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Abstract

This thesis investigates new liquidity risk forecasting models based on high-frequency data,

incorporating the relationship between trading volumes and price impact through the use

of scaling laws methods. With the advent of high-frequency data, it has become necessary

to develop new risk measurement and forecasting methodologies that take into account the

dynamic nature of financial markets. The analysis was conducted with a 1-minute frequency

dataset of the NASDAQ Composite Index from 05-May-2022 to 03-May-2023, considering

only data when the NASDAQ market was open and a ”rolling window” framework to

estimate the model parameters. The empirical results show that one month in-sample data

are sufficient to obtain good risk prediction performance, especially when volatility is more

concentrated and market conditions are stable, demonstrating that scaling law models can

be valuable tools in the field of financial risk management.

Keywords: Liquidity Risk, Market Microstructure, High-frequency data, Scaling laws,

Scale invariance.
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Introduction

In the field of financial analysis, liquidity risk management is a crucial element for financial

institutions, investors and regulators. Liquidity, defined as the ease with which financial

assets can be bought or sold without causing significant changes in market prices, is

considered the central aspect of market microstructure and is fundamental to the stable

functioning of financial markets. History shows that one of the most frequent causes of

market crises is lack of liquidity, as in the case of the financial crisis of 2007-2008 or the

Flash Crash of 6 May 2010. The latter highlighted the importance of risk management in

financial markets by shifting the focus to high-frequency trading and the use of algorithms

in stock markets. The continuing evolution of high-frequency trading, which has greatly

revolutionized the structure and speed of financial markets, has led to the view that risk

models based on low-frequency data are no longer sufficient, and to focus on finding new

liquidity risk management models that take into account the massive amount of data that

high-frequency trading generates in the market. These data, which capture details of

financial transactions at extremely short time intervals, have opened up new perspectives

in the field of risk management and market microstructure, providing a real-time view of

financial markets.

This thesis investigates new liquidity risk forecasting models based on high-frequency

data, incorporating the relationship between trading volumes and price impact through

the use of scaling laws methods, which provide a better understanding of the dynamic

nature of markets and, due to their scale invariance property, allow to evaluate and predict

liquidity risk at different time scales. The combined use of high-frequency data and scaling

law methods allows to not consider assumptions about the price distribution and rely on a

single month’s high-frequency in-sample dataset to obtain good results and forecasts, rather

than using time series of a few years that may not provide a complete picture of market

information. The models presented in this analysis are based on the existence of scaling

laws that relate the main liquidity measures of market microstructure to the time variable,

denoted as the size of the time interval ∆t. The objective is to evaluate liquidity as price

impact, i.e. how much a given amount of trading volume can affect the price of an asset,

and for this the liquidity variables under analysis are Kyle’s Lambda (λ), presented by

Kyle (1985), and the ratio between the price of an asset P and the corresponding Volume

Weighted Average Price VWAP , called Liquid Ratio. Measuring liquidity risk with scaling

laws methods that relate risk to the time variable improves the flexibility and accuracy

of models because it allows to evaluate the liquidity of an order for both traders with

intraday and longer investment horizons. The comparison of the forecasts obtained and

the actual out-of-sample liquidity values shows that the models presented exhibit a good

representation of the dynamic trend for both liquidity risk variables.

In recent years, there has been a growing application of scaling laws in the risk man-

agement framework (see Muller et al. (1990), Glattfelder et al. (2011), Qi (2011), Qi et al.
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(2018)), although there is a lack of an exhaustive literature in the field of liquidity risk.

The majority of studies focus on liquidity risk estimation without considering scaling laws.

Kyle’s model, introduced by Kyle (1985), is one of the most important models in market

microstructure and asset pricing theory, and is concerned to analyze the role of information

asymmetries among investors by measuring liquidity as the OLS regression coefficient of

price change ∆P on trading volume. Many other works are based on this model: Ekren

et al. (2022) constructs an equilibrium for Kyle’s continuous-time model with stochastic

liquidity; Brennan and Subrahmanyam (1996) have measured the liquidity of securities by

price impact using the methods of Glosten and Harris (1988) and Hasbrouck (1991), which

are extensions of the Kyle’s model in which a variable is added to account for the fixed

part of the trading costs, represented by the bid-ask spread. Emna and Chokri (2014), on

the other hand, propose in their work an enhanced liquidity adjusted intraday value at risk,

named LIVaR, based on the application of high-frequency data but without considering the

use of scaling laws. This empirical study contributes to the literature by being a starting

point for research into new methodologies for measuring liquidity risk using scaling laws

methods to better understand the dynamic nature of financial markets.

The rest of the paper is organized as follows: Section 1 presents a brief description

of the key topics covered in the paper and a literature review of the main measures of

liquidity risk. The main aspects of market microstructure are reported in Section 1.1,

while Section 1.2 introduces the importance of liquidity risk management. Section 2 is

the heart of the work because all the methodology and mathematical concepts applied

in the study are explained. Section 2.1 presents the concepts of scaling law and scale

invariance that are the basis of this analysis, without which it would be possible to apply

the models in Section 2.2. In this section, in fact, four scaling law models (two basic M1 &

M2 and two extended models M1.1 & M2.1) are presented with the objective of forecasting

liquidity risk through power laws that relate liquidity measures of market microstructure

to different time intervals. Section 3 examines the results obtained through the application

of the empirical models, first presenting a detailed description of the high-frequency data

used in Section 3.1, and then evaluating the validity and performance of the models in

Section 3.2. In the latter section, the forecasts obtained from the models will be compared

graphically with the actual values of liquidity risk measures, and a residuals diagnostic will

be presented to understand which model exhibits better performance in forecasting risk.

Finally, conclusions are discussed in Section 4.
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1 THE RELATIONSHIP BETWEEN LIQUIDITY RISK MANAGEMENT AND
MARKET MICROSTRUCTURE

1 The relationship between Liquidity Risk Manage-

ment and Market Microstructure

In the following section the relationship between liquidity risk management and market

microstructure will be explored in details. The continuous evolution of financial markets

has greatly increased the relevance of these two concepts, making them fundamental pillars

of the analysis and management of financial transactions. Understanding their fundamental

relationship has become essential for market participants who want to manage risk effectively

and make informed decisions in their trading activities. Market microstructure focuses on

the study of the internal structure and functioning of the market, seeking to understand the

mechanisms that lead investors to make their trading choices, while liquidity risk concerns

the ability to execute trades efficiently and without significantly impacting financial asset

prices. In this analysis, the main components of market microstructure will play a crucial

role in the management and forecast of liquidity risk.

Section 1.1 will focus on the definition of market microstructure and its main aspects

such as bid-ask spread, market depth, price impact, and the role of information. Section

1.2 will introduce the importance of liquidity in risk management and then examine the

main measures of liquidity risk in section 1.2.1.

1.1 The field of Market Microstructure

Market microstructure is a branch of finance that deals with the study of the structure and

functioning of financial markets, focusing on the trading dynamics and price formation of

financial instruments. This field of research focuses on the most detailed level of market

analysis, considering factors such as the interaction between traders, trading mechanisms,

liquidity, and the impact of information on market dynamics.

One of the main goals of market microstructure is to understand how traders act within

financial markets and how their decisions affect the prices of financial instruments. Market

microstructure studies the trading strategies adopted by traders, such as the use of buy

(bid) and sell (ask) orders, automated trading algorithms, and limit or market orders. These

strategies can have a significant impact on liquidity and price formation. O’Hara (1995),

in fact, defines market microstructure as “[...] the study of the process and outcomes of

exchanging assets under explicit trading rules. While much of economics abstracts from the

mechanics of trading, microstructure literature analyzes how specific trading mechanisms

affect the price formation process.”1

In recent decades, this field of research has gained increasing importance due to the

bigger complexity and speed of financial markets. The most important aspect that research

wants to focus on is the price formation. Market microstructure studies explore how bid

1O’Hara (1995)
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1 THE RELATIONSHIP BETWEEN LIQUIDITY RISK MANAGEMENT AND
MARKET MICROSTRUCTURE

and ask prices are determined, considering factors such as supply and demand, trading

orders, and information available to market participants: the goal is to understand how

prices reflect information and how they adapt to changes in market conditions.2 In order

to answer these questions, an in-depth study of spreads, market depth, and price impact is

needed.

