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Abstract

This thesis aims at employing machine learning algorithms in order to develop a tool capable of

detecting fake news online. Indeed, AI models can become a powerful ally in the fight against prolif-

eration of fake news, especially in today’s information-rich society, where social media plays a crucial

role in informing (and misinforming) users. The key characteristic, and advantage of AI-models is

that they are fast and efficient when analysing huge amount of text data, therefore becoming a valuable

tool for checking the veracity of news articles present online, which would otherwise be a compu-

tationally expensive effort if performed manually by people. The Cambridge dictionary defines fake

news as false stories that appear to be news, spread on the internet or other media, usually created to

influence political views or as a joke 1.

The rise of fake news has significant implications for society, as it can influence people’s decision-

making process, such as their voting behavior, purchasing decisions, and even have repercussions on

public health (as it happened with COVID-19 vaccines).

This thesis project stands out for its innovative approach in creating a tool from scratch to combat the

proliferation of fake news. It combines natural language processing techniques, and machine learning

algorithms to train models able to statistically determine the veracity of news articles. What sets this

work apart from the existing literature is its focus on the Italian language, as the dataset was created

by web-scraping the most popular italian web-pages of news, which are responsible for informing the

majority of users.

Indeed, even tough the literature on automatic fake news detection is very broad, the latter has primar-

ily been conducted on English text data and with datasets already present online. The contribution of

this thesis is to deeply examine the literature that has been conducted, and to apply it to non-English

text data, overcoming the specific issues related to it. The dataset used to conduct this work is bal-

anced, and presents 7108 news articles labeled as fake or real. The distinction between these two

1Procter (2000)
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categories relies on the News-Guardian report, an independent organization that monitors informa-

tion sites worldwide.

The thesis is structured as follows: the first and second chapter focus on topic modelling, and text

pre-processing. Indeed, since the dataset was obtained through web-scraping it also presented a lot of

noise which needed to be removed in order for the algorithms to perform better.

The second part of the analysis is more technical as it shifts the attentions to text classification by em-

ploying three different models: Random Forest, Naive Bayes and K-nearest neighbors. Once those

models have been trained, the confusion matrix and performance metrics of each of said algorithms

is shown and used for model evaluation later on.

Another notable part of this thesis is the incorporation of the BERT (Bidirectional Encoder Repre-

sentations from Transformers) model. Taking inspiration from the groundbreaking paper published

by Google in 2020, the BERT model was employed to tackle the task of fake news detection. BERT,

being a state-of-the-art transformer-based model, has demonstrated exceptional performance in vari-

ous natural language processing tasks. The model used is BERT BASE the uncased version; which is

less computationally expensive and performs better on small-medium size datasets compared to the

BERT LARGE version.

The final part of the thesis explores the role of Chat GPT-3 (Generative Pre-trained Transformer 3) in

the context of fake news detection. While previous sections focused on algorithmic approaches and

machine learning models, this part shifts the focus towards the use of advanced language models from

an ethical perspective.

Indeed, Chat GPT-3 is a powerful language model developed by OpenAI. Its unprecedented ability to

generate human like text rises concerns regarding two key aspects: malicious manipulation, meaning

the risk of people exploiting gpt3 to increase the proliferation of fake news present online; and bias

which is generally a concern that needs to be addressed when creating any type of algorithm, but that

is enhanced as Chat Gpt3 was trained on huge amounts of text data. Indeed,research shows that large

datasets are more likely to favor and represent a niche of the actual population such as young users,

English-speakers, and people from developed countries. Nevertheless, there are actions that could be

undertaken to mitigate those aspects, such as enhancing digital literacy and increasing accountability

and transparency of developers behind said algorithms.
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Chapter 1

Introduction

1.1 The importance of automatic fake news detection

This thesis aims at employing machine learning algorithms in order to develop a tool capable of de-

tecting fake-news present online. Indeed, in today information rich society, in which social media

play a crucial role in informing (and dis-informing) the users; AI becomes a useful ally in the fight

against fake-news proliferation. According to the Cambridge dictionary, fake-news can be defined as

”false stories that appear to be news, spread on the internet or using other media, usually created to

influence political views or as a joke” 1.

Fake news can take many forms, including false news stories, political propaganda, and hoaxes.

The rise of fake news has significant implications for society, since it can influence people decision-

making process. For example, fake news that are spread out during elections time can influence

people’s voting behavior, or false stories about a product or service can affect their purchasing deci-

sions. Furthermore, the uncontrolled spread of fake news could also have significant repercussions on

public health. Indeed, this was the case during COVID-19 when media and news web-sites led people

into making uninformed decisions about vaccines and treatments, and had a great impact on people’s

confidence level in vaccines. Automatic fake news detection becomes therefore very important, as it

provides a way to identify and mitigate the spread of fake news in real-time. Moreover, AI-developed

tools could enhance accountability and transparency of news since these tools may be used to remove

fake news from the internet and make the authors accountable.

1Cambridge Dictionaries Online, (2007)
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1.2 Problem statement, and research question

The work presented in this project aims at creating a tool against fake-news proliferation by employ-

ing italian news published online in order to train AI models, which will determine the veracity of

said news. Indeed, even though the literature on automatic fake news detection is rich; the innovation

of this project stands in developing from scratch a tool able to work with italian text data, combining

both natural language processing techniques, and machine learning algorithms (supervised and un-

supervised). The dataset used for the analysis has been obtained through web-scraping; which is a

technique leveraged to extract information present in HTML pages. In this way a labeled dataset is

stored, in which the title, the content, and the source of said articles is present.

The distinction between fake and real news relies on the News-Guardian report, the independent or-

ganization that monitors information sites around the world, and which has tried to draw up these two

difficult rankings (fake and real). Among the websites that have been declared as most unreliable in

the italian scenario, we can find:

• Il primatonazionale.it, journal connected to the neo-fascist movement of Casa Pound;

• Scenari-economici.it, an information site with right-wing political positions, which publishes

content in support of its nationalist and anti-immigration positions;

• Imolaoggi.it an information site with right-wing political positions, which publishes content in

support of its nationalist and anti-immigration positions,

• Voxnews.info, a site that ”regularly publishes false information in support of its anti-immigration

agenda. The site also published misinformation about the vaccine for COVID-19 and the pres-

idential elections in the United States”.

On the opposite side, a list of ”most reliable websites” was drawn up , containing:

• Open.online, which deals with national and international news, designed to correctly inform

millennials,

• Ilsole24ore.com, which mainly focuses on finance and economy,

• Ansa.it, the first multimedia information agency in Italy, and with a high ranking world-wide.
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Taking this information into account, a specific dataset containing news content from these websites

has been created, and used as basis in order to train classical machine learning algorithms such as

KNN, Random forest and Naive Bayes. Subsequently, the same dataset will be employed in order to

train BERT model, taking as reference the paper published by Google in 2019 ”BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding”.
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1.3 Literature Review and State of the Art

Despite the richness of literature present in the field of automatic fake news detection, a common

agreed upon benchmark has not yet been reached.

In this section, the current state of the art, previous work and literature inherent to this thesis will

be shown. Indeed, it is believed that one of the main limitations of this field of research, stands in

the fact that most studies have been carried out relying on English text data. Among those, the most

commonly used datasets are:

• FakeNewsNet: this is a public dataset which contains Tweets and articles collected from a

selection of news websites. The dataset is labeled, and the labels indicate whether the content

is real or fake,2,

• The LIAR dataset: this dataset was created by the William and Mary Department of Computer

Science and contains approximately 12,000 statements labeled as true, false, or misleading.

The statements come from POLITIFACT.COM’s API, and each statement is evaluated by a

POLITIFACT.COM editor for its truthfulness. 3,

• COVID-19 dataset: containing data related to COVID-19 news articles and their labels indicat-

ing whether they are real or fake.

Some notable work in Italy has been carried out by researchers at universities like the University of

Pisa and Milan Polytechnic which are active in detecting fake news. These studies aimed at

developing different types of fake news detection systems in the Italian language, such as sentiment

analyses, fact checking, analysis of propagation trends on social media and other techniques.

Nonetheless, fake news detection remains a field in which there is a lot of space for improvement in

terms of accuracy and robustness of algorithms, furthermore the rapid evolution of language models

makes it a constantly evolving field.

2Shu et al. (2020)
3Hendrixwilsonj (2021)
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As said above, previous work in the field include also models trained in the italian language such as:

• Machine learning-based approaches: Support Vector Machines (SVM), Naive Bayes , and Con-

volutional Neural Networks (CNN) are some of the models used for this classification task.

These studies revealed that certain features of datasets facilitate the task of fake news detection

such as the title, the source, text description and language elements like references to several

keywords,

• Linguistic features: other studies used AI tools to investigate linguistic features of text data

such as sentiment analysis, named entity recognition, and text readability to detect fake news.

Indeed, these features giving a deep insight on the tone and style of the artcile help in the

distinction between fake and real,

• Multi-modal approaches: these line of research integrate text and visual representation (images)

in news articles. For instance, coherence between image and text is investigated in order to

determine if the information is trustworthy,

Nonetheless, it can be argued that research carried out in a non-English language enriches the existing

literature by adding diversity in perspective, as it can offer unique insights when solving language-

related problems.
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1.4 Thesis Outline

The outline of this thesis is the following:

• Chapter 2 describes the methods, objective and the dataset employed for the analysis;

• Chapter 3 explains the ”classical” machine learning tools deployed to train the dataset in the

achievement of fake news classification, and exposes the results achieved through the latter;

• Chapter 4 describes the theoretical approach that lies behind the BERT model developed by

Google, and applies it to the dataset of this research;

• Chapter 5 analyses the potential risks related to GPT-3 from an ethical perspective in terms of

manipulation and bias.

