
Reinforcement Learning Techniques for

Optimal Control in Financial Markets

Department of Economics and Finance

Master’s Degree in Finance

Chair of Empirical Finance

Supervisor:

Prof. Antonio Simeone

Co-Supervisor:

Prof. Stefano Marzioni

Candidate:

Pietro Passarello

757201

Academic Year 2022/2023

To my family and my friends, who supported me throughout this journey.

Contents

Introduction 1

1 Technical Background 5

1.1 Markov Decision Processes . 5

1.1.1 Rewards and Returns . 7

1.1.2 Policy . 8

1.1.3 Value and Action-Value Function 9

1.1.4 Optimal Policy and Optimal Value Function 11

1.2 Dynamic Programming . 12

1.2.1 Fixed-Point Theory . 13

1.2.2 Bellman Policy Operator and Policy Evaluation 14

1.2.3 Policy Improvement . 16

1.2.4 Policy Iteration . 17

1.2.5 Value Iteration . 19

1.3 Prediction and Control with Reinforcement Learning 20

1.3.1 Monte Carlo Methods . 20

1.3.2 Temporal Difference Learning 23

2 Approximate Solution Methods 27

2.1 Function Approximation . 28

CONTENTS CONTENTS

2.1.1 Value Function Approximation 29

2.1.2 Stochastic-Gradient Methods 31

2.1.3 Linear Function Approximation 32

2.1.4 Nonlinear Function Approximation with Artificial Neural

Networks . 33

2.2 Policy Gradient Methods . 36

2.2.1 Policy Approximation . 38

2.2.2 Policy Gradient Theorem . 38

2.2.3 REINFORCE . 40

2.3 Actor-Critic Methods . 43

2.3.1 Generalized Advantage Estimation 43

2.3.2 Proximal Policy Optimization 45

3 Methodology 47

3.1 The Model . 47

3.1.1 The Agent . 47

3.1.2 The Environment . 48

3.1.3 The Data Loader . 49

3.1.4 Network Architecture . 50

3.2 Data Processing . 51

3.2.1 Tickers . 51

3.2.2 Features . 51

3.2.3 Data Normalization . 61

3.3 Performance Measures . 62

4 Results 67

4.1 Preliminary Remarks . 67

4.2 Data Summary . 67

CONTENTS

4.3 Model Hyperparameters . 69

4.4 Model Training . 73

4.5 Results on the Test . 75

5 Conclusions and Further Developments 81

5.1 Conclusions . 81

5.2 Further Developments . 83

Conclusion 84

A Results 85

A.1 $AAPL . 85

A.2 $ES . 89

A.3 $FTSE . 92

A.4 $GOOGL . 96

A.5 $IXIC . 99

A.6 $N225 . 103

A.7 $PG . 106

List of Algorithms

1.1 Policy Evaluation Algorithm, Source: Sutton, Barto (2018) 16

1.2 Policy Iteration Algorithm, Source: Sutton, Barto (2018) 17

1.3 Value Iteration Algorithm, Source: Sutton, Barto (2018) 20

1.4 First - Visit MC Prediction, Source: Sutton, Barto (2018) 21

1.5 Monte Carlo Exploring Starts, Source: Sutton, Barto (2018) 22

1.6 TD(0) Prediction, Source; Sutton, Barto (2018) 24

1.7 SARSA, Source: Sutton, Barto (2018) 25

1.8 Q-learning, Source: Sutton, Barto (2018) 26

2.1 REINFORCE, Source: Sutton, Barto (2018) 42

2.2 REINFORCE with Baseline, Source: Sutton, Barto (2018) 43

List of Figures

3.1 ReLU and Tanh Activation Functions 50

3.2 SMA 10, SMA 242 and the SP500 Index 53

3.3 Weight decay in EMA for different values of λ 54

3.4 Smoothed Histogram of the MACD(26, 12) compared to the SP500

index . 55

3.5 OBV compared to the SP500 index 56

3.6 MFI compared to the SP500 index 57

3.7 CMF compared to the SP500 index 58

4.1 Correlation between the returns of the selected time series 68

4.2 rewards obtained on the training set 75

4.3 Agent performance vs Benchmark, $GOOGL, 2018 76

4.4 $GOOGL, 2018 . 77

4.5 Agent performance vs Benchmark, $IXIC, 2018 79

4.6 $IXIC, 2018 . 80

A.1 Agent performance vs Benchmark, $AAPL, 2018 86

A.2 $AAPL, 2018 . 86

A.3 Agent performance vs Benchmark, $AAPL, 2019 87

A.4 $AAPL, 2019 . 87

A.5 Agent performance vs Benchmark, $AAPL, 2020 88

LIST OF FIGURES

A.6 $AAPL, 2020 . 88

A.7 Agent performance vs Benchmark, $ES, 2018 89

A.8 $ES, 2018 . 90

A.9 Agent performance vs Benchmark, $ES, 2019 90

A.10 $ES, 2019 . 91

A.11 Agent performance vs Benchmark, $ES, 2020 91

A.12 $ES, 2020 . 92

A.13 Agent performance vs Benchmark, $FTSE, 2018 93

A.14 $FTSE, 2018 . 93

A.15 Agent performance vs Benchmark, $FTSE, 2019 94

A.16 $FTSE, 2019 . 94

A.17 Agent performance vs Benchmark, $FTSE, 2020 95

A.18 $FTSE, 2020 . 95

A.19 Agent performance vs Benchmark, $GOOGL, 2018 96

A.20 $GOOGL, 2018 . 97

A.21 Agent performance vs Benchmark, $GOOGL, 2019 97

A.22 $GOOGL, 2019 . 98

A.23 Agent performance vs Benchmark, $GOOGL, 2020 98

A.24 $GOOGL, 2020 . 99

A.25 Agent performance vs Benchmark, $IXIC, 2018 100

A.26 $IXIC, 2018 . 100

A.27 Agent performance vs Benchmark, $IXIC, 2019 101

A.28 $IXIC, 2019 . 101

A.29 Agent performance vs Benchmark, $IXIC, 2020 102

A.30 $IXIC, 2020 . 102

A.31 Agent performance vs Benchmark, $N225, 2018 103

A.32 $N225, 2018 . 104

LIST OF FIGURES

A.33 Agent performance vs Benchmark, $N225, 2019 104

A.34 $N225, 2019 . 105

A.35 Agent performance vs Benchmark, $N225, 2020 105

A.36 $N225, 2020 . 106

A.37 Agent performance vs Benchmark, $PG, 2018 107

A.38 $PG, 2018 . 107

A.39 Agent performance vs Benchmark, $PG, 2019 108

A.40 $PG, 2019 . 108

A.41 Agent performance vs Benchmark, $PG, 2020 109

A.42 $PG, 2020 . 109

List of Tables

4.1 Hardware Specifics . 67

4.2 Main Hyperparameters of the model and their values 73

4.3 Hyperparameters configuration of the model 74

4.4 Summary statistics for the year 2018 on $GOOGL 76

4.5 Summary statistics for the year 2018 on $IXIC 78

A.1 Summary statistics for the test years on $AAPL 85

A.2 Summary statistics for the test years on $ES 89

A.3 Summary statistic for the test years on $FTSE 92

A.4 Summary statistics for the test years on $GOOGL 96