The spread, also known as the bid-ask spread, is the amount by which the ask price

exceeds the bid price for an asset in the market. The ask price reflects a trader’s willingness

to sell an asset while the bid price reflects a trader’s willingness to buy it. Mathematically,

it represents the difference between the lowest demand price (best ask) and the highest bid

price (best bid). A wide bid-ask spread can reduce the profitability of transactions because

traders must overcome a larger price difference to generate tradings. It is a crucial indicator

because it can be seen as a measure of supply and demand for a specific asset: when the

two prices diverge, price action reflects a shift in supply and demand. Traders wishing to

buy or sell a financial asset must consider the bid-ask spread as part of the transaction

costs associated with order execution.

Market depth refers to the ability of a market to absorb relatively large market orders

without significantly affecting the price of the security. It indicates the amount of orders

present at various price levels and is based on the presence of buy (bid) and sell (ask) orders.

Greater market depth indicates a significant presence of bid and ask orders at different price

levels, suggesting that traders can execute large transactions without causing a large price

change. Market depth data may be used to analyze the bid-ask spread for a security, which

can assist traders predict where the price of a certain asset may be headed. A narrower

bid-ask spread indicates greater market depth and can be considered a positive signal,

as it implies greater liquidity and a smaller price difference between buying and selling a

security. To access market depth information, traders can consult the order book, which is

a computerized record of pending buy and sell orders at different price levels, updated in

real time to reflect current market activity. While in the past this information may have

been chargeable, many brokers and trading platforms now offer free views of market depth.

This allows traders to see the full list of pending buys and sell orders, along with their size,

allowing for greater transparency and information in market assessment.

Price impact is a more complex concept that refers to the effect that a buying or selling

transaction has on the price of a financial asset. It indicates the relationship between

trading volume and the change in market price. When a large buy order is executed in

the market, there is a chance that the price of the financial asset will increase due to the

additional demand generated by that order (”upward impact”). On the other hand, when a

large sell order is executed, the price may decrease due to oversupply (”downward impact”).

The magnitude of the price impact depends on several factors, including the size of the order

relative to the average trading volume, market liquidity, price sensitivity to trades, and

2Russell and Engle (2010)
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1 THE RELATIONSHIP BETWEEN LIQUIDITY RISK MANAGEMENT AND
MARKET MICROSTRUCTURE

information asymmetries present, in a directly proportional way: the larger the size of the

order relative to market volume, the greater the price impact. Price impact is an important

concept for market participants because it can affect transaction costs and profitability of

trades. Therefore, managing price impact is a crucial aspect of order execution strategy for

traders, especially in the case of large orders, as its mismanagement can reduce expected

returns or increase trading costs.

Market microstructure also considers the role of information in the price formation

process and trading strategies. Information plays a key role in market microstructure and

influences traders’ trading decisions, distinguishing itself into public and private information.

Public information is generally accessible to all market participants and includes financial

news, quarterly company reports, economic data, and other information that can influence

the prices of financial assets relatively quickly and widely. On the other hand, private

or insider information is that to which only some market participants have access. This

information can be obtained through internal research, data analysis, or possession of

confidential information and may include, for example, acquisition plans, information on

future earnings of companies, or information on the activities of key investors. Information

asymmetries occur when some participants have insider information compared to others.

Market microstructure is concerned with studying how this information, both public and

private, is incorporated into the prices of financial asstes, exploring how information

asymmetries affect market dynamics, liquidity, and asset prices. For example, when

information is released to the public, traders who quickly interpret it and act on it can take

advantage of the price before they fully adjust to the new information.

Trading strategies are often based on analysis of available information. Traders, in fact,

may try to exploit market inefficiencies based on information that they believe to be under-

or over-estimated by the current price of financial instruments. Market microstructure

recognizes the fundamental role of information in the price formation process and traders’

trading strategies, making, therefore, information management a crucial component for

market participants seeking to gain a competitive advantage and make informed trading

decisions.
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1 THE RELATIONSHIP BETWEEN LIQUIDITY RISK MANAGEMENT AND
MARKET MICROSTRUCTURE

1.2 The importance of Liquidity Risk Management

In the recent years, the relationship between risk management e market microstructure

has become increasingly important, gaining more attention especially in times of financial

crises. Many recent studies3 show that one of the most frequent causes of many market

crises is precisely lack of liquidity. Indeed, the financial crisis of 2007-2008 can be seen as a

global financial crisis marked by a liquidity crisis that affected both financial institutions

and states. During the first phase of the crisis, many financial institutions faced severe

difficulties specifically because of the lack of liquidity in the market, despite having adequate

levels of capital. These market crises reminded us that liquidity plays a very important

role in financial markets: studying the impact of liquidity variations due to rapid changes

in market conditions has become essential for risk management nowadays, both because

it is critical to ensuring the proper functioning of financial markets by enabling traders

to execute their transactions quickly and efficiently, manage risk, and reduce transaction

costs, but also because with the advent of High Frequency Data, traders now are forced to

construct new strategies to beat a market in which volatility and trading intensity have

increased significantly.

The advent of High Frequency Trading (HFT) over the 1990s profoundly revolutionized

the structure and functioning of financial markets. The intensive use of computer algorithms

and the ability to process large amounts of data in real time radically changed the way

trading was done. In a high frequency world, the speed with which information must be

incorporated into the market has increased dramatically, making many learning models

used in the past obsolete and increasing the complexity of the HFT strategies to be followed.

O’Hara (2015), in her work, gives us a clear view of how some aspects of this change have

affected the market microstructure, making it an increasingly prominent player in a world

that goes faster and faster.

The assumption that an asset can be traded at a certain price for a certain quantity for a

fixed period of time can no longer be considered realistic, and that is why risk management,

in the past two decades, is focusing strongly on considering liquidity as one of the key

risk factors to consider in an investment, trying to incorporate and predict liquidity risk

through the tools it has available.

However, a paradox in the market microstructure research is the lack of an objective

definition of liquidity. Black (1971) explains the concept of a liquid market by saying: “. . .

a liquid market is a continuous market, in the sense that almost any amount of stock can

be bought or sold immediately, and an efficient market, in the sense that small amounts of

stock can always be bought and sold very near the current market price, and in the sense

that large amounts can be bought or sold over long periods of time at prices that, on average,

are very near the current market price.”. Kyle (1985), on the other hand, describes the

concept of market liquidity by introducing three different aspects:

3Matz and Neu (2007)
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1 THE RELATIONSHIP BETWEEN LIQUIDITY RISK MANAGEMENT AND
MARKET MICROSTRUCTURE

• “tightness” refers to the cost of turning over a position in a short period of time.

Obviously the higher market tightness the lower will be the liquidity, since the

transaction costs to close the position will be more.

• “depth” refers to the ability of the market to absorb quantities without having a large

effect on price. It is nothing more than the size of an order flow required to move the

price by a given amount.

• “resiliency” refers to the speed with which prices tend to converge towards the

underlying liquidation value of the asset, generally it measures the rate at which

prices recover from a random shock.

Subsequently, Harris (2002) introduces another important aspect of the market liquidity

that is the “immediacy”, which refers ”. . . to the ability to trade large size quickly at a low

cost when you want to trade”. It could be considered as a measure of the time opportunity

cost, that increases for all those investors who are unable to find a suitable counterpart to

conclude the transaction.4 Therefore, we can conclude that liquidity refers to the ease with

which financial assets can be bought or sold without causing significant changes in market

prices and is considered the central aspect of the market microstructure.

As a matter of fact, liquidity risk refers to the possibility that a financial asset cannot

be traded easily or at a desired price without causing a significant reduction in its value. In

other words, liquidity risk indicates the difficulty of converting a financial asset into cash or

executing large orders without significantly affecting the price of the asset. The greater the

illiquidity of a security, the more investors demand an illiquidity risk premium in addition

to the security’s yield.5

Bangia et al. (1999) argue that the liquidity risk is an important component in capturing

the overall risk. They divide the overall market risk, defined as uncertainty in market value

of an asset, into two parts: uncertainty about future asset returns, which is described by

the “pure” form of market risk and concerns uncertainty about prices and returns due to

market movements, and uncertainty about liquidity, described by the additional liquidity

risk component and concerns the uncertainty of liquidation costs. These costs arise from

the fact that in a real friction market, traders, when liquidating a position quickly, realize

a liquidation price that is lower than the mid-price.