Lastly, in the conclusions the results achieved during the analysis, and the challenges encountered are

exposed.
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Chapter 2

Fake News Detection

2.1 Algorithmic approach to automatic fake news detection

From an algorithmic perspective, referring to fake news detection is essentially a classification prob-

lem. Indeed, the challenge is to classify the data present in the dataset, and make the algorithm decide

whether it is reliable or not. In order to achieve this result, the data needs to be cleaned in a way that

the algorithms can recognize and learn from patterns in it , and achieve classification goal.

The process of making algorithms understand the linguistic context of text data is obtained through

Natural Language Pre-processing techniques, an evolving branch of AI which focuses on the interac-

tion between computers and the human language.

Natural language pre-processing is a crucial step in the development of any natural language process-

ing (NLP) tasks, or text analytics system. This involves a series of operations to be carried out in

order to clean, normalize and prepare text data for further analysis. Pre-processing aims at transform-

ing plain text into a form that is easy to comprehend, and which NLP algorithms are able to process.

One of the key aspects of pre-processing is text cleaning, which involves removing any irrelevant

or distracting information from the text. This might include removing special characters, numbers,

HTML tags, or punctuation marks that are not essential for the understanding of the text. Additionally,

text cleaning may involve converting all text to lowercase, which helps to reduce the dimensionality

of the data and simplify the analysis process.

Another important part of pre-processing is tokenization of the data, which involves dividing the doc-

ument into smaller units, such as words or phrases. This is typically done using regular expressions

or NLP libraries, such as NLTK or spaCy(as in this case that were both used). Tokenization is impor-
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tant because it allows for the separation of individual words or phrases in the text (tokens), making it

easier to identify patterns and relationships between words.

In addition to cleaning and tokenizing the text, pre-processing also includes stemming or lemmatiza-

tion. Stemming is a process that consists of removing suffixes from words to obtain their root form.

For example, the word “running” might be stemmed to “run”. Lemmatization is similar to stemming,

but it takes into account the context of the words and the intended meaning. This helps to preserve

the meaning of the words, even when they are reduced to their root form.

Pre-processing also involves removing stop words, which are common words that do not contribute

to the meaning of the text, such as “and”, “the”, and “a”. Removing stop words helps to reduce the

dimensionality of the data and simplify the analysis process.

Finally, pre-processing also allows the user to create numerical representations of the text data, such

as word embeddings or bag-of-words representations. The latter are then given as input to NLP algo-

rithms, which will pick up on the patterns in text data.

Lastly, after cleaning, normalizing and trasforming tezt data, pre-processing makes it possibile for

NLP algoirthms to get a clear ”understanding” of the patterns in the data; therefore enabling a more

accurate analysis. In the following chapter, pre-processing is performed on the dataset with the ob-

jective of both cleaning the data, and to extract relevant information from it.
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2.2 Libraries

The current analysis has been carried out using Python and its related libraries. Specifically, three

different virtual environments have been created: one for natural language pre-processing tasks, one

for the implementation of classical machine learning algorithms, and one implementing and fine-

tuning BERT.

In the following lines, a description of the libraries and their usage is given:

Pandas

Pandas is an open source Python package that is primarily used for data science, data analysis, and

machine learning tasks. It is built on top of Numpy, a different package that offers support for multi-

dimensional arrays 1. With Pandas, users can easily and effectively perform operations like filter-

ing, aggregation, transformation, and cleaning of data. Additionally, Pandas integrates well with

other well-known data analysis libraries Additionally, Pandas integrates well with other popular data

analysis libraries, such as NumPy and Matplotlib, making it an essential tool for data analysis and

manipulation tasks in Python 2.

BeautifulSoup

Beuatiful Soup is a Python library for pulling data out of HTML and XML files.

It is designed to make it easier to extract data from websites, by providing convenient and efficient

ways to search, navigate and modify the structure of HTML and XML content. Beautiful-Soup pro-

vides several methods for searching and navigating a document, including search by tag name, at-

tribute value, or CSS class 3. For the purpose of this analysis, this library was essential in order to

scrape data from online news articles web-sites in order to create the dataset.

Requests

Requests allows you to send HTTP/1.1 requests in an easy yet efficient way, as there is no need to

manually add query strings to your URLs.

Additionally, the library is particularly useful when working with APIs, as it makes it easy to send

1ActiveState, (2022)
2PyData , n.d.
3Beautiful Soup Documentation — Beautiful Soup 4.4.0 Documentation, n.d.
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requests and receive responses in a structured format such as JSON. Additionally, it provides a variety

of features for handling errors, cookies, sessions, and other aspects of web communication. 4

Scikit-learn

Scikit learn is a free, open-source library in Python which contains a selection of algorithms for

classification, regression, clustering, dimensionality reduction, and model selection, among others,

and is known for its user-friendly API, ease of use and speed5

NLTK

NLTK is a leading platform for building Python programs to work with human language data. It

provides easy-to-use interfaces such as WordNet, along with several text processing libraries for clas-

sification, tokenization, stemming, tagging, parsing, and semantic reasoning 6. In this analysis, the

nltk library was employed in order to perform pre-processing tasks and to clean the data.

4Requests: HTTP for HumansTM — Requests 2.31.0 Documentation, n.d.
5Scikit-learn: Machine Learning in Python — Scikit-learn 1.2.2 Documentation, n.d.
6NLTK: Natural Language Toolkit, n.d.
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WordCloud

WordCloud is a library in Python which use is to create Word-Clouds, that is to say visual representa-

tion of words’ frequency in a text corpus 7.A set of words is given as input and the output image will

show the words present in the corpus, with the size being the representation of the frequency of each

word. This is useful because the generated word clouds can provide a quick and intuitive summary

of the most frequently occurring words in a large text document. In the analysis it has been useful in

order to highlight the main topics of the datasets under analysis.

Spacy

Spacy is a popular open-source library used for natural language processing (NLP) tasks. A set of

tools useful to analyze and pre-process text data are present in this library, and specifically for this

thesis the italian extension ”it core news sm” was used, which is a pre-trained statistical model for

Italian language designed to perform a variety of NLP tasks, including tokenization, POS tagging,

named entity recognition, and dependency parsing 8.

Transformers

Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models.

Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and

resources required to train a model from scratch 9.

Gensim

This library was used to buil the LDA model, since10 the algorithms behind it automatically discover

the semantic structure of documents by examining statistical co-occurrence patterns within a corpus

of training documents. These algorithms are unsupervised, which means no human input is necessary

– you only need a corpus of plain text documents 11.

7WordCloud for Python Documentation — Wordcloud 1.8.1 Documentation, n.d.
8Doc spaCy API Documentation, n.d.
9Transformers, n.d.

10https://radimrehurek.com/gensim/intro.html
11Gensim: Topic Modelling for Humans, n.d.
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2.3 Dataset

The first part of the analysis focused on the creation of the dataset, using web-scraping techniques.

Web scraping is a technique for extracting information from websites, consisting in making HTTP

requests to a website’s server, and downloading the HTML content of the web page. Given that the

data was scraped by the internet , it presented a lot of impurities as html tags that subsequently needed

parsing in order to to extract the information of interest.

This section will be focused on explaining the code used in order to retrieve the data. Since the

structure of the code is the same for all the web-pages, just one of them will be included for clearness

purposes:

1

2 url = "https://www.imolaoggi.it/category/polit/"

3 soup = BeautifulSoup(requests.get(url).content, "html.parser")

4

5 all_data = []

6 for title in tqdm(soup.select("h3.entry-title")):

7 t = title.get_text(strip=True)

8 u = title.a["href"]

9 s = BeautifulSoup(

10 requests.get( u).content, "html.parser"

11 )

12 text= s.find(’div’,{’class’:’entry-content’}).text.strip()

13 text = s.select_one(’[div="post-body entry-content float-container"]’)

14 text = text(strip=True, separator="\n") if text else ""

15

16 all_data.append([t, text, u])

17

18

19 df = pd.DataFrame(all_data, columns=["Title", "content", "PageLink"])

The first line of the code specifies the URL of the web-page of interest. Through the library

”Beautiful-Soup” a request of access to the web-page was made, and then an empty list is created in

order to appended the parts of interest to include in the dataset.

Indeed, in this case the targeted parts of the article are the title (title.get text),the link of the

web-page (href tag), and the corpus (which is accessed through the href). Finally, the empty list is
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converted into a DataFrame.

Afterwards, a new column called category is added, and based on the content of the article the

variable takes as value:

• Politics: online news related to politics and political events,

• World : online news related to the latest worldwide events,

• Economy: online news related to economical topics,

• News section: online news related to national news events,

• Science: online news related to science,

• Covid: online news related to covid and vaccines.

At the end of this proceeding, two datasets are obtained: one containing the reliable news , and one

containing the fake news. Before concatenating the two dataframes, a variable called ”label” is

added, which takes value 0 in case of fake news, and 1 in the presence of a real news. Finally the two

datasets (fake and real) are concatenated together into one.