A.5 Summary statistics for the test years on $IXIC 99

A.6 Summary statistics for the test years on $N225 103

A.7 Summary statistics for the test years on $PG 106

Introduction

In today’s fast-paced financial markets, the quest for superior trading strategies

has intensified, driven by the ever-increasing complexity and volatility of global

financial systems. Traders and financial institutions are continually exploring inno-

vative methods to gain a competitive edge. One such innovation gaining traction

in recent years is the application of reinforcement learning (RL) techniques to

devise trading strategies.

This work embarks on a comprehensive exploration of the use of reinforcement

learning for trading strategies, offering insights into the technical foundations,

approximate solution methods, and practical methodology associated with this

exciting and evolving field.

The motivation of this work is the great expansion that has characterized the

world of RL in the past years, such as the Artificial Intelligence (AI) developed

by DeepMind, Silver et al. (2016), that managed to defeat one of the best players

of the Chinese game Go. What makes the game of Go particularly challenging

to learn is the number of legal plays available: in fact, it has been calculated

to be approximately 2.1 × 10170. The astonishing results of RL continued with

incredible achievements on all Atari games, presented in Mnih et al. (2013), where

the Agent managed to establish new records and beat all human benchmarks.

The achievements obtained in these applications have caused a rising interest in

the applications of RL in all other fields. In the field of Finance, specifically in

1

2 Introduction

Algorithmic Trading, the application of RL methods is extremely appealing: in

fact, with the proper formulation, one can exploit anomalies and predict trends

in financial time series using the power of Artificial Neural Networks, that can

capture patterns within data that are not visible to the naked eye. Furthermore,

an RL agent does not need labeled data, since its learning process is guided by

the interaction with the environment, thus we are able to build a model that

is completely uncorrelated with the views and thoughts of its developer. These

characteristics make it so that when these techniques are applied correctly, RL

Agents manage to outperform the benchmark in the field of finance, as in Huang

(2018), yielding superior trading strategies.

In this work, we decided to experiment with a state-of-the-art RL technique, called

Proximal Policy Optimization, Schulman et al. (2017b), in the field of Algorithmic

Trading: in fact, we developed from scratch a Python implementation of the algo-

rithm, which was later applied to empirical data from the stock markets, yielding

our experimental results.

The foundation of this work is rooted in a strong technical background, as it is

essential to comprehend the underlying principles and concepts governing rein-

forcement learning for trading. This journey begins with an in-depth examination

of Markov decision processes (MDPs) in Section 1.1, where we delve into topics

such as rewards, returns, policies, and value functions. We explore the notion of

an optimal policy and value function, setting the stage for subsequent discussions

on dynamic programming techniques, Section 1.2. Fixed point theory, Bellman

policy operators, policy evaluation, policy improvement, and value iteration are

the essential components of this crucial phase in our exploration.

Section 1.3 delves into the application of reinforcement learning in prediction and

control to bridge the gap between theory and practical implementation. Here, we

introduce Monte Carlo methods and Temporal Difference (TD) learning, which

3

serve as the building blocks for our journey into approximate solution methods

in Chapter 2. We investigate various approaches such as function approximation,

including value function approximation and linear function approximation. This

work also explores the power of neural networks in nonlinear function approxima-

tion.

The methodology in Chapter 3 of our work provides a blueprint for implement-

ing reinforcement learning-based trading strategies. This includes defining the

model, data processing techniques, and a comprehensive overview of performance

measures that enable us to assess the effectiveness of our strategies.

As we venture further into our work, Chapter 4 presents the results of our research.

Preliminary remarks set the stage for a detailed data summary, followed by a

discussion on hyperparameters, training processes, and, most importantly, on the

test results that showcase the practical viability of reinforcement learning-based

trading strategies.

In conclusion, this work embarks on an extensive exploration of reinforcement

learning’s application in the domain of trading strategies. By navigating through

the technical foundations, approximate solution methods, and a comprehensive

methodology, we aim to provide a comprehensive understanding of how reinforce-

ment learning can revolutionize trading practices in the dynamic world of finance.

Through rigorous analysis and empirical evidence, we aim to contribute to the

growing body of knowledge in this field and provide insights that can empower

traders and financial institutions in their quest for superior performance and prof-

itability.