Liquidity risk is, in turn, divided into two types: exogenous and endogenous liquidity.

Exogenous liquidity risk is common to all market participants and cannot be affected by

the actions of any one trader. It is influenced and reflects the market characteristics such

as market depth and bid-ask spread. Endogenous liquidity risk, on the other hand, is

related to the position taken by the trader. It is different for each market participants and

it is mainly driven by the size of the position in a directly proportional way. The effect of

4Emna and Chokri (2014)
5Qi (2011)
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1 THE RELATIONSHIP BETWEEN LIQUIDITY RISK MANAGEMENT AND
MARKET MICROSTRUCTURE

Figure 1: Bangia et al. (1999): Taxonomy of Market Risk

endogenous liquidity is most evident when the volume traded by the investor exceeds the

quote depth (the volume of shares available at the quoted price): the endogenous liquidity

risk becomes higher as the position size increases. It is usually appropriate to consider

both components to best investigate liquidity risk. Figure 1 illustrates schematically the

taxonomy of Market Risk just described.6

1.2.1 Measures of Liquidity Risk

Liquidity is a broad and multidimensional concept that encompasses various aspects

important to financial traders and investors that do not allow it to be captured in a single

measure. There are several measures used to calculate liquidity risk, most of them based

on microstructure data.

The bid-ask spread is the most common indicator for measuring market liquidity risk. It

is inversely correlated with the liquidity: a wider bid-ask spread indicates a greater distance

to match price intentions of sellers and buyers, suggesting less liquidity in the market. This

implies that traders may have to pay a higher premium, as they have to overcome a larger

price gap between the bid and ask price, or accept a larger discount to execute transactions

making it more difficult to buy or sell a financial asset at the desired price. It is a natural

measure of liquidity because it represents the cost of immediate execution, that is the

difference between the price at which a trader can buy and the price at which he can sell

the asset. Because of its simplicity, intuitiveness, and comprehensibility, it is one of the

most widely used measures for extracting information about market conditions. However, it

does not take into account a number of crucial aspects of liquidity such as: trading volume

and market depth, as the bid-ask spread only measures the difference between the ask price

6See Bangia et al. (1999) for more details.
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1 THE RELATIONSHIP BETWEEN LIQUIDITY RISK MANAGEMENT AND
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and the bid price at the time of measurement but does not take into account the amount

of securities available at those prices.

For this reason, another widely used measure for calculating liquidity is trading volume.

It represents the number of securities or financial contracts traded in a given time period

and is closely related to liquidity, as it is a key indicator of market activity. High volume

can indicate greater liquidity, as there are more participants willing to buy and sell, thus

reducing the risk of significant price impact during trades. In contrast to the bid-ask spread,

trading volume is sensitive to supply and demand in the market and takes into account

the number of trades made in a given time period, allowing for a measure of liquidity that

reflects market activity over a specific period. In fact, while the bid-ask spread focuses on

the immediate cost of trading a security or financial asset and provides a direct measure

of the difference between buying and selling prices, trading volume provides a broader

view of overall market activity over a specific period. Both measures are important in

assessing the liquidity of a security or market, but each has a different approach and

provides complementary information.

Since liquidity is a very broad and varied concept, trading volume should also be used in

conjunction with other measures of liquidity, such as price impact, to obtain a comprehensive

assessment of liquidity and make informed decisions in the context of trading and investing.

It is a crucial measure for assessing liquidity because it indicates how much the price of an

asset may vary in response to a given amount of trading volume. In academic research,

many researchers have tried to investigate methods and models to calculate this aspect of

liquidity risk. One of the pioneers who tried to study this aspect is Albert S. Kyle.

Kyle’s model, introduced by Kyle (1985), is one of the most important models of market

microstructure and asset pricing theory. It was developed to analyze the role of information

asymmetries among investors in determining asset prices and market liquidity. The model

seeks to explain how interactions between informed traders (insiders), who knows private

information, and a market maker can influence asset prices and market liquidity. The key

intuition that can be deduced from Kyle’s model concerns precisely the concept of price

impact. Kyle demonstrated how the transactions of insiders affect asset prices because

they act on their private information while trying to maximize their expected profit. This

generates a positive relationship between transaction volume and price change (precisely the

price impact, as described in Section 1.1) because the market maker, unable to distinguish

the volume generated by the insider trader from that of the noise trader, sets the price as an

increasing function of the total quantity traded without taking into account the imbalance

in order flow resulting from information asymmetries.

The equilibrium proposed by Kyle’s model can be synthetically represented by the

regression of price change ∆Pt on trading volume as:

∆Pt = µ+ λvt

13
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where µ is a constant, vt is the total quantity traded (transaction volume) and the

constant λ is the so-called Kyle’s Lambda which is the sensitivity of price to total demand

and is affected by the standard deviations of the fundamental price and noisy trades.7

In summary, Kyle’s model mathematically expresses how market liquidity is directly

proportional to the volume of total transactions. It has provided a solid theoretical basis

for understanding the role of asymmetric information and trading in determining asset

prices and market liquidity, and its influence in the academic literature is considerable.

Brennan and Subrahmanyam (1996) measured stock liquidity by price impact using the

methods of Glosten and Harris (1988) and Hasbrouck (1991), both based on Kyle’s model.

The main difference with Kyle’s model is that in this case the price impact is measured by

taking into account both the variable trading cost, measured by Kyle’s λ, and the fixed

cost, represented by the bid-ask spread. Trivially, a variable is added to the equilibrium

equation of the model to account for the fixed part of the trading costs.

All of these measures of liquidity require intra-daily transaction data for their calculation

that might be unavailable in many stock markets. To overcome this problem, it is possible

to consider rough measures of price impact that do not need microstructure data: the

most important is the illiquidity measure, called ILLIQ, described by Amihud (2002). He

defined it as ”the daily ratio of absolute stock return to its dollar volume, averaged over

some period and can be interpreted as the daily price response associated with one dollar

of trading volume”.8 It is calculated using daily transaction data and volumes that are

available in most markets over long periods of time and it has been shown by the author

himself that this measure is positively and strongly related to measures of liquidity based

on microstructure data, thus indicating that both of them provide an indicative estimate of

price impact.

Another measure widely used by high-frequency traders to measure liquidity risk is the

Volume Weighted Average Price (VWAP ). VWAP is a widely used indicator in market

microstructure to measure the volume-weighted average trading price of a financial asset

during a given time period. Since it is a technical analysis indicator, it is used for intra-day

trading and is therefore calculated for the trading day by resetting itself at the beginning of

each new trading session. It is an indicator used mainly by investors who prefer to adopt a

passive investment style9, and its main function is to represent a trading benchmark10, as it

7Ekren et al. (2022)
8The formula is defined by the following equation:

ILLIQiy =
1

Diy

Diy∑
t=1

|Riyd|
V OLDiyd

where Diy is the number of days for which data are available for stock i in year y, Riyd is the return on
stock i on day d of year y and V OLDiyd is the respective daily volume in dollars. See details in Amihud
(2002).

9Berkowitz et al. (1988)
10Madhavan (2002)
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is able to show the relationship between the price of the asset and its total trading volume,

allowing traders to execute orders that are in line with market volume at a fair price.

Executing orders at this price allows investors to reduce transaction costs by minimizing

market impact costs, which are all such costs that arise from market liquidity.

Since it is a weighted average price, its formula will have the same structure as the

moving average:

VWAP =

∑
(Pi · Vi)∑

Pi

where VWAP is the Volume Weighted Average Price, Pi is the trading price at time i and

Vi is the trading volume at time i.

In summary, the Volume Weighted Average Price is a versatile indicator that provides

key information about the liquidity of a market or financial asset. Its sensitivity to trading

volume makes it a valuable tool for market participants and analysts in assessing market

conditions and developing effective trading strategies.
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2 Methodology

This section explains the methodology, the type of data used and the mathematical concepts

behind the empirical models applied. In the era of high frequency and advanced technologies,

market microstructure has evolved to understand the impact of high-frequency data on the

dynamics of financial markets. High-frequency data provide detailed transaction information,

such as prices, volumes, and execution times that provide a better understanding of trading

patterns, traders’ strategies, and the evolution of liquidity over time.

