenous concave function.

Moreover, the utility of the pool will be measured in terms of “liquidity units” and so the terms

“utility” and “liquidity” will be considered interchangeable for CFMMs. The invariant function plays

a fundamental role in the design of a CFMM, being the core of the feasibility condition of trades and

embedding the scoring rule of the CFMM conceived as a blockchain-based AMM. In fact, consistently

with what is said in [AC20], in this work it will be proved that the scoring rule embedded in a CFMM

corresponds to a function Ξ : ∂L̂(x0) ⊂ Rn → Rn
+, similar to the perspective function described

in [BV04], which maps a generic supergradient of the invariant function L̂ evaluating the current

inventory x0 to a vector of n− 1 marginal prices (not n since one of the assets is used as numeraire,

or “quote asset”, in order to have a unit of measure for the prices of the other assets), which could be

considered as the execution price for a infinitesimal trade, so that the ex-post reserves x1 ∈ Rn
+ remain

in the neighborhood of the current inventory x0 ∈ Rn
+. Thus, since superdifferentiability is always

granted because of the concavity of the invariant function L̂, differentiability remains a desirable

property for an invariant function because it ensures unambiguity in marginal prices at every vector

of current reserves x0 ∈ Rn
+. Indeed, if the invariant function is differentiable, its superdifferential

will be always the singleton of the gradient of the invariant function and the scoring rule will always

map to a single vector of marginal prices. The characterization of the invariant function introduced

in this work is stricter compared to its description in [AC20], however as mentioned in [ACD+23] it

is always possible to map a CFMM with a general invariant function to an equivalent CFMM with

an invariant function satisfying the stricter characterization and this allows to define an equivalence

class of invariant functions.

Literature review Being a fertile resource of many potential blockchain applications, the existing

literature on CFMMs is quite vast: [GRGM23] defines a framework for mapping liquidity providers

belief about future valuation of digital goods into an optimal choice of the CFMM invariant function

to maximize their expected utility, [ACEB22] and [DRCA23] show how common financial problems

involving CFMMs like optimal routing or arbitrage trading could be framed as convex optimization
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problems and solved efficiently via dual decomposition, [MMRZ23] introduces a synthetic risk metric

for liquidity provisioning called “Loss-Versus-Rebalancing” (LVR) and suggests it could be the start-

ing point of a dynamic fee architecture for rewarding fairly liquidity providers, [BN23] and [Cla23]

show how it’s possible to delta and gamma-hedge CFMMs liquidity position via negative replication

of the portfolio value function embedded in CFMMs, [AEC21a] and [AEC21b] show that it’s possible

inducing invariant functions of CFMMs starting from generic non-negative, non-decreasing concave

portfolio value functions.

1.3 Main goal of this work

Focusing on a CFMM as a decentralized venue for exchanging digital currencies and as a ETF-like

investment vehicle for liquidity providers in replicating concave payoffs, it’s possible to argue that

the core components characterizing the mechanics of a CFMM are:

• The invariant function L̂ : Rn
+ → R+ for disciplining the trading activity and the liquidity

provisioning/withdrawing

• The portfolio value function V̂ : Rn
+ → R+ for being the concave payoff passively replicated by

liquidity providers

• The set of reachable reserves C ⊂ Rn
+ for describing which portfolio holdings are reachable via

the trading activity

• The set of feasible trades T (x0) ⊂ Rn for describing the domain of the trading activity given

inventory x0 ∈ Rn
+

Because of the properties encoded in the core components of a CFMM, the application of convex

analysis provides a means to attain a holistic understanding and thorough characterization of each

core component inherent to a CFMM. Indeed, the purpose of this work is to demonstrate how

each core component is actually capable of inducing all the other core components by applying

the theoretical framework of convex analysis, thus providing a powerful toolkit for designing and

customizing CFMMs. This approach not only yields a comprehensive characterization but also offers

significant freedom in the design of a CFMM, as starting from any one of these core components

enables the construction of a fully functional and well-defined CFMM. This work is split into two

main parts: the first part is dedicated to give some extensive primers on the theoretical framework

of convex analysis fixing also the notation that will be used throughout the work, while the second

part is dedicated to the characterization of the core components of a CFMM and to define the set

of proposition dedicated to the induction of the core components of a CFMM starting from any of

them.
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1.4 First part overview

1.4.1 Fundamental sets and their representation

Most of the notation used in the second chapter is consistent with that one used in [Roc70]. The

second chapter is organized as follows: the first subsection of the second chapter is dedicated to the

discussion about affine sets, convex sets and cones as essential components of convex analysis. Each

fundamental set is introduced after discussing about the associated fundamental operation of affine,

convex and conic combinations. Regarding affine sets, hyperplanes are presented as prominent

example of affine sets underlying how their set notation is easily via the orthogonal complement

of their parallel subspace and, at the same time, are introduced several ways of representing a

m-dimensional affine space as intersection of n − m hyperplanes, as solution set of n − m affine

equations in n variables, as graph of an affine transformation A : Rm → Rn−m (also called Tucker

representation) and as affine hull of m + 1 of affinely independent points. Regarding convex sets,

half-spaces and polyhedra in general are presented as prominent examples of convex sets and, after

discussing about Minkowski metric function, the unit ball is introduced as another example of convex

set extremely useful also for understanding topological properties of convex sets in general like the

concepts of relative interior, closure and relative boundary of a convex set. Regarding cones, after

introducing the main properties and the concept of Conic hull, it is discussed the concept of proper

cones as a device for defining generalized inequalities, which are going to be extremely useful in the

second subsection of the second chapter. Here is discussed a fundamental concept which is going to

be heavily used throughout the work, which is the fact that any convex cone containing the origin

K ⊂ Rn+1 can be actually generated as the Conic hull of a convex set C ⊂ Rn represented in higher

dimension [Roc70]. The discussion about cones ends with presenting the two subspaces associated

with any convex cone and with the introduction of several examples of convex cone containing the

origin which are going to be used in several proofs. Such cones are the normal cone to C ⊂ Rn,

the polar cone to K, the dual cone of K, the barrier cone of C and its recession cone. This first

subsection of the second chapter ends with the discussion about hyperplane separation theorem and

the concept supporting hyperplane used for discussing about smoothness and differentiability from

the point of view of convex analysis.

1.4.2 Pareto Optimal Frontier

The second subsection of the second chapter is dedicated to the discussion about minimum points,

minimal points and Pareto Optimal Frontier. This subsection is the only subsection of the second

chapter which uses mainly the notation borrowed from [BV04]. Such concepts allow to give a very

brief anticipation about the set of “efficient reserves” as the subset of reachable reserves where the

inventory of a CFMM is expected to lie at every price level because of arbitrage forces. Indeed, such

set corresponds to the set of minimal points (also defined as Pareto Optimal Frontier) using the
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non-negative orthant as proper cone of reference for the generalized inequality used in the definition

of minimal point.

1.4.3 Convex and concave functions

The third subsection of the second chapter is dedicated to the discussion about convex and concave

functions: after introducing the definitions of convex and concave functions the Jensen’s inequality

is discussed and applied for retrieving the famous inequality between arithmetic mean and geometric

mean (which is going to be widely used in the last subsection of this work in recovering some core

components of Uniswap V2-like CFMMs). Then, the concepts of lower semi-continuity and upper

semi-continuity are introduced and the discussion moves to the properties of ordinary continuity and

Lipschitzian continuity applied to convex and concave functions. Positive homogeneous function

are introduced for understanding which properties are encoded in convex cones containing used

as epigraphs of convex functions or as hypographs of concave function: this is fundamental for

understanding most of the properties associated with invariant function and portfolio value function

of a CFMM. Then, recalling some findings of [Ber09], the recession function is introduced as a device

for understanding the asymptotic behavior of a convex function moving in certain directions: this

turns out extremely important in inferring the asymptotic behavior of the invariant and portfolio

value function as well as the properties of the respective convex sets generating their hypographs.

This subsection ends with the discussion about support functions because of their importance in

designing CFMMs since in later subsections it will be proved that both the invariant function and

the portfolio value function of a CFMM can be characterized as the negative of the support function

of certain convex sets.

1.4.4 Function builder

The fourth subsection of the second chapter is dedicated to the application of a powerful device

introduced in [Roc70] for inducing a convex function f : Rn → R or a concave function f̂ : Rn → R

from a generic convex set F ⊂ Rn+1

f = inf {µ : (x, µ) ∈ F} f̂ = sup {µ : (x, µ) ∈ F}

This device is going to be used to derive all the functional forms of the functions introduced in

the previous subsections. This includes the functions which can be induced by manipulating the

epigraph of a convex function f : Rn → R like the lower semicontinuous hull of f , the recession

function of f or the positive homogenous convex function generated by f , but also the functions

which can be obtained by performing some operations on the epigraphs of a collection of convex

functions like the infimal convolution function. As discussed in the third chapter, the device intro-

duced in this subsection is extremely important for inducing, similarly to [ACD+23], the invariant

function and the portfolio value function of a CFMM starting from convex cones containing the
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origin living on the non-negative orthant. This subsection ends with the discussion about some

polar correspondences between a convex cone K generated in higher dimension by a convex set (i.e.

K = cone({(1, x) : x ∈ C})), its polar cones K◦ and its dual cone K⋆: this leads to a characterization

of K◦, K⋆, and their image under affine map A : (µ, x) 7→ (−µ, x) as epigraphs and hypographs of

convex and concave support functions of the set C ⊂ Rn generating K. Finally, these polar corre-

spondences reveal two important inequalities related to gauge-like functions (as defined in [Roc70])

induced by A(K◦) and A(K⋆) and the the gauge-like function induced by K = cone({(1, x) : x ∈ C}):

this is going to be extremely useful for characterizing the portfolio value function of a CFMM in

terms of the invariant function of the same CFMM and vice versa as shown in [ACD+23]

1.4.5 Directional derivatives and subgradients

The fifth subsection of the second chapter introduces the concepts of one-sided directional derivative

of f : Rn → R showing that it corresponds to the positive homogenous function generated by the

“variation function”

P (y;x0) = f(x0 + y)− f(x0)

The use of the variation function points out also the main differences between the one-sided direc-

tional derivative of f and the recession function of f showing how, in the first case, the behavior of f

is studied along the direction of y ∈ Rn but remaining in the neighborhood of x0 while in the second

case, the behavior of f is studied targeting the “horizon points” defined by the direction of y ∈ Rn.

Subsequently, a characterization of the one-sided directional derivative of a convex function as sup-

port function of some convex set allows to introduce the subgradient inequality as set notation of the

subdifferential of f : indeed, ∂f(x0) is introduced as the closed convex set supported by the one-sided

directional derivative of f . This leads to the introduction of the concepts of subdifferentiability of

convex functions, superdifferentiability of concave functions and differentiability in general showing

how, in the latter case (when the subdifferential of the convex function or the superdifferential of the

concave function resembles to the singleton of the gradient of the function), the one-sided directional

derivative can be recovered as the inner product between the gradient of the function (evaluating

the generic point x0 ∈ Rn) and the vector y ∈ Rn associated with the direction of the one-sided

directional derivative. Finally, the subsection ends with a reformulation of the subgradient inequality

in terms of the Fenchel conjugate f⋆ as an anticipation of the next subsection.

1.4.6 Fenchel conjugate

The last subsection of the second chapter deals with the discussion about the Fenchel conjugate of a

convex function as described in [Roc70]. Firstly, the closure of a convex function f is reformulated

as the convex function induced by the intersection of half-spaces fully containing epi(f) taking

advantage from the fact that any closed convex set has an “external” representation given by the
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intersection of half-spaces which are including the set. Then, after defining the collection of such

half-spaces as the collection of the epigraphs of some affine function g(x;x⋆, µ⋆) = ⟨x, x⋆⟩ − µ⋆ such

that f(x) ≥ g(x;x⋆, µ⋆) indexed by (x⋆, µ⋆) ∈ Rn+1, the Fenchel conjugate is defined as the convex

function induced by the index set of such collection, which is

F ⋆ = {(x⋆, µ⋆) ∈ Rn × R : f(x) ≥ g(x;x⋆, µ⋆), x ∈ dom(f)}

The functional form of the Fenchel conjugate allows to introduce the famous Fenchel inequality.

1.5 Second part overview

1.5.1 Analysis of the core components of a CFMM

The second part of this work, starting from the first two subsections of the third chapter, deploys

all the concepts introduced in the first part to provide an exhaustive framework about each core

component of a CFMM and the associated properties. The basic set of reachable reserves C ⊂ Rn
+

is characterized as the set of reserves which are reachable by performing feasible trades when the

liquidity value of the CFMM is equal to one. This set is characterized as a closed unbounded convex

set, at least two-dimensional, living on the non-negative orthant and not including the origin, such

that its recession cone corresponds to the non-negative orthant. The reason behind each property

is explained in detail in the dedicated subsection. This convex set does the service of generating

the invariant cone KL̂ = cone({(1, x) : x ∈ C}) which corresponds to the hypograph of the invariant

function L̂ : Rn
+ → R, which in fact is a gauge-like concave function similarly to the portfolio

value function V̂ : Rn
+ → R. Starting from the arbitrage problem, the portfolio value function is

naturally introduced as the “fair value” of the portfolio held by a CFMM so that, given the current

inventory and the vector of external prices, the optimal arbitrage profit is annihilated. This is

also the reason why the portfolio value function describes the concave payoff passively replicated by

liquidity providers: because if the portfolio value held by the CFMM is different from the image of the

portfolio value function given some external prices then there are arbitrage opportunities. This allows

to characterize the portfolio value function as the negative of the support function of the symmetric

reflection across the origin of the basic set of reachable reserves (i.e. V̂ (p; 1) = −δ⋆(p| − C)).

Throughout the dedicated section, it is also showed that invariant functions L̂ and portfolio value

functions V̂ share the same properties being both gauge like concave functions induced by some

convex cones containing the origin (the invariant cone KL̂ and the portfolio value cone KV̂ ). The

polar correspondence between the portfolio value function and the invariant function according to

which L̂(x)V̂ (p; 1) ≤ ⟨x, p⟩ ∀(x, p) ∈ R2n is caused by the fact that the portfolio value cone KV̂

(i.e. the hypograph of the portfolio value function) is actually the convex cone containing the origin

generated in higher dimension by the reverse polar C⋆ [Zaf12] of the set of reachable reserves C

(i.e. C⋆ = {p : ⟨x, p⟩ ≥ 1, x ∈ C}), and C is also the convex set generating in higher dimension



CHAPTER 1. INTRODUCTION 14

the invariant cone (i.e. the hypograph of the invariant function): this correspondence allows to

characterize the portfolio value function in terms of invariant function and vice-versa and this is

consistent with [ACD+23]. In particular, the reverse polar C⋆ ⊂ Rn
+ generating the portfolio value

cone KV̂ = cone({(1, p) : p ∈ C⋆}) shares the same properties of the basic set of reachable reserves

C ⊂ Rn
+. It is also shown that any convex set D sharing all the properties of a basic set of reachable

reserves with the exception of unboundedness can do the service of generating an invariant cone

KL̂ or a liquidity cone KV̂ and so to characterize the design of a CFMM: however, such set D will

meet the first-upper level set of the invariant function (or of the portfolio-value function) only on

the “lower boundary” (since the level set will be a sort of “unbounded version” of the set D). Finally,

given x0 ∈ Rn
+ as current inventory, the set of feasible trades T (x0) is defined as the upper level set

at level zero of the variation function P : Rn → R of the invariant (i.e. T (x0) = {y;P (y;x0) ≥ 0}

where P (y;x0) = L̂(x0 + y)− L̂(x0)) which is the concave function induced by the hypograph of the

invariant function L̂ under an affine map which “shifts” it so that the pair (x0, L̂(x0)) is mapped into

the origin.

1.5.2 A toolkit for designing CFMMs

Besides the characterization of the core components of a CFMM in terms of convex analysis, the

core of this work is also providing a set of proposition which acts as a toolkit to design a CFMM

starting from any of its core components, since the remaining ones will be immediately derivable.

The toolkit is summarized as follows: the basic set of reachable reserves C ⊂ Rn
+ can be seen as

the upper-level set of the invariant function L̂ at level one (i.e. C =
{
x : L̂(x) ≥ 1

}
), but also as

the effective domain of the concave conjugate of the portfolio value function (i.e. C = dom(V̂ ⋆))

and as the Minkowski sum between the set singleton of current inventory x0 ∈ Rn
+ and the set of

feasible trades T (x0) (i.e. C = T (x0) + x0); the portfolio value function V̂ : Rn
+ → R+ can be seen

as the negative of the support function of the symmetric reflection across the origin of the basic set

of reachable reserves (i.e. V̂ (p; 1) = −δ⋆(p| − C)) or of the symmetric reflection across the origin

of the Minkowski sum between the singleton of current inventory x0 ∈ Rn
+ and the set of feasible

trades T (x0) (i.e. V̂ (p; 1) = −δ⋆(−p|x0 + T (x0))), but also as the concave function induced by

the cone dual to the hypograph of the invariant function under linear map A : (µ, x) 7→ (−µ, x),

implying that V̂ (p; 1) = infx≻0
⟨x,p⟩
L̂(x)

; the invariant function L̂ : Rn
+ → R+ can be seen as the closed

concave gauge-like function induced by cone({(1, x) : x ∈ C}) (i.e. L̂(x) = sup {λ > 0 : x ∈ λC})

or by cone({(1, x) : x ∈ (x0 + T (x0))}) (i.e. L̂(x) = sup {λ > 0 : x ∈ λ(x0 + T (x0))}), but also as

L̂(x) = infp≻0
⟨x,p⟩
V̂ (p;1)

consistently with what ahs been said for the portfolio value function. Finally,

the set of feasible trades T (x0) ⊂ Rn, can be seen as the Minkowski sum between C and the

singleton of the negative of current inventory x0 ∈ Rn
+ (i.e. T (x0) = C − x0), but also as the

upper level set of the variation function P : Rn → R of the invariant function L̂ at level zero (i.e.

T (x0) = {y;P (y;x0) ≥ 0} where P (y;x0) = L̂(x0 + y) − L̂(x0)) or, in terms of the portfolio value
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function, as the set
{
y : V̂ ⋆(x0 + y) ≥ 0

}
. The toolkit introduced in this work is summarized in the

following table:

C V̂

• L̂(x) = sup {λ > 0 : x ∈ λC}

• V̂ (p; 1) = −δ⋆(−p|C)

• T (x0) = C − x0

• C = dom(V̂ ⋆)

• L̂(x) = infp≻0
⟨p,x⟩
V̂ (p;1)

• T (x0) =
{
y : V̂ ⋆ (x0 + y) ≥ 0

}

L̂ T (x0)

• C =
{
x : L̂(x) ≥ 1

}
• V̂ (p; 1) = infx≻0

⟨p,x⟩
L̂(x)

• T (x0) =
{
y : L̂(x0 + y)− L̂(x0) ≥ 0

}
• C = x0 + T (x0)

• L̂(x) = sup {λ > 0 : x ∈ λ(x0 + T (x0))}

• V̂ (p; 1) = −δ⋆(−p|x0 + T (x0))

The last subsection shows an application of such toolkit in recovering all the core components of any

Uniswap V2-like pool starting from any one of them.



Chapter 2

Convex Analysis

In this chapter are going to be introduced the basic concepts of convex analysis that will be used

throughout the work. Most of the notation is referred to the book Convex Analysis by Rockafellar

[Roc70], but also by [BV04] and [Ber09] mainly for the concepts of Pareto Optimal Frontier and

recession function respectively.

2.1 Fundamental sets and their representations

Most of the properties of the sets that are object of study of convex analysis are based on their

closedness under specific types of combinations of their elements. For this reason, it is worth to

introduce the concept of affine, convex and conic combinations and the sets which are closed under

such combinations.

2.1.1 Affine sets

Definition 1 (Affine combination). Given the points x1, x2, . . . , xk ∈ Rn, the point y given by

y = λ1x1 + λ2x2 + · · ·+ λkxk,

k∑
i=1

λi = 1, λi ∈ R, i = 1, . . . , k

is said to be affine combination of x1, x2, . . . , xk.

This allows to introduce a very important geometric object in convex analysis: given x1, x2 ∈ Rn,

x1 ̸= x2, the line through x1 and x2 is the set of points M given by:

M = {(1− λ)x1 + λx2 : λ ∈ R}

= {x1 + λ(x2 − x1) : λ ∈ R}

Thus, every point onto this line can be expressed in terms of x1 and x2 , being an affine combination

of them. This allows to introduce the category of affine sets

16
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Definition 2 (Affine set). A set M ⊆ Rn is said to be affine if for every x1, x2 ∈ M , the line through

x1 and x2 is contained in M :

x1 + λ(x2 − x1) ∈ M ∀x1, x2 ∈ M, ∀λ ∈ R

In other words, a set M ⊆ Rn is said to be affine if it is closed under affine combinations of its

elements.

Heuristically, this allows to visualize affine sets as “endless flat structures” in Rn which could be

either a line, a plane or the whole space Rn. Indeed, also ∅ and Rn are affine sets. Thus, generally

speaking, if two points x1, x2 ∈ Rn are contained in an affine set M , then the whole line through x1

and x2 is contained in M as well.

Remark 1. Each affine set M ⊆ Rn can be expressed as the translation of a vector subspace L in

Rn:

M = L+ x0 = {x+ x0 : x ∈ L} (2.1)

In fact, every affine set containing the origin is a vector subspace of Rn and it’s possible to retrieve

the parallel subspace L of an affine set M by taking the Minkowski sum of M with its symmetric

reflection across the origin (−M = (−1)M)

L = M −M = {x− y : x ∈ M,y ∈ M}

This allows to define an equivalence class of affine sets where the equivalent relation is given by the

subspace L parallel to the affine set M . Indeed, the dimension of an affine set M corresponds to the

dimension of the subspace L parallel to M .

For example, every line in Rn can be seen as a translation of a one-dimensional subspace L in Rn

(i.e. the “parallel” line passing through the origin), indeed lines are one-dimensional affine sets.

Trivially, points {x0} and planes are zero-dimensional and two-dimensional affine sets respectively,

being translates of the singleton of the origin (which is a vector subspace) and of a two-dimensional

subspace in Rn. Of course, it becomes difficult to visualize sets in Rn for n > 3, but concepts remain

the same.

Definition 3 (Hyperplanes). An affine set H ⊂ Rn of dimension n− 1 is called a hyperplane

Hyperplanes a very important class of affine sets; indeed, every hyperplane is the translate of a

(n−1)-dimensional vector subspace L ⊂ Rn and it’s possible to retrieve a set notation for hyperplanes

recalling that the orthogonal complement of L ⊂ Rn corresponds to:

L⊥ = {x ∈ Rn : ⟨x, y⟩ = 0, y ∈ L}

= {x ∈ Rn : x ⊥ y, y ∈ L}
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Where ⟨· , ·⟩ : Rn × Rn → R denotes the inner product in Rn. In particular, given L ⊂ Rn, one has

that dim(L) + dim(L⊥) = n.

This implies that the one-to-one correspondence between a hyperplane and the (n− 1)-dimensional

parallel subspace can be extended to a one-to-one correspondence between a hyperplane and the

1-dimensional orthogonal complement of the parallel subspace.

Proposition 1. Given b ∈ Rn and β ∈ R, any hyperplane H ⊂ Rn can be written as

H = {z : ⟨z, b⟩ = β} (2.2)

Proof. Starting from the set notation of affine sets in (2.1) and specifying L ⊂ Rn as a (n − 1)-

dimensional subspace, it’s possible to formulate a set notation for hyperplanes as follows:

H = L+ x0

=
{
x : x ⊥ y, y ∈ L⊥}+ x0

=
{
x : ⟨x, y⟩ = 0, y ∈ L⊥}+ x0

=
{
x+ x0 : ⟨x, y⟩ = 0, y ∈ L⊥}

Calling z = x + x0 and defining b as the unique vector in the basis of L⊥ (so that ⟨x, b⟩ = 0 is

equivalent to ⟨x, y⟩ = 0, y ∈ L⊥ since each y ∈ L⊥ is simply a scalar multiple of b, being L⊥ a

1-dimensional vector subspace), it’s possible to write the set notation of a hyperplane as:

H =
{
x+ x0 : ⟨x, y⟩ = 0, y ∈ L⊥}

= {z : ⟨z − x0, b⟩ = 0}

= {z : ⟨z, b⟩ = ⟨x0, b⟩}

= {z : ⟨z, b⟩ = β}

Where β = ⟨x0, b⟩.

Thus, every hyperplane would be characterized by a vector b ∈ Rn and a scalar β ∈ R. The vector b is

called vector normal to the hyperplane H and it’s exactly the vector in the basis of the 1-dimensional

orthogonal complement of the parallel subspace L, while β ∈ R is a sort of “offset” of the hyperplane

H from the origin (indeed, notice that by setting β = 0, H = {z : ⟨z, b⟩ = 0} resemble to the parallel

subspace L).

It follows that each hyperplane H ⊂ Rn is characterized by a double (b, β) ∈ Rn ×R and it is recov-

erable via the set-valued map (b, β) 7→ {x : ⟨x, b⟩ = β}. Thus, throughout this work, the hyperplane

“associated” with the pair (b, β) ∈ Rn × R will refer to {x ∈ Rn : ⟨x, b⟩ = β}

. At the same time, recalling the fact that β = ⟨x0, b⟩, a hyperplane can be characterized also by

the double (b, x0) ∈ R2n in the set-valued sense (b, x0) 7→ {x : ⟨x, b⟩ = ⟨x, x0⟩}
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The notation used in (2.2) for hyperplanes can be extended to any m-dimensional set supposing that

the parallel subspace L is m-dimensional.

Proposition 2. Given a collection of hyperplanes of the type Hi = {x : ⟨x, bi⟩ = βi} ⊂ Rn indexed

by i ∈ [1, n−m], any affine set M ⊂ Rn such that dim(M) = m can be written as

M =

n−m⋂
i=1

Hi = {z : Bz = c} (2.3)

for some B ∈ R(n−m)×n and c ∈ R(n−m)

Proof. Since M ⊂ Rn with dim(M) = m it follows that dim(L) = m while dim(L⊥) = n − m.

Assuming that (b1, . . . , bn−m) is a basis for L⊥, it’s possible to write M as:

M = L+ x0

=
{
x : x ⊥ y, y ∈ L⊥}+ x0

= {x : ⟨x, b1⟩ = 0, . . . , ⟨x, bn−m⟩ = 0}+ x0

At this point, it’s immediate to see that every m-dimensional set can be expressed as the finite

intersection of n−m hyperplanes, indeed:

M = {x : ⟨x, b1⟩ = 0, . . . , ⟨x, bn−m⟩ = 0}+ x0

= {x+ x0 : ⟨x, b1⟩ = 0, . . . , ⟨x, bn−m⟩ = 0}

= {z : ⟨z − x0, b1⟩ = 0, . . . , ⟨z − x0, bn−m⟩ = 0}

= {z : ⟨z, b1⟩ = ⟨x0, b1⟩, . . . , ⟨z, bn−m⟩ = ⟨x0, bn−m⟩}

= {z : ⟨z, b1⟩ = β1, . . . , ⟨z, bn−m⟩ = βn−m}

=

n−m⋂
i=1

Hi

Where Hi = {z : ⟨z, bi⟩ = βi} .

Moving back from the notation of M as M = {x : ⟨x, b1⟩ = 0, . . . , ⟨x, bn−m⟩ = 0}+x0, it’s convenient

introducing the linear map B : Rn → Rn−m where

B : x 7→ (⟨x, b1⟩, . . . , ⟨x, bn−m⟩)

and, being a linear map, there is a one-to-one correspondence with a matrix B ∈ R(n−m)×n such

that Bx = (⟨x, b1⟩, . . . , ⟨x, bn−m⟩) (because of the one-to-one correspondence, B refers both to the

linear map and the associated matrix). Thus, it’s possible to write the set notation of M as:

M = {x : ⟨x, b1⟩ = 0, . . . , ⟨x, bn−m⟩ = 0}+ x0

= {x : Bx = 0}+ x0

= Ker(B) + x0
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This notation allows to appreciate the nature of the subspace L parallel to M as the null-space of

the matrix B, where each row of B corresponds to a vector of the basis of L⊥. Proceeding with the

same reasoning, it’s possible to define M as the set of solutions of a system of n−m affine equations

in n variables, indeed:

M = {x : Bx = 0}+ x0

= {x+ x0 : Bx = 0}

= {z : B(z − x0) = 0}

= {z : Bz = Bx0}

= {z : Bz = c}

And, as before, by setting c = 0 =⇒ M = {z : Bz = 0} = Ker(B) = L (i.e., the parallel subspace

corresponds to the homogenous version of the system of equations).

Thus, according to the representation given by (2.3), every m-dimensional affine set can be expressed

as the set of solutions of a system of n−m affine equations in n variables. Notice that this notation

is consistent with that one provided in (2.2) for hyperplanes because since dim(H) = n − 1 =⇒

m = n− 1 =⇒ B : Rn → R and so {z : Bz = c} resembles to {z : ⟨z, b⟩ = β} =: H

From the notation just introduced, it is possible to derive another possible representation of affine

sets, which is called “Tucker representation” which allows to represent any m-dimensional affine set

in Rn as the graph of a certain affine transformation from Rm to Rn−m.

Proposition 3 (Tucker representation). Given an affine set M ∈ Rn such that dim(M) = m, it’s

possible to write M as

M = Graph(A) = {(x, µ) : µ = Ax} (2.4)

for some A ∈ R(n−m)×m

Proof. Given m < n, it’s possible to decompose z = (ξ1, . . . , ξm, ξm+1, . . . , ξn) ∈ Rn so that

M = {z : Bz = c}

= {(ξ1, . . . , ξm, ξm+1, . . . , ξn) : B(ξ1, . . . , ξm, ξm+1, . . . , ξn) = c}

The previous discussion showed that L = Ker(B), and this implies that dim(M) = dim(L) =

dim(Ker(B)) where L denotes the subspace parallel to M . Thus, dim(M) corresponds to the nullity

of B, that is the dimension of the null-space of the linear operator associated with B. The rank-

nullity theorem states that the number of columns of B is equal to the sum of the rank of B and

the nullity of B. Thus, since B ∈ R(n−m)×n and dim(Ker(B) = m, it follows that rank(B) = n−m,
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which indeed is the dimension of the image of an affine transformation A : Rm → Rn−m.

Thus, since (ξ1, . . . , ξm) ∈ Rm and (ξm+1, . . . , ξn) ∈ Rn−m (of course, such tuples are not ordered

and so the way of splitting z in two parts is not unique: that’s the reason why there exist multiple

(but finite) possible Tucker representation for an affine set), it’s possible to write M as:

M = {(ξ1, . . . , ξm, ξm+1, . . . , ξn) : B(ξ1, . . . , ξm, ξm+1, . . . , ξn) = c}

= {(ξ1, . . . , ξm, ξm+1, . . . , ξn) : ξm+i = ai,1ξ1 + · · ·+ ai,mξm + αi, i = 1, . . . , n−m}

Which, by setting

A : (ξ1, . . . , ξm) 7→ (a1,1ξ1 + · · ·+ a1,mξm + α1, . . . , an−m,1ξ1 + · · ·+ an−m,mξm + αn−m)

resembles to

M = {(ξ1, . . . , ξm, ξm+1, . . . , ξn) : ξm+i = ai,1ξ1 + · · ·+ ai,mξm + αi, i = 1, . . . , n−m}

M = {(x, µ) : µ = Ax} =: Graph(A)

Definition 4 (Affine hull). Given a generic set S ⊂ Rn (affine or not), there always exist an affine

set containing S with minimal dimension. Such set is called affine hull of S and it’s denoted by

aff(S). The affine hull of a set S is the smallest affine set containing S and it can be expressed as

the set of affine combinations of the elements of S:

aff(S) :=

{
λ1x1 + λ2x2 + · · ·+ λnxn :

n∑
i=1

λi = 1, λi ∈ R, xi ∈ S, i = 1, . . . , n

}

Of course, if S is affine, then aff(S) = S. Moreover, if S is n-dimensional, then aff(S) = Rn.

Definition 5 (Affinely independent points). A set of (m + 1) points S = {x0, . . . , xm} is said to

be affinely independent if aff(S) is m-dimensional, meaning that the subspace L parallel to aff(S) is

actually Span(x1 − x0, . . . , xm − x0) (i.e., the m vectors (x1 − x0, . . . , xm − x0) are a basis of L).

Thus, the elements of {x0, . . . , xm} are affinely independent if and only if the vectors

{x1 − x0, . . . , xm − x0} are linearly independent. This is important since every m-dimensional affine

set M ⊂ Rn can be expressed as the affine hull of an affinely independent set of m + 1 points,

implying that every point of M can be expressed via a unique linear combination of the type

(λ1(x1 −x0)+ · · ·+λm(xm −x0)+x0) ∈ M and the unique vector of coefficients (λ1, . . . , λm) ∈ Rm

is called barycentric coordinates of the point in M .

To sum up, every m-dimensional affine set M ⊂ Rn can be represented as:

• Intersection of n−m hyperplanes: M =
⋂n−m

i=1 {z : ⟨z, bi⟩ = βi} , bi ∈ Rn, βi ∈ R
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• Set of solutions of a system of n −m affine equations in n variables M = {z : Bz = c} , B ∈

Rn−m × Rn, c ∈ Rn−m

• (Tucker representation) Graph of an affine transformation M = {(x, µ) : µ = Ax} , A ∈

R(n−m)×m

• Affine hull of m+ 1 affinely independent points M = aff(S) where

S = {x0, . . . , xm : (x1 − x0) ⊥ · · · ⊥ (xm − x0)}

2.1.2 Convex sets

Definition 6 (Convex combination). Given the points x1, x2, . . . , xk ∈ Rn, the point y given by

y = λ1x1 + λ2x2 + · · ·+ λkxk,

k∑
i=1

λi = 1, λi ∈ R+, i = 1, . . . , k

is said to be convex combination of x1, x2, . . . , xk.

It’s evident how the definition of convex combination is a “constrained” version of the definition of

affine combination: indeed, in this case the linear coefficients are constrained to be non-negative

and to sum to one. This means that the linear coefficients involved in a convex combination are all

non-negative and smaller than one, implying that they can be conceived as a vector of proportions

or of probabilities. Every affine combination is also a convex combination but the converse it’s not

true. As done before, introducing the line through x1 and x2, the first important geometric object

that is related to the convex combination of two points is the (closed) line-segment between x1 and

x2, which is the set of points C given by:

C = {(1− λ)x1 + λx2 : λ ∈ [0, 1]}

= {x1 + λ(x2 − x1) : λ ∈ [0, 1]}

Trivially, notice that {x1 + λ(x2 − x1) : λ ∈ [0, 1]} ⊂ {x1 + λ(x2 − x1) : λ ∈ R} being just a “portion”

of the line through x1 and x2. Every point onto the line-segment C can be expressed as a convex

combination of x1 and x2. This allows to introduce the class of convex sets

Definition 7 (Convex set). A set C ⊆ Rn is said to be convex if for every x1, x2 ∈ C, the line-

segment between x1 and x2 is contained in C:

x1 + λ(x2 − x1) ∈ C ∀x1, x2 ∈ C, ∀λ ∈ [0, 1]

In other words, a set C ⊆ Rn is said to be convex if it is closed under convex combinations of its

elements. Analogously to the definition of convex combination, every affine set is also convex, but

the contrary is not true.
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Definition 8 (Convex hull). Given any set S ⊂ Rn, there always exist a convex set containing S

with minimal dimension. Such set is called convex hull of S and it’s denoted by conv(S). The convex

hull of a set S is the smallest convex set containing S and it can be expressed as the set of convex

combinations of the elements of S:

conv(S) :=

{
λ1x1 + λ2x2 + · · ·+ λnxn :

n∑
i=1

λi = 1, λi ∈ R+, xi ∈ S, i = 1, . . . , n

}

The dimension of a convex set is defined by the dimension of its affine hull (which refers to the

dimension of its parallel subspace L). Thus, if C is convex, then dim(C) = dim(aff(C)) and of

course dim(conv(S)) = dim(aff(conv(S))) = dim(aff(S)).

Proposition 4. Considering a collection of non-empty convex sets {Ci : i ∈ I} (where I denotes

a generic index set), the convex hull of the union of the collection corresponds to the union of the

convex combinations of the elements of the collection:

conv

(⋃
i∈I

Ci

)
=
⋃{∑

i∈I

λiCi :
∑
i∈I

λi = 1, λi ∈ R+, i ∈ I

}

Proof.

conv

(⋃
i∈I

Ci

)
=

λ1x1 + λ2x2 + · · ·+ λkxk :

k∑
j=1

λj = 1, λj ∈ R+, xj ∈
⋃
i∈I

Ci, j = 1, . . . , k


Notice that xj ∈

⋃
i∈I Ci means that xj is allowed to belong to any Ci of the collection. Thus,

it’s possible to reformulate the set notation considering the union of all the possible combinations

(ranging over
∑

i∈I λi = 1, λi ∈ R+) of elements taken from different sets Ci

=
⋃{

λ1x1 + λ2x2 + · · · :
∑
i∈I

λi = 1, λi ∈ R+, xi ∈ Ci, i ∈ I

}

By calling z = λ1x1 + λ2x2 + . . . so that z ∈ λ1C1 + λ2C2 + . . .

=
⋃{

z :
∑
i∈I

λi = 1, λi ∈ R+, i ∈ I, z ∈ λ1C1 + λ2C2 + . . .

}

=
⋃{

λ1C1 + λ2C2 + · · · :
∑
i∈I

λi = 1, λi ∈ R+, i ∈ I

}

=
⋃{∑

i∈I

λiCi :
∑
i∈I

λi = 1, λi ∈ R+, i ∈ I

}

A similar operation to the convex hull of a collection of convex sets is the inverse sum of a collection

of convex sets, which corresponds to

C1#C2# · · · =
⋃{⋂

i∈I

λiCi :
∑
i∈I

λi = 1, λi ∈ R+, i ∈ I

}



CHAPTER 2. CONVEX ANALYSIS 24

Every hyperplane H ⊂ Rn partitions Rn into two convex sets called half-spaces, arranged into two

possible pairs of convex sets:{x ∈ Rn : ⟨x, b⟩ ≥ β}

{x ∈ Rn : ⟨x, b⟩ < β}
or

{x ∈ Rn : ⟨x, b⟩ ≤ β}

{x ∈ Rn : ⟨x, b⟩ > β}

The half-spaces having weak inequality in the set notation are called closed half-spaces while the

other ones are called open half-spaces.

Definition 9 (Half-space). Given b ∈ Rn and β ∈ R, any convex set H̃ ⊂ Rn which can be

represented as

{x : ⟨x, b⟩ ≤ β} ({x : ⟨x, b⟩ < β})

or

{x : ⟨x, b⟩ ≥ β} ({x : ⟨x, b⟩ > β})

is called closed (open) half-space

For the sake of representation, half-spaces stands to convex sets as hyperplanes stands to affine sets.

Indeed, the intersection operation is convexity-preserving and every closed convex set C ⊂ Rn can

be expressed as the intersection of all the half-spaces containing it.

By intersecting a finite number of half-spaces and hyperplanes, it’s possible to retrieve a particular

kind of convex set called polyhedron.

Definition 10 (Polyhedron). Given a finite collection of half-spaces of type H̃i = {x : ⟨x, bi⟩ ≤ βi}

indexed by i ∈ I, and a finite collection of hyperplanes of type Hj = {x : ⟨x, bj⟩ = βj} indexed by

j ∈ J , the convex set P ⊂ Rn defined by

P =

(⋂
i∈I

H̃i

)
∩

⋂
j∈J

Hj


is called polyhedron

Thus, a polyhedron can be represented as the set of solutions of a system of a finite number of affine

weak inequalities and equalities:

P = {x ∈ Rn : ⟨x, bi⟩ ≤ βi, ⟨x, ci⟩ = di, i ∈ I}

= {x ∈ Rn : Bx ⪯ β, Cx = d}

Where the ⪯ symbol denotes the element-wise inequality (or, more precisely, the generalized inequal-

ity using Rn
+ as proper cone of reference, as it will be discussed in the next section).

Heuristically, trying to retrieve a convex set C by intersecting just some of the half-spaces containing

it, leads to a polyhedron which simply“approximates” C from the outside and this gives an initial
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intuition about the possibility of retrieving “external” representations of a convex set C via the half-

spaces containing it,

However, to appreciate this fact, it’s necessary to introduce the topological concepts of closure,

interior and relative interior of a set in Rn. For this purpose, it’s necessary introducing the concept

of norm, metric and ball.

Definition 11 (Norm function). A norm is a convex function || · || : Rn → R satisfying the following

properties:

• ||x|| ≥ 0 ∀x ∈ Rn (non-negativity)

• ||x|| = 0 ⇐⇒ x = 0 (vanishing at zero)

• ||αx|| = |α| · ||x|| ∀x ∈ Rn, ∀α ∈ R (homogeneity)

• ||x+ y|| ≤ ||x||+ ||y|| ∀x, y ∈ Rn (triangular inequality)

Throughout this work, the Euclidean norm function (a particular kind of norm function) is going

to be extremely important in understanding several concepts. Indeed, this function encodes several

properties which have yet to be mentioned. To anticipate some of them, which will result more clear

throughout this work, it is possible to say that the Euclidean norm is a closed positively homogenous

convex function corresponding both to the support function and gauge function of the Euclidean

unit ball. From these simple though still obscure observations will derive very important findings.

For example, the “triangular inequality” property mentioned above is an extension of the Jensen’s

inequality property (which is typical for convex functions) to the case of positive homogeneous con-

vex functions (i.e. when the epigraph of such functions is a convex cone).

A very popular collection of norm functions is the p-norm family (ℓp), defined as:||x||p =

(
n∑

i=1

|xi|p
) 1

p

: p ≥ 1


For example, considering x = (ξ1, . . . , ξn) ∈ Rn:

• p = 1: ||x||1 =
∑n

i=1 |ξi|

• p = 2: ||x||2 =
√∑n

i=1 ξ
2
i (Euclidean norm)

• p = ∞: ||x||∞ = maxi=1,...,n |ξi| (Tchebycheff norm)

The Euclidean norm is the most popular norm function and it’s the one that will be used in this

work if not otherwise specified.

Besides norms, it’s possible to introduce the metric function
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Definition 12 (Metric function). A metric function on Rn is a convex function ρ : Rn × Rn → R

satisfying the following properties:

• ρ(x, y) ≥ 0 ∀x, y ∈ Rn (non-negativity)

• ρ(x, y) = 0 ⇐⇒ x = y

• ρ(x, y) = ρ(y, x) ∀x, y ∈ Rn (commutativity in the arguments)

• ρ(x, y) ≤ ρ(x, z) + ρ(z, y) ∀x, y, z ∈ Rn

If some other properties are added to such definition, it is possible to have a refinement of the metric

function, that is the Minkowski metric function.

