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Abstract

This thesis follows Zumbach’s years of work in achieving a realistic option pricing framework.

Our contribution is implementing a method to price American options that were not included

in the original model. By replicating, verifying, and extending the base model, we have

developed a consistent and robust environment for price and analyze options.

The first chapter introduces the background of option pricing, exploring the history and

the significant innovations. Section 1.1 is dedicated to explaining the foundational Black

and Scholes (1973), Merton (1976) model, highlighting the problems, and showing how

the practitioners have tried to overcome them. We conclude this section by explaining the

framework and method of the Zumbach and Fernández (2013) model, the leading paper we

track in this thesis. In the second half of this chapter, Section 1.2, we examine the major

financial stylized facts included in the Zumbach realistic model.

The second chapter illustrates the methodology used, moving through the crucial steps

needed to obtain the option pricing. The methodology replicates the work of Zumbach,

extending it at the end of the chapter. The American option pricing extension is performed

with the Least Square Montecarlo by Longstaff and Schwartz (2001). Merging the two

models allows us to augment both methods and obtain a realistic pricing approach to price

American and European options.

The last chapter analyzes the thesis results, showing the difference between European

and American options. The comparison is made at different levels: price, smile, smirk, and

term structure. Considering different time frames with unique market conditions, we can

extrapolate the market expectations from the option characteristics.

Keywords: Option Pricing, American Options, ARCH, Monte Carlo, Volatility Forecast,

Implied Volatility, Heteroscedasticity, Leverage effect, Equivalent Martingale Measure, Risk

Premium.

I



Contents

Introduction 1

1 Background 3

1.1 Option pricing framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Black, Scholes and Merton Model . . . . . . . . . . . . . . . . . . . 3

1.1.2 BSM Model Limitations . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Beyond Black and Scholes . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.4 The Zumbach and Fernández (2013) Framework . . . . . . . . . . . 8

1.1.5 American options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.6 The Least Square Montecarlo . . . . . . . . . . . . . . . . . . . . . 11

1.2 Stylized facts and empirical findings . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Leverage effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Time reversal Invariance . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.4 Returns Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Methodology 19

2.1 Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Returns aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Volatility Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 GARCH(1,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Long Memory ARCH . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Parameters estimation . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Volatility Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Model Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 From Physical to Risk-Neutral probability measure . . . . . . . . . . . . . 26

2.4.1 Equivalent Martingale Measure (EMM) . . . . . . . . . . . . . . . . 27

2.5 Small δt expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Monte-Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Option Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 No Arbitrage Principle . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.2 Monte Carlo pricing scheme . . . . . . . . . . . . . . . . . . . . . . 34

2.8 American Option pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Applied Model 38

3.0.1 Model Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.0.2 Option Pricing results . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.0.3 Implied Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

II



Conclusions 49

A Figures 51

III



List of Figures

1 Volatility surface for SP500 (left) and EUR/USD (right). Source: Bloomberg 5

2 Daily logarithmic returns for the SP500 and Eur/Usd time series and their

autocorrelogram. Data source: Bloomberg . . . . . . . . . . . . . . . . . . . 13

3 Daily Squared logarithmic returns for the SP500 and Eur/Usd time series

and their autocorrelogram. Data source: Bloomberg . . . . . . . . . . . . . 14

4 SP500 and Eur/Usd residuals after applying ARCH(3) model. Correlograms

of the squared returns after applying ARCH(3). . . . . . . . . . . . . . . . 15

5 News impact curves for the SP500. Where h(t) is the volatility . . . . . . . 16

6 Skewness and relative excess Kurtosis at increasing time intervals for SP500. 17

7 Effective variance calculated with the leveraged multiscale ARCH, plotted

with the returns at different scale. . . . . . . . . . . . . . . . . . . . . . . . 39

8 The final prices Sn from the Monte Carlo compared with the two approxima-

tions Fn exp(R), and Fn

(
1 +R + R2

2
+
∑

i(µi − rrf )− y
2
− σ2

int

2

)
. . . . . . 41

9 Top figure: 1 year forecast estimation. Bottom figure: 6 months rolling

estimation, used to calculate µ. . . . . . . . . . . . . . . . . . . . . . . . . . 41

10 Market price of risk λ and risk premium ϕ . . . . . . . . . . . . . . . . . . 42

11 The different probability density functions for the final prices Sn in P and

Q measures. Plotted at increasing σ∞ = 0.1, 0.2, 0.4. Two different time

horizons: 30 days and 260 days. . . . . . . . . . . . . . . . . . . . . . . . . 43

12 American and European put option prices compared. Maturity 30 days . . 44

13 American and European put options price surfaces. Maturity 1 year . . . . 45

14 Standard error boxplots for increasing time to maturity: n=30,90,150,210,270

(days). N=40000 (simulations) . . . . . . . . . . . . . . . . . . . . . . . . 46

15 Implied volatility surface for January 2004 American put options . . . . . . 47

16 Implied volatility surface for October 2008 American put options . . . . . . 47

17 Volatility smile for January 2004 American put options. Calculated at

different time horizons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

18 Term structure for January 2004 American put options . . . . . . . . . . . 48

19 Term structure for October 2008 American put options . . . . . . . . . . . 48

20 Comparison between the two risk aversion functions e−x and 1
1+ex

. . . . . . 51

21 SP500 historical prices from ’02-Jan-1996’ to ’28-May-2010’. Data source:

Bloomberg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

22 Relative returns for SP500 at different time horizons τ . . . . . . . . . . . 52

23 Laguerre polynomial of order 1 through 5 . . . . . . . . . . . . . . . . . . . 52

24 Chebyshev polynomial of order 1 through 5 . . . . . . . . . . . . . . . . . . 53

25 Impact of the leverage effect λlev on the simulation, from high left (lower) to

bottom right (highest). The number of trajectories N = 2000 and the time

steps n = 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV



26 The distributions and the cross-plot between the final prices Sn elements: Sn,

R and σint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

27 The drift µ, the dividend yield q, and the risk-free rrf compared. β = 0.075

and σrp = 0.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

28 Price surfaces for European call options, European put options, and American

put options. Maturity 1 year . . . . . . . . . . . . . . . . . . . . . . . . . . 55

29 Close-up between the American and European price surfaces. Maturity 1 year 55

30 European and American option prices at increasing maturities. . . . . . . . 56

V



Introduction

In the financial derivatives framework, particularly within option pricing, a crucial challenge

is capturing the actual behavior of the financial assets. The traditional models often can

not replicate the recent markets’ evidence and anomalies, and a realistic underlying process

is an essential feature of any option pricing model that aims to capture such empirical

findings. This thesis follows the work of Zumbach (2002, 2006, 2009, 2012, 2013), spanning

over a decade, in which the author created a quantitative practical framework valuable in

different contexts. Our work aims to replicate, verify, and extend the model and method

established by Zumbach. The central theme of his approach is to incorporate the underlying

process with the significant financial Stylized facts. This way, we can realistically simulate

and reproduce the financial assets’ behaviors. In addition to that, American options present

a layer of complexity that demands models with a critical sense of realism. The original

work did not present a way to estimate such derivate prices, leaving this challenge open.

The thesis contribution will be, in fact, a base model extension that can consistently and

robustly estimate American options prices under the Zumbach framework.

The Zumbach option pricing framework we will expose in the thesis follows the route

started by Rubinstein (1976) and Brennan (1979), followed by Duan (1995), Heston and

Nandi (2000), Chorro et al. (2008) and augmented by Christoffersen et al. (2010). The

methodology to pursue option pricing is fractioned into many steps, most of which were

assembled by Zumbach and Fernández (2013), the leading paper followed in this paper.

We will start by calculating relative returns instead of logarithmic ones accordingly with

O’Neil and Zumbach (2009). Relative returns are better suited for our realistic purposes

and better capture the distributional properties of financial returns. At its core, the method

has an ARCH volatility estimation based on the milestone work of Engle (1982). The

autoregressive heteroscedastic variance, later augmented by Bollerslev (1986) with the

GARCH model, is the process we will adopt to perform the underlying paths simulation.

The GARCH methodology allows for flexible modification of the standard model, which can

be easily augmented to capture empirical observations. The precise extension adopted in

this thesis is the Long Memory ARCH by Zumbach et al. (2014), which allows for leverage

effect and a variance estimation considered over different time horizons, offering a more

accurate lens to view volatility dynamics in the market. For some specific uses, we need

an ARCH forecast that will be performed following the specifications of Zumbach (2002)

and Zumbach (2006). Afterward, we will explore the Monte Carlo simulation method

used to simulate the underlying price process, and the technical aspects will observe the

Jaeckel (2002) methodology. By abandoning the traditional Brownian motion in the Monte

Carlo simulation, we will employ a process underpinned by a heteroscedastic variance

with leverage effects and the parameters estimated to replicate the distributional features

of the underlying. The simulated paths have a pronounced dispersion that offers more

authentic option prices that resonate with market behaviors. Another pivotal model step is
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the probability measure change from the physical P to the risk-neutral Q. On the path

left by Duan (1995) and Christoffersen et al. (2010), in the O’Neil and Zumbach (2009)

paper, the authors presented a methodology to calculate this transition analytically using

the Radon-Nikodym derivative dQ
dP . This way, the model can simulate processes in the P

measure realistically and only after transferring them into the risk-neutral. We will conclude

by extending the present framework to American Options using the pricing method by

Longstaff and Schwartz (2001).

American options have early exercise features, meaning the holder can exercise the option

before maturity. The buyer must pay for this additional feature, which is why American

options require a different pricing approach. While exercising a call option before maturity

is rarely convenient, the put option differs, specifically if the underlying price is way down

with little space for further drawdowns. We will find a rule to assess the convenience of

exercising the option early, trying to solve an optimal stopping problem. A simulation-based

approach, such as the Zumbach one, is the classic environment in which American options

are usually priced, thus making the Zumbach model’s extension achievable. The American

pricing approach might be time-consuming and computationally challenging, so we will

apply the LSM method by Longstaff and Schwartz (2001) to overcome those problems. This

method relies on an approximation of the expected future value integral, and this way, we

will neither need to simulate the underlying recursively nor solve an integral at each time

step. With some modifications, the possible implementation of these two models would

create an efficient and time-saving method to consistently and realistically price American

options.

This approach allows us to price the American and European options’ specifications and

compare the resulting prices. We will retrieve crucial information from the prices, implied

volatility level, smile, smirk, and term structure. We will analyze the dynamics between

European and American options and how the prices respond to changes in the underlying

model structure. All these options’ characteristics will allow us to understand the details

and the drivers of the option’s value and market expectations. To conclude, by comparing

different market conditions, we will be able to study how the options features respond to

the changes in the market, and how the market expectations influence the option prices.

2



1 BACKGROUND

1 Background

1.1 Option pricing framework

Option pricing is the process of determining the fair value of an option. This valuation

is crucial for efficient capital allocation, risk management, trading, and more. Options

grant holders the right, but not the obligation, to buy or sell an underlying asset at

a predetermined price within a specified timeframe. The pricing challenge lies in the

multifaceted nature of options; various factors influence their value, creating a non-linear

relationship between the underlying and option prices. For this reason, several studies

with many different approaches tried to solve the pricing puzzle. The following section will

introduce the option pricing framework where our proposed model lies. The scope of this

section is to understand the fundamental principle of the classic option pricing approach,

underlying the problems, and explain how we tried to solve them.

1.1.1 Black, Scholes and Merton Model

The fundamental option pricing model is the Black and Scholes (1973) and Merton (1973)

work (BSM). The model’s success can be attributed to its ability to capture the essential

factors influencing an option price, and one of the model’s greatest strengths is its accessi-

bility. The BSM formula is simple to understand and apply, especially for European-style

options. As we can imagine, the model’s simplicity comes with several downsides. Despite

this, the model is still prevalent and very useful; for example, it makes it possible to map

the volatility surface from the option prices.

The Merton (1973) approach to deriving the BSM equation is about creating a riskless

portfolio Π, which is constructed by underlying and derivative positions. The portfolio Π is

riskless because the underlying and the option are affected by the same source of risk, and

we can choose particular positions to hedge such risk. If no arbitrage opportunities exist, Π

should earn the risk-free return r. The assumptions1 behind the model are:

• The underlying follows a Brownian Motion, and the variance rate of return σ and the

drift µ are constants.

• The risk-free rate r is known and constant for all maturities. All securities share this

short-term interest rate.

• Short selling is permitted.

• All security trading is continuous, with no riskless arbitrage opportunities.

• No dividends are paid during the life of the derivative.