In this empirical study, ultra-high-frequency data are used to estimate the parameters

of empirical scaling laws that provide predictions of liquidity risk. The scaling law method

does not consider assumptions about distributions of returns by managing to capture all

that information, given the abundance of available data, that would be lost if low-frequency,

and time-equidistant data were used. Section 2.1 will introduce the concept of scaling laws,

focusing on its property of scale invariance, which is the underlying assumption of this

study.

Empirical models based on scaling laws have already been applied to risk management

and volatility modeling.11 Section 2.2 presents the new empirical models, introduced in this

study, used to estimate liquidity risk. The methodology is based on the paper presented by

Qi et al. (2018) and aims to incorporate the relationship between trading volume and price

impact to assess the liquidity risk of an asset. The main objective of this work is precisely

to find a scaling law that relates liquidity measures with different time intervals in order to

predict their values at any future time horizon.

2.1 The concept of scaling law

A scaling law is a common concept in several scientific disciplines that describes a mathe-

matical relationship between two or more variables that change proportionally with respect

to a specific scale of magnitude. In particular, a scaling law expresses how the properties of

a system change with respect to the size or scale of the system. Its most important property

is precisely scale invariance, i.e. the ability to express this relationship as a power law that

remains unchanged with respect to the scale magnitude. The concept of scale invariance is

the basis of this work, without it all the analyses performed would be worthless. It refers

to the property that the distribution of the quantities in a specific phenomenon remains

the same at a different scales of measurement. A phenomenon observed at different scales

of magnitude will assume a distribution with a similar general shape for each magnitude,

even though the specific values may vary.

The concept of scale invariance has applications in many scientific and technological

fields. In geometry it is referred to when talking about fractals. They are geometric objects

that repeat their shape in the same way on different scales, so when you enlarge or reduce

11Muller et al. (1990), Glattfelder et al. (2011), Qi et al. (2018)
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it you get a figure similar to the original complete object. In the field of economics, the

Pareto distribution is a common example that clearly demonstrates scale invariance. This

distribution is often used to model the distribution of wealth of different subjects and

suggests that the frequency of people with a given amount of wealth follows a power law,

regardless of the level of wealth. In the field of finance, power laws and scale invariance are

often used to describe the distribution of financial returns and price movements in financial

markets. Hence the importance of these aspects for this work. The ability to identify risk

and return models that are based on scale invariance allows financial analysts to assess and

predict risk for any time interval, improving the flexibility and accuracy of the models.

In a power law, one variable is proportional to the power of another variable, often

expressed through an equation of the type:

y = Cx−α

where y is the dependent variable, x is the independent variable, C is a constant coefficient,

α is a power exponent that determines the slope of the curve.

Usually, the general form of the power law distribution is:

p(x) ∝ L(x)x−α

where L(x) is a function that slowly varies due to the scale invariance of p(x).12 When

L(x) is a constant, the distribution becomes:

p(x) = Cx−α

and so given a relation of this type, scaling the argument x by a constant factor k causes

only a proportionate scaling of the function itself. That is,

p(kx) = C(kx)−α = k−αp(x) ∝ p(x).

A distinguishing feature of power laws is that when the data are represented on a logarithmic

scale, the relationship between the variables appears as a straight line.

Figure 2 is a log-log plot that shows an example of the power law regression line for

the NASDAQ Composite Index using 1-minute data from May 2022 to My 2023. The red

dots represent the observed value of the variables related by the power law, while the blue

line represents the fitted value of the regression line that explains the relationship between

the variables. The graph shows, on a logarithmic scale, the good fit of the variables to a

straight line, indicating that the power law is a good representation of the data. The scale

invariance property should assert the law for any chosen set of thresholds: in the example,

12Clauset et al. (2009)
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Figure 2: An example of the estimated scaling law regression line (1.3) for the NASDAQ
Composite Index using 1-minute data from May 2022 to May 2023. The x-axis represent
the ∆t and the y-axis the average |λ| for the chosen time interval.

the threshold time intervals ∆t = {0.5, 1, 2, 4, 8, 16, 32, 64} (hours) are applied to obtain

the average |λ| for the single sampling window to demonstrate their power relationship.13

Looking at the graph, it is evident how the basic hypothesis for the validity of the scale

invariance is acceptable in this empirical work.

13Following the procedure adopted by Qi et al. (2018).
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2.2 Empirical models used to estimate Liquidity Risk

The empirical scaling law method applied in this study is based on a multi-time scale

analysis that considers the most popular microstructure liquidity measures, already used in

the risk management framework. The choice of this type of measure was mainly forced by

the use of high-frequency data. To demonstrate the presence of scale invariance in financial

markets, there is a need for a large amount of data that provides an overall picture of

the financial situation at each moment of the trading day. For this reason, the liquidity

measures, subject to the analysis, must refer to the market microstructure in order to

obtain results consistent with the objective of the work.

The first model (M1) is based on Kyle’s Lambda (λ) and wants to explore the possible

relationship between the average absolute value of λ in a certain interval and the size of the

interval itself. In particular, it wants to demonstrate the existence of a scaling law between

the two variables, to obtain future predictions of λ values based on the averages calculated

in pre-specified time intervals.

Let denote the price and trading volume of an asset in a certain time interval ∆t as P∆t

and V∆t
14 and calculate λ as described by Kyle (1985):

∆P∆t = µ∆t + λ∆tV∆t (1.1)

To remark the dependence with the time interval, let denote the obtained λ values with

the symbol ∆t. Then, to study the relationship between the liquidity variable and the time

variable, we apply the following scaling law in its general form:

E(|λ∆t|) = c(∆t)β (1.2)

where c is a constant, β is the scaling exponent and E(.) is defined as the averaging

operator.15 Thus, in this analysis, the independent variable is the time interval ∆t, which

can be pre-specified, and the dependent variable is the average value of λ obtained, thanks

to the high-frequency data, in the corresponding time interval.

To obtain the parameters of the scaling law, it is sufficient to calculate a simple Ordinary

Least Squares (OLS) regression on the logarithms of both terms of Equation (1.2).16 Taking

the logarithms, in fact, we obtain a relation of the type:

log(E(|λ∆t|)) = log(c) + β · log(∆t) (1.3)

where the scaling parameters are the slope β and the intercept log(c) of the linear relationship

14Consider that P∆t = {P (τ); τ ∈ [t−∆t; t]} and the same for V∆t
15E(x) = 1

n

∑n
j=1 xj

16Remember that, on a logarithmic scale, the relationship between the two variables becomes linear,
grealty simplifying the calculation of the scaling parameters.
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that arises from λ and the time interval ∆t. Now, if the scaling law exists, given its scale

invariance property, the M1 model should satisfy:

E(k × |λ∆t|) ∝ E(|λ∆t|) (1.4)

and should hold for any chosen time interval.17

Once the parameters of the scaling law have been calculated, to obtain the future value

of the price impact (λ) it will be sufficient to substitute the time interval of interest into

the scaling law (1.2). For example, if there is interest in knowing the future daily estimates

of λ it will be enough to substitute the time interval equal to the working day (in minutes)

into the power law.

Note that in this scaling law only the magnitude of the price impact is analyzed and

not its direction: the goal is only knowing the magnitude of the impact that volume has on

the price change without determining whether this impact is positive or negative. Focus

on studying the absolute value of λ allows to get a generic liquidity measure that provide

information about the cost of liquidity and the volatility of the price with respect to the

volume. The analysis of the magnitude of the price impact may help traders to detect market

anomalies, without considering the specific direction of the price movement. Moreover, to

compare liquidity risk among different securities, the magnitude of the price impact may

be a standardized and neutral measure, allowing traders to assess which security might be

more suitable for possible trading strategies.