Definition 13 (Minkowski metric function). If a metric function ρ : Rn × Rn → R satisfies the

following properties:

• ρ(x+ z, y + z) = ρ(x, y) ∀x, y, z ∈ Rn (translation invariance)

• ρ(x, (1− λ)x+ λy) = λρ(x, y) (linear behavior along line segments)

it is called Minkowski metric function on Rn

Metric functions play a fundamental role because they express a way of measuring the distance

between two points in Rn. Moreover, there is a one-to-one correspondence between norm functions

and Minkowski metric functions, in the sense that every norm function induces a metric function in

the form of

ρ(x, y) = ||x− y||

Trivially, the Euclidean distance d(x, y) is the Minkowski metric function induced by the Euclidean

norm (i.e. d(x, y) = ||x− y||2), and it is also the most popular metric function.

Having a tool for measuring distance between points allows to introduce the concept of ball in the

sense of a set of points where the rule of inclusion is given by the distance between the points and a

certain point called center of the ball.

Definition 14 (Unit ball). Given a metric function ρ : Rn×Rn → R, the convex set B ⊂ Rn defined

by

B = {x : ρ(0, x) ≤ 1}

is called unit ball

The most known unit ball is the “Euclidean unit ball” which is the ball induced by the Euclidean

distance, centered in the origin and with radius equal to one:

B = {x ∈ Rn : d(0, x) ≤ 1}

= {x ∈ Rn : ||x||2 ≤ 1}
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In the section dedicated to convex functions, it will be seen that the Euclidean unit ball can be seen

as the 1-sub-level set of the Euclidean norm function which, being convex, establishes the convexity

of the Euclidean unit ball.

By transforming the Euclidean unit ball is possible to obtain a Euclidean balls centered in some

point x0 ∈ Rn with some radius r > 0 (i.e. the points that are distant from x0 no more than r):

Proposition 5. Let ρ : Rn × Rn → R be a Minkowski metric function. Let B ⊂ Rn be the unit

ball associated with the metric function ρ. The set of points x ∈ Rn which are not distant more than

ϵ > 0 from a certain x0 ∈ Rn corresponds to

B(x0; ϵ) = x0 + ϵB (2.5)

Proof. Without loss of generality, one can pick the Euclidean distance as Minkowski metric function

of reference since, as shown in [Roc70], any Minkowski metric function can be expressed as a “rescaled”

version of the Euclidean distance for a positive scalar

B(x0; r) := {x ∈ Rn : d(x, x0) ≤ r}

= {x ∈ Rn : ||x− x0||2 ≤ r}

By calling y = x− x0

B(x0; r) = {y + x0 : ||y||2 ≤ r}

= x0 + {y : ||y||2 ≤ r}

By calling y
r = z and exploiting the homogeneity of the Euclidean norm:

B(x0; r) = x0 + {rz : ||z||2 ≤ 1}

= x0 + r {z : ||z||2 ≤ 1}

= x0 + rB

The expression B(x0; r) is intentionally used to define the Euclidean ball centered in x0 with radius

r as a set-valued function on Rn (parameterizing r ∈ R) Analogously, it’s possible to define the set

of points that are distant from a convex set C ⊂ Rn no more than r:

Proposition 6. Let ρ : Rn × Rn → R be a Minkowski metric function. Let B ⊂ Rn be the unit

ball associated with the metric function ρ. The set of points x ∈ Rn which are not distant more than

ϵ > 0 from at least one element of C corresponds to

B(C; ϵ) = C + ϵB
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Proof. As before, also in this case one can pick the Euclidean distance as Minkowski metric function

of reference

B(C; r) := {x ∈ Rn : ∃y ∈ C, d(x, y) ≤ r}

= {x ∈ Rn : ∃y ∈ C, ||x− y||2 ≤ r}

= {z + y : ∃y ∈ C, ||z||2 ≤ r}

= {rz + y : ∃y ∈ C, ||z||2 ≤ 1}

= C + {rz : ||z||2 ≤ 1}

= C + rB

Which, using the Minkowski sum of sets, could be interpreted as the “ball centered in C with radius

r”.

As previously mentioned, such concepts are useful to appreciate several topological components of

convex sets. Indeed, the Euclidean ball becomes a tool for a geometric understanding of the position

of points and the relative distance from others.

Definition 15 (Interior of a convex set). Let C ⊂ Rn be a convex set. The interior of C is defined

as:

int(C) := {x ∈ C : ∃r > 0, B(x; r) ⊂ C}

= {x ∈ C : ∃r > 0, x+ rB ⊂ C}

However, given C ⊂ Rn such that dim(C) < n, one trivially has int(C) = ∅. Indeed, imagining a

line-segment C in R2, there isn’t any Euclidean ball with positive radius centered in a point of C

that is fully contained in C. Thus, to relax the definition of interior, it’s possible to introduce the

concept of relative interior of a convex set, by considering just the intersection of such Euclidean

balls with the affine hull of the set

Definition 16 (Relative interior of a convex set). Let C ⊂ Rn be a convex set. The relative interior

of C is defined as:

ri(C) := {x ∈ C : ∃r > 0, B(x; r) ∩ aff(C) ⊂ C}

= {x ∈ C : ∃r > 0, x+ rB ∩ aff(C) ⊂ C}

Taking the previous example, it’s immediate to see that aff(C) corresponds to the line passing through

the endpoints of the line-segment C and so that the intersection of such line with the ball B(x; r) is

fully included in C for some points of C. The first topological property derivable for convex sets is

that C ⊆ Rn is said to be relatively open if C = ri(C). On the other hand, the topological property

of closedness (i.e. the fact that C “contains its boundary points”) can be introduced by defining the

closure of a convex set, again via the use of Euclidean balls:
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Definition 17 (Closure of a convex set). Let C ⊂ Rn be a convex set. The closure of C is defined

as:

cl(C) := {x ∈ Rn : ∃y ∈ C, d(x, y) ≤ r, r > 0}

=
⋂
r>0

C + rB

=
⋂
r>0

B(C; r)

Not surprisingly, C is closed if C = cl(C). Being “endless flat surfaces” on Rn, affine sets are both

closed and relatively open by definition. Moreover, ri(C) and cl(C) have the same affine hull (hence

the same dimension) of C. The fundamental relations linking C with ri(C) and cl(C) are:

ri(cl(C)) = ri(C)

cl(ri(C)) = cl(C)

ri(C) ⊆ C ⊆ cl(C)

Finally, in force of the inclusion described by the latter relation, it’s useful characterizing the set of

points which do belong to the closure of C without living on its relative interior. Such set of points

is called relative boundary of C

Definition 18 (Relative boundary of C). Let C ⊂ Rn be a convex set. The relative boundary of C

is defined as:

cl(C) \ ri(C)

Proposition 7. Let C ⊂ Rn be a convex set. Defining z as any convex combination between a

generic x ∈ ri(C) and y ∈ cl(C) (excluding the case where z = y) one has that z ∈ ri(C). In other

words:

(1− λ)x+ λy ∈ ri(C) ∀λ ∈ [0, 1), ∀x ∈ ri(C), ∀y ∈ cl(C) (2.6)

Proof. This statement claims that considering x ∈ ri(C) and y ∈ cl(C), any point lying on the line

segment joining x and y excluding y itself is contained in ri(C) (and so, in C since ri(C) ⊆ C ⊆ cl(C)).

To prove this, supposing that C is n-dimensional (so that ri(C) = int(C)), is sufficient to prove that

∃ϵ > 0 such that z+ ϵB ⊂ C where z = (1−λ)x+λy. Indeed, by definition of relative interior point,

this is equivalent to say that the point retrieved as convex combination is “sufficiently inside” C so

that exists a positive radius, also infinitesimal, such that the Euclidean ball centered in that point

is still contained in C. More formally, if (1− λ)x+ λy ∈ ri(C), it means that

∃ϵ > 0 : ((1− λ)x+ λy) + ϵB ⊆ C ∀λ ∈ [0, 1), ∀x ∈ ri(C), ∀y ∈ cl(C)

This can be proved algebraically recalling that

y ∈ cl(C) =⇒ y ∈ (∩ϵ>0C + ϵB) =⇒ y ∈ (C + ϵB) ∀ϵ > 0
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meaning that one can rewrite

((1− λ)x+ λy) + ϵB = (1− λ)x+ λ(C + ϵB) + ϵB

= λC + (1− λ)x+ ϵ(1 + λ)B

= λC + (1− λ)

[
x+ ϵ

(1 + λ)

(1− λ)
B

]
= λC + (1− λ)B

(
x; ϵ

(1 + λ)

(1− λ)

)
As said before, supposing that C is n-dimensional, one has that ri(C) = int(C) =⇒ x ∈ int(C)

and so, by definition of interior point, ∃ϵ > 0 : B
(
x; ϵ (1+λ)

(1−λ)

)
⊂ C, meaning that λC + (1 −

λ)B
(
x; ϵ (1+λ)

(1−λ)

)
⊆ λC + (1− λ)C = C. Thus, λC + (1− λ)B

(
x; ϵ (1+λ)

(1−λ)

)
= ((1− λ)x+ λy) + ϵB

∃ϵ > 0 : λC + (1− λ)B
(
x; ϵ (1+λ)

(1−λ)

)
⊆ C

=⇒ ∃ϵ > 0 : ((1− λ)x+ λy) + ϵB ⊆ C

A further characterization of points x ∈ ri(C) is that, using any y ∈ C as “source of light” there is

always at least one point in the “shadow” of x (i.e. the half-line starting from x, but not including

it, whose affine hull is the line passing through x and y) that is still contained in ri(C) (i.e. it is still

“sufficiently inside” C)

Proposition 8. Let C ⊂ Rn be a convex set and x ∈ ri(C), then

∃µ > 1 : ((1− µ)y + µx) ∈ ri(C) ∀y ∈ C (2.7)

In other words:

∀x ∈ ri(C),∃µ > 1 : ((1− µ)y + µx) ∈ ri(C) ∀y ∈ C

Proof. Supposing that exists a z ∈ ri(C) which can be expressed as z = (1 − µ)y + µx for some

µ > 1 with x, y ∈ C, then recalling 2.6 proving this statement is equivalent to prove that x ∈ ri(C).

Noticeably, it’s possible to express x = z−(1−µ)y
µ = z

µ − y
µ + y = z

µ + (1− 1
µ )y and setting λ = 1

µ , it’s

evident how x is actually any point on the line-segment joining y and z excluding the two endpoints,

i.e. x = (1−λ)y+λz, λ ∈ (0, 1) (since µ > 1). Since the claim here is that z ∈ ri(C), then it must be

that x ∈ ri(C) since, as previously discussed in (2.6), any point on the line-segment joining a relative

interior point (z in this case) with any other point of the closure of C (y in this case, recalling that

C ⊆ cl(C)), excluding such point, is contained in ri(C), thus x ∈ ri(C).

Closedness is a very desirable property for convex sets, because it allows to have an “external” rep-

resentation of the set as the intersection of the closed half-spaces containing it. By definition, such
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external representation is always possible for cl(C). Because of this external representation, when a

closed convex set C ⊂ Rn+1 acts as epigraph of some convex function f : Rn → R, it encodes several

property of the function f itself.

Closed convex sets can have an “external” representation, but for any convex set it is always possible

to have its “internal” representation. Indeed, like any m-dimensional affine sets, which can be always

expressed as affine hulls of m+1 affinely independent points, also every convex set could be expressed

as the convex hull of a finite set of points.

2.1.3 Cones

Definition 19 (Cone). A set K ⊆ Rn is said to be a cone if it is closed under positive scalar

multiplication:

λx ∈ K ∀x ∈ K, ∀λ > 0

Some common examples of cones are the positive orthant {(ξ1, . . . , ξn) : ξi > 0, i = 1, . . . , n} or the

negative orthant {(ξ1, . . . , ξn) : ξi < 0, i = 1, . . . , n}.

Notice that a cone doesn’t have to contain the origin (indeed the requirement for scalar multiplication

has strict inequality) and most importantly it doesn’t have to be convex. For example, the union

of the positive orthant and the negative orthant is still a cone but it is non-convex and it doesn’t

contain the origin.

Given a generic set S ⊂ Rnit’s possible to introduce the set of half-lines emanating from the origin

and passing through at least one point of S as an example of non-convex cone including the origin:

ray(S) = {λx : x ∈ S, λ ∈ R+}

However, most of the theory in convex analysis is built around convex cones, which are cones that

are also convex sets.

Some authors [BV04] put the inclusion of the origin as a requirement for convex cones, simplifying

the definition of convex cones to any set closed under conic combinations of its elements.

Convex cones including the origin are extremely important also in the analysis of a CFMM since

both the invariant function and the portfolio value function describing its mechanics are “induceable”

by closed convex cones containing the origin.

Definition 20 (Conic combination). Given the points x1, x2, . . . , xk ∈ Rn, the point y given by

y = λ1x1 + λ2x2 + · · ·+ λkxk, λi ∈ R+, i = 1, . . . , k

is said to be a conic combination of x1, x2, . . . , xk.
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As in convex combinations here the coefficients are constrained to be non-negative, but they don’t

have to sum to one. Keeping the generic definition of convex cones, it can’t be said that convex

cones are closed under conic combinations of their elements, unless they contain the origin.

Proposition 9. Let K ⊂ Rn be a convex cone, then K is closed under addition and positive scalar

multiplication. Indeed, given x1 ∈ K then λx1 ∈ K ∀λ > 0. In general, defining I as an finite index

set, given xi ∈ K ∀i ∈ I and λi > 0 ∀i ∈ I one has that∑
i∈I

λixi ∈ K

Proof. The closure under positive scalar multiplication is trivial from the definition, while the closure

under addition could be proved as follows: considering K as a convex cone and taking x1, x2 ∈ K

one of course has that λ1x1, λ2x2 ∈ K, ∀λi > 0. Thus, one could pick z = λ1

λ1+λ2
x1 +

λ2

λ1+λ2
x2 being

confident that z ∈ K because of the convexity of K. This point could be rewritten as

z =
1

λ1 + λ2
(λ1x1 + λ2x2)

and this allows to rewrite

λ1x1 + λ2x2, λi > 0

= (λ1 + λ2)
1

λ1 + λ2
(λ1x1 + λ2x2)

= (λ1 + λ2)z

= λ3z,

Where of course λ3 > 0 being the sum of positive numbers and z ∈ K being a convex combination

of x1 and x2, thus (λ1x1 + λ2x2) ∈ K.

Definition 21 (Conic hull). Given any set S ⊂ Rn, there always exist a convex cone containing S

and the origin with minimal dimension. Such set is called cone generated by S (sometimes called

also Conic hull) and it’s denoted by cone(S). The cone generated by a set S is the smallest convex

cone containing S and it can be expressed as the set of conic combinations of the elements of S:

cone(S) = {λ1x1 + λ2x2 + · · ·+ λkxk : λi ∈ R+, xi ∈ S, i = 1, . . . , n}

This notation reminds that one of ray(S), however notice that ray(S) contains the origin but it

might not be convex. Nevertheless, the similarity between these two sets is given by the following

proposition:

Proposition 10. Let S ⊂ Rn, then

cone(ray(S)) = cone(S)
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Proof.

conv(ray(S)) =

{
λ1x1 + λ2x2 + · · ·+ λkxk :

n∑
i=1

λi = 1, λi ∈ R+, xi ∈ ray(S), i = 1, . . . , n

}

=

{
λ1µ1z1 + λ2µ2z2 + · · ·+ λkµkzk :

n∑
i=1

λi = 1, λi ∈ R+, zi ∈ S, µi ∈ R+ i = 1, . . . , n

}

setting αi = λiµi

= {α1z1 + α2z2 + · · ·+ αkzk : αi ∈ R+, zi ∈ S, i = 1, . . . , n} =: cone(S)

Introducing convex cones is quite useful for having an additional representation of a generic convex

set C ⊂ Rn. Indeed, given C ⊂ Rn one could define {(1, x) : x ∈ C} ⊂ Rn+1 as a convex set in Rn+1

having the same dimension of C (i.e., the same set C represented in a higher dimension). From here,

one could generate a convex cone in Rn+1 from {(1, x) : x ∈ C} obtaining:

K = cone({(1, x) : x ∈ C})

= {λ1(1, x1) + λ2(1, x2) + · · ·+ λk(1, xk) : λi ∈ R+, xi ∈ C, i = 1, . . . , n}

= {(λ1, λ1x1) + (λ2, λ2x2) + · · ·+ (λk, λkxk) : λi ∈ R+, xi ∈ C, i = 1, . . . , n}

= {(λ1 + λ2 + · · ·+ λk, λ1x1 + λ2x2 + · · ·+ λkxk) : λi ∈ R+, xi ∈ C, i = 1, . . . , n}

setting z = λ1x1 + λ2x2 + · · ·+ λkxk

= {(λ1 + λ2 + · · ·+ λk, z) : λi ∈ R+, i = 1, . . . , n, z ∈ (λ1C + λ2C + · · ·+ λkC)}

setting λ = λ1+λ2+ · · ·+λk and recalling that λ1C+λ2C+ · · ·+λkC = (λ1+λ2+ · · ·+λk)C = λC

= {(λ, z) : λ ∈ R+, z ∈ λC}

Of course K ⊂ Rn+1 and it’s still possible to recover C (even if represented in Rn+1) as a “cross-

section” of K at level λ = 1, i.e. as the intersection between K and the hyperplane H = {(1, z) : z ∈ Rn}:

K ∩H = {(λ, z) : λ ∈ R+, z ∈ λC} ∩ {(1, z) : 1, z ∈ Rn} = {(1, z) : z ∈ C}

This kind of representation will reveal extremely useful to build invariant functions for CFMMs

starting from the design of the convex set of reachable reserves C.

Indeed it will be shown that the hypograph of the invariant function corresponds to the convex cone

generated by the basic set of reachable reserves C, being C the first upper-level set of the invariant

function conceived as a gauge-like concave function (in the sense of [Roc70]). Another source of

usefulness of cones or, more precisely, of proper cones is the concept of generalized inequality.

Definition 22 (Proper cone). A cone K is said to be proper if:
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• K is convex and contains the origin (i.e. cone(K) = K)

• K is closed (i.e. cl(K) = K)

• K is solid (i.e. int(K) ̸= ∅)

• K is pointed (i.e. K ∩ −K = {0}, so it doesn’t contain any line)

Proper cones can be used for defining a generalized inequality, which is a partial order relation on

Rn defined by:

x ⪯K y ⇐⇒ y − x ∈ K

x ≺K y ⇐⇒ y − x ∈ int(K)

Notice that by setting K = R+ (which indeed is a proper cone) the generalized inequality resembles

to the usual inequality (i.e. standard ordering) on R, indeed:

x ⪯R+ y ⇐⇒ y − x ∈ R+ =⇒ x ≤ y

x ≺R+
y ⇐⇒ y − x ∈ int(R+) =⇒ x < y

More generally, whenever x = (ξ1, . . . , ξn) ∈ Rn and the inequality sign is used as “elementwise

inequality” like in [DRCA23], it’s possible to interpret it as a generalized inequality with respect to

the non-negative orthant K = Rn
+. Indeed

(x ⪯ 0) = (x ⪯Rn
+
0) ⇐⇒ 0− x ∈ Rn

+ ⇐⇒ ξi ≤ 0, i = 1, . . . , n

(x ≺ 0) = (x ≺Rn
+
0) ⇐⇒ 0− x ∈ Rn

+ \ {0} ⇐⇒ ξi < 0, i = 1, . . . , n

However, differently from the standard ordering, a generalized inequality doesn’t bring necessarily

the concept of “less than” or “greater than” being just a partial ordering. Indeed, given x, y ∈ Rn,

it’s possible that x ⪯K y and y ⪯K x but x ̸= y.

The following proposition states that convex hull of the union of two convex cones containing the

origin K1 and K2 leads to the ordinary sum of the two cones, while their inverse sum leads to their

intersection.

Proposition 11. Let K1 ⊂ Rn and K2 ⊂ Rn be two convex cones containing the origin, then

conv(K1 ∪K2) = K1 +K2

K1#K2 = K1 ∩K2
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Proof.

conv(K1 ∪K2) =
⋃{

λ1K1 + λ2K2 :

2∑
i=1

λi = 1, λi ∈ R+, i = 1, 2

}
=

⋃
λ∈[0,1]

{(1− λ)K1 + λK2}

= {(1− λ)K1 + λK2 : λ = 0} ∪ {(1− λ)K1 + λK2 : λ = 1} ∪
⋃

λ∈(0,1)

{(1− λ)K1 + λK2}

= K1 ∪K2 ∪ (K1 +K2)

= K1 +K2

since both K1 and K2 contains the origin, (K1 ∪K2) ⊂ (K1 +K2) implying that (K1 ∪K2)∪ (K1 +

K2) = K1 +K2

On the other hand, regarding inverse sum:

K1#K2 = =
⋃{

λ1K1 ∩ λ2K2 :

2∑
i=1

λi = 1, λi ∈ R+, i = 1, 2

}
=

⋃
λ∈[0,1]

{(1− λ)K1 ∩ λK2}

= {(1− λ)K1 ∩ λK2 : λ = 0} ∪ {(1− λ)K1 ∩ λK2 : λ = 1} ∪
⋃

λ∈(0,1)

{(1− λ)K1 ∩ λK2}

= (K1 ∩ {0}) ∪ ({0} ∩K2) ∪ (K1 ∩K2)

= {0} ∪ {0} ∪ (K1 ∩K2)

= K1 ∩K2

Every convex cone K containing the origin is associated with a pair of subspaces which can be

retrieved from the ordinary sum and the inverse addition of K with its symmetric reflection across

the origin −K:

• The smallest subspace containing K, that is aff(K) (this is the subspace that can be associated

with any set, i.e. the subspace parallel to the affine hull of the set, but in this case the subspace

coincides with the affine hull since K contains the origin, thus aff(K) contains the origin and

any affine set containing the origin is actually a vector subspace)

L1 = aff(K) = K −K = {x− y : x, y ∈ K} ⊃ K

Notice in fact that, being closed under positive scalar multiplication, K will contain the half-

lines starting from the elements of K. By taking the Minkowski sum of K with its symmetric

reflection across the origin −K, you obtain an affine set because now every line passing through
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each point of K is contained in K −K.

Notice also that such subspace can be characterized as the convex hull of the union between K

and its symmetric reflection across the origin since L1 = K−K = K+(−K) = conv(K∪(−K))

• The largest subspace contained in K, also called lineality space

L2 = K ∩ −K = {x ∈ K : −x ∈ K} ⊂ K

Of course, if K is a proper cone (or more generally if K is pointed) then L2 = {0}.

Analogously to before, notice also that L2 = K ∩ −K = K#(−K)

There exist several convex cones containing the origin which can be referenced to convex sets in order

to have a better understanding of their nature and properties. Thus, given C ⊂ Rn, it’s possible to

anticipate some of them, which are going to be largely used in the upcoming sections:

• Normal cone to C at x0 ∈ C: N(x0|C) := {x⋆ : ⟨x− x0, x
⋆⟩ ≤ 0, x ∈ C}.

This set contains all the “normal points” x⋆ to C at x0, which are all the points that are not

making any acute angle with any point of C lying on any line segment having x0 as one of its

endpoints. Indeed, according to the Carnot theorem, ⟨x − x0, x
⋆⟩ = ||x − x0|| · ||x⋆|| · cos(θ)

where θ stands for the angle between vector x − x0 and x⋆. Because of the non-negativity of

the norm, if cos(θ) ≤ 0 then ⟨x− x0, x
⋆⟩ ≤ 0 which occurs when θ ∈ [π2 ,

3
2π]

• Polar cone to K: K◦ := {x⋆ : ⟨x, x⋆⟩ ≤ 0, x ∈ K}.

It can be interpreted as the normal cone to K at the origin. Polar cones are typically introduced

as a specific case of the more general class of polars of convex sets C◦, that are the convex sets

containing the origin (not necessarily cones) that are supported by the closure of gauge function

of C. Of course, in the case of cones, the closure of the gauge function would correspond to

the indicator function of the cone itself, and that’s the reason why the polar cone K◦ reminds

to the cone normal to K at the origin.

• Dual cone of K: K⋆ := {x⋆ : ⟨x, x⋆⟩ ≥ 0, x ∈ K}

This convex cone containing the origin is given by the symmetric reflection across the origin of

the polar cone K◦. In other words, K⋆ = −K◦ implying that x⋆ ∈ K⋆ if and only if −x⋆ ∈ K◦

(i.e., −x⋆ is normal to K at the origin).

• Barrier cone of C: {x⋆ : ∃β ∈ R, ⟨x, x⋆⟩ ≤ β, x ∈ C}.

As it will be discussed in the dedicated section, the barrier cone of C is the effective domain of

the support function of C (i.e. δ⋆(·|C)), because it defines the collection of half-spaces (indexed

by x⋆ ∈ {x⋆ : ∃β ∈ R, ⟨x, x⋆⟩ ≤ β, x ∈ C}) of the type Hx⋆ = {x : ⟨x, x⋆⟩ ≤ δ⋆(x⋆|C)} such that

C ⊂ Hx⋆ . The barrier cone acts as index set of such collection and taking the intersection of

half-spaces ranging over the barrier cone is possible to recover the external representation of

cl(C)
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• Recession cone of C: 0+C := {x⋆ : (λx⋆ + C) ⊆ C, λ ≥ 0}

The elements of the recession cone of C are called directions of recession of C and corre-

spond to the set of vectors x⋆ such that (x + λx⋆) ∈ C ∀x ∈ C, ∀λ ∈ R+ (i.e., the half-line

starting from any point of C and pointing in the direction of x⋆ is fully contained in C).

Directions of recession of C (or, more generally, the recession cone 0+C) are particularly use-

ful to understand the asymptotic behavior of C if it is an unbounded convex sets. On the

other hand, if the set is bounded, the recession cone would correspond to the singleton of

the origin, implying that C does not recede in any direction. The subspaces associated with

the recession cone of C are the lineality space of C L2 = (−0+C) ∩ 0+C and the affine hull

L1 = 0+C − 0+C of C. Noticeably, when C is bounded, one has 0+C = L1 = L2 = {0}. The

lineality of C corresponds to dim(L2) = dim((−0+C) ∩ 0+C) while the rank of C corresponds

to dim(L1) − dim(L2) = dim(aff(0+C)) − dim((−0+C) ∩ 0+C) and it gives a measure of the

non-linearity of C (for example, partial affine sets have null rank).

2.1.4 Hyperplane separation theorem

As mentioned in the previous sections, the simple existence of a hyperplane in Rn partitions the

space in two half-spaces. This simple evidence becomes more interesting if referred to the relation

between two convex sets, each living in a different subset of such partition.

Indeed, considering two convex sets C1 ⊆ Rn and C2 ⊆ Rn, a hyperplane H ⊆ Rn is said to separate

C1 and C2 if C1 lives in one of the closed half-spaces associated with H and C2 lives in the opposite

one.

However, this generic situation would cover also the trivial case in which both sets are living on

the separating hyperplane: imagine for example H ⊂ R2 as a line in R2 and C1 and C2 as the

singleta of points, or segments or even half-lines with opposite direction lying on H. Thus, as further

specification of such definition, a hyperplane H = {x ∈ Rn : ⟨x, b⟩ = β} is said to:

• properly separate C1 and C2 if both are not contained in H

• strictly separate C1 and C2 if ∃r > 0 : B(C1, r) ⊆ {⟨x, b⟩ < β} and B(C2, r) ⊆ {⟨x, b⟩ > β},

where B(Ci, r) recalls the notation used in (2.5) for the set of points that are distant from Ci

no more than r (i.e. B(Ci, r) =
⋂

r>0 Ci + rB).

In other words, in case of strict separation the two sets are not only living in different open half-

spaces, but they are also living at a positive distance from the separating hyperplane, meaning that

they are “sufficiently inside” the half-space in which they are living.

Trivially, the simple fact that C1 ∩ C2 = ∅ is not a sufficient condition for strict separation. For

example, taking C1 =
{
(ξ1, ξ2) : ξ2 ≥ ξ−1

1

}
(which will correspond to the set of reachable reserves

for Uniswap V2) and C2 = {(ξ1, ξ2) : ξ2 = 0, ξ1 ≥ 0} (i.e. the horizontal half-line emanating from
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the origin in R2), the only candidate as separating hyperplane is H = {(ξ1, ξ2), ξ2 = 0, ξ1 ∈ R}. In

this case, C1 and C2 are disjoint but because of the asymptotic behavior of the boundary of C1,

∄r > 0 : B(C1, r) ⊆ {(ξ1, ξ2), ξ2 > 0, ξ1 ∈ R} , B(C1, r) ⊆ {(ξ1, ξ2), ξ2 < 0, ξ1 ∈ R}. However, C1 and

C2 are properly separated by H (since proper separation allows C2 to live in H, if C1 is not living

in it, and vice-versa).

Trivially, the existence of a proper separating hyperplane is referred to find a pair (b, β) ∈ Rn × R

such that the associated hyperplane H = {x : ⟨x, b⟩ = β} is a proper separating hyperplane. One

way to check this is to verify the existence of a normal vector b ∈ Rn having the properties stated

by the following proposition:

Proposition 12 (Existence of a proper separating hyperplane). Let C1 ∈ Rn and C2 ∈ Rn be non-

empty convex sets. Then, there exists a proper separating hyperplane for C1 and C2 if and only if

there exists b ∈ Rn such that:  infx∈C1⟨x, b⟩ ≥ supx∈C2
⟨x, b⟩

supx∈C1
⟨x, b⟩ > infx∈C2

⟨x, b⟩

Moreover, from a topological perspective, this is equivalent to say that ri(C1) ∩ ri(C2) = ∅.

Proof. The first requirement would allow to pick any β ∈
[
supx∈C2

⟨x, b⟩, infx∈C1⟨x, b⟩
]

such that

H = {x : ⟨x, b⟩ = β} is a separating hyperplane for C1 and C2, because ⟨x, b⟩ ≥ β ∀x ∈ C1 (since β <

infx∈C1
⟨x, b⟩, implying that C1 ⊂ {x : ⟨x, b⟩ ≥ β}) and ⟨x, b⟩ ≤ β ∀x ∈ C2 (since β > supx∈C2

⟨x, b⟩,

implying that C2 ⊂ {x : ⟨x, b⟩ ≤ β}), while the second requirement prevents the hyperplane from

being a trivial separating hyperplane (i.e. when both C1 and C2 live on the same hyperplane). The

existence of a proper separating hyperplane can be inferred also from the topological properties of the

considered sets. Indeed, a necessary and sufficient condition for the existence of a proper separating

hyperplane is that ri(C1) ∩ ri(C2) = ∅. As a graphical intuition, one could think about C1 as a

cube in R3 and C2 as a face of such cube. In this case, C2 ⊂ C1 but ri(C1) ∩ ri(C2) = ∅ since C2

lives on the relative boundary of C1 (which, by definition, is cl(C1) \ ri(C1)): in this case, aff(C2)

is the hyperplane (being a (n − 1)-dimensional affine set) that separates properly C1 from C2 fully

containing C2 but not C1.

Proposition 13 (Existence of a strictly separating hyperplane). Let C1 ∈ Rn and C2 ∈ Rn be

non-empty convex sets. Then, there exists a strictly separating hyperplane for C1 and C2 if and only

if there exists b ∈ Rn such that:

inf
x∈C1

⟨x, b⟩ > sup
x∈C2

⟨x, b⟩

Moreover, from a topological perspective, this is equivalent to say that ∃ϵ > 0 : (C1+ϵB)∩(C2+ϵB) =

∅, implying that 0 /∈ cl(C1 − C2).
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Proof. The strict inequality infx∈C1
⟨x, b⟩ > supx∈C2

⟨x, b⟩ implies that the interval[
sup
x∈C2

⟨x, b⟩, inf
x∈C1

⟨x, b⟩
]

is surely not a singleton, implying that there exists a neighborhood with ray δ > 0 centered in β

(belonging to the interval) that it’s still contained in this interval i.e.:

[β − δ, β + δ] ⊆
[
sup
x∈C2

⟨x, b⟩, inf
x∈C1

⟨x, b⟩
]

. This is useful to know since it would imply that:

• ⟨x, b⟩ ≤ β − δ ∀x ∈ C2 (since β − δ ≥ supx∈C2
⟨x, b⟩) =⇒ ⟨x, b⟩+ δ ≤ β ∀x ∈ C2. By picking

ϵ > 0 sufficiently small such that δ > supy∈ϵB⟨y, b⟩ you have that ⟨x, b⟩ + ⟨y, b⟩ < β ∀x ∈

C2,∀y ∈ ϵB =⇒ ⟨x + y, b⟩ < β ∀x ∈ C2,∀y ∈ ϵB =⇒ ⟨z, b⟩ < β ∀z ∈ (C2 + ϵB) implying

that C2 + ϵB ⊂ {z : ⟨z, b⟩ < β}

• ⟨x, b⟩ ≥ β + δ ∀x ∈ C1 (since β + δ ≤ infx∈C1⟨x, b⟩) =⇒ ⟨x, b⟩ − δ ≥ β ∀x ∈ C1. By picking

ϵ > 0 sufficiently small such that −δ > infy∈ϵB⟨y, b⟩ you have that ⟨x, b⟩ + ⟨y, b⟩ > β ∀x ∈

C1,∀y ∈ ϵB =⇒ ⟨x + y, b⟩ > β ∀x ∈ C1,∀y ∈ ϵB =⇒ ⟨z, b⟩ > β ∀z ∈ (C1 + ϵB) implying

that C1 + ϵB ⊂ {z : ⟨z, b⟩ > β}

In other words, the condition infx∈C1
⟨x, b⟩ > supx∈C2

⟨x, b⟩ is sufficient to guarantee the existence

of a hyperplane strictly separating C1 from C2 (so that C1 lives in {z : ⟨z, b⟩ > β} while C2 lives in

{z : ⟨z, b⟩ < β}).

On the other hand, if two convex sets are strictly separable, it means that ∃ϵ > 0 arbitrarily small

such that (C1 + ϵB) ∩ (C2 + ϵB) = ∅. Of course, this means that there isn’t any point that it’s far

more than ϵ from both to C1 and C2. Thus, since these two sets don’t have any point in common,

the Minkowski sum between (C1 + ϵB) and the symmetric reflection across the origin of (C2 + ϵB)

should not contain the origin.

In other words, C1 and C2 are strictly separable if and only if ∃ϵ > 0 : 0 /∈ (C1 + ϵB) − (C2 + ϵB),

meaning that

0 /∈
⋂
ϵ>0

(C1 + ϵB)− (C2 + ϵB)

Notice that (C1+ ϵB)− (C2+ ϵB) = C1−C2+ ϵB− ϵB = C1−C2+ ϵ(B+(−B)). However, recalling

that the Euclidean ball is symmetric around the origin (−B = B) this condition can be rewritten as

0 /∈
⋂
ϵ>0

C1 − C2 + ϵ2B

calling δ = ϵ2 ⋂
ϵ>0

C1 − C2 + ϵ2B

=
⋂
δ>0

C1 − C2 + δB

= cl(C1 − C2)
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Thus, the topological condition for strict separation is that 0 /∈ cl(C1 − C2).

Strict separation gives an important tool for understanding the “external representation” of closed

convex sets as the intersection of the closed half-spaces containing it. Indeed, given C ⊂ Rn as a

closed convex set and C̄ = {x : x /∈ C} as the complement of C, one has 0 /∈ cl(C−{a}) ∀a ∈ C̄. This

means that for any a ∈ C̄, there exists a hyperplane separating strictly C from {a}, meaning that

C only is fully contained in one of the closed half-spaces generated by such hyperplane. Thus, by

collecting all such closed half-spaces ranging over all the elements of C̄, and taking the intersection

of such collection, one can recover the closed convex set C.

This fact guarantees also the non-emptiness of the barrier cone (i.e., non-emptiness of the sup-

port function dom(δ⋆(·|C))) of C, because if C is closed it is representable as the intersection of

closed half-spaces containing it, meaning that, ∃b ∈ Rn : ⟨x, b⟩ ≤ β ∀x ∈ C for some β ∈ R (recall

that the barrier cone of C is given by {b : ∃β ∈ R, ⟨x, b⟩ ≤ β, x ∈ C}).

Separating hyperplanes are extremely important also for describing the concept of tangency in convex

analysis which is usually described in terms of supporting half-spaces.

Definition 23 (Supporting half-space). Let C ⊂ Rn be a convex set. A closed half-space H̃

associated with (b, β) ∈ Rn+1 is said to support C at some point x0 ∈ C if these two conditions hold: C ⊆ H̃

⟨x0, b⟩ = β

the second condition is equivalent to say that x0 ∈ cl(H̃) \ ri(H̃) where the relative boundary of H̃

is said to be a supporting hyperplane to C at x0.

Thus, a supporting half-space to a convex set C is defined as a closed half-space fully containing C

and having at least one point of C on its boundary, which is called supporting hyperplane. In other

words, (b, β) ∈ Rn × R associated with H̃ = {x : ⟨x, b⟩ ≤ β} defines a supporting half-space to C if:

• ⟨x, b⟩ ≤ β ∀x ∈ C

• ∃x ∈ C : ⟨x, b⟩ = β

These two specifications allow to understand that a supporting half-space is associated with the

supremum of a linear function over C: indeed the first specification is equivalent to say that

β ≥ supx∈C⟨x, b⟩, while the second specification requires that such value β is attained for at least one

point of C, implying that β = supx∈C⟨x, b⟩. Indeed, as it will be seen in the dedicated section, such

“optimal offset” β for obtaining a supporting hyperplane to C specifying a certain vector b normal
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to the hyperplane is given by the support function of C, that is δ⋆(·|C) : b 7→ supx∈C⟨x, b⟩, whose

effective domain is indeed the barrier cone of C.

On the other hand, given the “offset” β of a supporting half-space, it’s possible to decompose it

as β = ⟨x0, b⟩ for a given x0 ∈ C: thus, the first requirement could be interpreted also as:

⟨x, b⟩ ≤ β ∀x ∈ C

⟨x, b⟩ ≤ ⟨x0, b⟩ ∀x ∈ C

⟨x− x0, b⟩ ≤ 0 ∀x ∈ C

Implying that:

• The vector b normal to the supporting hyperplane is also normal to the set C at some point

x0 ∈ C (i.e. b ∈ N(x0|C))

• The normal cone to C at x0 ∈ C (i.e. N(x0|C) = {b : ⟨x− x0, b⟩ ≤ 0}) is the index set of

the collection of supporting hyperplanes to C at x0 ∈ C in the sense that, given x0 ∈ C, it’s

possible to retrieve all the supporting hyperplane to C at x0 from the pairs (b, β) = (b, ⟨x0, b⟩) ∈

Rn × R ∀b ∈ N(x0|C)

These findings prepare the understanding of the following proposition, according to which there al-

ways exist at least one half-space supporting a convex set C at any of its boundary points. As it will

be seen in the next sections, considering such sets as epigraphs (hypographs) of convex (concave)

functions, this fact is extremely important for understanding the existence of subgradients (super-

gradients) of convex (concave) functions at any of their boundary points, i.e. the subdifferentiability

(superdifferentiability) of convex (concave) functions at any point of the relative interior of their

effective domain

Proposition 14 (Non-emptiness of normal cone at boundary points). Let C ⊂ Rn be a convex set

and let N(x0|C) be the cone normal to C at some x0 ∈ C. Then,

N(x0|C) \ {0} ≠ ∅ ∀x0 ∈ cl(C) \ ri(C)

This is equivalent to say that there always exists at least one supporting half-space to C at any of

its boundary points, because there will be always at least one non-null vector normal to C for every

x0 ∈ cl(C) \ ri(C)

Proof. To prove this, one can think about the supporting hyperplane as a hyperplane properly

separating C from x0 ∈ cl(C) \ ri(C). Given a subset of points D ⊂ C disjoint from ri(C) (e.g. the

singleton of a point a on the relative boundary of C), the supporting hyperplane to C fully containing

D is the same hyperplane that separates properly C from D. Indeed, the fact that D ∩ ri(C) = ∅

implies ri(D) ∩ ri(C) = ∅, that is the topological necessary and sufficient condition for the existence

of a hyperplane properly separating D from C. This fact guarantees two important properties:
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• There always exists a non-null vector normal to C at each boundary point of C (i.e. the

normal cone to C is non-empty and it is not the zero vector alone at each boundary point of

C, implying that you can always find a supporting hyperplane to C at each boundary point of

C)

• x ∈ cl(C) \ ri(C) ⇐⇒ exists a linear function h non-constant on C achieving its maximum

on C at x. That’s because it’s possible to find a supporting hyperplane to a convex set C at

any of its boundary points and, since such hyperplane is characterized by (b, β) ∈ Rn × R,

the associated linear function is given by h(x) = ⟨x, b⟩ and the maximum achieved over C is

β = supx∈C⟨x, b⟩

2.2 The Pareto Optimal Frontier

The discussion about minimum points, minimal points and Pareto Optimal Frontier of a generic set

S ⊂ Rn requires the definition polar cone and dual cone of a generic cone K ⊂ Rn, as anticipated at

the end of the subsection dedicated to cones.

2.2.1 Polar cones and dual cones

Definition 24 (Polar cone). Let K ⊂ Rn be a generic cone. the cone polar to K is defined as:

K◦ = {x◦ : ⟨x, x◦⟩ ≤ 0, x ∈ K}

Noticeably, independently from the properties of K as a cone, K◦ includes always the origin and it

is always a closed convex set being the intersection of a collection of closed half-spaces having x ∈ K

as normal vector, indeed:

K◦ =
⋂
x∈K

H̃◦
x

where H̃◦
x = {x◦ : ⟨x◦, x⟩ ≤ 0}.

Alternatively, as an anticipation, K◦ can be seen as the zero-sub-level set of the closed convex func-

tion δ⋆(·|K), which is the support function of K.

The definition of K◦ allows to characterize it as the cone normal to K at the origin, indeed

K◦ = N(0|K)

Thus, recalling the findings discussed at the end of the previous section, the polar cone K◦ automat-

ically indexes the collection of supporting hyperplanes to K at the origin, in the sense that, given

K ⊂ Rn a generic cone, it’s possible to retrieve all the supporting hyperplane to K at the origin
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from the pairs (b, β) = (b, 0) ∈ Rn × R ∀b ∈ K◦. This service is provided also by the dual cone

K⋆ of K being simply the symmetric reflection across the origin of the polar cone K◦ as it can be

induced by the definition of K⋆.

Definition 25 (Dual cone). Let K ⊂ Rn be a generic cone. The cone dual to K is defined as:

K⋆ = {x⋆ : ⟨x, x⋆⟩ ≥ 0, x ∈ K}

Trivially, keeping the notation H̃◦
x = {x◦ : ⟨x◦, x⟩ ≤ 0}, it follows that

K⋆ = −K◦ = −N(0|K) =
⋂
x∈K

(−H̃◦
x)

And this implies that K⋆ remains a closed, convex, origin-including cone as K◦. Analogously to K◦,

K⋆ can be seen as the zero-upper-level of the closed concave function −δ⋆(·| −K), which could be

used for proving the properties just mentioned.

The dual cone K⋆ preserves the properness of the original cone K, in the sense that if K is a proper

cone, then K⋆ is also a proper cone, which means that induces it also a generalized inequality defined

as the “dual” of the generalized inequality x ⪯K y.