1Washburn and Dik (2021)
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1.1 Option pricing framework 1 BACKGROUND

• All securities are perfectly divisible, and there are no transaction costs.2

The fundamental theory behind the development of the BSM equation is Ito’s Lemma, a

fundamental result in stochastic calculus. It provides a way to calculate the differential

(rate of change) of a function of a stochastic process. The stock price process is an Ito

process dS = µSdt+σSdz where µ is the expected rate of return (drift) and the term σSdz

represents the stochastic part (diffusion). Now, by applying Ito’s Lemma on the Stock

process, we can define our option (f) behavior:

df =
(∂f
∂S

µS +
∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)
dt +

∂f

∂S
σSdz (1)

From equation 1, we see that the stochastic component underlying f and S is the same

(dz). Thus, we can select a portfolio that eliminates that source of risk in order to price

the option in the risk-neutral space consistently. The portfolio composition is short on the

option and long ∆ units of the underlying such that Π = −f + ∂f
∂S
S. The derivative of

the option with respect to the underlying, which we called ∆, is a crucial quantity that

allows us to hedge the portfolio from the Ito process risk. The change in the value of the

portfolio is ∆Π = −∆f + ∂f
∂S
∆S; substituting3 S with its equation and equation 1 into

∆Π we obtain

∆Π =
(
−∂f

∂t
− 1

2
σ2S2 ∂

2f

∂S2

)
∆t (2)

Since equation 2 has no dz inside, the portfolio must return the risk-free rate r so that

we can write ∆Π = ∆tΠr. Finally, it is possible to derive the Black and Scholes partial

differential equation (PDE) by arranging all the precedent equations together.

rf =
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
, = θ + rS∆+

1

2
σ2S2Γ (3)

where ∆, Γ and θ are the so called ”option Greeks”. The most outstanding aspect of BSM

PDE is how it describes the dynamic behavior of the option’s price over time. The equation

simply and elegantly encapsulates the principal factors determining the derivative price. In

particular, θ or ∂f
∂
t denotes the time decay; options lose value as time passes, mainly if they

are out of the money (OTM). Secondly, ∆ measures the sensitivity of the option’s price to

changes in the underlying asset’s price. Moreover, the BSM creates a clear relationship

between the option price and the volatility. Higher volatility leads to more significant price

fluctuations and, in turn, positively affects the option’s value.

As the model assumption suggest, the pricing in the BSM model is under the risk-neutral

probability space4. Under the risk-neutral measure Q, the distribution of future stock

prices is log-normal. From that, we can explicitly retrieve the probability distribution

2J. C. Hull (2012)
3and moving from continuous into discrete time
4In the next chapter, we will go deeper into this concept, especially considering the change of measure

from the physical P into the risk-neutral Q.
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1 BACKGROUND 1.1 Option pricing framework

of the underlying under the risk-free measure. This fundamental concept, Risk Neutral

Density(RND) ft,T , is one of the pivotal theories in the option pricing realm. The density

for ST conditional to St, which we defined as Risk-neutral Density ft,T , can be retrieved

directly from the solution of the PDE5

p[ST , T |St, t] =
1√

2πτσST

exp

[
− 1

2

(
log(St)− ζ

σ
√
τ

)2]
= ft,T (4)

which is calculated in the transition period τ from t to T , and ζ = log(St) + (µ− 1
2
σ2)τ .

1.1.2 BSM Model Limitations

As with any pioneering framework, the Black, Scholes, and Merton model’s initial assump-

tions and simplifications, intended to make the model tractable, did not capture all the

complexities of real-world financial markets. These limitations have the merit of paving the

way for subsequent advancements in the field. Researchers recognized the challenges the

Black-Scholes model’s assumptions posed and developed more refined and sophisticated

models. Their goal was to replicate actual market behaviors better, handle the recognized

shortcomings, and provide a more exhaustive framework for option pricing.

In the Black-Scholes model, volatility σ is assumed to be constant over the option’s life.

However, in actual financial markets, the volatility of assets can change over time. Using

the implied volatility surface derived from the market option prices, we can quickly notice

the problems of the BSM pricing scheme. Since volatility is the only free parameter in the

BSM equation, we can use market option prices to derive different levels of volatility and

construct the surface. As we anticipated, this characteristic of the BSM model is one of the

reasons why the model is still prominent.

Figure 1: Volatility surface for SP500 (left) and EUR/USD (right). Source: Bloomberg

If the BSM is correct, the implied volatilities should not depend on the strike, observation

5Eric Jondeau (2010)
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1.1 Option pricing framework 1 BACKGROUND

time, or maturity. In other words, they should appear completely flat surfaces. The Implied

volatility surfaces have different components that characterize them. At the heart of the

implied volatility surface is the term structure, which is the relation between the implied

volatility and the maturity of the derivative. Secondly, the implied volatility of an option

as a function of its strike price is known as a volatility smile. Finally, the volatility smirk

refers to a pattern observed in option implied volatilities as it moves across different strike

prices. More accurately, this is the pattern that emerges when far OTM (ITM) call (PUT)

options show higher implied volatility compared to the ITM (OTM). According to the BSM

assumption, these key factors should not affect the volatility or the option price. However,

as shown in Figure 1, the market implied volatilities show changes in the overall levels,

smiles, smirks, and term structure. Therefore, the actual RND inferred from market prices

of options might differ from the simple log-normal distribution suggested by BSM.

The Black-Scholes model underlying asset prices are log-normally distributed; more

accurately, prices follow a geometric Brownian motion. While the log-normal distribution

captures that stock prices cannot go below zero, it does not capture the full range of

potential price behaviors observed in real-world financial markets. For example, the actual

distribution of returns often has negative skewness or ”fat tails,” meaning extreme price

changes occur more frequently than predicted by the log-normal distribution. In general,

the strict distributional assumption does not allow for incorporating realistic behaviors of

the financial time series. The two limitations previously explained are crucial, but there

are still some other minor deficiencies worth mentioning. For example, the Black and

Scholes model’s basic form only prices European options and does not directly apply to

American options. Furthermore, the model assumes that markets are perfectly liquid,

allowing continuous trading without impacting the stock’s price, but in reality, liquidity

constraints can arise. To conclude, the BSM model assumes that stock price movements

are continuous, without jumps. In reality, stock prices can and do make sudden jumps.

1.1.3 Beyond Black and Scholes

As market practitioners increasingly implemented and tested the Black-Scholes model, the

limitations emerged more prominently, revealing disparities between theory and empirical

market realities. In this section, we will explore beyond the foundational framework of

Black and Scholes, exploring the approaches that evolved after. These subsequent models,

informed by both the strengths and shortcomings of their predecessors, research into

alternative assumptions, dynamic adaptations, and new computational techniques, all in

search of a more accurate option pricing model.

After Black, Scholes, and Merton’s model, two dominant approaches emerged: structural

and non-structural methods. What differentiates the two categories is the approach to

recover the Risk-neutral density (RND) from observed options. We explained that in the

BSM model, the underlying process follows a lognormal diffusion process with constant

6



1 BACKGROUND 1.1 Option pricing framework

volatility. Despite such assumptions, in the previous section, we showed that, in reality, these

simplifications do not hold. The literature has focused on deriving the Risk-neutral density

(RND) with the intention of overcoming the BSM assumptions. The crucial difference

between Structural and Non-structural approaches is, for instance, in the methods used to

obtain the RND6. On the one hand, the structural models propose a specific structure for

the stock price and, usually, for the volatility. Generally, those models are controlled by a set

of parameters θ ∈ Θ that directly influence the estimation of the Risk-Neutral density, such

as ft,T = f θ
t,T . On the other hand, non-structural models do not fully describe the prices

and volatility dynamics. The risk-neutral density (RND) estimation is performed separately

between each t and T without a specific process for the underlying. Non-structural processes

can be further divided into parametric, semiparametric, and non-parametric models. The

first model (parametric) fully describes the RND, while the other two (semi-non-parametric)

propose an approximation.

One of the most popular classes of Structural models is the Stochastic Volatility (SV)

approach. Recognizing that the assumption of constant volatility in the BSM framework was

too rigid to capture market complexities, researchers proposed models where the volatility

follows a stochastic process. The model proposed by Heston (1993) has become one of the

cornerstones in the family of the SV approach, where the following equations describe the

stock St and the variance σ2
t process:

dSt = µStdt + St

√
σ2
t dW1,t (5a)

dσ2
t = k(σ2

∞ − σ2
t )dt + ϵ

√
σ2
t dW2,t (5b)

The parameters of the processes are θ = (σ2
∞, k, ϵ) and σ2

∞ is the long-term variance or the

long-run average. The two stochastic components are the Brownian Motions W1 and W2

correlated with a correlation coefficient ρ. The variance σ2
t follows a mean reverting square

root process (Cox-Ingersoll-Ross process), and the stock St dynamics is a geometric Brownian

motion. The Heston model’s capability to produce a closed-form solution for European

option prices makes it particularly attractive. Moreover, the Heston model can efficiently

capture two fundamental stylized facts: the heteroscedastic and the mean-reverting behavior

of the volatility. The first is moved by a stochastic factor in its parametrization (vol-of-vol

ϵ), and the second is controlled by k(σ2
∞−σ2

t )dt. There are several other stochastic volatility

models worth mentioning like J. Hull and White (1987), Stein and Stein (1991) and Carr

and Sun (2007); each of these models gave a substantial contribution to the SV option

pricing approach. In the Structural family, other methods were developed to obtain a

consistent pricing model. One of them is the models with jumps; a prominent example

is the Merton (1973) Jump Diffusion model. In this framework, the asset price follows a

standard geometric Brownian motion with Gaussian jumps.

6Eric Jondeau (2010)
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1.1 Option pricing framework 1 BACKGROUND

1.1.4 The Zumbach and Fernández (2013) Framework

The model adopted in this paper follows the work of Zumbach and Fernández (2013),

the idea is to address the limitations of the classic BSM option pricing method. The

approach is on the opposite side of the stochastic volatility models and tracks the path

of pricing contingent claims in discrete time. This framework started with the work of

Rubinstein (1976) and Brennan (1979), focused on the valuation of uncertain income streams.

Rubinstein, in particular, generalized the Black and Scholes conditions for discrete models.

The fundamental step was the pricing under the hypothesis of risk-neutral investors, thanks

to the development of Risk Neutral Valuation Relationships (RNVRs). Using the RNVRs,

it was possible to define the change from the physical P to the risk-neutral Q probability

measure. Unfortunately, using a lognormal process for the underlying prices was ineffective,

and the focus was moved to the research of a more realistic process. The ARCH model family

was ideally suited for the scope, and more specifically, the GARCH7 process has been widely

used to determine the volatility dynamic. In this direction, Duan (1995) developed an option

pricing model in the context of the generalized autoregressive conditional heteroskedastic

(GARCH) for modeling the asset returns. The Duan paper follows Rubinstein and Brennan

concerning the risk neutralization moving to a generalized version (adaptable to the GARCH

process) termed ”locally risk-neutral valuation relationship” (LRNVR). The issue lay in

the distribution of innovations since a consistent change of measure was not possible for

distributions that decay at a power law (such distributions usually better describe financial

returns). The last crucial step forward comes from the Christoffersen et al. (2010) work

introducing the change of measure dQ
dP , called Radon-Nikodym derivative, to move between

the two measures. In this framework, Cristoffersen leaves the freedom to choose the

underlying process with normal and nonnormal innovations.

Zumbach and Fernandez’s option pricing model is a natural extension of the just-exposed

existing pricing framework. The methods began with some premises:

• The model should describe the underlying behavior realistically, which is possible by

including significant stylized facts.

• The model parameters must be estimated from historical information8 so that the

process can replicate the dynamics of different underlyings.

• The risk preferences must be considered, and the change of probability measure must

be defined. The change of measure has to be consistent with different distributions.

In order to better capture the empirical findings in the financial markets, a finite time

increment δt process has been set up. Following the path of their predecessors, Zumbach

7Bollerslev (1986)
8This is equivalent to saying that the filtration F must be updated to time t where the process simulations

start.
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and Fernandez rely on the ARCH family, augmenting the standard models to capture

realistic dynamics. ARCH processes, specifically GARCH, have the flexibility to account

for different specifications9, we will use the Zumbach et al. (2014) multicomponent GARCH

that will be better explained in the next chapter. This way, the underlying process can

be defined to accommodate empirical observations such as fat-tails, negative skewness,

heteroscedasticity, leverage effect, and more. On the root left by Cristoffersen, the change

of probability measure is executed using the Radon-Nikodym derivative dQ
dP , and the method

was augmented to account for different return distributions. In this context, the striking

innovation was discovering an analytical method to compute the derivative without solving

the expectations (integrals) along each underlying path. Due to this, the option price can

be expressed as an expectation in the P measure, and the derivative allows an analytical

transition to the Q measure. The risk aversion function must be specified since it does not

arise naturally like in the BSM pricing scheme, and its dependence on the option price

passes, precisely, through dQ
dP .