The final dataset contains 7108 observations, and 7 variables all categorical which are:

• Title: it refers to the tile of the article ,

• Content: it refers to the content of the article ,

• PageLink: it refers to the URL of the article

• Date: it refers to the date in which the article was published,

• Category: it refers to the category of the article mentioned above,

• Source: it refers to the name of the website by which the article was scraped,

• Label: it refers to the label of the article indicating whether it is a real of fake news.

18



The graph below shows the graphical distribution of the label variable present in the dataset. From

the latter it can be observed that it is balanced dataset, presenting 3557 labeled as fake, and 3551

labeled as true.

Figure 2.1: Label distribution of dataset
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2.4 Natural Language Pre-processing

2.4.1 Data cleaning

Natural language pre-processing is a branch of machine learning that works with text-data. The goal

is to enable computers with an understanding of languages that mimics the one of humans.

As said above, since the dataset used in this thesis is the result of web-scraping; it presented a lot

of ”impurities” (links, emoticons, urls) which needed to be removed for a better performance of

algorithms.

In order to do that, a pipeline of function was created. Text processing included the following steps:

• Convert the corpus of the text to lower case,

• Remove punctuations,

• Remove stop-words: from nltk library a series of italian stopwords was imported and then

removed from the text. Stopwords are words such as preopositions and articles, that recurrently

appear in text data, but need to be removed since they do not represent a pattern in the data,

• Remove emojis,

• Remove URLs,

• Remove htlm text,

Once the text was cleaned, a further inspection was performed concerning the length of text data. It

emerged that the title has a mean of 11 characters, whereas the content has a mean of 397 characters.

This information will be of use when fine-tuning the BERT model (since it has a maximum length of

characters of 512) and was graphically represented in the following way:

Additionally, in order to get an insight of the topic of the dataset a Word-Cloud , also known as a tag

cloud or text cloud, was created. The latter is a visual representation of the most frequently

occurring words in a given text data. The words are displayed as individual elements, typically as

differently-sized words, with the size of each word proportional to its frequency in the data. Their

usage is about quickly finding out the most significant themes or topics present in the text data.

For the current analysis, it was believed that Word-cloud could be more of impact by isolating the

original dataset by category and label, and subsequently comparing the results.
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(a) title character distribution (b) content character distribution

Figure 2.2: Content and Title character distribution

In the picture below, the word clouds of political news for the real and fake datasets are represented:

Figure 2.3: Politics Fake and Real Word-cloud)

It is noticeable that while the two images present some words in common, such as ”italian”, and

”stato”; the most recurrent words in fake news articles of politics frequently include words like:

meloni, immigrati, migranti; indicating that those are the main topics of those articles.

This difference becomes even more evident when analysing most recurring trigrams, which are sets

of three consecutive tokens.

The graph below displays on the left the most recurring tri-grams of fake political news; and on the

right the one of real news.

Figure 2.4: Politics Fake and Real Word-cloud with Tri-grams)
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What emerges is the fact that once again in fake news data appear words and sentences that reflect

hatred against communities and categories of people appear, such gas ”baby gang immigrati”, ”figli

immigrati stuprano”, whereas on the other side real news use more neutral words when dealing with

the same topics.

The last step of the pre-processing was stemming. Stemming is a technique used in Natural

Language Processing to reduce words to their root form. The goal is to map related words to a

common base form, so that words with similar meaning can be treated as the same token.

For example:

• ”running” can be stemmed to ”run”

• ”runner” can be stemmed to ”run”

• ”ran” can be stemmed to ”run”

In this way, different forms of the same word can be treated as the same term, reducing the dimen-

sionality of the text data and improving the effectiveness of NLP tasks such as information retrieval

or text classification.

1 italian_stopwords = stopwords.words(’italian’)

2 stemmer = ItalianStemmer()

3 documents = list()

4 for k,v in enumerate(x):

5 document = v.split()

6 document = [stemmer.stem(word) for word in document]

7 document = ’ ’.join(document)

8 documents.append(document)

Since the text under analysis is in italian language, the italian extension of the Nltk python library for

stemming was used.
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2.4.2 Latent Dirichlet Allocation

In machine learning and natural language processing, a topic model is a type of statistical model for

discovering the abstract ”topics” that occur in a collection of documents 12. It is based on the idea that

each document in a corpus can be modeled as a mixture of topics, where each topic is characterized

by a probability distribution over a set of words. The functioning of the algorithm can be explained

with the picture below:

Figure 2.5: Picture from Towards Data Science13

As shown above, the algorithm presents a series of step 14:

1. Collection of documents,

2. Cleaning and tokenization of data,

3. Creation of a dictionary based on the tokens present in the input documents,

4. Definition of a range of topics and reasoning of the optimal number of topics,

5. Find the distribution of topics in the document.

LDA has many applications, including text classification, information retrieval, and data

visualization. It is also used for feature extraction and dimensionality reduction, where the learned

topics can be used as features for further analysis. In general, LDA is an effective tool for

uncovering the hidden topics present in large collections of text data and can provide valuable

insights into the structure of the data. Since Spacy library offers multi-language models, and this

12Doll T., (2018)
14Ghanoum T., (2021,December,20)
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model will be trained on italian text data the first step is to import a pre-trained model called

”it core news sm”. The Spacy pipeline works in the following way:

Figure 2.6: Picture from Towards Data Science15

After tokenizing the data, a POS (part of speech) tagger is used. This is interesting since the tagger is

a computational tool that labels each word in a text corpus with its corresponding part of speech;

which combined with LDA can be used to extract meaningful information from text data.

Once the text is ready, it is essential to create a dictionary. The dictionary contains each token

(character) of the corpus which is assigned to a unique id , and together with the corpus they will be

the two inputs of the model. The corpus contains each token, and its frequency of appearance.

A crucial part in LDA is the pre-choice of the number of topics. In this case, since the dataset

presents seven categories, a number of 6 topics will be assigned. Subsequently the lda model is fitted

and its results plotted using pyLDAvis library.

Figure 2.7: LDA graphical representation using pyLDAvis library
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The above chart represents the six topics as circles. Those circles are expected to not overlap (as in

this case), implying a correct identification of the topics .

In detail, in the interactive graph when a circle is selected different words are displayed on the right,

showing word frequency (blue) and estimated term frequency within the selected topic (red). Topics

closer to each other are more related.

What emerges from the graph is the fact that topics 5 and 6 (which are believed to be the ones orig-

inally labeled as covid and world) are represented by a smaller circle, meaning that they present

a smaller number of observations compared to other topics (as indeed it is). Topic 5 represents

news about war events since the most recurring words are ”russo”, ”ucraino”, ”presidente”, ”guerra”,

”ucraina”, ”putin”. Topic 6 is believed to be about science, since its most frequent words are ”covid”,

”tampone”, ”vaccino”, ”positivo”, ”persona”, ”salute”.

Topic 1 and 4 represent political news and chronicle news, but it is believed that given the frequency

(a) Topic n.5 (b) Topic n.6

Figure 2.8: LDA model topic 5 and 6

of words in group 4 there can be found fake-news topics, as the most frequent words to appear are:

”seguire”, ”immigrato”, ”violenza”,”clandestino”, ”carabiniere”.

(a) Topic n.1 (b) Topic n.4

Figure 2.9: LDA model topic 1 and 4
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Analysing group 2 and its frequency of words it is believed that this one is the topic related to

economy, given words such as ”euro”,”potere”, ”gas”, ”prezzo”, ”energia”, ”prevedere”.

Figure 2.10: Topic n.2
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Chapter 3

Classical machine learning algorithms

In this chapter three machine-learning algorithms will be trained in order to perform fake news clas-

sification. Later on, model evaluation will be performed by comparing the metrics of each algorithm.

Subsequently, those same results will be compared also with the ones obtained by training the BERT

model.

The first part of this analysis focused on creating three functions before fitting the models, which

make the process less computationally expensive. Indeed, in this way it is only necessary to change

the classifier, and the related results are then displayed in the same way for all models. Moreover, for

each model the original dataset is split with a percentage of 80% for the train set, and 20% for the test

set.

1 def train_model(model, x_test, y_train):

2 model.fit(x_train, y_train)

3 return model

4

5 def predict_model(model, x_test):

6 y_pred = model.predict(x_test)

7 return y_pred

8

9 def evaluate_model(y_test, y_pred):

10 print("----------- Confusion martix -----------------\n")

11 print(confusion_matrix(y_test,y_pred))

12 print("\n----------- Report ----------------- \n")

13 print(classification_report(y_test,y_pred))

14 print("\n----------- Accuracy -----------------\n")
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15 print(accuracy_score(y_test, y_pred))

In detail:

1. train model function takes as input three arguments: ”model”, which is the model to be trained,

”x train” which is the dependent variable, and ”y train” which is the target variable for the

training data, in this case the label.

2. predict model function takes in input two arguments: the ”model” which refers to the trained

machine learning model, and ”x test” which are the feature variables for the test data. The func-

tion uses the ”predict” method to make predictions on the test data and stores the predictions in

the ”y pred” variable.

3. evaluate model function takes in two arguments: ”y test” which is the target variables for the

test data, and ”y pred” which refers to the predictions made by the machine learning model.