Indeed, assuming that K is a proper cone, the dual correspondence between K and K⋆ can be

extended to the dual correspondence between the respective induced generalized inequalities. The

following proposition defined in [BV04] describes this kind of correspondence. In order to keep the

same notation as in [BV04], λ ⪰K⋆ 0 will be considered equivalent to λ ∈ K⋆.

Proposition 15. Let K ⊂ Rn be a proper cone. Then, the generalized inequality x ⪯K y is verified

if and only if

⟨λ, x− y⟩ ≤ 0 ∀λ ⪰K⋆ 0 (2.8)

Proof. Because of the properness of K (which implies closedness, convexity and origin-inclusion) one

has that K = K⋆⋆. Moreover, x ⪯K y means that y − x ∈ K. Thus, by calling z = y − x ∈ K one

can characterize K as

K = K⋆⋆ = {z : ⟨λ, z⟩ ≥ 0, λ ∈ K⋆}

Implying that z ∈ K ⇐⇒ ⟨λ, z⟩ ≥ 0, ∀λ ∈ K⋆ which, unwrapping z, leads to the following

condition

y − x ∈ K ⇐⇒ ⟨λ, y − x⟩ ≥ 0, ∀λ ∈ K⋆

⟨λ, x− y⟩ ≤ 0, ∀λ ∈ K⋆

Which, expressed in terms of generalized inequality, is equivalent to say that x ⪯K y ⇐⇒ ⟨λ, x−y⟩ ≤

0 ∀λ ⪰K⋆ 0
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2.2.2 Minimum points and minimal points

As previously anticipated, generalized inequalities are partial ordering which gives more freedom

than the standard ordering ≤ in the sense that it allows to define “custom” rules of comparison

between elements according to the properties of the proper cone K specified. It follows that the def-

initions of “minimum” and “minimal” points are not true in absolute sense but always with respect

to a specific generalized inequality, i.e. with the respect of a specific proper cone of reference.

Definition 26 (Minimum point of a set w.r.t. K). Let K ⊂ Rn be a proper cone and let S ⊂ Rn

be a generic set. The minimum point of S with the respect of the generalized inequality ⪯K is the

unique point x0 ∈ S such that

x0 ⪯K y ∀y ∈ S

Proposition 16. Let K ⊂ Rn be a proper cone and let S ⊂ Rn be a generic set. A point x0 is a

minimum point of S with the respect of the generalized inequality ⪯K if and only if it is the unique

point such that

⟨λ, x0 − y⟩ ≤ 0 ∀y ∈ S, ∀λ ∈ K⋆

Proof. Apply proposition (15) to the definition of minimum point of S with the respect of the

generalized inequality ⪯K .

This means that x0 is a minimum element of S w.r.t. K if and only if the entire collection of half-

spaces of type H̃λ = {y : ⟨λ, y⟩ ≥ ⟨λ, x0⟩} indexed by λ ∈ K⋆ supports the set S at x0. Thus, each

half-space H̃λ must support S at x0 ∀λ ∈ K⋆. If this is not true even for a single λ ∈ K⋆ = −N(0|K),

then x0 is not a minimum point. Of course this requirement is quite strict: a possible relaxation of

such condition could be

∃λ ∈ K⋆ : ⟨λ, x0 − y⟩ ≤ 0 ∀y ∈ S

In this context, it is required that at least one (not all) half-space H̃λ supports S at x0 for some

λ ∈ K⋆. This relaxed condition is what is seen in the set notation of “minimal points” of a set S

with the respect of the generalized inequality ⪯K .

Definition 27 (Minimal point of a set w.r.t. K and Pareto Optimal Frontier). Let K ⊂ Rn be

a proper cone and let S ⊂ Rn be a generic set. The minimal point of S with the respect of the

generalized inequality ⪯K is a point x0 ∈ S such that

∃λ ∈ K⋆, ⟨λ, x0 − y⟩ ≤ 0 ∀y ∈ S

it follows that the set of minimal points, also called Pareto Optimal Frontier of S w.r.t. K, is

{x ∈ S : ∃λ ∈ K⋆, ⟨λ, x− y⟩ ≤ 0, y ∈ S}
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Anticipating the notation, is possible to characterize the Pareto Optimal Frontier of S w.r.t. K in

terms of the support function of S since

{x ∈ S : ∃λ ∈ K⋆, ⟨λ, x− y⟩ ≤ 0, y ∈ S} = {x ∈ S : ∃λ ∈ K⋆, ⟨λ, x⟩ ≤ ⟨λ, y⟩, y ∈ S}

=

{
x ∈ S : ∃λ ∈ K⋆, ⟨λ, x⟩ ≤ inf

y∈S
⟨λ, y⟩

}
= {x ∈ S : ∃λ ∈ K⋆, ⟨λ, x⟩ ≤ −δ⋆(−λ|S)}

=

( ⋃
λ∈K⋆

{x ∈ S : ⟨λ, x⟩ ≤ −δ⋆(−λ|S)}

)
⊂ S

2.2.3 Basic set of efficient reserves

This subsection uses a lot of concepts which are not yet introduced and so the reader is not supposed

to fully understand it at this stage. However, it is important to introduce it here because it is the

main application of the concepts of Pareto Optimal Frontier to the core topic of the thesis. The

concept of Pareto Optimal Frontier applied to CFMM is important because it corresponds to the

subset of the set of reachable reserves C where the CFMM reserves are expected to be located at

any external price level p ∈ Rn
+ because of the effect of arbitrage forces.

Indeed, the set of possible prices corresponds to the non-negative orthant because of the nature of

prices as non-negative quantities. Thus, one could take K = Rn
+ as proper cone of reference with

the peculiarity of being a “self-dual” cone since K⋆ = K = Rn
+.

At the same time, picking S = C as the basic set of reachable reserves and anticipating the char-

acterization of the portfolio value function as V̂ (p; 1) = −δ⋆(−p|C) one could define the basic set

of “efficient reserves” (i.e. the Pareto Optimal Frontier of the basic set of reachable reserves w.r.t

K = Rn
+) as a subset of C equal to ⋃

p∈Rn
+

{x ∈ C : ⟨p, x⟩ ≤ V (p; 1)}

 ⊂ C

corresponding to the range of a set-valued map of the type

Θ : p ∈ Rn
+ 7→ {x ∈ C : ⟨p, x⟩ ≤ V (p; 1)}

But since V (p; 1) = infy∈C , if x ∈ C =⇒ ⟨p, x⟩ ≥ V (p; 1) ∀p ∈ Rn, implying that the basic set of

efficient reserves is actually equal to ⋃
p∈Rn

+

{x ∈ C : ⟨p, x⟩ = V (p; 1)}

 ⊂ C

so that the set-valued map Θ(·) mapping each price to the corresponding set of efficient reserves is

given by

Θ : p ∈ Rn
+ 7→ {x ∈ C : ⟨p, x⟩ = V (p; 1)} (2.9)
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Which resembles to the solution set of a system of equalities (provided by ⟨p, x⟩ = V (p; 1)) and

inequalities (provided by x ∈ C).

2.3 Convex Functions

2.3.1 Core definitions

Definition 28 (Epigraph and hypograph of a function). Let f be a function f : S ⊂ Rn → R∪{±∞},

the epigraph of f is defined as the set

epi(f) := {(x, µ) ∈ Rn × R : f(x) ≤ µ} ⊂ Rn+1

while the hypograph of f is defined as the set

hyp(f) := {(x, µ) ∈ Rn × R : f(x) ≥ µ} ⊂ Rn+1

Definition 29 (Convex and concave functions). Let f be a function f : S ⊂ Rn → R∪ {±∞}. The

function f is said to be convex if epi(f) is a convex set, while it is said to be concave if hyp(f) is a

convex set.

From now on, the hat “ ˆ” symbol will be used for denoting concave functions (the symbol reminds

the “hat-shaped” graph of the negative of the absolute value, that is a concave function).

Proposition 17. Let f : S ⊂ Rn → R∪ {±∞} be a convex function. Then, the function f̂ = −f is

concave.

Proof. This follows from the fact that hyp(f̂) corresponds to the epigraph of f under the transfor-

mation A : (x, µ) 7→ (x,−µ). Since linear maps are convexity preserving, hyp(f̂) remains a convex

set.

A(epi(f)) = {A(x, µ) : (x, µ) ∈ epi(f)}

= {(x,−µ) ∈ Rn × R : f(x) ≤ µ}

= {(x, µ) ∈ Rn × R : f(x) ≤ −µ}

= {(x, µ) ∈ Rn × R : −f(x) ≥ µ}

=
{
(x, µ) ∈ Rn × R : f̂(x) ≥ µ

}
=: hyp(f̂)

Definition 30 (Level sets). Let f : S ⊂ Rn → R ∪ {±∞} be a convex function and let α ∈ R. The

sub-level set of f associated with α is defined as

{x ∈ S : f(x) ≤ α}

while the upper-level set (or upper-level set) of f associated with α is defined as

{x ∈ S : f(x) ≥ α}
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Definition 31 (Effective domain). Let f : S ⊂ Rn → R ∪ {±∞} be a convex (concave) function.

The subset of S such that f takes finite values is called effective domain of f and is denoted as

dom(f) := {x ∈ S : ∃µ ∈ R, (x, µ) ∈ epi(f)} (dom(f) = {x ∈ S : ∃µ ∈ R, (x, µ) ∈ hyp(f)})

Heuristically speaking, the effective domain of f could be defined as the “widest” sub-level (upper-

level) set of f i.e.

dom(f) = {x : f(x) < ∞} (dom(f) = {x : f(x) > −∞})

The convexity of f implies the convexity of its effective domain since dom(f) could be interpreted as

the image of epi(f) under a linear map A : (x, µ) 7→ x and, again, linear maps preserves affinity and

convexity of the sets they are mapping. The same can be said for concave functions, thus dom(f) is

always a convex set whether f is convex or concave.

Introducing the notation of the effective domain of f allows to split the behavior of f in the so-called

extended-value extension f̃ that is

f̃(x) =

f(x) if x ∈ dom(f)

∞ x /∈ dom(f)

˜̂
f(x) =

f̂(x) if x ∈ dom(f̂)

−∞ x /∈ dom(f̂)

2.3.2 Core and additional properties

Definition 32 (Properness of convex and concave functions). Let f : S ⊂ Rn → R ∪ {±∞} be a

convex function. The function f is said to be proper if epi(f) does not contain any vertical line,

meaning that:

• ∃x : f(x) < ∞ (i.e. non-emptiness of the effective domain)

• f(x) > −∞ ∀x ∈ dom(f)

Analogously, let f̂ : S ⊂ Rn → R∪{±∞} be a concave function. The function f̂ is said to be proper

if hyp(f̂) does not contain any vertical line, meaning that:

• ∃x : f̂(x) > −∞ (i.e. non-emptiness of the effective domain)

• f̂(x) < ∞ ∀x ∈ dom(f̂)

A fundamental theorem for convex functions (which is furtherly specified according to additional

properties of epi(f)) is the so-called Jensen’s inequality :

Theorem 1 (Jensen’s inequality). Let f : S ⊂ Rn → R ∪ {±∞} be a convex function. Then, for

any x1, . . . , xk ∈ S and any λ1, . . . , λk ∈ R+ such that
∑k

i=1 λi = 1 it holds that

f(λ1x1 + · · ·+ λkxk) ≤ λ1f(x1) + · · ·+ λkf(xk)
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Analogously, let f̂ : S ⊂ Rn → R ∪ {±∞} be a concave function, then it holds that

f̂(λ1x1 + · · ·+ λkxk) ≥ λ1f̂(x1) + · · ·+ λkf̂(xk)

Proof. Since epi(f) is convex, then
∑k

i=1 λi(xi, µi) ∈ epi(f) where λi ≥ 0 ∀i ∈ [1, k] and
∑k

i=1 λi = 1.

this means that (
k∑

i=1

λixi,

k∑
i=1

λiµi

)
= (x, µ) ∈ epi(f)

Thus the set condition becomes

µ ≥ f(x) =⇒
k∑

i=1

λiµi ≥ f

(
k∑

i=1

λixi

)

=⇒
k∑

i=1

λif(xi) ≥ f

(
k∑

i=1

λixi

)

For concave functions, the proof is analogous.

The Jensen’s inequality can be used also in proving the well-known inequality between the arithmetic

and geometric mean of a set of positive numbers (AM-GM inequality) [Roc70]. Indeed, let f(x) =

− log(x) and λ1, . . . , λk ∈ R+ such that
∑k

i=1 λi = 1, then f is a convex function and the Jensen’s

inequality implies that

− log

(
k∑

i=1

λixi

)
≤ −

k∑
i=1

λi log(xi)

log

(
k∑

i=1

λixi

)
≥

k∑
i=1

λi log(xi)

k∑
i=1

λixi ≥ e
∑k

i=1 λi log(xi)

k∑
i=1

λixi ≥
k∏

i=1

xλi
i

By setting λ1 = · · · = λk = 1
k one has that

∑k
i=1 xi

k
≥ k

√√√√ k∏
i=1

xi (2.10)

Noticeably, the Jensen’s inequality for concave functions has the reversed weak inequality sign. This

theorem, which is usually presented as the “algebraic definition” of convex functions, depends on

the convexity of the epigraph, i.e. the fact that such set is closed under any convex combination

of its elements (x, µ) ∈ epi(f). Indeed, the image of a convex combination of points will be always

lower or equal than the convex combination of the images of each point. Thinking about a convex

parabola in R2 as an example, it’s evident that the chord (i.e. line segment) connecting (x1, f(x1))
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and (x1, f(x1)) (on which lies the point ((1 − λ)x1 + λx2, (1 − λ)f(x1) + λf(x2)), λ ∈ [0, 1]) is al-

ways above the parabola itself, (on which lies the point ((1−λ)x1+λx2, f((1−λ)x1+λx2)), λ ∈ [0, 1]).

The Jensen’s inequality allows to conclude also an important aspect of improper convex functions,

that is their unboundedness from below for any point in ri(dom(f)).

Proposition 18. Let f : S ⊂ Rn → R ∪ {±∞} be an improper convex function. Then,

f(x) = −∞ ∀x ∈ ri(dom(f))

Proof. By definition of improperness it means that ∃x0 ∈ dom(f) : f(x0) = −∞. Thus, according

to (2.7), picking any x ∈ ri(dom(f)) and setting µ > 1 implies that it’s surely possible finding

(1 − µ)x0 + µx =: y ∈ dom(f) because x is a relative interior point. This implies that it’s possible

to rewrite any relative interior point x as a generic point on the line-segment between x0 and y

(excluding the endpoints) i.e.

x =
1

µ
(y − (1− µ)x0)

setting λ = 1
µ =⇒ λ ∈ (0, 1)

x = (1− λ)x0 + λy

Because of Jensen’s inequality:

f(x) = f((1− λ)x0 + λy) < (1− λ)f(x0) + λf(y) λ ∈ (0, 1)

And since f(x0) = −∞ =⇒ f(x) < −∞ ∀x ∈ ri(dom(f)), that is f(x) = −∞ ∀x ∈ ri(dom(f))

Definition 33 (Lower and upper semicontinuity). Let f : S ⊂ Rn → R∪ {±∞} be a function. The

function f is said to be lower-semicontinuous at x ∈ S if

f(x) = lim inf
y→x

f(y)

= lim
ϵ→0+

inf{f(y) : d(x, y) ≤ ϵ}

= lim
ϵ→0+

inf{f(y) : ||x− y||2 ≤ ϵ}

= lim
ϵ→0+

inf
y∈B(x,ϵ)

f(y)

The function f is said to be upper-semicontinuous at x ∈ S if

f(x) = lim sup
y→x

f(y)

= lim
ϵ→0+

sup{f(y) : d(x, y) ≤ ϵ}

= lim
ϵ→0+

sup{f(y) : ||x− y||2 ≤ ϵ}

= lim
ϵ→0+

sup
y∈B(x,ϵ)

f(y)
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The function f is said to be lower-semicontinuous if it is lower-semicontinuous at any x ∈ S, while

it is said to be upper-semicontinuous if it is upper-semicontinuous at any x ∈ S.

As previously mentioned, several properties of the epigraph of a function f affect the behavior of f

itself. For example, as stated in [Roc70], if epi(f) is a closed set, this is equivalent to say that any

α-sub-level set of f is closed and that f is a lower-semicontinuous function. On the contrary, the

closedness of hyp(f) implies the lower semicontinuity of f and the closedness of all its upper-level sets.

As a trivial example, suppose that

f(x) =

x2 if x < 0

x2 + 1 if x ≥ 0

in this case you have that
f(0) = 1

lim infy→0 f(y) = limϵ→0+ infy∈ϵB f(y) = 0

lim supy→0 f(y) = limϵ→0+ supy∈ϵB f(y) = 1

It’s evident that the function is not ordinary continuous at x = 0 (in particular, it’s only upper-semi

continuous since f(0) = lim supy→0 f(y) ̸= lim infy→0 f(y)), but it’s less evident here that epi(f)

is actually not-closed. Indeed, recalling that epi(f) := {(x, µ) ∈ Rn × R : f(x) ≤ µ}, the vertical

interval {(0, µ) : µ ∈ [0, 1]}, that is a portion of the boundary of epi(f), is not contained in epi(f)

(because µ ≥ f(0) is equivalent to µ ≥ 1), implying that epi(f) is not closed.

On the other hand, the lower semicontinuous “version” of such function is simply

f(x) =

x2 if x ≤ 0

x2 + 1 if x > 0

As it will be described in the next section, given any real-valued convex function f on Rn is possible

to derive the lower semicontinuous hull of f as the function g such that epi(g) = cl(epi(f)). This

function is the greatest lower-semicontinuous function majorized by f (i.e. g ≤ f). In [Roc70] it’s

specified that if f is proper, the closure of f (i.e. cl(f(x))) corresponds to the lower semicontinuous

hull of f , otherwise it’s infinity. Under this setting, this means that for proper convex functions

closedness implies (and is implied by) lower-semicontinuity.

cl(f(x)) =

lim infy→x f(y) if f proper

−∞ if f improper

Notice that a proper convex function f and its closure cl(f(x)) agree everywhere on dom(f) except

(maybe) at some boundary points of dom(f): indeed

ri(epi(clf)) = ri(cl(epi(f))) = ri(epi(f)) := {(x, µ) : x ∈ ri(dom(f)), µ ∈ (f(x),∞)}
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And since ri(epi(clf)) = {(x, µ) : x ∈ ri(dom(clf)), µ ∈ (cl(f(x)),∞)} by definition, this implies that

ri(dom)(clf) = ri(dom(f)) and that if (x, µ) ∈ epi(f) =⇒ (x, µ) ∈ epi(clf) ∀x ∈ ri(dom(f)).

Notice that the function in the previous example is not convex because, even if the epigraph is closed,

some convex combinations (portions of line-segments) lie outside the epigraph. Indeed, f(x) is not

a convex-function but heuristically speaking it reminds something of a convex function because

it’s “almost” convex. Indeed, this function belongs to a wider set of functions called quasiconvex

functions which relax the requirement about the convexity of the epigraph demanding just that all

the α-sub-level sets of f are convex sets.

Definition 34 (Quasiconvex and quasiconcave functions). Let f be a function f : S ⊂ Rn →

R ∪ {±∞}. The function f is said to be quasiconvex if all the α-sub-level sets of f are convex sets,

i.e. {x : f(x) ≤ α} is a convex set ∀α ∈ R.

Analogously, the function f is said to be quasiconcave if all the α-upper-level sets of f are convex

sets, i.e. {x : f(x) ≥ α} is a convex set ∀α ∈ R.

Keeping the same example as before, it’s possible to see that {x : f(x) ≤ α} correspond to line-

segments on the x-axis, thus convex sets ∀α ∈ R. Analogously, a function g is said to be quasiconcave

if all the α-upper-level sets of g are convex sets, i.e. {x : g(x) ≥ α} is a convex set ∀α ∈ R.

Of course, the convexity of all the α-sub-level sets is always satisfied for convex functions (the extreme

case is the convexity of dom(f) as the ∞-sub-level set of f), since any α-sub-level set of f is actually

the image of epi(f)∩{(x, µ) : x ∈ Rn, µ ≤ α} under A : (x, µ) 7→ x (recall that both intersection and

linear transformations are convexity-preserving).

For quasiconvex functions, the Jensen’s inequality becomes

f(λ1x1 + · · ·+ λkxk) ≤ max {f(x1), . . . , f(xk)} λ ⪰ 0, ⟨λ,1⟩ = 1

And using a trivial graphical example of f : R → R it means that the image of a convex combination

of two points f((1−λ)x1+λx2), λ ∈ [0, 1] is always lower or equal than the greatest image associated

with one of the two points of the chord connecting (x1, f(x1)) and (x2, f(x2)).

Another important example of how the properties of epi(f) affect f occurs when epi(f) is a convex

cone K ⊂ Rn+1. Indeed, when this is the case, the convex function f is said to be positively

homogeneous of degree one,

Definition 35 (Positive homogenous functions). Let f be a function f : S ⊂ Rn → R ∪ {±∞}.

The function f is said to be convex positively homogenous of degree one if epi(f) is a convex cone

K ⊂ Rn+1. Analogously the function f is said to be concave positively homogenous of degree one if

hyp(f) is a convex cone K ⊂ Rn+1.
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This category of functions is fundamental in this analysis since both the invariant function and the

basic portfolio value function of a CFMM are typically positively homogenous concave functions of

degree one.

The main property of positively homogenous functions of degree one is that f(λx) = λf(x) ∀λ > 0.

Indeed, since now epi(f) is considered as a convex cone, if (x, µ) ∈ epi(f) =⇒ (λx, λµ) ∈ epi(f) ∀λ >

0, and of course this means that since (x, f(x)) ∈ epi(f) then (λx, λf(x)) ∈ epi(f) ∀λ > 0, implying

that f(λx) = λf(x) ∀λ > 0. Notice in fact that a positive rescaling via λ > 0 can affect the epigraph

of f affecting it as a whole but also only the range or only the effective domain of f :

• A : (x, µ) 7→ (x, λµ) =⇒ A(epi(f)) = {(x, µ) : x ∈ dom(f), µ ≥ λf(x)} inducing the function

(λf)(x) = λf(x), also called left-scalar multiplication of f , i.e. the function obtained by

rescaling the range of f .

• A : (x, µ) 7→ (λx, µ) =⇒ A(epi(f)) =
{
(x, µ) : x ∈ λdom(f), µ ≥ f

(
x
λ

)}
, inducing the func-

tion f
(
x
λ

)
, i.e. the function obtained by rescaling the effective domain of f .

• A : (x, µ) 7→ (λx, λµ) =⇒ A(epi(f)) = λepi(f) =
{
(x, µ) : x ∈ λdom(f), µ ≥ λf

(
x
λ

)}
induc-

ing the function (fλ)(x) = λf
(
x
λ

)
, also called right-scalar multiplication of f , i.e. the function

obtained by rescaling the epigraph of f (so rescaling both the effective domain and the range

of f by the same scalar).

As seen previously, when epi(f) is a convex cone one has that if (x, µ) ∈ epi(f) =⇒ λ(x, µ) ∈

epi(f) ∀λ > 0, meaning that epi(f) ⊇ λepi(f) ∀λ > 0, which implies that positively homoge-

neous convex functions are invariant to right-scalar multiplication (i.e. (fλ)(x) = f(x) ∀λ > 0).

Of course, this property could be derived algebraically from the first property discussed: indeed

(fλ)(x) = λf(xλ−1) and since λ−1 > 0 =⇒ λf(xλ−1) = λλ−1f(x) = f(x).

For positively homogenous convex functions the Jensen’s inequality becomes

f(λ1x1 + · · ·+ λkxk) ≤ λ1f(x1) + · · ·+ λkf(xk) ∀λ ≻ 0

A very popular class of positively homogenous convex function is (ℓp), i.e. the p-norms class functions

(like the Euclidean or the Tchebycheff norm) or, more in general, any norm function as described

in previous sections. Indeed, the “triangular-inequality” property, is nothing more than the Jensen’s

inequality for positively homogenous convex functions with λ = 1 ∈ Rk (i.e. ||x1 + · · · + xk|| ≤

||x1||+ · · ·+ ||xk||).

2.3.3 Continuity of convex functions

Convex functions (proper or improper) have the quality of being ordinary continuous (i.e. lower-

semicontinuous and upper-semicontinuous at the same time) on any open subset of the effective
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domain (in particular, with the respect of ri(dom(f))).

Proposition 19. Let f : S ⊂ Rn → R ∪ {±∞} be a convex (or concave) function. Then, f is

continuous on ri(dom(f)).

Proof. As previously discussed, if f is convex and improper it follows that f(x) = −∞ ∀x ∈

ri(dom(f)) and continuity is trivially verified.

On the other hand, if f is convex and proper, it has been said that cl(f(x)) = f(x) ∀x ∈ ri(dom(f)),

implying that f is lower-semicontinuous on ri(dom(f)). Thus, it’s sufficient to prove that f it’s

also upper semicontinuous on ri(dom(f)), that is equivalent to say that any α-upper-level is closed,

i.e. {x : f(x) ≥ α} = cl ({x : f(x) ≥ α}) ∀α ∈ R (which would imply the upper-semicontinuity of f

everywhere actually, not only with the respect of ri(dom(f))).

Noticeably, the closedness of {x : f(x) ≥ α} implies (and is implied by) the openness of {x : f(x) < α}

being its complement. By picking A : (x, µ) 7→ x it’s possible to see that

{x : f(x) < α} = A ({(x, µ) : x ∈ ri(dom(f)), µ ∈ (f(x),∞)} ∩ {(x, µ) : x ∈ Rn, µ < α})

calling D the closed half-space {(x, µ) : x ∈ Rn, µ ≤ α} so that {(x, µ) : x ∈ Rn, µ < α} = ri(D), then

{x : f(x) < α} = A (ri(epi(f)) ∩ ri(D))

since ri
(⋂

i∈I Ci

)
=
⋂

i∈I ri(Ci), then

{x : f(x) < α} = A (ri(epi(f) ∩D))

since A(ri(C)) = ri(AC), then

{x : f(x) < α} = ri (A(epi(f) ∩D))

Implying that {x : f(x) < α} is open because it’s the relative interior of a convex set (which is

A(epi(f)∩D)). Thus, it follows that {x : f(x) ≥ α} is closed ∀α ∈ R because it’s the complement of

an open set which implies that f is upper-semicontinuous everywhere (and so, also with the respect

of ri(dom(f))).

It follows that, if f is finite throughout Rn, is also continuous everywhere: this occurs because in

this case dom(f) = Rn =⇒ dom(f) = ri(dom(f)) (since any affine set is both closed and relatively

open), meaning that f is continuous over all its effective domain (which coincides with Rn). This

finding is particularly important because the concerns about the continuity of f can be addressed to

checking the finiteness of the function throughout Rn. For example, taking f(x, t) such that f(·, t)

is convex ∀t ∈ T and such that ∃t ∈ T : f(x, t) < ∞ ∀x ∈ Rn (i.e. f as function of t ∈ T is bounded

from above for any x ∈ C), then the function

g(x) = sup
t∈T

f(x, t)
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is convex (since, as it will be discussed in the next section, its epigraph is the intersection of epigraphs

of a collection of functions convex in x and indexed by t ∈ T ) and continuous since dom(g) = Rn =

ri(dom(g)) (i.e. g(x) < ∞ ∀x ∈ Rn).

On the contrary, supposing that dom(f) ̸= Rn, one has to pay attention to the behavior of f at

the boundary points, because it’s not granted that the function is continuous there. Suppose for

example that

f(x) =


ξ22
2ξ1

if ξ1 > 0

0 if ξ1 = 0, ξ2 = 0

∞ otherwise

Noticeably, the relative interior of the effective domain is the open half-space

ri(dom(f)) = {(ξ1, ξ2) : ξ1 > 0, ξ2 ∈ R}

while the effective domain of the functions is still the open half-space adjoined with the origin (that

is just one point of the relative boundary of the half-space, indeed {0} ⊂ {(ξ1, ξ2) : ξ1 = 0, ξ2 ∈ R})

dom(f) = {(ξ1, ξ2) : ξ1 ∈ R+, ξ2 ∈ R} = ri(dom(f)) ∪ {0}

Thus, 0 ∈ dom(f) but 0 /∈ ri(dom(f)) and there is the risk that f is not continuous at 0. Indeed,

different restrictions of the functions lead to different limits as (ξ1, ξ2) → 0:

lim
ξ2→0

f(x)|
ξ1=

ξ22
2α

= α

lim
ξ2→0

f(x)|ξ1=ξ2 = 0

As a formal refinement of the ordinary continuity of convex functions on the relative interior of their

effective domain, one could introduce of Lipschitzian continuity relative to a set S ⊆ Rn.

Definition 36 (Lipschitzian continuity). Let f : S ⊆ Rn → R be a function. The function f is said

to be Lipschitzian relative to S if

∃α ≥ 0 : ||f(x)− f(y)||2 ≤ α||x− y||2 ∀x, y ∈ S

The definition just introduced can be re-arranged in the following form taking advantage of the

positive homogeneity of the Euclidean norm:

∃α ≥ 0 :

∣∣∣∣∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣∣∣∣∣
2

≤ α ∀x, y ∈ S

This notation makes more evident the fact that a function is Lipschitzian relative to S ⊆ Rn when-

ever the slope of every secant line passing through points (x, f(x)) and (y, f(y)) remains bounded

in absolute value ∀x, y ∈ S.



CHAPTER 2. CONVEX ANALYSIS 55

Proposition 20. Any function f that is Lipschitzian relative to S ⊆ Rn is also uniformly continuous

relative to S:

∀ϵ > 0 ∃δ > 0 : ||x− y||2 < δ =⇒ ||f(x)− f(y)||2 < ϵ ∀x, y ∈ S

Proof. Lipschitzian continuity is a particular case of uniform continuity: by setting δ = ϵ
α > 0, the

notation becomes

∀ϵ > 0 ∃α > 0 : ||x− y||2 <
ϵ

α
=⇒ ||f(x)− f(y)||2 < ϵ ∀x, y ∈ S

Which, can be rearranged into

∀ϵ > 0 ∃α > 0 : ||f(x)− f(y)||2 < α||x− y||2 < ϵ ∀x, y ∈ S

which resembles to

∃α > 0 : ||f(x)− f(y)||2 ≤ α||x− y||2 ∀x, y ∈ S

Proposition 21. Let f : S ⊆ Rn → R be a proper convex function. Then, f is Lipschitzian relative

to any closed bounded set S ⊆ ri(dom(f)).

Proof. by picking S ⊂ ri(dom(f)) as a closed bounded set it’s already known that f is ordinary

continuous on S (since f is ordinary continuous ∀x ∈ ri(dom(f))).

Supposing that dom(f) is n-dimensional, one has actually that S ⊂ int(dom(f)) (because the n-

dimensionality of dom(f) allows to write ri(dom(f)) = int(dom(f))) and by definition of interior of

a convex set, there exists a ϵ > 0 sufficiently small such that the closed bounded set S + ϵB is still

contained in int(dom(f))

Because of the definition of effective domain, one has that

sup
x∈(S+ϵB)

f(x) =: α2 < ∞

and since f is assumed to be proper:

inf
x∈(S+ϵB)

f(x) =: α1 > −∞

meaning that α1 and α2 act as lower and upper bounds of f on S + ϵB respectively.

By picking z ∈ S + ϵB is possible to write y ∈ S as a convex combination of z and x ∈ S, i.e.

y = (1− λ)x+ λz where

λ =
||y − x||2

ϵ+ ||y − x||2
(notice that λ ∈ [0, 1) since the norm is non-negative and ϵ > 0).

Thus, because of Jensen’s inequality

f(y) = f((1− λ)x+ λz) ≤ (1− λ)f(x) + λf(z)
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it follows that

f(y)− f(x) ≤ λ(f(z)− f(x)) ≤ λ(α2 − α1) ∀x, y ∈ S

And since λ = ||y−x||2
ϵ+||y−x||2 ≤ ||y−x||2

ϵ ∀x, y ∈ S the relation can be rewritten as

f(y)− f(x) ≤ λ(α2 − α1) ≤
||y − x||2

ϵ
(α2 − α1) ∀x, y ∈ S

Finally, by calling α = α2−α1

ϵ (notice that α ≥ 0), one has that

f(y)− f(x) ≤ α||y − x||2 ∀x, y ∈ S

which resembles the inequality defining Lipschitzian continuity relative to S

As a brief recap one could say that if f is a convex function (proper or improper) then it is ordinary

continuous on ri(dom(f)); however, if f is also proper function then is also Lipschitzian continuous

relative to any closed bounded set of ri(dom(f))

2.3.4 Recession function and recession cone of a convex function

Epigraphs of convex functions are typically unbounded convex sets, thus it is worth evaluating their

recession cones for inferring additional properties of such functions. Indeed, the recession cone of

epi(f) is not surprisingly denoted as 0+epi(f) and this is the epigraph of the so called recession

function f0+. In other words

epi(f0+) = 0+epi(f)

Definition 37 (Recession function). Let f : S ⊂ Rn → R be a convex function. The positive

homogenous convex function f0+ having 0+epi(f) as epigraph is called recession function of f .

Since the epigraph of f0+ is the recession cone of epi(f) (i.e. a convex cone containing the origin),

the recession function is a positively homogenous convex function. As it will be more clear in the

next section from the way it is derived, (f0+)(y) gives a lot of insights of how the function f variates

along the direction y. Some books [Ber09] refer to the recession function as the “asymptotic slope”

of f along the direction y to stress the fact (f0+)(y) tells what is going to be the definitive variation

of f by moving indefinitely along the direction y independently from where the movement has started.

In other words, if (f0+)(y) ≤ 0, it means that keeping a generic point x0 ∈ dom(f) one has

that f(x0 + λy) ≤ f(x0) ∀λ ≥ 0. Thus, moving towards the “horizon” of the half-line starting from

the generic x0 in the direction of y, the function f is non-increasing, implying that f(x0 + λy) is a

non-increasing function of λ. The set of directions y such that this condition holds is called recession

cone of f and in fact it corresponds to the zero sub-level set of the recession function:

recc(f) =
{
y : (y, 0) ∈ 0+epi(f)

}
=
{
y : (f0+)(y) ≤ 0

}
⊂ Rn
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Noticeably, the recession cone of f it’s different from the recession cone of epi(f) (which is indeed

0+epi(f) ⊆ Rn+1). The elements of the recession cone are called directions of recession of f or

directions in which f receeds, and it’s possible to anticipate the derivation of the recession function

from the qualitative understanding of the recession cone of f . Indeed, one has that

y ∈ recc(f) ⇐⇒ f(x0 + λy) ≤ f(x0) ∀λ ≥ 0 ∀x0 ∈ dom(f)

Thus it’s possible to rewrite the recession cone of f as

recc(f) = {y : f(x0 + λy) ≤ f(x0), λ ≥ 0, x0 ∈ dom(f)}

= {y : f(x0 + λy)− f(x0) ≤ 0, λ ≥ 0, x0 ∈ dom(f)}

=
{ y
λ
: f(x0 + y)− f(x0) ≤ 0, λ ≥ 0, x0 ∈ dom(f)

}
=
⋂
λ>0

1

λ
{y : f(x0 + y)− f(x0) ≤ 0, x0 ∈ dom(f)}

=
⋂
λ>0

1

λ

{
y : sup

x0∈domf
f(x0 + y)− f(x0) ≤ 0

}

However, if y is a direction of recession of f , also y
λ is a direction of recession of f ∀λ > 0. Thus, the

intersection above is the intersection of the same set (indeed, recc(f) is a convex cone), thus

recc(f) =

{
y : sup

x0∈domf
f(x0 + y)− f(x0) ≤ 0

}

and since recc(f) = {y : (f0+)(y) ≤ 0} this introduces one of the possible notations of the recession

function:

(f0+)(y) = sup
x0∈domf

f(x0 + y)− f(x0) (2.11)

As any other convex cone containing the origin, recc(f) is paired with two subspaces:

L1 = aff
({

y : (f0+)(y) ≤ 0
})

L2 =
{
y : (f0+)(y) ≤ 0

}
∩ (−

{
y : (f0+)(y) ≤ 0

}
)

=
{
y : (f0+)(y) ≤ 0

}
∩
{
y : (f0+)(−y) ≤ 0

}
=
{
y : (f0+)(y) ≤ 0, (f0+)(−y) ≤ 0

}
The subspace L2, i.e. the largest subspace fully contained in the recession cone of f , is called

constancy space of f and its elements are defined as “directions in which f is constant”. Indeed, the

function f(x + λy) is a constant function of λ ∀x if and only if (f0+)(y) ≤ 0, (f0+)(−y) ≤ 0. For

a graphical intuition, think about f as a real-valued convex function on R and these two possible

scenarios:

• y ∈ recc(f)
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– (f0+)(y) ≤ 0 but (f0+)(−y) > 0 =⇒ f(x+ λy) is a non-increasing function of λ ∀x (by

looking at Graph(f), it means that the vertical intercept is in correspondence of f(x) and

from there f(x+λy) has a non-increasing behavior as λ increases, i.e. moving rightward)

– (f0+)(y) ≤ 0 and (f0+)(−y) ≤ 0 =⇒ f(x+λy) is a constant function of λ ∀x (it means

that as λ increases, i.e. moving rightward, f(x + λy) = f(x) that is also the vertical

intercept of the graph of the function)

• y /∈ recc(f). In this case you have that f(x+ λy) is eventually a non decreasing function of λ,

in the sense that limλ→∞ f(x+ λy) = ∞

Indeed, the directions of recession of f (i.e. {y : (f0+)(y) ≤ 0}) play a fundamental role in convex

programming since they tell on which half-lines {x+ λy : λ ≥ 0} f is asymptotically non-increasing.

In other words, recalling the explanation made in [Ber09]: starting from x ∈ dom(f) and moving

along a direction of recession y, the point z = x+ λy reached by moving along that direction must

live within each level set that contains x, implying that f(z) ≤ f(x): whenever the boundary of a

particular α-sub-level set is crossed, it is never crossed-back again and proceeding along the direction

of recession y means either remaining on such α-sub-level set or moving to a new one associated with

a lower level (i.e. moving to α′-sub-level set with α′ ≤ α).

This behavior is captured by the fact that every α-sub-level sets of f (i.e. {x : f(x) ≤ α} ∀α ∈ R)

shares the same recession cone and lineality space, that is the recession cone of f and the constancy

space of f respectively.

2.3.5 Support function

Before concluding this section, it is worth introducing a very important class of convex functions,

that is the class of support functions of convex sets C, usually denoted as δ⋆(·|C) : Rn → R. As

it will be described in the next section, the support function of a convex set evaluates a vector b

belonging to the barrier cone of C (i.e. {x⋆ : ∃β ∈ R, ⟨x, x⋆⟩ ≤ β, x ∈ C}), and returns the value of

β such that ⟨x, b⟩ ≤ β ∀x ∈ C.

In other words, dom(δ⋆(·|C)) = {x⋆ : ∃β ∈ R, ⟨x, x⋆⟩ ≤ β, x ∈ C} and it is said to “support” C in

the sense that the half-space H̃b = {x : ⟨x, b⟩ ≤ δ⋆(b|C)} indexed by b ∈ dom(δ⋆(·|C)) acts as a

supporting half-space of C at some point z ∈ C. A support function fully characterizes a convex set

C, indeed it’s equal to the Fenchel conjugate of the indicator function

δ(x|C) =

0 if x ∈ C

∞ if x /∈ C
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as it will be discussed in the dedicated section (hence, the “star” notation for the support function).

Indeed, as an anticipation, the intersection of the half-spaces introduced before ranging over the

full barrier cone of C (i.e. the effective domain of its support function) resembles to the external

representation of cl(C) indeed⋂
b∈dom(δ⋆(·|C))

H̃b =
⋂

b∈dom(δ⋆(·|C))

{x : ⟨x, b⟩ ≤ δ⋆(b|C)}

= {x : ⟨x, b⟩ ≤ δ⋆(b|C), b ∈ dom(δ⋆(·|C))}

=

{
x : sup

b∈dom(δ⋆(·|C))

⟨x, b⟩ − δ⋆(b|C) ≤ 0

}
= {x : δ(x|C) ≤ 0}

= dom(δ(·|C)) = cl(C)

As for recession functions, the derivation of the functional form of the support function will be

covered in the next section. For now, it’s possible to anticipate that every support function of a

non-empty convex set C is a proper positively homogenous closed convex function, which implies

that any proper positively homogenous closed convex function is actually the support function of

some convex set.

Thus, the epigraph of a support function is always a convex cone in Rn+1 not containing any vertical

line and it can be recovered by thinking about the “external” representation of any non-empty closed

convex set C. Indeed, it’s known that every closed convex set C ⊂ Rn is given by the intersection of

all the closed half-spaces of the type {x ∈ Rn : ⟨x, b⟩ ≤ β} containing it. Such half-spaces could be

supporting or non-supporting half-spaces of C, however it is worth considering the supporting ones

as the “most efficient” in the sense that the inclusion of any translate to the supporting half-space

doesn’t add any additional benefit in defining C.

Moreover this allows to take advantage of the topological property typical of convex sets according

to which there always exist a non-null vector normal to C at any of its boundary points and this

grants the existence of supporting half-spaces. At the same time, as previously discussed, this is

equivalent to say that the function ⟨x, ·⟩ is bounded from above ∀x ∈ C, since

C ⊂ {x : ⟨x, b⟩ ≤ β} =⇒ ⟨x, b⟩ ≤ β ∀x ∈ C

Thus, ranging over x ∈ C, its possible to define a collection of affine functions of the type ⟨x, ·⟩

where each function, indexed by x ∈ C, is bounded from above and whose epigraph takes form

{(b, β) ∈ Rn × R : ⟨x, b⟩ ≤ β} where x is specific to that particular indexed function. By taking the

intersection of all these epigraphs, it’s possible to recover the epigraph of the support function of C

Definition 38 (Support function). Let C ⊂ Rn be a convex set. Consider the collection of affine

functions {h(b;x) = ⟨x, b⟩ : x ∈ C}. The support function of C, denoted as δ⋆(·|C) : S ⊂ Rn → R is

a closed proper positive homogenous convex function induced by the intersection of the collection of
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the epigraphs of the functions mentioned above ranging over C as index set. In other words:

epi(δ⋆(·|C)) =
⋂
x∈C

epi(h(·;x))

Noticeably, setting any λ > 0, one has that λ(b, β) ∈
⋂

x∈C epi(⟨x, ·⟩) ⇐⇒ ⟨x, λb⟩ ≤ λβ ∀x ∈

C ⇐⇒ λ⟨x, b⟩ ≤ λβ ∀x ∈ C ⇐⇒ ⟨x, b⟩ ≤ β ∀x ∈ C ⇐⇒ (b, β) ∈
⋂

x∈C epi(⟨x, ·⟩). Thus, the

intersection of such collection is actually a closed convex cone containing the origin in Rn+1 and this

explains the closedness, the properness and the positive homogeneity of the support function.0 ∈
⋂

x∈C {(b, β) : ⟨x, b⟩ ≤ β}

(b, β) ∈
⋂

x∈C {(b, β) : ⟨x, b⟩ ≤ β} =⇒ λ(b, β) ∈
⋂

x∈C {(b, β) : ⟨x, b⟩ ≤ β} ∀λ > 0

Thus, as previously hinted with the example about continuity, the function whose epigraph is equal

to the intersection of epigraphs of functions belonging to a collection indexed by a set I is the

pointwise supremum of the functions belonging to that collection. Indeed, the support function is

exactly the pointwise supremum of the functions ⟨x, ·⟩ and the convex set C acts as index set.