In conclusion, we can efficiently summarize the option pricing technique as in the

original paper of Zumbach and Fernández (2013). Estimate the underlying parameters by

selecting the favorite GARCH process. Then, setting up the filtration to the pricing date t0

and simulating the underlying paths till option maturity. Compute the Radon-Nikodym

derivative along each trajectory simulated with the Monte-Carlo and use it to weigh the

option’s payoffs at maturity. Lastly, perform the expectation for the discounted payoffs in

the P measure.

1.1.5 American options

When we move into the American option pricing framework, we add complexity to the

pricing challenge. Compared to their European counterparts, American options give holders

the right but not the obligation to exercise the option at any time up to its expiration

date. Bermuda, a variant of American options, allows early exercise only at predetermined

dates before maturity. Thanks to this feature, pricing such derivatives may be complicated,

usually with no closed-form solutions. Thus, numerical and simulation procedures are

better suited for this scope. A first characteristic of the American and Bermuda options is

that their price is always greater or equal compared with European.

The American option pricing focused on the pricing of put options because it is never

optimal to early exercise a call on non-dividend paying stocks. We will use the J. C. Hull

(2012) notation to explain this concept better. Let us consider two portfolios A and B, and

two possible assets: an American call C with K strike and the underlying stock S. The

9The next section will dive deep into the stylized fact captured by the model.

9
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portfolios composition is:

A = C, and K cash

B = S

The cash in the portfolio A earns the risk-free rate until it is used to exercise the call. The

value of the portfolio B follows just the stock S, and by contrast, the portfolio A depends

on the interests accumulated by the cash component. If we exercise early, the value of the

portfolio A would be:

At = (S −K) +K(1 + r)T−t < S = B, with t < ∆T

and at the maturity T

A∆T = max(S −K, 0) +K(1 + r)T−T = max(S,K) ≥ S = B,

so early exercise for an Americal call is never worth it. Beyond the mathematical proof, the

reason behind it can be intuitive: one of the components of an option value is the time, and

as we saw in the BSM formula, the value of an option is positively correlated with the time

until expiration. Thanks to asymmetric option payoffs, the holder can benefit from stock

price movements without committing capital by holding onto the option and not exercising

it. However, it could be beneficial to early exercise an American put option. The reason is

that the put options payoff is capped, and when the limit is almost reached, there may be

the convenience to exercise and earn the cash risk-free rate. In reality, there are occasions

where a call early exercise is desirable and depends on some holder or asset-specific factors.

We will follow the arguments exposed by Natenberg (2014). In particular, the exception in

which we may be willing to exercise a call option early is before a dividend payout of the

underlying. We can break down the call option value into an intrinsic value, volatility value

(the higher the volatility, the higher the price), and interest rate value since as the interest

rate increases, the call would become preferable to holding the stock. On the opposite side,

we have the dividend value, which has a negative relationship with the option value, and

we can rewrite everything as: Call Value= intrinsic value + volatility value + interest value

- dividend value. An early exercise could be convenient when the dividend value becomes

preponderant, such as Dividend value > volatility value + interest value. The optimal

moment to exercise is right before the dividend payment to maximize the call value, and

there are no other situations where call early exercise might be convenient. For this reason,

the development of an American call option pricing framework is not attractive since it

entirely depends on dividend politics, which are firm-specific.

The contingent nature of American options makes it a natural choice to use the simulation

paths approach to obtain the prices. The first widespread model was the Cox et al. (1979)

10
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referred to as the ”binomial option pricing model.” It provides an intuitive, step-by-step

method to determine option pricing and offers insights into the option’s potential price

paths. The binomial model assumes that an option’s underlying stock price can move

to only two possible prices over a short period: an ”up” price and a ”down” price. This

simplifying assumption allows for the modeling of option pricing as a binomial tree of stock

price movements, and the more the underlying process is repeated, the closer the value is to

the real price. Although computationally more intensive than formulas like Black-Scholes,

the model’s flexibility and clarity make it a powerful tool. Another breakthrough is the

Barone-Adesi and Whaley (1987), which tried to overcome the computational time problem

of its predecessors. The idea was to combine the Black-Scholes European option pricing

formula with a quadratic approximation for the early exercise premium (difference between

American and European option prices), rendering the model more mathematically complex

than the Binomial one. The Barone-Adesi and Whaley approximation is handy for pricing

put options on stocks with constant or continuous dividend yields and provides a good

trade-off between accuracy and computational efficiency.

1.1.6 The Least Square Montecarlo

The Least Square Montecarlo(LSM) by Longstaff and Schwartz (2001) implies a simulation-

based approach and offers a way to estimate option values using simple regression techniques.

The authors wanted to suggest an alternative approach to the previous models’ binomial

and finite difference techniques. Additionally, the LSM method shows the power of the

simulation approach, which can be very flexible and accommodate many different types of

financial derivatives.

The core of American option pricing is the optimal stopping problem, which means

that the convenience of the early exercise must be determined at each time step. The

option price is still the simple average of the discounted payoff, and the difficulty is to

asses a rule for determining the value of the continuation and comparing it with the early

exercise one. The algorithm works recursively, which means starting from the penultima

time step, it compares the discounted conditional expected value of the continuation with

the discounted value of the early exercise. The crucial passage and the model innovation

were determining an efficient and robust rule to compute the expected value. Many models

use a ”brutal force” approach, which requires at each time step to recursively simulate

again the underlying till maturity to asses the expectation. In contrast, the LSM proposed

to compute such expectation with a linear regression between the ex-post payoffs from

continuation with functions of the past simulated prices, computing a function that can

approximate the continuation value. The continuation value for a random path ω is formally

11
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reported in the original paper as:

F (ω; tk) = EQ

[
K∑

j=k+1

exp

(
−
∫ tj

tk

r(ω, s)ds

)
C(ω, tj; tk, T )|Ftk

]
(6)

which is the conditional expectation in the risk-neutral measure of the future payoffs between

the time tk and tj discounted at the risk-free rate. The procedure requires simulation of an

underlying in the risk-free measure, such as a Geometric Brownian Motion with µ = r, and

recursively calculates the expectation at every k time step. To perform the expectation,

the model implies doing a linear regression between the future payoffs and functions of the

state variables.

P (1, 1) P (1, 2) · · · P (1, N)

P (2, 1) P (2, 2) · · · P (2, N)
...

...
. . .

...

P (n− k, 1) P (n− k, 2) · · · P (n− k,N)


x

K − P (n− k + 1, 1) K − P (n− k + 1, 2) · · · K − P (n− k + 1, N)
...

...
. . .

...

K − P (n, 1) K − P (n, 2) · · · K − P (n,N)

Y

The linear regression is computed between Y and X:

X = [1, f1(x), f2(x) ... fk(x)] (7)

where fk is the basis function polynomial chosen. The basis functions can be selected from

various ranges, and in the original paper, the suggestions are between Laguerre, Hermite,

Chebyshev, Legendre, and Jacobi polynomials.10LSM provides a flexible framework that

accommodates underlying dynamics, handles path-dependent options, and adapts to various

payout structures. However, the models have some downsides worth mentioning. The LSM

method relies on path simulations, and when the underlying process is misspecified or

unrealistic, the model might provide mispriced option valuations. When simulating price

paths using the LSM approach, one has to ensure that the dynamics are specified under

the risk-neutral measure. Despite this, real-world data, like historical stock prices, exist

under the physical P measure. Specifying the risk-neutral distribution can be challenging

for models with complex dynamics, like stochastic volatility or jump diffusion.

10Several other choices are possible.
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1.2 Stylized facts and empirical findings

In the complex world of finance, empirical observations often reveal patterns and behaviors

that deviate from classical financial theories. Termed ”stylized facts,” these empirical

findings provide crucial insights into the actual dynamics of financial markets, often

challenging and redefining the basic theoretical models. Furthermore, the accurate prediction

and pricing of options demand more than just theory; it necessitates a deep understanding

of market dynamics captured by stylized facts. The model approach that we will follow

encapsulates these empirical pieces of evidence, trying to achieve an underlying process

that can realistically replicate the behavior of the real one. We will now proceed to examine

the empirical findings that the model addresses.

1.2.1 Heteroscedasticity

In financial markets, the assumptions of constant volatility and uncorrelated returns often

prove to be oversimplified generalizations.The volatility clustering is a phenomenon that

has been documented since at least the 1960s when it started to be considered a crucial

aspect when financial returns are modeled. The basic idea is that large price changes tend

to be followed by further large changes, regardless of the direction (up or down). Similarly,

periods of small changes often precede more of the same.

There is no evident trend or pattern considering the financial returns series, and this

characteristic can be supported by looking at the auto-correlograms associated with them.

Figure 2: Daily logarithmic returns for the SP500 and Eur/Usd time series and their
autocorrelogram. Data source: Bloomberg

Figure 2 shows that the correlation between returns instantly decays after the first lag.

However, the situation changes when we move to squared returns (or returns in absolute
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value |r|). The clustering of the volatility can be easily seen in Figure 3, and there is a

clear alternation between high and low volatility periods.

Figure 3: Daily Squared logarithmic returns for the SP500 and Eur/Usd time series and
their autocorrelogram. Data source: Bloomberg

Moreover, the autocorrelations do not decay, showing persistency in the series. The idea

is to capture this phenomenon by assuming the heteroscedastic behavior of the volatility.

The models that assume constant volatility, like a simple ARMA model, cannot capture

this phenomenon. The first model that formally encapsulates the volatility clustering is the

milestone work from Engle (1982).

rt =
√
σ2
i zi, zi ∼ D(0, 1) (8a)

σ2
i = α1r

2
i−1 + α0, ri|Ωi−1 ∼ D(0, σ2

i ) (8b)

These equations are the fundamental building blocks for most variance deterministic

heteroscedastic models. For this reason, the model we will use in this paper is an augmented

form. Applying the ARCH model to the series, we can remove an essential part of the

persistence in the squared return. As expected, the correlograms of the squared returns

clearly show that the autocorrelations decay faster and stay at low levels (Figure 4).

In conclusion, it is critical to understand and integrate heteroscedasticity and volatility

clustering into our financial models to achieve more realistic and reliable option valuations.
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Figure 4: SP500 and Eur/Usd residuals after applying ARCH(3) model. Correlograms of
the squared returns after applying ARCH(3).

1.2.2 Leverage effect

One of the most influential phenomena to consider is the leverage effect, which is the

negative correlation between an asset’s returns and its volatility. The name ”Leverage”

comes from one of its principal explanations: when a stock has a negative return, the

level of equity decreases, and the debt remains constant, increasing the leverage ratio and

the firm’s riskiness. Consequently, the volatility increases more after a negative return

than a positive one. This empirical observation has profound implications, particularly in

option pricing, where volatility is a crucial determinant of option values. The family of

ARCH models can easily accommodate this feature, again confirming the tool’s strength.

Specifications like GJR-GARCH, TARCH, or EGARCH are augmented versions of a classic

GARCH(1,1) model that can capture the leverage effect using different methods. The

news impact curve introduced by Engle and Ng (1993) is a convenient way to visualize

this phenomenon. The paper aims to derive a tool to understand how new information is

incorporated into volatility estimates. The news impact curve relates the past shocks(news)

with the current level of volatility, showing the effect of negative shocks compared with

the positive ones. As shown in Figure 5, the GARCH(1,1) model is symmetric and does

not capture the leverage effect. Although the EGARCH model can grasp this effect, its

news impact curve is entirely asymmetric, showing the significant impact of the negative

shocks. Acknowledging and integrating the leverage effect into option pricing models is

indispensable for achieving pricing accuracy. The model we will present accommodates this

stylized fact through an ARCH model. The procedure allows us to incorporate a crucial

characteristic of the financial markets to obtain a more realistic process.
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Figure 5: News impact curves for the SP500. Where h(t) is the volatility

1.2.3 Time reversal Invariance

The time reversibility assumption asserts that financial processes are statistically identical,

whether observed forward or backward. A formal definition is that the transformation from

t to −t results in a symmetric system. This is why, looking at a financial return series,

we cannot understand if it is going forward in time or vice versa. This phenomenon is

usually associated with the physics laws that have this property, and even in finance, many

processes are constructed considering time reversibility.