The function performs several evaluations on the model’s performance. It starts by printing the

confusion matrix, which shows the number of correct and incorrect predictions for each class.

Next, the function prints a classification report, which includes precision, recall, and f1-score

for each class. Finally, the function prints the accuracy score, which is a scalar metric that gives

an overall evaluation of the model’s performance.
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3.1 Performance metrics in classification

The performance of each algorithm is assessed through a series of metrics that will be explained

below. Since those metrics are used for all the algorithms deployed, the latter will be explained just

once.

Therefore, it is important to remark that in classification alogirthm’s erorrs can be categorized into:

• Type I Errors: False Positives, observations which are classified as positives but in reality they

are truly negative;

• Type II Errors: False Negatives, individuals classified as negatives that are positive in reality 1

Finally, in order to evaluate the performance of each model, a series of metrics is taken into account.

Indeed, when evaluating the performance of a model which performs classification tasks it is common

to based the evaluation on indicators such as accuracy, precision, recall, F1 score. In detail:

Accuracy

The accuracy metric is a scalar value that measures the relative number of accurate predictions over

the total number of instances evaluated2. The formula for accuracy is:

Accuracy = (TruePositives+TrueNegatives)/TotalPredictions (3.1)

Where True Positives are the number of instances correctly classified as positive, True Negatives are

the number of instances correctly classified as negative, and Total Predictions is the total number of

predictions made.

Precision

Precision is used to measure the positive patterns that are correctly predicted from the total predicted

patterns in a positive class 3. Precision is particularly important in cases where the cost of false

positive predictions is high. The formula for precision is:

Precision = TruePositives/(TruePositives+FalsePositives) (3.2)

Where False Positives are the number of instances classified as positive, but are actually negative.
1Chen (2021)
2Hossin and Sulaiman (2015)
3Ibidem

29



Recall

Recall is the ability of a model to identify relative cases within a dataset 4. In detail, recall is used to

measure the fraction of positive patterns that are correctly classified as positives 5.

Recall = TruePositives/(TruePositives+FalseNegatives) (3.3)

F1-score The F1-score is an harmonic mean that takes into account both precision and recall, in

the following formula:

F1Score = 2∗ (Precision∗Recall)/(Precision+Recall) (3.4)

This evaluation metric in important since it gives equal wight to both measures, and is a specific exam-

ple of the general Fβ metric, where β can be adjusted to give more weight to either recall or precision 6.

4Koehrsen (2021)
5Hossin and Sulaiman (2015)
6Koehrsen (2021)
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3.2 Random Forest

Random Forest is a supervised machine learning algorithm that could be employed both for regression

and classification tasks. In this case, the latter is deployed for classification since the target variable

of the dataset is binary and categorical, taking values of either 0 in case of true news; and 1 in the

presence of fake news. Supervised learning means that the algorithm is trained on labeled data , and

the goal is for the algorithm to predict the label of unseen data during testing.

Random Forest uses the ensemble method. Indeed, in statistics and machine learning ”ensemble

method” refers to the usage of multiple algorithm, that together outperform the results achievable

by the single one. In this case Random Forest represents an ensemble of decision trees, that are

merged together in order to produce more accurate predictions 7. In general, it can be affirmed that

in classification the performance of the algorithm increases when increasing the number of trees; but

this method lacks generalization since other elements need to be taken into account such as the size

of the dataset.

In the context of classification, each decision tree in the Random Forest algorithm is trained on a

random subset of the data and a random subset of the features. The decision tree predicts the class

label for a given data point by traversing the tree and arriving at a leaf node. At each internal node

of the tree, the algorithm splits the data based on the feature that provides the maximum reduction in

impurity. The impurity is typically measured using Gini impurity or entropy. Once the decision trees

are trained, the Random Forest algorithm makes a prediction for a new data point by aggregating the

predictions of all the trees. The prediction is typically made by taking the majority vote of the trees.

In mathematical terms, the prediction made by a Random Forest for a new data point ”x” can be

represented as:

ŷ = 1/n∗ (yi) (3.5)

In detail, the model has been fitted using Random Forest classifier by employing the functions de-

scribed above in a pipeline that has the following structure:

1

2 from sklearn.ensemble import RandomForestClassifier

3 classifier = RandomForestClassifier(n_estimators=1000, random_state=0)

4 classifier = train_model(classifier, x_train, y_train)

7Meltzer (2021)
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5 y_pred = predict_model(classifier, x_test)

6

7 evaluate_model(y_test, y_pred)

The ”n estimators” parameter in the code sets the number of decision trees in the Random Forest

Classifier. The default number of parameters in Python is 100, but in this case a number of 1000 has

been chosen. Indeed, being Random Forest an ensemble method, the larger the number of trees, the

more diverse and robust the model becomes, each tree giving a different insight on the data. For exam-

ple, setting ”n estimators” to 1000 as in this case means that when making predictions, the algorithm

will use all of the 1000 trees to make a prediction, and the final prediction will be the majority vote of

all the trees. This allows the Random Forest Classifier to average out the biases and variances of the

individual trees, resulting in a more stable and accurate prediction 8. The ”random state” parameter

in the code controls the randomness of the algorithm. Setting the ”random state” to a fixed value (in

this case, 0) ensures that the same results will be obtained each time the code is run, provided that the

input data and the code remain unchanged.

8Ellis (2022)
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3.2.1 Results of Random Forest Classifier

In this case the performance of the Random Forest algorithm can be represented in the following way:

Table 3.1: Evaluation metrics for Random Forest classifier

Precision Recall F1-score Support
0 0.93 0.96 0.95 713
1 0.96 0.93 0.94 709

Accuracy 0.94
Macro avg 0.94 0.94 0.94 1422

Weighted avg 0.94 0.94 0.94 1422

The table above includes five columns. The first column indicates the classes (0 and 1) for which the

evaluation metrics are reported. The second, third, and fourth columns show the precision, recall, and

F1-score for each class, respectively. The precision measures the proportion of true positives among

all positive predictions, the recall measures the proportion of true positives among all actual positive

instances, and the F1-score is a combined measure of precision and recall. The fifth column shows

the number of instances in the test dataset belonging to each class. Finally, the table also reports the

overall accuracy, which is the proportion of correct predictions over all instances in the test dataset.

The table also provides macro and weighted averages of the precision, recall, and F1-score across

both classes. The macro average is an unweighted mean of the evaluation metrics, whereas the

weighted average takes into account the number of instances of each class in the test dataset.

Lastly, the confusion matrix is plotted:
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Figure 3.1: Confusion Matrix for Random Forest Classifier

The figure above displays in the yellow cells the correct predictions which amount to 685 for the

fake news correctly classified as false, and 658 for the true news correctly classified as true. The

purple blocks represent the number of incorrectly classified news , respectively 51 predictions that

were true and have been labeled as false, and 28 which were false are were classified as true.
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3.3 Naive Bayes

Naive Bayes is a probabilistic machine learning algorithm based on the Bayes theorem. It’s named

”Naive” because it makes a strong assumption that all the features in the input data are independent

of each other 9. Overall, Naive Bayes algorithm are often employed for classification tasks since they

have a good performance on textual analysis tasks such as automatic text detection, spam filtering ,

sentiment analysis.

There are three main variants of the Naive Bayes algorithm:

1. Gaussian Naive Bayes, which assumes that the features follow a normal distribution. It’s mainly

used for continuous data,

2. Multinomial Naive Bayes, which is used for discrete data such as text. It models the probabili-

ties of observing the different outcomes (i.e., words) in the data,

3. Bernoulli Naive Bayes, which is similar to the multinomial Naive Bayes, but it’s used for binary

data where each feature can only take on two possible values (e.g., true or false)

Taking in consideration the characteristics of the dataset, the Multinomial Naive Bayes model has

been chosen as classifier. This model is a good alternative to ”heavy-AI” machine learning algorithms

due to its performance, and simplification on text classification. The goal is to use this model to

predict the class label of a new instance based on its features. The basic idea is to calculate the

posterior probability of each class given the features of the new instance, using Bayes theorem 10. In

the case of multinomial Naive Bayes, the posterior probability is calculated as follows:

P(class| f eatures) =
P( f eatures|class)∗P(class)

P( f eatures)
(3.6)

where

• (class| f eatures) is the posterior probability of class given the features of the new instance,

• P( f eatures|class) is the likelihood, which models the probability of observing the features

given the class,

• P(class) is the prior probability of the class,
9Huang and Li (2011)

10Ratz,(2022)
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• P( f eatures) is the marginal likelihood, which is a normalization term to ensure that the poste-

rior probabilities sum up to 1.11

In the case of the Multinomial Naive Bayes, the likelihood is modeled as the product of multino-

mial distributions for each feature, assuming that each feature is independent given the class:

P( f eatures|class) = ∏
i

P( f eaturei|class) (3.7)

where

• ∏i is the product over all features i,

• P( f eaturei|class) is the probability of observing the value of feature i given the class.12

With the use of maximum likelihood estimation, these probabilities can be calculated from the train-

ing data. Lastly, the class with the highest posterior probability is taken as reference to make the

prediction for a new instance. The implementation of the model is as follows:

1 nb_classifier = MultinomialNB()

2 classifier = train_model(nb_classifier, x_train, y_train)

3 y_pred = predict_model(classifier, x_test)

11Loukas (2023)
12Ibidem

36



3.3.1 Results of Naive Bayes

The result of the algorithm is represented in the table below:

Table 3.2: Evaluation metrics for Naive Bayes classifier

Precision Recall F1-score Support
0 0.89 0.82 0.85 713
1 0.83 0.90 0.86 709

accuracy 0.86
macro avg 0.86 0.86 0.86 1422

weighted avg 0.86 0.86 0.86 1422

From the accuracy metrics, it is noticeable that the precision of the model is higher for observations

belonging to class 0 (0.89) rather then class 1 (0.83). This changes when analysing the Recall,

indicating its ability to identify a higher proportion of true positive samples belonging to class 1

compared to class 0. Finally, the F1 score being similar for both classes indicates that it performs

equally well for both.