Chapter 1

Technical Background

1.1 Markov Decision Processes

A Markov Decision Process (MDP), Bellman (1957b), is a formalization of se-

quential decision-making, where actions influence both immediate rewards and

subsequent states.

An MDP is a straightforward framing of the problem of learning from interaction to

achieve a goal. In the context of an MDP, the learner and decision maker is called

the agent, while everything that the agent interacts with is called the environment.

Upon selecting an action, the agent receives a reward from the environment, which

is a numerical value that the agent seeks to maximize over time through its actions.

In a more specific way, the interaction between the agent and the environment can

be thought of as a sequence of discrete time-steps t = 0, 1, 2, . . . , where at each

time step the agent receives an observation that represents the environment’s state

St ∈ S. Based on such observation, the agent selects an action AtinA, receiving a

reward Rt ∈ R. The environment then evolves to a new state St+1 based on the

previous state and the performed action. This procedure generates a trajectory

5

6 1. Technical Background

that evolves in the following way

S0, A0, R1, S1, A1, R2, S2, A2, R3,

We can now formally define a Markov Decision Process

Definition 1.1 (Markov Decision Process). A Markov Decision Process is defined

by the tuple (S,A, P, R, γ, µ):

• S is a continuous or finite set of states;

• A is a continuous or finite set of actions;

• P is the transition probability function, that represents the probability of tran-

sitioning to the state s′ ∈ S after taking action a ∈ A from state s ∈ S;

• R : S × A → R is a reward function that, for each state-action pair (s, a) ∈

S ×A returns a scalar value;

• γ ∈ [0, 1] is a discount factor;

• µ is the distribution of the initial state.

An MDP is said to be finite when the sets of states, the set of actions, and the set

of rewards all have a finite number of elements. In this case, the random variables

St and Rt have well-defined discrete probability distributions depending only on

the preceding state and action, thus satisfying the Markov Property: that is, for

particular values of these random variables, s′ ∈ S and r ∈ R, there is a probability

of those values occurring at time t, given particular values of the preceding state

and action; such a probability is given by the function p, which is said to define

the dynamics of the MDP and is a function

p : S ×R× S ×A → [0, 1],

1.1 Markov Decision Processes 7

defined as

p(s′, s|r, a) := P{St = s′, Rt = r|St−1 = s, At−1 = a}. (1.1)

In an MDP, the probability given by p completely characterizes the environment’s

dynamics and thus has the Markov Property.

Definition 1.2 (Markovian Process). A process is said to be Markovian if and

only if

P{St|At−1, St−1, At−2, St−2, . . . } = P{St|At−1, St−1}.

We now define some convenient functions that can be derived from the dynamics

function p, the first of which is the state-transition probabilities can be computed

as a three argument function P : S × S ×A → [0, 1], defined as:

P (s′|s, a) := P{St = s′|St−1 = s, At−1 = a} =
∑
r∈R

p(s′, r|s, a). (1.2)

We then have the expected reward for state-action pairs as a two-argument func-

tion r : S ×A → R, defined as:

r(s, a) := E[Rt|St1 = s, At−1 = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a), (1.3)

and the expected rewards for state-action-next-state triples as a three-argument

function r : S ×A× S → R, defined as:

r(s, a, s′) := E[Rt|St−1 = s, At−1 = a, St = s] =
∑
r∈R

r
p(s′, r|s, a)

s′|s, a
. (1.4)

1.1.1 Rewards and Returns
The goal of the agent is to maximize the reward, or, to be more precise, to maximize

the expected return, Sutton, Barto (2018), where the return is the sum of the

reward between the time steps:

Gt = Rt+1 + Rt+2 + ... + RT , (1.5)

8 1. Technical Background

where RT is the reward at the final time step T , in this case, the MDP is said

to be finite, and the MDP task is said to be episodic. When it is not possible to

define a terminal state, the MDP task is denoted as continuous and the final time

step is equal to T =∞. In this case, we use the discounted return, defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑

k=0
γkRt+k+1. (1.6)

It must be noted that the discount factor γ represents how much we would weight

the immediate reward compared to future rewards: in fact, a γ close to 0 will lead

to a myopic agent and a γ close to 1 will lead to a farsighted agent. Furthermore,

it is useful to notice that the discounted reward function in Equation 1.6 can also

be expressed in a recursive relation as:

Gt = Rt+1 + γGt+1. (1.7)

1.1.2 Policy

In the general case, we can assume that the agent will perform a random action

At, according to the probability distribution function of the current state St. We

refer to this function as a Policy, which formally is a function, Rao, Jelvis (2022),

π : S ×A → [0, 1],

defined as:

π(s, a) = P{At = a|St = s}, ∀s ∈ S, a ∈ A, (1.8)

such that ∑
a∈A

π(s, a) = 1,∀s ∈ S.

When we have a policy such that the action probability distribution for each state

is concentrated on a single action, we refer to it as a deterministic policy, which is

1.1 Markov Decision Processes 9

a function

πD : S → A,

such that

π(s, πD(s)) = 1, and π(s, a) = 0, ∀a ∈ A with a ̸= πD(s).

It is also worth pointing out that policy is said to be stationary if it is invariant

of time t, otherwise, we say that the policy is non-stationary.

1.1.3 Value and Action-Value Function

The value function is a function that is used to estimate how good it is for the

agent to be in a given state; clearly, the rewards the agent can expect to receive in

the future, and thus the goodness of the current state, depend on the actions that

it will take. For this reason, value functions are defined with respect to a policy.

Definition 1.3 (Value Function). The Value Function for an MDP evaluated with

fixed policy π is a function

V π : S → R,

defined as:

V π(s) = Eπ [Gt|St = s] = Eπ

[∞∑
k=0

γkRt+k+1|St = s

]
, ∀s ∈ S. (1.9)

In a similar fashion, we can define the value of taking action a in state s under

policy π as the expected return starting from s, taking action a, and thereafter

following policy π.