The time reversal invariance (TRI) was deeply analyzed by Zumbach (2009). The paper

focuses on constructing several statistics that help understand if financial series have this

property. A first achievement was noticing that the distribution of the volatilities is not

symmetric, where a time-invariant process should have this feature. The paper concludes

that financial time series are not time-invariant, and one of the key statistics used to assess

it is the correlation of the volatility at different time horizons. Intuitively, this fact is

not surprising since we know for a fact that investors have a memory of financial time

series, and rarely can we consider them as true Random walk processes. For this reason,

a realistic underlying process needs to account for this asymmetry. To accommodate the

time reversal invariance(TRI) stylized fact, Zumbach proposed a multi-scale ARCH process

that considers volatility at different time horizons. This process can capture the asymmetry

in contrast with classic models like a simple GARCH(1,1).

1.2.4 Returns Distribution

One of the distinctive features observed in financial returns data is excess kurtosis. This

statistical phenomenon, characterized by fat tails in the return distribution, means that

positive and negative extreme events occur more frequently than expected by a normal

distribution. Furthermore, accurate option pricing depends on a realistic assessment of the
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distribution of underlying asset returns. When returns exhibit excess kurtosis, the standard

assumption of a normal distribution falls. Option pricing models that account for fat-tailed

distributions, such as the Student’s t, can better capture the proper risk profile of financial

derivatives.

We can deeply analyze this phenomenon following Zumbach (2013). The Gaussian

distribution is usually used to model returns because of the central limit theorem. Since

returns are uncorrelated, the daily returns, which are the sum of several elemental high-

frequency returns, should tend to a Normal distribution. Despite this assumption, as we can

see from Figure 6, the tendency to the Gaussian distribution is much slower than one day.

This phenomenon happens because even if the returns are uncorrelated, the variances are

not; therefore, the returns are not independent, and the consequence is an excess kurtosis

slow decay.

Figure 6: Skewness and relative excess Kurtosis at increasing time intervals for SP500.

One other distributional empirical find about returns is the negative Skewness. In general,

Skewness measures the degree of asymmetry in a distribution; when it is negative, it means

that the distribution of returns is skewed toward the left and is asymmetric. The Negative

Skewness depends on the fact that huge drops in the stock market are more frequent

than large-up movements. This explanation also means that financial returns that are

symmetric in the drops, like exchange rates, do not show this stylized fact or, at least, is

less pronounced.

To conclude the ”Stylized facts” section, we want to state that the already explained

phenomena are not the only ones captured by our process, but those are the more signif-
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icant historically and in terms of correct simulation of the underlying. Recognizing and

incorporating the stylized facts of financial markets into simulation models ensures a more

realistic picture of underlying asset dynamics.

18



2 METHODOLOGY

2 Methodology

The following chapter will explore the methodology employed in the thesis. The method

we will present follows the Zumbach approach developed in different papers over more than

a decade. We will pass through every model and technical implementation to achieve the

option pricing. The approach aims to encapsulate the stylized facts, and we must carefully

select the model characteristics. For example, the returns are relative and calculated

over increasing time horizons to incorporate the empirical distributions. Moreover, the

GARCH parameters are obtained through a calibration method to match the underlying

features better. The chapter concludes with the model extension allowing us to price

American Options. The last section diverges from the Zumbach methodology, exploring

the implementation of the LSM method to expand the approach to the American options.

2.1 Returns

There are usually two ways to define financial returns.

logarithmic return : rlog(t) = log(p(t))− log(p(t− δt)) (9a)

relative return : rrel(t) =
p(t)

p(t− δt)
− 1 (9b)

Considering the findings of O’Neil and Zumbach (2009), we used relative returns instead

of the most common logarithmic ones. The reason for this choice is to accommodate two

crucial financial stylized facts: fat-tail distribution and negative skewness of the returns.

The core of our pricing model is the Monte-Carlo simulation; when using a logarithmic

random walk, several difficulties arise if we want to account for fat tails and negative

skewness. It is possible to better explain the problem using the four arguments by O’Neil

and Zumbach.

• Firstly, in the context of a logarithmic random walk, the expected price one period

ahead requires solving the integral E[exp(σϵ)] where the random process ϵ is associated

with a distribution p(ϵ). For a valid computation of the expected price, the integral of

E[exp(σϵ)] must converge to a finite value. This convergence requires the distribution

p(ϵ) to decay faster than an exponential function. The expected price can reach

infinity, and if it does not, leading to an invalid result. Higher probabilities for extreme

values characterize fat-tailed distributions, and while they often more realistically

represent financial data, they pose problems in a logarithmic random walk. The

integral diverges for any fat-tailed distribution, as they do not decay faster than an

exponential function, rendering the computation for the expected price unworkable.

• Secondly, the problem of estimating volatility becomes more complex due to the

exponential mapping, increasing the sensitivity to significant events. The exponential

19



2.1 Returns 2 METHODOLOGY

function is highly sensitive to its input in a Monte-Carlo context. Even a slight increase

in the input leads to a much more significant increase in the output. Applying the

exponential function to a large draw will make it even larger, amplifying its effect.

Because the exponential function boosts large values, it can have a pronounced effect

on volatility measures.

• Thirdly, one significant empirical observation is the persistent negative skew in the log

returns of stocks and stock indexes. This feature contrasts what would be expected

under some traditional models. As a confirmation, logarithmic random walk with

symmetric innovations describes many time series in financial markets. This means

that, under such an assumption, the distribution of log returns should have zero

skews. When log returns are modeled this way, relative returns follow a log-normal

distribution, exhibiting positive skew. However, market data does not show this

positive skew, presenting a significant contradiction.

• Our final argument follows from the work of Christoffersen et al. (2010), which

”combining non-normal distributions and heteroskedasticity attempts to correct

the biases associated with the conditionally normal GARCH model.”. In order

to construct the equivalent martingale measure, the characteristic function for the

innovation distribution should exist. This means that E[exp(σϵ)] should exist, which

is possible, as mentioned before, almost only for normally distributed innovations

and so, excluding fat-tailed distributions. However, we can use relative returns to

derive the equivalent martingale measure for fat-tailed distributions. For this reason,

a geometric process can accommodate the realistic features we want to include in our

model.

2.1.1 Returns aggregation

Another realistic aspect we want to include in our model is the non-zero lagged correlation

of returns. In order to include this feature, we need to estimate returns at different time

horizons accordingly with Zumbach et al. (2014).

r[∆T ](t) =

√
1 year

∆T

p(t)− p(t−∆T )

p(t−∆T )
(10)

Where ∆T = nδt and the returns are immediately annualized by the prefactor, which will

help us calculate the volatility without scale problems. By doing this, we are creating a

geometric returns process that can be expressed equivalently, starting from the returns at

the δt scale:

r(t+ δt) =
n∏

i=1

[1 + rrel(t+ iδt)] (11)
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We can transform a return at a δt scale to a ∆T scale by simply aggregating them. A more

complex task is to do the same with the volatilities.

2.2 Volatility Estimation

In section 1.1.2, we highlighted the failure of the BSM model in capturing the characteristics

of the implied volatility surface, like smiles, smirks, and term structure. These features

depend on the underlying behavior, so we must find an accurate process to capture the

underlying elements. In particular, we want to incorporate modern stylized facts, including

fat-tailed distributions, heteroskedasticity, leverage effect, and aggregation at different time

scales. Moreover, the process should allow us to change the measure from physical to

risk-neutral. The selected price and returns processes are

p(t+ δt) = p(t)(1 +

√
δt

1 year
rrel[δt](t+ δt)) , (12a)

rrel[δt](t+ δt) = µeff + σeff (t)ϵ(t+ δt)) , (12b)

where σeff is the effective volatility that is the crucial component of our model. µeff

represents the drift of the process or the mean return expected in the next period δt. We

will investigate µeff in the following sections. ϵ is an iid random variable; accordingly

to its distribution we will draw the process innovations. It has a distribution p(ϵ) with

the following features: E[ϵ] = 0 and E[ϵ2] = 1. p(t) is the price at time t obtained from

the geometric series of the annualized relative returns. Relative returns are at different

timescales because of the return aggregation, so we have to annualize them according to it.

Since δt = 1 day in our case, 1 year = 260 working days. Equations 12a and 12b define the

basic structure of the model. Starting from them, we should define the parametrization of

the effective variance.

2.2.1 GARCH(1,1)

Generalized Autoregressive Conditional Heteroskedasticity, commonly known as GARCH,

has long been a fundamental model in time series analysis, particularly in financial econo-

metrics. The GARCH(1,1) from Bollerslev (1986) and Engle is the model that historically

has been the most successful in describing variance behavior. We would start from it to

obtain a model that captures the stylized fact mentioned above. The classic GARCH(1,1)

is usually written as follows.

σ2
eff (t+ δt) = α0 + α1r

2(t) + βσ2
eff (t) , (13)
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Following Zumbach (2002), we can rewrite Equation 13 incorporating an exponential moving

average.

σ2
1(t) = µσ2

1(t− δt) + (1− µ)r2(t) , (14a)

σ2
eff (t+ δt) = σ2 + (1− w∞)(σ2

1(t)− σ2) = (1− w∞)σ2
1(t) + w∞σ2, (14b)

Where the three parameters of interest are σ,w∞ and µ. We can easily prove that Equations

14a and 14b are just a specification of Equation 13 in which α0 = σ2(1 − µ)w∞, α1 =

(1− µ)(1− w∞) and β = µ. Intriguingly, in this format, the GARCH(1,1) process exhibits

an internal variable, the historical volatility σ1, written as an exponential moving average

(EMA). Nothing has changed between Equations 13 and 14a-14b, but now we can better

interpret the model parameters, especially when contrasting them against the standard

α and β parameterization. The term involving w∞ offers insight into mean reversion, a

critical concept in finance. The equation showcases how the forecast is driven by a mean

term, adjusted by the difference between historical volatility and mean volatility. This

structure reveals the interaction between recent volatility and long-term average volatility,

thus providing a clear picture of the mean-reverting nature of volatility. RM1996 by

J.P.Morgan/Reuters (1996) introduced the use of the exponential moving average in the

volatility estimation. The model became widespread for its simplicity by proposing a fixed

decay factor of 0.94. In this respect, for the case where w∞ = 0, the GARCH(1,1) equations

conveniently simplify to:

σ2
eff (t+ δt) = µσ2

eff (t) + (1− µ)r2(t), (15)

Characterized by a single parameter µ, it resonates with the RiskMetric formula, especially

when µ = 0.94. The name of this model is I-GARCH(1).

2.2.2 Long Memory ARCH

With the classic GARCH models, we can capture the heteroskedasticity of the underlying

variance. Following the Zumbach (2002) model, we use ”a set of volatilities over increasing

time horizons.” In this way, we can also consider the variance long memory, particularly

the volatility correlation at a logarithmic law. The volatilities show a non-zero lagged

correlation, so it is crucial to incorporate past information to forecast future volatilities.

σ2
k(t) = µkσ

2
k(t− δt) + (1− µk)

{
1− λlev tanh

(
rk(t)

λrangeσ∞

)}
rk(t)

2 (16a)

σ2
eff (t) =

n∑
k=1

wkσ
2
k(t) + w∞σ2

∞, (16b)

In the proposed variance estimation formula from Zumbach et al. (2014), special attention

has been paid to adequately capture the pronounced leverage effect frequently observed

22



2 METHODOLOGY 2.2 Volatility Estimation

in financial markets. Our parametrization incorporates this feature through the inclusion

of the hyperbolic tangent function. The scaling factor, λlev, acts as a leverage coefficient,

modulating the model’s sensitivity to the leverage effect. A larger value of λlev would

imply a more pronounced response to the leverage effect and vice versa. The normalization

factor,λrangeσ∞, ensures consistency of the return to the long-term or equilibrium volatility,

σ∞. As the Equation 15, the historical variance is computed by an exponential moving

average(EMA) with the weights

µk = exp
(
−δt

τk

)
(17)

This way, we have introduced leverage and different time horizons in this formulation. After

computing the historical variances σ2
k(t), the effective variance is computed as a convex

combination between them and the long-term variance, σ2
∞. The weights wk are computed

as wk = (1− w∞)χk where

χk =
1

C

(
1− log(τk)

log(τ0)

)
(18)

with
∑

k wk = 1 + w∞ and C is a normalization term fixed to ensure
∑

k χk = 1. It

is essential to notice the logarithmic decay of the weights, because the return’s lagged

correlations, would also decay logarithmic. As mentioned in Zumbach (2006), this is

precisely the long-memory stylized fact observed in the financial returns we want to capture.