The second model (M2) is based on the VWAP and more precisely on the ratio between

the closing price P and the corresponding VWAP . This ratio is a very important indicator

for intraday traders because it allows them to implement trading strategies that take into

account both the trade’s benchmark (VWAP ) and the price of the asset itself. Examining

the Liquid Ratio (P/VWAP ) consent to measure the efficiency of order execution but also

to study the trend of the stock price. In fact, comparing the current price to the VWAP

can help traders to assess the strength and direction of a trend, but also to identify possible

break out points by using the VWAP as a reference to identify key levels of support

and resistance, useful to implement intraday strategies which take advantage of trading

opportunities that may occur.

The Figure 3 show an example of how price and the corresponding VWAP interact with

each other. The chart depicts a 1-minute time frame during a period of five working days

(the red dots represent the end of each day) in which the 1-minute price of the NASDAQ

Composite Index (the blue line) is compared with the corresponding 1-minute VWAP

(the orange line) calculated using the formula introduced in Section 1.2.1. Looking at the

graph, intraday traders may obtain multiple information through the P/VWAP analysis.

In the first day it is possible to notice that the price is always below the VWAP : this

17With k that is a simple drift constant component.
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Figure 3: The comparison between the Price and the VWAP of the NASDAQ Composite
Index for five working days using 1-minute frequency data.

situation may reflect a bearish trend in the asset price, mainly due to a lack of liquidity.

Remember that VWAP is calculated by weighting price for the trading volume, which

means that stocks traded with higher volumes will have a greater impact on the VWAP .

If the price remains consistently below the VWAP , it could indicate that most of the

traded securities were trading at lower prices, suggesting possible limited liquidity. In the

opposite case, where price fluctuates around the VWAP line, a typical strategy of intraday

traders is to use VWAP in conjunction with mean reversion strategies. If price deviates

significantly from the VWAP , as in the second and in the fourth day of the example, they

might take actions to exploit a possible mean reversion in which price returns toward the

VWAP . In fact, many trading algorithms often seek executions close to the VWAP to

minimize market impact and reduce liquidity risk. In conclusion, studying the deviation of

the price from the VWAP through the Liquid Ratio P/VWAP may help traders to asses

the liquidity of a securities by using it as a rough measure of the cost of liquidity.

The M2 model takes its inspiration from the original Maximal Price Change scaling

law of Glattfelder et al. (2011), which is also found in Qi et al. (2018). In this case, in

order to capture price movements relative to VWAP within the time interval and study

the volatility and dynamic nature of the asset over time, we use the concept of maximum

change. The aim of this scaling law is to study the trend of the Liquid Ratio and in

particular the maximum difference of it, to capture the volatility of the liquidity cost and

to assess its variability over time.
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First, the daily 1-minute VWAP is calculated using the high-frequency data and the

general VWAP formula:

VWAPt =

∑t
i=1 Pi · Vi∑t

i=1 Vi

(2.1)

where t = 1, 2, . . . , n represents the minute of the trading day, VWAPt represents the

Volume Weighted Average Price at time t, Pi represents the price time series from i = 1 to

t, Vi represents the volume trading time series from i = 1 to t. Note that since VWAP is a

measure used in technical analysis by intraday traders, the calculation of this indicator is

reset at the beginning of each trading session and recalculated for the next day.

Next, let LR denote the 1-minute Liquid Ratio between the price P and the correspond-

ing VWAP as:

LRt =
Pt

VWAPt

.

Now it is possible to define the Maximal Liquid Ratio Change (MLRC) as the difference

between the highest and the lowest value of the Liquid Ratio within a certain time interval

∆t:

∆LRMAX
∆t = max{LR(τ); τ ∈ [t−∆t; t]} −min{LR(τ); τ ∈ [t−∆t; t]} (2.2)

Figure 4: An illustration for calculation of the Maximal Liquid Ratio Change (MLRC)
∆LRMAX

∆t in a daily interval.

22



2 METHODOLOGY

Figure 4 shows an example of how the MLRC is calculated. The chart depicts the trend

of the Liquid Ratio (blue line) during the working day 03 May 2023 and the corresponding

value of MLRC for the specific time interval ∆t, given by the difference between the

maximum value and the minimum value. For simplicity, the working day was chosen as

∆t threshold, but the calculation follows the same procedure regardless of the size of the

interval. The MLRC is the analysis variable that provide a way to measure liquidity risk.

The proposed scaling law investigates the possible relationship between the size of this

liquidity measure and the size of the time interval in which it occurs, described by the

following equation:

E(∆LRMAX
∆t ) = c(∆t)β. (2.3)

The scaling law takes the same form of that in the first model. To calculate the parameters

of the scaling law, the same steps as in model M1 are performed: the logarithms of both

terms in Equation (2.3) are taken and the parameters of the scaling law are estimated

by linear OLS regression on the newly obtained equation. Also in this case, due to scale

invariance property demonstrated by the existence of the scaling law, it is possible to

estimate the future values of the liquidity variable.

These two models just introduced are the basic models, based on the simple arithmetic

mean in which equal weight is assigned to all data in the range considered. Based on

the scaling laws proposed by Qi et al. (2018), it is possible to extend the basic models

by replacing the averaging operator with the exponential moving average (EMA). The

exponential moving average is used to examine the exponentially declining impact over

different time intervals, employing exponentially decreasing weights, which assign the least

weight to the oldest liquidity variable and increasing weights for the most recent ones. The

EMA responds more quickly to changes in the underlying data and is preferred if is desired

a more dynamic view of liquidity trends. As with the basic models, the entire time span

T of the sample window is divided into n equidistant sub-intervals ∆ti, (i = 1, . . . , n) and

then the EMA is applied instead of the simple mean to the liquidity variable.

So the extended first model, called M1.1 model, is a scaling law with equation:

EMA(|λ∆t|) = c(∆t)β (1.1.1)

where the dependent variable EMA(|λ∆t|) is calculated as:

EMA(|λ∆t|) =
n∑

i=1

wi · (|λ∆ti |)

with wi =
δ×(1−δ)(i−1)∑n
i=1 δ×(1−δ)(i−1) the weight of the EMA(|λ∆t|) with property

∑n
i=1wi = 1 and

δ = 2
n+1

.
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The second extended model (M2.1) is calculated following the same previous procedure

but using the Maximal Liquid Ratio Change ∆LRMAX
∆t as liquidity variable of interest. The

scaling law, therefore, will have equation:

EMA(∆LRMAX
∆t ) = c(∆t)β. (2.1.1)

where the dependent variable EMA(∆LRMAX
∆t ) is calculated as in model M1.1 and follows

the same properties.

In conclusion, a brief recap of the steps to follow for all the scaling laws is left below:

1. the entire in-sample time span T is divided into n equally-spaced sub-intervals

∆ti, (i = 1, . . . , n). The size of the time interval is irrelevant because of the property

of the scale invariance, which allows the scaling laws to be valid for any chosen set of

thresholds.

2. For each subinterval ∆t, we calculate the time series of the liquidity variable of

interest, the λ for M1 and M1.1 and the maximal Liquid Ratio change ∆LRMAX
∆t

for M2 and M2.2, and the mean values obtained at the different subintervals. In

this way for each time interval, is obtained the corresponding simple average value

(exponential moving average value) of the liquidity variable for basic models (for

extended models).

3. To estimate the scaling law parameters, we perform an OLS linear regression on the

logarithms of the size of time interval and mean values obtained previously, and check

by a log-log plot whether the scaling law exists. If the scaling law exists the plot

should show a straight line passing through the regression points (also by looking at

the values of R2, that represent the goodness-of-fit of the regression, it is possible to

determine if the scaling law is a good representation of the data. Generally, in all the

scaling laws, the values of R2 are above 0.97, indicating that more than 97% of the

variation in the liquidity variables can be explained by the time variable).

4. Once the parameters of the power law have been obtained, given its property of scale

invariance, it is possible to estimate the future values of the liquidity variables only

by specifying the future time interval for which we want to obtain the estimates. In

this study, given the use of high-frequency data and liquidity measures related to

market microstructure, the interest is mainly on obtaining future daily risk estimates.

The latter can then be used to formulate appropriate trading strategies or to monitor

the performance of current trades.
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3 Empirical Results

The aim of this section is to examine the empirical results obtained through the application

of the methodologies described in the previous section.