Definition 1.4 (Action-Value Function). The action-value function is a function

Qπ : S ×A → R,

10 1. Technical Background

defined as:

Qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ

[∞∑
k=0

γkRt+k+1|St = s, At = s

]
, ∀s ∈ S.

(1.10)

It must be pointed out that an important property of value functions is that they

satisfy recursive relationships as the one used in Equation 1.7; in fact, for any

policy π and any state s, the following consistency condition holds:

V π(s) := Eπ [Gt|St = s]

= E [Rt+1 + γGt+1|St = s]

=
∑

a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) [r + γE[Gt+1|St+1 = s′]]

=
∑

a

π(a|s)
∑
s,r

p(s′, r|s, a)[r + γV π(s′)], ∀s ∈ S

=
∑
a∈A

π(a, s)
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V π(s′)
 .

(1.11)

Equation 1.11 is known as the Bellman equation for V π; it express a relationship

between the value of a state and the values of its successor states: specifically,

the Bellman equation averages over all the possibilities, weighting each by its

probability of occurring. Note that the value function V π is the unique solution

to its Bellman equation. The same recursive relationship that holds for the Value

Function in Equation 1.11 can be applied to the Action-Value function, yielding

the following Bellman equation for Qπ(s, a):

Qπ(s, a) = Eπ [Rt+1 + γQπ(st+1, at+1)|st = s, at = a]

= r(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′).
(1.12)

It is of extreme importance to point out that the Bellman equations can also be

1.1 Markov Decision Processes 11

represented in matrix form, thus making it easier to notice the closed form solution:

V π = Rπ + γP πV π = (I − γP π)−1Rπ. (1.13)

In Equation 1.13, the superscript π refers to the functions obtained when applying

a fixed policy to the MDP, so keeping the actions fixed.

1.1.4 Optimal Policy and Optimal Value Function
Roughly speaking, solving a reinforcement learning task consists in finding a policy

that achieves a high cumulative reward in the long run. A policy π is defined to

be better than or equal to another policy π′ if its expected return is greater than

or equal to the one of π′ for all states:

π ≥ π′ if and only if V π(s) ≥ V π′(s)∀s ∈ S.

There is always at least one policy that is better than or equal to all other policies,

such a policy is referred to as the optimal policy; it must be noted that although

there may be more than one optimal policy, we denote them all by π∗. All optimal

policies share the same value function, referred to as the optimal value function,

denoted V ∗.

Definition 1.5 (Optimal Value Function).

V ∗(s) = max
π

Vπ(s), ∀s ∈ S. (1.14)

Optimal policies also share the same optimal action-value function, denoted Q∗.

Definition 1.6 (Optimal Action-Value Function).

Q∗(s, a) = max
π

Qπ(s, a), s ∈ S, a ∈ A. (1.15)

Using the Bellman equation for the state-value function in Equation 1.12, we can

write the optimal state-value function Q∗ in terms of the optimal value function

12 1. Technical Background

V ∗:

Q∗(s, a) = E [Rt+1 + γV ∗(St+1)|St = s, At = a] . (1.16)

1.2 Dynamic Programming

The term DP refers to a collection of algorithms that can be used to compute

optimal policies given a perfect model of the environment as an MDP. Standard

DP algorithms are however of limited utility in solving a reinforcement learning

task because of both the assumption of a perfect model and because of the great

computational burden they carry. Nonetheless, DP algorithms are important from

a theoretical standpoint as they provide a foundation for the understanding of

more advanced methods. We start with assuming a finite MDP, as DP algorithms

do not ensure convergence to an exact solution in the case of continuous action or

state spaces.

It is important to distinguish between algorithms that do not have a model of

the MDP environment versus algorithms that do have such a model. The former

algorithms are known as learning algorithms, as the agent will need to interact

with the real-world environment and learn the Value Function from data it re-

ceives through interaction. The latter are known as planning algorithms as the

agent requires no interaction with the real-world environment but rather projects

probabilistic scenarios of future states and rewards for various choices of actions,

and solves for the Value Function based on such projected outcomes. Another

distinction that is worth making is the one between prediction tasks and control

tasks: in fact, in the former case the goal is to predict the Value Function of a

specific state, while in the latter the goal is to find the optimal policy to find the

optimal solutions.

1.2 Dynamic Programming 13

1.2.1 Fixed-Point Theory
In this section we will present the three classical Dynamic Programming (DP)

algorithms, which are founded on the Bellman Equations presented in the previous

section: in fact, each of the three algorithms is an iterative one where the computed

Value function converges to the true Value Function as the number of iterations

approaches infinity; furthermore, each of the three algorithms is based on the

concept of Fixed-Point , Agarwal et al. (2018), Rao, Jelvis (2022), and on updating

the computed Value-Function towards the fixed point.

Definition 1.7 (Fixed-Point). The Fixed-Point of a function f : X → X is a

value x ∈ X that satisfies the equation: x = f(x).

Note that for some functions we have multiple fixed-points and for some other we

have none; the algorithms that we will cover consider functions that have a unique

fixed point.

Theorem 1.1 (Banach Fixed-Point Theorem). Let X be a non-empty set equipped

with a complete metric d : X × X → R. Let f : X → X be such that there exists

a L ∈ [0, 1) such that d(f(x1), f(x2)) ≤ L · d(x1, x2). Then,

1. There exists a unique Fixed-Point x∗ ∈ X :

x∗ = f(x∗);

2. For any x0 ∈ X , and sequence [xi|i = 0, 1, . . .] defined as xi+1 = f(xi) for

all i = 0, 1, . . . , we have:

lim
i→∞

xi = x∗;

3.

d(x∗, xi) ≤
Li

1− L
· d(x1, x0),

14 1. Technical Background

or, equivalently

d(x∗, xi+1) ≤ L · d(x∗, xi).