The time intervals ∆Tk are built with a geometric progression of the form:

τk =
τ1
∆T1

∆Tk (19a)

∆Tk = ∆T1ρ
k−1 (19b)

The parameters are ρ, ∆T1, τ1, and τ0, which must be selected accordingly with the

underlying process.

2.2.3 Parameters estimation

The parameters are computed through a heuristic procedure reported in Zumbach et al.

(2014). In particular, the approach uses a set of distributional properties estimators and

adjusts the parameters to reproduce the distributional characteristic of the underlying. The

calibration approach is on the opposite side compared to a Maximum likelihood estimation,

and it is a more accurate method for our multi-scale necessities. The specific statistics used
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are the l-estimators defined as follows:

l1 =

(
N

1

)−1∑
i

ri (20a)

l2 =
1

2

(
N

2

)−1∑
i

{(j − 1

1

)
−

(
N − j

1

)}
ri (20b)

l3 =
1

3

(
N

3

)−1∑
i

{(j − 1

2

)
+

(
N − j

2

)
− 2

(
j − 1

1

)(
N − j

1

)}
ri (20c)

l4 =
1

4

(
N

4

)−1∑
i

{(j − 1

3

)
−

(
N − j

3

)
− 3

(
j − 1

2

)(
N − j

+

)
3

(
j − 1

1

)(
N − j

2

)}
ri

(20d)

Where the four formulas are linear estimations for the distribution moments. L-moments

are linear combinations of order statistics analog to conventional moments. Their robustness

comes from their resistance to outliers and ability to describe distributions with tails that

might deviate from Gaussianity. From such estimators, we can define L-moments as:

SL =
√
π l2, τL = l3/l2, kL =

1

0.1226

l4
l2

(21)

which are, respectively, L-size, L-skew, and L-Kurtosis. Similarly, we compute the moments

for the volatility: mean µσ, variance s2σ, and shape γσ. The statistics are on the sample

and can be used to reference the volatility distribution. Defining ⟨·⟩ the sample mean, the

volatility statistics are computed as follows:

µσ = ⟨σ⟩, s2σ = ⟨(σ − µσ)
2⟩, γσ =

Sσ

µσ

, (22)

The approach is an iterative refinement with repeated simulation and comparison. The

idea is to fine-tune the GARCH parameters each time until the L-moments of the model

closely match those of the empirical data.

2.2.4 Volatility Forecast

Forecasting volatility is critical for various applications in financial econometrics, from risk

management and portfolio optimization to the pricing of derivative instruments. Given the

difficulties and complexities embedded in financial markets, a model’s efficacy is largely

determined by its ability to capture real-world phenomena, such as long memory and

heteroscedasticity. In the following sections, we delve into the mechanics of volatility

forecasting using our proposed model. The theoretical model we will expose follows

Zumbach’s two already-mentioned papers: Zumbach (2002) and Zumbach (2006).

The forecast essential parameters are the lower cut-off τ1, the upper cut-off τmax, and
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2 METHODOLOGY 2.2 Volatility Estimation

the decay factor τ0. The lower cut-off τ1 is a crucial parameter because, on the one hand,

most of the information is in the recent values; on the other hand, including many recent

values could result in a noise estimator that does not correctly include the long memory

feature. Concerning the last parameter, the upper cut-off oscillates from a few months to a

few years. So our key set of parameters is θ = [τ1, τ0, τmax]. The variance forecast at time

t given the filtration Ω(t) is provided by the conditional expectation till time t+ kδt. In

particular, we can express our conditional expectation as:

E[σ2
k(t+ jδt)|Ω(t)] = µk E[σ2

k(t+ (j − 1)δt)|Ω(t)] + (1− µk) E[σ2
eff (t+ jδt)|Ω(t)] (23a)

E[σ2
eff (t+ (j + 1)δt)|Ω(t)] = σ2 +

∑
k

wk

{
E[σ2

k(t+ jδt)|Ω(t)]− σ2
}

(23b)

When forecasting volatility, the gold standard for assessing the accuracy of predictions is to

compare them with the realized one. By comparing our forecasts with this benchmark, we

can measure the efficacy of our model in replicating actual market dynamics. The realized

volatility is defined as:

σ2
real =

1

k

k∑
j=1

r2[δt](t+ jδt) (24)

Evaluating the quality of these forecasts necessitates a robust metric; for this task, we used

the root mean square error (RMSE). The RMSE quantifies the average magnitude of the

errors between predicted and observed values, offering a clear and interpretable measure of

forecast accuracy. Mathematically, it is the square root of the average of squared differences

between prediction and actual observation. A lower RMSE indicates a better fit of the

model to the data, signifying more accurate volatility forecasts.

RMSE[T, θ]
(√

F [σ2
eff ], σreal

)
=

∑
t

(√
F [T, σ2

eff ](t)− σreal[T ](t)

)2

(25)

where F is the mean forecast variance between t and T and is defined as

F [T, σ2
eff ](t) =

1

k

k∑
j=1

F [jδt, σ2
eff ](t) (26)

with T = kδt. Zumbach used the RMSE optimization instead of a log-likelihood estimate

not to have distributional assumptions. In Zumbach (2006), L1 and L2 distances were used

instead of RMSE. We tried all three estimates, but the results were very similar. For this

reason, we are presenting only the root mean square error formula.
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2.3 Model Drift 2 METHODOLOGY

2.3 Model Drift

Estimating the drift µ has the scope to uncover the tendency or directionality of a financial

asset or economic indicator. While volatility captures the randomness or uncertainty around

this tendency, the drift can be seen as the ”heartbeat” of the process. The estimation of

the drift of the process is fully described in Zumbach and Fernández (2013), and in the

subsequent section, we will delve into the methodology for drift estimation.

Estimating µ is a challenging task, and explaining why we would follow the arguments

from Zumbach (2012), particularly the use of ”plausible economic arguments.” One of the

pivotal concepts of financial economics is the risk-return tradeoff: riskier assets should,

on average, offer higher returns as compensation for that risk. Risk-free assets, which

carry no default risk, must yield lower returns, reflecting their stability. When we think of

drift, particularly in the context of stock prices or returns, it is more than just a statistical

parameter; it represents the expected return on the asset. Choosing a static drift would

imply that this expectation remains constant over time, while adopting a time-varying drift

aligns with this economic intuition. By allowing the drift to change with market conditions,

we acknowledge the changing dynamics of risk and return in financial markets. Looking at

the risk-free rate and the market risk premium over our period of interest11, it is clear that

the premium should be correlated to them and could not be static. Furthermore, the drift

must be correlated with the volatility of the underlying, and following these arguments,

Zumbach and Fernández (2013) ended up with a drift of this form :

µ = rrf − q + β ln
(
1 +

σ̃

σrp

)
(27)

σ̃ is the volatility forecast, as proposed in section 9, for the next six months. β and σrp are

the parameters used to fix the risk premium associated with volatility.

2.4 From Physical to Risk-Neutral probability measure

In quantitative finance, changing probability measures is one essential mathematical tool

that allows us to bridge real-world observations with the theory. This concept is crucial when

transitioning from the physical P (real-world) probability to the Q risk-neutral measure.

The physical measure represents the actual probabilities of different market scenarios,

as observed in real-world markets. It is grounded in historical data and actual market

movements. In contrast, the risk-neutral measure is a hypothetical construct. Under this

measure, all assets are expected to grow at the risk-free rate due to the investors’ risk

neutrality. By working under that measure, the transition to the risk-neutral simplifies

option pricing: the expected return on an asset is the risk-free rate, and we can use it to

1127
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2 METHODOLOGY 2.4 From Physical to Risk-Neutral probability measure

discount the option payoffs12. To fill the gap between these two measures, we introduce

the Radon-Nikodym derivative. Mathematically, if Q is the risk-neutral measure and P is

the physical measure, the Radon-Nikodym derivative, denoted dQ
dP , gives us the factor by

which we adjust expectations under the physical measure to obtain expectations under the

risk-neutral measure. In other words, we can express the option price as an expectation in

the Q measure or, equivalently, in the P measure weight with the Radon-Nikodym derivative.

In the forthcoming sections, we will go deeper into the Radon-Nikodym derivative, Market

Price of Risk, and Equivalent Martingale Measure.

2.4.1 Equivalent Martingale Measure (EMM)

Considering a sequence of random variables X0, X1, ...Xt, ...Xn, we can defining it a Mar-

tingale if E[Xt+i|Ω(t)] = Xt.
13 Given that definition, the expectation of every future value,

considering the filtration Ω(t), is equal to today’s value. It is easy, from the definition, to

asses that the Martingale is a process with zero drift, and we can conveniently use this

property for option pricing purposes. We want to use these properties to construct the

so-called Equivalent Martingale Measure(EMM). Using the J. C. Hull (2012) notation, we

will consider two securities prices f and g, dependent on a single source of uncertainty. Now

let us define ω = f
g
, which is the relative price of f with respect to g. For some specific

choices of the market price of risk, the equivalent martingale measure findings show that ω

is a Martingale when there are no arbitrage opportunities. The following section will show

how this finding fits our option pricing model and how to construct the EMM measure for

Garch processes using the Radon-Nykodim derivative.

Constructing an EMM, we must start by defining a risk aversion function. We can

skip this part using logarithmic returns since such returns are time-additive, meaning the

log return over multiple periods is just the sum of the log returns of each base period δt.

Basically, we are applying an exponential map when we move from simple to logarithmic

returns. In our case, the exponential mapping that rises naturally with logarithmic returns

is substituted with an arbitrary function with specific characteristics. ”The risk aversion

function f(z) quantifies the adversity toward the future events as seen by the option writer,”

Zumbach and Fernández (2013).

The function is defined over the positive line f(z) : R+ → R+ and it is a decreasing

function. When shifting from the real world (P) to the risk-neutral world (Q), we need a

mechanism to adjust for risk preferences. Here, the risk aversion function becomes pivotal.

This function encapsulates how investors feel about risk by weighing the random events

12J. C. Hull (2012)
13Given that E[|Xt|] < ∞
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differently. Now we can introduce the Radon-Nykodim derivative for a given sequence νi

dQ
dP

∣∣∣∣Fn =
n∏

i=0

f(νizi+1)

EP
i [f(νizi+1)]

(28)

where EP
i [f(νizi+1)] is a normalization function for f(z) with νi > 0. The normalization

is positive given the positivity conditions on z, f , and ν. Now we can use dQ
dP to change

the measure from P to Q, specifically EQ[·] = EP
[
dQ
dP

]
. A convenient choice for the risk

aversion function is f(z) = exp(−z); we can call the derivative Esscher transform using it.

Christoffersen et al. (2010) shows that different functions f(z) can be used to construct

the EMM. For Taylor expansion purposes, which we will better explain in the following

section, our final solution is f(z) = 1
1+exp(z)

, which shows a smother decay. As mentioned,

we need to introduce a new price process to construct an equivalent martingale measure and

ω. Let us consider a market (S,B) where S is our stock process, and B will be specified

later. We start in the space (Ω,F,P), and we will characterize a new probability measure

Q equivalent14 to P. The new measure is to be such that the normalized price processes

are Martingales. Now introducing a generic numeraire Y , and follows Pascucci (2011) we

can define our EMM as the probability Q on (Ω,F):

Si

Yi

= EQ
[
Si+1

Yi+1

∣∣∣∣Fi

]
,
Bi

Yi

= EQ
[
Bi+1

Yi+1

∣∣∣∣Fi

]
(29)

Considering the case where Y = B we are back in the situation explained at the beginning

of the section where ωi =
Si

Bi
. If Q respects the EMM properties then

ωi = EQ
[
ωn|Fi

]
, i < n (30a)

EQ[ωn] = EQ
[
EQ[ωn|F0]

]
= ω0 (30b)

From this, we can see why it is a risk-neutral measure: the expectations normalized future

prices are equal to today’s. Therefore, A hypothetical investor would remain neutral,

without inclination to buy or sell the assets. Consequently, Q is often termed as the

risk-neutral probability. Now we can introduce our second price process B, which is a

risk-free bond such as Bi+1 = Bi(1 + rrf ). The process is a Martingale that can be defined

as we did before Si

Bi
= EQ

[
Si+1

Bi+1

∣∣∣∣Fi

]
or equivalently 1 = EQ

[
Si+1

Si
/Bi+1

Bi

∣∣∣∣Fi

]
. We should

underlie that both processes are in the P measure and contained in the filtration up to

time i as well as σi, µi, rrf . The conditions exposed in Equation 29 allow us to obtain an

14They have same null
{
ω : P(ω) = 0

}
=
{
ω : P(ω) = 0

}
and certain events
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νi equation in the P measure

EP
i [zi+1f(νizi+1)]

EP
i [f(νizi+1)]

= 1− µi + rrf = 1− ϕiσ
2
i (31)

where ϕ is the risk premium factor defined

ϕi =
µi − rrf,i

σ2
i

(32a)

and the subsequent market price of risk following Zumbach (2012) is

λi =
µi − rrf,i

σi

(32b)

When µi > rrf , the risk premium ϕ is positive. We need to impose some restrictions on f ,

in particular, f should decay fast enough to guarantee that the left-hand side of Equation

31 is less than 1. The function we introduced before is a convenient choice to ensure it.

