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Abstract 
This thesis focuses on two primary objectives: developing models to predict Federal Open 

Market Committee (FOMC) decisions regarding changes in the federal funds target rate and 

analyzing the stock market reaction to these decisions. Traditional econometric models have 

been extensively studied in the literature, but this research employs innovative machine 

learning algorithms to enhance predictive performance. Seven different machine learning 

models are developed. The results demonstrate the superiority of the machine learning models 

in terms of accuracy, log-score, and quadratic-score, with the optimal random forest model 

performing the best. Furthermore, the study employs variable importance methodology and 

partial dependence plots to identify the macroeconomic variables that significantly influence 

FOMC decisions. The second part of the thesis focuses on the impact of FOMC decisions on 

the stock market, distinguishing between expected and unexpected choices. Event study 

analysis is conducted using S&P 500 data, and regression analysis of CARs demonstrates a 

significant market response to unexpected changes in the federal funds target rate. Finally, the 

practical validity of the predictive models is confirmed through a backtesting strategy.  
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1. Introduction 

Decisions regarding Federal funds target rate have significant implications for the economy, 

including employment, growth, and inflation. They indirectly affect various short-term interest 

rates, such as those for loans, as lenders often base their rates on the prime lending rate, which 

is influenced by the fed funds rate. Changes in the target rate can have a strong impact on the 

stock market, with even a small decline leading to increased market activity and lower 

borrowing costs for companies. Therefore, anticipating FOMC decisions is crucial for market 

participants to adjust their investment strategies. Morover, examining the impact of these 

decisions on security prices is a topic of great interest to investors and policymakers since it 

can provide additional insights into the ways in which monetary policy affects financial 

markets and market expectations. This thesis is situated within this context, encompassing two 

primary objectives: firstly, to develop models capable of predicting FOMC decisions regarding 

changes in the Federal funds target rate, and secondly, to analyze the impact of these policy 

decisions on the stock market by considering market expectations and thus differentiating 

between expected and unexpected decisions. 

Both topics have been extensively studied in the academic literature. Regarding the forecasting 

of target rate, we first have the seminal work of Taylor (1993) who proposed a policy rule for 

forecasting Federal fund rate. However, this approach does not account for the discrete nature 

of FOMC decision-making. Subsequent work, such as that of Hu and Phillips (2004), addressed 

this limitation by developing a discrete choice approach to predict policy actions. They 

replicated Dueker's (1999) work, but overcame his problem of nonstationarity of covariates. 

Their model estimated thresholds that trigger changes in the target rate by the FOMC. These 

threshold coefficients indicate the size of the gaps between the estimated and actual target rate 

needed to prompt target adjustments of varying magnitudes. While Hu and Phillips (2004) 

demonstrated good predictive performance within their estimation sample, they did not provide 

an estimate of the out-of-sample performance. Pauwels (2012) replicated their model and tested 

its out-of-sample performance, comparing it with other models developed using combined 

forecast methodology and introducing metrics like log-score and quadratic-score. Another 

relevant study by Vasnev (2013) replicated Pauwels' work but focused on the policy actions of 

the Reserve Bank of Australia.  

On the other hand, regarding the academic literature related to the impact of changes in the 

target federal funds rate on asset prices, one of the most relevant papers is that of Kuttner 
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(2001). In his research, Kuttner estimated the impact of monetary policy actions on the bond 

market by distinguishing between expected and unexpected decisions through federal funds 

futures market data. His results showed a strong response to unanticipated rate changes and a 

weaker response to anticipated changes. Another important subsequent study is the work of 

Bernanke and Kuttner (2005), where they analysed the impact of FOMC decisions on the stock 

market employing Kuttner's (2001) approach to differentiate between the anticipated and 

unanticipated components of policy decisions. They also discovered evidence supporting a 

greater stock market reaction to unexpected decisions. 

My contribution to the academic literature is twofold. Firstly, I aim to apply innovative 

techniques, specifically machine learning algorithms, to predict policy choices regarding the 

Federal funds target rate. I seek to demonstrate that these methodologies exhibit superior 

predictive performance compared to traditional models. To achieve this, I develop seven 

different machine learning models, including logit model, support vector machine, decision 

tree, pruned tree, bagged tree, random forest, and optimal random forest. The dependent 

variable in my models represents the decision on target rate, with three possible values: hike, 

no change, and cut. On the other hand, the independent variables encompass various 

macroeconomic indicators and a variable related to the previous period's target rate decision. 

These indicators are preprocessed, resulting in a total of 56 regressors. Through a feature 

selection methodology, I filter these regressors and ultimately utilize 23 in my models. The 

data primarily come from the Federal Reserve Economic Data (FRED) online database of the 

Federal Reserve Bank of St. Louis. After developing the models, I compare their performance 

using three main metrics (accuracy, log-score, and quadratic-score) which are computed 

employing a 5-fold cross-validation approach.  

The optimal random forest emerges as the best model, demonstrating superior performance 

across all three metrics and surpassing traditional models found in the academic literature. 

Subsequently, I conduct a detailed analysis of my models' predictive capabilities, examining 

their accuracy in forecasting each class of the dependent variable. My findings reveal the 

highest accuracy in predicting no-change rate decisions, while also demonstrating good 

prediction abilities for the other two classes. This outcome is primarily attributed to the nature 

of the problem and so of the dataset. Furthermore, I utilize the optimal random forest model to 

estimate variable importance and partial dependence plots, aiming to identify the variables that 

contribute most significantly to FOMC policy decisions. The results indicate that prior policy 

decisions, manufacturing industry trends, consumer behaviour and spending patterns, 
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fluctuations in the bank prime loan rate, and levels of unemployment benefit claims are the 

variables likely to exert the greatest influence on the FOMC's policy decisions. 

Secondly, I aim to analyze the impact of policy decisions on the stock market, distinguishing 

between expected and unexpected choices. To achieve this, I employ the classic methodology 

of event study. I utilize daily data from the S&P 500, obtained from WRDS (Wharton Research 

Data Services). I consider the Federal funds rate decisions as events and designate the dates of 

FOMC meetings as event dates. Through event study analysis, I examine the Cumulative 

Abnormal Returns (CAR) of the S&P 500 to assess the impact of these decisions. I perform a 

regression analysis of CARs, where I include two dummy variables that identify decisions 

representing positive or negative surprises compared to expectations.  

These variables are constructed using the prediction errors from my previously developed 

machine learning models. This represents the main innovation I intend to introduce to the 

academic literature—an alternative method for distinguishing between expected and 

unexpected policy actions. In other words, I aim to verify that my models can incorporate 

market expectations. The obtained results support my hypothesis, as we observe a positive and 

significant coefficient for the variable capturing positive surprises during rate-cut decisions and 

a negative and significant coefficient for negative surprises during rate-hike decisions. This 

suggests that the market reacts significantly to unexpected changes in the fed funds target rate. 

Finally, as a final task, I develop a backtesting strategy to assess the practical validity of my 

models. This strategy is based on the predictions of my best-performing model and is 

implemented in both the stock and bond markets. My findings indicate that the strategy 

generates higher returns compared to a simple buy-and-hold approach, thus confirming the 

practical validity of my models. 

The rest of the thesis is organized as follows. Firstly, I conduct a comprehensive literature 

review encompassing both the prediction of FOMC decisions regarding the Federal funds 

target rate and the analysis of the impact of these decisions on asset prices. Subsequently, I 

present the data utilized in this study and describe the preprocessing methods employed. The 

following chapter details the hypotheses I aim to test. I then introduce the methodologies 

utilized for testing these hypotheses, providing an overview of machine learning models and 

the event study technique. Subsequently, I present the outcomes of my research. Lastly, I draw 

conclusions based on the obtained results, discussing their relevance to my hypotheses and 

research questions. 
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2. Literature Review 
2.1 Predicting FOMC decision on Federal fund target rate 
Over the past several decades, monetary policy analysts and market participants have increased 

their attention to the study of the Fed's interest rate policy. The Federal funds rate adjustment 

process occurs in a discrete manner, both from the point of view of timing, since most of the 

decisions occur on pre-scheduled meeting days, and from the point of view of the magnitude 

of the adjustment, since the target rate is changed in multiples of 25 basis points (bp). Despite 

this, the traditional literature on monetary economics has focused on the development of 

macroeconomic models for continuous estimate of an "optimal" interest rate for monetary 

policy.  An early striking example is provided by the relevant work of John Taylor, who in 

1993 proposed a policy rule tying the change in the Federal fund rate to inflation and economic 

growth. Specifically, this equation, which would be named Taylor's Rule, expresses the 

"optimal" federal fund rate as a function of both the gap between the current and desired level 

of inflation and the gap between current and potential output. The first version of the Taylor's 

Rule takes the following form assuming a long-run inflation target of 2 percent: 

 𝑟!∗ = 𝜋! + 0.5(𝑧! − 𝑧!∗) + 0.5(𝜋! − 2) + 2	  

where 𝑟!∗ refers to the optimal interest rate, 𝜋! to the actual inflation rate, 𝑧! to a measure of the 

actual output, 𝑧!∗ to a measure of the potential output. The key empirical lesson derived from 

Taylor's rule concern the coefficient associated with inflation, specifically its absolute value 

greater than one. This means that if inflation rises by one unit the Federal Reserve will raise 

fed funds by an amount greater than one, and this would lead to an increase in the real interest 

rate, thereby cushioning inflationary pressures in the economy. However, the Taylor Rule has 

one obvious limitation: it ignores the discreteness of the policy making process. Predicting the 

dynamics of FOMC intervention requires a model that takes into account the discrete timing 

of rate change and the discrete amount of rate change. For this reason, recent literature has 

focused mainly on the discrete nature of FOMC practices.  

One of the first relevant attempts was made by Dueker (1999), who proposed an econometric 

model, a conditional ordered probit based on stationary data, that examines discrete 

adjustments in the target Federal funds rate. Its objective is to estimate the thresholds that 

trigger changes in the target rate by FOMC, as well as the extent of those changes. The 

threshold coefficients indicate the magnitude of gaps between the optimal and actual target 

funds rate required to trigger target adjustments of varying sizes. These estimated thresholds 
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are then compared to the actual changes in the target fed funds rate to provide a quantitative 

measure of the Federal Reserve's willingness or reluctance to initiate changes in the target rate. 

Dueker (1999) defined five categories based on 𝜇, a vector of four threshold coefficients. 

Depending on how the latent desired change in the target fed fund rate ranks in (𝜇#$%, 𝜇#), it 

will belong to a specific category j. Dueker estimated these thresholds coefficients through the 

Maximum Likelihood technique and obtained results suggesting that to trigger a 25 basis-point 

increase or decrease in the target rate, the latent target funds rate needs to be approximately 45 

basis-points above or below the actual target. These results provide substantial evidence that 

the discrete nature of the target federal funds rate introduce a level of sluggishness into FOMC 

policy's response to inflation and output gaps.  

However, the Dueker's study suffers a single serious drawback: he assumes that the covariates 

of his model are stationary, but the explanatory variables consist of aggregate macroeconomics 

timeseries that are therefore likely to be nonstationary. As a result, the model may exhibit 

misleading standard errors causing inappropriate statistical inference concerning the 

covariates. Hu and Phillips (2004) provided a solution to this problem by proposing a 

nonstationary triple choice model. They replicated the work of Dueker (1999) but providing 

only two threshold coefficients,  𝜇%& and  𝜇'&. In this way, FOMC policy actions are classified 

into three categories: “hike”, “no change”, “cut” the interest rate. A difference between this 

period's optimal interest rate (𝑟!+1∗ ) and the last period's interest rate (𝑟𝑡	) less than 𝜇%& would 

indicate that interest rates should be lowered, a difference greater than 𝜇'&would indicate that 

interest rates should be raised, while a difference between 𝜇%& and 𝜇'&would indicate that there 

should be no change. Again, the model is assumed to be an ordered probit and is estimated by 

Maximum Likelihood.  

In addition, Hu and Phillips (2004) show that when the explanatory variables are nonstationary 

the asymptotic of the ML estimators would be different from its stationary counterpart and in 

particular the threshold values are sample size dependent. Hu and Phillip propose to scale the 

thresholds by the sample size so that they have the same order of magnitude as the latent 

variable. In this way the correct standard errors can be obtained. Their study examined the rate-

setting behavior of the Federal Reserve using a dataset spanning 8 years, from January 1994 to 

December 2001, which yielded a total of 64 observations. They employed a simplistic naïve 

approach, based on the model estimation process, to decide which variables to include in the 

model. In their initial estimation, they included 11 macroeconomic series and used these 

covariates in estimating a trichotomous probit model, as mentioned earlier. Through a step-by-
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step approach, they retained only the variables that exhibited statistical significance in the first 

stage, namely M2 growth, unemployment claims, consumer confidence, and new orders. Using 

these variables they re-estimated the model, obtaining as results statistically significant but 

slightly asymmetric threshold estimates: the estimated threshold for a rate cut is 94 bp while 

for a rate hike it is 107 bp, thus showing greater weakness for the rate cut. Regarding the 

goodness of fit, their model accurately predicted 78% (50 out of 64) of the Federal Reserve's 

federal funds rate decisions within the estimation sample.  