δ⋆(·|C) = sup
x∈C

⟨x, ·⟩

Noticeably, support functions are a useful tool also for handling minimization of a linear function

over a convex set C keeping the dependance of the optimal value to the external parameters wrapped

in x⋆ ∈ Rn, indeed one has

inf
x∈C

⟨x, x⋆⟩ = − sup
x∈C

⟨x,−x⋆⟩ = −δ⋆(−x⋆|C)

Of course, such function is concave being the negative of a convex function and to put the stress on

this from now it will be used this notation

δ̂⋆(x̂⋆|C) = −δ⋆(−x̂⋆|C) = inf
x∈C

⟨x, x̂⋆⟩

Thus, also δ̂⋆(x̂⋆|C) can be used for inducing a supporting half-space to C in the form of

Ĥx̂⋆ =
{
x ∈ Rn : ⟨x, x̂⋆⟩ ≥ δ̂⋆(x̂⋆|C)

}
Because one has that ⟨x, x̂⋆⟩ ≥ δ̂⋆(x̂⋆|C) ∀x ∈ C implying that Ĥ ⊃ C. This device will be ex-

tremely useful in deriving the basic portfolio value function embedded in a CFMM from the basic

set of reachable reserves.

Coming back to the “external” representation of any convex set C, it has been said that it’s possible

to recover cl(C) as

cl(C) = {x : ⟨x, b⟩ ≤ δ⋆(b|C), b ∈ dom(δ⋆(·|C))} =
⋂

b∈dom(δ⋆(·|C))

H̃b
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i.e. as the solution set of a system of weak linear inequalities ranging over the barrier cone of C (or,

equivalently, the effective domain of the support function), and this notation is particularly useful

as reference for recovering the closed convex set “supported” by a generic proper closed positively

homogenous convex function. For example, the Euclidean norm satisfies the requirements for being

considered as a support function of some closed convex set taking form

C = {x : ⟨x, b⟩ ≤ ||b||2, b ∈ Rn}

Meaning that the Euclidean norm must be consistent with the notation of the support function of

the unknown convex set C:

||b||2 = sup
x∈C

⟨x, b⟩

According to the Cauchy-Schwarz inequality one has that

|⟨x, b⟩| ≤ ||x||2 · ||b||2

Indeed one can write ⟨x, b⟩ = ||x||2 · ||b||2 · cos(θ) with cos(θ) ∈ [−1, 1].

Thus, it’s valuable analyzing the behavior of ⟨x, b⟩ for x lying inside and outside the unit circle.

For example, considering any ||x|| ≤ 1 one has that ||x|| · cos(θ) ≤ 1 ∀x ∈ B (where B denotes the

euclidean unit ball). Thus, one has actually that

⟨x, b⟩ ≤ ||b||2 ∀x ∈ B, ∀b ∈ Rn

In other words:

x ∈ B =⇒ ⟨x, b⟩ ≤ ||b||2 ∀b ∈ Rn

because on the left hand-side one would have the non-negative quantity ||b||2 rescaled by a factor

not greater than 1. This is equivalent to say that

sup
x∈B

⟨x, b⟩ = ||b||2 ∀b ∈ Rn =⇒ ||b||2 = δ⋆(b|B)

Because, given any b ∈ Rn, the supremum of ⟨x, b⟩ over B is achieved by picking x at the boundary

of B (so that ||x|| = 1) pointing in the same direction of b (so that θ = 0 and cos(θ) = 1). In other

words, the supremum of ⟨x, b⟩ over B is achieved by picking x = b
||b||2 (i.e. a “rescaled” version of b)

and this implies that supx∈B⟨x, b⟩ = ⟨ b
||b||2 , b⟩ =

||b||22
||b||2 = ||b||2.

On the other hand, constraining x ∈ Bc (where Bc = {x : ||x|| > 1}) and picking a generic b ∈ Rn

one can always find a x ∈ Bc such that ⟨x, b⟩ > ||b||2. In particular, one has that supx∈Bc⟨x, b⟩ = ∞

because, given any b ∈ Rn one could pick any “explosive” x (in the sense that ||x|| → ∞) making an

acute angle with b (so that cos(θ) > 0) and this would make ⟨x, b⟩ → ∞.
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Coming back to the analysis of x ∈ B, the inequality ⟨x, b⟩ ≤ ||b||2 ∀x ∈ B, ∀b ∈ Rn can be seen

also as

sup
b∈Rn

⟨x, b⟩ − ||b||2 ≤ 0 ∀x ∈ B =⇒ B =

{
x : sup

b∈Rn

⟨x, b⟩ − ||b||2 ≤ 0

}
And this is a “dual” proof of the fact that the Euclidean norm is the support function of the Euclidean

unit ball. Indeed, one could write

||x||⋆2 = sup
b∈Rn

⟨x, b⟩ − ||b||2

So that B = {x : ||x||⋆2 ≤ 0}. In particular, since from previous argument one has that ⟨x, b⟩ ≥

||b||2 ∀x ∈ Bc, ∀b ∈ Rn, the conjugate of the euclidean norm is actually the indicator function of the

Euclidean unit ball.

||x||⋆2 = sup
b∈Rn

⟨x, b⟩ − ||b||2 =

0 if x ∈ B

∞ if x /∈ B

And this is consistent with the fact that δ⋆(x⋆|C) = (δ(x|C))⋆. Indeed, since every closed proper

positive homogeneous convex function can be framed as a support function, its Fenchel conjugate

will be always an indicator function: more specifically, the Fenchel conjugate will be equal to the

indicator function of the convex set it is supporting as support function. Generally speaking [Roc70],

given f as a proper closed convex function, one has that

δ⋆ (x⋆| {x : f(x) ≤ 0}) = (cl(h))(x⋆) where h(x⋆) = inf
λ>0

(f⋆λ)(x⋆)

Meaning that the support function of the 0-sub-level set of f corresponds to the closure of the positive

homogenous convex function generated by the Fenchel conjugate of f , as it will result more clear in

the next sections. Dually, one has that

δ⋆ (x| {x⋆ : f⋆(x⋆) ≤ 0}) = (cl(g))(x) where g(x) = inf
λ>0

(f⋆⋆λ)(x) = inf
λ>0

(cl(f)λ)(x) = inf
λ>0

(fλ)(x)

This follows from a more general theorem regarding the support function of dom(f) and dom(f⋆),

which could be heuristically thought as the ∞-sub-level sets of f and f⋆. Indeed, given f closed

proper convex (not necessarily positive homogenous), one has that

δ⋆(y⋆|dom(f)) = (f⋆0+)(y⋆)

δ⋆(y|dom(f⋆)) = (f0+)(y)

However, if f is positively homogenous and vanishing at the origin, it means that its epigraph will

be a convex cone containing the origin, implying that 0+epi(f) = epi(f) and f will be equal to its

recession function. This is the reason why a positively homogenous convex function supports the

effective domain of its Fenchel conjugate. To prove the equality 0+epi(f) = epi(f) one could argue

that the recession cone of a convex set C containing the origin can be retrieved as [Roc70]

0+C =
⋂
ϵ>0

ϵC
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However, if C is a convex cone, then ϵC ⊆ C ∀ϵ > 0 meaning that
⋂

ϵ>0 ϵC = C. Thus, if f is

positively homogenous, then 0+epi(f) = epi(f) and f is equal to its recession function.

2.4 Designing Convex Functions

2.4.1 Convex and concave function builder

The previous subsection demonstrated how important the analysis of the epigraph of a function

is in inferring the properties of the function itself. Thus, if the goal is designing functions with

specific properties, it is worth understanding how to manipulate the epigraph of a function in order

to “inherit” such desirable properties from those of its epigraph.

In other words, designing a convex set F ⊆ Rn+1 with some specific properties is equivalent to design

a convex function, having F as its epigraph, with some properties “encoded” in F .

To achieve this goal, one of the most powerful tools provided by convex analysis is designing a convex

set F ⊂ Rn+1 and then “inducing” a convex function having F as its epigraph. This tool could be

heuristically defined as a “function builder” which defines the usual mapping f : Rn → R as

f(x) = inf {µ : (x, µ) ∈ F}

However, the properness of the induced convex function is not always granted, but it can be always

assessed in advance by checking the existence of vertical lines in the convex set F . On the other

hand, the same convex set could be thought as the hypograph of a concave function, which can be

induced as

f̂(x) = sup {µ : (x, µ) ∈ F}

This tool allows to derive the functional forms of all the functions discussed so far. Moreover, given

any convex function f with some missing desirable properties, it’s possible to obtain a “similar”

function having those desirable properties by manipulating the epigraph of f and then deriving the

associated function.

The derived function is “similar” in the sense that it is the greatest convex function majorized by f

with the additional properties encoded in its epigraph.

In other words, calling T : Rn → Rn any convexity-preserving transformation which modifies the

epigraph of f , one has that

g(x) = inf{µ : (x, µ) ∈ T (epi(f))} =⇒ g ≤ f

This was the case for example of the lower-semicontinuous hull of f , which was introduced as the

greatest lower-semicontinuous function majorized by f and it was obtained by taking the closure of

the epigraph of f .
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2.4.2 Recovering the lower-semicontinuous hull of f

Thus, the lower-semicontinuous hull of f is built from cl(epi(f)) but of course, it’s possible to build

convex functions “similar” to f from λepi(f), 0+epi(f) or also, given a generic f not necessarily

convex, from conv(epi(f)) or cone(epi(f)). In the case of the lower-semicontinuous hull of f , one has

the following proposition

Proposition 22. Let f : Rn → R be a convex function. Then, the lower-semicontinuous hull of f

can be obtained as

clf(x) = lim inf
x̃→x

f(x̃)

Proof. Supposing that f is proper, the convex function induced by cl(epi(f)) corresponds to cl(f),

which could be expanded as follows:

cl(f(x)) = inf {µ : (x, µ) ∈ cl(epi(f))}

= inf

{
µ : (x, µ) ∈

⋂
ϵ>0

epi(f) + ϵB

}

Recalling that
⋂

ϵ>0 epi(f) + ϵB = {(x, µ) : ∀ϵ > 0,∃(x̃, µ̃) ∈ epi(f) : d((x, µ), (x̃, µ̃)) ≤ ϵ} one has

that:

cl(f(x)) = inf {µ : (x, µ) ∈ {(x, µ) : ∀ϵ > 0,∃(x̃, µ̃) ∈ epi(f) : d((x, µ), (x̃, µ̃)) ≤ ϵ}}

= inf {µ : ∀ϵ > 0, x̃ ∈ dom(f), µ̃ ≥ f(x̃), ||(x− x̃, µ− µ̃)||2 ≤ ϵ}

= lim
ϵ→0+

inf {µ : x̃ ∈ dom(f), µ̃ ≥ f(x̃), ||(x− x̃, µ− µ̃)||2 ≤ ϵ}

Calling µ̄ = µ− µ̃

= lim
ϵ→0+

inf {µ : x̃ ∈ dom(f), µ− µ̄ ≥ f(x̃), ||(x− x̃, µ̄)||2 ≤ ϵ}

= lim inf
(x̃,µ̄)→(x,0)

f(x̃) + µ̄

= lim inf
x̃→x

f(x̃)

Which not surprisingly resembles the limit inferior of f at x, coherently with the definition of the

lower-semicontinuous hull of f .

2.4.3 Recovering the recession function of f

Another function that was previously introduced was the recession function of f , which was defined

as the function whose epigraph is equal to the recession cone of epi(f). Indeed:

(f0+)(x) = inf
{
µ : (x, µ) ∈ 0+epif

}
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Proposition 23. Let f : Rn → R be a convex function. Then, the recession function of f can be

obtained as

(f0+)(x) = sup
λ>0,x̃∈dom(f)

f(λx+ x̃)− f(x̃)

λ

Or, alternatively

(f0+)(x) = sup
x̃∈dom(f)

f(x+ x̃)− f(x̃)

Proof. Recalling that

0+epif = {(x, µ) : λ(x, µ) + epi(f) ⊆ epi(f), λ ≥ 0}

= {(x, µ) : λ(x, µ) + (x̃, µ̃) ∈ epi(f), λ ≥ 0, (x̃, µ̃) ∈ epi(f)}

= {(x, µ) : (λx+ x̃, λµ+ µ̃) ∈ epi(f), λ ≥ 0, (x̃, µ̃) ∈ epi(f)}

= {(x, µ) : λx+ x̃ ∈ dom(f), λµ+ µ̃ ≥ f(λx+ x̃), λ ≥ 0, (x̃, µ̃) ∈ epi(f)}

=

{
(x, µ) : λx+ x̃ ∈ dom(f), µ ≥ f(λx+ x̃)− µ̃

λ
, λ > 0, x̃ ∈ dom(f), µ̃ ≥ f(x̃)

}
It’s possible to remove some terms in the set notation by noticing that, since µ̃ ≥ f(x̃) ∀x̃ ∈

dom(f) =⇒ f(λx+x̃)−µ̃
λ ≤ f(λx+x̃)−f(x̃)

λ ≤ µ ∀x̃ ∈ dom(f), leading to:

0+epif =

{
(x, µ) : λx+ x̃ ∈ dom(f), µ ≥ f(λx+ x̃)− f(x̃)

λ
, λ > 0, x̃ ∈ dom(f)

}
The function builder notation can be rewritten as

(f0+)(x) = inf

{
µ : λx+ x̃ ∈ dom(f), µ ≥ f(λx+ x̃)− f(x̃)

λ
, λ > 0, x̃ ∈ dom(f)

}
Notice that this corresponds to the infimum of the majorants of f(λx+x̃)−f(x̃)

λ , hence to the supremum

of such function. Thus

(f0+)(x) = sup
λ>0,x̃∈dom(f)

f(λx+ x̃)− f(x̃)

λ

Sometimes the notation sets λ = 1 for the same reason why it’s set like that in the notation of the

recession cone of a generic set C. Indeed, λx + x̃ ∈ dom(f) for λ ≥ 0 and x̃ ∈ dom(f) is simply

saying that x ∈ 0+dom(f) since

0+dom(f) = {x : λx+ dom(f) ⊆ dom(f), λ ≥ 0} = {x : x+ dom(f) ⊆ dom(f)}

Indeed, since the recession cone of any convex set is a convex cone containing the origin, if x ∈

0+dom(f) =⇒ λx ∈ 0+dom(f) ∀λ ≥ 0 (the weak inequality is allowed because of the inclusion of

the origin)

Thus, an alternative notation for the recession function of f (which was previously anticipated in

equation (2.11) from the qualitative understanding of the directions of recession of f) is

(f0+)(x) = sup
x̃∈dom(f)

f(x+ x̃)− f(x̃)
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Proposition 24. Let f : Rn → R be a convex function. Then, the recession function of f can be

obtained as

(f0+)(x) = lim
λ→∞

f(λx+ x̃)− f(x̃)

λ

Proof. When x is a direction of recession of f , it’s known that f(λx+ x̃) is actually a non-increasing

function of λ, implying that f(λx+ x̃) ≤ f(x̃) ∀λ ≥ 0 (think about f(x̃) as f(λx+ x̃) with λ = 0).

Thus, f(λx + x̃) − f(x̃) is a non-increasing function of λ, but the negative ratio f(λx+x̃)−f(x̃)
λ is

actually an increasing function of λ. Indeed, because of the convexity of f , the speed at which

f(λx + x̃) − f(x̃) decreases is sub-linear, implying that the numerator decreases at a lower rate

compared to the increasing denominator. On the contrary, when x is not a direction of recession

of f , one has f(λx + x̃) > f(x̃)∀ λ > 0 and, because of the convexity of f , the speed at which

f(λx+ x̃)−f(x̃) increases is super-linear, implying that also in this case the ratio f(λx+x̃)−f(x̃)
λ is an

increasing function of λ. An algebraic proof for this is provided in [Ber09]: consider µ > λ so that

x̃+ λx is actually a point lying on the line-segment connecting x̃ and x̃+ µx; This means that such

point could be expressed as convex combination of the two endpoints of the segment as follows:

x̃+ λx =
µ− λ

µ
x̃+

λ

µ
(x̃+ µx)

Thus, recalling Jensen’s inequality, one has that:

f(x̃+ λx) ≤ µ− λ

µ
f(x̃) +

λ

µ
f(x̃+ µx) ∀λ ∈ [0, µ]

f(x̃+ λx) ≤ f(x̃) +
λ

µ
(f(x̃+ µx)− f(x̃)) ∀λ ∈ [0, µ]

f(x̃+ λx)− f(x̃)

λ
≤ f(x̃+ µx)− f(x̃)

µ
∀λ ∈ [0, µ]

This simple rearrangement of the Jensen’s inequality shows that, independently from the nature of

y as direction of the convex function f , the ratio f(λx+x̃)−f(x̃)
λ is always an increasing function of λ.

Of course, since the weak inequality sign in the Jensen’s inequality is reversed for concave functions,

one has that f̂(x̃+λx)−f̂(x̃)
λ is actually a non-increasing function of λ given any direction of the concave

function f̂ .

Thus, accounting for the non-decreasing nature of recalling the first notation of the recession function,

it’s possible to rewrite the recession function as

(f0+)(x) = sup
λ>0,x̃∈dom(f)

f(λx+ x̃)− f(x̃)

λ
= lim

λ→∞

f(λx+ x̃)− f(x̃)

λ

At this point, it’s possible to introduce the “variation” function P (x; x̃)

P (x; x̃) = f(x̃+ x)− f(x̃)
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Where x ∈ Rn is a generic direction, not necessarily of recession, and x̃ ∈ dom(f) is a parameter.

Notice that this function is convex in x and its epigraph is obtained by translating the epigraph of

f so that the point (x̃, f(x̃)) is mapped to the origin (indeed, P (0; x̃) = f(x̃) − f(x̃) = 0). This

function is going to be extremely useful in understanding directional derivatives in the next section

(in particular in comparing how the directional derivative focuses on the “local” behavior of f while

the recession function focuses on the “asymptotic” behavior of f) but now it can be deployed to write

a fourth notation for the recession function of f . Indeed, one could rewrite the ratio used in the

previous notations as the left scalar multiplication of P (x; x̃) by λ−1.

f(λx+ x̃)− f(x̃)

λ
= λ−1P (λx; x̃) = (Pλ−1)(x; x̃)

Implying that

(f0+)(x) = sup
λ>0,x̃∈dom(f)

(Pλ−1)(x; x̃) = lim
λ→∞

(Pλ−1)(x; x̃)

Proposition 25. Let f : Rn → R be a convex function. Then, the recession function of f can be

obtained as

(f0+)(x) = lim
λ→0+

(fλ)(x)

Proof. The recession cone of of epi(f) could be interpreted as the set obtained by rescaling the

original epigraph of f for a positive scalar that tends to zero (hence the notation 0+epif), and this

gives a first intuition of the use of the right scalar multiplication in such notation.

Notice in fact that 0+epi(f) = λepi(f), λ → 0+ and this can be seen from the following example.

Suppose that K = cone {(1, z) : z ∈ epi(f)} where z = (x, µ) ∈ Rn+1. As seen in previous sections,

this convex cone containing the origin is actually

K = cone({(1, z) : z ∈ epi(f)})

=
⋃
λ≥0

{(λ, z) : z ∈ λepi(f)}

= {(λ, z) : λ > 0, z ∈ λepi(f)} ⊆ Rn+2

And notice that K ∩
{
(λ, x) : λ > 0, x ∈ Rn+1

}
= K \ {0} meaning that, except for the origin, such

convex cone lives in the open half-space
{
(λ, x) : λ > 0, x ∈ Rn+1

}
. On the other hand, indeed,

K ∩
{
(0, x) : x ∈ Rn+1

}
= {(0, z) : z ∈ 0epi(f)} = {0}. Thus, one could think about a cone K̃ =

K ∪K0 where K0 ⊂
{
(0, x) : x ∈ Rn+1

}
is a convex cone containing the origin. Thus, it’s possible

to think about K0 as a convex cone in Rn+2 generated by some “unknown” convex set C0 ⊆ Rn+1

at level λ = 0, i.e. K0 = cone({(0, z) : z ∈ C0}).

For K̃, one would have

K̃ = K ∪K0

= {(λ, z) : λ ≥ 0, z ∈ λepi(f)} ∪ {(0, z) : λ ≥ 0, z ∈ λC0}
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But since K0 includes the origin, we can omit the origin from the first set in the union

= {(λ, z) : λ > 0, z ∈ λepi(f)} ∪ {(0, z) : λ ≥ 0, z ∈ λC0}

= K \ {0} ∪K0

where

K̃ ∩
{
(λ, x) : λ > 0, x ∈ Rn+1

}
= K \ {0}

K̃ ∩
{
(0, x) : x ∈ Rn+1

}
= K0

Thus, K̃ is a “larger” cone than K in the half-space {(λ, x) : λ ≥ 0, x ∈ Rn} in the sense that both

are living in such closed half-space and that K ⊂ K̃ (since K̃ = K ∪ K0 and K0 contains the

origin). Noticeably, in order to be a convex cone, K̃ must be closed under addition and positive

scalar multiplication, meaning that

∀(1, z1) ∈ K ∃(0, z2) ∈ K0 : (1, z1) + (0, z2) ∈ K

Which resembles to

∀z1 ∈ epi(f) ∃z2 ∈ C0 : z1 + z2 ∈ epi(f)

Which implies that z2 is a direction of recession of epi(f) and so that the unknown convex set C0

generating K0 is actually the recession cone 0+epi(f). Thus K̃ can be rewritten as

K̃ = {(λ, z) : λ ≥ 0, z ∈ λepi(f)} ∪
{
(0, z) : z ∈ 0+epi(f)

}
Or alternatively, in order to properly capture the nature of 0+epi(f) = λepi(f) for λ → 0+,

K̃ = {(λ, z) : λ > 0, z ∈ λepi(f)} ∪
{
(0, z) : z ∈ 0+epi(f)

}
since the recession cone of a convex set always contains the origin.

Now that it’s clear that 0+epi(f) = λepi(f), λ → 0+, it’s possible to appreciate the fifth notation of

the recession function of f by deriving the right scalar multiplication of f . As previously introduced,

one has:

(fλ)(x) = λf(xλ−1) λ > 0

And the claim here is that epi(fλ) = λepi(f). Thus, using the function builder to derive the function

whose epigraph is a “rescaled” version of epi(f) for some scalar λ > 0 should lead to the right scalar
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multiplication. Indeed:

(fλ)(x) = inf {µ : (x, µ) ∈ λepi(f)}

= inf
{
µ : λ−1(x, µ) ∈ epi(f)

}
= inf

{
µ : (λ−1x, λ−1µ) ∈ epi(f)

}
= inf

{
µ :

µ

λ
≥ f

(x
λ

)}
= inf

{
µ : µ ≥ λf

(x
λ

)}

As before, the infimum of the majorants of a function is actually the supremum of the function.

However, since λ is a priori defined according to the rescaling of epi(f) and x is the variable of the

function, there aren’t additional parameters to optimize over. Thus, this resembles to the function

itself, i.e.

(fλ)(x) = λf
(x
λ

)
And this is the reason why

(f0+)(x) = inf
{
µ : (x, µ) ∈ 0+epi(f)

}
= lim

λ→0+
(fλ)(x)

Right scalar multiplication is one of the cases in which the epigraph of the derived function corre-

sponds to the image of epi(f) (or any other convex set) under a linear transformation A : Rk → Rm.

Indeed, as seen in the previous section, in the case of right scalar multiplication one has A : (x, µ) 7→

λ(x, µ) for some λ > 0 or, alternatively, A : epi(f) 7→ λepi(f).

2.4.4 Infimal convolution of convex functions

Another important example is given by the infimal convolution of a collection of convex func-

tions {fi : i ∈ I}, which is the associated function when A : ((x1, µ1), (x2, µ2), . . . ) 7→ (x1, µ1) +

(x2, µ2), . . . . Thus, the linear transformation in this context maps the direct sum of the epigraphs

of the collection into the ordinary sum of the epigraphs of the collection, i.e.

A :
⊕
i∈I

epi(fi) 7→
∑
i∈I

epi(fi)

Definition 39. Let {fi : i ∈ I} be a collection of convex functions, where I is an index set. Then,

the infimal convolution of such collection is the function f1□ . . .□fp induced by the sum of the

epigraphs of the functions in the collection, i.e.

(f1□ . . .□fp)(x) = inf

{
µ : (x, µ) ∈

p∑
i=1

epi(fi)

}
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Proposition 26. Let {fi : i ∈ I} be a collection of convex functions, where I = [1, p] is an index

set. Then, the infimal convolution of such collection can be obtained as

(f1□ . . .□fp)(x) = inf {f(x1) + · · ·+ f(xp) : x = x1 + · · ·+ xp}

Proof.

(f1□ . . .□fp)(x) = inf {µ : (x, µ) ∈ epi(f1) + · · ·+ epi(fp)}

= inf {µ : x = x1 + · · ·+ xp, µ = µ1 + · · ·+ µp, µi ≥ f(xi), i = 1, . . . , p}

= inf {µ1 + · · ·+ µp : x = x1 + · · ·+ xp, µi ≥ f(xi), i = 1, . . . , p}

= inf {f(x1) + · · ·+ f(xp) : x = x1 + · · ·+ xp}

Notice that if the collection of functions corresponds to the same function and I = [1, λ] (i.e. the

collection of functions is {f : i ∈ [1, λ]}) the infimal convolution of such collection resembles the right

scalar multiplication. Indeed, this would mean that (x1, µ1) = · · · = (xλ, µλ) = (x̃, µ̃) so that

(f□ . . .□f)(x) = inf

{
λ∑

i=1

f(x̃) : x =

λ∑
i=1

x̃

}
= inf {λf(x̃) : x = λx̃}

= λf
(x
λ

)
=: (fλ)(x)

2.4.5 Image of f under affine map

Infimal convolution and right scalar multiplication are examples in which the affine transformation

is applied to the whole epigraph. However, one could generate convex functions also by applying A

just to the effective domain of the convex function f : Rn → R. This means that the set used in the

function builder notation would be, for some affine transformation A : Rn → Rm

F = {(Ax, µ) : (x, µ) ∈ epi(f)}

Definition 40 (Image of f under affine map). Let f : Rn → R be a convex function and A : Rn →

Rm be an affine transformation. Then, the image of f under A is the function (Af) : Rm → R

induced by the set F = {(Ax, µ) : (x, µ) ∈ epi(f)}

Proposition 27. Let f : Rn → R be a convex function and A : Rn → Rm be an affine transforma-

tion. Then, the image of f under A can be obtained as

(Af)(x) = inf
Ax̃=x

f(x̃)
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Proof.

(Af)(x) = inf {µ : (x, µ) ∈ {(Ax̃, µ̃) : (x̃, µ̃) ∈ epi(f)}}

= inf {µ : (x, µ) ∈ {(Ax̃, µ̃) : x̃ ∈ dom(f), µ̃ ≥ f(x̃)}}

= inf {µ : x = Ax̃, µ = µ̃ ≥ f(x̃)}

= inf
Ax̃=x

f(x̃)

If A is invertible this resembles to the inverse image of f under A−1:

(Af)(x) = inf
x̃=A−1x

f(x̃)

= f(A−1x) =: (fA−1)(x)

An example of this function was introduced in the previous section as the function induced by

rescaling the effective domain of f for some scalar λ > 0. Indeed, in that case the linear map is

T : x 7→ λx which is invertible since T−1 : x 7→ x
λ

(Tf)(x) = inf
T x̃=x

f(x̃) = inf
λx̃=x

f(x̃) = inf
x̃= x

λ

f(x̃) = inf
x̃=T−1x

f(x̃) = f(T−1x) = (fT−1)(x) = f
(x
λ

)
This function is extremely useful to demonstrate the convexity of element-wise minimization over a

convex set.

Proposition 28. Let f : S ⊂ Rn × Rn → R be a function convex in both arguments. Then, the

partial minimization of f over a convex set Cy ⊂ Rn

inf
y∈Cy

f(x, y)

is a convex function

Proof. Given f(x, y) convex both on x and y, one actually has that dom(f) = Cx ⊕Cy is actually a

convex set. One could then apply an affine transformation of the type A : (x, y) 7→ x to the effective

domain, meaning that A(dom(f)) = A(Cx ⊕ Cy) 7→ Cx This would resemble to

(Af)(x) = inf {f(x, y) : A(x, y) = x}

But since the map (x, y) 7→ x is valid ∀y ∈ Cy this is equivalent to taking the infimum of f(x, y)

evaluating with the second argument ranging over Cy, i.e.

(Af)(x) = inf {f(x, y) : A(x, y) = x, }

= inf {f(x, y) : y ∈ Cy}

= inf
y∈Cy

f(x, y)

And since any function which can be written as the image of a convex function under an affine

transformation is actually a convex function, this implies that the element-wise minimization of a

convex function over a convex set is a convex function.
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Another very important function which can be derived via the function builder notation is the

function induced by the intersection of epigraphs of a collection of convex functions. One could frame

the support function or any other Fenchel conjugate as a function induced in such way, proving at

the same time their convexity (being functions induced by a convex set).

Indeed, suppose that {fi : i ∈ I} is a collection of convex functions such that fi : Rn → R and I is a

generic index set. The function induced by the intersection of the epigraphs of such collection is

g(x) = inf

{
µ : (x, µ) ∈

⋂
i∈I

epi(fi)

}

= inf {µ : (x, µ) ∈ epi(fi), i ∈ I}

= inf {µ : x ∈ dom(fi), µ ≥ fi(x), i ∈ I}

Notice that this is the infimum of the majorants of all fi(x), hence the supremum of such functions.

Thus, as anticipated in the previous sections, the function induced by the intersection of the epigraphs

of convex sets is:

g(x) = sup
i∈I

fi(x)

Notice that one could be tempted to see a “hidden” relationship between the convexity of supy∈S f(x, y)

and the convexity of infy∈C f(x, y) but the interpretation is actually different. Indeed, for what re-

gards supy∈S f(x, y), f is required to be convex just on x since y acts as a index ranging over a

index set S which of course is not required to be convex: indeed the final function is induced by the

intersection of epigraphs of convex functions in a collection, where each function of such collection

is indexed by y. On the other hand, regarding infy∈C f(x, y), f is required to be convex both on

x and y and the set C is required to be convex, simply because the final function is induced by a

particular kind of affine transformation (of the type A : (x, y) 7→ x) applied to the effective domain of

the original function, which must be convex in order to have a convex epigraph (and effective domain).

Moreover, one can retrieve an additional information from the following equality recalling that the

negative of a concave function is convex and vice-versa:

g(x) = sup
i∈I

fi(x) = − inf
i∈I

(−fi(x)) = − inf
i∈I

f̂i(x)

Since {fi : i ∈ I} is a collection of convex functions, {−fi : i ∈ I} =
{
f̂i : i ∈ I

}
must be a collection

of concave functions. On the other hand, since − infi∈I(−fi(x)) is a convex function (being equal to

the supremum of a family of a convex functions), then infi∈I(−fi(x)) must be a concave function.

Indeed, the element-wise infimum of a family of concave functions (ranging over a generic index set)

is always a concave function.
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2.4.6 Positive homogenous convex functions generated by f

Finally, it’s possible to define the positive homogenous convex function generated by a function f as

the function induced by the convex cone generated by the epigraph of f

Definition 41 (Positive homogenous convex functions generated by f). Let f : Rn → R be a convex

function. Then, the positive homogenous convex function generated by f is the function induced by

the Conic hull of epi(f), i.e. cone(epi(f))

Proposition 29. Let f : Rn → R be a convex function. Then, the positive homogenous convex

function generated by f can be denoted as

h(x) = inf
λ>0

(fλ)(x)

Proof.

h(x) = inf {µ : (x, µ) ∈ cone(epi(f))}

= inf

µ : (x, µ) ∈
⋃
λ≥0

λepi(f)


= inf {µ : (x, µ) ∈ {λ(x̃, µ̃) : λ > 0, (x, µ) ∈ epi(f)}}

= inf {µ : x = λx̃, µ = λµ̃, x̃ ∈ dom(f), µ̃ ≥ f(x̃), λ > 0}

= inf {λµ̃ : x = λx̃, x̃ ∈ dom(f), µ̃ ≥ f(x̃), λ > 0}

= inf
{
λf
(x
λ

)
:
x

λ
∈ dom(f), λ > 0

}
= inf

λ>0
(fλ)(x)

Noticeably cone(epi(f)) ⊃ λepi(f) ∀λ ≥ 0 and this is graphically explained from the fact that the

epigraph of the function induced by the non-negative rescaling of epi(f) is always contained in the

convex cone generated by epi(f).

This device allows to introduce the gauge function γ(·|C) as the positive homogeneous convex func-

tion generated by f(·) = δ(·|C)+1. Indeed, generally speaking, a gauge γ is defined as a non-negative

positive homogenous convex function vanishing at the origin (i.e. γ(0|C) = 0) [Roc70] meaning that

it’s epigraph is a convex cone containing the origin. Indeed, considering

f(x) = δ(x|C) + 1

one has that epi(f) = {(x, µ) : µ ≥ 1, x ∈ C} implying that

cone(epi(f)) =
⋃
λ≥0

epi(f) = {(x, µ) : ∃λ ≥ 0, µ ≥ λ, x ∈ λC}
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. Thus, the gauge function is simply the convex function induced by cone(epi(f)), i.e.

γ(x|C) = inf {µ : ∃λ ≥ 0, µ ≥ λ, x ∈ λC}

= inf {λ ≥ 0 : x ∈ λC}

2.4.7 Polars of convex sets

Definition 42 (Polar of a convex set). Let C ⊂ Rn be a convex set. The polar of C is the set

C◦ = {x⋆ : ⟨x, x⋆⟩ ≤ 1, x ∈ C}

Proposition 30. Let C ⊂ Rn be a convex set. The polar C◦ is always a closed origin-including

convex set. Moreover, the polar relationship binding C and C◦ is the following

cl(γ(·|C)) = δ⋆(·|C◦)

Proof. Starting from

f(x) = δ(x|C) + 1

one has that the positive homogenous convex function generated by such f is actually the gauge

function of C as previously discussed, i.e.

γ(x|C) = inf
λ≥0

(fλ)(x) = inf {λ : x ∈ λC, λ ≥ 0}

As already mentioned, the closure of the positive homogenous convex function generated by f is

the support function of the 0-sub-level set of the conjugate f⋆. Thus, γ(x|C) must be the support

function of {x⋆ : f⋆(x⋆) ≤ 0} where

f⋆(x⋆) = sup
x∈Rn

⟨x, x⋆⟩ − (δ(x|C) + 1)

= −1 + sup
x∈C

⟨x, x⋆⟩

= δ⋆(x⋆|C)− 1

Thus, one can reformulate the 0-sub-level set of the Fenchel conjugate (i.e. the set supported by

cl(γ(·|C))) as follows which resembles to C◦

{x⋆ : f⋆(x⋆) ≤ 0} = {x⋆ : δ⋆(x⋆|C) ≤ 1}

= {x⋆ : ⟨x, x⋆⟩ ≤ 1, x ∈ C}

=: C◦

Since the support function completely characterizes the supported set, one can rewrite the polar of

C as

C◦ = {x⋆ : ⟨x, x⋆⟩ ≤ δ⋆(x|C◦), x ∈ dom(δ⋆(·|C◦))}

= {x⋆ : ⟨x, x⋆⟩ ≤ cl(γ(x|C)), x ∈ dom(cl(γ(·|C)))}
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It is evident from the notation that 0 ∈ C◦, thus one has that C = C◦◦ if and only if 0 ∈ C and

cl(C) = C. The closedness of C◦ follows from the fact that it is the intersection of a collection of

closed half-spaces indexed by C indeed

C◦ =
⋂
x∈C

{x⋆ : ⟨x, x⋆⟩ ≤ 1}

Thus, the important caveat here is the following: given any closed gauge function of a convex set

C ⊂ Rn (i.e., a non-negative positive homogeneous convex function), its closure corresponds to the

support function of another convex set C◦ ⊂ Rn (its polar). On the contrary, given the support

function of a convex set C◦◦ ⊂ Rn (which could be any closed convex set containing the origin), this

corresponds also to the closure of the gauge function of another convex set C◦ ⊂ Rn.

Notice that the notation just introduced is consistent with that one provided for polar convex cones

K◦. Indeed, if C is a convex cone containing the origin (i.e. C = K), one has that the gauge function

obtained as generated positive homogenous convex function resembles to the indicator function of

the convex cone (because if x ∈ K =⇒ λx ∈ K ∀λ ≥ 0). Indeed, starting from f(x) = δ(x|K) + 1

one has

γ(x|K) = inf
λ≥0

(fλ)(x)

= inf
λ≥0

λ+ λδ(x|λK)

= inf {λ : λ ≥ 0, x ∈ K}

= δ(x|K)

Thus, for convex cones, the dual relationship becomes

δ(x|K) = cl(γ(·|K)) = δ⋆(·|K◦)

and one has

K◦ = {x⋆ : ⟨x, x⋆⟩ ≤ δ⋆(x|K◦)}

= {x⋆ : ⟨x, x⋆⟩ ≤ cl(γ(x|K))}

= {x⋆ : ⟨x, x⋆⟩ ≤ δ(x|K)}

= {x⋆ : ⟨x, x⋆⟩ ≤ 0, x ∈ K}

Which resembles the notation originally introduced for polar convex cones.

Recalling that any convex cone containing the origin K ⊂ Rn+1 can be generated from a convex set

C ⊂ Rn it is interesting how it’s possible to generate K◦ and K⋆ directly from C. Noticeably, one
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has that

K⋆ = {x⋆ : ⟨x, x⋆⟩ ≥ 0, x ∈ K}

= {x⋆ : ⟨x, x⋆⟩ ≥ 0, x ∈ cone({(1, x) : x ∈ C})}

= {(ξ⋆1 , ξ⋆2) : ⟨(ξ1, ξ2), (ξ⋆1 , ξ⋆2)⟩ ≥ 0, (ξ1, ξ2) ∈ cone({(1, ζ) : ζ ∈ C})}

= {(ξ⋆1 , ξ⋆2) : ⟨(1, ζ), (ξ⋆1 , ξ⋆2)⟩ ≥ 0, ζ ∈ C}

= {(ξ⋆1 , ξ⋆2) : ξ⋆1 + ⟨ζ, ξ⋆2⟩ ≥ 0, ζ ∈ C}

= {(ξ⋆1 , ξ⋆2) : ξ⋆1 ≥ ⟨ζ,−ξ⋆2⟩, ζ ∈ C}

=

{
(ξ⋆1 , ξ

⋆
2) : ξ

⋆
1 ≥ sup

ζ∈C
⟨ζ,−ξ⋆2⟩

}
= {(ξ⋆1 , ξ⋆2) : ξ⋆1 ≥ δ⋆(−ξ⋆2 |C)}

= {(ξ⋆1 , ξ⋆2) : ξ⋆1 − δ⋆(ξ⋆2 | − C) ≥ 0}

= epi(δ⋆(·| − C))

This finding is extremely important because it shows that the dual cone K⋆ is simply the epigraph

of the support function of −C (where C is the convex set generating K in higher dimension). On

the contrary, for what regards the polar cone K◦, one has that

K◦ = −K⋆

= {(−ξ⋆1 ,−ξ⋆2) : ξ
⋆
1 − δ⋆(ξ⋆2 | − C) ≥ 0}

= {(ξ⋆1 , ξ⋆2) : −ξ⋆1 − δ⋆(−ξ⋆2 | − C) ≥ 0}

= {(ξ⋆1 , ξ⋆2) : −δ⋆(ξ⋆2 |C) ≥ ξ⋆1}

Which could be interpreted as the hypograph of the negative of the support function of C.

On the other hand, the support function of −C defines a link between the dual cone K⋆ and the

polar convex set −C◦. Indeed, since

−C◦ = {x⋆ : δ⋆(x⋆| − C) ≤ 1}

one can see that −C◦ is actually the sub-level set of δ(·| − C) at level one, and since K⋆ =

epi(δ⋆(·| − C)) one can express −C◦ as the lower dimensional projection of the intersection be-

tween K⋆ = epi(δ⋆(·| − C)) and the hyperplane {(1, x) : x ∈ Rn}.