The confusion matrix of Naive Bayes Classifier has the following structure:

Figure 3.2: Confusion Matrix for Naive Bayes Classifier

The confusion matrix shows that the model predicted 582 instances as belonging to class 0 when

the true label was also class 0. This is called true negatives (TN), which means that the model

correctly identified 582 instances as negative for class 1. However, the model incorrectly predicted

131 instances as belonging to class 1 when the true label was actually class 0. This is called false

37



positives (FP), which means that the model incorrectly identified 131 instances as positive for class 1.

Similarly, the model predicted 639 instances as belonging to class 1 when the true label was also class

1. This is called true positives (TP), which means that the model correctly identified 639 instances

as positive for class 1. However, the model incorrectly predicted 70 instances as belonging to class

0 when the true label was actually class 1. This is called false negatives (FN), which means that the

model failed to identify 70 instances as positive for class 1.

Overall, the confusion matrix shows that the model made 131 false positive predictions, which means

that the model predicted some instances as positive for class 1 when they were actually negative

for class 1. Similarly, the model made 70 false negative predictions, which means that the model

predicted some instances as negative for class 1 when they were actually positive for class 1. On the

other hand, the model made 582 true negative predictions and 639 true positive predictions.
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3.4 K-nearest neighbors

K-Nearest Neighbors (KNN) is a supervised learning algorithm that can be used for both classification

and regression tasks 13. When given a new observation, the algorithm will predict its class based on

the distance between other datapoints 14.

For classification tasks the formula of the algorithm is the following:

y = argmax
j∈Ck

K

∑
i=1

wiI(yi = j) (3.8)

where

y is the predicted class, Ck is the set of possible classes, wi is the weight assigned to the i-th neighbor,

and I(yi = j) is the indicator function that is equal to 1 if the i-th neighbor has class label j, and 0

otherwise. The weights wi can be uniform (i.e., wi = 1 for all neighbors) or distance-based (i.e.,

wi =
1

d(xi,xq)
where d(xi,xq) is the distance between the i-th neighbor and the query point)15.

Usually, the distance between the data points is calculated using either Manhattan, Euclidean and

Hamming distance. The choice of the distance metric depends on the specific dataset and problem

characteristics; and in this case the Manhattan distance has been employed. Indeed, the latter is the

distance between real vectors using the sum of their absolute difference. In formula, the Manhattan

distance can be written as:

d(xi,x j) =
n

∑
k=1

|xik − x jk| (3.9)

and calculates distance between two points in the feature space as the sum of the absolute differences

of their corresponding coordinates16.

The Manhattan distance is less sensitive to outliers in the data, and is often used when the features are

not continuous.

13Cristopher (2021)
14Gupta (2022)
15Lecture 2: K-nearest Neighbors / Curse of Dimensionality, n.d.
16Christopher (2021)
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The code used to train the model is the following:

1 knn_classifier = KNeighborsClassifier(n_neighbors=2, metric="manhattan")

2 classifier = train_model(knn_classifier, x_train, y_train)

3 y_pred_k= predict_model(classifier, x_test)

where:

• n neighbors=2 represents the number of nearest neighbors considered by the K-nearest neigh-

bors (KNN) algorithm when making predictions. In this case,the KNN algorithm will consider

the two closest neighbors to the test data point. The class label or target value of these two

neighbors will then be used to make a prediction for the test data point. The majority class label

among the neighbors will be assigned to the test data point as its predicted class,

• metric=”Manhattan”, as explained above is the distance metric used to calculate the distance

between data-points.
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3.4.1 Results of K-Nearest Neighbors Classifier

The evaluation metric of the algorithm is represented in the following table: The confusion matrix

Table 3.3: Evaluation metrics for KNN classifier

Precision Recall F1-Score Support
0 0.88 0.68 0.77 713
1 0.74 0.91 0.81 709

accuracy 0.79
macro avg 0.81 0.79 0.79 1422

weighted avg 0.81 .79 0.79 1422

indicates that the classifier correctly predicted 487 negative instances (class 0) and 642 positive in-

stances (class 1). However, it incorrectly predicted 226 instances as positive (class 1) when they

were actually negative (class 0), and 67 instances as negative (class 0) when they were actually pos-

itive (class 1). The precision of the classifier for class 0 is 0.88, indicating that when the algorithm

predicted class 0, it was correct 88% of the time. The recall for class 0 is 0.68, indicating that the

algorithm correctly identified 68% of the actual class 0 instances. The F1-score for class 0 is 0.77,

which is the harmonic mean of precision and recall. Similarly, for class 1, the precision, recall, and

F1-score are 0.74, 0.91, and 0.81, respectively. The accuracy of the classifier is 0.79, which indicates

that it correctly predicted the class labels for 79% of the instances. The macro-averaged F1-score and

weighted-averaged F1-score are both 0.79, indicating that the overall performance of the classifier is

balanced across both classes. In general, an algorithm with high precision and recall values and a

high F1-score is considered to be performing well. The accuracy of 79% suggests that the algorithm

is performing reasonably well, but there is room for improvement, particularly in reducing the false

positive and false negative rates.

Figure 3.3: Confusion Matrix for K-Nearest Neighbors Classifier
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Chapter 4

BERT in Fake News Classification

4.1 BERT-Bidirectional Encoder Representations from Transform-

ers

”BERT: Pre-training of Deep Bidirectional Transformers for language Understaning” is a paper pub-

lished by researches of Google AI Language. This paper has sparked interest in the Machine Learning

community due to its exceptional results in a wide range of Natural Language Processing (NLP) tasks,

such as Question Answering (SQuAD v1.1) and Natural Language Inference (MNLI). The main inno-

vation stands in the fact that BERT is not pre-trained using left-to-right right-to-left language models,

but bidirectional training of Transformer, an attention model, for language modelling.

The researchers demonstrated that bidirectional training provides a deeper understanding of language

context and flow compared to single-direction language models 1. In the paper, they introduce a new

technique called Masked LM (MLM) which enables bidirectional training in previously unattainable

models.

4.1.1 Model Architecture

BERT is a multi-layer bidirectional Transformer encoder and is released in the tensor2tensor library

2. The developers came up with two versions of the model: BERT base, and BERT large.

BERT Base base presents the same architecture as OPENAI GPT, and is made of 12 transformer en-

coder layers, 768 hidden units, and 110 million parameters; whereas BERT Large has 24 transformer
1(Devlin et al., 2019)
2(Devlin et al., 2019)
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encoder layers, 1024 hidden units, and 340 million parameters, which makes it a much larger and

more powerful model. However, it also requires more computation resources and training time. By

creating two models with different sizes, the researchers aimed at providing a range of options that

could balance the need for high performance with the practical constraints of computation resources

and training time.

BERT makes use of Transformer, an attention mechanisms which is used to learn contextual relation-

ships between words. The process is explained in the paper ”Attention is al you need” which explains

the function of Transformer (used in BERT). At each step the model is auto-regressive and makes

use of encoders and decoders: the previously generated symbols are used as additional input when

generating the next 3. The encoder is composed of N=6 identical layers, each presenting other two

sub-layers. The latter are a multi-head self-attention mechanism, and a fully connected feed-forward

network. Each sub-layer has a residual connection and is followed by layer normalization. The output

of each sub-layer is obtained by applying the sub-layer function to the input, adding it to the input us-

ing the residual connection, and then normalizing the result. All sub-layers, including the embedding

layers, produce outputs of dimensionality 512, which enables the residual connections 4. The decoder

is also composed of N=6 identical layers, but in addition there is a third sub-layer which performs

multi-head attention over the input of the encoded stack 5.

BERT uses a special type of self-attention mechanism called ”masked self-attention” that allows it

to handle inputs with missing tokens. During training, a small percentage of tokens in the input se-

quence are randomly masked out, and the model is trained to predict these masked tokens based on

the surrounding context.

The masked self-attention mechanism in BERT works in a similar way to the multi-head self-attention

mechanism in the encoder. It computes a weighted sum of the input embeddings, where the weights

are based on the similarity between the query and key vectors for each token in the sequence. How-

ever, during masked self-attention, the model is only allowed to attend to tokens that are not masked

out, which ensures that the model does not have access to information about the masked tokens.
3(Vaswani et al., 2017)
4ibid
5Vaswani et al. (2017)
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4.1.2 Pre-Training anf fine-tuning BERT

Pre-Training

The implementation of BERT model consists of two steps: pre-training and fine-tuning.