Section 3.1 presents a detailed description of the high-frequency data used for the

analysis, while Section 3.2 focuses on evaluating the validity and performance of the models

by comparing the results obtained with the scaling law methods and actual values of

liquidity risk measures, choosing the best models based on detailed residual diagnostics.

Key findings are illustrated through graphs, tables, and other visual representations to

highlight any trends and relationships emerging from the data.

3.1 Data Description

In this empirical analysis, to better understand the relationship between volume and price

impact and to assess the liquidity risk of an asset, the NASDAQ Composite Index (.IXIC )18

is examined. It was preferred over others stock market indexes because it is a market

capitalization-weighted index, which means that companies with greater capitalization will

have a greater impact on the index’s performance. Value-weighted indexes are preferred in

this type of analysis precisely because the weight of each stock is proportional to its market

capitalization, which is the total market value of a company’s shares, taking into account

both the price and volume of shares on the market. In addition, the NASDAQ Composite

Index is composed of stocks that are listed exclusively on the NASDAQ Stock Market,

which is home to many technology-related companies and high-growth sectors, leading the

index to be more volatile than the others, causing stock price fluctuations to be larger

and faster. Finally, the NASDAQ Composite Index was preferred over the NASDAQ-100

because it is more generic by representing the entire NASDAQ stock market.

The initial purpose was to work with tick-by-tick data, but given the difficulty in finding

these types of data (especially for past years), the use 1-minute frequency data is preferred,

which should not change the analysis and results found. The 1-minute frequency data we

used were from 05-May-2022 to 03-May-2023 and included 156760 observations19. The

peculiarity of high-frequency data is precisely that it is not necessary to go very far back in

time to obtain a sufficiently large time series to work on: even a single year generates a

massive amount of data.

Once all the necessary data (local date, local time, price20, trading volume21) have been

collected, the first step in order to begin the analysis is to clean the sample, taking into

18This is the NASDAQ Composite Index ticker that can be downloaded from most of the electronic
trading platform.

19The 1-minute frequency data are provided by REFINITIV.
20The closing price is preferred to the other types of prices because it can be representative of market

dynamics.
21The trading volume is converted into logarithm to work with more interpretable values. The empirical

results of the work does not vary if the actual values are considered.
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account only the prices and volumes of orders that were executed when the NASDAQ stock

market was open. Given the focus of this analysis on stock indexes rather than exchange

rates, which are actively traded in the 24-hour FOREX markets, it is essential to consider

the trading hours of the relevant stock market and the impact of holidays when exchanges

may be either fully closed or have early closing times. The NASDAQ stock market typically

operates during regular business hours, which are from 09:30 a.m. EST (3:30 p.m. Italian

time) to 04:00 p.m. EST (10:00 p.m. Italian time) on weekdays, with a significant number

of scheduled holidays. Specifically, the U.S. stock exchange remains closed on the following

dates:22

• New Year’s Day (02-Jan 2023)23

• Martin Luther King’s Day (16-Jan-2023)

• Presidents’ Day (20-Feb-2023)

• Good Friday (07-Apr-2023)

• Memorial Day (30-May-2022)

• Juneteenth National Independence Day (20-Jun-2022)23

• Independence Day (04-Jul-2022)

• Labor Day (05-Sep-2022)

• Thanksgiving Day (24-Nov-2022)

• Christmas Day (26-Dec 2022)23

It is noteworthy to mention instances when the market follows an early closure schedule, as

observed on the day following Thanksgiving Day (Nov. 25, 2022). On such day, the market

opens only in the morning, with trading concluding at 01:00 p.m. EST, consequently, it

will not be considered in the analysis.

Upon completing the data cleaning process, the empirical analysis may begin. It will be

carried out on 248 trading days. each characterized by a trading duration of 6 hours and

30 minutes (391 observations per day) for a total of 96968 total annual observations.

Figure 5 plots the daily prices and the daily volumes24 for the NASDAQ Composite

Index from the 05-May-2022 to 03-May-2023. Looking at the graph, it is interesting to note

that trading volumes show peaks in the middle of each quarterly month. This phenomenon

can be attributed to the release of quarterly financial reports by technology companies

listed on the NASDAQ market, exerting substantial influence on trading activities.

22The brackets show the dates in our sample.
23If the festivity falls on the weekend, the market closes on the following Monday.
24The daily price represents the closing price observed in the last minute of each trading day, whereas

daily volume encompasses the cumulative trading volumes recorded throughout the respective day.
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Figure 5: The daily prices (left) and the daily volumes (right) of the NASDAQ Composite
Index in 2022-2023.

To evaluate the validity and performance of the models, we divided the sample into

two sub-samples: the in-sample window, which refers to the data used to estimate the

parameters and fit the model, and the out-of-sample window, the data used to evaluate

the performance of the model by comparing the obtained estimates with the actual values.

Following Qi et al. (2018), who show that to obtain good risk prediction performance it

is sufficient to consider 1 month in-sample data, 20 working days (which corresponds to

an actual month if holidays are excluded) will be considered as in-sample dataset in the

analysis. The out-of-sample evaluation period, therefore, will consist of the remaining 228

working days.

Considering the scale invariance property of the scaling law method, any length of the

time variable can be chosen to estimate the liquidity variable. However, given the focus on

liquidity measures primarily applied in intraday trading, it is considered more appropriate

to concentrate on daily risk forecasts. The in-sample windows, in fact, progress by one day,

leading to the re-estimation of the scaling laws parameters on a daily basis using updated

in-sample 1-minute datasets. In other words, tomorrow’s estimates are obtained from the

previous month.

Instead of presenting 912 OLS regressions models on the log-transformation of the

scaling laws, Table 1 summarizes the average estimated scaling law parameters and the

goodness-of-fit, reported as R2, for all the power laws.25

Scaling Law Models Intercept Slope R2

Model 1 4.0651 -0.7937 0.9745
Model 1.1 4.1567 -0.8222 0.9785
Model 2 -7.8815 0.5413 0.9970
Model 2.1 -7.8613 0.5391 0.9967

Table 1: The average estimated scaling law parameters.

25See Appendix A for more details.
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3.2 Forecasting Performance Results

Two different criteria are used to evaluate model performance. In the case of the first M1

model (and its extension M1.1), the estimates obtained through the scaling law method

were compared with the actual daily λ value. Again, in order to assess the actual validity

of the model, it was preferred the comparison with the absolute value of daily λ, taking

into account only the magnitude of the price change without looking at the direction. This

measure allows us to know how much the trading volume impacts the price change for

each business day and represents the variable of interest to estimate. Daily Kyle’s Lambda

λ were calculated using the same formula (Eq.(1.1)) by fixing the time interval ∆t to

the trading day. The time series of daily λ is stationary, as can be seen by running an

Augmented Dickey-Fuller Test26 that allows us to study stationarity by testing the null

hypothesis that a unit root is present in the time series sample. Working with stationary

time series is very important because it allows us to simplify the predictability of future

values, improving the efficiency and consistency of the models over time.

For the scaling law, a ”rolling window” framework was used to estimate the model

parameters. The scaling law parameters are estimated by a simple linear OLS regression

with a monthly in-sample data window that is moved forward one day at a time27, each

time re-estimating the model parameters. In this way, daily risk estimates are obtained

using the previous month’s data and then compared with the corresponding actual value.

The graphical results of daily risk forecasts using the M1 model are shown in Figure 6.

The light blue line represents the absolute value of λ for each trading day. The series

moves in a range from a minimum of λ = 0.0013 to a maximum of λ = 2.4585 and seems

to alternate between periods of high volatility, characterized by high jumps, and periods of

settling in which λ values are more contained. Moreover, the highest peaks seem to occur

always in the last trading days of the month.

The risk forecasts derived from the scaling laws are depicted by the red line (basic M1

model) and the black line (extended M1.1 model), with the blue line representing the monthly

moving average of daily λ (simply the average of previous monthly values). Graphically,

the models exhibit good prediction of the dynamic fluctuations in risk and volatility, yet

they falter in forecasting extreme movements (both spikes and losses). Nevertheless, when

comparing the risk forecasts with the moving average, it becomes evident that they closely

align with the overarching dynamic trend of λ. This suggests that the models’ estimations

successfully anticipate the average price impact trend. Despite the notable daily λ volatility

and occurrences of extreme fluctuations, the shape of the risk forecast curves follow the

real trend of λ values.