Noticeably, if K = cone({(1, x) : x ∈ C}) ⊂ Rn+1, the convex function induced by K is the gauge

function γ(x|C) indeed

inf {λ : (λ, x) ∈ K} = inf {λ : x ∈ λC, λ ≥ 0}

=: γ(x|C)
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Thus, it could be interesting analyzing the polar of such gauge, that is the gauge function of the

polar convex set C◦

Proposition 31. Let C ⊂ Rn be a convex set. Let K = cone({(1, x) : x ∈ C}) ⊂ Rn+1 be a convex

cone containing the origin. Let A : (λ, x) 7→ (−λ, x) be a linear transformation. Then, the epigraph

of the gauge function of C◦ is equal to

epi(γ(·|C◦)) = cone {(1, x◦) : x◦ ∈ C◦} = A(K◦) ∩ {(λ, x) : λ ≥ 0, x ∈ Rn}

Moreover, one has the following “polar inequality”

γ(x◦|C◦)γ(x|C) ≥ ⟨x◦, x⟩ ∀(x◦, x) ∈ R2n

Proof. Applying the definition of gauge function, one has

γ(x◦|C◦) = inf {λ : (λ, x◦) ∈ cone({(1, x◦) : x◦ ∈ C◦})}

= inf {λ : x◦ ∈ λC◦, λ ≥ 0}

= inf {λ : x◦ ∈ λ {x◦ : ⟨x◦, x⟩ ≤ 1, x ∈ C} , λ ≥ 0}

= inf

{
λ : ⟨x, x

◦

λ
⟩ ≤ 1, x ∈ C, λ ≥ 0

}
= inf

{
λ : ⟨µx, x

◦

λ
⟩ ≤ µ, x ∈ C, λ ≥ 0, µ ≥ 0

}
= inf

{
λ : ⟨x, x

◦

λ
⟩ ≤ µ, x ∈ µC, λ ≥ 0, µ ≥ 0

}
= inf {λ : ⟨x, x◦⟩ ≤ λµ, x ∈ µC, λ ≥ 0, µ ≥ 0}

= inf {λ : ⟨(−λ, x◦), (µ, x)⟩ ≤ 0, (µ, x) ∈ K,λ ≥ 0}

And recalling that K◦ = {(λ, x◦) : ⟨(x◦, λ), (x, µ)⟩ ≤ 0, (x, µ) ∈ K}, one has that

{(λ, x◦) : ⟨(x◦,−λ), (x, µ)⟩ ≤ 0, (µ, x) ∈ K} = {(−λ, x◦) : ⟨(x◦, λ), (x, µ)⟩ ≤ 0, (µ, x) ∈ K}

= A(K◦)

where A is a linear transformation of the type A : (λ, x) 7→ (−λ, x). In other words, given the

gauge function k(x) = γ(x|C) (i.e. the convex function induced by K = cone({(1, x) : x ∈ C}) ⊂

Rn+1) the polar of such gauge k◦(x◦) = γ(x◦|C◦) is the convex function induced by A(K◦) ∩

{(λ, x) : λ ≥ 0, x ∈ Rn} where A : (λ, x) 7→ (−λ, x) indeed

γ(x◦|C◦) = inf {λ : (λ, x◦) ∈ A(K◦) ∩ {(λ, x) : λ ≥ 0, x ∈ Rn}}

Recalling that K = epi(γ(·|C)), one can compute γ(·|C◦) directly from γ(·|C) as shown in [Roc70],
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indeed

γ(x◦|C◦) = inf {λ : ⟨x, x◦⟩ ≤ λµ, x ∈ µC, λ ≥ 0, µ ≥ 0}

= inf {λ : ⟨x, x◦⟩ ≤ λµ, λ ≥ 0, (x, µ) ∈ epi(γ(·|C))}

= inf {λ : ⟨x, x◦⟩ ≤ λγ(x|C), λ ≥ 0, x ∈ dom(γ(·|C))}

= inf

{
λ :

⟨x, x◦⟩
γ(x|C)

≤ λ, λ ≥ 0, x ∈ dom(γ(·|C))

}
That is, as usual, the infimum of the majorants of the function ⟨x,x◦⟩

γ(x|C) , i.e. its supremum

γ(x◦|C◦) := sup
x ̸=0

⟨x, x◦⟩
γ(x|C)

Noticeably, this notation allows to infer a very nice inequality, that is

γ(x◦|C◦)γ(x|C) ≥ ⟨x◦, x⟩ ∀(x◦, x) ∈ R2n

And the inequality mentioned in proposition (31) is “hidden” inside very important relations such as

the Cauchy-Schwarz inequality as mentioned in [Roc70]: indeed, as already discussed, the Euclidean

norm acts as support function of the Euclidean unit ball but, at the same time, it corresponds also

its gauge function. Indeed, calling B the Euclidean unit ball and K̃ = cone({(1, x) : x ∈ B}), the

function induced by K̃ is exactly the Euclidean norm indeed:

γ(x|B) = inf
{
λ : (λ, x) ∈ K̃

}
= inf {λ : x ∈ λB, λ ≥ 0}

= inf {λ : x ∈ λ {x : ||x||2 ≤ 1} , λ ≥ 0}

= inf {λ : ||x||2 ≤ λ, λ ≥ 0}

= ||x||2

Moreover, recalling that ||x||2 = δ⋆(x|B), one realizes that the polar of the Euclidean unit ball is the

Euclidean unit ball itself, indeed:

B◦ = {x : δ⋆(x|B) ≤ 1}

= {x : ||x||2 ≤ 1}

= B

And this implies that the polar of the Euclidean norm (conceived as a gauge function) is the Euclidean

norm itself, indeed γ(x◦|B◦) = ||x◦||2 and this resembles to the Cauchy-Schwarz inequality since

γ(x◦|B◦)γ(x|B) ≥ ⟨x◦, x⟩ ∀(x◦, x) ∈ R2n =⇒ ||x◦||2||x||2 ≥ ⟨x◦, x⟩ ∀(x◦, x) ∈ R2n
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Recalling again that K = epi(γ(·|C)), i.e. the epigraph of a convex function, and that the polar

of such gauge function is the function induced by A(K◦) ∩ {(λ, x) : λ ≥ 0, x ∈ Rn} = epi(γ(·|C◦)),

i.e. the polar of the epigraph of the convex function under a certain linear map intersected with

a half-space, a natural generalization of the things discussed so far is that given f as a non-

negative origin vanishing convex function, the polar of f denoted with f◦ is the function induced

by A((epi(f))◦) where A : (µ, x) 7→ (−µ, x). Noticeably, because of the non-negativity of f , one has

that A((epi(f))◦) = A((epi(f))◦) ∩ {(λ, x) : λ > 0, x ∈ Rn}

Definition 43 (Polar of a non-negative origin-vanishing convex function). Let f : Rn → R be a

non-negative origin-vanishing convex function. The function f◦ : Rn → R is called the polar of

f and it is a non-negative origin-vanishing closed convex function induced by A((epi(f))◦) where

A : (µ, x) 7→ (−µ, x).

Proposition 32. Let f : Rn → R be a non-negative origin-vanishing convex function and let

f◦ : Rn → R be the polar of f . Then, the following inequality holds

1 + f(x)f◦(x◦) ≥ ⟨x, x◦⟩, ∀(x, x◦) ∈ R2n

Proof. Since

(epi(f))◦ = {(µ◦, x◦) : ⟨(µ, x), (µ◦, x◦)⟩ ≤ 1, (µ, x) ∈ epi(f)}

One has that

A((epi(f))◦) = {(−µ◦, x◦) : ⟨(µ, x), (µ◦, x◦)⟩ ≤ 1, (µ, x) ∈ epi(f)}

= {(µ◦, x◦) : ⟨(µ, x), (−µ◦, x◦)⟩ ≤ 1, (µ, x) ∈ epi(f)}

= {(µ◦, x◦) : ⟨x, x◦⟩ ≤ 1 + µ◦µ, (µ, x) ∈ epi(f)}

Leading to

f◦(x◦) = inf {µ◦ : (x◦, µ◦) ∈ A((epi(f))◦)}

= inf {µ◦ : ⟨x, x◦⟩ ≤ 1 + µ◦µ, (µ, x) ∈ epi(f)}

= inf {µ◦ : ⟨x, x◦⟩ ≤ 1 + µ◦f(x), x ∈ dom(f)}

That is the same notation used in[Roc70]. Of course, now the induced inequality is

1 + f(x)f◦(x◦) ≥ ⟨x, x◦⟩, ∀(x, x◦) ∈ R2n

Proposition 33. Let C ⊂ Rn be a convex set. Let K = cone {(1, x).x ∈ C} and let A : (λ, x) 7→

(−λ, x). Then, the following inequalities hold:

λλ◦ ≥ ⟨x◦, x⟩ ∀(λ, x) ∈ K,∀(λ◦, x◦) ∈ A(K◦)

λ⋆λ ≤ ⟨x⋆, x⟩ ∀(λ, x) ∈ K,∀(λ⋆, x⋆) ∈ A(K⋆)
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Proof. It’s worth showing how to recover K◦, K⋆, A(K◦) and A(K⋆) directly from

K = cone({(1, x) : x ∈ C}) = {(λ, x) : λ ≥ 0, x ∈ λC}

. In this way it’s possible to see quite immediately what are the functions (convex or concave)

induced by such sets. Recall that A : (λ, x) 7→ (−λ, x). In the following passages, it must be recalled

that the first coordinate of (λ, x) ∈ K is a non-negative scalar since K = cone({(1, x) : x ∈ C})

K◦ = {(λ◦, x◦) : ⟨(λ◦, x◦), (λ, x)⟩ ≤ 0, (λ, x) ∈ K} =

{
(λ◦, x◦) : λ◦ ≤ ⟨−x◦, x⟩

λ
, (λ, x) ∈ K

}
K⋆ = −K◦ =

{
(λ⋆, x⋆) : −λ⋆ ≤ ⟨x⋆, x⟩

λ
, (λ, x) ∈ K

}
=

{
(λ⋆, x⋆) : λ⋆ ≥ ⟨−x⋆, x⟩

λ
, (λ, x) ∈ K

}
A(K◦) =

{
(λ◦, x◦) : −λ◦ ≤ ⟨−x◦, x⟩

λ
, (λ, x) ∈ K

}
=

{
(λ◦, x◦) : λ◦ ≥ ⟨x◦, x⟩

λ
, (λ, x) ∈ K

}
A(K⋆) =

{
(λ⋆, x⋆) : −λ⋆ ≥ ⟨−x⋆, x⟩

λ
, (λ, x) ∈ K

}
=

{
(λ⋆, x⋆) : λ⋆ ≤ ⟨x⋆, x⟩

λ
, (λ, x) ∈ K

}
In a more compact way, one has actually

K◦ =

{
(λ◦, x◦) : λ◦ ≤ inf

(λ,x)∈K

⟨−x◦, x⟩
λ

}
K⋆ =

{
(λ⋆, x⋆) : λ⋆ ≥ sup

(λ,x)∈K

⟨−x⋆, x⟩
λ

}

A(K◦) =

{
(λ◦, x◦) : λ◦ ≥ sup

(λ,x)∈K

⟨x◦, x⟩
λ

}

A(K⋆) =

{
(λ⋆, x⋆) : λ⋆ ≤ inf

(λ,x)∈K

⟨x⋆, x⟩
λ

}
In particular, this allows to expand what has been said about the inequality of polar gauges. Indeed,

from the last two expressions it’s possible to see that

λλ◦ ≥ ⟨x◦, x⟩ ∀(λ, x) ∈ K,∀(λ◦, x◦) ∈ A(K◦)

λ⋆λ ≤ ⟨x⋆, x⟩ ∀(λ, x) ∈ K,∀(λ⋆, x⋆) ∈ A(K⋆)

Proposition (33) is extremely useful because it allows to define “agnostically” two important in-

equalities (the first one was previously introduced as the inequality of polar gauges). Indeed, it

doesn’t matter whether K, A(K⋆), A(K◦) are epigraphs of convex functions or hypographs of con-

vex functions: as long as some functions (convex or concave) are induceable from such sets, such

inequalities will hold. For example, γ(·|C), γ(·|C◦) are the convex functions induced by K and

A(K◦) ∩ {(λ, x) : λ > 0, x ∈ Rn} respectively and indeed they satisfy the first inequality

γ(x|C)γ(x◦|C◦) ≥ ⟨x, x◦⟩ ∀(x, x◦) ∈ R2n

On the contrary, for the sake of this work, it will be showed that the invariant function L̂(x)

and the portfolio value function V̂ (p; 1) are the concave functions induced by K and A(K⋆) ∩
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{(λ, x) : λ > 0, x ∈ Rn} respectively and indeed they satisfy the second inequality

L̂(x)V̂ (p; 1) ≤ ⟨x, p⟩ ∀(x, p) ∈ R2n

And this inequality is going to be extremely useful in recovering the basic portfolio value function

of a CFMM from its invariant function and vice-versa as discussed in [ACD+23].

Proposition 34. Let C ⊂ Rn be a convex set. Let K = cone {(1, x).x ∈ C} and let A : (λ, x) 7→

(−λ, x). Considering δ⋆(·|D) : Rn → R as the support function of the set D, one has that

K◦ = hyp(−δ⋆(·|C))

K⋆ = epi(δ⋆(·| − C))

A(K◦) = epi(δ⋆(·|C))

A(K⋆) = hyp(−δ⋆(·| − C))

Proof.

K◦ = {(λ◦, x◦) : ⟨(λ◦, x◦), (λ, x)⟩ ≤ 0, (λ, x) ∈ cone({(1, x) : x ∈ C})}

= {(λ◦, x◦) : ⟨(λ◦, x◦), (1, x)⟩ ≤ 0, x ∈ C}

= {(λ◦, x◦) : λ◦ ≤ ⟨−x◦, x⟩, x ∈ C}

=

{
(λ◦, x◦) : λ◦ ≤ inf

x∈C
⟨−x◦, x⟩

}
=

{
(λ◦, x◦) : λ◦ ≤ − sup

x∈C
⟨x◦, x⟩

}
= {(λ◦, x◦) : λ◦ ≤ −δ⋆(x⋆|C)}

= hyp(−δ⋆(·|C))

K⋆ = {(λ⋆, x⋆) : ⟨(λ⋆, x⋆), (λ, x)⟩ ≥ 0, (λ, x) ∈ cone({(1, x) : x ∈ C})}

= {(λ⋆, x⋆) : ⟨(λ⋆, x⋆), (1, x)⟩ ≥ 0, x ∈ C}

= {(λ⋆, x⋆) : λ⋆ ≥ ⟨−x⋆, x⟩, x ∈ C}

=

{
(λ⋆, x⋆) : λ⋆ ≥ sup

x∈C
⟨−x⋆, x⟩

}
= {(λ⋆, x⋆) : λ⋆ ≥ δ⋆(−x⋆|C)}

= epi(δ⋆(·| − C))
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A(K◦) = {(λ◦, x◦) : ⟨(−λ◦, x◦), (λ, x)⟩ ≤ 0, (λ, x) ∈ cone({(1, x) : x ∈ C})}

= {(λ◦, x◦) : ⟨(−λ◦, x◦), (1, x)⟩ ≤ 0, x ∈ C}

= {(λ◦, x◦) : −λ◦ ≤ ⟨−x◦, x⟩, x ∈ C}

=

{
(λ◦, x◦) : λ◦ ≥ sup

x∈C
⟨x◦, x⟩

}
= {(λ◦, x◦) : λ◦ ≥ δ⋆(x⋆|C)}

= epi(δ⋆(·|C))

A(K⋆) = {(λ⋆, x⋆) : ⟨(−λ⋆, x⋆), (λ, x)⟩ ≥ 0, (λ, x) ∈ cone({(1, x) : x ∈ C})}

= {(λ⋆, x⋆) : ⟨(−λ⋆, x⋆), (1, x)⟩ ≥ 0, x ∈ C}

= {(λ⋆, x⋆) : −λ⋆ ≥ ⟨−x⋆, x⟩, x ∈ C}

=

{
(λ⋆, x⋆) : λ⋆ ≤ inf

x∈C
⟨x⋆, x⟩

}
= {(λ⋆, x⋆) : λ⋆ ≤ −δ⋆(−x⋆|C)}

= hyp(−δ⋆(·| − C))

And also the notation introduced with this proposition is going to be extremely useful: once that

it will be clear that the portfolio value function, representing the value of a CFMM pool after the

arbitrage activity, corresponds to the negative of the support function of the symmetric reflection of

the set of reachable reserves, this notation will allow to recover easily the epigraph of the portfolio

value function and, from here, it will be possible to recover the associated invariant function thanks

to the inequality between K and A(K⋆).

2.5 Directional Derivatives and Subgradients

Sometimes it’s useful understanding what is the behavior of a convex function f moving from a

point x in a certain direction y. In other words, it can be insightful understanding what is the

variation of the convex function by moving from a reference point x to some other points lying on

the half line starting from x in the direction of y. The recession function was introduced as a tool

for understanding such behavior “asymptotically”, i.e. keeping the focus only on the “horizon points”

of such direction, and it has been underlined how such behavior was not dependent on the original

reference point x but only on the direction y, dealing with the unboundedness of the epigraph of the

function.

However, one could find useful understanding what is the “local” behavior of f considering the

variation of the function in a given point of x. This time, instead of moving from a generic point
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x tending towards very distant points in the direction of y, the perspective is reversed: the local

behavior is studied by moving from “particular points” in the neighborhood of x tending towards x

itself. These particular points are those lying in the neighborhood of x which actually lie at the same

time on the half line starting from x in the direction of y (thus, they are all proportional to each

other). In such sense, the local behavior of f is described by the one-sided directional derivative of

f at x in the direction of y, which corresponds to the limit of the following incremental ratio

f ′(x; y) = lim
λ→0+

f(x+ λy)− f(x)

λ

Intuitively, such directional derivative is “one-sided” because the movement towards x is studied

considering just the points of the neighborhood of x which are on the “side” specified by the sign of

the direction of y. Indeed, the behavior of f reaching x from the the points belonging to the “other

side” of the neighborhood of x (still in the same direction of y) is captured by f ′(x;−y).

Of course, if the directional derivative is two-sided, it means that the variation of f approaching x

with infinitesimal distance from one side must be the negative of the variation of f approaching x

with infinitesimal variation from the other side, implying that the directional derivative, expressed

as function of the direction y is homogenous of order one:

f ′ is two-sided ⇐⇒ f ′(x;−y) = −f ′(x; y) ∀y ∈ Rn

And this implies that in case of two-sided directional derivative one has f ′(x; y) = −f ′(x;−y). In the

one-dimensional case, y ∈ R and the only two meaningful directions are y = 1 and y = −1 [Roc70]:

indeed, the neighborhood of any x would be line-segment and the only two possible directions are

“left” (y = −1) and “right” (y = 1) (in the two dimensional case instead, the neighborhood of x

would be a disk and there would be way more possible directions to evaluate). In other words, in

the one-dimensional case, the directional derivative evaluating any positive direction would be equal

to the “right-derivative” f+(x) = f ′(x; 1), while the directional derivative evaluating any negative

direction would be equal to the “left-derivative” f−(x) = −f ′(x;−1) and the directional derivative

of f would be actually two-sided in that particular point x if f+(x) = f−(x).

By focusing on the incremental ratio and recalling the previously introduced “variation” function

P , it’s immediate to see the difference between the recession function and the one-sided directional

derivative of f at x in the direction of y

f ′(x; y) = lim
λ→0+

f(x+ λy)− f(x)

λ
= lim

λ→0+
(Pλ−1)(y;x)

(f0+)(y) = lim
λ→∞

f(x+ λy)− f(x)

λ
= lim

λ→∞
(Pλ−1)(y;x)

Moreover, recalling that the ratio f(x+λy)−f(x)
λ is a monotonically non-decreasing function of λ,

it means that it will approach it’s infimum as λ becomes infinitesimal while it will approach its
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supremum as λ becomes infinite. Thus, one has

f ′(x; y) = lim
λ→0+

f(x+ λy)− f(x)

λ
= lim

λ→0+
(Pλ−1)(y;x) = inf

λ>0
(Pλ−1)(y;x)

(f0+)(y) = lim
λ→∞

f(x+ λy)− f(x)

λ
= lim

λ→∞
(Pλ−1)(y;x) = sup

λ>0
(Pλ−1)(y;x)

Notice that, since for concave functions f̂(x+λy)−f̂(x)
λ =: (P̂ λ−1)(y;x) is a monotonically non-

increasing function of λ, the relationship is actually reversed and one has that

f̂ ′(x; y) = lim
λ→0+

f̂(x+ λy)− f̂(x)

λ
= lim

λ→0+
(P̂ λ−1)(y;x) = sup

λ>0
(P̂ λ−1)(y;x)

(f̂0+)(y) = lim
λ→∞

f̂(x+ λy)− f̂(x)

λ
= lim

λ→∞
(P̂ λ−1)(y;x) = inf

λ>0
(P̂ λ−1)(y;x)

The use of the variation function allows to give a very insightful information about the nature of

the directional derivative. Indeed, in the case of convex functions, f ′ corresponds to the positive

homogenous convex function generated by P (·;x), implying that its epigraph corresponds to the

convex cone containing the origin generated by the epigraph of P (·;x), i.e. from the epigraph of

f translated in such a way that (x, f(x)) 7→ (0, 0) (here stands the dependance of P (·;x) on x as

parameter). Indeed, one has to notice that infλ>0(Pλ−1)(y;x) is equivalent to infλ>0(Pλ)(y;x)

because the final output is always the convex function induced by the convex cone generated by

epi(P (·;x)) by ranging over positive rescalings.

Analogously, in the case of concave functions, f̂ ′ corresponds to the positive homogenous concave

function generated by P̂ (·;x), implying that its hypograph corresponds to the convex cone containing

the origin generated by hyp(P̂ (·;x)).

Thus, the convex cone generated by epi(f) (i.e., epigraph of infλ>0(fλ)(x)) and the convex cone

generated by epi(P (·;x)) (i.e., the epigraph of f ′(y;x)) are “similar” in the sense that they are both

generated by the epigraph of f , but the second one is generated actually by a translation of the

epigraph of f .

This observation will be extremely important once that it will be introduced the set of feasible trades

as the 0-upper level set of the variation function of the CFMM invariant.

Noticeably, since f ′(x0; ·) is a positively homogenous convex function of y, its closure (clf ′)(x0; ·)

must support some convex set C ⊂ Rn. Thus, it could be interesting deriving such set without



CHAPTER 2. CONVEX ANALYSIS 85

knowing anything in advance about it:

C = {y⋆ : ⟨y, y⋆⟩ ≤ (clf ′)(x0; y), y ∈ Rn}

=

{
y⋆ : ⟨y, y⋆⟩ ≤ inf

λ>0
(Pλ−1)(y;x0), y ∈ Rn

}
=
{
y⋆ : ⟨y, y⋆⟩ ≤ (Pλ−1)(y;x0), y ∈ Rn, λ > 0

}
=

{
y⋆ : ⟨y, y⋆⟩ ≤ f(x0 + λy)− f(x0)

λ
, y ∈ Rn, λ > 0

}
= {y⋆ : ⟨λy, y⋆⟩+ f(x0) ≤ f(x0 + λy), y ∈ Rn, λ > 0}

Now, calling z = x0 + λy, one has that

C = {y⋆ : ⟨y⋆, z − x0⟩+ f(x0) ≤ f(z), z ∈ Rn}

And it’s evident how the set supported by the directional derivative of f expressed as function of y

is actually dependant on the point x0 ∈ dom(f) at which the directional derivative is evaluated, im-

plying that one could think about such set as a map x0 7→ {y⋆ : ⟨y⋆, z − x0⟩+ f(x0) ≤ f(z), z ∈ Rn}.

Noticably, the rule of belongingness in the set notation of C is actually used for introducing the

concept of subgradients. Indeed, a point x⋆ ∈ Rn is said to be subgradient of a convex real-valued

function on Rn f at x0 ∈ Rn if it satisfies the so called subgradient inequality, that is:

f(z) ≥ f(x0) + ⟨x⋆, z − x0⟩ ∀z ∈ dom(f)

The set of subgradients of f at a point x0 is defined by a set-valued mapping called subdifferential

of f at x0 and denoted by ∂f(x0):

∂f : x0 7→ {x⋆ : f(z) ≥ f(x0) + ⟨x⋆, z − x0⟩, z ∈ domf}

Now, by comparing the set notations of C and ∂f(x0) it’s evident to see that the set supported by

f ′(x0; ·) is actually ∂f(x0). Thus, one can actually introduce an alternative notation for the closure

of f ′(x0; ·) in terms of support function:

(clf ′)(x0; y) = sup
y⋆∈∂f(x0)

⟨y, y⋆⟩

And of course this allows to rewrite the subdifferential as

∂f(x0) = {y⋆ : ⟨y, y⋆⟩ ≤ (clf ′)(x0; y), y ∈ Rn}

Implying that

x⋆ ∈ ∂f(x0) ⇐⇒ ⟨y, x⋆⟩ ≤ f ′(x0; y), y ∈ Rn

The function f is said to be subdifferentiable at x0 ∈ dom(f) if ∂f(x0) ̸= ∅.
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Proposition 35. Let f : Rn → R be a proper convex function. Then,

• ∂f(x0) is non-empty ∀x0 ∈ ri(dom(f))

• f ′(x0; y), expressed as function of y, is a closed and proper ∀x0 ∈ ri(dom(f))

Proof. The first argument implies that f is subdifferentiable at any point belonging to its relative

interior, while the second argument implies that the directional derivative corresponds to its closure

and so that, expressed as function of the direction y, it supports ∂f(x0). To prove this, is sufficient

proving that f ′(x0; ·) is closed and proper, because in this case the directional derivative will corre-

spond to the support function of ∂f(x0) and the non-emptiness of ∂f(x0) will follow from the fact

that ∄y ∈ Rn : f ′(x0; y) = −∞ (recall that, by definition, a support function is −∞ if and only if it is

supporting the ∅). The closedness of f ′(x0; ·) follows from the fact that dom(f ′(x0; ·)) is a translate of

aff(dom(f)) thus it’s still an affine set: because of that, it doesn’t have any boundary point and since

a function agrees with its closure everywhere on dom(f) apart maybe from the boundary points,

here f ′(x0; ·) must agree everywhere with its closure, implying that the function is closed. On the

other hand, since f ′(x0; ·) is the function induced by the convex cone containing the origin generated

by epi(P (·;x0)), f ′(x0; 0) = 0 (origin-vanishing) and this is sufficient to conclude that f ′(x0; ·) is

proper: indeed, as discussed in the section introducing convex functions, if f is convex and improper

one has f(x) = −∞∀x ∈ ri(dom(f)) and since f ′(x0; 0) = 0 with 0 ∈ ri(dom(f)) (in particular, being

an affine set, one has dom(f) = ri(dom(f))) this evidences that f ′(x0; ·) is proper.

Noticeably, by re-arranging the subgradient inequality, one is capable of deriving alternative forms

for understanding the subdifferential of f at x0.

Proposition 36. Let f be a proper convex function. Let x0 ∈ ri(dom(f)). Then the cone normal

to epi(f) at (x0, f(x0)) is the convex cone generated by ∂f(x0) in the following sense:

N((x0, f(x0)|epi(f))) = cone ({(x⋆,−1) : x⋆ ∈ ∂f(x0)})

Proof. Firstly, one has that

∂f(x0) = {x⋆ : f(z) ≥ f(x0) + ⟨x⋆, z − x0⟩, z ∈ domf}

= {x⋆ : f(z)− f(x0)− ⟨x⋆, z − x0⟩ ≥ 0 z ∈ domf}

= {x⋆ : f(z)− f(x0)− ⟨x⋆, z − x0⟩ ≥ 0 z ∈ domf}

= {x⋆ : −f(z) + f(x0) + ⟨x⋆, z − x0⟩ ≤ 0 z ∈ domf}

= {x⋆ : ⟨(x⋆,−1), (z − x0, f(z)− f(x0))⟩ ≤ 0 z ∈ domf}

And recalling that the normal cone of epi(f) at the point (x0, f(x0)) is equal to

N((x0, f(x0)|epi(f))) = {(x⋆, µ⋆) : ⟨(x⋆, µ⋆), (z − x0, f(z)− f(x0))⟩ ≤ 0 z ∈ domf}
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one has that the subdifferential of f at x0 could be interpreted as the lower-dimensional projection

of the intersection between the normal cone of epi(f) at the point (x0, f(x0)) and the hyperplane

{(x⋆,−1) : x⋆ ∈ Rn}. In other words, defining A : (x⋆, µ⋆) 7→ x⋆, one would have

∂f(x0) = A(N((x0, f(x0)|epi(f))) ∩ {(x⋆,−1) : x⋆ ∈ Rn})

This finding follows from the fact that N((x0, f(x0))|epi(f)) could be seen as the convex cone gen-

erated by ∂f(x0) at level −1, indeed:

cone ({(x⋆,−1) : x⋆ ∈ ∂f(x0)}) = {λ(x⋆,−1) : λ > 0, f(z) ≥ f(x0) + ⟨x⋆, z − x0⟩, z ∈ dom(f)}

= {(λx⋆,−λ) : λ > 0, ⟨(x⋆,−1), (z − x0, f(z)− f(x0))⟩ ≤ 0, z ∈ domf}

Calling x̃ = λx⋆ and λ̃ = −λ =⇒ (x⋆,−1) =
(

x̃
λ ,

λ̃
λ

)
= 1

λ (x̃, λ̃)

cone ({(x⋆,−1) : x⋆ ∈ ∂f(x0)}) =
{
(x̃, λ̃) : λ̃ < 0, λ > 0,

1

λ
⟨(x̃, λ̃), (z − x0, f(z)− f(x0))⟩ ≤ 0, z ∈ domf

}
=
{
(x̃, λ̃) : λ̃ < 0, ⟨(x̃, λ̃), (z − x0, f(z)− f(x0))⟩ ≤ 0, z ∈ domf

}
= N((x0, f(x0)|epi(f)))

Proposition 37. Let f : Rn → R be a proper convex function. Let h(x;x⋆, x0) = f(x0)+⟨x⋆, x−x0⟩.

Then:

(x0, x
⋆) ∈ ri(dom(f))× ∂f(x0) =⇒ f(x) ≥ h(x;x⋆, x0) = f(x0) + ⟨x⋆, x− x0⟩ ∀x ∈ dom(f)

(2.12)

In particular, epi(h(·;x⋆, x0)) is one of the (possibly many) supporting half-spaces of epi(f) at

(x0, f(x0))

Proof. As previously mentioned, the collection half-spaces supporting a convex set C at a generic

point z0 ∈ C is given by

{{z ∈ Rn : ⟨b, z − z0⟩ ≤ 0} : b ∈ N(z0|C)}

Thus, since the point (x0, f(x0)) lives at the relative boundary of epi(f), one could derive the set of

supporting hyperplanes of epi(f) at (x0, f(x0)) as

{{(x, µ) ∈ Rn : ⟨(x⋆,−1), (x− x0, µ− f(x0))⟩ ≤ 0} : (x⋆,−1) ∈ N((x0, f(x0)|epi(f)))}

Or alternatively,

{{(x, µ) ∈ Rn : ⟨(x⋆,−1), (x− x0, µ− f(x0))⟩ ≤ 0} : x⋆ ∈ ∂f(x0)}

Being convex sets, one could pick a generic supporting half-space in such collection (i.e. choosing

arbitrarily a subgradient of the function at a particular point x0) and induce a convex function,
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whose graph would be a hyperplane supporting epi(f) at (x0, f(x0)). Thus, defining H(x⋆, x0) =

{(x, µ) ∈ Rn : ⟨(x⋆,−1), (z − x0, f(z)− f(x0))⟩ ≤ 0} as the chosen half-space in the collection, one

has

h(x;x⋆, x0) = inf {µ : (x, µ) ∈ H(x⋆, x0)}

= inf {µ : ⟨(x⋆,−1), (x− x0, µ− f(x0))⟩ ≤ 0}

= inf {µ : ⟨x⋆, x− x0⟩ − µ+ f(x0) ≤ 0}

= inf {µ : µ ≥ f(x0) + ⟨x⋆, x− x0⟩}

= f(x0) + ⟨x⋆, x− x0⟩

Thus, the subgradient inequality can be rewritten as f(x) ≥ h(x;x⋆, x0) ∀x ∈ dom(f). Notice that

h is an affine function majorized by f and, since epi(h(·;x⋆, x0)) acts as supporting half-space for

epi(f), then Graph(h(·;x⋆, x0)) acts as supporting hyperplane for epi(f) [Roc70].

Noticeably, h(x;x⋆, x0) = f(x0) + ⟨x⋆, x− x0⟩ reminds the first-order Taylor expansion of f around

x0 even if x⋆ is not necessarily the gradient of f evaluating x0. However, since the gradient of f

corresponds to the unique subgradient of f at x0 when the function is differentiable at x0 (implying

that ∃!x⋆ ∈ Rn : f(z) ≥ f(x0) + ⟨x⋆, z − x0⟩ ∀z ∈ dom(f) and such x⋆ = ∇f(x0)), one can conclude

that the first order Taylor expansion of f at any point is actually a global underestimator of f .

Moreover, it’s important to notice that if the function f is differentiable on its effective domain, this

implies that ∂f(·) is actually a single-valued map ∂f : x0 7→ {∇f(x0)}. Thus, imagining a real-valued

convex function f on R, one could guess the “smoothness” of f just by looking at Graph(∂f) ⊂ Rn:

indeed, if Graph(∂f) experiences a “vertical jump” in correspondence of a particular x0, this implies

that f is not differentiable at x0 since this point is mapped into more than one subgradient of f .

Moreover, the higher is the verticality of such “jump” experienced by the subdifferential, the higher

is the lack of smoothness of f at x0 [BV04].

Proposition 38. Let f : Rn → R be a function differentiable at x0 ∈ ri(dom(f)). Then, the

one-sided directional derivative is actually two-sided and equal to

f ′(x; y) = ⟨∇f(x0), y⟩

Proof. As previously said, when a function is differentiable at some point x0 it means that the

subdifferential is actually the singleton of the gradient of the function evaluating x0. In particular

[Roc70], if f is differentiable at x0, it means that ∇f(x0) exists and one has that

f(z) = f(x0) + ⟨∇f(x0), z − x0⟩+ o(||z − x0||2)

Which is equivalent to say that

lim
z→x0

f(z)− f(x0)− ⟨∇f(x0), z − x0⟩
||z − x0||2

= 0
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By applying the usual substitution z = x0 + λy with λ > 0

lim
λ→0+

f(x0 + λy)− f(x0)− ⟨∇f(x0), λy⟩
||λy||2

= 0

lim
λ→0+

f(x0 + λy)− f(x0)

λ||y||2
− λ⟨∇f(x0), y⟩

λ||y||2
= 0

f ′(x0; y)

||y||2
− ⟨∇f(x0), y⟩

||y||2
= 0

And this relation is satisfied if and only if f ′(x0; y) = ⟨∇f(x0), y⟩ for all y ∈ Rn.

This relation is particularly insightful because it tells that if f is differentiable at x0 the directional

derivative is actually two-sided since it is homogenous in y, indeed:

f ′(x0;−y) = ⟨∇f(x0),−y⟩ = −⟨∇f(x0), y⟩ = −f ′(x0; y)

Moreover, recalling the support-notation for the closure of the directional derivative and the fact

that, in case of differentiability at x0, ∇f(x0) is the unique subgradient of f at x0 (i.e. ∂f(x0) =

{∇f(x0)}), one has that the directional derivative is also closed if f is differentiable at x0:

(clf ′)(x0; y) = sup
y⋆∈∂f(x0)

⟨y, y⋆⟩ = ⟨y,∇f(x0)⟩ = f ′(x0; y)

But, as seen in proposition (35), the closedness (and properness) of the directional derivative at any

x0 ∈ ri(dom(f)) is always granted if f is proper and convex.

A second possible rewriting of ∂f(x0) implies the use of the Fenchel conjugate of f , thus it will result

more clear after reading the next section. Thus, this notation is introduced here just to be recalled

later:

Proposition 39. Let f be a proper convex function. Then, the subdifferential of f at x0 can be

rewritten as

∂f(x0) = {x⋆ : f⋆(x⋆) + f(x0) ≤ ⟨x⋆, x0⟩}

Proof.

∂f(x0) = {x⋆ : f(z) ≥ f(x0) + ⟨x⋆, z − x0⟩, z ∈ domf}

= {x⋆ : f(z)− ⟨x⋆, z⟩ ≥ f(x0)− ⟨x⋆, x0⟩, z ∈ domf}

= {x⋆ : ⟨x⋆, z⟩ − f(z) ≤ ⟨x⋆, x0⟩ − f(x0), z ∈ domf}

=

{
x⋆ : sup

z∈domf
⟨x⋆, z⟩ − f(z) ≤ ⟨x⋆, x0⟩ − f(x0)

}
= {x⋆ : f⋆(x⋆) + f(x0) ≤ ⟨x⋆, x0⟩}
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And this notation, paired with the Fenchel inequality, will provide nice dual correspondences between

the subdifferential of f and its conjugate f⋆.

For concave functions f̂ the relation described by the subgradient inequality is reversed and so the

subdifferential of the function at x0 is defined as superdifferential of f̂ at x0 and the elements of the

superdifferential are called supergradients of f̂ at x0. For the sake of consistency, the hat-notation

will be used for denoting the superdifferential of a concave function. In other words, given f̂ as a

real-valued concave function on Rn, one has

∂̂f̂ : x0 7→
{
x⋆ : f̂(z) ≤ f̂(x0) + ⟨x⋆, z − x0⟩, z ∈ dom(f̂)

}

2.6 The Fenchel Conjugate

As seen in the previous sections, any closed convex set C has a “dual” representation: an “internal”

representation as the convex hull of m+1 affinely independent points (if the convex set is has dimen-

sion m) and an “external” representation as the intersection of all the closed half-spaces containing

the closed convex set. Pairing the concept of “external” representation with the fact that at any point

of the relative boundary of a convex set C there exists a non-null vector normal to the set (thus, a

half-space properly supporting the convex set), one has that the “efficient external” representation

would correspond to the intersection of just those half-spaces which are properly supporting the

convex set at any point of its relative boundary. For this reason, inspecting the cones normal to C at

each point z0 of its relative boundary is particularly insightful for recovering cl(C), since each cone

will map to a set of closed hyperplanes supporting C at that point z0 and taking the intersection

of such hyperplanes ranging over the relative boundary of C will result in the “efficient external”

representation of cl(C).

This kind of external representation can be extended also to closed functions: indeed, in the case of

convex functions, since cl(epi(f)) (= epi(clf) if f is proper) can be represented as the intersection

of the collection of closed half-spaces supporting it, the function itself will be induced by such inter-

section and the graph of the function will correspond to the envelope of the supporting hyperplanes.

Thus, to recover “efficiently” cl(epi(f)), one has to range over the relative boundary of epi(f), collect

all the supporting hyperplanes at each point on the relative boundary and take the intersection of

such collection.

Proposition 40. Let f be a proper convex function. Let h(x;x⋆, x0) = f(x0) + ⟨x⋆, x− x0⟩, then

cl(epi(f)) =
⋂

x0∈ri(dom(f))

 ⋂
x⋆∈∂f(x0)

epi(h(·;x⋆, x0))


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Proof. Because of the subdifferentiability of proper convex function as stated in proposition (35)

one could start from proposition (37) to map each point (x0, f(x0)) to a set of supporting half-

spaces tangent to epi(f) at (x0, f(x0)). Indeed, defining h(x;x⋆, x0) = f(x0) + ⟨x⋆, x − x0⟩, given

x0 ∈ ri(dom(f)) and x⋆ ∈ ∂f(x0), one has that epi(h(·;x⋆, x0)) is one of the half-spaces supporting

epi(f) at (x0, f(x0)) because of the subgradient inequality:

(x0, x
⋆) ∈ ri(dom(f))× ∂f(x0) =⇒ f(x) ≥ f(x0) + ⟨x⋆, x− x0⟩ ∀x ∈ Rn

On the other hand, the collection of half-spaces supporting epi(f) at (x0, f(x0)) is actually a collection

of half-spaces where ∂f(x0) acts as index set. Indeed, picking ∂f(x0) as index set is totally equivalent

to pick N(x0, f(x0)|epi(f)) as index set because the latter is the convex cone generated in higher

dimension by the first (proposition (36))

{epi(h(·;x⋆, x0)) : x
⋆ ∈ ∂f(x0)}

= {{(x, µ) : f(x0) + ⟨x⋆, x− x0⟩ ≤ µ} : x⋆ ∈ ∂f(x0)}

= {{(x, µ) : ⟨(x⋆,−1), (x− x0, f(x)− f(x0))⟩ ≤ 0} : x⋆ ∈ ∂f(x0)}

= {{(x, µ) : ⟨(x⋆, µ⋆), (x− x0, f(x)− f(x0))⟩ ≤ 0} : (x⋆, µ⋆) ∈ N(x0, f(x0)|epi(f))}

which implies that⋂
x⋆∈∂f(x0)

epi(h(·;x⋆, x0)) =
⋂

(x⋆,µ⋆)∈N(x0,f(x0)|epi(f))

{(x, µ) : ⟨(x⋆, µ⋆), (x− x0, f(x)− f(x0))⟩ ≤ 0}

Implying that, given a certain x0 ∈ ri(dom(f)) each subgradient x⋆ ∈ ∂f(x0) indexes a certain

half-space of type {(x, µ) : f(x0) + ⟨x⋆, x− x0⟩ ≤ µ} which supports epi(f) at (x0, f(x0)).

Thus, one could also range over the relative interior of the effective domain and take the “intersection

of all the intersections” of the half-spaces supporting epi(f) at each (x0, f(x0)): this would lead to

the “efficient” external representation of cl(epi(f)). In other words

cl(epi(f)) =
⋂

x0∈ri(dom(f))

 ⋂
x⋆∈∂f(x0)

epi(h(·;x⋆, x0))


=

⋂
x0∈ri(dom(f))

 ⋂
x⋆∈∂f(x0)

{(x, µ) : f(x0) + ⟨x⋆, x− x0⟩ ≤ µ}


Indeed in this case one is capable of recovering Graph(f) as the envelope of tangents (i.e. supporting

hyperplanes) of epi(f) at each point (x0, f(x0)) ranging over the relative interior of the effective

domain of f .

Proposition 41. Let f : Rn → R be a proper convex function. Let g(x;x⋆;µ⋆) = ⟨x, x⋆⟩−µ⋆. Then

∃(x⋆, µ⋆) ∈ Rn × R : f(x) ≥ g(x;x⋆, µ⋆) ∀x ∈ Rn

Implying that

∃(x⋆, µ⋆) ∈ Rn × R : epi(f) ⊂ epi(g(·;x⋆, µ⋆))
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Proof. One could rephrase the function used in proposition (40) as follows

h(x;x⋆, x0) = f(x0) + ⟨x⋆, x− x0⟩

= ⟨x⋆, x⟩ − (⟨x⋆, x0⟩ − f(x0))

= ⟨x⋆, x⟩ − ⟨(x⋆,−1), (x0, f(x0))⟩

At this point, one could remove the dependence of h(x;x⋆, x0) from the tangent point by “wrapping”

it into an parameter µ⋆ = ⟨(x⋆,−1), (x0, f(x0))⟩ leading to

g(x;x⋆, µ⋆) = ⟨x⋆, x⟩ − µ⋆

= ⟨(x⋆, µ⋆), (x,−1)⟩

This kind of transformation leads to a loss of information about the tangency point (x0, f(x0)).

Because of that, there is also a loss of information about x⋆ which before was considered as a

subgradient of the proper convex function. However, one is sure of the fact that ∃(x⋆, µ⋆) ∈ Rn×R :

f(x) ≥ g(x;x⋆, µ⋆) ∀x ∈ Rn because when f doesn’t take finite values the inequality is trivially

verified, while when f takes finite values one can always pick µ⋆ = ⟨(x⋆,−1), (x0, f(x0))⟩ and x⋆ ∈

∂f(x0). In this context, one could pick also any µ⋆ > ⟨(x⋆,−1), (x0, f(x0))⟩ which will still result in

a closed half-space H̃(x⋆,µ⋆) = {(x, µ) : ⟨x, x⋆⟩ − µ⋆ ≤ µ} = epi(g(·;x⋆, µ⋆)) which will still contain

completely epi(f) but it may not support epi(f) being not tangent to it.

Proposition 42. Let f : Rn → R be a proper convex function. Let g(x;x⋆;µ⋆) = ⟨x, x⋆⟩ − µ⋆. The

set

F ⋆ = {(x⋆, µ⋆) ∈ Rn × R : f(x) ≥ g(x;x⋆, µ⋆), x ∈ dom(f)}

is a non-empty, closed convex set and one has

cl(epi(f)) =
⋂

(x⋆,µ⋆)∈F⋆

epi(g(·;x⋆, µ⋆))

Proof. The condition stated in proposition (41) doesn’t hold ∀(x⋆, µ⋆) ∈ Rn+1, and, because of this,

it can be useful defining the set F ⋆ containing the vectors (x⋆, µ⋆) for which such inequality holds.