Hu and Phillips' work was later criticized by Kim et al. (2009) in two main aspects. Firstly, 

their approach to model selection is purely empirical and lacks a strong foundation in 

macroeconomic theory. This leaves it vulnerable to the idiosyncrasies of the dataset used, as 

different or expanded samples may yield different "best" model specifications. Secondly, they 

solely evaluate their model's performance based on its ability to predict outcomes within their 

sample, thus providing no evidence regarding the model's predictive out-of-sample 

performance.  

Based on this critique later papers have extended the Hu and Phillips (2004) analysis. Pauwels 

(2012) provided a methodology to combine multiple forecasts from discrete choice models for 

the policy decision on Federal fund target rate. The primary goal of this technique is to improve 

forecast accuracy. Instead of combining the forecasts with a simple average, Pauwels proposed 

two intuitive weighting methods based on scoring rules, the log-score and quadratic score rules. 

He also used these scoring rules as a method for evaluating the performance of discrete models. 

The log-score and quadratic-score provide a more informative measure than accuracy because 

it accounts for probabilities, penalizes incorrect predictions, and assesses model calibration. 

Pauwels tested the out-of-sample predictive performance of these models over 3 different time 

intervals using a recursive forecasting scenario. He also replicated this test for the models of 

Hu and Phillips (2004) in order to compare the results. His quadratic weights model tends to 

have a better accuracy than the H&P models in 2 out of 3 of the time intervals studied, however, 

the best accuracy (71.9%) is presented by the 4-variable H&P model over the period from 

1994-2001 (properly the period covered by the work of Hu and Phillips (2004)). Even in terms 

of evaluation with scoring rules, the quadratic weighted combination model outperforms the 

other models most of the time. So Pauwels empirical findings indicate that the combination of 

forecasted probabilities through the application of quadratic and logarithmic scoring methods 

generally outperforms both equal weighting of forecasts and predictions derived from 

multivariate models. 
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Finally, another relevant paper was produced by Vasnev (2013), who replicated the work done 

by Pauwels (2012) to predict the monetary policy decisions of the Reserve Bank of Australia 

(RBA) over a 17-year period from 1993 to 2010. Again, he used forecast combination models 

and compared them with models developed by Hu and Phillips (2004), evaluating performance 

through both accuracy and scoring rules. Vasnev obtained very similar results to Pauwels 

(2011): across all time frames the best model in terms of out-of-sample performance turns out 

to be the quadratic score weighted model. 

 

2.2 The impact of policy changes in target Federal funds rate on asset prices 

The literature aimed at analyzing the impact of FOMC decisions about target interest rate on 

asset prices is quite extensive. An early example is provided by the paper by Cook and Hahn 

(1989), who attempted to measure the effect of changing the federal fund target rate on 

Treasury yields. They performed a regression of the change in the bill or bond rate the day of 

the FOMC decision on the change in the target funds rate. Running this regression for bond 

rates at different maturities, they found that an increase in the target rate corresponds to a 

positive and large movement in short-term interest rates, and a moderate but significant 

movement in intermediate- and long-term rates. Specifically, a one percentage point increase 

in the target fund rate causes a 50-basis point increase in bill rates and a 10-basis point increase 

in 20-year bond rates, with both coefficients significant at the 1% level. These findings 

corroborate the commonly held belief among participants in financial markets that the Federal 

Reserve exerts significant control over market interest rates by managing the funds rate. 

Nonetheless, there is a potential limitation in using fluctuations in the Federal funds target rate 

as an explanatory factor, as it fails to account for the forward-looking nature of financial 

markets. Consequently, the expected element of monetary policy decisions should not have a 

substantial impact on asset prices. To address this issue, Kuttner (2001) makes use of Fed fund 

futures rates, allowing for the differentiation of changes in the target funds rate into anticipated 

and unanticipated components. In particular, the surprise element of any change in the target 

fund rates can be determined by examining the difference in the rate implied by the current-

month futures contract compared to the rate on the day prior to the policy decision. At this 

point Kuttnner (2001) wanted to inquire whether there are any discrepancies in the reactions of 

bill and bond rates to these two components. Following Cook and Hahn's style of analysis, he 

regressed the change in the bond rate for different maturities on the expected and unexpected 
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components. He obtained coefficients that are very different: the response to the surprise 

changes is large and significant; while the response to the anticipated component is small and 

statistically insignificant, thus being consistent with the expectations hypothesis of the term 

structure. Overall, the response of interest rates to surprising changes in the target is 

considerably higher than the response to "raw" changes. This is evident for short-term 

securities, but even more for long-term securities.  

Later Bernanke and Kuttner (2005) analyzed the impact of FOM decisions on stock prices. 

They applied the event-study approach previously developed by Kuttner (2001), distinguishing 

between expected and unexpected policy action through the use of Federal fund futures data. 

Therefore, they regressed the CRSP value-weighted return on the anticipated and unanticipated 

components of the policy decision. As a result, they obtained that the stock market response to 

a surprise change is negative and significant. Specifically, a 25-basis-point rate cut would lead 

to a 1-day stocks return of 1%. However, this method of estimates of the reaction of asset prices 

to changes in target rate suffers a weakness; the event-study results rely on the assumption that 

the error term and fund rate changes are orthogonal. But there are at least two cases where this 

assumption is violated. First, there could be a contemporaneous effect of the stock prices 

movement on short-term rates. Second, monetary policy and the stock market could respond 

simultaneously to new information, such as macroeconomic news. In both cases, there could 

be bias in the estimation of the impact of monetary policy. Subsequent studies have attempted 

to address these endogeneity and joint-response issues: Gurkaynak, Sack and Swanson (2004) 

used intraday, rather than daily, data to estimate the impact of FOMC decisions on asset prices, 

in this way they isolated the impact of the policy change from the influence of other news 

occurring before or after the announcement; Rigobon and Sack (2002) proposed an estimator 

that produces consistent estimates of market response by exploiting the heteroskedasticity 

introduced by exogenous monetary policy actions. In the end, both studies present very similar 

results to those obtained by Bernanke and Kuttnner (2005) using the event-study technique. 

Consequently, “it seems reasonable to proceed with the event-study approach, while 

recognizing that it may provide slightly conservative estimates of the stock market's response 

to monetary policy”1. 

 

 
1 Bernanke, Ben S. and Kuttner, Kenneth N. and Kuttner, Kenneth N. (2005), “What Explains the Stock 
Market's Reaction to Federal Reserve Policy? “. 
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3. Data 

3.1 Data selection 
The sample data includes monthly observations of the Federal funds target rate and other 

economic variables from February 1983 to December 2022. Specifically, the data I’m 

interested in are the dates of FOMC decisions regarding target rate. Considering both scheduled 

meetings, which occur regularly eight times a month, and extraordinary meetings, I obtained a 

total of 399 observations over this period. Since the frequency of my data is monthly and in 

some months the FOMC met more than once, I considered as target rate decision for a given 

month the one related to the last meeting in that month. In this way, the total number of 

observations becomes 352. For each meeting date I associated the old and new target rate and 

the magnitude of the rate change, which generally equals multiples of 25 basis-points. Among 

these 352 observations, the target rate was hiked 70 times, cut 57 times and kept constant 225. 

As can be seen, the classes are slightly unbalanced; this distribution reflects the nature of 

FOMC policy decision, where rate adjustments are often implemented in response to 

significant shifts in key macroeconomic indicators or emerging risks. The larger number of 

instances where the rate remained unchanged suggests that the FOMC considers a steady policy 

stance appropriate during periods of relative stability or when the economic environment does 

not necessitate immediate intervention. Hence, this class imbalance highlights the careful 

deliberation undertaken by the FOMC in shaping monetary policy. In Figure 1, the graph 

depicts Federal fund target rate levels from 1983 to 2022. Both FOMC meeting dates and target 

interest rate data were downloaded from the Federal Reserve Economic Data (FRED) online 

database of the Federal Reserve Bank of St. Louis. 

Figure 1: Federal funds target rate (1983-2022) 
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Concerning the selection of macroeconomic indicators for inclusion in empirical models, there 

is no uniform standard in the academic community as we could see in the literature review. In 

my case, I initially included 22 economic series, Table 1 shows the description of the indicators. 

Table 1: Macroeconomic indicator description 

Consumer Price Index for All Urban Consumers: is a price index of a basket of goods and services paid by urban consumers 

Inflation: percent change from one year ago in the consumer price index measure 

Core CPI: price index of a basket of goods and services that excludes volatile items such as food and energy 

Core Inflation: percent change from one year ago in the Core CPI 

Unemployment rate: number of unemployed as a percentage of the labor force 

Personal Consumption Expenditures: is another measure of the spending on goods and services by people of the United States 

Total Vehicle Sales: measures the annualized number of new vehicles sold in the reported month 

Bank Prime Loan Rate:  interest rate that commercial banks charge creditworthy customers 

M1: measure of the money supply that includes currency, demand deposits, and other liquid deposits, including savings 
deposits 

M2: measure of the money supply that includes M1 plus savings accounts, money market accounts and small time deposits 

M3: measure of the money supply that includes M2 money as well as large time deposits, institutional money market funds, 
short-term repurchase agreements, and larger liquid funds 

Initial Claim: measure of claims filed by unemployed individuals after a separation from an employer 

Consumer Confidence Index: monthly survey of how consumers feel about the economy, personal finances, business 
conditions, and buying conditions conducted by the University of Michigan 

Average Working Hours: measure of the average weekly hours per worker for which pay was received  

Capacity Utilization: is equal to an output index divided by a capacity index for all the industries 

Industrial Production: measures the real output of all relevant establishments located in the United States 

Producer Price Index: measures the change in the prices paid to U.S. producers of goods and services 

Exports: measures the value of exported goods and services for the U.S. 

S&P 500: is a market-capitalization-weighted index of 500 leading publicly traded companies in the U.S 

Manufacturing PMI: is a monthly index of U.S. economic activity based on a survey conducted by Institute for Supply 
Management (ISM) of purchasing managers at more than 300 manufacturing firms 

GDP: measures the market value of goods and services produced by labor and property located in the U.S.  

Potential GDP: estimate of the output the economy would produce with a high rate of use of its capital and labor resources 

 

All the observations range from February 1983 to December 2022. The frequency is monthly 

for all data series except GDP and Potential GDP, for which the frequency is quarterly. Most 

of the data were retrieved using FRED's API on Phyton. Only data relative to the S&P 500 and 

Manufacturing PMI were obtained from WRDS (Wharton Research Data Services) and the 

Institute for Supply Management website, respectively. 
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Then, in order to carry out the event study to analyze the impact of policy decisions about target 

rate on the stock market, I collected daily frequency data related to market factors. So, I re-

downloaded the observations for the S&P 500 from WRDS but at daily level. Finally for the 

development of the back-testing strategy, I downloaded data on U.S. Zero Coupon Bond yields 

at different maturities (10,20,30 years) from FRED online database and data on Nasdaq 

Financial-100 Index and S&P United States REIT Index from Refinitiv. 

3.2 Data Preprocessing 

Once retrieved, I preprocessed the raw data in such a way as to create the variables for my 

forecast models. 

First, recall that my models are discrete triple-choice models, whose dependent variable must 

represent the FOMC's decisions, which can be to hike, cut, or hold constant the target interest 

rate. For this purpose, I have generated a new variable that takes, respectively: value 1 if the 

change in the Federal funds target rate resulting from the FOMC meeting is positive (hike); 

value -1 if the change is negative (cut); and value 0 if the change is zero (hold constant). Then, 

I used the macroeconomic series to generate the independent variables of my models. 

Remembering that the frequency of my dependent variable is monthly, I first transformed the 

quarterly series (GDP and Potential GDP) into monthly series. To do this, I used the 

“tempdisagg” package in R, which allowed us to disaggregate and interpolate a low-frequency 

time series into a higher-frequency series, keeping the sum, mean, first or last value of the 

resulting high-frequency series consistent with the low-frequency series2. Once I obtained 

monthly GDP and Potential GDP series, I used them to create a new variable, the Output gap. 

This indicator is calculated as the percentage difference between GDP and Potential GDP and 

measures the efficiency of the economy, specifically the extent to which an economy is 

operating below or above its productive capacity. In addition, I added an inflation gap variable, 

calculated as the difference between the current inflation rate and the target inflation rate (set 

at 2%). The decision to add these two indicators was inspired by most of the econometric 

models from the academic literature, which tend to include these two variables as regressors. 

 

 
2 Specifically, "tempdisagg" uses the Chow-Lin Method for Temporal Disaggregation which is part of the 
methodological handbooks of the DIME, a director group of Eurostat - one of the European Commission 
Directorates-General. 
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At this point for each economic indicator I calculated the difference from the previous period 

and the same period in the previous year. This approach allowed us to capture changes and 

trends in macroeconomic variables over time and to focus on relative changes rather than 

absolute values. Using both these differences and the indicators themselves, I obtained a total 

of 72 independent variables to include in the first estimation stage. To these I then decided to 

add another variable related to the target rate change undertaken by the FOMC at the previous 

meeting. In this way, my models are able to take into account the historical influence of the 

past FOMC’s decisions (i.e., the fact that past FOMC decisions may have a lasting impact on 

their future decisions) as well as the continuity of FOMC’s policy (i.e., the fact that it maintains 

a consistent policy stance over multiple meetings). 