To properly explain the theorem above, we are going to briefly define what a

contraction is.

Definition 1.8 (Contraction). A function f : X → X is said to be a contraction

function if two points in X get close when they are mapped by f . That is, there is

some L ∈ [0, 1) such that

d(f(x1), f(x2)) ≤ L · d(x1, x2).

Banach Fixed-Point theorem is thus extremely important for DP algorithms, as,

once we have identified the appropriate set X and the appropriate metric d, and

ensured that f is a contraction function with respect to d, the theorem enables us

to solve for the fixed-point of f with an iterative process of applying f repeatedly,

starting with any arbitrary value x0 ∈ X .

1.2.2 Bellman Policy Operator and Policy Evaluation
The first DP algorithm we are going to deal with is called Policy Evaluation; this

algorithm solves the problem of calculating the Value Function of a Finite MDP

evaluated with a fixed policy π. The specification of this prediction problem is as

follows: Let the states of the MDP be S = {s1, s2, . . . , sn}. We are given a fixed

policy π : S ×A → [0, 1] and we are also given the transition probability function

P : S×S×A → [0, 1] in the form of a data structure. The prediction problem is to

compute the Value Function of the MDP when evaluated with policy π, which we

denote as V π : S → R. We could solve this problem using Equation 1.13, however

when the number of states is large, the computational burden becomes too high.

Definition 1.9 (Bellman Policy Operator). The Bellman Policy Operator is a

1.2 Dynamic Programming 15

function Bπ : Rm → Rm defined as

Bπ(V) = Rπ + γP π · V, (1.17)

for any vector V in the vector space Rm.

Notice that the definition above is equivalent to the following

Bπ(V)(s) =
∑
a∈A

π(a, s)
(

r(s, a) + γ
∑
s∈S

P (s′|s, a) · V (s′)
)

. (1.18)

Using Equation 1.17 above we can express the MDP Bellman Equation as:

V π = Bπ(V π).

which means that V π ∈ Rm is a Fixed-Point for the Bellman Policy Operator.

Now choosing as our metric d : Rm × Rm → R the L∞ norm, defined as:

d(X, Y) = ||X − Y ||∞ = max
s∈S
|(X − Y)(s)|.

Bπ is a contraction function under the L∞ norm. We can now invoke Banach

Fixed Point Theorem, Theorem 1.1, to come up with the following theorem.

Theorem 1.2 (Policy Evaluation Theorem). For a Finite MDP with |S| = m and

γ ≤ 1, if V π ∈ Rm is the Value Function of the MDP when evaluated with a fixed

policy π : S ×A → [0, 1], then V π is the unique Fixed-Point of the Bellman Policy

Operator Bπ : Rm → Rm, and

lim
i→∞

(Bπ)i(V0)→ V π for all starting Value Functions V0 ∈ Rm.

From Theorem 1.2 we can derive the following algorithm.

16 1. Technical Background

Algorithm 1.1 Policy Evaluation Algorithm, Source: Sutton, Barto (2018)
Require: π, the policy to be evaluated

1: Initialize V0 ∈ Rm

2: Initialize ϵ = a small positive number , ∆ = 0, i = 0
3: while ∆ ≥ ϵ do
4: Vi+1(s)← Bπ(Vi)(s), for all s ∈ S
5: ∆← d(Vi, Vi+1) = maxs∈S |(Vi − Vi+1)(s)|
6: end while

It is important to notice that the Banach Fixed-Point Theorem not only assures

convergence to the unique solution, it also assures a reasonable speed of conver-

gence to it, Rao, Jelvis (2022).

1.2.3 Policy Improvement
In the previous subsection we presented an algorithm to solve the MDP prediciton

problem, the next two algorithms however are dedicated to solving the MDP con-

trol problem. In order to make this step from prediction to control we must first

define a function that is motivated by the idea of improving a policy or a value

function with a greedy technique.

Definition 1.10 (Greedy Policy). The Greedy Policy Function is a function G :

Rm → (S → A), which is to interpret as a function mapping a Value Function V

to a deterministic policy π′
D : S → A. It is defined as:

G(V)(s) = π′
D(s) = arg max

a∈A

r(s, a) + γ ·
∑
s′∈S

P (s′|a, s) · V (s′)
 , ∀s ∈ S.

Now that we have introduced the Greedy Policy Function, we can move to the

concept of improvement referred to as either Value Functions or Policies.

Definition 1.11 (Value Function Comparison). For Value Functions X, Y : S →

R of an MDP, we say X ≥ Y if and only if:

X(s) ≥ Y (s), ∀s ∈ S.

1.2 Dynamic Programming 17

Thus, whenever we refer to a ’better Value Function’, it should be interpreted as

that the Value Function is no worse for each of the states compared to another

Value Function. Using the two definitions above, we can introduce the following

theorem by Richard Bellman, Bellman (1957a).

Theorem 1.3 (Policy Improvement Theorem1). Let π′
D = G(V π) and let π be any

other policy. Then, for a Finite MDP,

V π′
D = V G(V π) ≥ V π.

The Policy Improvement Theorem allows us to introduce the first DP algorithm

to solve the MDP control problem, called Policy Iteration, Howard (1960).

1.2.4 Policy Iteration
The Policy Improvement Theorem allows us to start with any Value Function V π

for a policy π, perform a greedy policy improvement to create a policy π′
D = G(V π),

and then perform a Policy Evaluation with starting Value Function V π, resulting

in an improved Value Function V π′
D . We clearly can repeat the same process

multiple times, creating further improved policies and associated Value Functions

until we have no improvement. This idea yields the following algorithm2.