Thanks to this framework, we can map the change of measure from P to Q, solving some

integral equations along each path of the Monte Carlo simulation. Even if this theoretical

approach is very convenient, some practical or computational difficulties may arise. More

specifically, solving the integral along each path may result in computational problems. The

following section will be dedicated to solving these problems, showing one of the Zumbach

pricing scheme’s most significant results.

2.5 Small δt expansion

One of the most remarkable intuitions from the Zumbach works is the analytical derivation

of Equation 28. As we mentioned, solving the implicit equation given by this integral is

a difficult task; the analytical derivation allows the model to solve a simplified equation

along each path. The simplification is performed with a systematic Taylor expansion on√
δt. The dependence between the previous derivation of the Radon-Nykodim derivative

and δt was embedded in σ and µ that are scaled on that term.

We used a second-order Taylor polynomial f(x) = f(a)+f ′(a)(x−a)+ 1
2
(a)(x−a)2, and

to quantify the error of this approximation, we introduce a remainder term 1
3!
f ′′′(ξ)(x−a)3.15

Conceptually, the Taylor polynomial approximates f near x = a, and the remainder term

represents the error between the polynomial and the true function. So, when we expand at

δt we obtain

f(νz) = f(ν(1 + σϵ)) = f + σϵνf ′ +
1

2
(σϵν)2f ′′ +

1

3!
(σϵν)3f ′′′(ξ)

= f
(
1 + σϵν

f ′

f
+

1

2
σ2ϵ2ν2f

′′

f
+O(σ3)

)
≃

(
1− σϵf1 +

1

2
σ2ϵ2f2

) (33)

15with ξ real value between a and x. The Lagrange form of the remainder guarantees that such ξ exists
according to the mean value theorem.
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where

f1(ν) = −ν
f ′

f
, f2(ν) = ν2f

′′

f
(34)

and all the functions f with their derivatives are evaluated at ν. The function f1(ν) is

positive given that f(ν) is a decreasing function by the previous definition. Now we are

ready to compute the expectations E[f(zν)] and E[zf(zν)]:

E[f(zν)] ≃ f
(
1 +

σ2f2
2

)
, E[zf(zν)] ≃ f

(
1 + σ2

(f2
2

− f1

))
(35)

We can substitute the results into Equation 31

EP
i [zi+1f(νizi+1)]

EP
i [f(νizi+1)]

= 1− µi + rrf = 1− f1,iσ
2
i (36)

and it is clear now that solving for νi we obtain f1 = ϕ =
µi−rrf

σ2
i

. This result shows that the

choice of the risk aversion function does not influence the f1 term, but it only does on f2.

Furthermore, as we will see later, the fact that f1 = ϕ is one reason why the option pricing

scheme is quite robust against the choice of the risk aversion function. Following the same

argument, ν is only used to compute f2. Given this practical result, we can quickly and

analytically derive the Radon-Nikodym derivative.

Considering a generic time to maturity T , the final price for the underlying is given by

the stock process

Sn = S0

n−1∏
i=0

(1 + µi + σiϵi+1) = Fn

n−1∏
i=0

(1 + µi + σiϵi+1

1 + rrf

)
(37)

where Fn is the forward price at the maturity T calculated in t0. From this definition, we

can perform a Taylor expansion, where the order of such expansion is O(δt).

Sn = Fn

n−1∏
i=0

(
1 + µi − rrf + σiϵi+1 +O(δt2)

)
≃ Fn

(
1 +

∑
i

(µi − rrf ) + σiϵi+1 +
∑
i<j

σiϵi+1σjϵj+1

)
≃ Fn

(
1 +

∑
i

σiϵi+1 +
1

2

(∑
i

σiϵi+1

)2

+
∑
i

(µi − rrf )−
1

2

∑
i

σ2
i + ϵ2i+1

)
Now we can define

R =
n−1∑
i=0

σiϵi+1, y =
n−1∑
i=0

σ2
i (ϵ

2
i+1 − 1), σ2

int =
n−1∑
i=0

σ2
i (38)

so we can rewrite everything

≃ Fn

(
1 +R +

R2

2
+
∑
i

(µi − rrf )−
y

2
− σ2

int

2

)
(39)
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in which R is the stock path innovation and σ2
int is the integrated variance. These elements

will be fundamental during the Monte-Carlo simulation, and we can directly use these

formulations to estimate them analytically. Once we did it for the price, the same needs to

be done for the derivative

dQ
dP

≃
n−1∏
i=0

(
1− f1,iσiϵi+1 +

1

2
f2,iσ

2
i

{
ϵ2i+1 − 1

})
(40)

expanding it to δt and defining the new measure-based path stock innovation and integrated

variance

≃ 1−
n−1∑
i=0

(
f1,iσiϵi+1 +

∑
i<j

f1,iσiϵi+1

)
(f1,jσjϵj+1) +

1

2

∑
i

f2,iσ
2
i

{
ϵ21+i − 1

}
≃ 1−

∑
i

f1+iσiϵ1+i +
1

2

(∑
i

f1+iσiϵ1+i

)2

+
1

2

∑
i

f2,iσ
2
i

{
ϵ21+i − 1

}
−1

2

∑
i

f 2
1,iσ

2
i ϵ

2
1+i

so we can define again

R̃ =
n−1∑
i=0

σiϵi+1f1,i =
n−1∑
i=0

λiϵi+1, ỹ =
n−1∑
i=0

σ2
i (ϵ

2
i+1 − 1)f2,i, σ̃

2
int =

n−1∑
i=0

σ2
i f

2
1,iϵ

2
i+1 (41)

as we did before, we can rewrite the derivative using these new terms:

dQ
dP

≃ 1− R̃ +
R̃2

2
+

ỹ

2
− σ̃2

int

2
(42)

This outcome is a O’Neil and Zumbach (2009) pivotal achievement, enabling us to implement

the change in probability measure numerically. We calculated the expectation using a small

δt expansion, crucial for incorporating the underlying realistic features. We can use the

ARCH process introduced before at regular time increments (δt) because a continuum limit

is unnecessary. To complete the framework, we need to define ν. We can do it by Equation

f1(νi) =
µi−rrf

σ2
i

. The solution is

νn+1 = ϕ(1 + exp(−νn)) (43)

solving for the function f(z) = 1
1+exp(z)

.

Before concluding, we want to underline that even if the choice of the risk aversion

function (f) is not a game-changing factor in option pricing, we should be careful when

we deal with fat-tailed distributions. In particular, the relation between z and ν must

be understood better. When z is small and ν large enough, ”the exponential function

overtakes the decrease of the Student distribution” Zumbach and Fernández (2013). Due

to the convergence problem, we need to find a function with slower variations with respect
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to a simply exponential function. In particular, the choice of a function like f(z) = 1
1+exp(z)

leads to good results16. In the previous sections, we established the essential framework

for an accurate Monte Carlo simulation. The succeeding section will integrate these base

concepts and expose how to execute the simulations.

2.6 Monte-Carlo Simulation

Monte Carlo simulation is a powerful computational technique that leverages randomness

to solve problems that might be deterministic. Once we have a robust volatility estimate,

Monte Carlo simulation allows us to simulate the potential future paths an underlying

asset might take. Doing so multiple times can create a distribution of possible outcomes,

providing a holistic view of potential scenarios. Once we have computed all the parameters

for the underlying process, the basic idea is to simulate several paths accordingly with such

parameters. The simulation is driven by the previously exposed process (Equations 12a

and 12b), where the innovations follow a t-distribution with ν degrees of freedom. The

t-student distribution, often called the t-distribution, is a compelling alternative to the

standard normal distribution, mainly when modeling financial returns with fat tails. At

the end of each simulation, the Radon-Nikodym derivative is computed analytically using

Equation 42. One crucial aspect is to update the filtration of the underlying process up to

t0, which is the time we start our Montecarlo. After each time step δt, we should do the

same and embed the previous time volatility in the computation for the subsequent one.

We used an antithetic scheme, a Montecarlo method used for symmetric distributions,

to reduce the variance of the price estimator. The antithetic variates technique is a variance

reduction method, which means it aims to reduce the variability or ”noise” in the Monte

Carlo estimations without needing more random samples. Following Jaeckel (2002), the

paths are generated from symmetric innovations
{
zi
}
and

{
−zi

}
. The idea is to average

the two random samples functions into one, where

ṽ(zi) =

{
v(zi)

}
+
{
v(−zi)

}
2

(44)

and the draws ṽi are independent. The scheme makes it possible to have an overall variance

reduction V [ṽi] <
V [vi]
2

.

2.7 Option Pricing

The pricing of a European contingent claim at a generic date ti between t0 and the maturity

T is given by the discount expectation of the option terminal value under the Equivalent

16The two functions’ comparison can be graphically seen in Figure 4.
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Martingale Measure(EMM) Q:

Ci = EQ
[
Cn(Sn)

Bi

Bn

∣∣∣Fi

]
= EP

[
Cn(Sn)

Bi

Bn

dP
dQ

∣∣∣Fi

]
, n = T (45)

this formulation was first introduced by Christoffersen et al. (2010). The formula offers

a rigorous and mathematically consistent methodology for option pricing by straddling

between the real-world and risk-neutral probabilities. Furthermore, this pricing formulation

is valid for every underlying process. At its core, this formula is not just about numbers; it

embodies a fundamental economic principle: the absence of arbitrage opportunities. The

justification of the formula using the no-arbitrage argument is stated in Zumbach (2013)

and follows the idea that no arbitrage strategies can be constructed from a martingale

portfolio; now, we will examine it thoroughly. In the previous section, we have defined

ω = Si/Bi as the discount stock where the numeraire is the bond. The option value at time

i for ω

Cω
i = EQ[Cω

n (Sn)|Fi] (46)

applying the law of iterative expectation for s < t

Cω
i = EQ[Cω

n (Sn)|Fi] = EQ
[
EQ[Cω

n (Sn)|Fs]
∣∣∣Fi

]
= EQ[Cω

i |Fi]

doing that Zumbach shows that also Cω is a Martingale. In order to demonstrate the

no-arbitrage argument, we need to introduce trading strategies and determine if profits can

be made without risk.

2.7.1 No Arbitrage Principle

The available assets are three: the option(C), the stock(S) and the Bond(B). Now, let us

denote the value of a hypothetical portfolio at time i as Vi. The portfolio can comprise

different quantities of our three assets

Vi = ρiSi + γiCi + βiBi (47)

where ρ, γ and β are the associated weights. The change in Vi value one step forward in

time is

∆Vi+δt = ρi(Si+δt − Si) + γi(Ci+δt − Ci) + βi(Bi+δt −Bi)

= ρi∆Si+δt + γi∆Ci+δt + βi∆Bi+δt.
(48)

The quantity ∆V can be seen as the portfolio’s gain (G) at each time step. Consequently,

we can see the value of the portfolio as Vi = V (0) +
∑i

i+δt∆Vi = Gi, that is the sum of

all the portfolio gains plus the initial value (that can also be seen as an initial gain). To
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obtain a self-finance strategy, so no cash needs to be added, we must ensure the following

condition:

Vi = ρi−δtSi + γi−δtCi + βi−δtBi = ρiSi + γiCi + βiBi. (49)

Remember that ∆Vi = ∆Gi and Vi = Gi we can express both processes using the same

numeraire we used for the assets V
B
= V B, G

B
= GB. We can now define the discounted gain

one step ahead:

∆GB
i+δt = GB

i+δt −GB
i =

Vi+δt

Bi+δt

− Vi

Bi

= ρ

(
Si+δt

Bi+δt

− Si

Bi

)
+γ

(
Ci+δt

Bi+δt

− Ci

Bi

)
+β

(
Bi+δt

Bi+δt

− Bi

Bi

)
= ρi∆SB

i+δt + γi∆CB
i+δt

(50)

where SB = ω. This derivation shows that the discounted gain is just the sum of the

discounted option and stock; the bond intuitively does not enter into the computation.