To avoid multicollinearity problems, I calculated the correlation between all macroeconomic 

variables. The results are shown in Figure 2.  

 

Figure 2: Correlation Matrix Macroeconomic Variables 
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As we can see in the lower left part of the graph there is a lot of correlation between some raw 

economic indicators. A few variables obviously exhibit perfect multicollinearity such as 

inflation and inflation gap. Also other macroeconomic indicators show very high correlations 

such as CPI, Core CPI, PCE, M1, M2, M3, Industrial Production, Producer Price Index, 

Exports value, S&P 500, GDP and Potential GDP; these correlations can be explained by their 

inherent interdependencies and common underlying factors. These indicators are related 

because of economic interconnectedness, supply and demand dynamics, business cycle effects, 

and political and external factors. For this reason I decided to exclude the most correlated 

variables, taking a correlation of 0.7 as the decision threshold. So, among this group of highly 

interrelated variables, I decided to keep only the Consumer Price Index, M1 and Inflation. 

Regarding the correlations of the other pre-processed variables, we note only a few single very 

high correlations and a high aggregate interconnectedness in the upper right part of the graph 

between some of the year difference variables. I therefore decided to remove the following 

variables: cpi.diff.year, core_cpi.diff.year,  industry_cap_uti.diff.prev, potential_gdp.diff.year, 

industr_prod_index.diff.year, prc_index.diff.year, m2.diff.year, export_value.diff.year. In this 

way I obtained a total of 56 regressors to use in the development of my models. 

Finally, to prevent any potential look-ahead bias, all macroeconomic regressors have been 

lagged by one period, ensuring that observations on economic indicators precede the FOMC's 

decision on the target rate. 
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4. Hypotheses Development 

The primary objective of this paper is to develop machine learning models capable of 

accurately predicting FOMC policy decisions regarding the Federal funds target rate. 

Furthermore, I aim to utilize these models to conduct a comprehensive analysis of the impact 

of these decisions on financial markets. Consequently, I have formulated two main hypotheses 

that I seek to test: 

Hypothesis 1: My machine learning models are expected to outperform the conventional 

econometric models developed in the academic literature in terms of accuracy and 

log/quadratic-score. 

Hypothesis 2: The developed machine learning models are capable of capturing market 

participants' expectations about future FOMC decisions. 

To test the first hypothesis, I will conduct a direct comparison between the performance metrics 

of my models and those documented in the literature review. On the other hand, the second 

hypothesis will be examined through regression analysis of the market Cumulative Abnormal 

Returns (CARs) obtained from an event study. Specifically, I will regress the CARs on the 

variables associated with negative or positive surprises of the FOMC decision, which are 

created on the results of my models. Statistically significant coefficients with economically 

meaningful signs would support my second hypothesis. By investigating these hypotheses, I 

aim to shed light on the predictive power of my machine learning models and their ability to 

provide insights into the impact of FOMC decisions on the financial markets. 
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5. Methodology 

Forecasting FOMC decisions on target Federal funds rate can be accomplished through either 

a continuous approach, as in Taylor (1993), or a discrete approach, as addressed by the rest of 

the academic literature. I chose the discrete approach for the development of my forecasting 

models since it best reflects the nature of the FOMC's policy actions and allows us to carry out 

comparisons with the other models developed in the past. Regarding the choice of models for 

predicting FOMC decisions, I decided to use a logistic regression as a baseline model, as 

extensively done in the academic literature. I then decided to develop several machine learning 

models, which represent the real contribution I want to make to the literature. In fact, machine 

learning models allow us to benefit from several advantages over classical econometric models, 

such as handling complex data, detecting nonlinear relationships, generalizing well, and 

incorporating a wide range of informative variables. In addition, unlike econometric models, 

which are primarily focused on obtaining unbiased estimations of parameters, machine learning 

algorithms allow us to test model results on a new portion of the data thus obtaining a measure 

of predictive performance. On the other hand, machine learning models suffer from some 

drawbacks: they become difficult to interpret and to derive economic intuitions. However, 

these issues can be overcome through tools such as the variable importance and partial 

dependence plot. Finally, I developed again my models but using a continuous approach to 

conduct inference on the Event Study results, particularly to distinguish between expected and 

unexpected policy decisions. I used the models' predictive errors to identify surprises in target 

rate changes, thus proposing an alternative method to that of Kuttner (2001). 

 

5.1 Forward Selection 

Before starting to develop the predictive models, I used a method for subset selection of the 

predictors. This allows us to identify and select a subset of relevant variables from my original 

feature set. The goal is to choose the most informative and discriminating features that 

contribute most to the predictive performance of a machine learning model. 

The method I have used is Forward Stepwise Selection which appears to be the most 

computationally efficient compared to other approaches such as best subset selection. While 

best subset selection considers all possible models containing subsets of predictors, forward 

stepwise selection considers a narrower set of models. It starts with an empty model and 

gradually adds predictors, one at a time, until all of them are included. The added predictor is 
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chosen based on the greatest improvement in model fit, which is determined in terms highest 

R2 or highest accuracy. Unlike best subset selection, which requires fitting 2( models, where 

p denotes the number of predictors; forward stepwise selection involves fitting a null model 

and 𝑝 − 𝑘 models in the kth iteration, 𝑘 = 0, . . . 𝑝 − 1 , for a total of  1 + ∑ (𝑝 − 𝑘) = 1 +($%
)*+

𝑝(𝑝 + 1)/2 models. This generates a clear computational advantage, especially in high-

dimensional scenarios. However, forward stepwise selection may not always yield the best 

model among all possible models. Despite its limitations, forward stepwise selection tends to 

perform well in practice. Table 2 shows the forward stepwise selection algorithm. 

 

Table 2: Forward stepwise selection algorithm 

1. Start with a null model 𝑀!, which contains no predictors 

2. For 𝑘 = 0, . . . 𝑝 − 1: 

a) Consider all the 𝑝 − 𝑘 models that augment the predictor in 𝑀" with on additional predictor. 

b) Chose the best model, in terms of highest R2 or highest Accuracy, among these models and call 

it 𝑀"#$ 

3. Select a single best model from among 𝑀!, … . ,𝑀% using cross-validated prediction error  
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5.2 Forecasting Models 

5.2.1 Logistic Model 

The logistic model is a statistical method for handling a classification problem, i.e., a problem 

in which the dependent variable is composed of categories or classes. This model allows us to 

predict the probability that an observation belongs to each of the categories of the qualitative 

variable. Specifically, the logistic regression model estimates the relationship between the 

independent variables and the log-odds of the dependent variable, which is then transformed 

into predicted probabilities using the logistic function. The logistic function maps any real-

valued number to a value between 0 and 1, which represents the probability of belonging to a 

specific class. If the response variable has more than two classes, as in my case, it is necessary 

to use an extension of the logistic model called the multinomial logistic regression model. This 

model uses the following logistic function for estimating probabilities: 

 
Pr(𝑌 = 𝑘|𝑋 = 𝑥) =

𝑒,&'-,&(.(-⋯-,&).)

1 + ∑ 𝑒,*'-,*(.(-⋯-,*).)0$%
1*%

 

 

(1) 

for 𝑘 = 1,… , 𝐾 − 1, 

where K is the number of classes of dependent variable. Function 1 is fitted using a method 

called maximum likelihood. This approach ensures that the model estimates are chosen to 

maximize the probability of observing the given data. At this point we can obtain for all 

observation the probability of belonging to each class by substituting within 1 the estimated 

coefficients. Through a few steps we can rewrite equation 1 as follows: 

 
𝑙𝑜𝑔 A

Pr(𝑌 = 𝑘|𝑋 = 𝑥)
Pr(𝑌 = 𝐾|𝑋 = 𝑥)B = 𝛽)+ + 𝛽)%𝑥% +⋯+ 𝛽)(𝑥( 

 

(2) 

The left-hand side is called log odds or logit, and we can notice that is linear in 𝑋 for the logistic 

regression model. While in a linear regression model, 𝛽 represents the average change in 𝑌 

associated with a one-unit increase in 𝑋, in logistic regression, increasing X by one unit changes 

the log odds by 𝛽. The relationship between Pr(𝑌 = 𝑘|𝑋 = 𝑥) and 𝑋 is not linear, so 𝛽 does 

not correspond to the change in p(X) associated with a one-unit increase in 𝑋. So, the direction 

and magnitude of Pr(𝑌 = 𝑘|𝑋 = 𝑥) change due to a one-unit change in 𝑋 depend on the current 

value of 𝑋. 
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5.2.2 Support Vector Machine 

The Support Vector Machine (SVM) is a powerful classification algorithm that builds upon the 

concepts of hyperplanes and the maximal margin classifier. In machine learning, a hyperplane 

is a flat subspace in a p-dimensional space, where p represents the number of dimensions. For 

example, in two dimensions, a hyperplane is a line, while in three dimensions, it is a plane. In 

general, a hyperplane can be defined by an equation of the form:  

 𝛽+ + 𝛽%𝑋% + 𝛽'𝑋' +⋯ . . +𝛽(𝑋( = 0 (3) 

 

where 𝛽0,𝛽1, . . . ,𝛽𝑝 are parameters. This equation divides the space into two halves, and the 

sign of the left-hand side determines on which side a point lies. In classification tasks, the goal 

is to develop a classifier that can correctly classify test observations based on their features. 

One approach is to use a separating hyperplane, which perfectly separates the training 

observations according to their class labels. The separating hyperplane satisfies the condition  

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯ . . +𝛽𝑝𝑋𝑝 > 0 

for observations labeled as one class and 	
𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯ . . +𝛽𝑝𝑋𝑝 < 0 

for observations labeled as the other class. The maximal margin classifier is a natural choice 

when constructing a classifier based on a separating hyperplane. It is the separating hyperplane 

that has the farthest minimum distance from the training observations, known as the margin. 

The maximal margin classifier classifies a test observation based on its location relative to the 

maximal margin hyperplane. 

Support Vector Machines build upon the concept of the maximal margin classifier. SVMs aim 

to find the optimal hyperplane that not only separates the classes but also maximizes the margin 

while allowing for some misclassification. This is achieved by introducing slack variables that 

permit observations to fall within the margin or even on the wrong side of the hyperplane. The 

optimization problem associated with SVMs involves finding the hyperplane coefficients that 

maximize a specific objective function while satisfying certain constraints: 

 𝑚𝑎𝑥,,3,4 				𝑀 
 

subject to      𝑦5I𝛽+ + ∑ 𝛼#〈𝑥, 𝑥#〉6
#*% M ≥ 𝑀(1 − 𝜀5), 

(4) 
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∑ 𝜀56
5*% ≤ 𝐶,  	𝜀5 ≥ 0,  	∑ ∑ 𝛽#)' = 1'

)*%
(
#*%  

 

where 𝑀 is the width of the margin, 𝜀5 … . , 𝜀6 are the slack variables that allow individual 

observation to be on the wrong side of the margin or hyperplane, 𝐶 is a tuning parameter that 

determines the number and severity of the violation to the margin and hyperplane that the 

model will tolerate. Instead, 〈𝑥, 𝑥#〉 refers to the inner product between a new point 𝑥 and each 

of the training points 𝑥# and is defined as kernel in SVMs.  

A kernel quantifies the similarity between observations and can be chosen based on the desired 

behaviour. The advantage of using kernels in SVMs, which also distinguishes it from the 

support vector classifier, is the possibility of addressing the problem of nonlinear boundaries 

between classes by expanding the feature space with kernels. Using a non-linear kernel in the 

SVM algorithm allows for a more flexible decision boundary, capturing complex relationships 

in the data. In my case I decided to use a radial kernel. A radial kernel is characterized by high 

flexibility in modeling intricate patterns in the data. It quantifies the similarity between 

observations based on their Euclidean distance. By using the radial kernel, the SVM can assign 

higher weights to observations that are closer to the decision boundary, allowing for a more 

accurate and precise classification. Additionally, the radial kernel's local behavior ensures that 

only nearby training observations have a significant impact on the class labels of test 

observations. This means that the radial kernel focuses on the most relevant observations, 

resulting in improved classification performance. 

SVMs are suited for two-class classification problems, however in my current setting I have 

three classes. To address this problem, I decided to use an extension of SVMs: the one-versus-

all approach. With this approach, I train K SVMs, where each SVM compares one of the K 

classes to the remaining K-1 classes. The SVM for the kth class is trained to distinguish that 

class (coded as +1) from the others (coded as -1). When given a test observation I assign it to 

the class with the highest confidence score based on the SVM model's decision function. This 

decision is made because it indicates a high level of confidence that the test observation belongs 

to the kth class rather than any of the other classes. 

The value of tuning parameter C that I used in the model was found through the grid search 

method. I tested a grid of values ranging from 1 to 50 and select the best choice using a cross 

validation approach. 
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5.2.3 Tree-Based Models 

5.2.3.1 Decision Tree 

The decision tree is a machine learning algorithm that can be applied to both regression and 

classification problems. It has the advantage of being simple and useful for interpretation. The 

process of building a decision tree follows two steps: 

1. The set of possible values for 𝑋%, 𝑋', … , 𝑋(, called predictor space, is divided into J 

distinct and non-overlapping regions, 𝑅%, 𝑅', … , 𝑅7. 