Algorithm 1.2 Policy Iteration Algorithm, Source: Sutton, Barto (2018)
1: Initialize V0 ∈ Rm

2: Initialize ϵ = a small positive number , ∆ = 0, j = 0
3: while ∆ ≥ ϵ do
4: Deterministic Policy πj+1 ← G(Vj)
5: Value Function Vj+1 ← limi→∞(Bπj+1)i(Vj)
6: ∆← d(Vj, Vj+1) = maxs∈S |(Vj − Vj+1)(s)|
7: end while

The algorithm above terminates when there is no further improvement to the Value
1The proof of Theorem 1.10 can be found at Rao, Jelvis (2022)
2In step 5 of the algorithm we perform a full policy evaluation

18 1. Technical Background

Function, that is:

Vj =
(
BG(Vj)

)i
(Vj) = Vj+1.

Which, for i = 1 yields:

Vj(s) = BG(Vj)(Vj)(s) = r (s, G(Vj)(s)) + γ
∑
s′∈S

P (s′|G(Vj)(s), s) · Vj(s′), ∀s ∈ S.

However, from Definition 1.10, we know that for each state, the action that comes

from the greedy policy is the action that maximizesr(s, a) + γ
∑
s′∈S

P (s′|a, s) · Vj(s′)
 .

Therefore, by joining all together we can see that what we have is the following

Vj(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

P (s′|a, s) · Vj(s′)
 ∀s ∈ S.

However, we can notice the above is non-other than the MDP State-Value Function

Bellman Optimality Equation as in Equation 1.15, which means that when Vj+1 is

identical to Vj, the Policy Iteration algorithm has converged to the Optimal Value

Function; the associated deterministic policy at convergence is an Optimal Policy

as V πj = Vj ≈ V ∗. The latter in turn means that the MDP evaluated with the

deterministic policy πj achieves the Optimal Value Function, that is, the Policy

Iteration algorithm solves the MDP control problem. The following theorem states

what we have just concluded.

Theorem 1.4 (Policy Iteration Convergence Theorem). For a Finite MDP with

|S| = m and γ < 1, the Policy Iteration algorithm converges to the Optimal Value

Function V ∗ ∈ Rm along with a Deterministic Optimal Policy π∗
D : S → A, no

matter which Value Function V0 ∈ Rm we start the algorithm with.

1.2 Dynamic Programming 19

1.2.5 Value Iteration
In order to introduce the Value Iteration algorithm, we must first make a small

change to the definition of the Greedy Policy Function in Definition 1.10.

Definition 1.12 (Bellman Optimality Operator). The Bellman Optimality Oper-

ator B∗ : Rm → Rm is defined as

B∗(V)(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

P (s′|a, s) · V (s′)
 , ∀s ∈ S.

If we now apply the Bellman Policy Operator on any Value Function V ∈ Rm

using the greedy policy, it should be identical to the Bellman Optimality Operator,

therefore

BG(V)(V) = B∗(V), ∀V ∈ Rm.

It is interesting to observe that by specializing V to be the Value Function V π for

a policy π, we get:

BG(V π)(V π) = B∗(V π),

which is a succinct representation of the first stage of Policy Evaluation with an

improved policy G(V π). The Bellman Optimality Operator is motivated by the

MDP State-Value Function Optimality Equation. We can therefore express the

MDP State-Value Function Bellman Optimality Equation succinctly as:

V ∗ = B∗(V ∗),

which means that V ∗ ∈ Rm is a Fixed-Point of the Bellman Optimality Operator

B∗ : Rm → Rm. Now, since B∗ is a contraction function3, and invoking Banach

Fixed-Point Theorem allows us to prove the convergence of Value Iteration.

Theorem 1.5 (Value Iteration Convergence). For a Finite MDP with |S| = m

and γ < 1, if V ∗ ∈ Rm is the Optimal Value Function, then V ∗ is the unique
3The proof can be found at Rao, Jelvis (2022)

20 1. Technical Background

Fixed-Point of the Bellman Optimality Operator B∗ : Rm → Rm, and

lim
i→∞

(B∗)i(V0)→ V ∗, for all starting Value Functions V0 ∈ Rm.

Theorem 1.5 leads us to the following algorithm by Bellman, Bellman (1957b).

Algorithm 1.3 Value Iteration Algorithm, Source: Sutton, Barto (2018)
1: Initialize V0 ∈ Rm

2: Initialize ϵ = a small positive number , ∆ = 0, j = 0
3: while ∆ ≥ ϵ do
4: Vi+1(s)← B∗(Vi)(s) for all s ∈ S
5: ∆← d(Vi, Vi+1) = maxs∈S |(Vi − Vi+1)(s)|
6: end while

1.3 Prediction and Control with Reinforcement

Learning
In this section, we are going to present some key methods in RL for estimating

value functions and discovering optimal policies. The main difference in these

methods as compared to DP is that they do not assume perfect knowledge of the

environment.

1.3.1 Monte Carlo Methods
Monte Carlo (MC) methods are a family of so-called model-free methods: in fact,

as opposed to model-based methods, MC methods do not need to estimate the

exact model but rather aim at learning the value function of the policy. In MC

methods, we approximate the value function from the average return computed by

sampling the past experience with an incremental approach: the current average

is updated through the new experience samples collected.

It is important to point out that the algorithms we are going to present are on-

policy algorithms, which use the same policy to explore and to update, as opposed

1.3 Prediction and Control with Reinforcement Learning 21

to off-policy algorithms which use two policies: one to explore and collect infor-

mation and one for learning a target policy.

Monte Carlo Methods for Prediction

We begin by looking at MC methods for prediction, that is, for learning the value

function for a given policy.