Continuing with the explanation in Zumbach (2013), the history of the assets is included in

the filtration F, but the same is valid even for the weights. Let us take the expectation of

the discounted gain change

Ei[∆GB
i+δt] = Ei[∆CB

i+δt] + Ei[∆SB
i+δt] (51)

where both CB and SB are martingales. Given that SB and CB are martingales, Ei[∆SB
i+δt] =

0 and Ei[∆CB
i+δt] = 0 so we can conclude that Ei[∆GB

i+δt] = 0. We have shown that GB

and the portfolio value (V B) are martingales, so the definition V B
i = EQ

i [V
B
n ] must be

valid. The fundamental idea is understanding if the martingale conditions could align with

arbitrage strategies. That is not possible, considering that arbitrage exists if V B
0 < 0 and

at the same time V B
n ≥ 0, which is an evident contradiction with the Martingale condition.

Concluding, if martingales are used to construct a portfolio, the resulting portfolio will

also be a martingale. Moreover, the option’s price follows a martingale process, as it is

based on expected values. This result is relatively easy and general, making this option

price formulation valid for a long list of processes.

2.7.2 Monte Carlo pricing scheme

Having delved deeply into the theoretical framework of option pricing, we now transition

to its practical implementation into the Monte Carlo simulation methodology. After the

simulations of N different paths for the underlying process till the time T , the price of the

call can be calculated as

C0 = EP
[
Cn(Sn)

B0

Bn

dP
dQ

∣∣∣F0

]
=

1

N

∑
α

dP
dQ

∣∣∣∣
α

Cn(Sα,n)
B0

Bn

(52)
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where the time t0 is the time at which the simulations start. The suffix α identifies the

single path simulated accordingly with the ARCH process.

2.8 American Option pricing

Pricing American options is more challenging than European ones because of the added

exercise flexibility. The early exercise feature of American options transforms their pricing

into an optimal stopping problem, and at each time step before maturity, the convenience

of exercising must be asses. The value of the early exercise must be quantified, which is

why American Options are more valuable and have a higher price. Monte Carlo methods

are naturally suited for path-dependent pricing, and several approaches were developed

to estimate the option price efficiently. To consistently estimate the price of an American

option, we have to integrate and expand the model presented till now. The Zumbach model

does not specify any method with this scope, so we decided to extend the model.

The approach we presented in the previous sections can be accommodated because the

primary conditions for American option pricing are already in the model. More specifically,

we can simulate the different paths using the Garch-based approach explained before. This

method gives us a realistic underlying distribution as we did for European ones. Since the

change of measure from P to Q is analytical, no problems arise when we want to calculate

it before maturity. Thus, the change of probability measure must happen at each time step

and not just at the ends. We can generalize the Radon-Nikodym formula as follows:

dQ
dP

(i) ≃ 1− R̃i +
R̃2

i

2
+

ỹi
2
−

σ̃2
int,i

2
(53)

with t0 < i < T . Thanks to the analytical estimation of dQ
dP , the model is very flexible, and

we have no problems calculating the derivative at different time steps. Therefore, we have

a ready-to-use set-up with a path simulation process and a change of probability measure.

Lastly, we must assess a rule to understand whether the early exercise is convenient. In

this context, the Least Square Montecarlo (LSM) is an optimal approach.

The LSM method proposed by Longstaff and Schwartz (2001) is an ideal solution for

our pricing problem. The model is sufficiently elastic to adapt our framework without any

further assumptions; furthermore, the calculations are pretty simple and do not require

outstanding computational power. In addition to that, the LSM model can be used even to

price complex derivatives over the classical vanilla options. As we introduced before, the

crucial aspect in pricing American options is considering that at each time, the investor

compares the option’s current value with the expected future one. For this reason, the

model basis is the construction of a rule determining the optimal exercise. The basic idea

of setting such a rule is to evaluate the conditional expectation of the future payoff given

the current one by a cross-sectional linear regression between the two. The cross-sectional

component arises between the different trajectories of the simulation. Thus, the payoff of
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the continuation from each path is regressed on functions of the state variables, and the

fitted values provide an estimate to obtain the conditional expectation function. Since the

pricing is obtained as an expectation over the risk-neutral measure, the price processes used

in the original paper were also risk-neutral. In particular, a classic Brownian motion with

a risk-free drift growth or a Merton jump-diffusion process, both with constant volatility.

We already explained in the first chapter that such models poorly represent the actual

underlying behaviors. For this reason, the realistic ARCH approach with a stock price

process in the P proposed can augment the LSM model. Specularly, the LSM is a very

effective tool to augment the Zumbach model and be able to price American options. The

two models can be consistently merged, and both approaches would benefit from that.

To be more specific, we have an underlying process in the probability space (Ω,F,P), we
already know that from such space, we can define an equivalent martingale measure (EMM)

Q. The time horizon for the pricing is the same as for the European options [t0, T ], and

along this time, we have N different trajectories. Each possible pathway can be represented

as a general draw α from our state space Ω. The cash-flow path for the option must be

evaluated at each time ti, and it is denoted as C(Sα, ti; tk, T ), tk < ti < T . It is worth

mentioning that the American options can usually be exercised in the continuum time

during the trading day, although time series samples are usually daily. For this reason,

we can only approximate the option’s value, and this approximation would be better by

increasing the time step for the valuation T/δt = n. The algorithm scheme is intuitive:

starting from the end of each path, we calculate recursively the continuation value and

compare it with the current one. The continuation value, in our environment, can be

defined as follows:

Fk,α = EP
[ T∑

i=k+1

dQ
dP

∣∣∣∣
α,i

C(Sα,ti,, ti; tk, T )
Bi

Bn

∣∣∣Fk

]
(54)

Remember that options can be exercised only once, so when the continuation value is lower

than the current one, we eliminate any future possible payoff because the correct choice is

to pay the strike immediately. The paper by Longstaff and Schwartz (2001) found a way to

approximate analytically this expectation through a simple linear regression. For the basis

function set, we chose the family of Laguerre and Chebyshev polynomials of the first kind.

Like orthogonal polynomial systems such as Hermite or Legendre polynomials, Laguerre ones

can approximate certain functions in numerical methods. Their orthogonality properties

can improve the model by reducing computational errors and improving numerical stability.
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The Laguerre polynomial17 is given by:

L0(X) = exp(−X/2), (55a)

L1(X) = exp(−X/2)(1−X), (55b)

L2(X) = exp(−X/2)(1− 2X +X2/2), (55c)

Ln(X) = exp(−X/2)
eX

n!

dn

dXn
(Xne−x), (55d)

On the other hand, Chebyshev polynomials18 of the first kind are Tn(x) = n cos(arccos(x))

and must satisfy the recurrence relation:

T0(x) = 1, T1(x) = x, Tn(x) = 2XTn−1(x)− Tn−2(x) (56)

When there is no closed-form solution or (in our case) it is computationally expensive,

we can use Chebyshev polynomials to approximate option pricing functions. Due to their

orthogonality and unique properties, they can offer faster convergence and better accuracy

than standard polynomial approximations. Both solutions return solid and stable results,

but the difference is in the time to compute the polynomials.

We have established the sets of basis functions, and it is now possible to perform the

conditional expectation according to them. Given that the price of the call was reduced

simply to:

C0 =
1

N

∑
α

max(Fα,i, Cα,i), (57)

where i goes from maturity T till t0+1 recursively. We obtain our American Option Pricing

Model by calculating the max between the continuation value and the current payoff at

each time step and then averaging for each trajectory.

17Figure 23
18Figure 24
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3 Applied Model

In this chapter, we will explore the results of the model explained till now. The focus

will initially be on the set-up phase, in which we will estimate the parameters and all

the essential components for the option pricing. Later, we will delve into the price series,

comparing the different types of options (Call, put, European and American). To conclude,

we will focus on the implied volatility by choosing two different time frames and trying to

draw out important information on the market.

3.0.1 Model Set-Up

The following section examines the model applied to the SP500 index, and the time frame

chosen is the same one used by Zumbach and Fernández (2013). This way, we can compare

the results better and verify the parameters suggested in the paper. The time series used

are three: the SP500 price series19 (Bloomberg), the dividend yield q (Refinitiv), and the

risk-rate20rrf (Kenneth et al. - Data Library)21. The period under consideration goes from

january 1996 to june 2010.

The first step was calculating the relative returns over increasing time horizons ∆T

(Figure 22), and we described how to calculate them in Equation 10. The time horizons

are estimated accordingly with Equation 19a. The parameters chosen are ρ = 2, ∆T1 = 1,

τ1 = 5, and τ0 = 520 which return

∆T 1 2 4 8 16 32 64 128 256 512

τ 5 10 20 40 80 160 320 640 1280 2560

As we already explained, in this way, it is possible to capture the different characteristics of

the returns over increasing time intervals ∆T .

The second crucial step in our model is the GARCH estimation, and following the

methodology of Zumbach et al. (2014) explained in the section 2.2.3, we were able to

estimate the following parameters:

Θ w∞ σ∞ λlev λrange ν

Value 0.05 0.20 0.9 0.25 7

Table 1: Garch parameters

The estimated parameters are consistent with the original paper and mirror the expected

characteristics of the SP500 index. The long-term volatility σ∞ is set to the empirical mean

observed in the market and determine a notable baseline volatility.The value of w∞ suggests

that 5% of the effective volatility is attributed to long-term, and such a low value indicates

19Figure 21
20Figure 27
21https : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
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that the specific model components already capture most of the volatility. Furthermore,

the model highlights a strong leverage effect, as evidenced by the value of λlev, which is

almost at the maximum value possible (1).22

Figure 7: Effective variance calculated with the leveraged multiscale ARCH, plotted with the
returns at different scale.

The daily volatility ranges between 10% and 65%, where the peak is during the 2008

Financial crisis. Once we have estimated the underlying process parameters, we can

perform the Monte Carlo simulations. The structure of the recursive Monte Carlo process

is:

• We started generating a random t-distributed matrix with the row length correspond-

ing to the number of time steps to maturity(n). The width depends on the number

of simulations (N) divided by the antithetic scheme:

z(1, 1) z(1, 2) · · · z(1, N/2) −z(1, 1) −z(1, 2) · · · −z(1, N/2)

z(2, 1) z(2, 2) · · · z(2, N/2) −z(2, 1) −z(2, 2) · · · −z(2, N/2)
...

...
. . .

...
...

...
. . .

...

z(n, 1) z(n, 2) · · · z(n,N/2) −z(n, 1) −z(n, 2) · · · −z(n,N/2)

The preallocation of the matrix speeds up the computational time.

22The impact of the leverage effect on the simulation can be seen graphically in Figure 25
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• The next step is initializing the returns tensor, with n rows and N columns repeated

for each k time horizon.
r(1, 1, k) r(1, 2, k) · · · r(1, N, k)

r(2, 1, k) r(2, 2, k) · · · r(2, N, k)
...

...
. . .

...

r(n, 1, k) r(n, 2, k) · · · r(n,N, k)


Each k matrix inside the tensor contains the returns at different time horizons.

• The returns are calculated with Equation 12a, and right after the prices with Equation

12b. Using the just computed prices, we can retrieve the returns at different time

scales using Equation 10. It is now possible to estimate the effective variance σeff

and use it to calculate the new returns. We completed the simulation by repeating

this step until maturity T .

The heteroscedastic feature of the variance combined with a high leverage effect results

in very different paths compared with the classic stochastic processes used to simulate

underlying. Unlike standard methodologies that rely on a constant volatility assumption (like

the geometric Brownian motion), our realistic features result in asymmetric distributions,

stock crashes, and highly positive outliers. The broader dispersion of our Monte Carlo

paths, especially during turbulent times, captures the fat-tailed stylized fact, where extreme

events are more probable to be predicted than a standard normal distribution. Our

realistic simulation, which more accurately represents extreme market movements, results

in theoretically reasonable and practically robust option prices. After the simulations, we

can now calculate R, σint, and y (Equation 38), and if the δt expansion is correctly specified,

we can use it to approximate the final prices. Thus, we can use Equation 39 to test this

approximation together with the simplest Sn ≃ Fn exp(R). Using a simple RMSE, we can

evaluate the two estimates, and this assessment indicates that both approximations are

robust and consistent. The distributions and the plots for the just estimated elements are

in Figure 26.