2. For each observation that falls into the region 𝑅7, the algorithm makes the same 

prediction, which, in the case of classification tree, is the most commonly occurring 

class of training observations in 𝑅7 to which it belongs. 

In the classification setting, the criterion used to divide the predictor space into J regions differs 

from that of the regression tree. Instead of minimizing the RSS, the focus is on minimizing the 

Gini index, which is represented by the following equation: 

 
𝐺 = 	T 𝑝̂8)(1 − 𝑝̂8))

0

)*%

 

 

(5) 

where 𝑝̂8) is the proportion of the training data in the mth region of the kth class. The Gini 

index is a measure of node purity, the lower its value the higher the purity of the node, defined 

by the number of observations in a node from a single class. 

However, considering every possible partition of the feature space into J boxes is 

computationally infeasible. Hence, the decision tree algorithm uses a top-down, greedy 

approach known as recursive binary splitting. Recursive binary splitting starts at the top of the 

tree with all observations in a single region and proceeds by successively splitting the predictor 

space. At each step, the best split is determined by selecting a predictor 𝑋7 and a cutpoint s that 

maximizes the reduction in Gini index. The predictor space is then divided into two regions: 

{𝑋|𝑋7 < 𝑠} and {𝑋|𝑋7 ≥ 𝑠}. This splitting process is repeated iteratively, searching for the best 

predictor and cutpoint to further minimize the Gini index within each resulting region. The 

splitting continues until a stopping criterion is met, such as reaching a maximum depth or a 

minimum number of observations in a region. Once the regions 𝑅%, 𝑅', … , 𝑅7 are created, 
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predictions for new test observations are made according to the majority vote rule, that is, the 

most commonly recurring class among all predictions. 

Decision trees are constructed by recursively partitioning the data space from the root node to 

the terminal nodes, capturing complex relationships and interactions between variables. The 

importance of variables is reflected in the selection of the root node and subsequent nodes 

based on the smallest Gini index. However, decision trees tend to suffer from high variance, 

making them sensitive to data changes and prone to overfitting. To address this, a pruning 

technique can be applied. 

 

5.2.3.2 Tree Pruning 

The goal of the Pruning technique is to select a smaller subtree that generalizes well to unseen 

data while maintaining interpretability. Rather than growing a complex tree, a large tree 𝑇+ is 

first constructed, which is then pruned to obtain a subtree by minimizing the total 

misclassification error rate. Estimating the error for every possible subtree is impractical due 

to their large number. Instead, cost complexity pruning, also known as weakest link pruning, 

offers a solution. Cost complexity pruning involves a sequence of trees indexed by a 

nonnegative tuning parameter α. For each value of α, a subtree T ⊂ 𝑇+  is selected to minimize 

a criterion represented by the following equation: 

 𝑅9(𝑇) = 𝐸(𝑇) + 𝛼|𝑇| 

 

(6) 

where |𝑇| indicates the number of terminal nodes of the tree 𝑇	and 𝐸(𝑇) is the misclassification 

rate of the tree  𝑇, computed as the sum of the of misclassification errors at each note of the 

tree  𝑇.  𝑅9(𝑇) represents the cost-complexity measure and serves as a penalized version of the 

resubstitution error rate. It balances the subtree's complexity (number of terminal nodes) and 

its fit to the training data. If α is small, the largest tree is chosen as the complexity penalty term 

becomes negligible. Conversely, as α increases, a smaller subtree is favored to prevent 

overfitting. The process of obtaining the sequence of subtrees as α increases is straightforward. 

The value of α can be chosen using a validation set or cross-validation. Once determined, the 

corresponding subtree is obtained from the full dataset. This pruning approach is summarized 

in the following algorithm: 
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Table 3: Pruning algorithm 

1. Grow a large tree on the training data stopping  when each terminal node has fewer than some minimum 

number of observations 

2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as function 

of α 

3. Use K-fold cross-validation to choose α. That is, divide the training observations into K folds. For each 

𝑘	 = 	1, . . . , 𝐾:  

a. Repeat Steps 1 and 2 on all but the kth fold of the training data. 

b. Evaluate the misclassification error on the data in the left-out kth fold, as a function of α. 

Average the results for each value of α, and pick α to minimize the average error.  

4. Return the subtree that corresponds to the chosen value of α.  

 

5.2.3.3 Bagging 

Bootstrap aggregation, or bagging, is a technique used to reduce the variance of statistical 

learning methods, particularly decision trees. The fundamental idea behind bagging is that 

averaging multiple prediction models built on different training sets can decrease variance and 

enhance test set accuracy. However, obtaining multiple training sets is usually impractical. 

Instead, bootstrap samples are generated by resampling from the original training set. By 

constructing B different bootstrapped training sets, we can train the method on each set 

separately to obtain B prediction models (		𝑓]%(𝑥), 𝑓]'(𝑥), . . . , 𝑓]:(𝑥)). Averaging these 

predictions results in a single low-variance statistical learning model, a process known as 

bagging: 

 
𝑓_;<=(𝑥) =

1
𝐵T𝑓_;

:

;*%

(𝑥) 
(7) 

In the case of classification problems, where the outcome variable is qualitative, the averaging 

of predictions is carried out according to the majority vote approach: for each test observation, 

the class predicted by each of the B trees is recorded, and the overall prediction is determined 

by selecting the most commonly occurring class among the B predictions. In my case I decided 

to set the value of B to 100, since beyond this number adding additional bags does not 

progressively improve model estimates but only computational time. 

Bagging has proven to be highly effective in improving prediction accuracy by combining 

numerous trees into a single procedure. 
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5.2.3.4 Random Forest  

Random forests offer an enhanced version of bagged trees by introducing a modification that 

reduces the correlation between the trees. Instead of considering all predictors at each split, 

random forests randomly select a subset of predictors, m, from the total p predictors. Typically, 

m is chosen to be approximately equal to the square root of p (𝑚	 ≈ 	√𝑝). 

This modification is aimed at decorrelating the trees to avoid high correlation among 

predictions. In bagging, if there is a strong predictor in the dataset, it tends to be used in the top 

split of most or all trees, resulting in highly correlated predictions. However, averaging highly 

correlated quantities does not lead to a significant reduction in variance compared to averaging 

uncorrelated quantities. Random forests address this issue by restricting each split to only 

consider a subset of predictors, making the resulting trees less variable and more reliable. This 

process decorrelates the trees and increases the chance for other predictors to have an impact. 

The key distinction between bagging and random forests lies in the selection of the predictor 

subset size, m. If m equals p, random forests essentially become bagging. However, using a 

smaller value of m, especially when dealing with a large number of correlated predictors, can 

be beneficial. For the same reason mentioned earlier regarding bagging, I set the number of 

trees (ntrees) used by the model to reduce variance to 100. 

 

5.2.3.5 Optimal Random Forest 

Finally, I developed a random forest model using the optimal number of regressors, m. I set up 

a grid ranging from 1 to p, representing the potential values for m. Then, I implemented a loop 

that fitted a random forest with a given number of trees for each value of m. The selection of 

the optimal m is based on minimizing the OOB estimate of test error. 

The Out-of-Bag (OOB) test error is a metric used to estimate the performance of a bagged tree 

or random forest model. It is calculated by evaluating each individual tree in the ensemble on 

the training data that were not used during its construction. During the training process, bagged 

trees or random forest models are built by randomly selecting subsets of the original training 

data, allowing for the creation of multiple trees. Each tree is constructed using a bootstrap 

sampling technique, where some observations are included in the training set multiple times, 

while others are left out (out-of-bag observations). The OOB test error is computed by 
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averaging the classification error for each of the ith training observation, using trees in which 

that observation was OOB. 

So, I stored the OOB estimate of test error rate for each of the p random forest models, and 

selected as the optimal m, the one with which the lowest OOB error is associated. With this 

optimal value of m, I re-estimated a random forest model, thus obtaining the best tree model. 

 

5.2.3.6 Variable Importance 

Bagging and random forest are known to enhance prediction accuracy compared to using a 

single classification tree. However, it comes at the cost of interpretability. While decision trees 

provide a clear and understandable diagram, representing a bagged model or a random forest 

model with numerous trees becomes challenging, and identifying the most important variables 

becomes less apparent. Consequently, they sacrifice interpretability for improved prediction 

accuracy. To address this limitation, an overall summary of the importance of variables for 

bagged and random forest classification trees can be obtained using two different methods, 

according to Breiman (2001) and Friedman (2001). The first approach is based on node 

impurity and involves the Gini index. By calculating the total decrease in the Gini index (3) 

resulting from splits over a specific predictor and averaging it across all the trees, the 

importance of each predictor can be determined. A higher value indicates a more influential 

predictor in the classification trees. Similarly, for regression trees, the total decrease in the 

residual sum of squares (RSS). The second method, on the other hand, is based on accuracy. 

The importance of the predictor is measured by calculating the decrease in accuracy in 

predictions on the out of bag samples when a given variable is removed. Even in this case, a 

higher value indicates a more influential predictor. 

 

5.2.3.7 Partial dependence plot 
The partial dependence plot is a valuable tool for analyzing the marginal effect of a feature on 

the predicted outcome of a model (Friedman 2001). By fixing the prediction function at specific 

values of the selected features and averaging over the remaining features, it provides insights 

into the relationship between the target variable and a particular feature. One of the key 

advantages of partial dependence plots is their ability to reveal the nature of the relationship 
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between the target variable and a feature, whether it is linear, monotonic, or more complex. 

The partial dependence function for regression is defined as: 

 𝑓_𝑥>(𝑥>) 	= 	𝐸𝑥?[𝑓_(𝑥>, 𝑥?)] 	= 	e𝑓_(𝑥>, 𝑥?)𝑑𝑃(𝑥?) 
(8) 

Here, 𝑥> represents the set of features for which the partial dependence function is being 

plotted, while 𝑥? refers to the other features used in the machine learning model. By 

marginalizing the output of the machine learning model 𝑓_ over the distribution of features 𝑥?, 

the resulting function represents the relationship between the 𝑥> features of interest and the 

predicted outcome. To estimate the partial function 𝑓_𝑥> along 𝑥>, we employ the Monte Carlo 

method, calculating averages by using training data: 

 
𝑓_𝑥>(𝑥>) 	= 	

1
𝑁T𝑓_(𝑥>, 𝑥?+)

6

5*%

 
(9) 

In this formula, 𝑥?+ represents the actual feature values from the dataset for the features that are 

not of interest, while n denotes the number of instances in the dataset. In my case of 

classification tasks, where the machine learning model outputs probabilities, the partial 

dependence function illustrates the probability associated with a specific class given various 

values of the 𝑥> features. Multi-class problems can be handled by plotting individual lines or 

separate plots for each class. 

 

5.2.4 Evaluation Metrics 

In machine learning analysis, evaluation metrics play a crucial role in assessing the 

performance of models, particularly their ability to generalize to new data. They also aid in 

model selection by identifying the best-performing model from a set of trained models. 

Accuracy or error rate (1-accuracy) is a commonly used evaluation metric in classification 

problems. Specifically, it is the most widely used evaluation metric in the academic literature 

related to forecasting FOMC decisions on target rate. It measures the number of correct 

predictions made by a model and is calculated based on the values present in the confusion 

matrix, which is a tabular representation of the model's predicted labels compared to the actual 

labels. The confusion matrix is typically a square matrix with rows and columns representing 

the different classes or labels in the classification problem. The diagonal elements of the matrix 

correspond to the correctly classified instances, while the off-diagonal elements represent the 
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misclassifications. The accuracy is computed by dividing the sum of correctly classified 

instances by the total number of instances in the dataset. In addition, by looking at the confusion 

matrix we are able to calculate the accuracy of the model for individual class predictions. 

However, my machine learning models also produce class prediction probabilities, which are 

often disregarded when computing accuracy. Accuracy relies on a single decision threshold, 

such as 0.5 in binary classification, where observations with prediction probabilities above 0.5 

are classified as positive and the rest as negative. This approach fails to fully leverage the 

informative results that the model provides, limiting the precision of the analysis. To address 

this, I followed Pauwels (2012) by introducing two additional evaluation metrics, namely the 

log-score and the quadratic-score, to provide a more comprehensive assessment of model 

performance. 

Log-score takes into account the logarithm of the predicted probabilities, allowing for a more 

nuanced analysis. It captures the probabilistic nature of the predictions and provides a measure 

of the model's confidence in its predictions. Higher log-score values indicate more accurate 

and confident predictions. In my current setting in which the models produce three probabilities 

for each prediction (𝑃]$%, 𝑃]+, 𝑃]%), the log-score has the following form: 

 𝑆1 = log	(𝑃]#) (10) 

where 𝑃]# is the probability predicted by the model for the state that actually happens. Similarly, 

quadratic-score considers both the predicted probabilities and their proximity to the true class 

labels. It quantifies the discrepancy between predicted probabilities and actual outcomes, 

rewarding predictions that are close to the true values. In my specific case the quadratic-score 

rule is given by: 

 𝑆@ = 2𝑃]# − (𝑃]$%' + 𝑃]+' + 𝑃]%') (11) 

These scores are calculated for each out-of-sample predictions and then are averaged to obtain 

a single final score. By utilizing log-score and quadratic-score alongside accuracy, this research 

aims to gain deeper insights into the performance of the models in predicting FOMC decisions. 