As said above, BERT uses a special kind of attention which is referred to as ”masked self-attention”

(MLM). In order to train the bidirectional representation, 15% of the input is masked at random, and

then only those masked tokens are predicted. In this phase, a mis-match between pre-triaining and

fine-tuning is created due to the fact that the [MASK] tokens do not appear during fine-tuning. This

effect is mitigated in order to prevent the model from simply memorizing the masked tokens and to

encourage it to learn more general language representations, with the technique called ”masked token

replacement” 6.

With this technique, the training data generator chooses 15% of the token positions at random for

prediction. When the i-th token is chosen, it is then replaced with one of the following:

• The [MASK] token: 80% of the time, the i-th token is replaced with the special [MASK] token,

which indicates that the original token is masked out,

• A random token: 10% of the time, the i-th token is replaced with a random token from the

vocabulary, which encourages the model to learn more robust and general language representa-

tions

• The unchanged i-th token: 10% of the time, the i-th token is left unchanged to provide additional

context to the model.

Subsequently, the model is trained to predict the original token based on the context provided by the

remaining tokens. Specifically, the model is given the entire sequence of tokens as input, but the to-

kens that were selected for prediction are replaced with [MASK], a random token, or the unchanged

token as described above. The model then generates a probability distribution over the entire vocabu-

lary for each masked token, and the original token is predicted based on the highest-probability token

in this distribution.

The second part of the pre-training consists of NSP (Next Sentence Prediction) used to make the

model learn to understand the relationship between two consecutive sentence. In detail, pairs of sen-

tences are created from a large corpus of text, and the model is trained to predict whether the second
6(Devlin et al., 2019)
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sentence is actually the next sentence that follows the first one or if it is a random sentence from

the corpus. Specifically, when choosing the senteces A and B, 50% of the time B is the actual next

sentence that follows A and 50% of the time it is a random sentence from the corpus 7.

Fine-Tuning BERT

Fine-tuning involves training the pre-trained model further on a smaller, task-specific dataset, which

typically involves fine-tuning the parameters of the final layers of the model while keeping the pre-

trained parameters fixed.

The fine-tuning process typically involves the following steps:

• Input representation: The input data is first pre-processed to match the format expected by the

pre-trained BERT model. This involves tokenizing the text into word pieces (sub-words) and

adding special tokens like [CLS] (for classification) and [SEP] (for separating sentences),

• Fine-tuning: The pre-trained BERT model is then fine-tuned on the downstream task by training

the final layers of the model on the task-specific dataset. During this process, the pre-trained

parameters of the model are typically kept fixed, while the parameters of the final layers are

updated through back propagation. The goal is to optimize the model parameters for the specific

task at hand, using techniques like gradient descent and stochastic optimization

• Evaluation: Once the model has been fine-tuned, it is evaluated on a separate validation or test

set to measure its performance on the downstream task. This typically involves calculating

metrics like accuracy, F1 score, or mean squared error, depending on the task,

• Iterative refinement: If the model’s performance is not satisfactory, the fine-tuning process can

be repeated with different hyper parameters or architectures, or by including additional training

data. This process can be iterative until the desired level of performance is achieved

The fine-tuning process can be computationally expensive, especially for large datasets and complex

tasks, but it is a powerful technique for leveraging the knowledge learned by pre-trained models like

BERT to improve performance on a wide range of downstream tasks.

7(Devlin et al., 2019)
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4.1.3 Implementation of BERT for automatic fake news detection task

This section focuses on explaining the implementation of the BERT model, as an additional tool in

the detection of fake news, which is the aim of the thesis.

In the current analysis, the model used is BERT BASE the uncased version; which as said above is

less computationally expensive and performs better on small-medium size datasets.

For this purpose, the dataset was split is three parts: 80% for the train set, 10% for validation set, and

another 10% for test set. The validation set is important when training complex models such as BERT

because it allows to perform operations like re-adjusting the learning rate, and batch size based on the

model performance. The validation set can therefore be used to assess different combinations of these

hyper-parameters and identify the optimal settings that lead to better model performance. Moreover,

it is useful when monitoring the performance of the algorithm; since it can be used to continuously

monitor the model’s performance during training.

Specifically, the size of the three datasets is:

• train-set size: (4549, 2),

• validation-set size: (1137, 2)

• test-set size: (1422, 2)

Where 2 identifies the target, which is either true (0) or false (1).
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After the data was split, a function with the main steps to prepare the data for the analysis was crated.

1 def __getitem__(self, idx):

2 if self.mode == ’test’:

3 statement, label = self.df.iloc[idx, :].values

4 label_tensor = torch.tensor(label)

5 else:

6 statement, label = self.df.iloc[idx, :].values

7 label_tensor = torch.tensor(label)

8

9 word_pieces = [’[CLS]’]

10 statement = self.tokenizer.tokenize(statement)

11 word_pieces += statement + [’[SEP]’]

12 len_st = len(word_pieces)

13

14 tokens_b = self.tokenizer.tokenize(text_b)

15 word_pieces += tokens_b + ["[SEP]"]

16 len_b = len(word_pieces) - len_a

17

18 ids = self.tokenizer.convert_tokens_to_ids(word_pieces)

19 tokens_tensor = torch.tensor(ids)

20

21 segments_tensor = torch.tensor([0] * len_st, dtype=torch.long)

22

23 return (tokens_tensor, segments_tensor, label_tensor)

24

25 def __len__(self):

26 return self.len

The ”get item” function is specified to enable indexing of the dataset, making it possible for individual

samples to be accessed by index, and performs the following tasks:

• If the mode is ’test’, it retrieves the statement and label values from the dataset at the specified

index (idx) and converts the label to a PyTorch tensor (label tensor),

• If the mode is ’train’ or ’val’, it performs the same steps as for ’test’, retrieving the statement

and label values and converting the label to a tensor,
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• The statement is tokenized using the BERT tokenizer and the special tokens [CLS] and [SEP]

are added to the token list. The token list is converted to token IDs using the tokenizer’s con-

vert tokens to ids() method, and the resulting tensor is assigned to tokens tensor,

• A segments tensor is created with all values set to 0, indicating that all tokens belong to the

first sentence. The method returns a tuple containing the tokens tensor, segments tensor, and

label tensor

The image below represents an example of the output of the process described above. In the first

line, there is the original statement retrieved from the dataset, and afterwards the same sentence after

being processed by BERT tokenizer.The ’##’ symbol represents that the token is part of a larger

word. The label indicates the label associated with the statement, which in this case is 1 (so fake),

and tokens tensor displays the tensor representation of the token IDs obtained after converting the

tokenized statement using the tokenizer’s convert tokens to ids() function described above. The

tensor contains the values [102, 2209, 17135, 116, 8588, 554, 28270, 103]. Moreover,

segments tensor represents the segments tensor, which is a tensor of zeros with the same length as

the tokenized statement. In this case, all the values are 0, indicating that all tokens belong to the first

sentence. Lastly. label tensor shows the label converted to a PyTorch tensor. In this case, the label

tensor has the value 1.

Figure 4.1: Snippet Output of tokenization
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4.1.4 BERT Pre-training

The second part of the code, aims at preparing the input data for the BERT model by converting the

samples into tensors, padding them, creating attention masks, and stacking the labels. This enables

efficient batch processing and handling variable-length input sequences, which are important for

training, and inference with BERT. The batch size is set at 16, meaning that during training, the

model processes and updates its weights based on 16 training examples at a time. These 16 examples

form a batch, and the model’s parameters are updated based on the average gradient calculated over

the batch. The choice of an appropriate batch size depends on various factors, including the available

computational resources, the size of the dataset, and the complexity of the model. It often involves a

trade-off between computational efficiency and the quality of the learned model.

The function created for achieving the described task is the following:

1 def create_mini_batch(samples):

2 tokens_tensors = [s[0] for s in samples]

3 segments_tensors = [s[1] for s in samples]

4

5

6 if samples[0][2] is not None:

7 label_ids = torch.stack([s[2] for s in samples])

8 else:

9 label_ids = None

10

11

12 tokens_tensors = pad_sequence(tokens_tensors, batch_first=True)

13 segments_tensors = pad_sequence(segments_tensors, batch_first=True)

14

15

16

17 masks_tensors = torch.zeros(tokens_tensors.shape, dtype=torch.long)

18 masks_tensors = masks_tensors.masked_fill(tokens_tensors != 0, 1)

19

20 return tokens_tensors, segments_tensors, masks_tensors, label_ids

Tokens tensors and segments tensors are lists used to store the token tensors, and segment tensors

for each sample in the input batch. The tokens tensor contains the tokenized input text; while the
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segments tensor indicates which part of the input corresponds to the actual text and which part is

padding.

The ”Label ids” variable stores the label tensors for the samples in the input batch, after checking

the each sample has a label. If the first sample has no label, label ids is set to None.

Afterwards, padding begins: the tokens tensors and segments tensors are padded to have the same

length within the batch. The pad sequence() function is used with batch first=True to pad the tensors

with zeros. Padding involves adding special tokens (usually zeros) to the input sequences so that

they match the length of the longest sequence in the batch.

In the attention mask part, the ”masks tensors” are initialized as a tensor of zeros with the same

shape as ”tokens tensors”. The purpose of the attention mask is to indicate to BERT which positions

in the input it should pay attention to. In this case, the positions of the actual tokens are set to 1,

while the padded positions remain 0.