Indeed, the set F ⋆ is actually defining the collection of affine function g(·;x⋆, µ⋆) which are majorized

by f and (x⋆, µ⋆) ∈ F ⋆ acts as index for each affine function in such collection [Roc70]

F ⋆ = {(x⋆, µ⋆) ∈ Rn × R : epi(f) ⊂ epi(g(·;x⋆, µ⋆))}

= {(x⋆, µ⋆) ∈ Rn × R : f(x) ≥ g(x;x⋆, µ⋆), x ∈ dom(f)}

The non-emptiness of F ⋆ follows from 41, while closedness and convexity follow from the fact that

F ⋆ is retrievable as the intersection of closed half-spaces indexed by x ∈ dom(f) indeed

F ⋆ =
⋂

x∈dom(f)

{(x⋆, µ⋆) ∈ Rn × R : ⟨(x,−1), (x⋆, µ⋆)⟩ ≤ f(x)}
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Noticeably, each half-space in such collection has (x,−1) as normal vector and f(x) as offset.

Because of the equivalence between propositions (40) and (41), one can actually retrieve the “inef-

ficient” external representation of cl(epi(f)) (“inefficient” in the sense that it evaluates in the inter-

section also those half-spaces which, even if they are not supporting epi(f), they are still including

it) as

cl(epi(f)) =
⋂

(x⋆,µ⋆)∈F⋆

epi(g(·;x⋆, µ⋆))

Noticeably, F ⋆ ⊂ Rn+1 is a closed convex set, thus it’s possible to induce a convex lower-semicontinuous

function which is going to be called Fenchel conjugate of f

Definition 44 (Fenchel conjugate). Let f be a proper convex function. Let g(x;x⋆;µ⋆) = ⟨x, x⋆⟩ −

µ⋆ and F ⋆ = {(x⋆, µ⋆) ∈ Rn × R : f(x) ≥ g(x;x⋆, µ⋆), x ∈ dom(f)}. The closed convex function

induced by F ⋆ is called Fenchel conjugate of f and it is denoted by f⋆

Proposition 43. Let f be a proper convex function. The Fenchel conjugate of f can be obtained as

f⋆(x⋆) = sup
x∈dom(f)

⟨x, x⋆⟩ − f(x)

And this defines the so-called Fenchel inequality:

x ∈ dom(f) =⇒ f⋆(x⋆) + f(x) ≥ ⟨x⋆, x⟩ ∀x⋆ ∈ Rn

Proof.

f⋆(x⋆) = inf {µ⋆ : (x⋆, µ⋆) ∈ F ⋆}

= inf {µ⋆ : (x⋆, µ⋆) ∈ {(x⋆, µ⋆) : f(x) ≥ ⟨(x,−1), (x⋆, µ⋆)⟩, x ∈ dom(f)}}

= inf {µ⋆ : (x⋆, µ⋆) ∈ {(x⋆, µ⋆) : f(x) ≥ ⟨x, x⋆⟩ − µ⋆, x ∈ dom(f)}}

= inf

µ⋆ : (x⋆, µ⋆) ∈
⋂

x∈dom(f)

{(x⋆, µ⋆) ∈ Rn × R : µ⋆ ≥ ⟨x, x⋆⟩ − f(x)}


= sup

x∈dom(f)

⟨x, x⋆⟩ − f(x)

Thus, given a generic x ∈ dom(f), one has

f⋆(x⋆) + f(x) ≥ ⟨x, x⋆⟩ ∀x⋆ ∈ Rn

Indeed, when x⋆ ∈ dom(f⋆) the inequality holds with finite values, while when x⋆ /∈ dom(f⋆) then

the inequality holds trivially since f⋆(x⋆) = ∞

Proposition 44. Let f be a proper convex function. Then cl(f) = f⋆⋆ indeed

cl(f(x)) = sup
x⋆∈dom(f⋆)

⟨x, x⋆⟩ − f⋆(x⋆)
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Proof. Recalling proposition (42) and applying the definition of Fenchel conjugate (i.e. F ⋆ = epi(f⋆))

one has that

cl(f(x)) = inf

µ : (x, µ) ∈
⋂

(x⋆,µ⋆)∈F⋆

epi(g(·;x⋆, µ⋆))


= inf

µ : (x, µ) ∈
⋂

(x⋆,µ⋆)∈F⋆

{(x, µ) : ⟨x, x⋆⟩ − µ⋆ ≤ µ}


= inf

µ : (x, µ) ∈
⋂

x⋆∈dom(f⋆)

{(x, µ) : ⟨x, x⋆⟩ − f⋆(x⋆) ≤ µ}


= inf

µ : (x, µ) ∈
⋂

x⋆∈dom(f⋆)

{(x, µ) : ⟨(x,−1), x⋆⟩ − f⋆(x⋆) ≤ µ}


= sup

x⋆∈dom(f⋆)

⟨x, x⋆⟩ − f⋆(x⋆)

A further inspection of the closed convex sets inducing f⋆ and cl(f) allows to create a nice dual

correspondence between such functions. Indeed, one has that cl(epi(f)) =
⋂

x⋆∈dom(f⋆) {(x, µ) : ⟨(x⋆,−1), (x, µ)⟩ ≤ f⋆(x⋆)}

epi(f⋆) =
⋂

x∈dom(f) {(x⋆, µ⋆) : ⟨(x,−1), (x⋆, µ⋆)⟩ ≤ f(x)}

Thus, the external representation of cl(epi(f)) is based on the intersection of a collection of closed

half-spaces having dom(f⋆) as index set: indeed, taking x⋆ ∈ dom(f⋆) for each half-space the nor-

mal vector is (x⋆,−1) while the offset is f⋆(x⋆). On the contrary, the external representation of

epi(f⋆) comes from the intersection of a collection of half-spaces indexed by dom(f) such that, tak-

ing x ∈ dom(f), (x,−1) acts as normal vector while f(x) is the offset

Another fundamental dual correspondence is provided by relating the subgradient inequality with

the Fenchel inequality.

Proposition 45. let f be a proper convex function, Let x0 ∈ ri(dom(f)) and let x⋆
0 ∈ ∂f(x0), then

f⋆(x⋆
0) + f(x0) = ⟨x⋆

0, x0⟩

Proof. Recalling the notation used in proposition (39) for the subdifferential of f at x0, one has that x⋆ ∈ ∂f(x0) =⇒ f⋆(x⋆) + f(x0) ≤ ⟨x⋆, x0⟩

x ∈ dom(f) =⇒ f⋆(x⋆) + f(x) ≥ ⟨x⋆, x⟩ ∀x⋆ ∈ Rn

Which implies that:

(x0, x
⋆
0) ∈ ri(dom(f))× ∂f(x0) =⇒ f⋆(x⋆

0) + f(x0) = ⟨x⋆
0, x0⟩
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But this follows from proposition (40). Indeed, as evidenced in the proof of proposition (41), if

x⋆
0 is a subgradient of the function computed in x0, the most “efficient” choice for µ⋆ is µ⋆

0 =

⟨(x⋆
0,−1), (x0, f(x0))⟩ because in this way epi(g(·;x⋆

0, µ
⋆
0)) results in a hyperplane tangent to cl(epi(f)),

implying that f⋆(x⋆
0) is exactly equal to the negative of the vertical intercept of the first order Taylor

expansion of f around x0 using x⋆
0 as subdifferential.

Several convex functions can be expressed “dually” as the Fenchel conjugate of another convex func-

tion. An illustrative example is the support function δ⋆(·|C) which, consistently with the notation,

is the Fenchel conjugate of the indicator function δ(·|C). Indeed, δ(x0|C) is finite (equal to zero

actually) if and only if x0 ∈ C implying that dom(δ(·|C)) = C. Thus, by calling f = δ(·|C) one has

that

δ⋆(b|C) = sup
x∈C

⟨x, b⟩ = sup
x∈C

⟨x, b⟩ − δ(x|C) = sup
x∈dom(f)

⟨x, b⟩ − f(x) = f⋆(b)

Moreover, recall that δ⋆(b|C) is the “optimal offset” such that the half-space {x : ⟨x, b⟩ ≤ δ⋆(b|C)}

supports C at some point “encoded” in δ⋆(b|C).

As a trivial example, think about C = [0, 1] ⊂ R. One has that:

δ(x|C) =

0 if x ∈ [0, 1]

+∞ otherwise

It follows that

δ⋆(b|C) = sup
x∈[0,1]

xb =

b if b > 0 (supremum attained at x = 1)

0 if b ≤ 0 (supremum attained at x = 0)
= max(0, b)

Thus, picking any b ∈ Rn one has that

H̃(b) = {(x, µ) : ⟨(b,−1), (x, µ)⟩ ≤ max(0, b)}

is a supporting half-space for epi(δ(·|C)). The position of the tangency point between epi(δ(·|C))

and H̃(b) can be found by inspecting ∂δ(·|C). Because of the triviality of the example, is possible

to easily analyze the behavior of the subdifferential at each point of ri(C) and of cl(C) \ ri(C) by

inspecting the subgradient inequality.

For what regards the relative interior, one has that

x0 ∈ (0, 1) =⇒ δ(x|C) ≥ δ(x0|C) + ⟨b, x− x0⟩ ∀x ∈ [0, 1]

0 ≥ b(x− x0)∀x ∈ [0, 1] ⇐⇒ b = 0

Indeed b = 0 is the solution of a homogenous system of infinitely many weak linear inequalities (one

inequality for each x ∈ (0, 1) ⊂ R): this follows from the intersection of the solution sets of the
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following subsystems:
0 ≥ b(x− x0)∀x ∈ (0, x0) ⇐⇒ b ≤ 0 (since x < x0)

0 ≥ b(x− x0)∀x ∈ (x0, 1) ⇐⇒ b ≥ 0 (since x > x0)

0 ≥ b(x− x0)∀x ∈ {x0} ⇐⇒ b ∈ R

=⇒ (−∞, 0] ∩ [0,+∞) ∩ (−∞,+∞) = {0}

Instead, for what regards the relative boundary, one has that

x0 = 0 =⇒ δ(x|C) ≥ δ(x0|C) + ⟨b, x− x0⟩ ∀x ∈ [0, 1]

0 ≥ bx ∀x ∈ [0, 1] ⇐⇒ b ≤ 0

x0 = 1 =⇒ δ(x|C) ≥ δ(x0|C) + ⟨b, x− x0⟩ ∀x ∈ [0, 1]

0 ≥ b(x− 1) ∀x ∈ [0, 1] ⇐⇒ b ≥ 0

Thus, it’s possible to recover the full behavior of ∂δ(·|[0, 1]) as

∂δ(x0|C) =


(−∞, 0) if x0 = 0

{0} if x0 ∈ (0, 1)( = x0 ∈ ri(C))

(0,+∞) if x0 = 1

This is insightful because one can start from a generic subgradient b0 and recover the subdifferential

of belongingness. Indeed

• when b0 < 0 =⇒ b0 ∈ ∂δ(0|C), meaning that

H̃(b0) = {(x, µ) : ⟨(b0,−1), (x, µ)⟩ ≤ max(0, b0)} = {(x, µ) : ⟨(b0,−1), (x, µ)⟩ ≤ 0} is support-

ing epi(δ(·|C)) at (x1, 0) = (0, 0) (indeed, with this example, whenever b0 < 0 one has that the

supporting hyperplane associated with H̃(b0) is a vector subspace, being a 1-dimensional affine

set passing through the origin). Thus, giving b0 < 0, the half-space H̃(b0) associated with

((b0,−1), 0) is one of the infinitely many half-spaces passing through the origin ranging from

the “horizontal” one and tending to the “vertical” one (i.e. those having (0,−1) and (−∞, 0)

as normal vectors respectively).

• When b0 = 0 =⇒ b0 ∈ ∂δ(x0|C), x0 ∈ C, meaning that the “horizontal” half-space

H̃(0) = {(x, µ) : ⟨(0,−1), (x, µ)⟩ ≤ 0} = {(x, µ) : ⟨(0,−1), (x− x0, µ− 0)⟩ ≤ 0} is supporting

epi(δ(·|C)) at (x0, 0) x0 ∈ C (and one has actually that H̃(0) ⊃ Graph(δ(·|C))).

• When b0 > 0 =⇒ b0 ∈ ∂δ(1|C) , meaning that

H̃(b0) = {(x, µ) : ⟨(b0,−1), (x, µ)⟩ ≤ max(0, b0)} = {(x, µ) : ⟨(b0,−1), (x, µ)⟩ ≤ b}

= {(x, µ) : ⟨(b0,−1), (x− 1, µ− 0)⟩ ≤ 0} is supporting epi(δ(·|C)) at (x1, 0) = (1, 0). Thus,

giving b0 > 0, the half-space H̃(b0) associated with ((b0,−1), 0) is one of the infinitely many

half-spaces passing trough the origin ranging from the “horizontal” one and tending to the

“vertical” one (i.e. those having (0,−1) and (+∞, 0) as normal vectors respectively).
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This example, despite its triviality, showed how the Fenchel conjugate of a proper convex function

can map generic vectors b into half-spaces properly supporting cl(epi(f)) at some generic point of

its boundary (x̃, cl(f(x̃))) which remains unknown (“encoded” in f⋆(b)) unless one knows fully ∂f

and, noticing that b ∈ ∂f(x0) one could know in advance that the supporting half-space is actually

tangent to cl(epi(f)) at (x0, cl(f(x0))).

Thus, knowing f⋆ and ∂f allows to have full control on the supporting half-spaces of cl(epi(f))

• if you want a hyperplane supporting the epigraph at (x0, cl(f(x0))) you can pick any b ∈ ∂f(x0)

so that (b,−1) is the vector normal to the supporting hyperplane while f⋆(b) is its offset

• if you have a hyperplane in the form of {(x, µ) : ⟨(b,−1), (x, µ)⟩ ≤ f⋆(b)} and you want to know

at which point (or points) it supports cl(epi(f)) you can check the range of the subdifferential

to see for which x0 you have actually that b ∈ ∂f(x0)

On the other hand, for concave functions f̂ , the subdifferential inequality has reversed inequality

sign, implying that the condition defined in proposition (41) has reversed inequality sign, indeed:

∃(b, µ⋆) ∈ Rn × R : f̂(x) ≤ h̃(x; b, µ⋆) ∀x ∈ dom(f̂)

This allows to understand that cl(hyp(f̂)) can be drawn as the intersection of the hypographs of

affine functions h̃(·; b, µ⋆) (indexed by some (b, µ⋆)) such that h̃(x; b, µ⋆) ≥ f̂(x) ∀x ∈ dom(f̂). As

before, one can define the index set F̂ ⋆ of the collection of affine functions majorizing f̂ as

F̂ ⋆ =
{
(b, µ⋆) : f̂(x) ≤ h̃(x; b, µ⋆), x ∈ dom(f̂)

}
=

⋂
x∈dom(f̂)

{
(b, µ⋆) : ⟨(x,−1), (b, µ⋆)⟩ ≥ f̂(x)

}
=

⋂
x∈dom(f̂)

Ŵ (x)

where w(b;x) = ⟨b, x⟩ − f̂(x) and Ŵ (x) = hyp(w(·;x)). Thus, cl(f̂(x)) is the concave function

induced by the set

F =
⋂

(b,µ⋆)∈F⋆

hyp(h̃(·; b, µ⋆))

=
⋂

(b,µ⋆)∈F⋆

{(x, µ) : µ ≤ ⟨x, b⟩ − µ⋆}

=
⋂

(b,µ⋆)∈F⋆

{(x, µ) : ⟨(b,−1), (x, µ)⟩ ≥ µ⋆}

Analogously to the previous discussion, the index set F̂ ⋆ of the affine functions h̃(·; b, µ⋆) majorizing f̂

results in the intersection of a collection of half-spaces indexed by x ∈ dom(f) (that is the index set of

the affine functions w(·;x) majorizing f̂⋆). The dual correspondence between cl(f̂) and f̂⋆ is depicted
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by the fact that cl(f̂) is the concave function induced by F , the intersection of the hypographs of

the affine functions h̃(·; b, µ⋆) indexed by (b, µ⋆) ∈ F̂ ⋆, while the conjugate f̂⋆ is the concave function

(and this is the reason why it is usually defined as the concave conjugate of f̂) induced directly

by the index set F̂ ⋆ (which, in turn, is the intersection of the hypographs of the affine functions

w(b;x) = ⟨b, x⟩ − f̂(x) indexed by x ∈ dom(f̂)). Thus, considering Ŵ (x) = hyp(w(·;x)), one has

that

f̂⋆(b) = sup{µ⋆ : (b, µ) ∈ F̂ ⋆}

= sup{µ⋆ : (b, µ) ∈
⋂

x∈dom(f)

Ŵ (x)}

= sup{µ⋆ : (b, µ) ∈
⋂

x∈dom(f)

{
(b, µ⋆) : ⟨x, b⟩ − f̂(x) ≥ µ⋆

}
}

= inf
x∈dom(f)

⟨x, b⟩ − f̂(x)

Thus, since it’s evident now that hyp(f⋆) = F̂ ⋆, it’s possible to see that the closure of the hypograph

of cl(f(x)) is the intersection of the hypograph of a collection of affine functions where the index set

is actually the hypograph of the concave conjugate, indeed:

cl(f̂(x)) = sup{µ : (x, µ) ∈ F}

= sup{µ : (x, µ) ∈
⋂

(b,µ⋆)∈F⋆

{(x, µ) : ⟨(b,−1), (x, µ)⟩ ≥ µ⋆}}

= sup{µ : (x, µ) ∈
⋂

(b,µ⋆)∈hyp(f⋆)

{(x, µ) : ⟨(b,−1), (x, µ)⟩ ≥ µ⋆}}

= sup

µ : (x, µ) ∈
⋂

b∈dom(f̂⋆)

{
(x, µ) : ⟨(b,−1), (x, µ)⟩ ≥ f̂⋆(b)

}
= sup

µ : (x, µ) ∈
⋂

b∈dom(f̂⋆)

{
(x, µ) : ⟨b, x⟩ − f̂⋆(b) ≥ µ

}
= inf

b∈dom(f̂⋆)
⟨b, x⟩ − f̂⋆(b)

The dual correspondences between cl(f̂) and f̂⋆ are analogous to the ones between cl(f) and f⋆

(indeed, the only difference is the inequality sign in the subdifferential inequality and the focus on

the hypograph instead of the epigraph).



Chapter 3

Constant Function Market Makers

The previous sections allowed to introduce the theoretical framework needed for deploying consciously

the concepts of convex analysis in designing Constant Function Market Makers. This chapter is the

core of this work and it deals with the application of such concepts. Several findings presented here

are analogous to those in [ACD+23] published in these days.

The toolkit presented here gives the freedom of starting from one of the four components of a CFMM

and build the remaining ones. For example, one could start from designing the convex set of reachable

reserves and the properties encoded in such set will affect the nature of the remaining components.

On the contrary, someone might want to replicate a concave payoff in a oracle-less way [AEC21a]

[AEC21b] and start from designing the portfolio value function of the CFMM, inducing the other

core components via the toolkit presented here.

3.1 Definition and introduction to core components

As described in [AC20], CFMMs are a class of automated market makers (AMMs) pioneered in the

last decade as a way for exchanging digital assets without the need of a trusted third-party. Several

decentralized exchanges (DEXs) like Uniswap [AZR20], Balancer [MM19] or Curve [Ego21] became

very popular and today they represent the main alternative to centralized exchanges for exchanging

digital assets. The theory around AMMs is way older than the blockchain technology itself and,

in a nutshell, it is based on the idea of allowing passive market participants to provide liquidity

to a market by depositing a pair of assets in a “pool”, that is an independent and deterministic

driver used for holding the assets and pricing them according to a “scoring rule” mapping the total

deposited amounts to marginal prices, like the “Logarithmic Market Scoring Rule” (LMSR) presented

by Hanson [Han03]. In the context of blockchain, the pricing mechanism of AMMs revealed to be

an effective way for oracling external prices of digital assets practiced without the need of a trusted

third-party actively importing such information in a closed and decentralized ecosystem such as the

99
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blockchain. The “pools” involved in blockchain-based AMMs are simply smart contracts which, on

top of deterministic and (sometimes) immutable code-written rules, regulate the provision and the

withdraw of liquidity as well as the exchange mechanism of the deposited assets. Market agents

adding liquidity to (i.e. depositing assets) and removing liquidity from (i.e. withdrawing assets

previously deposited) the CFMM are called “liquidity providers” (LP) and have the incentive to

participate in the market making activity to earn a share of the fees collected by the CFMM,

proportionally to the relative amounts they deposited.

In the context of CFMMs, a “trade” correspond to the action of tendering a basket of assets to the

pool (which are added to the reserves of the pool) in exchange for another basket of assets (which

are withdrawn from the pool). A trade is said to be “feasible” if it satisfies the feasibility condition

of the CFMM, based on the evaluation of the concave “invariant function” of the CFMM L̂ : Rn → R

which maps the amounts of the reserves of the pool to a real number. Indeed, the trade is feasible if

the difference between the image of the invariant function evaluating the post-trade reserves and the

pre-trade reserves is non-negative. Conceiving the invariant function as a sort of “utility function”

for the CFMM, it means that a trade is feasible if the utility of the CFMM (measured in “liquidity

units”) is not worsened after the trade is performed. Typically, in order to maximize her own utility,

a trader quotes a trade such that the difference just mentioned is as close as possible to zero, because

otherwise she would receive less assets than those she could receive thanks to the amounts of the

assets she is tendering. For this reason, assuming that traders are utility-maximizer agents, the

image of the invariant function remains the same after the trade is performed and this is the reason

why some authors [AAE+21] specify this as feasibility condition. However, this is the typical reason

why L̂(x) is defined as “invariant function” and this kind of blockchain-based AMMs are defined as

“Constant Function Market Makers”. The invariant function is the first core component of a CFMM

and it is the main driver of the pricing mechanism of the CFMM. Indeed, the “scoring rule” of the

CFMM, conceived as AMM, is embedded in the invariant function since it is possible to recover the

marginal price of the i-th asset (base asset) in the pool in terms of the j-th asset (quote asset) by

taking the ratio between the i-th component and the j-th component of the supergradient of the

invariant function evaluating the current amounts of reserves, as it will be shown later in this section.

As it will discussed, defining x0 ∈ Rn as the vector of reserves currently deposited in the CFMM,

the basic set of reachable reserves C is derivable as the upper-level set of the invariant function at

level one, while the set of feasible trades T (x0) corresponds to the upper-level set of the variation

function of the invariant function at level zero.

The four core components of a CFMM, which are going to be described in details in the dedicated

subsections, are the following

• Basic set of reachable reserves C ⊂ Rn
+: it is a non-empty (i.e. C ̸= ∅), closed (i.e. C = cl(C)),

convex (i.e. x0 ∈ C, x1 ∈ C =⇒ (1 − λ)x0 + λx1 ∈ C ∀λ ∈ [0, 1]), unbounded set (i.e.
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∄ϵ > 0 : C ⊂ ϵB) such that 0+C = Rn
+, not containing the origin 0 /∈ C and at least two-

dimensional (i.e. dim(C) = dim(aff(C)) ≥ 2) describing the reserves of CFMM which can be

reached by performing feasible trades when the liquidity level is equal to one.

• Basic portfolio value function V̂ (·; 1) : Rn
+ → R+: it is a concave (i.e. p0 ∈ hyp(V̂ (·; 1)), p1 ∈

hyp(V̂ (·; 1)) =⇒ (1−λ)p0+λp1 ∈ hyp(V̂ (·; 1)) ∀λ ∈ [0, 1]), closed (thus proper, i.e. ∃p ∈ Rn
+ :

V̂ (p; 1) > −∞ and V̂ (p; 1) < ∞ ∀p ∈ Rn
+ and upper semicontinuous i.e. lim supy→p V̂ (y; 1) =

V̂ (p; 1) ∀p ∈ Rn
+), positive homogenous (i.e. (V̂ λ)(p; 1) = V̂ (p; 1) ∀λ > 0), non-negative (i.e.

V̂ (p; 1) ≥ 0 ∀p ∈ Rn
+), non-decreasing (i.e. p1 ⪯ p2 =⇒ V̂ (p1; 1) ≤ V̂ (p2; 1)), origin-vanishing

(i.e. V̂ (0; 1) = 0) function describing the portfolio dynamics of the assets deposited in the

CFMM. In other words, it maps the vector of prices p ∈ Rn
+ of the assets deposited in the

CFMM to a non-negative scalar, corresponding to the portfolio value. For liquidity providers,

the basic portfolio value function describes the payoff passively replicated by providing liquidity

to the pool.

• Invariant function L̂ : Rn
+ → R+: it shares the same properties of the portfolio value function.

Indeed it is a concave (i.e. x0 ∈ hyp(L̂), x1 ∈ hyp(L̂) =⇒ (1−λ)x0+λx1 ∈ hyp(L̂) ∀λ ∈ [0, 1]),

closed (thus proper, i.e. ∃x ∈ Rn
+ : L̂ > −∞ and L̂ < ∞ ∀x ∈ Rn

+ and upper semicontinuous

i.e. lim supy→x L̂(y) = L̂(x)), positive homogenous (i.e. (L̂λ)(x) = L̂(x)), non-negative (i.e.

L̂(x) ≥ 0 ∀x ∈ Rn
+), non-decreasing (i.e. x0 ⪯ x1 =⇒ L̂(x0) ≤ L̂(x1)), origin-vanishing (i.e.

L̂(0) = 0) function. These similarities with the portfolio value function follow from the fact

that both are concave functions induced by convex cones containing the origin living in the

non-negative orthant Rn+1
+ . Moreover, as noticed in [ACD+23], these two cones are in a sort

of “dual” correspondence which will be furtherly discussed. Differentiability (i.e. ∃!x⋆ ∈ Rn :

L̂(z) ≤ L̂(x0) + ⟨x⋆, z − x0⟩ ∀z ∈ dom(L̂), or simply that ∂L̂(x) =
{
∇L̂(x)

}
∀x ∈ dom(L̂)) is

a desirable property for invariant functions because, on a scoring rule perspective, it ensures

the uniqueness of the marginal price vector oracled by the CFMM, but it’s not a strictly

demanding property recalling that superdifferentiability of the invariant function is always

verified on ri(dom(L̂)) thanks to concavity (and so there will always be at least one oracled

marginal price vector for any vector of current reserves).

• Set of feasible trades T (x0) ⊂ Rn: it shares several (but not all) properties of the basic set

of reachable reserves. Indeed T (x0) is a non-empty (i.e. T (x0) ̸= ∅), closed (i.e. T (x0) =

cl(T (x0))), convex (i.e. x0 ∈ T (x0), x1 ∈ T (x0) =⇒ (1 − λ)x0 + λx1 ∈ T (x0) ∀λ ∈ [0, 1])

unbounded set (i.e. ∄ϵ > 0 : T (x0) ⊂ ϵB) such that 0+T (x0) = Rn
+. Taking the perspective of

the pool (so that positive entries are amounts tendered to the pool while negative entries are

amounts withdrawn from the pool), the set of feasible trades corresponds to the set of trades

which are feasible for the CFMM given the current vector of reserves x0 (or, equivalently, given

the current liquidity level L̂(x0)). Differently from C, T (x0) is not constrained to live in the
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non-negative orthant (if so, traders won’t be allowed to pull out assets from the pool) and, at

the same time, 0 ∈ T (x) ∀x ∈ Rn
+, because the null-trade (i.e. the trade which doesn’t move

the current reserves) must be always possible. Finally, one has also that T (x0) ∩ Rn
−− = ∅,

otherwise the CFMM would allow traders to pull out assets from the pool without exchanging

them with other assets (i.e. the CFMM would allow traders to withdraw assets without paying

anything).

Each component completely characterizes a CFMM in the sense that the other core components

are derivable from any of them, and knowing all of them allows to fully understand the math of a

CFMM.

3.2 Analysis of core components

Now that the general picture of CFMMs has been introduced, it’s possible to analyze each core

component of a CFMM in order to recover the toolkit needed for designing a CFMM protocol. The

following analysis will be dedicated to “path independent” CFMMs as defined in [AC20] being a good

starting point for understanding the mechanisms behind the design of a CFMM. In a nutshell, “path

independence” refers to the fact that a trader is totally indifferent between performing an aggregated

feasible trade or decomposing it into sequentially feasible sub-trades since the amounts spent and

the amounts collected by interacting with the pool will be the same in both cases. The existence of

a fee-structure (which is, at the same time, the main remuneration schema for a liquidity provider)

compromises path-independence since a small portion of the tendered assets is not added to the

reserves of the CFMM but it’s put apart in order to be distributed pro-rata among all the liquidity

providers. Thus, the amount pulled out from the CFMM is based on the amount materially added

to the pool rather than the overall amount tendered to the pool. In this subsection, the CFMM core

components are introduced and a qualitative description of their main properties is provided.

3.2.1 Basic set of reachable reserves

As anticipated, the main properties of a basic set of reachable reserves C are:

• C ⊂ Rn
+ (non-negativity)

• C ̸= ∅ (non-emptiness)

• C = cl(C) (closedness)

• x0 ∈ C, x1 ∈ C =⇒ (1− λ)x0 + λx1 ∈ C ∀λ ∈ [0, 1] (convexity)

• 0+C = Rn
+ (“upward” unboundedness)

• 0 /∈ C (origin not included)
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• dim(C) ≥ 2 (at least two-dimensionality)

The first property C ⊂ Rn
+ captures the trivial fact that portfolio holdings of a CFMM are necessarily

non-negative. Indeed, traders can’t withdraw more than the amounts of the reserves of the assets

deposited in the CFMM and, canonically, a CFMM can’t borrow assets from other markets (so that

a negative amount of an asset would represent a debt position for the CFMM). The non-emptiness is

assumed to avoid the trivial case of a CFMM where it’s not possible to perform any trade while the

closedness (i.e. C = cl(C)) implies that cl(C)\ri(C) ⊂ C, implying that the relative boundary, which

corresponds to the Pareto Optimal Frontier as it will be shown, is included in the set of reachable

reserves.

The condition 0+C = Rn
+ implies that, given x0 ∈ C, then {y : x0 ⪯ y} ⊂ C and this property

is called “upward closedness” in [ACD+23]. Practically, it means that any vector of reserves having

at least one component higher than the index-matching component of the vector of current reserves

must be considered reachable. Roughly speaking, from the point of view of the CFMM such vector

is “unambiguously” better than the current vector of reserves and this is captured by the use of the

generalized inequality in the set notation. Indeed, notice that this generalized inequality considers

the non-negative orthant as proper cone of reference as usually occurs when the proper cone is not

specified. Because of the non-negativity of prices (meaning that the set of possible prices is Rn
+)

one could interpret prices also as directions of recession of C since 0+C = Rn
+. C is called in “set

of reachable reserves” because, given x0 ∈ L(x0)C such that L(x0) = 1, C corresponds to the set of

reserves which are “reachable” from x0 by performing a feasible trade. In other words, assuming that

the amount of liquidity of the pool remains unchanged (i.e. no LP deposits or withdraws liquidity),

this set describes all the possible future reserves of the CFMM, even if those lying on ri(C) are “less

efficient” than those lying on the relative boundary of C.

Indeed, as it will furtherly discussed in the subsection dedicated to the basic portfolio value function,

considering x0 ∈ ri(C) and p0 ∈ Rn
+ as vector of prices of the n assets tradable via the CFMM, an

arbitrageur would be incentivized to perform a trade in which she tenders zero assets rebalancing

the reservers to {x1} = {x : x0 + λp0, λ ∈ R}∩cl(C)\ ri(C), because in this way she would maximize

her risk-free profit.

Notice that 0 /∈ C otherwise arbitrageurs would be allowed to drain completely the reserves: in-

deed, if 0 ∈ C it would mean that rebalancing the reserves from the vector of current reserves

x0 ∈ C to 0 would be considered a feasible trade. Moreover, 0 /∈ C guarantees that this simple

condition is verified at any positive liquidity level since 0 /∈ C =⇒ 0 /∈ λC ∀λ > 0, i.e. whenever

the reserves of the CFMM are not equal to zero. On the contrary, 0 ∈ λC ⇐⇒ λ = 0 which occurs

when liquidity providers withdraw completely the reserves from the CFMM (i.e. when the liquidity
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level is null since x0 = 0 =⇒ L̂(x0) = λ = 0).

C is defined as “basic” set of reachable reserves because it corresponds to the set of reachable re-

serves at liquidity level equal to 1, (i.e. L̂(x0) = 1): generally speaking, the set of reachable reserves

associated with liquidity level λ = L̂(x0) will be denoted as λC being the basic set of reachable re-

serves “rescaled” by a non-negative scalar equal to the image of the invariant function evaluating the

current vector of reserves x0. Indeed, as it will be discussed in details later, the closed convex cone

containing the origin generated in higher dimension by C (i.e. cone({(1, x) : x ∈ C})) corresponds

to hyp(L̂) and this ensures the positive homogeneity and non-negativity of L̂. For this reason, C can

be recovered as the upper-level set of L̂ associated with level 1 and, more generally, given λ = L̂(x0)

one has always

λC =
{
x : L̂(x) ≥ λ

}
=
{
x : L̂(x) ≥ L̂(x0)

}
Being the hypograph of the invariant function L̂, the cone generated by the basic set of reachable

reserves C in higher dimension will be called invariant cone and will be denoted by

KL̂ = cone({(1, x) : x ∈ C}) ⊆ Rn+1
+

(notice that this set is defined as “liquidity cone” in [ACD+23]). The main properties of such cone,

which encodes the main properties of the invariant function, will be described in the section dedi-

cated to the invariant function, but it’s sufficient anticipating that KL̂ ⊆ Rn+1
+ is a closed convex

cone containing the origin.

Noticeably, thanks to the closedness of hyp(L̂), for λ → 0+ (i.e. as the current reserves x0 be-

come infinitesimal since λ = L̂(x0)), one has that λC 7→ 0+C = Rn
+, meaning that for very low

values of liquidity (i.e. when the reserves of the CFMM are almost drained), the set of reachable

reserves tends to its recession cone Rn
+. This fact is consistent with the behavior of convex sets after

infinitesimal rescaling as described in the sections at the beginning of this work but in this context

it captures the very simple fact that any trade which allows the reserves to be simply non-negative

would be allowed by the CFMM.

Finally, the requirement for dim(C) ≥ 2 is trivial because the CFMM must allow the negotia-

tion of at least a trading pair but it is not limited to just two assets. Indeed, as in the case of Curve

pools [Ego21], a single CFMM can allow for negotiations of a trading group rather just a trading

pair. This also means that C admits representation in Rn
+ with n > 1. This simple observation

leads to a very important fact, that is that the set of reachable reserves itself is capable of inducing

a convex function Γ : Rn−1 7→ R such that epi(Γ) = C:

Γ = inf {µ : (x, µ) ∈ C}
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Of course, Γ(·) inherits the properties encoded in C, like properness (because C ⊂ Rn
+, meaning that

its epigraph doesn’t contain vertical line) and lower semi-continuity (since C = cl(C)), implying that

Γ(·) is always a closed convex function (i.e. Γ(·) = cl(Γ(·))).

3.2.2 Basic Portfolio Value Function

As anticipated, the main properties of the basic portfolio value function V (·; 1) are

• V̂ (·; 1) : Rn
+ 7→ R+ n > 1 (non-negativity)

• p0 ∈ hyp(V̂ (·; 1)), p1 ∈ hyp(V̂ (·; 1)) =⇒ (1− λ)p0 + λp1 ∈ hyp(V̂ (·; 1)) ∀λ ∈ [0, 1] (concavity)

• V̂ (·; 1) = cl(V̂ (·; 1)) (closedness)

– ∃p ∈ Rn
+ : V̂ (p; 1) > −∞ and V̂ (p; 1) < ∞ ∀p ∈ Rn

+ (properness)

– lim supy→p V̂ (y; 1) = V̂ (p; 1) ∀p ∈ Rn
+ (upper semi-continuity)

• (V̂ λ)(p; 1) = V̂ (p; 1) ∀λ > 0 (positive homogeneity)

• p1 ⪯ p2 =⇒ V̂ (p1; 1) ≤ V̂ (p2; 1) (non-decreasingness)

• V̂ (0; 1) = 0 (origin vanishingness)

The derivation of the portfolio value function can be performed qualitatively analyzing the activity

performed by arbitrageurs as rational agents. It has been said that, given x0 ∈ C, the whole set

C defines the reserves which are reachable from x0 by performing a feasible trade. Thus the trade

itself, from the point of view of the pool, is simply a portfolio rebalancing which maps the current

reserves to other reachable reserves. Keeping the idea of a feasible trade as a portfolio rebalancing

of the assets deposited on the CFMM, an arbitrageur could ask herself if it’s possible to perform a

trade which allows her to incur in a risk-free profit by simply rebalancing the reserve amounts of the

pool. Indeed, supposing that p ∈ Rn
+ is a vector of prices practiced by external markets, x0 ∈ C is

the current vector of reserves while y ∈ T (x0) is a feasible trade proposed to the CFMM (so that

the reserves after the trade is performed would be equal to z = x0 + y ∈ C), the profit function of

an arbitrageur can be expressed as

Π(z; p) = ⟨p, x0 − z⟩ z ∈ C

Indeed, if z ∈ C, x0 − z represents the net amounts that the arbitrageur was capable of pulling

out from the CFMM. For example, if x0 − z ⪰ 0 it means that the arbitrageur managed in pulling

out some assets from the CFMM without tendering any asset: this situation typically occurs when

x0 ∈ ri(C) and the arbitrage-trade moved the reserves to some point z ⪯ x0; as it will be seen via

the arbitrage problem, the best choice for z (in the sense that it maximizes the arbitrage profit)

is {z} = {x : x0 + λp, λ ∈ R} ∩ cl(C) \ ri(C), which is the vector of reserves lying on the relative
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boundary of C in the direction of p moving from x0.

Noticeably, if ⟨p, x0 − z⟩ ≥ 0, it means that the total amount spent for purchasing from an external

market the assets deposited into the CFMM is lower than the total amount collected by selling to

the external market the assets pulled out from the CFMM. The parametrization of the vector of

prices p follows from the fact that the arbitrageur takes the prices as an exogenous information since

she has not the capability of affecting external prices.

Moreover, constraining z ∈ C, it’s interesting noticing that the set of prices such that the profit

function is non-negative corresponds to the normal cone of C at x0, indeed

{p : Π(z; p) ≥ 0, z ∈ C} = {p : ⟨p, x0 − z⟩ ≥ 0, z ∈ C}

= {p : ⟨p, z − x0⟩ ≤ 0, z ∈ C}

= N(x0|C)

This gives the additional insight according to which, when x0 ∈ cl(C) \ ri(C) (and this can occur

since C = cl(C)), the vectors of prices such that the profit function is non-negative (constraining

z ∈ C) define at the same time the collection of hyperplanes supporting C at x0.

Alternatively, it’s possible to express the profit function as function of feasible trades. Indeed,

y ∈ T (x0) =⇒ z = x0 + y ∈ C by definition of feasible trade and so −y = x0 − z. This means that

the profit function can be rewritten as

Π(y; p, x0) = ⟨p,−y⟩ y ∈ T (x0)

And this function makes sense recalling that, differently from [ACD+23], the set of feasible trades is

defined using the point of view of the pool (thus, positive entries are amounts spent by the trader

and collected by the pool). At the same time, it is possible to characterize again the set of prices

leading to non-negative profits as

{p : Π(y; p, x0) ≥ 0, z ∈ C} = {p : ⟨p,−y⟩ ≥ 0, y ∈ T (x0)}

= {p : ⟨p, y⟩ ≤ 0, z ∈ T (x0)}

= N(0|T (x0))

This implies also that N(x0|C) = N(0|T (x0)) as it will be more clear after introducing the charac-

terization C = T (x0) + x0.

The “arbitrage problem” as defined in [AC20] is based on the maximization of the profit function

and can be framed as a linear program being the maximization of a linear function over a convex
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set. Indeed, the optimal profit for the arbitrageurs corresponds to

Π⊛ = sup
z∈C

Π(z; p)

= sup
z∈C

⟨p, x0 − z⟩

= ⟨p, x0⟩+ sup
z∈C

⟨p,−z⟩

= ⟨p, x0⟩ − inf
z∈C

⟨p, z⟩

Thus, the image of the solution of the optimal problem can be written in the following form:

Π⊛ = ⟨p, x0⟩ − inf
z∈C

⟨p, z⟩ = sup
y∈T (x0)

Π(y; p, x0) = sup
y∈T (x0)

⟨p,−y⟩

On the other hand, it is insightful expressing the optimal value of the profit function as function of

the parameter p ∈ Rn
+, obtaining a function of prices which could be called “optimal profit function”

(defined in [ACD+23] as “arbitrage function”) equal to

Π⊛(p;x0) = ⟨p, x0⟩ − (−δ⋆(−p|C)) = ⟨p, x0⟩+ δ⋆(−p|C) = δ⋆(−p|T (x0))

Noticeably, the optimal profit function is a convex function corresponding to the support function of

the symmetric reflection across the origin of the current set of feasible trades. In the other notation,

it is expressed as sum of a linear function and a convex function, thus a sum of two convex functions

which is still convex. Both notations are insightful: indeed, the second notation implies the Fenchel

conjugate of the optimal profit function allows to recover the indicator function of −T (x0), indeed

(Π⊛)⋆(x;x0) = sup
p∈Rn

+

⟨p, x⟩ −Π⊛(p;x0) = sup
p∈Rn

+

⟨p, x⟩ − δ⋆(p| − T (x0)) = δ(p| − T (x0))

while the other notation gives another insight: supposing market efficiency, the law of one price

imposes that a certain external price p ∈ Rn
+ is the same price practiced by all the external markets

(otherwise there would be arbitrage opportunities) and, at the same time, the optimal profit function

evaluating this unique external price should be equal to zero Π⊛(p;x0) = 0 (otherwise, again, it would

imply the existence of an arbitrage opportunity). Thus, using the other notation for the optimal

profit function, according to the arbitrage-free assumption one has that

Π⊛(p;x0) = 0 ⇐⇒ ⟨p, x0⟩ = −δ⋆(−p|C)

Thus, in a sense, the “observed” portfolio value of the assets deposited in the CFMM is expected to

be equal to the negative of the support function of the symmetric reflection across the origin. If this

is not true, then it must be that ⟨p, x0⟩ > −δ⋆(−p|C) and so it is possible to perform an arbitrage

trade with positive gain since Π⊛(p;x0) > 0 (notice that ⟨p, x0⟩ < −δ⋆(−p|C) does never occur for

x0 ∈ C since −δ⋆(−p|C) = infz∈C⟨z, p⟩).