These metrics offer a more comprehensive understanding of the model's reliability, precision, 

and confidence in its predictions.  
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5.2.5 K-fold Cross Validation 

In all the models I applied a 5-fold cross-validation approach. This technique provides several 

benefits for model generalization compared to a single train-test split. Firstly, cross-validation 

allows for a more comprehensive assessment of the model's performance by dividing the 

dataset into multiple subsets or folds. This approach ensures that each data point has the 

opportunity to be part of the test set, providing a more reliable estimation of the model's ability 

to generalize to unseen data. By averaging the performance metrics across multiple folds, I 

obtain a more robust evaluation of the model's predictive power. Additionally, cross-validation 

helps in mitigating the potential bias that could arise from a particular division of the dataset. 

It allows for a more balanced representation of the data across different folds, reducing the 

impact of any specific subset's characteristics on the model's performance. This is particularly 

relevant in the case of predicting FOMC decisions, where the dataset may contain various 

factors that could introduce temporal dependencies or specific trends. By adopting a cross-

sectional approach instead of a chronological one, I can mitigate the influence of time-related 

patterns and focus on capturing the underlying relationships between macroeconomic 

indicators and decision outcomes. Choosing a cross-sectional design over a temporal one 

allows for the utilization of the entire available dataset, maximizing the information used for 

model training and evaluation. Thus, by leveraging the benefits of cross-validation, I can 

enhance the robustness and generalizability of the machine learning models developed for 

predicting FOMC target Federal funds rate. 
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5.3 Event Study 

Once the models for predicting Fed policy decisions have been developed, the goal of this 

paper is to analyze the impact these decisions have on financial markets. Specifically, I want 

to study how unexpected decisions regarding a change in Federal fund target rate impacts the 

stock market.  To do this, I used the Event Study methodology introduced by Craig MacKinlay 

(1997). The event study is a technique to measure the effect of economic event on the value of 

firms. 

The first step in conducting an event study is to identify the event of interest, which in this case 

is the announcement of a change in the Federal funds target rate by the Federal Reserve. Getting 

the timing right is crucial to an event study analysis. I therefore considered as event dates the 

FOMC meeting dates previously used for model development. However, some policy decisions 

are not communicated on the same day that the FOMC meets. For this reason, I filtered out all 

those events in which the day of the FOMC meeting and the day of the effective market change 

of the target fed funds rate (thus the day of the public announcement) did not coincide and were 

far apart. In this way I obtained 343 total events from the original number of 352. 

At this point, my interest lies in distinguishing between expected and unexpected FOMC policy 

decisions. To achieve this, I have revised my machine learning models, adopting a continuous 

approach instead of a discrete one. Consequently, my new continuous variable represents the 

newly determined Federal fund target rate at each FOMC meeting. I made this decision to allow 

the calculation of errors for each observation, which entails finding the difference between the 

actual observed value of the target rate and the value estimated by the model. To compute these 

errors, I employed the random forest model with 5-fold cross-validation. This approach 

allowed us to treat each observation as a test set, providing us with an estimate of the forecast 

error for each individual data point. I opted against calculating squared errors as my objective 

is to differentiate between positive and negative surprises based on the sign of estimation errors. 

Specifically, I categorized events with a positive error as negative surprises since the FOMC's 

actual target rate exceeded public expectations according to the model. Conversely, negative 

errors were associated with positive surprises as the actual target rate fell below expectations. 

Subsequently, I arranged the errors in descending order and generated two new dummy 

variables: one denoting negative surprises, assigned a value of 1 for the top 20 observations 

with the highest errors (corresponding to the 95th percentile); the other representing positive 

surprises, assigned a value of 1 for the last 20 observations with the lowest errors 
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(corresponding to the 5th percentile). As a result, each event was associated with three 

variables: the two surprise-related dummy variables and one indicating the sign of the change 

in the federal fund target rate. My analysis focuses on examining the impact of policy decisions 

on the overall U.S. stock market. Therefore, I selected the S&P 500 as a proxy variable for 

studying market movements.  

The next step in conducting an event study involves defining the event window and estimation 

window. The event window encompasses a specific time period surrounding the event date. In 

my case, I chose to extend it from 5 days before the event to 5 days after. This decision was 

driven by my desire to capture early market reactions prior to the announcement of the target 

rate decision. On the other hand, the estimation window is set several days prior to the event to 

allow for the estimation of Normal Returns. In my study, I selected an estimation window 

ranging from 90 days before the event to 6 days before. 

To measure the impact of the event, the actual stock price movements during the event window 

are compared with the expected or normal return. Several methods can be employed to estimate 

the expected return, such as the mean adjusted model, market adjusted model, or market model. 

Given that my study variable is the market index itself, which is influenced by the event, the 

only method I could use is the mean adjusted mode. This approach involves calculating the 

normal return as the average of the returns of my study variable during the estimation window.  

Subsequently, I calculate Abnormal Returns, a commonly used metric in event studies that 

represents the difference between the actual return of a security during the event window and 

the expected return. Abnormal Returns help isolate the specific impact of the event on stock 

prices, controlling for other factors. For each event, I retain the Abnormal Returns specifically 

related to the event window and calculate the Cumulative Abnormal Returns (CARs) by 

summing the ARs cumulatively. This process yields 343 CARs, which I use for regression 

analysis with the three previously mentioned variables. Specifically, I conduct two regressions, 

differentiating them based on the direction of the decision regarding changes in target rate. The 

regression equations take the following form in both cases: 

 𝐶𝐴𝑅5 = 𝛼 + 𝛽𝑃𝑜𝑠𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒5 + 𝛾𝑁𝑒𝑔𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒5 + 𝜀5 (12) 

In the first regression, only CARs associated with a FOMC decision to raise rate are considered, 

while in the second regression, only CARs associated with a FOMC decision to lower rate are 

considered. 
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The event study methodology is based on 4 main assumptions: abnormal returns and 

cumulative abnormal returns are uncorrelated across events (A1-A2); the model is linear in 

parameters (A3); the variance of the error term is equal between events and does not depend 

on covariates (A4). In my case, Assumptions 1 and 2 may be violated as the Federal Reserve's 

policy decisions could be correlated, especially those made in close proximity or within the 

same period. This could lead to a wrong computation of standard errors for the coefficients and 

consequently to an incorrect statistical significance analysis. To address this issue, one solution 

is to assume the presence of clusters where events can be correlated, while ensuring that 

different clusters are uncorrelated. By employing the cluster formula, I can obtain the correct 

standard errors for the parameters. In my study, I consider clusters based on the year, assuming 

that target rate decisions within the same year are correlated. This decision is motivated by the 

understanding that the Federal Reserve's monetary policy actions are often driven by broader 

economic conditions and objectives that persist over a certain time frame.   

In conclusion, through the event study analysis, I aim to examine the impact of target Federal 

funds rate decisions on the market index, differentiating between the direction of the decision 

and whether it represents a negative or positive surprise. 
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6. Results 

In the upcoming chapter, I will present the outcomes of the methodologies described 

previously. The results will be presented in three separate sections. Firstly, I will assess the 

predictive performance of my machine learning models. Secondly, I will delve into the findings 

of the event study. Lastly, I will outline a straightforward investment strategy based on the 

predictive capabilities of my models. 

 

6.1 Forecasting Results 

Before delving into the analysis of the predictive performance of my machine learning models, 

it is important to present the outcomes of the forward selection process I implemented. This 

selection process aimed to identify a subset of the most relevant regressors from the original 

set. Initially, I conducted forward selection by setting the maximum subset size to my total 

number of regressors, which was 56. This approach allowed us to find the optimal number of 

regressors (23) to include, associated with the highest level of performance metrics. At this 

point, I performed forward selection again, with 23 as the maximum subset size. The outcome 

of this process is displayed in Table 4, presenting the selected regressors to be incorporated 

into my models. 

 

Table 4: Regressors selected by forward stepwise selection  

 

Previous Target rate decision 

 

Initial Claim previous period diff. 

Consumer Price Index Confidence Index previous period diff. 

Core Inflation Average working hours previous period diff. 

Total Vehicle Sales Exports previous period diff. 

Bank Prime Loan Rate Potential GDP previous period diff. 

M1 PCE previous year diff. 

Initial Claim Bank Prime Loan Rate previous year diff. 

Average working hours M3 previous year diff. 

Capacity Utilization Initial Claim previous year diff. 

Manufacturing PMI Average working hours previous year diff. 

Core Inflation previous period diff. Capacity Utilization previous year diff. 

Total Vehicle Sales previous period diff.  

 



36 
 

Using the aforementioned regressors, I constructed my machine learning models as outlined in 

the preceding chapter. The Table 5 presents the results, facilitating a comparison of the 

performance among the different models. Accuracy, log-score, and quadratic-score were 

employed as evaluation metrics for both in-sample and out-of-sample performance. All model 

metrics were computed using 5-fold cross-validation, so averaging the performance across each 

fold. Furthermore, I included the performance metrics of historical models discussed in the 

literature review, specifically those developed by Hu and Phillips (2004), Pauwels (2012), and 

Vasnev (2013). Since these studies considered three distinct time periods, I opted for a fairer 

comparison by presenting an average of the performance across these periods, aligning it with 

my models developed using K-fold cross-validation. 

Table 5: Model predictive performance 

 In-Sample Forecast Out-of-sample Forecast 

Models | Scores Accuracy (%) Log-score Quadratic-score Accuracy (%) Log-score Quadratic-score 

Logit 78.9 -0.49 0.71 70.4 -0.65 0.61 

SVM 97.5 -0.68 0.64 72.7 -0.96 0.47 

Decision Tree 87.6 -0.51 0.71 68.7 -Inf 0.50 

Pruned Tree 83.3 -0.50 0.71 68.7 -Inf 0.50 

Bagging 1 -0.15 0.94 72.9 -Inf 0.64 

Random Forest 1 -0.15 0.95 73.8 -0.59 0.65 

Optimal RF 1 -0.15 0.95 74.9 -0.58 0.65 

Past Models 

Hu&Phillips 78.0 -0.63 0.59 65.6 -1.31 0.45 

Pauwels - - - 64 -0.86 0.47 

Vasnev - - - 66.7 -0.63 0.65 

Notes: the results of Hu and Phillips (2004) reported here were calculated by Pauwels (2012), because as I anticipated in the 
literature review Hu and Phillips had originally tested their model only within their sample. For the models of Pauwels 
(2012) and Vasnev (2013), unfortunately, no in-sample performance is available. The log score for some models has the 
value -Inf, this indicates that the model produced a predicted probability of zero for one or more observations in the test 
dataset. This could suggest that the model struggled to correctly generalize those particular observations. 

 

In terms of in-sample accuracy, the Bagging, Random Forest, and optimal Random Forest 

models achieved the highest scores, all at 100%. They were closely followed by the SVM 

model with a score of 97.5% and the decision tree model with a score of 87.6%. Furthermore, 

the first three models also exhibited strong performance in terms of log-score and quadratic 

score. However, it is important to note that such high accuracy scores can be attributed to 
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overfitting, whereby the models have learned the specific patterns and noise present in the 

training data. Moving to the out-of-sample performance, the optimal random forest model 

demonstrated the highest accuracy at 74.9%, followed by normal random forest model at 73.8% 

and bagging at 72.9%. Random Forest models also displayed better log-score and quadratic 

score compared to other models. Comparing these results with past models, the Hu & Phillips 

model achieved an in-sample accuracy of 78.0% and an out-of-sample accuracy of 65.6%. 

Pauwels' model showed an out-of-sample accuracy of 64%, while Vasnev's model had an out-

of-sample accuracy of 66.7%. Overall, the results indicate that the optimal random forest model 

outperformed all other models developed in this thesis, as well as the models found in the 

existing literature. With higher accuracy, log-score, and quadratic-score values in both in-

sample and out-of-sample forecasts, the random forest model consistently demonstrates a 

superior performance in my dataset. Its ability to capture complex relationships and handle 

high-dimensional data makes it the most effective among the various supervised learning 

models considered in this study. My Hypothesis 1 therefore cannot be rejected. 

To provide a more detailed analysis of the predictive performance of the models, out-of-sample 

accuracy was calculated for each of the three classes of the dependent variable (hike, no change, 

cut). The Table 6 below presents the results, calculated using 5-fold cross-validation. It also 

includes the accuracy of the past models for comparison: 

Table 6: Model accuracy at class level 

Out-of-sample Correct prediction (%) 

Models | Classes Cut No Change Hike Total 

Logit 45.6 83.0 53.75 70.4 

SVM 39.3 84.9 60.7 72.7 

Decision Tree 49.0 77.2 56.9 68.7 

Pruned Tree 40.8 82.2 50.4 68.7 

Bagging 45.3 86.4 54.0 72.9 

Random Forest 39.3 89.7 54.0 73.8 

Optimal RF 47.5 88.6 55.2 74.9 

Hu&Phillips 42.8 73.7 60.5 65.6 

Pauwels 33.6 73.9 62.7 64 

Vasnev 44.4 78.3 38.9 67.6 

Notes: again, the results reported for past models are calculated as an average of the accuracy over the three separate time 
periods considered in the original works. 
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As observed, the class with the highest accuracy among all the models is the "no change" class. 