In MC methods, the first time a state is visited in an episode is referred to as the

first-visit to s. The following algorithm estimates the value of a state s under a

policy π as the average of returns following first visits to s as:

V̂ π =
N−1∑
i=0

Gi =
N−1∑
i=0

T −1∑
t=0

γtRi,t+1. (1.19)

The MC estimator thus has mean E
[
V̂ π
]

= V π and variance V ar(V̂ π) = V ar(V π)
N

as the number of fist-visits to s goes to infinity. We can now present the following

algorithm, Sutton, Barto (2018).

Algorithm 1.4 First - Visit MC Prediction, Source: Sutton, Barto (2018)
1: Input: a policy π to be evaluated
2: Initialize: V (s) ∈ R, arbitrarily, for all s ∈ S
3: Initialize: Returns(s), an empty list, for all s ∈ S
4: for each episode do
5: Generate an episode following π
6: G← 0
7: for each step of episode t = T − 1, T − 2, . . . , 0 do
8: G← γG + Rt+1
9: if St is not in {S0, S1, . . . , St−1} then

10: Append G to Returns(St)
11: V (St)← average (Returns(St))
12: end if
13: end for
14: end for

22 1. Technical Background

Monte Carlo Methods for Control
The idea in MC Control is to proceed in a Generalized Policy Iteration (GPI)

fashion: in GPI the value function is repeatedly updated to approximate the value

function for the current policy, and the policy is repeatedly improved with respect

to the current value function. The two combined cause both the policy and the

value function to approach optimality. The natural idea would then be to use

an MC Prediction algorithm such as Algorithm 1.4, followed by a Greedy Policy

Improvement; the problem would be that Greedy Policy calculation in Definition

1.10) requires a model for the transition probability function P (s′|s, a) and the

reward function r(s, a), two things that are not at our disposal as we are dealing

with a model-free method. We can however reformulate the problem: in fact, we

can see that the equation for the Greedy Policy Improvement is equivalent to

π′
D(s) = arg max

a∈A
Qπ(s, a)∀s ∈ S.

This view of Greedy Policy Improvement is extremely useful because it allows us

to use an MC Prediction algorithm to calculate Qπ, followed by Greedy Policy

Improvement until convergence.

Algorithm 1.5 Monte Carlo Exploring Starts, Source: Sutton, Barto (2018)
1: Initialize: π(s) ∈ A, arbitrarily, for all s ∈ S
2: Initialize: Q(s, a) ∈ R, arbitrarily, for all s ∈ S, a ∈ A
3: Initialize: Returns(s, a), an empty list, for all s ∈ S, a ∈ A
4: for each episode do
5: Choose S0 ∈ S, A0 ∈ A randomly such that all pairs have probability > 0
6: Generate an episode from S0, A0 following π
7: G← 0
8: for each step of episode t = T − 1, T − 2, . . . , 0 do
9: G← γG + Rt+1

10: if St, At is not in {(S0, A0), (S1, A1), . . . , (St−1, At−1)} then
11: Append G to Returns(St, At)
12: Q(St, At)← average (Returns(St, At))
13: π(St)← arg maxa Q(St, a)
14: end if
15: end for
16: end for

1.3 Prediction and Control with Reinforcement Learning 23

1.3.2 Temporal Difference Learning

Temporal-difference (TD) learning, Tesauro (1995), is probably one of the most

important ideas that was brought into the reinforcement learning landscape. TD

is a combination of Monte Carlo (MC) and Dynamic Programming (DP): in fact,

as for MC methods, TD methods learn from experience without a model of the

environment dynamics, on the other hand, as for DP methods, TD methods up-

date estimates based partly on other learned estimates without waiting for a final

outcome, that is, they use bootstrapping.

TD Prediction

As we have seen in the previous section, MC methods wait until the return follow-

ing the visit to a state is known, and then use that return as an update target for

the value function of that state. A simple MC update rule would then be

V (St)← V (St) + α [Gt − V (St)] .

Now, as we have previously mentioned, this MC method must wait until the end

of the episode to calculate the return and determine the increment to V (St). The

significant improvement we have with TD methods is that we can perform an

update on the value function immediately after observing the return Rt+1 and the

estimate V (St+1). We can thus define a simple update rule for a TD algorithm to

be:

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] . (1.20)

This rule brings us to the Algorithm 1.6, which is a very simple TD prediction

algorithm.

24 1. Technical Background

Algorithm 1.6 TD(0) Prediction, Source; Sutton, Barto (2018)
1: Input: a policy π to be evaluated
2: Parameter: the step size α ∈ (0, 1]
3: Initialize V (s), for all s ∈ S, if s is terminal, then V (terminal) = 0
4: for each episode do
5: Initialize S
6: for each step in episode do
7: A← π(S)
8: Take action A, observe R, S ′

9: V (S)← V (S) + α [R + γV (S ′)− V (S)]
10: S ← S ′

11: if S is terminal then
12: break
13: end if
14: end for
15: end for

SARSA

SARSA is a on-policy TD algorithm for control tasks, as we saw in the case of MC

Control algorithms, we follow the pattern of Generalized Policy Iteration (GPI)

using TD methods for the prediction part. Again, as we saw for MC Control

algorithms, we start by learning an action-value function rather than a state-value

function; we thus need to estimate Qπ(s, a) for the current policy and for all states

s and actions a.

Since we are not dealing with transitions from state to state as in the previous

section, but with transitions from state-action pair to state-action pair we have to

specify that formally they are both Markov chains with a reward process, thus the

same theorems that assure the convergence of state values in the TD(0) algorithm,

Algorithm 1.6, apply to action-values. The update rule is thus

Q(St, At)← Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)] . (1.21)

The update is done after every transaction from a non-terminal state St. If St+1

1.3 Prediction and Control with Reinforcement Learning 25

is terminal, then Q(St+1, At+1) is defined to be zero. The rule thus uses for each

iteration the tuple (St, At, Rt+1, St+1, At+1), the same tuple gives the name to the

algorithm, which is SARSA4.