Thus, whenever the actual portfolio value ⟨p, x0⟩ is different from the “expected portfolio value” under
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arbitrage free assumption, then it’s possible to perform an arbitrage trade leading to a risk-free profit

equal to the difference of the two portfolio values. In other words, the decomposition of the optimal

profit function shows that it’s important considering −δ⋆(−p|C) as the expected CFMM portfolio

value under the arbitrage-free assumption, because arbitrage forces will systematically rebalance the

CFMM (incurring in risk-free profits) so that the value of the deposited assets replicates pointwisely

(i.e. for any price level) the function −δ⋆(−p|C). In other words, −δ⋆(−p|C) defines the portfolio

value function which is passively replicated by liquidity providers by the time they deposit their assets

to the CFMM. Because of its nature, such function takes the name of “portfolio value function” and

it’s the second core component of a CFMM:

V̂ (p; 1) = −δ⋆(−p|C) = inf
z∈C

⟨p, z⟩

Thus, the design of the basic set of reachable reserves C is extremely important because it deeply

affects the portfolio passively replicated by liquidity providers. It’s possible to characterize the

portfolio value function also in terms of the set of feasible trades indeed

Π⊛(p;x0) = ⟨p, x0⟩ − V̂ (p; 1) = δ⋆(p| − T (x0))

=⇒ V̂ (p; 1) = ⟨p, x0⟩ − δ⋆(p| − T (x0))

This notation is consistent with what will be provided in the section dedicated to the set of feasible

trades since

V̂ (p; 1) = ⟨p, x0⟩ − δ⋆(p| − T (x0))

= ⟨p, x0⟩+ inf
y∈T (x0)

⟨p, y⟩

= inf
y∈T (x0)

⟨p, y + x0⟩

= inf
z−x0∈T (x0)

⟨p, z⟩

= inf
z∈x0+T (x0)

⟨p, z⟩

= −δ⋆(−p|x0 + T (x0))

which, ones again, anticipates the characterization C = x0 + T (x0). However, to capture the “qual-

itative” fact about the non-negativity of prices, from now on the portfolio value function will be

conceived in the following extended real-valued sense in order to restrict its effective domain to a

subset of the non-negative orthant:

V̂ (p; 1) =

−δ⋆(−p|C) if p ∈ Rn
+

−∞ if p /∈ Rn
+

Being the negative of a convex function, it implies that V (·; 1) is a concave function as noticed in

[AEC21a], underlying the fact that the portfolio value function is always the pointwise infimum
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of a family of affine functions ranging over a convex set. On the other hand, the notation used

here allows to immediately derive further information about V (·; 1). Indeed, being the negative

of the support function, the portfolio value function is also always closed and positive homogenous.

Closedness follows from the fact that V (·; 1) can be expressed as the negative of the Fenchel conjugate

of δ(x| − C) while positive homogeneity depends on the fact that the portfolio value function can

be seen as the concave function induced by a convex cone in Rn+1 as said in proposition (34). The

properties of such cone can be anticipated by looking at the behavior of V (·; 1) as pointwise infimum

of a family of linear functions indexed by C. Noticeably, prices are non-negative by their nature (i.e.

p ∈ Rn
+) while the basic set of reachable reserves was designed to live in the non-negative orthant

(recall in fact that C ⊂ Rn
+), thus:

⟨p, z⟩ ≥ 0 ∀(p, z) ∈ dom(V̂ (·; 1))× C =⇒ inf
z∈C

⟨p, z⟩ = V̂ (p; 1) ≥ 0 ∀p ∈ dom(V̂ (·; 1))

Moreover, since 0 /∈ C =⇒ infz∈C⟨p, z⟩ = V̂ (p; 1) = 0 ⇐⇒ p = 0. From this findings it follows

immediately that this support function is also always non-negative and origin-vanishing and this

implies that the convex cone containing the origin which induces the portfolio value function (i.e.

hyp(V (·; 1))) is actually living inside the non-negative orthant.

The fact that hyp(V̂ ·; 1) is a convex cone containing the origin living in the non-negative orthant

implies that 0+hyp(V̂ ·; 1) = hyp(V̂ ·; 1). This means that the concave function induced by the reces-

sion cone of the hypograph of the basic portfolio value function is the basic portfolio value function

itself. Indeed:

(V̂ 0+)(p; 1) = sup
{
λ : (λ, x) ∈ 0+hyp(V̂ ·; 1)

}
= sup

{
λ : (λ, x) ∈ hyp(V̂ ·; 1)

}
= V̂ (p; 1)

The zero upper-level set of this function (which in the convex case takes the name of recession function

[Roc70] as seen in the previous sections) corresponds to the set of directions in which V̂ (·; 1) is non-

decreasing (differently from the convex case, where the zero sub-level set of the recession function

corresponds to the directions of recession of the associated convex function, i.e. the directions in

which the function is non-increasing). Indeed given ĝ concave, using a derivation analogous to that

one used in the previous sections for obtaining the recession cone of the epigraph of a convex function,

one has that the recession cone of the hypograph of a concave function ĝ is given by

0+hyp(ĝ) = {(µ, x) : (µ̂+ µ, x̂+ x) ∈ hyp(ĝ), (µ̂, x̂) ∈ hyp(ĝ)}

= {(µ, x) : (µ̂+ µ, x̂+ x) ∈ {(µ̂, x̂) : µ̂ ≤ ĝ(x̂)} , (µ̂, x̂) ∈ hyp(ĝ)}

= {(µ, x) : µ̂+ µ ≤ ĝ(x̂+ x), (µ̂, x̂) ∈ hyp(ĝ)}

= {(µ, x) : µ ≤ ĝ(x̂+ x)− µ̂, (µ̂, x̂) ∈ hyp(ĝ)}

= {(µ, x) : µ ≤ ĝ(x̂+ x)− ĝ(x̂), x̂ ∈ dom(ĝ)}
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And it follows that the concave function induced by 0+hyp(ĝ) is

(ĝ0+)(x) = sup
{
µ : (µ, x) ∈ 0+hyp(ĝ)

}
= inf

x̂∈dom(ĝ)
ĝ(x̂+ x)− ĝ(x̂)

This implies that, given x̂ ∈ dom(ĝ), one has that (ĝ0+)(x) ≤ ĝ(x̂+x)− ĝ(x̂) ∀x. Thus, if (ĝ0+)(x) ≥

0 =⇒ ĝ(x̂ + x) − ĝ(x̂) ≥ 0 ∀x̂ ∈ dom(ĝ) implying that the zero upper-level set of ĝ0+ defines the

directions in which ĝ0+is “asymptotically” non-decreasing

{
x : (ĝ0+)(x) ≥ 0

}
= {x : ĝ(x̂+ x) ≥ ĝ(x̂), x̂ ∈ dom(ĝ)}

In the case of the portfolio value function, (V̂ 0+)(p; 1) = V̂ (p; 1) implying that the zero-upper level

set of V̂ (p; 1) corresponds to the directions in which V̂ (p; 1) is non-decreasing. However, being

non-negative and origin-vanishing, one has actually that{
p : (V̂ 0+)(p; 1) ≥ 0

}
=
{
p : V̂ (p; 1) ≥ 0

}
= dom(V (·; 1))

And this implies that the basic portfolio value function V̂ (·; 1) is non-decreasing on its maximal

domain. Indeed, picking p1 ∈ dom(V (·; 1)) and p0 ∈ dom(V (·; 1)) so that p2 = p0 + p1, one has that

p2 ⪰ p1 and that V̂ (p2; 1) = V̂ (p0 + p1; 1) ≥ V̂ (p1; 1) since p0 ∈
{
p : (V̂ 0+)(p; 1) ≥ 0

}
.

As previously discussed, the hypograph of the portfolio value function is a convex cone living in the

non-negative orthant: thus, the portfolio value function itself is expected to be gauge-like in the

sense of [Roc70] indeed V̂ (0; 1) = inf V̂ (·; 1) and all the upper-level sets of V̂ (·; 1) are proportional.

Thus, analogously to the reasoning behind the set of reachable reserves, one could start from the

upper level set of the portfolio value function at (liquidity) level one and then induce the upper-level

set associated to all the other non-negative liquidity levels (because of the non-negativity of the

portfolio value function). One could call such set C⋆ and it would define the set of prices such that

the portfolio value function, associated to liquidity level 1, is higher than one.

C⋆ =
{
p : V̂ (p; 1) ≥ 1

}
=

{
p : inf

z∈C
⟨p, z⟩ ≥ 1

}
= {p : ⟨p, z⟩ ≥ 1, z ∈ C}

=
⋂
z∈C

{p : ⟨p, z⟩ ≥ 1}

In some works [Zaf12] the set {p : ⟨p, z⟩ ≥ 1, z ∈ C} is defined as the “reverse polar” of C and it is

introduced as a different notion of polarity. Indeed, the convex set C⋆ reminds somehow the polar

C◦ = {p : ⟨p, z⟩ ≤ 1, z ∈ C} but it is actually different since the inequality sign is reversed. On the

other hand, both C⋆ and C◦ are closed convex sets being the intersection of closed half-spaces but

C◦ is always origin-including while C⋆ is not. Since C⋆ ⊂ dom(V̂ ) ⊂ Rn
+, C⋆ has all the properties
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seen previously with C. Since the portfolio is gauge-like, one could recover the hypograph of the

portfolio value function by generating a cone in higher dimension from C⋆: such cone will be called

portfolio value cone and will be denoted by

KV̂ = cone({(1, x) : x ∈ C⋆}) ⊂ Rn+1

Since V (·; 1) = −δ⋆(·| − C) one would expect that hyp(V (·; 1)) = A(K⋆) where A : (λ, x) 7→

(−λ, x) as described in proposition (34). However, accounting also for the non-negativity of V (·; 1),

the hypograph of such function should include only the positive part of A(K⋆), i.e. A(K⋆) ∩

{(λ, x) : λ > 0, x ∈ Rn}. Thus, one should expect that

hyp(V (·; 1)) = KV̂ = cone({(1, x) : x ∈ C⋆}) = A(K⋆) ∩ {(λ, x) : λ > 0, x ∈ Rn}

Indeed

cone({(1, p) : p ∈ C⋆}) = {(λ, p) : p ∈ λC⋆, λ > 0}

= {(λ, p) : ⟨p, x⟩ ≥ λ, x ∈ C, λ > 0}

= {(λ, p) : ⟨p, µx⟩ ≥ λµ, x ∈ C, λ > 0, µ > 0}

= {(λ, p) : ⟨p, x⟩ ≥ λµ, x ∈ µC, λ > 0, µ > 0}

= {(λ, p) : ⟨(−λ, p), (µ, x)⟩ ≥ 0, x ∈ µC, λ > 0, µ > 0}

And, recalling that KL̂ = cone({(1, x) : x ∈ C}) one has that

cone({(1, p) : p ∈ C⋆}) =
{
(λ, p) : ⟨(−λ, p), (µ, x)⟩ ≥ 0, λ > 0, (µ, x) ∈ KL̂

}
And since K⋆

L̂
=
{
(λ, p) : ⟨(λ, p), (µ, x)⟩ ≥ 0, (µ, x) ∈ KL̂

}
, recalling that A : (λ, x) 7→ (−λ, x), one

has that

KV̂ = cone({(1, p) : p ∈ C⋆}) = A(K⋆
L̂
) ∩ {(λ, x) : λ > 0, x ∈ Rn}

Thus, it’s possible to recover the hypograph of the portfolio value function by applying a linear map

to the dual invariant cone (i.e. the dual of the hypograph of the invariant function, which is a convex

cone).

As mentioned at the beginning of this subsection, V̂ (·; 1) denotes the basic portfolio value function,

i.e. the portfolio value function associated to liquidity level 1. However, it’s possible to define the

portfolio value function associated to any liquidity level λ > 0 as

V̂ (p;λ) = inf
z∈λC

⟨p, z⟩ = −δ⋆(−p|λC)

But because of the positive-homogeneity of the portfolio value function this resembles to the left



CHAPTER 3. CONSTANT FUNCTION MARKET MAKERS 112

scalar multiplication (by λ > 0) of the basic portfolio value function, indeed

V̂ (p;λ) = inf
z∈λC

⟨p, z⟩

= inf
z∈C

⟨p, λz⟩

= λ inf
z∈C

⟨p, λz⟩

= (λV̂ )(p; 1)

Implying that the portfolio value function associated with any liquidity level λ > 0 is actually the

function induced by rescaling the range of the portfolio value function by factor λ > 0

3.2.3 Invariant function

As anticipated, the main properties of the invariant function L̂ are:

• L̂ : Rn
+ 7→ R+ n > 1 (non-negativity)

• a0 ∈ hyp(L̂), a1 ∈ hyp(L̂) =⇒ (1− λ)a0 + λa1 ∈ hyp(L̂) ∀λ ∈ [0, 1] (concavity)

• L̂ = cl(L̂) (closedness)

– ∃x ∈ Rn
+ : L̂(x) > −∞ and L̂(x) < ∞ ∀x ∈ Rn

+ (properness)

– lim supy→x L̂(y) = L̂(x) ∀x ∈ Rn
+ (upper semi-continuity)

• (L̂λ)(x) = L̂(x) ∀λ > 0 (positive homogeneity)

• x1 ⪯ x2 =⇒ L̂(x1) ≤ L̂(x2) (non-decreasingness)

• L̂(0) = 0 (origin vanishingness)

The central role of the invariant function is due to the fact that it embeds the entire mechanics of the

CFMM as a decentralized exchange of digital goods. Indeed, conceivable as a sort of utility function

for the CFMM, it disciplines the way of providing and withdrawing liquidity to and from the CFMM

as well as the trades performed by market agents against the pool of assets. The invariant function

is the concave function induced by the invariant cone. Indeed, as mentioned in the section dedicated

to the basic set of reachable reserves, calling KL̂ = cone({(1, x) : x ∈ C}), one has that

L̂(x) = sup
{
µ : (x, µ) ∈ KL̂

}
Noticeably, the invariant function shares the same properties of the portfolio value function, but this

is because of the similarity between the invariant cone KL̂ and the portfolio value cone KV̂ . Indeed,

both are closed convex cones containing the origin living in the non-negative orthant. Actually,

the similarities between such cones (which encode the same properties of the invariant function and

portfolio value function) follow from the fact that the convex sets generating such cones, which
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are respectively C and C⋆, have the same properties. Indeed, any non-empty unbounded closed

convex set not containing the origin living in the non-negative orthant is capable of generating

both the invariant cone and the portfolio value cone. However, if the final goal is to induce an

invariant function, the convex set of reference D is allowed to be bounded: however, such set will not

correspond to the basic set of reachable reserves since the upper-level set of the invariant function

at level one will be necessarily unbounded. More precisely, D will meet C for the “lower boundary

part”, i.e. for the basic set of efficient reserves, which corresponds to the set of minimal points of C

w.r.t of the non-negative orthant as proper cone of reference. An example of a bounded convex set

D capable of generating the invariant function is the Euclidean unit ball in R2 centered in the point

(1, 1)

D =
{
(ξ1, ξ2) :

√
(ξ1 − 1)2 + (ξ2 − 1)2 ≤ 1

}
Indeed, apart from unboundedness, D shares all the properties said for the basic set of reachable

reserves. Thus, it’s possible to create a cone which is not going to be exactly the hypograph of the

invariant function, but it’s still possible to induce a invariant function indeed:

L̂(x) = inf {λ : (λ, x) ∈ cone({(1, x) : x ∈ D})}

= inf {λ : λ > 0, x ∈ λD}

=
{
λ : λ > 0,

√
(ξ1 − λ)2 + (ξ2 − λ)2 ≤ λ

}
= inf

{
λ : λ > 0, λ2 − 2λ(ξ1 + ξ2) + ξ21 + ξ22 ≤ 0

}
= inf

{
λ : λ > 0, λ ∈

[
ξ1 + ξ2 −

√
2ξ1ξ2, ξ1 + ξ2 +

√
2ξ1ξ2

]}
= ξ1 + ξ2 +

√
2ξ1ξ2

Which indeed is a non-negative, non-decreasing, closed, origin vanishing, positive homogenous con-

cave function. Thus, one has that the basic set of reachable reserves is equal to

C =
{
(ξ1, ξ2) : ξ1 + ξ2 +

√
2ξ1ξ2 ≥ 1

}
Which of course is different from the original set D, even if they share the same lower boundary (i.e.

set of efficient reserves).

The invariant function embeds the scoring rule used by the CFMM conceived as AMM: indeed,

considering x0 ∈ Rn
+ as the vector of the current reserves of the CFMM, under the arbitrage free

assumption (so that x0 lies actually on the boundary of λC being the point of tangency between

λC and the supporting hyperplane having the vector of external prices p as normal vector) the

superdifferential ∂L̂(x0) contains the “implicit” marginal prices oracled by the CFMM according

to the current value of those reserves. Using the i-th asset as quote asset (where i ∈ [1, n]), the

marginal price function Ξ(·;x0, i) : ∂L̂(x0) → Rn−1
+ it evaluates a generic supergradient of the

invariant function (evaluating x0) and returns the vector of marginal prices of the other n− 1 assets
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expressed in terms of the i-th asset. Indeed, picking (ξ1, . . . , ξi, . . . , ξn) ∈ ∂L̂(x0) the marginal price

function corresponds to the following map

Ξ(·;x0, i) : (ξ1, . . . , ξi, . . . , ξn) ∈ ∂L̂(x0) 7→
(
ξ1
ξi
, . . . ,

ξn
ξi

)
The concavity of the invariant function ensures its superdifferentiability at any point x0 ∈ ri(dom(L̂))

(proposition (35)) and so, given any vector of current reserves x0, it’s always possible to apply the

marginal price function to obtain at least one vector of oracled prices. Moreover, it’s interesting

noticing that ∂L̂(0+) = Rn
+ implying that in presence of a CFMM that is about to be completely

drained in its reserves, the prices oracled by the CFMM are all the possible prices in nature (indeed,

in this context the set of reachable reserves corresponds to 0+C = Rn
+ and all the hyperplanes ranging

from the “vertical” to the “horizontal” one are supporting 0+C = Rn
+ at the origin). Thus, without

further specifications, a CFMM implementing an invariant function with the properties mentioned

above is always capable of oracling at least one marginal price vector of the n deposited assets but,

at the same time, oracling more than one marginal price vector could create confusion if the purpose

is also that one of importing price information from external markets. Indeed, an invariant function

might not be differentiable and this would cause disambiguation in correspondence of vector of current

reserves where the invariant function is not differentiable and the degree of disambiguation (i.e.

proliferation of multiple oracled prices) is directly proportional to the degree of non-differentiability

of the function in that point. Thus, to avoid disambiguation, differentiability is a desirable property

for invariant functions (even if it’s not strictly demanded). Recall that, being differentiable, it means

that

∃!x⋆ ∈ Rn : L̂(z) ≤ L̂(x0) + ⟨x⋆, z − x0⟩ ∀z ∈ dom(L̂)

or simply that ∂L̂(x) =
{
∇L̂(x)

}
∀x ∈ dom(L̂). In this context, the oracled marginal price will be

always unique and, under the arbitrage free assumption, it oracles the prices practiced by external

markets unambiguously.

3.2.4 Set of feasible trades

As anticipated, the main properties of the set of feasible trades T (x0) ⊂ Rn are:

• T (x0) ̸= ∅ (non-emptiness)

• T (x0) = cl(T (x0)) (closedness)

• y0 ∈ T (x0), y1 ∈ T (x0) =⇒ (1− λ)y0 + λy1 ∀λ ∈ [0, 1] (convexity)

• 0+T (x0) = Rn
+ (“upward” unboundedness)

• 0 ∈ T (x0) (origin included)
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• dim(T (x0)) ≥ 2 (at least two-dimensionality)

• T (x0) ∩ Rn
−− = ∅ (disjointedness from the negative orthant)

Most of the properties of the set of feasible trades are the same seen with the basic set of reachable

reserves. However, differently from C, T (x0) is not constrained to live in Rn
+ and, at the same time

0 ∈ T (x0). The reason for the first difference is due to the fact that negative entries of y ∈ T (x0)

corresponds to quantities received by the trader from the pool: thus, if T (x0) was enforced to live

in the non-negative orthant, there wouldn’t be any feasible trade in which the trader pulls out some

assets from the pool and so the CFMM would lose its function of decentralized exchange of digital

goods. On the other hand, the inclusion of the origin in such set is due to the fact the null trade is

always considered feasible, since there isn’t the risk of decreasing the utility of the CFMM expressed

in terms of liquidity units. Finally, disjointedness from the negative orthant follows from the fact

that otherwise traders will be allowed (and incentivized) to pull out assets from the pool without

the need of exchanging them with other assets.

However, on a geometrical perspective, the set of feasible trades corresponds to a simple “shift” of

the basic set of reachable reserves and, more precisely, it corresponds to the upper-level set at level

zero of the variation function of the invariant function parameterizing the current vector of reserves

x0 ∈ Rn
+. Of course, the set of feasible trades is strictly dependent on the local information about

the current vector of reserves deposited in the CFMM, because this vector encodes a certain liquidity

value and, at the same time, defines of the boundaries of the amounts which can be withdrawn from

the pool. This is the reason why, denoting C ⊂ Rn
+ as the basic set of reachable reserves, x0 ∈ Rn

+

it’s possible to define the set of feasible trades via the following set-valued notation:

T (x0) = C − x0

Indeed, this definition is simply mapping all the points of the set of reachable reserves in the contrar-

ian direction of the current vector of reserves x0, because traders are not allowed to pull out from

the pool more than what it’s currently available.

The introduction of a notation for the set of feasible trades allows to define more precisely the mean-

ing of sequentially feasible trades as stated in the definition of a path-independent CFMM. Indeed,

a vector (∆1, . . . ,∆m) ∈ Rn×m is said to be a vector of sequentially feasible trades if

∆i ∈ T

x0 +

i−1∑
j=1

∆j

 ∀i = 1, . . . ,m

implying that the i-th trade remains feasible even after performing all the previous i− 1 trades.

Another possible notation of the set of feasible trades is in terms of invariant function, which could

be considered as “the set of traders which doesn’t worsen” the utility of the CFMM expressed in
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liquidity terms. Thus, one has also

T (x0) =
{
y : L̂(x0 + y) ≥ L̂(x0)

}
Alternatively, one could use the concave variation function, i.e. the function induced by shifting the

hypograph of L̂ so that the point (x0, L̂(x0)) is mapped into the origin:

P (y;x0) = L̂(x0 + y)− L̂(x0)

This allows inducing the one-sided directional derivative of the invariant function, as well as the

directions in which the invariant function is non-decreasing (what was seen as recession cone with

convex function, with reversed meaning) and finally the set of feasible trades.

L̂′(x0; y) = lim
λ→0+

L̂(x0 + λy)− L̂(x0)

λ
= lim

λ→0+
(Pλ)(y;x0)

( ˆL0+)(y) = lim
λ→∞

L̂(x0 + λy)− L̂(x0)

λ
= lim

λ→∞
(Pλ)(y;x0)

Now it’s possible to characterize the upper-level sets at level zero of such functions recalling [Roc70]

that the one-sided directional derivative of a concave function is the concave support function of the

superdifferential of the function (evaluating x0 ∈ Rn), while the concave recession function is equal

to the concave support function of the effective domain of the concave conjugate.{
y : lim

λ→0+
(Pλ)(y;x0) ≥ 0

}
=
{
y : L̂′(x0; y) ≥ 0

}
=
{
y : −δ⋆(−y|∂L̂(x0)) ≥ 0

}
=
{
y : ⟨y, x⟩ ≥ 0, x ∈ ∂L̂(x0)

}
{y : P (y;x0) ≥ 0} = T (x0){

y : lim
λ→∞

(Pλ)(y;x0) ≥ 0

}
=
{
y : ( ˆL0+)(y) ≥ 0

}
=
{
y : −δ⋆(−y|dom(L̂⋆)) ≥ 0

}
=
{
y : ⟨y, x⟩ ≥ 0, x ∈ dom(L̂⋆)

}
= {y : ⟨y, x⟩ ≥ 0, x ∈ C⋆}

Noticeably,
{
y : ⟨y, x⟩ ≥ 0, x ∈ ∂L̂(x0)

}
is a polyhedron being the intersection of a collection of

half-spaces passing through the origin and indexed by the supergradients of the invariant function

evaluated at x0: if L̂ is differentiable, this resembles to a half-space supporting T (x0) at the origin

(since both include the origin). Moreover, under the arbitrage free assumption, the supergradient

oracles the external prices and if y is infinitesimal (i.e. lives in the neighborhood of 0), one has actu-

ally that y ∈ T (x0) and y ∈
{
y : ⟨y, x⟩ ≥ 0, x ∈ ∂L̂(x0)

}
. On the contrary, because of the properties

of C⋆, one has always that {y : ⟨y, x⟩ ≥ 0, x ∈ C⋆} = Rn
+ = 0+C that is the recession cone of the
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basic set of reachable reserves.

As mentioned in the subsection dedicated to the portfolio value function, it’s possible to characterize

the “optimal profit function” Π⊛ in terms of the set of feasible trades T (x0), indeed Π⊛(p;x0) =

δ⋆(p| − T (x0)). This function is called “arbitrage function” (denoted with arb(c)) in [ACD+23] and

it’s implicitly defined as the support function of T (x0): also in this case, the difference here is that

in this work it is taken the perspective of the pool and not of the trader, thus the positive entries

of y ∈ T (x0) are amounts spent by the arbitrageur (and not collected, as in [ACD+23]). One could

introduce the trading cone as

KT (x0) = cone({(1, x) : x ∈ T (x0)})

So that, recalling proposition (34), one has actually

Π⊛(p;x0) = δ⋆(p| − T (x0)) = inf {λ : (λ, p) ∈ K⋆
T (x0)}

Meaning that an arbitrageur could have a screener of CFMM pools so that, provided external price in-

formation p0 ∈ Rn
+ and the current vector of reserves x0 ∈ Rn

+, she could spot arbitrage opportunities

by evaluating persistently the optimal profit function and trigger an arbitrage trade if Π⊛(p0;x0) > 0.

Besides the induction of the optimal profit function, the set of feasible trades T (x0) is useful for

visualizing the positive externalities generated by more LPs depositing assets to the pool. Indeed, as

x0 increases (so that the variation of L̂(x0) is non-negative because of the non-decreasing behavior

of L), on a graphical perspective the set T (x0) gets “wider” in the sense that, fixing a certain amount

deposited to the pool it’s possible to pull out a higher amount of assets from the pool.

To appreciate this fact on a quantitative perspective, taking advantage of the fact that dim(T (x0)) ≥

2 it’s possible to consider T (x0) as the epigraph of a certain closed convex function called get-amount-

out function Ω : Rn−1 → R which is very useful for quoting trades (as always, positive entries are

paid by traders while negative quantities are collected by the trader)

Ω(x;x0) = inf {µ : (x, µ) ∈ T (x0)}
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3.3 Designing a CFMM

The previous subsection defined the core components of a CFMM and their properties with some

extensions as hints for understanding how they are all related together. This subsection instead

introduces some propositions which, as a whole, provide a toolkit for designing CFMMs so that,

starting from one component all the other core components are immediately induced.

C

V̂ L̂

T (x0)

C V̂

• L̂(x) = sup {λ > 0 : x ∈ λC}

• V̂ (p; 1) = −δ⋆(−p|C)

• T (x0) = C − x0

• C = dom(V̂ ⋆)

• L̂(x) = infp≻0
⟨p,x⟩
V̂ (p;1)

• T (x0) =
{
y : V̂ ⋆ (x0 + y) ≥ 0

}

L̂ T (x0)

• C =
{
x : L̂(x) ≥ 1

}
• V̂ (p; 1) = infx≻0

⟨p,x⟩
L̂(x)

• T (x0) =
{
y : L̂(x0 + y)− L̂(x0) ≥ 0

}
• C = x0 + T (x0)

• L̂(x) = sup {λ > 0 : x ∈ λ(x0 + T (x0))}

• V̂ (p; 1) = −δ⋆(−p|x0 + T (x0))
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3.3.1 Inducing core components from C

Proposition 46. Let C ⊂ Rn be a basic set of reachable reserves of a CFMM. Then, calling

KL̂ = cone({(1, x) : x ∈ C}), the invariant function L̂ : Rn
+ → R+ of that CFMM is equal to

L̂(x) = sup
{
λ : (λ, x) ∈ KL̂

}
In other words, L̂ is the positive homogenous concave function generated by f̂(x) = −δ(x|C) + 1

Proof. Being a closed convex cone containing the origin fully included in Rn
+, KL̂ is complaint

to be the hypograph of a closed, concave, non-negative, non-decreasing, origin vanishing, positive

homogenous concave function, i.e. an invariant function. Noticeably, the concave function induced

by cone({(1, x) : x ∈ C}) is equal to the concave function induced by the Conic hull of the hypograph

of another concave function f̂ , implying that the induced function is “generated” by f̂ according to

proposition (29). By picking

f̂(x) = −δ(x|C) + 1 =

1 x ∈ C

−∞ x /∈ C

one has that

cone(hyp(f̂)) =
⋃
λ≥0

{
(µ, x) : (µ, x) ∈ λhyp(f̂)

}
=
{
(µ, x) : ∃λ ≥ 0, (µ, x) ∈ λhyp(f̂)

}
= {(µ, x) : ∃λ ≥ 0, x ∈ λC, λ ≥ µ}

Implying that

sup
{
µ : (µ, x) ∈ cone(hyp(f̂))

}
= sup {µ : ∃λ ≥ 0, x ∈ λC, λ ≥ µ}

= sup {λ : ∃λ ≥ 0, x ∈ λC}

= sup

λ : (λ, x) ∈
⋃
λ≥0

{(λ, x) : x ∈ λC}


= sup {λ : (λ, x) ∈ cone({(1, x) : x ∈ C})}

= sup
{
λ : (λ, x) ∈ KL̂

}
And this means that

L̂ = sup
λ>0

(f̂λ)(x)

where f̂(x) = −δ(x|C) + 1

Proposition 47. Let C ⊂ Rn be a basic set of reachable reserves of a CFMM.

Let KL̂ = cone({(1, x) : x ∈ C}) and let C⋆ = {p : ⟨p, x⟩ ≥ 1, x ∈ C}.
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Then, calling KV̂ = cone({(1, x) : x ∈ C⋆}), the basic portfolio value function V̂ : Rn
+ → R+ of that

CFMM is equal to

V̂ (p; 1) = sup
{
λ : (λ, p) ∈ KV̂

}
In other words, V̂ is the positive homogenous concave function generated by ĝ(p) = −δ(p|C⋆) + 1.

Moreover, considering the linear map A : (λ, x) 7→ (−λ, x), one has that

KV̂ = A(K⋆
L̂
) ∩ {(λ, x) : λ > 0, x ∈ Rn}

Proof. The first part of the proposition is analogous to proposition (46) since invariant function and

portfolio value function share the same properties encoded in their respective hypographs. However,

for the second part, as seen in the subsection dedicated to the basic portfolio value function, one has

that

cone({(1, p) : p ∈ C⋆}) = {(λ, p) : p ∈ λC⋆, λ > 0}

= {(λ, p) : ⟨p, x⟩ ≥ λ, x ∈ C, λ > 0}

= {(λ, p) : ⟨p, µx⟩ ≥ λµ, x ∈ C, λ > 0, µ > 0}

= {(λ, p) : ⟨p, x⟩ ≥ λµ, x ∈ µC, λ > 0, µ > 0}

= {(λ, p) : ⟨(−λ, p), (µ, x)⟩ ≥ 0, x ∈ µC, λ > 0, µ > 0}

And, recalling that KL̂ = cone({(1, x) : x ∈ C}) one has that

cone({(1, p) : p ∈ C⋆}) =
{
(λ, p) : ⟨(−λ, p), (µ, x)⟩ ≥ 0, λ > 0, (µ, x) ∈ KL̂

}
And since K⋆

L̂
=
{
(λ, p) : ⟨(λ, p), (µ, x)⟩ ≥ 0, (µ, x) ∈ KL̂

}
, recalling that A : (λ, x) 7→ (−λ, x), one

has that

KV̂ = cone({(1, p) : p ∈ C⋆}) = A(K⋆
L̂
) ∩ {(λ, x) : λ > 0, x ∈ Rn}

Proposition 48. Let C ⊂ Rn be a basic set of reachable reserves of a CFMM and let C⋆ =

{p : ⟨p, x⟩ ≥ 1, x ∈ C}. Then, the basic portfolio value function V̂ : Rn
+ → R+ and the invariant

function L̂ : Rn
+ → R+ of that CFMM are equal to

V̂ (p; 1) = sup {λ > 0 : p ∈ λC⋆} = −δ⋆(−p|C)

L̂(x) = sup {λ > 0 : x ∈ λC} = −δ⋆(−x|C⋆)

Moreover, one has that

V̂ (p; 1)L̂(x) ≤ ⟨p, x⟩ ∀(p, x) ∈ R2n
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Proof. The proof here is analogous to the proof of proposition (30). Indeed, the goal is to show

that the gauge-like function sup {λ > 0 : x ∈ λC} is actually the negative of the support function of

C⋆. This underlines a relationship between C and C⋆ analogous to the “polar” relationship between

C and C◦. Proposition (46) showed that L̂ is actually the positive homogenous concave function

generated by f̂(x) = −δ(x|C)+1 and, following the proof of proposition (30), its negative is expected

to be the support function of the symmetric reflection across the origin of the upper-level set at level

zero
{
x⋆ : f̂⋆(x⋆) ≥ 0

}
where f̂⋆ denotes the concave conjugate of f̂ :

f̂⋆(x⋆) = inf
x∈Rn

⟨x, x⋆⟩ − f̂(x) = inf
x∈Rn

⟨x, x⋆⟩+ δ(x|C)− 1

= −1− sup
x∈Rn

⟨x,−x⋆⟩ − δ(x|C)

= −1− δ⋆(−x⋆|C)

This implies that the upper-level set of f̂⋆ at level zero is actually C⋆, indeed{
x⋆ : f̂⋆(x⋆) ≥ 0

}
= {x⋆ : −1− δ⋆(−x⋆|C) ≥ 0}

=

{
x⋆ : inf

x∈C
⟨x, x⋆⟩ ≥ 1

}
= {x⋆ : ⟨x, x⋆⟩ ≥ 1, x ∈ C}

=: C⋆

And, as anticipated, since L̂(x) = supλ>0(f̂λ)(x) according to proposition (46) one has that

L̂(x) = −δ⋆
(
x⋆| −

{
x⋆ : f̂⋆(x⋆) ≥ 0

})
= −δ⋆(x⋆| − C⋆) = −δ⋆(−x⋆|C⋆)

The proof for the basic portfolio value function moves from proposition (47) and it is analogous to

the proof just shown for the invariant function: the only thing to be proved is that C⋆⋆ = C, which

in the case of polar set C◦ it is true only if C contains the origin (recall in fact that C is closed by

definition of basic set of reachable reserves).

C⋆⋆ = {x : ⟨x, x⋆⟩ ≥ 1, x⋆ ∈ C⋆}

= {x : −δ⋆(−x⋆|C⋆) ≥ 1}

= {x : sup {λ ≥ 0 : x ∈ λC} ≥ 1}

= {x : ∃λ ≥ 1, x ∈ λC}

= C

Indeed, since 0+C = Rn
+ and C ⊂ Rn

+, one has that C ⊃ λC ∀λ > 1 (because λC means summing C

to itself λ times and C ⊂ 0+C). Indeed, one has that

∃λ ≥ 1 : x ∈ λC =⇒ x ∈ C
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Now that it’s proved that C⋆⋆ = C, one has that

sup {λ > 0 : p ∈ λC⋆} = −δ⋆(−p|C⋆⋆) = −δ⋆(−p|C)

Since L̂ is the concave function induced by KL̂ = cone({(1, x) : x ∈ C}) while, calling A : (λ, x) 7→

(−λ, x), V̂ is the concave function induced by KV̂ = cone({(1, p) : p ∈ C⋆}) = A(K⋆
L̂
)∩{(λ, x) : λ > 0, x ∈ Rn}

(proposition (47)), one can apply proposition (33) to conclude that

V̂ (p; 1)L̂(x) ≤ ⟨p, x⟩ ∀(p, x) ∈ R2n

Proposition 49. Let C ⊂ Rn be a basic set of reachable reserves of a CFMM. Let x0 ∈ cl(C)\ri(C)

be the vector of current reserves in the CFMM. Then, the set of feasible trades T (x0) is equal to

T (x0) = C − x0

Proof. The fact that x0 ∈ cl(C) \ ri(C) implies implicitly the arbitrage-free assumption (indeed,

an arbitrage profit it’s possible if x0 ∈ ri(C)). Thus, because of the arbitrage-free assumption, it

can be safely argued that the current liquidity level is equal to one, i.e. L̂(x0) = 1. Analogously,

if x0 ∈ cl(λC) \ ri(λC) for some λ ≥ 0, according to the arbitrage-free assumption one has that

L̂(x0) = λ.

The feasibility condition implies that the trading activity maps the current vector of reserves x0 to

a new vector of reserves x0 + y belonging to any set λC with λ ≥ L̂(x0) = 1 (so that the utility

of the pool, measured in liquidity units λ, does not decrease). However, as remIndeed in the proof

of proposition (48), since 0+C = Rn
+ and C ⊂ Rn

+, one has that L̂(x0)C ⊃ λC ∀λ > L̂(x0) = 1,

meaning that the set of feasible trades (i.e. the set of y such that the feasibility condition holds) can

be written as

T (x0) = {y : x0 + y ∈ C}

By calling z = x0 + y, one has that

T (x0) = {z − x0 : z ∈ C}

= C − x0

Moreover, since x0 ∈ C, this notation shows immediately that 0 ∈ T (x0) as stated in the definition

of set of feasible trades.

3.3.2 Inducing core components from V̂

Proposition 50. Let V̂ : Rn
+ → R+ be a portfolio value function of a CFMM. Then, calling V̂ ⋆ the

concave conjugate of V̂ , the basic set of reachable reserves C ⊆ is equal to

C = dom(V̂ ⋆)
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Analogously, considering L̂ : Rn
+ → R+ as the invariant function of the CFMM and calling L̂⋆ the

concave conjugate of L̂, one has that

C⋆ = dom(L̂⋆)

Proof. In general, since δ⋆(x⋆|C) = supx∈C⟨x, x⋆⟩, one has that

x ∈ C =⇒ δ⋆(x⋆|C) ≥ ⟨x, x⋆⟩ ∀x⋆ ∈ Rn

And this can be interpreted as the set condition of C (recalling that C = cl(C) by definition) since

C = {x : δ⋆(x⋆|C) ≥ ⟨x, x⋆⟩, x⋆ ∈ Rn}

And from here it’s possible to recover C as the effective domain of the indicator function of C (which

is indeed the Fenchel conjugate of the support function of C)

C = {x : −⟨x, x⋆⟩+ δ⋆(x⋆|C) ≥ 0, x⋆ ∈ Rn}

=

{
x : sup

x⋆∈Rn

⟨x, x⋆⟩ − δ⋆(x⋆|C) ≤ 0

}
= {x : δ(x|C) ≤ 0}

= dom(δ(·|C))

On the contrary, since −δ⋆(−x⋆|C) = infx∈C⟨x, x⋆⟩, one has that

x ∈ C =⇒ −δ⋆(−x⋆|C) ≤ ⟨x, x⋆⟩ ∀x⋆ ∈ Rn

Implying that the set condition becomes

C = {x : −δ⋆(−x⋆|C) ≤ ⟨x, x⋆⟩, x⋆ ∈ Rn}

According to proposition (48) one has that V (p; 1) = −δ⋆(−p|C), implying that the set C can be

rewritten as

C =
{
x : V̂ (p; 1) ≤ ⟨x, p⟩, p ∈ Rn

+

}
And this set can be characterized in terms of the concave conjugate of V̂ since

C =
{
x : V̂ (p; 1)− ⟨x, p⟩ ≤ 0, p ∈ Rn

+

}
=

{
x : inf

p∈Rn
+

⟨x, p⟩ − V̂ (p; 1) ≥ 0,

}
=
{
x : V̂ ⋆(x) ≥ 0,

}
= dom(V̂ ⋆)

Indeed, since V̂ is the negative of a support function, its concave conjugate V̂ ⋆ turns out to be

the negative of a indicator function (for Uniswap V2 this can be proved via the arithmetic mean-

geometric mean inequality).
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The proof for the invariant function is analogous since L̂(x) = −δ⋆(−x|C⋆) = infp∈C⋆⟨x, x⋆⟩ implying

that

C⋆ =
{
p : L̂(x) ≤ ⟨x, p⟩, x ∈ Rn

+

}
Which leads to

C⋆ = dom(L̂⋆)

An alternative proof could be based on interpreting L̂(x) as the negative of the support function of

−C⋆ (i.e. L̂(x) = −δ⋆(x| − C⋆)) so that it’s possible to recover −C⋆ as

−C⋆ =
{
p : ⟨x, p⟩ ≤ −L̂(x), x ∈ Rn

}
Meaning that

−(−C⋆) = C⋆ =
{
−p : ⟨x, p⟩ ≤ −L̂(x), x ∈ Rn

}
=
{
p : ⟨x,−p⟩ ≤ −L̂(x), x ∈ Rn

}
=
{
p : ⟨x, p⟩ − L̂(x) ≥ 0, x ∈ Rn

}
=

{
p : inf

x∈Rn
⟨x, p⟩ − L̂(x) ≥ 0

}
=
{
p : L̂⋆(p) ≥ 0

}
= dom(L̂⋆)

Proposition 51. Let V̂ : Rn
+ → R+ be a portfolio value function of a CFMM. Then, the invariant

function L̂ : Rn
+ → R+ of that CFMM is equal to

L̂(x) = inf
p≻0

⟨p, x⟩
V̂ (p; 1)

Proof. The “reverse-polar” relationship between C and C⋆, which are the convex sets generating

in higher dimension the hypographs of L̂ and V̂ respectively, lead to the inequality presented in

proposition (48):

V̂ (p; 1)L̂(x) ≤ ⟨p, x⟩ ∀(p, x) ∈ R2n

Thus, because of the non-negativity of V̂ (p; 1) for p ∈ dom(V̂ ) = Rn
+ (in fact, since V̂ is defined in

the extended value sense, p /∈ Rn
+ =⇒ V̂ (p; 1) = −∞), one can write

L̂(x) ≤ ⟨p, x⟩
V̂ (p; 1)

∀(p, x) ∈ Rn
+ × Rn

Thus, recalling that hyp(L̂) is

hyp(L̂) =
{
(λ, x) : λ ≤ L̂(x)

}



CHAPTER 3. CONSTANT FUNCTION MARKET MAKERS 125

One can actually rewrite it as

hyp(L̂) =

{
(λ, x) : λ ≤ ⟨p, x⟩

V̂ (p; 1)
, p ∈ Rn

++

}

Setting p ∈ Rn
++ (which is equivalent to the use of the generalized inequality p ≻ 0 setting Rn

++ as

proper cone of reference) makes sure that V̂ (p; 1) > 0, so that the induced function L(x) takes finite

values, indeed

L̂(x) = sup
{
λ : (λ, x) ∈ hyp(L̂)

}
= sup

{
λ : λ ≤ ⟨p, x⟩

V̂ (p; 1)
, p ≻ 0

}

= inf
p≻0

⟨p, x⟩
V̂ (p; 1)

Proposition 52. Let V̂ : Rn
+ → R+ be a portfolio value function of a CFMM. Let x0 ∈ Rn

+ be the

vector of current reserves in the CFMM living on the relative boundary of the unknown basic set of

reachable reserves. Then, the set of feasible trades T (x0) is equal to

T (x0) = dom(V̂ ⋆)− x0 =
{
y : V̂ ⋆ (x0 + y) ≥ 0

}
Proof. According to the feasibility condition, the trading activity is not allowed to lower the liquidity

level of the pool. Recalling proposition (49), when x0 ∈ C the set of feasible trades is T (x0) = C−x0.