This can be attributed to the slight data imbalance, as explained in the Data chapter. Since the 

FOMC decisions not to change target rate are more frequent, the models have been trained to 

predict this class with greater accuracy. Nonetheless, the models also demonstrate a good 

ability to predict rate hike and rate cut decisions. In fact, all models exhibit a higher probability 

than the 33.3 percent probability achieved by random class selection. Notably, the models 

exhibit a higher predictive ability for rate-raising decisions compared to rate-lowering 

decisions. The SVM model, which demonstrates the highest accuracy for rate-raising decisions, 

achieves an accuracy of 60.7 percent, while the Decision Tree model, which performs better 

for rate-lowering decisions, achieves an accuracy of 49 percent. Furthermore, the random forest 

model demonstrates the highest accuracy in predicting decisions to maintain rate unchanged. 

To provide a visual representation of the results, Figure 3 illustrates the (out-of-sample) 

predicted probabilities for each policy intervention using my best model, the optimal random 

forest. 

Figure 3: Optimal random forest out-of-sample predicted probabilities 

 

The results encompass the entire time period from the beginning of 1983 to the end of 2022. 

Each graph within the figure corresponds to one of the three FOMC decisions regarding target 

rate, and the vertical rectangles depict the probabilities estimated by the optimal random forest 
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for these decisions. Within this graphical representation, correct predictions are highlighted in 

blue, while incorrect predictions are marked in red. Also the graphical representation 

demonstrates the slight imbalance among the classes and the subsequent ability of the models 

to accurately predict decisions to maintain stable rate.  

At this point I decided to use my best model, optimal random forest, to understand well the 

relationship between the regressors and my dependent variable. By utilizing the variable 

importance methodology outlined in the preceding chapter, my objective is to discern the 

economic indicators that exert the greatest influence on FOMC policy decisions. 

Figure 4: Variable Importance 

 

From the Figure 4, we observe that the previous period's decision (prev.dec.l1) is the most 

important variable in terms of both decreasing accuracy and Gini index. This finding confirms 

the observed continuity in FOMC policy decisions and underscores the influence of past FOMC 

actions on the current decision-making process. Additionally, we observe that the 

Manufacturing Purchasing Managers' Index (Manufacturing_PMI), the year-on-year 

difference in personal consumption expenditures (pce.diff.year), the bank prime loan rate (blr), 

and initial jobless claims (ini_claim) for both evaluation methods remain among the top five 

most important variables This suggests that performance of the manufacturing industry, 

consumer behavior and spending trends, fluctuations in the bank loan rate and the level of 

jobless claims are likely to influence the FOMC policy decision. 

 

avg_work_hours.diff.prev
avg_work_hours

tvs.diff.prev
core_infl.diff.prev
ini_claim.diff.prev

export_value.diff.prev
avg_work_hours.diff.year

m3.diff.year
confid_index.diff.prev

industry_cap_uti
tvs

industry_cap_uti.diff.year
ini_claim.diff.year

cpi
potential_gdp.diff.prev

m1
core_infl

blr.diff.year
ini_claim

blr
pce.diff.year

Manufacturing_PMI
prev.dec.l1

0 5 10
MeanDecrease Gini Index

Va
ria

bl
es

avg_work_hours.diff.prev
tvs.diff.prev

confid_index.diff.prev
export_value.diff.prev

core_infl.diff.prev
ini_claim.diff.prev

tvs
m3.diff.year

ini_claim.diff.year
avg_work_hours.diff.year

avg_work_hours
industry_cap_uti

industry_cap_uti.diff.year
potential_gdp.diff.prev

m1
cpi

blr.diff.year
core_infl
ini_claim

blr
pce.diff.year

Manufacturing_PMI
prev.dec.l1

0.0 2.5 5.0 7.5
MeanDecrease Accuracy

Va
ria

bl
es



40 
 

Finally, I conducted a detailed analysis to examine how these significant variables impact the 

estimations of my top-performing model, the optimal random forest. Specifically, I utilized the 

partial dependence plot methodology discussed earlier to analyze the four most important 

variables. Figure 5 displays the partial dependence plots calculated using 5-fold cross-

validation. 

Figure 5: Partial Dependence Plots 

 

These plots illustrate the probability predicted by the model for each of the three classes, as 

function of the values of the economic indicators. It is evident that the probability of decisions 

to keep rates unchanged consistently outweighs that of the other classes, once again 

emphasizing the impact of the slight dataset imbalance. Notably, for three of the variables, the 

relationship between the probabilities of rate hikes and rate cuts is inverse. Particularly, when 

considering the previous decision regarding the target rate, we observe the prevailing continuity 

effect of FOMC policy. If the previous change in the target rate is negative, the probability of 

a rate cut is higher, whereas if the previous change is positive, the probability of a rate hike is 

higher. Moreover, we observe that the probability of maintaining rates constant increases if 

there had been no previous change. Regarding the Manufacturing PMI, we observe that at 

lower levels, the probability of a rate cut is higher, which diminishes as economic activity in 

the manufacturing industry improves, while the probability of a rate hike increases. This 

outcome could be attributed to the Fed's intention to moderate the economy during robust 
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growth and stimulate it during slowdowns. Once again, we notice that the probability of 

keeping rates steady peaks around the median value of the Manufacturing PMI. As for the year-

on-year difference in personal consumption expenditures, we observe that at negative values 

of this difference, indicating a decrease in PCE, the probability of rate cuts is higher to stimulate 

the economy. Conversely, at positive and high values of this difference, the probability of rate 

cuts and maintaining rates constant decreases in favour of a higher probability of rate hikes, 

aligning with the objective of slowing down the economy. Finally, concerning the bank loan 

rate, a clear inverse relationship between the probability of rate cuts and rate hikes is not 

evident. However, it can be observed that both probabilities tend to increase as the bank loan 

rate increases, while the probability of keeping rates constant decreases. 
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6.2 Event Study Results 

In this section, I will present the results of the event study conducted following the 

methodology outlined in the previous chapter. The first objective is to examine the impact of 

FOMC target rate change decisions on the stock market. To begin, I will analyze the results of 

a regression of the S&P 500 Cumulative Abnormal Returns (CARs) on the intercept, 

differentiating between events associated with rate hikes and rate cuts. For rate hikes, I 

anticipate obtaining a negative and statistically significant coefficient on the intercept. This is 

because an increase in the target federal funds rate immediately raises short-term borrowing 

costs for financial institutions, which subsequently affects borrowing costs for companies and 

consumers, resulting in a negative impact on the market index. Conversely, for rate cuts, I 

expect a positive and significant coefficient. 

The results are presented in the Table 7. We observe a negative intercept coefficient of -0.75, 

significant at the 1 percent confidence level, for rate hikes. In contrast, we find a positive 

intercept coefficient of 1.65, significant at the 1 percent confidence level, for rate cuts. This 

implies that, on average, the S&P 500 experiences a negative cumulative abnormal return of 

0.75 percent between five days before and after a rate hike decision, while it shows a positive 

cumulative abnormal return of 1.65 percent in the case of a rate cut decision. These results 

corroborate the prevailing theory that rate hikes exert a negative influence on the stock market, 

while rate cuts have a positive impact. Additionally, they highlight how the market reacts more 

significantly to a decrease in the target rate. 

At this point I aim to test the Hypothesis 2 of my study, which focuses on evaluating the ability 

of my best model to capture market participants' expectations regarding future decisions. To 

accomplish this, I performed again the previous regression of CARs by incorporating two 

dummy variables that identify decisions representing positive or negative surprises, as 

explained in Formula 12. My hypothesis cannot be rejected if I obtain a positive and 

statistically significant coefficient on the Pos_Surprise dummy for decisions to lower target 

rate, and a negative and significant coefficient on the Neg_Surprise dummy for decisions to 

raise target rate. This expectation is grounded in the belief that in the case of rate increases, a 

negative surprise - indicating a decision to raise the target rate to a higher level than expected 

- should result in a more pronounced negative impact on the market index. On the other hand, 

when rates are decreased, a positive surprise - indicating a decision to lower the target rate to 

a level lower than expected - is anticipated to have a more positive effect on the market index. 

The results are shown in the Table 7. 
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Table 7: S&P 500 CARs regressions  

 Rate Hike  Rate Cut 

Regressor (a) (b)  (c) (d) 

Intercept -.7648*** 
(-2.99) 

-.6659** 
(-2.10)  1.6511*** 

(3.31) 
1.0950** 

(1.89) 

Pos_Surprise - 2.6101 
(0.56)  - 3.7163*** 

(5.19) 

Neg_Surprise - -1.9589*** 
(-3.10)  - .6171 

(1.06) 

Notes: Columns (a) and (c) report the results of regressions of CARs on the intercept, and columns (b) and (d) report the 
results of regressions that include surprise components. All variables are expressed in percentage terms. In the case of (a) 
and (b) the sample consists of 66 observations related to different rate hike decisions, while in the case of (c) and (d) the 
sample is 49 observations related to different rate cut decisions. The parentheses contain the t-statistics. The t-statistics are 
calculated with standard errors estimated using a cluster formula to account for the correlations across the events, as 
previously stated. ***,**,* denote 1%, 10%, 20% significance level, respectively. 

For rate hike decisions, I obtained a negative intercept coefficient of -0.6659, which is 

statistically significant at the 10 percent level. Additionally, the coefficient for the 

Neg_Surprise dummy variable is -1.9589, also significant at the 1 percent level. These results 

indicate that when the Fed decides to raise rate, the S&P 500 experiences, on average, negative 

cumulative abnormal returns of 0.6659% over the five days before and after the decision. 

Furthermore, if the decision represents a negative surprise, the CARs become even more 

negative by 1.95%. The coefficient for the Pos_Surprise dummy variable is positive but not 

statistically significant. This suggests that a positive surprise may potentially mitigate the 

negative impact on the market index, but further analysis is required to confirm its significance. 

On the other hand, for decisions to cut rate, I obtained a positive intercept coefficient that is 

statistically significant at the 10 percent level. Additionally, the coefficient for the Pos_Surprise 

dummy variable is highly positive and significant at the 1 percent level. Specifically, in the 

case of a rate cut decision, the S&P 500 would experience an average CAR of 1.09%. If the 

decision represents a positive surprise, the cumulative return on the index would increase by 

an additional 3.71%. Again we observe higher coefficients (in absolute terms) for rate cut 

decisions, indicating a stronger market reaction to surprises associated with these policy 

decisions. 

These findings align with Bernanke and Kuttner's results, suggesting that my model 

demonstrates the ability to capture the element of surprise associated with changes in the 

Federal funds target rate. Consequently, it seems to incorporate market participants' 

expectations into its predictions, providing valuable insights into the relationship between 

policy decisions and market behavior. 
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6.3 Backtesting strategy 

In the following section, I implemented a backtesting strategy to assess the practical validity 

of my models. Throughout this strategy, I consistently utilized my best model, the optimal 

random forest. I trained this model with observations prior to 2010, and attempted to predict 

the FOMC's decisions regarding the Federal funds target rate from the beginning of 2010 until 

the end of 2022. Subsequently, I developed a straightforward investment strategy focusing on 

forecasting rate hike decisions in both the stock and bond markets. For the stock market, my 

strategy concentrated on three market indices highly sensitive to changes in the Federal funds 

target rate: S&P 500, Nasdaq Financial-100, and S&P United States REIT. The approach 

involved taking short positions on these indices when my model predicted a rate increase 

decision. I expected such decisions to exert a negative impact on these indices. Specifically, I 

initiated the short position 15 days before the FOMC meeting and closed it 5 days later. In 

remaining days, I adopt a long position on the indices, as for a buy-and-hold strategy. 

Regarding the bond market, I developed my strategy on U.S. Zero Coupon Bonds with 

maturities of 10, 20, and 30 years. I selected long-term ZCB bonds due to their higher price 

sensitivity to interest rate changes and as a matter of computational simplicity. Historical fitted 

yield data were used to calculate the prices of these bonds, assuming I purchased each bond at 

the beginning of the strategy as if it were newly issued. For bonds that reached maturity, I 

reinvested in new bonds with the same maturity at the current price determined by the current 

fitted yield. Like the stock market strategy, I took short positions from 15 days before to 5 days 

after a Fed decision to raise rate, while maintaining long positions for the remainder of the 

time. The results of this strategy for both the stock and bond portfolios are presented in the 

Table 8. Additionally, I included the returns of a simple buy-and-hold strategy for each security 

to facilitate comparison. The reported returns represent the cumulative sum of the daily returns 

of the strategies. 

Table 8: Backtesting strategy results 

 Stock Market  Bond Market 

 S&P 500 NSDQ100 S&P REIT  10y ZCB 20y ZCB 30y ZCB 

Prediction Strategy 196.76% 175.25% 178.53%  48.98% 87.62% 146.81% 

Buy-and-hold Strategy 142.73% 115.43% 92.87%  36.95% 73.84% 104.65% 

Difference 54.03% 59.82% 85.66%  12.03% 13.78% 43.16% 
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The strategy based on my models' forecasts demonstrates better performance compared to the 

buy-and-hold strategy for each individual security. The difference in returns between the two 

strategies over the 12-year investment period is not substantial, this is primarily due to the 

limited number of rate-cutting decisions predicted by the model during this timeframe, which 

amounts to only 8. We can see that the largest return in the case of the stock market were 

obtained by the S&P United States REIT. This outcome is reasonable considering that the real 

estate sector is one of the stock market sectors most exposed to changes in Federal funds rate. 