The option pricing could not be performed without estimating the Radon-Nikodym

derivative, and to do it, we need first to find the drift µ, risk-premium ϕ, and the market

price of risk λ. The formulas used are Equations 32a and 32b, but we must be careful

with the annualization or the time scale. As reported in Zumbach and Fernández (2013),

the process parameters are optimized using a business day count of 1 year = 260 days

while most providers give the risk-free rate and the dividend yield on a 365 days base. The

problem can be solved easily by the relation r∗rf = 7
5
rrf where r∗rf is the new risk-free we

must use, and the same relation is valid for dividend yield q. To estimate the drift, we

must compute the forecast accordingly with Equation 23a and 23b. The parameters in

Table 1 give a robust estimation of the volatility with an RMSE stable around 0.12. In
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Figure 8: The final prices Sn from the Monte Carlo compared with the two approximations

Fn exp(R), and Fn

(
1 +R + R2

2
+
∑

i(µi − rrf )− y
2
− σ2

int

2

)

Figure 9: Top figure: 1 year forecast estimation. Bottom figure: 6 months rolling estimation,
used to calculate µ.
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Figure 9, we can see two different uses of the forecast: in the up section, a classic GARCH

forecast for one year where the volatility consistently converges, and in the bottom section,

the day-by-day six-month forecast. The second one is precisely σ̃, that is the forecast

we need to calculate µ23 as described in Equation 27. The drift µ is defined as a convex

relationship with the volatility, and the parameter σrp sets the convexity. The parameters

are set to σrp = 0.17 and β = 0.075 to match the empirical evidence about the drift and

the risk-premium. This way, the mean drift is of order 6%, and the mean risk premium is

around 2.

Figure 10: Market price of risk λ and risk premium ϕ

Calculating the Radon-Nikodym derivative using the just estimated elements is now possible.

Moreover, we can calculate the options price since all the preliminary steps are completed.

For European options, the derivative is computed at each maturity and multiplied by

the price Sn for every trajectory. The price probability distributions change more in the

longest time to maturity; thus, the change of probability measure is less influential for short

horizons. Similarly, for underlying processes with higher variances, the change in measure

can introduce notable variations in the modeled price dynamics. When computing the

change from P to Q, a noteworthy observation is the resultant shift in the price density

function of the underlying process. As shown in Figure 11, the Rason-Nikodym derivative
dQ
dP shifts the density to the left, and this happens because moving to the risk-neutral

essential means removing the drift of the process and substituting it with the risk-free rate.

23Figure 27
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Figure 11: The different probability density functions for the final prices Sn in P and Q
measures. Plotted at increasing σ∞ = 0.1, 0.2, 0.4. Two different time horizons: 30 days
and 260 days.

In the American option context, the idea is pretty much the same, and the only difference

is that we must replicate the calculation of the derivate at each time step.

3.0.2 Option Pricing results

The European option pricing is now straightforward, and all that remains is to compute

the payoff functions, apply the derivative, and discount at the risk-free rate. While the

consistency of this method was widely tested in the original papers, we must test with
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the American option framework adapted to this context. We experimented using the

two basis functions mentioned in the previous chapter(2.8): the Laguerre and Chebyshev

polynomials. While both sets of basis functions could capture the critical features of our

data effectively, we observed that their result prices were markedly similar. For this reason,

using both approximations was unnecessary, redundant, and computationally intensive.

The computation time, especially for large datasets, would grow substantially using both

bases. We deeply tested the Laguerre base and, in general, the entire model. We found

them particularly efficacious in delivering robust estimations with consistently low standard

errors observed in the results. This precision highlights the model’s reliability and ability to

provide stable outcomes, even under varied data scenarios. Furthermore, as already noticed

by Longstaff and Schwartz (2001), the simple choice of X, X2, X3 as the basis function

gives almost identical results compared with the Laguerre polynomials up to third order.

Thanks to this finding, we can enormously reduce the computational time without losing

precision, highlighting the process’s robustness to the choice of the basis function.

Figure 12: American and European put option prices compared. Maturity 30 days

As expected, there is the presence of a premium associated with the early exercise feature of

American options. That is why the American put option prices are consistently above their

European counterparts, more significantly as maturities extend. Extending the timeframe

introduces more potential scenarios where market conditions favor early exercise. The

longer the maturity, the greater the window of opportunity for an optimal exercise moment,

44



3 APPLIED MODEL

maximizing the investor profit potential.24 Figure 13 shows the European and American

option prices in function of time and strike. As expected, the American option price surface

lies above the European one, with only a few sections where the surfaces intersect.

Figure 13: American and European put options price surfaces. Maturity 1 year

In our analysis of the American option estimation, we want to underlie the relationship

between the number of simulations and the resultant standard errors from the associated

linear regressions. In particular, the standard error is calculated as σY /
√
N where Y are

the final discounted payoffs. An evident inverse relation exists between the number of

simulations and standard errors. However, what is particularly encouraging is the rapid

convergence of prices, even with a relatively low number of simulations. For example,

with N = 2000, the option prices were already stable. While escalating the simulations to

the range of 40,000 fine-tuned the standard errors, making them lower and more precise,

it had little influence on the estimated option prices. These prices remained relatively

unchanged, highlighting the model’s efficiency. As we can observe from Figure 14, the

standard errors are positively related to the time to maturity. However, this is an expected

result since increasing the horizon means increasing the early exercise opportunities and

price dispersion.

24Figure 30 highlights the difference in the American options premium at increasing time horizons.
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Figure 14: Standard error boxplots for increasing time to maturity: n=30,90,150,210,270
(days). N=40000 (simulations)

3.0.3 Implied Volatility

Another essential aspect we must delve into before concluding is the volatility implied

by the estimated option prices. This fundamental metric might give us essential insights

into the underlying process and investors’ expectations. As we mentioned in section 1.1.1,

the BSM model can be used to estimate the process volatility implied by the computed

prices. The shape of the implied volatility surface can drastically change over time because

numerous factors influence it. We experiment with this characteristic by estimating our

American put options’ implied volatility in two financial and market contexts. The first one

is from January 2004, which was, for the SP500, a bullish period with a relatively stable

variance. As opposed, the second frame chosen is in the middle of the 2008 financial crisis

during the fall of the stock market.

Figures 15 and 16 are the volatility surfaces for the above time-frames, and we can

notice quite diverse structures between the two. Firstly, it is significant to notice that both

surfaces present an accentuated smile, which can be observed better in Figure 17. The

smile and its asymmetry directly result from the leverage incorporated into the underlying

process. Furthermore, the smile has a decreasing path over time as it should be from the

economic intuition; however, it is persistent till 520 days, the maximum number of days

incorporated from our long memory ARCH process. This finding confirms the model’s

ability to capture diverse effects at increasing time horizons.
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Figure 15: Implied volatility surface for
January 2004 American put options

Figure 16: Implied volatility surface for
October 2008 American put options

Figure 17: Volatility smile for January 2004 American put options. Calculated at different
time horizons.

In contrast with the BSM, the process captures the negative skewness and the leptokurtic

distribution stylized facts, reflecting such properties on the implied volatility surface.

According to the excess kurtosis, large draws are more likely to happen than expected

under Gaussian distribution. As a consequence, deep OTM and ITM options are more

likely to be bought, increasing their prices. Using the BSM option pricing model to map

the implied volatility means higher prices are associated with higher volatilities, enhancing

the smile.25The Same argument can be used for the negative skewness, which steepens the

ITM put side or OUT call side.

The second component of the IV surface is the term structure, and from figure 18 and

25Sinclair (2010)
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19, we can compare the 2004 and 2008 ones. The shape of this curve provides insights

into the market’s expectations about future stock price volatility. The Figures show the

backbone, the term structure for at-the-money options, and two directions for far OTM

and ITM options.

Figure 18: Term structure for January
2004 American put options

Figure 19: Term structure for October
2008 American put options

In 2004, we had a general upward trend curve for the term structure, with the only exclusion

of the highly out or in-the-money strikes. An upward-sloping term structure suggests that

the market expectations are directed towards a higher future volatility than the short-term.

This is common in stable or bullish markets with more certainty in the short term, as in the

2004 market. Conversely, when short-term volatilities are high, the term structure tends to

be a decreasing function. For this reason, the notable downward-sloping term structure

in 2008 indicates that the market expected higher volatility in the near term compared

to the long term. Given the backdrop of the financial crisis, there is uncertainty for the

immediate future, with an opinion of future stabilization. Another factor could be that in

times of extreme market stress, there is often a rush to buy short-term protective options

(like OTM puts) as a hedge against further declines. Doing that can disproportionately

drive up the IV for short-term options compared to longer-term options.
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Conclusions

The Zumbach model we presented in this thesis can effectively encapsulate the significant

financial stylized facts. The ARCH process is regulated by a set of parameters, allowing

us to accommodate different financial asset characteristics. Furthermore, we can calibrate

the process and accommodate time-evolving underlying features to match market option

prices. The American option extension we proposed catches all the benefits of the Zumbach

work and extends it efficiently and robustly. The LSM method can perfectly integrate

with the Zumbach model and value options consistently and time-savingly. Thanks to this

framework, we can compute option prices and explore the dynamic aspects of the market,

its drivers, and expectations.

In this thesis, we first explored the theoretical background crucial to fully understanding

the presented model and the context in which it lies. In particular, close attention was

given to the foundational Black, Scholes, and Merton model. Awareness of the BSM’s

strengths and weaknesses is essential to understanding the directions the following financial

researchers pursued. In the second chapter, we deepened the model, analyzing each aspect

and making it reproducible for those who want to engage in this method. The model

explanation is intended to illustrate it and give the theoretical background behind each

section of the used methodology. In the last chapter, we put into practice the framework

explained till then. We first explained how to set the model up and showed the step-by-step

results; this way, the reader could better understand all the pieces needed to complete the

option pricing puzzle. We concluded the chapter by analyzing and comparing the option

prices obtained and constructing the implied volatility surface. We studied the implied

volatility behaviors in different market conditions, extrapolating significant insights into

the investor’s expectations.

The model proposed in this thesis could be used to accomplish several tasks in different

financial areas. The first obvious challenge the model helps to solve is derivative pricing

per se. However, the model can be extended beyond traditional options to price complex

financial derivatives. As we showed, by analyzing the volatility surface (smile, smirk,

or term structure) generated by the model, it is possible to obtain insights into market

sentiment and participants’ views on future volatility. This option pricing framework

can have interesting educational utilities and help understand the drivers of the financial

markets experimenting with them.

While the model shows promising attributes, it is crucial to acknowledge its limitations.

In periods of high volatility and quick market movements, the model captures those changes

slowly. An analysis with high-frequency data would result in better estimates for these

frenetic periods. Moreover, some market dynamics during crisis periods can only be captured

partially. For example, a further model extension might add an options liquidity premium

factor. The liquidity premium is often a critical asset characteristic in low liquidity times,

and during such periods, the prices can deviate from our model. Market participants
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demand this premium as compensation for the increased risk associated with illiquid assets.

Especially for short-term protective puts, the price change could be significant, leading to

increased implied volatility. However, a notable strength of our model lies in its intrinsic

flexibility and adaptability. The model is designed with a modular architecture that allows

for future enhancements in an intuitive way. Whether integrating new market dynamics,

adding layers of complexity, or adjusting to accommodate new financial instruments, the

model’s adaptability ensures that it remains relevant and provides precise estimations.

Thanks to its intrinsic characteristics, the model can evolve alongside financial market

research and innovation.
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A Figures

Figure 20: Comparison between the two risk aversion functions e−x and 1
1+ex

.

Figure 21: SP500 historical prices from ’02-Jan-1996’ to ’28-May-2010’. Data source:
Bloomberg.
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Figure 22: Relative returns for SP500 at different time horizons τ

Figure 23: Laguerre polynomial of order 1 through 5
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Figure 24: Chebyshev polynomial of order 1 through 5

Figure 25: Impact of the leverage effect λlev on the simulation, from high left (lower) to
bottom right (highest). The number of trajectories N = 2000 and the time steps n = 90.
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Figure 26: The distributions and the cross-plot between the final prices Sn elements: Sn, R
and σint.

Figure 27: The drift µ, the dividend yield q, and the risk-free rrf compared. β = 0.075 and
σrp = 0.12
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Figure 28: Price surfaces for European call options, European put options, and American
put options. Maturity 1 year

Figure 29: Close-up between the American and European price surfaces. Maturity 1 year
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Figure 30: European and American option prices at increasing maturities.
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