Analogously, picking a generic liquidity level λ > 0 so that x0 ∈ λC, one has that

T (x0) = λC − x0

As discussed in the proof of proposition (49), assuming that x0 is living on the relative boundary

of the unknown set of reachable reserves implies that the arbitrage-free assumption is holding, that

the current liquidity level is λ = L(x0) and it is equal to one since x0 belongs to the basic set of

reachable reserves

T (x0) = C − x0

Applying proposition (50) one has that

C = dom(V̂ ⋆) =
{
x : V̂ ⋆(x) ≥ 0

}
And plugging this notation in the previous one one has that

T (x0) = dom(V̂ ⋆)− x0
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Which can be expanded into

T (x0) =
{
x : V̂ ⋆(x) ≥ 0

}
− x0

=
{
x : V̂ ⋆ (x) ≥ 0

}
− x0

=
{
x− x0 : V̂ ⋆ (x) ≥ 0

}
=
{
y : V̂ ⋆ (x0 + y) ≥ 0

}

3.3.3 Inducing core components from L̂

Proposition 53. Let L : Rn
+ → R+ be an invariant function of a CFMM. Then, the basic set of

reachable reserves C ⊆ Rn is equal to

C =
{
x : L̂(x) ≥ 1

}
Moreover, considering V̂ : Rn

+ → R+ as the portfolio value function of the CFMM, one has that

C⋆ =
{
p : V̂ (p; 1) ≥ 1

}
Proof. C is the upper-level set of the invariant function at liquidity level one since the hypograph

of L̂ is the invariant cone KL̂, i.e. the Conic hull of {(1, x) : x ∈ C} which makes L̂ a gauge-like

function. Indeed, the set of reachable reserves associated with any liquidity level λ = L̂(x0) ≥ 0 can

be recovered as

λC =
{
x : L̂(x) ≥ λ

}
One could characterize the invariant cone both as the Conic hull of {(1, x) : x ∈ C}

KL̂ = {(λ, x) : λ ≥ 0, x ∈ λC}

But also as the hypograph of L̂:

KL̂ =
{
(λ, x) : λ ≤ L̂(x)

}
Thus

{(λ, x) : λ ≥ 0, x ∈ λC} =
{
(λ, x) : λ ≤ L̂(x)

}
The first notation shows explicitly that one can recover {(1, x) : x ∈ C} by taking a cross-section of

the invariant cone, intersecting it with the hyperplane {(1, x) : x ∈ Rn} indeed

KL̂ ∩ {(1, x) : x ∈ Rn} = {(λ, x) : λ ≥ 0, x ∈ λC} ∩ {(1, x) : x ∈ Rn}

= {(1, x) : x ∈ C}
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Which implies that

{(1, x) : x ∈ C} =
{
(λ, x) : λ ≤ L̂(x)

}
∩ {(1, x) : x ∈ Rn}

=
{
(1, x) : 1 ≤ L̂(x)

}
Meaning that

C =
{
x : L̂(x) ≥ 1

}
The proof for C⋆ is analogous recalling that KV̂ is both the Conic hull of {(1, p) : p ∈ C⋆} and the

hypograph of V̂ .

Proposition 54. Let L : Rn
+ → R+ be an invariant function of a CFMM. Then, the portfolio value

function V̂ : Rn
+ → R+ of that CFMM is equal to

V̂ (p; 1) = inf
x≻0

⟨p, x⟩
L̂(x)

Proof. Analogous to proposition (51)

Proposition 55. Let L : Rn
+ → R+ be an invariant function of a CFMM. Let x0 ∈ Rn

+ be the vector

of current reserves in the CFMM living on the relative boundary of the unknown set of reachable

reserves at some liquidity level λ > 0. Then, under the arbitrage-free assumption, the set of feasible

trades T (x0) is equal to

T (x0) =
{
y : L̂(x0 + y) ≥ L̂(x0)

}
Or alternatively, using the variation function P (y;x0) = L̂(x0 + y)− L̂(x0)

T (x0) = {y : P (y;x0) ≥ 0}

Proof. As discussed in the proof of proposition (52), picking λ > 0 so that x0 ∈ λC, one has that

T (x0) = λC − x0

The arbitrage-free assumption makes sure that x0 ∈ cl(λC) \ ri(λC) so that λ = L̂(x0) (indeed, if

x0 ∈ ri(λC), an arbitrage is possible and λ < L̂(x0)). This implies that under the arbitrage-free

assumption the set of feasible trades can be rewritten as

T (x0) = L̂(x0)C − x0

Differently from proposition (52), here L̂(x0) is not necessarily equal to one because x0 is said to

be on the relative boundary of the unknown set of reachable reserves at some liquidity level λ > 0

which is not necessarily equal to one (in this case, the set of reachable reserves would be equal to

the basic set of reachable reserves). Now, applying proposition (53) one has that

L̂(x0)C =
{
y : L̂(y) ≥ L̂(x0)

}
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Plugging this notation inside the previous one, one has that

T (x0) =
{
x : L̂(x) ≥ L̂(x0)

}
− x0

=
{
x− x0 : L̂(x) ≥ L̂(x0)

}
=
{
y : L̂(y + x0) ≥ L̂(x0)

}
Trivially, defining P (y;x0) = L̂(y + x0)− L̂(x0), one has that

T (x0) =
{
y : L̂(y + x0) ≥ L̂(x0)

}
=
{
y : L̂(y + x0)− L̂(x0) ≥ 0

}
= {y : P (y;x0) ≥ 0}

3.3.4 Inducing core components from T (x0)

Proposition 56. Let x0 ∈ Rn
+ be the vector of current reserves in a CFMM living on the relative

boundary of the unknown basic set of reachable reserves. Let T (x0) be the set of feasible trades.

Then, the basic set of reachable reserves C ⊆ Rn is equal to

C = x0 + T (x0)

Proof. Trivial from proposition (49)

Proposition 57. Let x0 ∈ Rn
+ be the vector of current reserves in a CFMM living on the relative

boundary of the unknown basic set of reachable reserves. Let T (x0) be the set of feasible trades.

Then, the invariant function L̂ : Rn
+ → R+ of that CFMM is equal to

L̂(x) = sup {λ > 0 : x ∈ λ(x0 + T (x0))}

Proof. According to proposition (56), it’s possible to define the invariant cone as

KL̂ = {(λ, x) : λ ≥ 0, x ∈ λ(x0 + T (x0))}

And, since this cone is the hypograph of L̂, according to proposition (46) one has that

L̂(x) = sup {λ > 0 : x ∈ λ(x0 + T (x0))}

Proposition 58. Let x0 ∈ Rn
+ be the vector of current reserves in a CFMM living on the relative

boundary of the unknown basic set of reachable reserves. Let T (x0) be the set of feasible trades.

Then, the basic portfolio value function V̂ : Rn
+ → R+ of that CFMM is equal to

V̂ (p; 1) = −δ⋆(−p|x0 + T (x0))

Proof. Trivial by applying proposition (56) and recalling proposition (48)
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3.3.5 Equivalent CFMMs

In [AC20] the invariant function is characterized as non-negative, non-decreasing, origin-vanishing

quasiconcave function ϕ̂ because this ensures that its upper-level sets behave like sets of reachable

reserves. At the same time, starting from ϕ̂, it is said that every quasiconcave function obtained

from ĝ = h◦ ϕ̂, where h is a non-decreasing transformation, is an equivalent CFMM in the sense that

the upper-level sets of ĝ are proportional to those of ϕ̂. This means that the set of reachable reserves

induceable from ĝ are equal to those induceable from ϕ̂ at a different liquidity level with constant

proportionality. This creates an “equivalence” between ĝ and ϕ̂ as invariant functions because there

won’t be any difference in the mechanics of the CFMM by picking one or the other.

Adding positive-homogeneity to the characterization of invariant functions reduces ambiguity in

defining the class of equivalent CFMMs. Indeed, one could map each non-negative, non-decreasing,

origin-vanishing quasiconcave function to a precise invariant function as defined in this work. This

means that one could consider the set of invariant functions as index set of a collection of sets where

each indexed set corresponds to a class of non-negative, non-decreasing, origin-vanishing quasicon-

cave functions which are equivalent if deployed as invariant functions for a CFMM.

Proposition 59 (Uniqueness of the invariant function). Let ϕ̂ be any non-negative, non-decreasing,

origin-vanishing quasiconcave function. Then, given a certain k > 0, there exist a unique invariant

function L̂ : Rn
+ → R+ such that, calling D =

{
x : ϕ̂(x) ≥ 1

}
and C =

{
x : L̂(x) ≥ 1

}
, one has that

D = kC

Implying that

KL̂ = cone({(1, x) : x ∈ C}) = cone({(k, x) : x ∈ D})

Or, alternatively, that

L̂(x) = k sup {λ > 0 : x ∈ λD}

Proof. Because of quasiconcavity, the upper-level set D =
{
x : ϕ̂(x) ≥ 1

}
is a convex set and the

fact that ϕ̂ is non-negative and non-decreasing makes D a possible set of reachable reserves. On a

geometrical perspective, it’s always possible to recover D as a cross-section at level one of the cone

Kφ̂ = {(λ, x) : λ > 0, x ∈ λD} ⊂ Rn+1. The positive-homogenous concave function induced by Kφ̂

is equal to

φ̂(x) = sup {λ > 0 : x ∈ λD}

Fixing a certain k > 0, one can define

C =
1

k
D



CHAPTER 3. CONSTANT FUNCTION MARKET MAKERS 130

So that φ̂(x) can be rewritten as

φ̂(x) = sup {λ > 0 : x ∈ λkC}

= sup

{
λ

k
> 0 : x ∈ λC

}
=

1

k
sup {λ > 0 : x ∈ λC}

By calling L̂(x) = sup {λ > 0 : x ∈ λC}, one has that C =
{
x : L̂(x) ≥ 1

}
and one can rewrite the

previous notation as

φ̂(x) =
L̂(x)

k

Or alternatively

L̂(x) = kφ̂(x) = k sup {λ > 0 : x ∈ λD}

The same reasoning can be applied to portfolio value functions as well sharing the same proper-

ties of invariant functions. Indeed, applying the toolkit presented in the previous subsection one

could design a CFMM starting from the portfolio value function passively replicated by liquidity

providers rather than starting from the invariant function. However, every “equivalent” portfolio

value function will correspond to the same positive-homogeneous invariant function at a different

liquidity level. In other words, one could design a non-negative, non-decreasing, quasiconcave func-

tion of price describing the total value of the assets deposited on the pool at every price level which

could be achieved once that the CFMM reaches a sufficiently large liquidity level according to the

corresponding positive-homogeneous portfolio value function

Proposition 60 (Uniqueness of the invariant function). Let ϕ̂ be any non-negative, non-decreasing,

origin-vanishing quasiconcave function. Then, given a certain k > 0, there exist a unique basic port-

folio value function V̂ : Rn
+ → R+ such that, calling D =

{
p : ϕ̂(p) ≥ 1

}
and C⋆ =

{
p : V̂ (p; 1) ≥ 1

}
,

one has that

D = kC⋆

Implying that

KV̂ = cone({(1, p) : p ∈ C⋆}) = cone({(k, p) : p ∈ D})

Or, alternatively, that

V̂ (p; 1) = k sup {λ > 0 : p ∈ λD}

Proof. Analogous to proposition (59)
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Defining ϕ̂ : Rn
+ → Rn as a generic non-negative, non-decreasing, origin-vanishing quasiconcave func-

tion, proposition (59) allows to characterize the collection of equivalent invariant functions (indexed

by a generic positive-homogenous invariant function L̂i : Rn
+ → R+) as

EL̂i
=
{
ϕ : ∃k > 0

{
x : ϕ̂(x) ≥ 1

}
= k

{
x : L̂(x) ≥ 1

}}
Thus, given a certain positive-homogenous invariant function L̂0, picking ϕ1 ∈ EL̂0

or ϕ2 ∈ EL̂0
is

totally equivalent in the sense that the upper-level sets of ϕ1 and ϕ2 are proportional to each other

being different cross-sections of the same invariant cone KL̂0
(i.e. hyp(L̂0)).

In general, given ϕ ∈ EL̂0
, proposition (59) suggests that the the most straightforward way for recov-

ering the associated positive-homogenous invariant function L̂0 is to induce a concave function from

the Conic hull of {(1, x) : x ∈ D}, where D is the upper-level set of ϕ at level one, and to remove

from the induced function the positive rescaling factor k.

At the same time, defining K the set of non-negative, non-decreasing, origin-vanishing, closed,

positive-homogenous concave functions (which are not simply proportional), one can define the

collection of invariant functions as {
EL̂i

: L̂i ∈ K
}

Since invariant functions and portfolio value functions share the same properties, one could overwrite

the notation just used for portfolio value functions as well, so that the set of equivalent portfolio

value functions can be defined as

EV̂i
=
{
ϕ : ∃k > 0

{
p : ϕ̂(p; 1) ≥ 1

}
= k

{
p : V̂ (p; 1) ≥ 1

}}
And the collection of portfolio value functions as{

EV̂i
: V̂i ∈ K

}
3.3.6 Impermanent loss

For liquidity providers, depositing assets on a path-independent CFMM implies inevitably the repli-

cation of a concave portfolio value function. The concave nature of the replicated payoff isn’t desirable

for liquidity providers because it implies that the portfolio value function is sub-linear. This means

that, in the long run, the portfolio value function will grow slower and decrease faster than the linear

growth and decay of the constant portfolio induced by naive holding of the assets. This is explained

by the concavity of the portfolio value function but it can be intuitively understood from the fact

that arbitrageurs and traders in general have the incentive to pull out from the pool the most ex-

pensive asset and to deposit the cheapest one according to the price practiced by external markets.

For liquidity providers this means that the exposure of their portfolio is marginally increasing on the

worst performing assets and marginally decreasing on the best performing ones. This phenomenon is
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called impermanent loss and it is a typical argument in favor of the “inefficiency” related to liquidity

provisioning. Practitioners usually refer to the impermanent loss formula as the relative performance

of the portfolio value function of the CFMM benchmarked against the constant portfolio induced

by naive holding of the assets. This formula can be induced directly from proposition (48) recalling

that

V̂ (p;λ) = −δ⋆(−p|λC) = inf
x∈λC

⟨x, p⟩

Implying that

x0 ∈ λC =⇒ V̂ (p;λ) ≤ ⟨x0, p⟩ ∀p ∈ Rn

Which, recalling that ⟨x0, p⟩ is non-negative since both reserves and prices are non-negative, one can

actually rewrite the expression as

x0 ∈ λC =⇒ V̂ (p;λ)

⟨x0, p⟩
− 1 ≤ 0 ∀p ∈ Rn

+

One could call I(p;x0) = V̂ (p;λ)
⟨x0,p⟩ − 1 the impermanent loss function which, defining intuitively

V̂N (p;x0) = ⟨p, x0⟩ as the portfolio value function associated with the naive holding of the asset, can

be rewritten as the relative performance of the portfolio value function of the CFMM benchmarked

against the constant portfolio induced by naive holding of the assets:

I(p;x0) =
V̂ (p;λ)

⟨x0, p⟩
− 1 =

V̂ (p;λ)− V̂N (p;x0)

V̂N (p;x0)

The major property of the impermanent loss function is that

x0 ∈ λC =⇒ I(p;x0) ∈ [−1, 0] ∀p ∈ Rn
+

Indeed, proposition (48) describes the non-positivity of I(p;x0) when x0 ∈ λC while the infimum is

reached when p → 0+ or when p → ∞: because of concavity, as p → 0+ V̂ (p; 1) approaches zero

faster than ⟨x0, p⟩ while the latter diverges to infinity faster than the former as p → ∞. Of course,

as I(p;x0) remains in the neighborhood of zero, the opportunity-cost suffered by liquidity providers

is neglectable. However, as I(p;x0) tends to −1, the opportunity-cost suffered by liquidity providers

becomes more and more relevant.

3.4 Designing Uniswap V2

A practical example of the toolkit presented in this section is the design of Uniswap V2. This

is one of the most famous examples of Constant Function Market Makers which implements as

invariant function the constant product of the reserves of a pair of assets deposited on the pool

[Ada21] [AZR20]. Thus, Uniswap V2-like pools allows to exchange a pair of assets per-pool using as

invariant function

ϕ̂(ξ1, ξ2) = ξ1ξ2
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Thus, one could define D = {(ξ1, ξ2) : ξ1ξ2 ≥ 1, ξ1 > 0} ⊂ R2
+ and, for a generic λ > 0, one has

λD = {(λξ1, λξ2) : ξ1ξ2 ≥ 1, ξ1 > 0}

=

{
(ξ1, ξ2) :

ξ1
λ

ξ2
λ

≥ 1,
ξ1
λ

> 0

}
=
{
(ξ1, ξ2) : ξ1ξ2 ≥ λ2, ξ1 > 0

}

this is useful for generating a convex cone Kϕ̂ ⊂ Rn
+ in higher dimension:

Kϕ̂ = cone({(1, ξ1, ξ2) : (ξ1, ξ2) ∈ D})

= {(λ, ξ1, ξ2) : λ > 0, (ξ1, ξ2) ∈ λD}

=
{
(λ, ξ1, ξ2) : λ > 0, ξ1ξ2 ≥ λ2, ξ1 > 0

}
(recall that λ > 0)

=
{
(λ, ξ1, ξ2) : λ > 0,

√
ξ1ξ2 ≥ λ, ξ1 > 0

}
Thus, applying proposition (59) and setting k = 1 it’s possible to induce the associated positive-

homogenous invariant function L̂ : Rn
+ → R+ which, in the case of Uniswap V2, it corresponds to

the geometric mean of the reserves, indeed:

L̂(ξ1, ξ2) = k sup {λ > 0 : (ξ1, ξ2) ∈ λD}

= sup
{
λ > 0 :

√
ξ1ξ2 ≥ λ, ξ1 > 0

}
=
√

ξ1ξ2

From here it’s possible to recover immediately the basic set of reachable reserves C ⊂ R2
+ by applying

proposition (53) indeed

C =
{
(ξ1, ξ2) :

√
ξ1ξ2 ≥ 1

}
This information allows to apply proposition (50) to recover the concave conjugate of the basic

portfolio value function (still unknown). Indeed, since C = dom(V̂ ⋆) one has that

V̂ ⋆(ξ1, ξ2) =

0 if
√
ξ1ξ2 ≥ 1

−∞ if
√
ξ1ξ2 < 1

Moreover, picking (ξ1,0, ξ2,0) ∈ C, it’s possible to induce the set of feasible trades T (x0) at level

λ = L̂(ξ1,0, ξ2,0) from proposition (55) indeed

T (x0) =

{
(δ1, δ2) :

√
(ξ1,0 + δ1) (ξ2,0 + δ2) ≥

√
ξ1,0ξ2,0

}
Recovering C⋆ is possible by computing the concave conjugate L̂⋆ (which is an indicator function

because of the positive-homogeneity of L̂) since C⋆ = dom(L̂⋆) according to proposition (50) where

L̂⋆(π1, π2) = inf
(ξ1,ξ2)∈R2

+

π1ξ1 + π2ξ2 −
√
ξ1ξ2
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Noticeably, if (π1, π2) ≺ 0 =⇒ L̂⋆(π1, π2) = −∞ because the function becomes non-positive. Thus,

it must be defined the set of prices (π1, π2) such that the origin-vanishing objective π1ξ1+π2ξ2−
√
ξ1ξ2

is non-negative, so that inf(ξ1,ξ2)∈R2
+
π1ξ1 + π2ξ2 −

√
ξ1ξ2 = 0. In other words,

C⋆ =
{
(π1, π2) : π1ξ1 + π2ξ2 ≥

√
ξ1ξ2, (ξ1, ξ2) ∈ R2

+

}
To do so, it’s possible recalling the AM-GM inequality described in equation (2.10) which implies

that

π1ξ1 + π2ξ2
2

≥
√

π1ξ1π2ξ2

Which could be trivially rewritten as

π1ξ1 + π2ξ2 ≥ 2
√
π1π2

√
ξ1ξ2

Now, if 2
√
π1π2 ≥ 1, this implies that

π1ξ1 + π2ξ2 ≥ 2
√
π1π2

√
ξ1ξ2 ≥

√
ξ1ξ2

And so that

(π1π2) ∈ {(π1π2) : 2
√
π1π2 ≥ 1} =⇒ π1ξ1 + π2ξ2 ≥

√
ξ1ξ2 ∀(ξ1, ξ2) ∈ R2

+

Which resembles the set condition of C⋆, meaning that

C⋆ =
{
(π1, π2) : π1ξ1 + π2ξ2 ≥

√
ξ1ξ2, (ξ1, ξ2) ∈ R2

+

}
= {(π1, π2) : 2

√
π1π2 ≥ 1}

And that

L̂⋆(π1, π2) =

0 if 2
√
π1π2 ≥ 1

−∞ if 2
√
π1π2 < 1

Finally, the basic portfolio value function, which is the last core component of Uniswap V2 as a

CFMM, can be induced from C⋆ as described in proposition (48):

V (π1, π2; 1) = sup {λ > 0 : (π1, π2) ∈ λC⋆}

= sup {λ > 0 : 2
√
π1π2 ≥ λ}

= 2
√
π1π2

Thus, the Uniswap V2 core components can be summarized as follows

C = dom(V̂ ⋆) =
{
(ξ1, ξ2) :

√
ξ1ξ2 ≥ 1

}
(3.1)

V̂ (π1, π2; 1) = 2
√
π1π2 (3.2)

L̂(ξ1, ξ2) =
√

ξ1ξ2 (3.3)

T (x0) =

{
(δ1, δ2) :

√
(ξ1,0 + δ1) (ξ2,0 + δ2) ≥

√
ξ1,0ξ2,0

}
(3.4)

Moreover, even if it wasn’t specified as a core component, one has

C⋆ = dom(L̂⋆) = {(π1, π2) : 2
√
π1π2 ≥ 1}
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3.4.1 Starting from C

In this subsection it’s shown how to recover the core components of Uniswap V2 starting from the

basic set of reachable reserves C defined in equation (3.1):

C = dom(V̂ ⋆) =
{
(ξ1, ξ2) :

√
ξ1ξ2 ≥ 1

}
Applying proposition (46) the previous subsection showed that L̂ is immediately recoverable as

L̂(ξ1, ξ2) = sup {λ > 0 : (ξ1, ξ2) ∈ λC}

= sup
{
λ > 0 :

√
ξ1ξ2 ≥ λ

}
=
√
ξ1ξ2

On the other hand, applying proposition (48), one has that

V (π1, π2; 1) = −δ⋆(−π1,−π2|C) = inf
(ξ1,ξ2)∈C

ξ1π1 + ξ2π2

This is equivalent to the solution (keeping the dependance of the optimal value to the parameters

(π1, π2) ∈ R2n
+ ) of the following problem

minimize ξ1π1 + ξ2π2

subject to 1−
√
ξ1ξ2 ≤ 0

Which can solved via the Lagrangian function

L(ξ1, ξ2, λ) = ξ1π1 + ξ2π2 + λ
(
1−

√
ξ1ξ2

)
Noticeably, this function is convex being the sum of functions convex in (ξ1, ξ2) (for λ ≥ 0), thus

applying the first order condition allows to recover the optimal value of the problem. The gradient

of the Lagrangian function is

∇L(ξ1, ξ2, λ) =


π1 − λ

√
ξ2

2
√
ξ1

π2 − λ
√
ξ1

2
√
ξ2

1−
√
ξ1ξ2


Applying the first order condition, one has that the Lagrangian function is minimized when

∇L(ξ1, ξ2, λ) = 0 ⇐⇒


π1 − λ

√
ξ2

2
√
ξ1

= 0

π2 − λ
√
ξ1

2
√
ξ2

= 0

1−
√
ξ1ξ2 = 0

From the third equation one has that 1√
ξ1

=
√
ξ2 implying that

λ = 2π1

ξ2
=⇒ λ = 2

√
π1π2

π2 = 1
2
2π1

ξ2
ξ1 =⇒ ξ2 = ξ1

π1

π2
=⇒ ξ2 =

√
π1

π2

1√
ξ1

=
√
ξ2 =⇒ ξ1 =

√
π2

π1
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Implying that

V (π1, π2; 1) = inf
(ξ1,ξ2)∈C

ξ1π1 + ξ2π2 = L(ξ1, ξ2, λ)|(ξ1=√
π2
π1

,ξ2=
√

π1
π2

,λ=2
√
π1π2

)

=

(√
π2

π1

)
π1 +

(√
π1

π2

)
π2 + 2

√
π1π2

(
1−

√√
π2

π1

√
π1

π2

)
=

√
π2π1 +

√
π1π2 + 2

√
π1π2 (1− 1)

= 2
√
π1π2

And this result is consistent with equation (3.2).

Finally, applying proposition (49), one has that given (ξ1,0, ξ2,0) ∈ cl(C) \ ri(C) as vector of current

reserves in the Uniswap V2-like pool, the set of feasible trades is defined as

T (ξ1,0, ξ2,0) = C − (ξ1,0, ξ2,0)

=
{
(ξ1 − ξ1,0, ξ2 − ξ2,0) :

√
ξ1ξ2 ≥ 1

}
=

{
(δ1, δ2) :

√
(ξ1,0 + δ1)(ξ2,0 + δ2) ≥ 1

}
According to proposition (53), one has that C =

{
(ξ1, ξ2) : L̂(ξ1, ξ2) ≥ 1

}
and this implies that

cl(C) \ ri(C) =
{
(ξ1, ξ2) : L̂(ξ1, ξ2) = 1

}
: thus, since (ξ1,0, ξ2,0) ∈ cl(C) \ ri(C) =⇒ L̂(ξ1,0, ξ2,0) = 1

This means that the previous result can be rewritten as

T (ξ1,0, ξ2,0) =

{
(δ1, δ2) :

√
(ξ1,0 + δ1)(ξ2,0 + δ2) ≥ L̂(ξ1,0, ξ2,0)

}
=

{
(δ1, δ2) :

√
(ξ1,0 + δ1)(ξ2,0 + δ2) ≥

√
ξ1,0ξ2,0

}
And this result is consistent with equation (3.4).

3.4.2 Starting from V̂

In this subsection it’s shown how to recover the core components of Uniswap V2 starting from the

basic portfolio value function V̂ defined in equation (3.2):

V̂ (π1, π2; 1) = 2
√
π1π2

This is the typical situation in which one prefers designing the CFMM starting from the concave

function describing the payoff which is going to be passively replicated by liquidity providers while

committing their assets to the CFMM. Applying proposition (50) it’s possible to recover the basic

set of reachable reserves C as the effective domain of the concave conjugate V̂ ⋆

V̂ ⋆(ξ1, ξ2) = inf
(π1,π2)∈R2

+

ξ1π1 + ξ2π2 − 2
√
π1π2

For a similar argument as the one presented in the previous subsection, the infimum is 0 for the

values of (ξ1, ξ2) ∈ R2
+ such that ξ1π1 + ξ2π2 − 2

√
π1π2 ≥ 0 ∀(π1, π2) ∈ R2

+, otherwise the infimum
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if −∞

C = dom(V̂ ⋆) =
{
(ξ1, ξ2) : ξ1π1 + ξ2π2 − 2

√
π1π2 ≥ 0, (π1, π2) ∈ R2

+

}
Recalling again the AM-GM inequality from equation (2.10), one has that

ξ1π1 + ξ2π2

2
≥
√
ξ1ξ2

√
π1π2

ξ1π1 + ξ2π2 ≥
√
ξ1ξ22

√
π1π2

By setting
√
ξ1ξ2 ≥ 1, one has that

ξ1π1 + ξ2π2 ≥
√
ξ1ξ22

√
π1π2 ≥ 2

√
π1π2

ξ1π1 + ξ2π2 ≥ 2
√
π1π2

Implying that, consistently with what mentioned in the previous subsection

V̂ ⋆(ξ1ξ2) =

0 if
√
ξ1ξ2 ≥ 1

−∞ if
√
ξ1ξ2 < 1

Implying that

C = dom(V̂ ⋆) =
{
(ξ1, ξ2) :

√
ξ1ξ2 ≥ 1

}
Which is consistent with equation (3.1).

On the other hand, applying proposition (51), one has that

L̂(ξ1, ξ2) = inf
(π1,π2)≻0

ξ1π1 + ξ2π2

2
√
π1π2

calling f(π1, π2) =
ξ1π1+ξ2π2

2
√
π1π2

one has that the gradient of the function f is

∇f =

 ξ1
4
√
π1π2

− ξ2
√
π2

4π1
√
π1

ξ2
4
√
π1π2

− ξ1
√
π2

4π2
√
π2


Applying the first order condition, one has that the function f is minimized when

∇f = 0 ⇐⇒


ξ1

4
√
π1π2

− ξ2
√
π2

4π1
√
π1

= 0

ξ2
4
√
π1π2

− ξ1
√
π2

4π2
√
π2

= 0

Which is true whenever π1 = π2
ξ2
ξ1

. Thus, one has that

inf
(π1,π2)≻0

ξ1π1 + ξ2π2

2
√
π1π2

= inf
(π1,π2)≻0

ξ1
2

√
π1

π2
+

ξ2
2

√
π2

π1

=
ξ1
2

√
1

π2

(√
π2

ξ2
ξ1

)
+

ξ2
2

√
π2

(√
ξ1

π2ξ2

)

=

√
ξ1ξ2
2

+

√
ξ1ξ2
2

=
√

ξ1ξ2 =: L̂(ξ1, ξ2)
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And this result is consistent with equation (3.3).

Finally, applying proposition (52), one has that given (ξ1,0, ξ2,0) ∈ cl(C) \ ri(C) as vector of current

reserves in the Uniswap V2-like pool, the set of feasible trades is defined as

T (x0) =
{
(δ1, δ2) : V̂

⋆(ξ1,0 + δ1, ξ2,0 + δ1) ≥ 0
}

Where,as seen before, V̂ ⋆ is the following concave indicator function

V̂ ⋆(ξ1,0 + δ1, ξ2,0 + δ1) =

0 if
√

(ξ1,0 + δ1) (ξ2,0 + δ2) ≥ 1

−∞ if
√
(ξ1,0 + δ1) (ξ2,0 + δ2) < 1

Thus

T (x0) =

{
(δ1, δ2) :

√
(ξ1,0 + δ1) (ξ2,0 + δ2) ≥ 1

}
however, as seen in the previous subsection, since (ξ1,0, ξ2,0) ∈ cl(C) \ ri(C) =⇒ L̂(ξ1,0, ξ2,0) = 1, it

means that T (x0) is

T (x0) =

{
(δ1, δ2) :

√
(ξ1,0 + δ1) (ξ2,0 + δ2) ≥ L̂(ξ1,0, ξ2,0)

}
=

{
(δ1, δ2) :

√
(ξ1,0 + δ1) (ξ2,0 + δ2) ≥

√
ξ1,0ξ2,0

}
And this is consistent with equation (3.4).

3.4.3 Starting from L̂

In this subsection it’s shown how to recover the core components of Uniswap V2 starting from the

positive-homogenous invariant function L̂ defined in equation (3.3):

L̂(ξ1, ξ2) =
√
ξ1ξ2

Applying proposition (53) it’s possible to recover the basic set of reachable reserves C as the upper-

level set at level one of the invariant function, indeed

C =
{
(ξ1, ξ2) :

√
ξ1ξ2 ≥ 1

}
And this notation is consistent with equation (3.1). On the other hand, applying proposition(54),

one has that

V (π1, π2; 1) = inf
(ξ1,ξ2)≻0

ξ1π1 + ξ2π2√
ξ1ξ2

Analogously as before, the optimal value is achieved at ξ1 = ξ2
π2

π1
, meaning that

inf
(ξ1,ξ2)≻0

ξ1π1 + ξ2π2√
ξ1ξ2

= inf
(ξ1,ξ2)≻0

π1

√
ξ1
ξ2

+ π2

√
ξ2
ξ1

= π1

√
1

ξ2

(√
ξ2

π2

π1

)
+ π2

√
ξ2

(√
π1

ξ2π2

)
=

√
π1π2 +

√
π1π2

= 2
√
π1π2 =: V̂ (π1, π2; 1)
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And this notation is consistent with equation (3.2). Finally, applying proposition (55), one has that

given (ξ1,0, ξ2,0) ∈ cl(L̂(ξ1,0, ξ2,0)C) \ ri(L̂(ξ1,0, ξ2,0)C), one has that

T (ξ1,0, ξ2,0) =
{
(δ1, δ2) : L̂(ξ1,0 + δ1, ξ2,0 + δ2) ≥ L̂(ξ1,0, ξ2,0)

}
=

{
(δ1, δ2) :

√
(ξ1,0 + δ1) (ξ2,0 + δ2) ≥

√
ξ1,0ξ2,0

}
And this notation is consistent with equation (3.4)

3.4.4 Starting from T (x0)

In this subsection it’s shown how to recover the core components of Uniswap V2 starting from the

set of feasible trades T (ξ1,0, ξ2,0) defined in equation (3.4) and setting λ = L̂(ξ1,0, ξ2,0):

(ξ1,0, ξ2,0) ∈ cl(C) \ ri(C) =⇒ T (ξ1,0, ξ2,0) =

{
(δ1, δ2) :

√
(ξ1,0 + δ1) (ξ2,0 + δ2) ≥ 1

}
(ξ1,0, ξ2,0) ∈ cl(λC) \ ri(λC) =⇒ T (ξ1,0, ξ2,0) =

{
(δ1, δ2) :

√
(ξ1,0 + δ1) (ξ2,0 + δ2) ≥

√
ξ1,0ξ2,0

}
Applying proposition (56) one has that

C = T (ξ1,0, ξ2,0) + (ξ1,0, ξ2,0)

=

{
(δ1 + ξ1,0, δ2 + ξ2,0) :

√
(ξ1,0 + δ1) (ξ2,0 + δ2) ≥ 1

}
=

{
(ξ1, ξ2) :

√
(ξ1,0 + ξ1 − ξ1,0) (ξ2,0 + ξ2 − ξ2,0) ≥ 1

}
=
{
(ξ1, ξ2) :

√
ξ1ξ2 ≥ 1

}
This notation is consistent with equation (3.1) and from here it’s trivial retrieving the other core

components as defined in equations (3.2) and (3.3) indeed one can follow the same stapes for inducing

the portfolio value function and the invariant function from the basic set of reachable reserves

V̂ (π1, π2; 1) = −δ⋆(−π1,−π2|x0 + T (x0)) = −δ⋆(−π1,−π2|C) = 2
√
π1π2

L̂(ξ1, ξ2) = sup {λ > 0 : (ξ1, ξ2) ∈ λ(x0 + T (x0))} = sup {λ > 0 : (ξ1, ξ2) ∈ λC} =
√

ξ1ξ2

3.4.5 Additional components

After having discussed about how to retrieve all the core components of Uniswap V2 starting from a

generic component, it’s possible to discuss about the “additional components” of Uniswap V2 as the

ancillary functions introduced throughout the third chapter. The first additional component is the

marginal price function Ξ, which allows to assess which are the prices oracled by the pool. Because

of the differentiability of the geometric mean, one can compute the gradient of the invariant function

at any value of the vector of current reserves (the superdifferential evaluating such point is actually
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the singleton of the gradient evaluating the point).

L̂(ξ1,0, ξ2,0) =
√

ξ1,0ξ2,0 =⇒ ∇L̂(ξ1,0, ξ2,0) =

 1
2

√
ξ2,0
ξ1,0

1
2

√
ξ1,0
ξ2,0


Since ∇L̂(ξ1,0, ξ2,0) ∈ R2, one has that the marginal price function is actually a map of the type

Ξ(·; ξ1,0, ξ2,0, i) : R2 → R. For example, if the asset indexed as second in the CFMM is considered

as quote asset, the marginal price function corresponds to

Ξ(∇L̂(ξ1,0, ξ2,0); ξ1,0, ξ2,0, 2) =
1

2

√
ξ2,0
ξ1,0

2

√
ξ2,0
ξ1,0

=
ξ2,0
ξ1,0

Thus, in the case of Uniswap V2, the marginal price of the first token expressed in unit terms of the

second token corresponds To

π1 =
ξ2,0
ξ1,0

which is the simple ratio between the reserves of the quote asset and the reserves of the base asset.

On the contrary, for what regards the basic set of efficient reserves, one has that

Θ : p ∈ Rn
+ 7→ {x ∈ C : ⟨p, x⟩ = V (p; 1)}

Which in this case becomes

Θ(π1, π2) = {(ξ1, ξ2) ∈ C : ξ1π1 + ξ2π2 = 2
√
π1π2}

=
{
(ξ1, ξ2) : ξ1π1 + ξ2π2 = 2

√
π1π2,

√
ξ1ξ2 ≥ 1

}
The set notation can be rephrased considering each equality term as part of a system of an equality

and an inequality. The inequality implies that ξ1 ≥ ξ−1
2 and this condition, plugged into the first

equation, leads to

π1

ξ2
+ ξ2π2 = 2

√
π1π2

π1 + ξ22π2 − 2ξ2
√
π1π2 = 0

(
√
π1 − ξ2

√
π2)

2 = 0

ξ2 =

√
π1

π2

Analogously, one has that ξ1 =
√

π2

π1
. Thus, the set of efficient reserves can be rewritten as the

following singleton:

Θ(π1, π2) =

{(√
π2

π1
,

√
π1

π2

)}
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Since the set of efficient reserves is a single-valued map, one can actually recover the portfolio value

function as the inner product between p and Θ(p) indeed

V̂ (p; 1) = ⟨p,Θ(p)⟩

= ⟨(π1, π2) ,

(√
π2

π1
,

√
π1

π2

)
⟩

= 2
√
π1π2

At the same time, the function Γ whose epigraph corresponds to the basic set of reachable reserves,

corresponds to

Γ(ξ1) = inf
{
ξ2 :

√
ξ1ξ2 ≥ 1

}
=

1

ξ1

On the contrary, the get-amount-function (i.e. the convex function whose epigraph is equal to the

set of feasible trades) corresponds to

Ω(δ1; ξ1,0, ξ2,0) = inf

{
δ2 :

√
(ξ1,0 + δ1) (ξ2,0 + δ2) ≥

√
ξ1,0ξ2,0

}
= inf

{
δ2 : δ2 ≥ − ξ2,0δ1

(ξ1,0 + δ1)

}
= − ξ2,0δ1

(ξ1,0 + δ1)

Finally, for what regards the impermanent loss function, one has that

I(π1, π2; ξ1,0, ξ2,0) =
2L̂(ξ1,0, ξ2,0)

√
π1π2

ξ1,0π1 + ξ2,0π2
− 1

Conventionally, the impermanent loss for Uniswap V2 is reported setting (ξ1,0, ξ2,0) = (1, 1) ∈ C and

reporting asset with index one as quote asset, so that the impermanent loss formula becomes

I(1, π2; 1, 1) =
2
√
π2

1 + π2
− 1

Noticeably, the main properties of impermanent loss function are satisfied, indeed:

2
√
π2

1 + π2
− 1 ≤ 0 ∀π2 ∈ R+

lim
π2→0+

2
√
π2

1 + π2
− 1 = lim

π2→∞

2
√
π2

1 + π2
− 1 = −1



Chapter 4

Conclusion

This work showed how the theoretical framework of convex analysis could be deployed for having

an extensive and exhaustive characterization of the core components of a Constant Function Market

Maker, conceived as a blockchain-based automated market maker. Moreover, the analysis of the core

components of a CFMM under the lens of convex analysis allowed to introduce a set of propositions

which can be used as a toolkit in designing path-independent CFMMs. Indeed, the set of reach-

able reserves C ⊂ Rn
+, n > 1 could be seen as the non-empty closed, unbounded, convex set not

containing the origin which generates in higher dimension the hypograph of the invariant function

L̂ : Rn
+ → R+ also called “invariant cone” KL̂ ⊂ Rn+1

+ . At the same time, this work shows that

C⋆ = {p : ⟨x, p⟩ ≥ 1, x ∈ C}, which is the reverse polar of C, is capable of generating the hypograph

of the portfolio value function V̂ : Rn
+ → R+, also called “portfolio value cone” KV̂ ⊂ Rn+1

+ . This

leads to two important findings: the first one is that both invariant and portfolio value functions

can be characterized always as closed concave gauge-like functions, implying that λC and λC⋆ are

recovereable as the upper-level sets at level λ > 0 of the invariant function and portfolio value

function respectively, while the second one is that it is always possible to characterize the invariant

function in terms of the portfolio value function and vice-versa thanks to the polar correspondence

of the sets C ⊂ Rn
+ and C⋆ ⊂ Rn

+, which is extended to KL̂ ⊂ Rn+1
+ and KV̂ ⊂ Rn+1

+ and so to

the invariant function L̂ and the portfolio value function V̂ . This dual correspondence is explicitly

shown by expressing the invariant function L̂ and the portfolio value function V̂ as the negative of

the support function of the symmetric reflection across the origin of C⋆ and C respectively. Another

implicit way for pointing out this dual correspondence is to express C as the effective domain of V̂ ⋆,

which is the concave conjugate of the portfolio value function. Analogously, one can express C⋆ as

the effective domain of L̂⋆, which is the concave conjugate of the invariant function. Indeed, using

the characterization of L̂ and V̂ as negative of support functions, it’s immediate to see that L̂⋆ and

V̂ ⋆ are the negative of indicator functions of C⋆ and C. Finally, given inventory x0 ∈ C, this work

shows that inducing the core-components of a CFMM from its set of feasible trades T (x0) ⊂ Rn is
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straightforward by applying the feasibility condition of a trade: indeed, a trade y ∈ Rn is feasible if

and only if x0+y ∈ C implying that one can recover the set of feasible trades via the Minkowski sum

T (x0) = C − x0. This characterization shows that T (x0) always includes the origin (since traders

are allowed to perform a null trade) and all the propositions for inducing the other core components

from T (x0) are simple generalizations of those referred to C = T (x0) + x0.

Once that the core components are derived, also the other additional components of a CFMM are

immediately deduceable. For example, one can define the set of “efficient reserves” (i.e. the set

of inventories which are expected to be held by the CFMM given external vector of prices under

arbitrage-free assumption) as the set of reserves such that the inner product between the inventory

and the external prices is equal to the portfolio value function. Other additional components are

the convex functions induceable from C and T (x0). For example, the convex function induced by

T (x0) is typically defined as the “get-amount-out” function and it’s useful for quoting the amounts

of a certain asset which can be pulled out from the pool by tendering a certain amount of other

assets. Finally, this work shows that is possible to retrieve the “impermanent-loss function” (which

is the concave function that quantifies the opportunity-cost of liquidity providers, as function of the

prices of the assets deposited on the CFMM) as the ratio of the portfolio value function over the

inner product between the vector of current prices and the vector of initial holdings (committed to

the CFMM by providing liquidity) minus one. This work ends with the application of the toolkit

presented in this work to Uniswap-V2 showing how every core component of such CFMM can be

induced by any other core component. Finally the additional components of Uniswap-V2 are derived

as well.
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