Conversely, in the bond market, the 30-year Zero Coupon Bond (ZCB) records the highest 

returns. This finding aligns with expectations as bonds with longer maturities exhibit higher 

duration and therefore greater sensitivity to rate changes. Figure 6 presents a graphical 

representation of the different strategies. The graph depicts an index with an initial value of 

1000, showing variations based on the daily returns of each strategy. The vertical green bands 

represent periods when the prediction strategy takes a short position on stocks. 

 

Figure 6: Graphical representation of the backtesting Strategy 
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7. Conclusion 
This paper is divided into two main parts. The first part focuses on analyzing the behavior of 

the Federal Reserve during policy decisions. Specifically, I aim to develop models capable of 

predicting the FOMC's decisions regarding the Federal funds target rate. While traditional 

econometric models have been extensively explored in the academic literature for this purpose, 

my contribution lies in the application of new techniques, such as machine learning algorithms, 

to achieve better performance in terms of metrics like accuracy and log/quadratic-score. To 

accomplish this, I developed seven different machine learning models and assessed their 

performance using 5-fold cross-validation. The results consistently support my hypothesis, 

indicating that my models outperform traditional econometric models across all metrics. 

Notably, the random forest model with optimized predictor selection demonstrates the highest 

predictive precision. I further analyze the models' specific accuracy in predicting the three types 

of target rate decisions (hike, no change, cut), and find that they excel in recognizing unchanged 

rates due to dataset characteristics. However, the models also demonstrate good performance 

in predicting rate hike and rate cut decisions, with better accuracy for the former. Additionally, 

I employ the variable importance methodology to identify the macroeconomic variables that 

have the greatest influence on the Fed's policy decisions, and the partial dependence plot 

approach to gain insights into the nature of their influence. 

The second part aims to analyze the impact of FOMC decisions on financial markets. Here, I 

leverage the models developed in the first part, particularly their predictive errors, to 

distinguish between expected and unexpected monetary policy actions. This approach 

represents another valuable contribution to the academic literature, which has traditionally 

relied on Federal funds futures data to gauge policy expectations. To test this hypothesis, I first 

conduct an event study to investigate the effects of target rate decisions on the market index. 

Subsequently, I perform regression analysis on the Cumulative Abnormal Returns (CARs) 

derived from the event study, incorporating dummy variables that represent unexpected 

positive and negative policy decisions. The obtained results support my second hypothesis, 

with significant positive coefficients for positive surprises during rate cuts, indicating a 

stronger positive impact on the stock market. Conversely, significant negative coefficients for 

negative surprises during rate hikes imply a greater negative impact. 

Finally, I implement a short backtesting strategy that provides supporting evidence for the 

practical validity of my predictive models. 
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However, it is important to acknowledge a limitation of this work. The dataset exhibits a slight 

imbalance due to the greater frequency of decisions to maintain rates unchanged compared to 

rate cut or hike decisions. As these decisions significantly affect financial markets and the 

overall economy, the Fed exercises caution when making such choices. This slight imbalance, 

combined with the limited number of observations, may lead machine learning models to 

overfit the training set. This is evident in my models' strong out-of-sample performance in 

recognizing decisions to maintain rates constant. One potential solution to address this issue is 

the utilization of resampling techniques like random oversampling or Synthetic Minority 

Oversampling Technique (SMOTE). However, even when employing these techniques, I 

obtained similar results. Therefore, I ultimately decided to utilize the original dataset. Future 

research avenues to tackle this problem could involve exploring more efficient resampling 

methodologies or utilizing larger, less imbalanced datasets along with more advanced machine 

learning models. 

In conclusion, this study demonstrates the effectiveness of machine learning models in 

predicting Federal Reserve's target rate decisions and analyzing their impact on financial 

markets. The findings support the superiority of these models over traditional econometric 

approaches. Overall, this research contributes to improving predictive models and 

understanding the relationship between monetary policy decisions and financial markets. 
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Summary 
 

 

Predictive Modelling of FOMC Decisions and Market Reaction:  
A Machine Learning Approach 

 
 

Abstract 
This paper focuses on two primary objectives: developing models to predict Federal Open Market Committee 
(FOMC) decisions regarding changes in the Federal funds target rate and analyzing the stock market 
reaction to these decisions. Traditional econometric models have been extensively studied in the 
literature, but this research employs innovative machine learning algorithms to enhance predictive 
performance. Seven different machine learning models are developed. The results demonstrate the 
superiority of the machine learning models in terms of accuracy, log-score, and quadratic-score, with 
the optimal random forest model performing the best. Furthermore, the study employs variable 
importance methodology and partial dependence plots to identify the macroeconomic variables that 
significantly influence FOMC decisions. The second part of the work focuses on the impact of FOMC 
decisions on the stock market, distinguishing between expected and unexpected choices. Event study 
analysis is conducted using S&P 500 data, and regression analysis of CARs demonstrates a significant 
market response to unexpected changes in the Federal funds target rate. Finally, the practical validity 
of the predictive models is confirmed through a backtesting strategy.  
 
 
 
1. Introduction 
Decisions regarding Federal funds target rate have significant implications for the economy, 
including employment, growth, and inflation. They indirectly affect various short-term interest 
rates, such as those for loans, as lenders often base their rates on the prime lending rate, which 
is influenced by the fed funds rate. Changes in the target rate can have a strong impact on the 
stock market, with even a small decline leading to increased market activity and lower 
borrowing costs for companies. Therefore, anticipating FOMC decisions is crucial for market 
participants to adjust their investment strategies. Morover, examining the impact of these 
decisions on security prices is a topic of great interest to investors and policymakers since it 
can provide additional insights into the ways in which monetary policy affects financial 
markets and market expectations. This paper is situated within this context, aiming to address 
the following research questions: “Can machine learning models accurately predict FOMC 
decisions regarding changes in the Federal funds target rate?”; “What is the impact of these 
policy decisions on the stock market when considering market expectations?”. To this end, the 
structure of this paper is divided into two parts: firstly, development of models capable of 
predicting FOMC decisions regarding changes in the Federal funds target rate, and secondly, 
analysis of the impact of these policy decisions on the stock market by considering market 
expectations and thus differentiating between expected and unexpected decisions. 
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2. Literature 
Both topics have been extensively studied in the academic literature. Regarding the forecasting 
of target rate, we first have the seminal work of Taylor (1993) who proposed a policy rule for 
forecasting Federal fund rate. However, this approach does not account for the discrete nature 
of FOMC decision-making. Subsequent work, such as that of Hu and Phillips (2004), addressed 
this limitation by developing a discrete choice approach to predict policy actions. Their model 
calculated threshold coefficients representing the gaps between estimated and actual target 
rates that trigger adjustments by the FOMC. While Hu and Phillips (2004) demonstrated good 
predictive performance within their estimation sample, they did not provide an estimate of the 
out-of-sample performance. Pauwels (2012) replicated their model and tested its out-of-sample 
performance, comparing it with other models developed using combined forecast methodology 
and introducing metrics like log-score and quadratic-score. Another relevant study by Vasnev 
(2013) replicated Pauwels' work but focused on the policy actions of the Reserve Bank of 
Australia.  
On the other hand, regarding the academic literature related to the impact of changes in the 
target Federal funds rate on asset prices, a first very relevant paper is that of Kuttner (2001). In 
his research, Kuttner estimated the impact of monetary policy actions on the bond market by 
distinguishing between expected and unexpected decisions through federal funds futures 
market data. His results showed a strong response to unanticipated rate changes and a weaker 
response to anticipated changes. Another important subsequent study that is a key reference for 
this work is that of Bernanke and Kuttner (2005). They analyzed the impact of FOMC decisions 
on the stock market using Kuttner's (2001) previous approach to distinguish between 
anticipated and unanticipated components of policy decisions. As a result, they obtained that 
the stock market response to a surprise increase in target rate is negative and significant. 
Specifically, a 25-basis-point rate cut would lead to a 1-day stocks return of 1%. Therefore, 
they also discovered evidence supporting a greater stock market reaction to unexpected 
decisions. 

 

3. Hypotheses and Contribution 

Based on the previous research questions and the literature review conducted, I formulated two 
main research hypotheses: 

- Hypothesis 1: My machine learning models are expected to outperform the 
conventional econometric models developed in the academic literature in terms of 
accuracy and log/quadratic-score. 

- Hypothesis 2: The developed machine learning models are capable of capturing market 
participants' expectations about future FOMC decisions. 

The second Hypothesis implicitly assumes that market participants are rational individuals who 
base their expectations on macroeconomic variables. By testing these hypotheses, I would 
make the following contributions to the literature: firstly, apply innovative techniques, 
specifically machine learning algorithms, to predict policy choices regarding the fed funds 
target rate; secondly, analyze the impact of policy decisions on the stock market, distinguishing 
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between expected and unexpected choices through an alternative method based on my ML 
models. 

 

4. Data 

This section covers the dataset used for analysis, encompassing monthly observations from 
February 1983 to December 2022. To construct machine learning predictive models, the 
dependent variable and regressors were defined. The dependent variable represents FOMC 
policy decisions on the target rate, resulting in 399 observations, later reduced to 352 by 
considering the latest decision in months with multiple meetings. The dataset includes decision 
dates and target rate changes (hike, cut, no change). It exhibits a distribution of 70 rate hikes, 
57 rate cuts, and 225 no changes. This slightly imbalanced distribution is representative of the 
nature of FOMC policy decisions: as rate hike/cut decisions significantly affect financial 
markets and the economy as a whole, the Fed exercises some caution in making these choices. 
Concerning the selection of macroeconomic indicators for inclusion in empirical models as 
independent variables, I initially included 22 economic series, Table 1 shows the description 
of this indicators. The frequency was monthly, except for GDP and Potential GDP, which were 
quarterly, transformed into monthly series for consistency using a method for temporal 
disaggregation in R. Key indicators like the Output Gap and Inflation Gap were calculated from 
GDP, Potential GDP, and inflation rates. Then, in order to carry out the event study to analyze 
the impact of policy decisions about target rate on the stock market, I collected daily S&P 500 
data as proxy for the market.   Most of the data were downloaded from the Federal Reserve 
Economic Data (FRED) online database of the Federal Reserve Bank of St. Louis. Only data 
relative to the S&P 500 and Manufacturing PMI were obtained from WRDS (Wharton 
Research Data Services) and the Institute for Supply Management website, respectively. 

4.1. Data Preprocessing 

Once retrieved, I preprocessed the raw data in such a way as to create the variables for my 
forecast models. For each economic indicator I calculated the difference from the previous 
period and the same period in the previous year. This approach allowed us to capture changes 
and trends in macroeconomic variables over time and to focus on relative changes rather than 
absolute values. Using both these differences and the indicators themselves, I obtained a total 
of 72 independent variables to include in the first estimation stage. I introduced an additional 
variable linked to the previous FOMC meeting's target rate change, enabling my models to 
consider both the historical impact of prior decisions and the continuity of FOMC's policy 
stance. To avoid multicollinearity problems, I calculated the correlation between all 
macroeconomic variables. The results are shown in Figure 2. Highly correlated variables, with 
a threshold set at 0.7, were pruned to retain 56 relevant regressors. Additionally, to prevent any 
potential look-ahead bias, all macroeconomic regressors have been lagged by one period, 
ensuring that observations on economic indicators precede the FOMC's decision on the target 
rate. Finally, through a stepwise forward selection, I filtered the most informative and relevant 
features that contribute most to the predictive performance of a machine learning model. This 
resulted in a final selection of 23 regressors for inclusion in the models, shown in Table 4. 
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5. Methodology 

5.1 Forecasting FOMC decisions 

Forecasting FOMC decisions on target Federal funds rate can be accomplished through either 
a continuous approach or a discrete approach. I opted for the discrete approach, consistent with 
the academic literature and the nature of FOMC policy actions.  

Regarding the choice of models for predicting FOMC decisions, I decided to use a logistic 
regression as a baseline model, as extensively done in the academic literature. The logistic 
model employs a log-odds transformation to estimate the probabilities of the three classes in 
my specific case: rate hike, rate cut, or no change. I then decided to develop several machine 
learning models, which offer distinct advantages over traditional econometric models such as 
handling complex data and detecting nonlinear relationships. Specifically, I developed 6 
different machine learning models: Support Vector Machine, Decision Tree, Pruned Tree, 
Bagged Tree, Random Forest, Optimal Random Forest. 