Regarding the second M2 model, to evaluate the model performance the estimate

obtained through the scaling law (2.3) are compared with the daily maximum fall of the

26Dickey and Fuller (1979)
27In this case, one-day rolling window means large volumes of 1-minute data

28



3 EMPIRICAL RESULTS

Figure 6: The scaling laws forecasting results of basic and extended M1 model using NASDAQ
Composite Index (out-of-sample period is from 03 Jun 2022 to 03 May 2023).

P/VWAP , i.e. the biggest negative change of daily Liquid Ratio (LR). In this case, the

goal of the model is not to study the effective future value of the Ratio, but to study the

maximum amplitude of it, in order to understand how far the price can deviate from its

benchmark value VWAP and analyse the relationship.

The expected value for the maximum change in the Liquid Ratio (MLRC) over a daily

horizon can be interpreted as a measure of the stock’s liquidity risk for the next day. It

represents the maximum amount of fluctuation that is expected for the P/VWAP ratio

during the trading day. Fluctuations in this liquidity measure may be due to various factors

and market conditions, mainly occurring when there are changes in trading volumes. Since

VWAP is a volume-weighted measure, a significant change in volume can greatly affect

its value, leading to fluctuations in the LR measure. So, also this measure allows us to

consider the relationship that exists between price impact and trading volume.

Also for this model is used the same calculation procedure. First, the 1-minute P/VWAP

ratio was calculated for each trading day using the formula given by Eq.(2.1). Subsequently,

for each business day was calculated the biggest negative change of the ratio in order to

consider only the greatest drops of the ratio. Usually, rapid falls in the P/VWAP are due

to an increase in the volume trading, which, by increasing the value of VWAP , inversely

impacts the ratio. A large drop in it may be a symptom of bearish pressure and market

weakness, due to the fact that the stock is facing difficulties in maintaining previous price

levels leading to increased selling by investors, or a correction of a previous rally, a situation
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Figure 7: The scaling laws forecasting results of basic and extended M2 model using NASDAQ
Composite Index (out-of-sample period is from 03 Jun 2022 to 03 May 2023).

in which the ratio was initially above 1 and then fell sharply below 1, due to a slowdown in

prices after they had been rising above the volume-weighted average of trading for a certain

time. Once calculated the daily maximum fall, as for the M1 model, a ”rolling window”

framework was used to estimate the model parameters of the scaling laws. The forecasting

performance in the scaling law M2 method is shown in the Figure 7.

In this case the light blue line represents the maximum fall of the LR over a daily

horizon. Also in this case the series is stationary28, but seems to be less volatile than the λ

series. The alternation of period with high volatility and period with lower volatility is more

evident: for an initial period the maximum fall shrinks until the end of August 2022 and

then have some big drops from September 2022 to November 2022 and reduce again after it.

The forecasted daily Maximal Liquid Ratio Change (MLRC) using the basic model M2 and

the extendend model M2.1 are represented respectively by the red line and the black line.

Graphically, the dynamic trend of the maximum fall is well represented by the forecasts

of the scaling laws, in particular, in contrast to the M1 model, they underestimate the

maximum fall and fail to predict extreme movements only in the period when the biggest

drops are concentrated (from September 2022 to November 2022). In general, however,

the forecast curve is very similar to that of the actual values, especially during periods

characterized by smaller and less volatile maximum drops, implying that, on average, the

model effectively predicts the Liquid Ratio trend when market conditions are stable.

28By running an Augmented Dickey-Fuller test by Dickey and Fuller (1979)
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(a) Inverted M2 model (b) M1 model

Figure 8: The relationship between trading volume and price impact explained by the scaling
law models.

One peculiarity that can be seen from both graphs is that, by inverting the graph of

the M2 model, the shape of the forecast curves follows a fairly similar trend. Figure 8

depicts this characteristic: initially, the curves decrease, indicating that during the summer

months the markets slow down and trading volume has less impact on price29, and then rise

sharply in the period from September 2022 to November 2022 and reassess thereafter taking

more or less constant values in the period from January 2023 to April 2023. This feature

illustrates the functionality of both models in capturing the relationship between trading

volume and price impact, consistently evaluating liquidity risk. This capability enables the

combination of both measures to yield a more comprehensive and holistic perspective on

market liquidity.30

Relying solely on a single graphical representation makes it challenging to discern which

of the scaling law models exhibits superior performance in forecasting risk. To compare the

models, it is necessary to look at the residuals, calculated as the difference between actual

and predicted values of the liquidity variable.

Scaling Law Models Mean Std Skewness Kurtosis

Model 1 -0.0956 0.5100 1.0019 3.7888

Model 1.1 -0.1056 0.5116 0.9383 3.6481

Model 2 -0.0038 0.0058 0.9272 3.9081

Model 2.1 -0.0040 0.0060 0.8598 3.7036

Table 2: Sample moments of the forecast errors for the scaling law models in the out-of-
sample period (03 Jun 2022 - 03 May 2023).

Table 2 summarize the descriptive statistics for the residuals of all the scaling law

29Jacobsen and Visaltanachoti (2009)
30The same results are obtained if extended models are considered.
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models. Before commenting on the results obtained, it is necessary to proceed with the

diagnostic operations to determine whether the models used are correctly specified or not.

A first look at the residuals plot denotes how, for all models, the error series are

stationary with neither trend nor seasonal components.31 To properly study the correctness

of the models it is necessary to look at the ACF of the residuals.32 The autocorrelation

function (ACF) measures the linear dependence between values of the process at different

lags, and indicate the amplitude and the length of the memory of the process. By simply

looking at the correlogram of the residuals, that gives information about the existing ACFs

in the observed sample, it is possible to notice that all the bars corresponding to the

estimated autocorrelation are inside the blue lines (the interval (−1.96√
n
, 1.96√

n
)) and can be

considered null. Values of the autocorrelation function observed for the residuals inside the

interval suggest that the estimated autocorrelation of them may be due to randomness,

meaning that the prediction errors do not depend significantly on previous observations

over time. This is a desirable condition in statistical models and time series analyses, as it

indicates that the model is able to capture variation in the data without leaving predictable

or structured residuals. To look deeply at the appropriateness of the model a Ljung-Box

test33 was carried out on the residuals of the model to assess the null hypothesis that a

series of residuals exhibits no autocorrelation for a fixed number of lags (the residuals are

independently distributed), against the alternative that some autocorrelation coefficient

is nonzero (the residuals exhibit serial correlation). The resulting p-values are all above

the 5% threshold meaning that the residuals of the models are independent, since the null

hypothesis cannot be rejected, concluding that the models are correctly specified.

Now it is possible to compare the models by looking at the descriptive statistics of

the residuals (Table 2). Since the residuals’ mean is relatively low for all the scaling laws

(a positive results because it means that the errors are on average close to zero), the

sample moments to analyse for the comparison of all risk models are the skewness and the

kurtosis, with particular attention given to the standard deviation of the errors relative to

the first model M1 and its extension. M1 and M1.1 models, in fact, present high values of

standard deviation due to the fact that they fail to predict well the extreme movements of

the λ series. However, by considering the residuals with respect tho the moving average

of daily λ (the blue line in Figure 6), it can be seen that the standard deviation values

drop considerably34, keeping the other descriptive statistics similar. This feature further

reinforces the hypothesis that the models are able to predict the average price impact trend

well, while failing to account for extreme changes.