The function returns the processed tensors: tokens tensors, segments tensors, masks tensors, and

label ids. These tensors will be used as input to the BERT model during training, validation, and

testing.
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For a better understanding of the process described, a snippet of the output is included.

Figure 4.2: Snippet Output token tensors

The tensor itself contains integer values that represent the tokens in the input sequences. Zeros in the

tensor indicate the padding tokens that were added to make all sequences in the batch have the same

length. Looking at the first row, the sequence starts with the [CLS] token (represented by 102),

followed by several other tokens. The remaining entries in the row are zeros, which represent

padding tokens. Similarly, the other rows in the tensor follow the same pattern. The number of

padding tokens varies depending on the length of the corresponding sequence. All rows have been

padded with zeros to match the length of the longest sequence in the batch.

Figure 4.3: Snippet Output of segment tensors

The tensor segments tensors contains integer values that represent the segment IDs of the input

tokens. In BERT, when processing a sequence, it is common to have two segments: Segment A and

Segment B. However, in this case, since we are dealing with a single-sequence classification task, all

the tokens belong to a single segment. The tensor segments tensors in the example consists of all

zeros. This indicates that all tokens in the input sequences belong to the same segment (Segment A).
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Figure 4.4: Snippet Output of masked tensors

In the picture above, masks tensors.shape is torch.Size([16, 21]), indicating that the masks tensors

tensor has a shape of 16 rows and 21 columns. The tensor masks tensors is created to serve as an

attention mask for the input tokens. It is used to indicate which tokens in the input sequences are

actual tokens, and which ones are padding tokens. The attention mask helps the BERT model focus

only on the relevant tokens and ignore the padding tokens during processing. In the example, the

masks tensors tensor consists of ones and zeros. The ones indicate the positions of the actual tokens

in the input sequences, while the zeros indicate the positions of the padding tokens. By setting the

attention mask to one for actual tokens and zero for padding tokens, the BERT model knows which

tokens to attend to, and which tokens to disregard. For instance, in the first sequence [1, 1, 1, 1, 1, 1,

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], the first eight positions have a value of one, indicating the

presence of actual tokens, followed by thirteen zeros for padding. The masks tensors tensor is an

essential component in the BERT model’s input because it helps ensure consistent sequence lengths

within a batch and enables the model to attend to the meaningful tokens while ignoring the padding

tokens.

Lastly, regarding the label ids tensor, it has a shape of torch.Size([16]), indicating that it is a

1-dimensional tensor with 16 elements. It represents the labels for the corresponding input

sequences in the batch. In the given example, each element in the label ids tensor corresponds to the

label of the respective sequence in the batch.
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4.1.5 Model Construction

Subsequently to preparing the data, the model is loaded. As before, for a better understanding of the

model architecture, a snippet of the code describing the configuration of the latter is included, and

then explained.

Figure 4.5: Snippet Output of model configuration

The model configuration is the following:

• name or path: specifies the name or path of the pre-trained model used as the base. In this

case, it is ”dbmdz/bert-base-italian-cased”, which means that it makes a distinction between

cased and uncased words, 8

• architectures: Lists the architecture(s) used for the pre-trained model. In this case, it is

”BertForMaskedLM”, which indicates that the model was originally trained for masked

language modeling,

• attention probs dropout prob: specifies the dropout probability for the attention mechanism in

the transformer layers. It is set to 0.1, meaning that during training, 10% of the attention

weights are randomly set to zero to prevent over-fitting,

8(Bert-base-cased · Hugging Face, n.d.)
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• classifier dropout: Specifies the dropout probability for the classifier layer. It is set to null,

indicating that no additional dropout is applied specifically to the classifier layer,

• hidden act: specifies the activation function used in the transformer layers’ feed-forward

networks. The ”gelu” activation function is used, which is a smooth approximation of the

rectified linear unit (ReLU) function.

• hidden dropout prob: Specifies the dropout probability for the hidden layers in the

transformer. It is set to 0.1, meaning that during training, 10% of the hidden unit activation are

randomly set to zero to prevent over-fitting.

• hidden size: Specifies the size (dimensionality) of the hidden layers in the transformer. It is set

to 768, indicating that the hidden layers have 768 units.

• initializer range: Specifies the range for weight initialization. It is set to 0.02, meaning that the

weights are initialized using a uniform distribution between -0.02 and 0.02,

• intermediate size: Specifies the size of the intermediate (hidden) layer in the transformer’s

feed-forward networks. It is set to 3072.

• max position embeddings: Specifies the maximum length of input sequences. It is set to 512,

meaning that input sequences longer than 512 tokens would need to be truncated or processed

in chunks.

• num attention heads: Specifies the number of attention heads in the transformer. It is set to 12.

• vocab size: Specifies the size of the vocabulary, i.e., the total number of unique tokens in the

tokenizer’s vocabulary. It is set to 31102.
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4.1.6 Fine-Tuning

Finally, the last part of the code focuses on fine-tuning BERT and assessing its performance.

1 from sklearn.metrics import accuracy_score

2 from tqdm.notebook import tqdm

3

4 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

5 print("device:", device)

6 model = model.to(device)

7

8 model.train()

9 optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)

10 NUM_EPOCHS = 3

11

12 for epoch in range(NUM_EPOCHS):

13 train_loss = 0.0

14 train_acc = 0.0

15

16 loop = tqdm(trainloader)

17 for batch_idx, data in enumerate(loop):

18 tokens_tensors, segments_tensors, masks_tensors, labels = [t.to(device)

for t in data]

19

20

21 optimizer.zero_grad()

22

23 outputs = model(input_ids=tokens_tensors,

24 token_type_ids=segments_tensors,

25 attention_mask=masks_tensors,

26 labels=labels)

27

28 loss = outputs[0]

29 loss.backward()

30 optimizer.step()

31

32 logits = outputs[1]

33 _, pred = torch.max(logits.data, 1)
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34 train_acc = accuracy_score(pred.cpu().tolist() , labels.cpu().tolist())

35

36

37 train_loss += loss.item()

38

39

40

41 loop.set_description(f"Epoch [{epoch+1}/{NUM_EPOCHS}]")

42 loop.set_postfix(acc = train_acc, loss = train_loss)

The model is set to training mode: this is necessary to activate certain functionalities like dropout.

Subsequently Adam optimizer is defined, for updating the model parameters during training. It takes

the model.parameters() and a learning rate of 1e-5 as arguments.

The number of epochs is set to 3, and afterwards the code starts a loop over the specified number of

epochs. The number of epochs refers to the number of times the model iterates over the train-set, so

in this case three times. Within each epoch, it initializes the training loss and accuracy. The code

iterates over the batches of data (data) using enumerate(loop).

At the beginning of the loop the trian loss, and accuracy loss are set to zero at the start of each

epoch, in order to keep track of the loss value during the training phase. The loss is used to compute

gradients using the loss.backward() function.

The optimizer.step() function is then called to update the model parameters based on the computed

gradients. Calculate accuracy: The model predictions (logits) are obtained from the outputs, and the

torch.max function is used to find the predicted class labels (pred). The accuracy score function

compares the predicted labels with the ground truth labels (labels) and calculates the accuracy. Note

that .cpu() is used to move the tensors to the CPU for compatibility with the accuracy score function.

In lines 23-26 the model object is called with the input tensors (tokens tensors, segments tensors,

masks tensors) and the labels (labels). This invocation of the model represents the forward pass.

During the forward pass, the input tensors are passed through the model’s layers, and the model

computes the output.

Finally, in the last part of the code the training loss of the batch (loss.item()) is added to the running

total (train loss).
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4.1.7 Results of BERT model

In this section, the results of the model previously constructed will be analyzed. As before, a snippet

of the code will be included for a better understanding of the functions employed.

1 from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

2

3 true=[]

4 predictions=[]

5 with torch.no_grad():

6 model.eval()

7 for data in testloader:

8 if next(model.parameters()).is_cuda:

9 data = [t.to(device) for t in data if t is not None]

10

11 tokens_tensors, segments_tensors, masks_tensors = data[:3]

12 test_outputs = model(input_ids=tokens_tensors,

13 token_type_ids=segments_tensors,

14 attention_mask=masks_tensors)

15

16 logits = test_outputs[0]

17 _, pred = torch.max(logits.data, 1)

18

19 labels = data[3]

20 true.extend(labels.cpu().tolist())

21 predictions.extend(pred.cpu().tolist())

22

23

24 cm = confusion_matrix(true, predictions, labels=[1, 0], normalize=’pred’)

25 print(cm)

26

27 disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[’Real’, ’Fake

’])

28 disp.plot()

29

30 print(’Acc: ’, accuracy_score(predictions,true))
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After importing the confusion matrix from sklearn, lines 6-21 evaluate the model by iterating over

the test data. This is achieved setting the model to ”model.eval()”, and disabling the gradient

computation ”torch.no grad()” in order to save memory. The input tensors are then passed to the

model, and the logits are obtained. The predicted labels are determined by selecting the class with

the highest logit value. The true labels and predicted labels are then added to the respective lists.

Afterwards, the confusion matrix is printed.