SVM model, is a powerful classification algorithm that builds upon the concepts of hyperplanes 
and the maximal margin classifier. SVMs aim to find the optimal hyperplane that not only 
separates the classes but also maximizes the margin while allowing for some misclassification. 
Subsequently, I delved into Tree-based Models, commencing with a Decision Tree tailored for 
classification problems. This method follows an algorithm that involves partitioning the 
predictor space into distinct regions based on the minimization of the Gini index, a measure of 
node purity, which is defined by the number of observations in a node from a single class. 
However, decision trees tend to suffer from high variance, making them sensitive to data 
changes and prone to overfitting. To address this, I applied the pruning technique. It involves 
constructing a large tree and then trimming it based on minimizing misclassification errors 
using cost complexity pruning. Next, Bagging is another technique focused on reducing the 
variability of statistical learning methods, particularly decision trees. It involves creating 
numerous prediction models using bootstrapped training sets and averaging their predictions 
to enhance predictive accuracy. Random Forests build upon the concept of bagging by 
introducing a strategy to mitigate the inter-tree correlation issue. Rather than considering all 
predictors at each split, Random Forests select a random subset of predictors, m, for each split. 
This approach aims to make the resulting trees less correlated and more dependable. The 
Optimal Random Forest Model further refines this approach by identifying the best number of 
regressors, m. This is achieved through a systematic process that seeks to minimize the Out-of-
Bag (OOB) estimate of test error. OOB error measures model performance by evaluating each 
tree on the training data not used during its creation. The optimal m, which leads to the lowest 
associated OOB error, is identified and used to develop the Optimal Random Forest. 

These algorithms are powerful for enhancing prediction accuracy, but they often sacrifice 
interpretability due to the complexity of models. To address this, assessing variable importance 
becomes crucial. Breiman (2001) and Friedman (2001) propose methods for this purpose. The 
first method employs the Gini index, calculating the decrease in Gini index resulting from splits 
over a predictor across all trees. This average decrease indicates the importance of each 
predictor. Alternatively, the second approach uses the decrease in accuracy. Another significant 
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tool is the partial dependence plot, for analyzing feature effects on model outcomes. It 
establishes the relationship between the target variable and a specific feature.  

5.1.2 Evaluation Metrics 

Accuracy or error rate is a commonly used metric in classification, gauging the percentage of 
correct predictions by a model. It is calculated simply as the ratio of the number of correct 
predictions of the model to the total number of predictions. Yet, accuracy often overlooks class 
prediction probabilities, reducing analysis precision. To address this, Pauwels (2012) 
introduced two additional metrics: the log-score and the quadratic-score. The log-score 
considers predicted probabilities' logarithms, capturing the model's confidence in predictions: 

 𝑆' = log	(𝑃3() (1) 

where 𝑃]# is the probability predicted by the model for the state that actually happens. Higher 
log-score values indicate more accurate and confident predictions. Similarly, quadratic-score 
considers both the predicted probabilities and their proximity to the true class labels. It 
quantifies the discrepancy between predicted probabilities and actual outcomes, rewarding 
predictions that are close to the true values. In my specific case the quadratic-score rule is given 
by: 

 𝑆) = 2𝑃3( − (𝑃3*+, + 𝑃3-, + 𝑃3+,) (2) 

These metrics offer a more comprehensive understanding of the model's reliability, precision, 
and confidence in its predictions.  

5.1.3 K-fold Cross Validation 

A 5-fold cross-validation strategy was employed across all models. This technique offers 
superior model generalization compared to single train-test splits. By dividing the dataset into 
folds, each data point is included in the test set, ensuring reliable assessment of model 
generalization. Averaging performance metrics across folds provides a robust evaluation of 
predictive power. Cross-validation also diminishes bias from dataset divisions, enhancing 
model performance consistency.  

5.2 Analysis of the impact of policy decision on stock market 

To study how unexpected decisions regarding a change in Federal fund target rate impacts the 
stock market, I employed the Event Study methodology introduced by Craig MacKinlay 
(1997). The event study is a technique to measure the effect of economic event on the value of 
firms. The first step in conducting an event study is to identify the event of interest, which in 
this case is the announcement of a change in the Federal funds target rate by the Federal 
Reserve.  

At this point, my interest lies in distinguishing between expected and unexpected FOMC policy 
decisions. To achieve this, I have revised my machine learning models, adopting a continuous 
approach instead of a discrete one. Consequently, my new dependent variable represents the 
newly determined Federal fund target rate at each FOMC meeting.  This alteration enabled 
error calculation by comparing predicted and actual target rates. Employing a random forest 
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model with 5-fold cross-validation facilitated error estimation for each data point. I categorized 
positive errors as negative surprises, where the actual rate exceeded expectations, and vice 
versa for negative errors. Subsequently, I arranged the errors in descending order and generated 
two new dummy variables: one denoting negative surprises, assigned a value of 1 for the top 
20 observations with the highest errors (corresponding to the 95th percentile); the other 
representing positive surprises, assigned a value of 1 for the last 20 observations with the lowest 
errors (corresponding to the 5th percentile). As a result, each event was associated with three 
variables: the two surprise-related dummy variables and one indicating the sign of the change 
in the federal fund target rate. My analysis focuses on examining the impact of policy decisions 
on the overall U.S. stock market. Therefore, I selected the S&P 500 as a proxy variable for 
studying market movements.  

The next step in conducting an event study involves defining the event window and estimation 
window. The event window spans from 5 days before to 5 days after the event, capturing early 
market responses. The estimation window ranges from 90 days before to 6 days before the 
event, used for calculating Normal Returns. Employing a mean adjusted, I determine the 
expected return as the average during the estimation window. I then compute Abnormal 
Returns (ARs) in the event window, which represent the difference between actual and 
expected returns, aiding in isolating event impacts. Calculating Cumulative Abnormal Returns 
(CARs) by summing ARs for each event, I conduct regression analysis using two regressions 
based on rate change direction. The regression equations take the following form in both cases: 

 𝐶𝐴𝑅. = 𝛼 + 𝛽𝑃𝑜𝑠𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒. + 𝛾𝑁𝑒𝑔𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑒. + 𝜀. (3) 

In the first regression, only CARs associated with a FOMC decision to raise rate are considered, 
while in the second regression, only CARs associated with a FOMC decision to lower rate are 
considered. Ensuring the method's assumptions are met, I consider cluster-based standard 
errors to accommodate correlated Federal Reserve policy decisions.  

 

6. Results 

In the forthcoming chapter, I will present the results of the previously outlined methodologies, 
categorizing them into two sections: the first section will evaluate the predictive performance 
of my machine learning models, and the second section will explore the outcomes of the event 
study. Lastly, I will outline a straightforward investment strategy based on the predictive 
capabilities of my models. 

6.1 Forecasting Results 

Table 5 presents a comprehensive overview of the performance of the 7 different models 
described and of historical models discussed in the literature review, using evaluation metrics 
like accuracy, log-score, and quadratic-score for both in-sample and out-of-sample predictions. 
Notably, Bagging, Random Forest, and Optimal Random Forest models achieved the highest 
in-sample accuracy scores at 100%, followed by SVM and decision tree models. However, 
such accuracy scores might result from overfitting. For out-of-sample performance, the 
Optimal Random Forest model displayed the highest accuracy at 74.9%, followed closely by 
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the normal Random Forest and Bagging models. Random Forest models also displayed better 
log-score and quadratic score compared to other models. Comparing with past models, the 
Optimal Random Forest model outperformed all others, exhibiting superior accuracy, log-
score, and quadratic-score values, affirming its efficacy in capturing complex relationships and 
handling high-dimensional data. This supports the verification of Hypothesis 1. 

Table 6 presents out-of-sample accuracy results for each specific class of the dependent 
variable (hike, no change, cut) across the models using 5-fold cross-validation, including 
historical models for comparison. Notably, the "no change" class achieves the highest accuracy 
across models due to data imbalance, as elaborated in the Data chapter. Since the FOMC 
decisions not to change target rate are more frequent, the models have been trained to predict 
this class with greater accuracy. However, the models also exhibit good ability in predicting 
rate hike and cut decisions, surpassing the random class selection probability of 33.3%. 
Particularly, the models perform better in predicting rate-raising decisions than rate-lowering 
ones, with SVM achieving 60.7% accuracy for hikes and Decision Tree reaching 49% for cuts. 
The random forest model excels in predicting unchanged rate decisions.To provide a visual 
representation of the results, Figure 3 illustrates the (out-of-sample) predicted probabilities for 
each policy intervention using my best model, the optimal random forest. Also the graphical 
representation demonstrates the slight imbalance among the classes and the subsequent ability 
of the models to accurately predict decisions to maintain stable rate. 

Using the optimal random forest model, I employed the variable importance methodology to 
uncover the key economic indicators influencing FOMC policy decisions. Figure 4 highlights 
that the previous period's decision (prev.dec.l1) holds the most significant impact, emphasizing 
the continuity in FOMC actions. Moreover, variables such as Manufacturing Purchasing 
Managers' Index (Manufacturing_PMI), year-on-year difference in personal consumption 
expenditures (pce.diff.year), bank prime loan rate (blr), and initial jobless claims (ini_claim) 
also ranked high in importance. This suggests that performance of the manufacturing industry, 
consumer behavior and spending trends, fluctuations in the bank loan rate and the level of 
jobless claims are likely to influence the FOMC policy decision.  

Furthermore, I conducted a detailed assessment of the impact of the two most influential 
variables on the optimal random forest predictions using partial dependence plots. Figure 5 
depicts these plots, illustrating predicted probabilities for each class as a function of economic 
indicator values. The plots demonstrated that probability of decisions to keep rates unchanged 
consistently outweighs other classes due to dataset imbalance. Notably, the relationship 
between rate hikes and cuts is inverse for the previous period's decision variable, indicating a 
continuity effect in FOMC policy. Regarding the Manufacturing PMI, we observe that at lower 
levels, the probability of a rate cut is higher, which diminishes as economic activity in the 
manufacturing industry improves, while the probability of a rate hike increases. This outcome 
could be attributed to the Fed's intention to moderate the economy during robust growth and 
stimulate it during slowdowns. 
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6.2 Event Study Results 

This section presents the key outcomes of the event study conducted as outlined in the previous 
chapter. The results are summarized in Table 7.  

The primary aim was to assess the impact of FOMC target rate change decisions on the stock 
market. The regression analysis of the S&P 500 Cumulative Abnormal Returns (CARs) on the 
intercept was executed for both rate hike and rate cut decisions, revealing significant insights. 
For rate hikes, a notable negative intercept coefficient of -0.76 was observed, signifying a 
0.76% average negative cumulative abnormal return around the decision period. Conversely, a 
positive intercept coefficient of 1.65 was found for rate cuts, indicating a 1.65% average 
positive cumulative abnormal return. These results align with the common understanding that 
rate hikes negatively affect the stock market, while rate cuts yield a positive impact, underlining 
the market's heightened response to rate cuts.  

Furthermore, to test Hypothesis 2, the regression was extended by incorporating dummy 
variables representing positive and negative surprises. For rate hikes, a statistically significant 
negative intercept coefficient of -0.66 was achieved, alongside a significant coefficient of -1.95 
for the Neg_Surprise dummy variable. These outcomes indicate that during rate hikes, the S&P 
500 experiences an average negative cumulative abnormal return of 0.66%, increasing by 
1.95% in the case of a negative surprise decision. In contrast, decisions to lower rates yielded 
a positive and significant intercept coefficient, along with a highly positive coefficient for the 
Pos_Surprise dummy. Specifically, in rate cut decisions, the S&P 500 witnessed an average 
CAR of 1.09%, increasing by an additional 3.71% with a positive surprise decision. Notably, 
rate cut decisions generated higher coefficients, underlining a greater market response to 
surprises linked with these policy choices. 

These results suggest that the market reacts significantly to unexpected changes in target fed 
funds rate, aligning with Bernanke and Kuttner's (2005) findings. So, Hypothesis 2 cannot be 
rejected as the method based on the prediction errors of my machine learning models are likely 
to capture market expectations about changes in the Federal funds target rate.  

6.3 Backtesting strategy 

In this section, a backtesting strategy was executed to evaluate the practical validity of the 
optimal random forest model. This model, trained on pre-2010 data, was employed to predict 
FOMC decisions on the Federal funds target rate from 2010 to 2022. Two investment strategies 
were formulated: one focusing on rate hike predictions in the stock market and the other in the 
bond market. For stocks, a short position was taken on indices like S&P 500, Nasdaq Financial-
100, and S&P United States REIT from 15 days before to 5 days after a predicted rate increase, 
while long positions were maintained during other times. In the bond market, a similar 
approach was adopted with U.S. Zero Coupon Bonds of varying maturities. From Table 8, 
results showed the prediction-based strategy outperformed the buy-and-hold approach, with 
the most significant returns observed in the S&P United States REIT and 30-year Zero Coupon 
Bond. This demonstrated the effectiveness of the model-based strategy. A visual representation 
of the strategies was presented in Figure 6. 
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7. Conclusion 

This paper is structured into two main sections. The first part focuses on analyzing the Federal 
Reserve's behavior during policy decisions, aiming to develop models for predicting FOMC 
decisions on the Federal funds target rate. The results show that the application of innovative 
machine learning algorithms provides a more accurate and reliable prediction of FOMC 
decisions regarding the Federal funds target rate compared to traditional models found in the 
academic literature. The second part analyzes FOMC decision impacts on financial markets, 
leveraging predictive errors of models to distinguish expected and unexpected actions. I found 
that by attempting to capture market expectations through a machine learning methodology 
based on macroeconomic variables, we observe a significant reaction of market participants to 
unexpected changes in the fed funds target rate. These results support the conclusion that most 
market participants seem to be rational individuals who primarily base their monetary policy 
expectations on macroeconomic information. 
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A mio papà. 
 

 

 