Instead, by looking at the skewness and kurtosis of the residuals, it is possible to compare

models to see which type, basic or extended model, shows better performance in forecasting

31See Figure 10 in Appendix B for more details.
32See Figure 11 in Appendix B for more details.
33Ljung and Box (1978)
34The Std values drop respectively to 0.0342 and 0.0643 for M1 and M1.1 model.
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risk. First of all, from Table 2, it can be noticed that all of the residual distributions

are leptokurtic (with kurtosis values hovering around 3.7, slightly higher than those of a

normal distribution) and show evidence of positive skewness (with values above 0.8).35

These results suggest that the errors are influenced by outliers leading to a skewed and

slightly ”stretched” distribution. Therefore, it is necessary to identify these extreme values

and check whether, by excluding them from the analysis, the distribution of the residuals

approximates that of a Standard Normal. To verify the presence of outliers, it is sufficient to

look at the box plot of the distributions, which provides a general overview of the residuals

and its quartiles.36 Once the outliers are identified, it is possible to check whether the

error distributions better approximate that of a Standard Normal, when extreme values are

excluded from the distribution, by looking at the Q-Q plot of the new residuals and at the

descriptive statistics of skewness and kurtosis.37

Scaling Law Models Skewness Kurtosis

Model 1 0.6682 2.7288

Model 1.1 0.6225 2.7210

Model 2 0.5768 2.9183

Model 2.1 0.5136 2.8366

Table 3: Skewness and kurtosis of the residuals for the scaling law models excluding the
outliers.

Table 3 illustrates the level of skewness and kurtosis obtained by removing the outliers

from the distribution. The exclusion of outliers reduced the kurtosis value, bringing it

closer to that of a Standard Normal distribution, and skewness for all model specifications,

reducing the thickness of the tails but keeping the right tail more pronounced than the left

tail. Now, looking at Table 2 and Table 3, it can be observed that the level of skewness

and kurtosis are lower in the case of the extended models. In this analysis, significant

positive or negative skewness implies asymmetry of the errors’ distribution, corresponding

to under- or overestimation of risk. The same is valid for kurtosis: lower level of kurtosis

implies lower probability of underestimation or overestimation of risk.38 According to these

considerations, therefore, it is possible to conclude that scaling law models based on the

Exponential Moving Average (EMA) show better performance in forecasting risk than basic

models, although the results obtained by simple arithmetic mean are not so different.

35See Figure 12 in Appendix B for more details.
36See Figure 13 in Appendix B for more details.
37See Figure 14 in Appendix B for more details.
38Qi et al. (2018)
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4 Conclusions

This study aims to be part of the financial risk management framework by proposing

forecasting models based on scaling laws. With the advent of high-frequency data, it has

become necessary to develop new risk measurement and forecasting methodologies that

take into account the dynamic nature of financial markets. The scaling laws method does

not consider assumptions about the distributions of returns, incorporating all available

and relevant information at all different time scales, only through the use of one month of

high-frequency data.

In this empirical analysis, new forecasting models have been proposed to incorporate

the relationship between volume and price impact in order to assess the liquidity risk of

an asset. The goal of the work is to find a scaling law that relates the main liquidity

measures of the market microstructure framework with different time intervals to evaluate

and forecast liquidity risk at each time horizon, due to the scale invariance property of

scaling laws. The concept of scale invariance is the basis of this work because it allows

to relate two variables in the form of a power law, which has a similar distribution for

each magnitude of the variables. Indeed, in this case, if the assumption of scale invariance

is acceptable, it is possible to know the value of liquidity risk at each interval precisely

because of the scaling law models that relate the two quantities.

The measures of liquidity analyzed in this study are Kyle’s Lambda (λ), introduced by

Kyle (1985), and the P/VWAP ratio, called Liquid Ratio, which assess liquidity as price

impact, specifically indicating how much the price of an asset can vary in response to a

given amount of trading volume. Under the assumption that scale invariance is applicable,

the existence of two scaling law models (a basic model and an extended model) have been

demonstrated, both relating the time variable, denoted as the size of the time interval

∆t, to each of the liquidity variables. The basic models (M1 and M2) consider the simple

arithmetic mean of the liquidity variables values found at different time intervals, while the

extendend models (M1.1 and M2.1) consider the exponential moving average (EMA) in

order to incorporate the exponentially declining impact over the different time intervals.

The analysis was conducted with a 1-minute frequency dataset of the NASDAQ Composite

Index from 05-May-2022 to 03-May-2023, considering only data when the NASDAQ market

was open.

To evaluate the validity and performance of the models, the estimates of liquidity risk,

obtained using one month of data, were compared with the actual values of the liquidity

measures analysed. The results show that, for the scaling law method, one month in-sample

data are sufficient to obtain good risk prediction performance, specifically the results

obtained from the extended scaling laws, based on the exponential moving average (EMA),

are slightly better than those from the basic models, although both of them exhibit a good

representation of the dynamic trend of liquidity variables. Residual diagnostics shows some

positive skewness and kurtosis in the residual distributions for all model specifications,
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even when outliers are excluded from the distribution. This may mean that the models

slightly overestimate liquidity risk, resulting in predicted values that are slightly higher

than actual values. To accurately predict the relationship between trading volume and price

impact, it is necessary to take into account a number of factors that are difficult to calculate,

such as the presence of information asymmetries in the market or events that can greatly

influence the behavior of market participants. Generally, the models developed in this

study predict well the dynamic trends in market liquidity, especially when volatility is more

concentrated and market conditions are stable. When aware of the practical implications

of overestimating risk, which can lead to disregarding the execution of some orders that are

considered unsuitable, and the presence of outliers that can affect future estimates, these

scaling law models can be valuable tools in the field of financial risk management.

In conclusion, this empirical study is intended to be a starting point for the analysis

of new liquidity risk management methodologies that take into account financial market

fluctuations and the relationship between trading volume and price changes, through the

use of high-frequency data that provide short-term market information to measure and

predict risk and volatility over longer time horizons.
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Appendix

A OLS Regression Models

(a) M1 Model (b) M1.1 Model

(c) M2 Model (d) M2.1 Model

Figure 9: An example of the scaling law regression lines for all the model specifications
using NASDAQ Composite Index at 1-minute frequency from 03 April 2023 15:30:00 to 02
May 2023 22:00:00 (Italian Time).

Figure 9 depicts the OLS regression models applied to estimate the scaling law parameters

using last monthly observations. The graph shows that the estimated regression line is a

good approximation of the data, confirming the existence of scaling law for the variables.

All the models specifications present a R2 close to 0.99.
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B Residuals diagnostics

(a) M1 Residuals (b) M1.1 Residuals

(c) M2 Residuals (d) M2.1 Residuals

Figure 10: Plot of the residuals.

Figure 10 shows the residuals for all the scaling law models. The p-values of the Augmented

Dickey-Fuller test are all below the 5% threshold for all the scaling models, rejecting the

null hypothesis that a unit root is present in the time series.
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(a) M1 Residuals (b) M1.1 Residuals

(c) M2 Residuals (d) M2.1 Residuals

Figure 11: ACF of the residuals.

Figure 11 shows the ACF of the residuals for all the scaling law models. The p-values

of the Ljung-Box test are shown in the following Table 4.

Scaling Law Models P-value

Model 1 0.1585

Model 1.1 0.3015

Model 2 0.6177

Model 2.1 0.4318

Table 4: P-values of the Ljung-Box test with 5 lags.

For all model specifications, the null hypothesis of independence of residuals for 5 lags

cannot be rejected, since the p-values are all above the 5% threshold.
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(a) M1 Residuals (b) M1.1 Residuals

(c) M2 Residuals (d) M2.1 Residuals

Figure 12: QQ plots of the residuals distributions vs Standard Normal distribution(N ).

Figure 12 shows the QQ plots of the residuals for all the scaling law models. The

evidence of skewness and kurtosis is underscored by looking at these graphs, due to the

presence of outliers in both tails of the distributions. All of them are leptokurtic and

positively skewed.
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(a) M1 & M1.1 Residuals (b) M2 & M2.1 Residuals

Figure 13: Box plots of residuals distributions.

Figure 13 shows the box plots of the residuals for all the scaling law models. By

looking at the graphs it is possible to notice that the outliers are all on the right tail of the

distribution, due to the fact that the residuals are positve skewed.
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(a) M1 Residuals (excluding outliers) (b) M1.1 Residuals (excluding outliers)

(c) M2 Residuals (excluding outliers) (d) M2.1 Residuals (excluding outliers)

Figure 14: QQ plots of residuals distributions vs Standard Normal distribution(N ) (exluding
outliers).

Figure 14 shows the QQ plots of the residuals for all the scaling law models excluding the

outliers. The distributions of the residuals without the outliers seem to better approximate

that of a Standard Normal, especially in the right tail, although some kurtosis and skewness

remain.
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