Figure 4.6: Confusion Matrix of BERT model

The confusion matrix above is a 2x2 matrix with the following structure [[0.84346701 0.09553159]

[0.15653299 0.90446841]]. As for the previous models, the performance of the classification model

is displayed by showing the proportion of true positive (TP), true negative (TN), false positive (FP),

and false negative (FN) predictions. Specifically, from this values it can be said that:

• The top-left value of 0.84346701 represents the proportion of true positives (TP). It indicates

that 84.35% have been classified as real by the model, and their label was indeed real;

• The top-right value of 0.09553159 represents the proportion of false negatives (FN). It indicates

that 9.55% of the instances that truly belong to the positive class (’Real’) were incorrectly

predicted as negative,

• The bottom-left value of 0.15653299 represents the proportion of false positives (FP). It indi-

cates that 15.65% of the instances that truly belong to the negative class (’Fake’) were incor-

rectly predicted as positive,
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• The bottom-right value of 0.90446841 represents the proportion of true negatives (TN). It indi-

cates that 90.45% of the instances that truly belong to the negative class (’Fake’) were correctly

predicted as negative.

Moreover, a classification report which takes into account other evaluation metrics has been retrieved.

Indeed, the precision, F1 score, recall, and support metrics of the model will be analyzed.

Table 4.1: Evaluation metrics for BERT MODEL

Class Precision Recall F1-score Support
0 0.90 0.83 0.87 708
1 0.84 0.91 0.88 714

accuracy 0.87 1422
macro avg 0.87 0.87 0.87 1422

weighted avg 0.87 0.87 0.87 1422

As mentioned above, the precision metric indicates the number of correct classification. In this case,

for class 0, the precision is 0.90, which means that 90% of the instances predicted as ’Real’ were

actually ’Real’. For class 1, the precision is 0.84, indicating that 84% of the instances predicted as

’Fake’ were indeed ’Fake’.

The ”Recall” or sensitivity is the proportion of correctly predicted positive instances out of all the

true positive instances. For class 0, the recall is 0.83, meaning that the model identified 83% of the

’Real’ instances correctly. For class 1, the recall is 0.91, indicating that the model captured 91% of

the ’Fake’ instances.

The F1-score is also known as the harmonic mean. It takes into account precision and recall and

outputs a single metric that balances them both. For class 0, the F1-score is 0.87, which combines

the precision and recall values. For class 1, the F1-score is 0.88, indicating a balance between

precision and recall.

The support stresses the number of observations in each class: in this case 708 instances of class 0

(’Real’) and 714 instances of class 1 (’Fake’).

The accuracy measures the overall performance of the model by calculating the proportion of

correctly predicted instances out of all instances. The accuracy value is 0.87, indicating that the

model predicted correctly for 87% of the instances.

The macro average calculates the average of precision, recall, and F1-score for both classes. In this

case, it is 0.87 for all metrics, providing an overall average performance of the model.
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The weighted average calculates the average of precision, recall, and F1-score, weighted by the

support of each class. In this case, it is 0.87 for all metrics, indicating an average performance

weighted by the number of instances in each class.
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4.2 Model evaluation

Based on the results displayed above, a comparison between the BERT model and the other classical

machine learning models can be made.

Based on the evaluation metrics, a rank of all the models can be made: Random Forest is the best

performing model, with a precision of 0.93, recall: 0.96, f1-score: 0.95 ,accuracy: 0.94. This is

followed by the BERT model which presents a precision of 0.90, recall of 0.83, f1-score of 0.87,

accuracy of 0.87N. On the other hand, the worst performing model is KNN model, presenting the

lowest precision, recall, and F1-score among the models. It achieves a precision of 0.88, recall of

0.68, and F1-score of 0.77. Its accuracy is 0.79, which is also lower than the other models.
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Chapter 5

GPT3 and its role in misinformation

5.1 What is GPT3

In 2020, Open-AI developed GPT3, a neural language model that is capable of sophisticated natural

language generation and completion of tasks like classification, question-answering, and summariza-

tion. GPT-3 emerged from a lineage of advancements in natural language processing (NLP) and deep

learning. Building upon the successes of its predecessors, GPT-3 pushed the boundaries of what was

previously thought possible in AI. It consists of 175 billion parameters 1, making it one of the most

complex and advanced language models to date. The model uses deep learning algorithms to analyze

and learn from vast amounts of text data, allowing it to generate coherent and contextually relevant

text.

As said above, GPT-3 is trained employing the unsupervised method ”pre-training” followed by ”fine-

tuning.” During pre-training, GPT-3 is exposed to a vast amount of text data and learns to predict the

next word in a sentence or fill in missing words. This process helps the model develop a broad under-

standing of language, including grammar, syntax, and context. GPT-3 is trained to generate coherent

and contextually appropriate responses based on this pre-training.

While GPT-3 has shown impressive capabilities in language generation and translation, it also poses

a significant challenge in relation to the spread of fake news. As the model can generate human-like

text that is difficult to distinguish from human-written content, it can be used to create fake news

stories, articles, and social media posts.

1(Kaliyar et al., 2021)
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5.2 Role of GPT3 in the spread of disinformation

The question of whether or not GPT3 is enhancing the spread of disinformation has been at the center

of many studies. This risk is given by the astonishing capability of GPT to produce human-like text,

and consequent inability of humans to recognize syntetic AI-generated text.

In the paper ”The Radicalization Risks of GPT3 And Advanced Neural Language Models”, the

reaserchers analyse the impact of GPT3 in spreading extremists ideas. In the paper it is stressed

out that the main impact of GPT3 in disinformation given by the fact that, in order to produce ideo-

logically consistent fake-news, there is no longer the need to to feed the model with a large corpus

of source material and hours of fine-tuning 2. Indeed, GPT3 only requires as input a short text (ie a

tweet), to immediately pick up on the pattern and intent of the author without any further training,

and be prompted in order to produce a series of tasks, such as:

• mimicking the writing of the short-text that is given as input;

• reproducing multi-lingual biased and extremist text 3,

• influence the masses to spread misinformation which is not recognizable by humans as text

written with AI.

One of the main concerns regarding GPT3 derives from its weaponizing in the production of human-

like text. Indeed, misinformation risk is greatly amplified if AI-generated text is not controlled and

is shared without critical evaluation, therefore amplyfing also the reach of those news. The lack of

human recognition can contribute to the virality of misinformation, leading to potential societal con-

sequence.

To mitigate these risks, it is crucial to promote media literacy, critical thinking, and fact-checking

skills among individuals. Developing AI tools and techniques for detecting AI-generated text can

also help in identifying and flagging potential instances of fake news. Additionally, responsible de-

ployment of AI models, including appropriate disclaimers and transparent disclosure of AI-generated

content, can help in raising awareness and fostering a more informed society.

2(McGuffie K. et al, 2020)
3ibid
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5.3 Ethical issues and bias related to Open AI

The ethical issues related to GPT-3 is addressed by the authors of the 2020 Google paper as they

state ”We focus on two primary issues: the potential for deliberate misuse of language models like

GPT-3. . . and issues of bias, fairness, and representation within models like GPT-3” 4. Those two

issues are referred to as ”dark side of AI” 5, which comprehends all the negative aspects related to AI

generated technology.

Regarding the first issue, that is to say manipulation, one of the main concerns in the misuse of GPT

consist of malicious behaviour by actors who exploit it to produce credible, human-sounding text 6.

This could facilitate the spread of fake news, which could be used to target specific groups of individ-

ual and affect their decision-making process.This could result in people acting for ends that are not

their own, and for reasons they have not chosen 7. As chat gpt could potentially harm people’s auton-

omy, the mitigation of this effect lies in the adoption of measures such as digital literacy, increase of

transparency, and accountability for developers.

The second important concern related to open AI is bias. Indeed, when developing algorithms there

is often the risk for ”inherited bias” which is the bias that algorithms inherit from the data they are

trained on. This happens for instance if data are not representative of the population as a whole, leav-

ing out certain groups of people. Bender et al. have demonstrated that usually large datasets do not

equally represent online users but significantly over-represent younger users, people from developed

countries, and English speakers 8.

4Brown et al., (2020)
5Mikalef et al. (2022)
6Chan (2022)
7Susser et al.,(2019)
8Bender et al.,(2022)
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Conclusion

This research has highlighted the critical aspects and the challenges that lie behind the creation of an

algorithm able to detect fake news present online.

As result, it emerged that it is indeed useful to use machine learning as a tool in the fight against fake

news proliferation. The computational power of algorithms allows for the analysis of vast amounts of

data in a relatively short amount of time. Without this capability, the task would require a significant

amount of time and energy if done manually by individuals. On the other hand, it is important to

stress out the fact that also algorithms have a margin of error that is not reducible to zero, suggesting

that there still should be a human component in the analysis of text data, and context of articles.

Moreover, the importance of topic modelling algorithms and their ability to detect the subject of text

data before reading the content o has been shown, and how text pre-processing is a crucial step in the

creation of the latter.

In the more technical part of the thesis, it emerged how accurate classical models can be, as it was the

case with Random Forest and Naive Bayes.

Those results could be improved using more sophisticated models like BERT, which on one hand

requires more effort in the training part; and more time to obtain the results, but producing more

accurate results.

Lastly, the research on the role of Chat-Gpt3 in the spread of fake news online has shown how its

astonishing abilities to create human-like text could be a potential harm for the community of online

users; but the improvement of the model privacy and safety measures has led to great reduction of this

risk.
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