Algorithm 1.7 SARSA, Source: Sutton, Barto (2018)
1: Parameter: the step size α ∈ (0, 1]
2: Initialize Q(s, a), for all s ∈ S, a ∈ A, if s is terminal, then Q(terminal, ·) = 0
3: for each episode do
4: Initialize S
5: A← πQ(S)
6: for each step in episode do
7: Take action A, observe R, S ′

8: A′ ← πQ(S ′)
9: Q(S, A)← Q(S, A) + α [R + γQ(S ′, A′)−Q(S, A)]

10: S ← S ′; A← A′

11: if S is terminal then
12: break
13: end if
14: end for
15: end for

Q-Learning

Q-learning is one of the main breakthroughs in reinforcement learning and is an off-

policy Temporal Difference learning algorithm first presented in Watkins, Dayan

(1992). The update rule for Q-learning is

Q(St, At)← Q(St, At) + α
[
Rt+1 + γ max

a
Q(St+1, a)−Q(St, At)

]
(1.22)

The update rule is the starting point for the following algorithm.

4In the algorithm, πQ refers to the policy derived from Q

26 1. Technical Background

Algorithm 1.8 Q-learning, Source: Sutton, Barto (2018)
1: Parameter: the step size α ∈ (0, 1]
2: Initialize Q(s, a), for all s ∈ S, a ∈ A, if s is terminal, then Q(terminal, ·) = 0
3: for each episode do
4: Initialize S
5: for each step in episode do
6: A← πQ(S)
7: Take action A, observe R, S ′

8: Q(S, A)← Q(S, A) + α [R + γQ(S ′, A′)−Q(S, A)]
9: if S is terminal then

10: break
11: end if
12: end for
13: end for

Chapter 2

Approximate Solution Methods

In the previous chapter, we presented Dynamic Programming algorithms for Markov

Decision Processes (MDPs). These algorithms operate efficiently when MDPs are

represented using finite data structures, and we can express the Value Function

in a tabular format, consisting of states and their corresponding values. The core

of these Dynamic Programming methods involves a sweeping process, where all

states are visited during each iteration to iteratively update the value function.

However, practical challenges arise when dealing with MDPs featuring a very large

state space:

1. Conventional "tabular" representations of MDPs or their associated Value

Functions become unfeasible due to storage limitations.

2. Sweeping through all states and their associated transition probabilities

proves either excessively time-consuming or, in the case of infinite state

spaces, an infeasible task.

To address these challenges, we need to move to methods that involve the approx-

imation of the Value Function. The adaptation of Dynamic Programming algo-

rithms to their Approximate Dynamic Programming (ADP) counterparts offers a

27

28 2. Approximate Solution Methods

viable solution. This adaptation involves a fundamental shift in the methodology:

instead of sweeping all states in each iteration, we opt for a more practical ap-

proach. Specifically, we selectively sample a relevant subset of states and compute

their values employing the same calculations used in the tabular setting. Subse-

quently, we construct or update a function approximation for the Value Function

based on the computed values of the sampled states. Moreover, in cases where

the set of transitions emanating from a given state is large or infinite, we can not

use explicit transition probabilities. Instead, we leverage probabilistic sampling

techniques from the transition probability distribution. Importantly, despite these

modifications to suit larger state spaces, the fundamental structure of the algo-

rithms and the core principles governing them, including the Fixed-Point concept

and the Bellman Operators we presented in the previous chapter, remain unaltered.

2.1 Function Approximation

In this section, we present function approximation within a generalized context,

not limited to the approximation of Value Functions or Policies. We denote the

predictor variable as x, belonging to an arbitrary domain denoted as X, and the

response variable as y ∈ R. We treat x and y as unknown random variables,

and our objective is to estimate the probability distribution function f of the

conditional random variable y|x based on data provided in the form of a sequence

of (x, y) pairs. We consider parameterized functions f with parameters denoted

as w. The specific data type of w depends on the particular form of function

approximation. We represent the estimated probability of y given x as f(x; w)(y).

Assuming we are furnished with data in the form of a sequence of n (x, y) pairs,

[(xi, yi)|1 ≤ i ≤ n]. The concept of estimating the conditional probability P [y|x]

2.1 Function Approximation 29

is formalized by seeking w = w∗ such that:

w∗ = arg max
w

{
n∏

i=1
f(xi; w)(yi)

}
= arg max

w

{
n∑

i=1
log f(xi; w)(yi)

}
.

We are thus operating in the Maximum Likelihood Estimation (MLE) framework,

Rossi (2018), Rao, Jelvis (2022): in such a framework we say the data [(xi, yi)|1 ≤

i ≤ n] specifies the empirical probability distribution D of y|x and the function

f specifies the model probability distribution. In MLE, we essentially minimize

the cross-entropy 1 between the probability distribution D and M . In this work,

we will use incremental estimation wherein at each iteration of the incremental

estimation we use data to update the parameters of the function. The estimate f

also allows us to calculate the model-expected value of y conditional on x, that is:

EM [y|x] = Ef(x;w)[y] =
∫ +∞

−∞
y · f(x; w)(y)dy.

In the context of Dynamic Programming and Reinforcement Learning, the function

approximation’s prediction provides an estimate of the Value Function for any

state.

2.1.1 Value Function Approximation

The prediction methods we have described so far all involve some sort of update

to an estimated value function towards an update target. The updates that char-

acterize the methods we have presented so far are all quite trivial: in fact, we were

able to simply change the value function estimate for an individual state s, while

leaving all the estimated values for the other states unchanged. In the following

sections, we will present methods that implement more complex and sophisticated

updates, where updating at an individual state s generalizes so that the estimated

values of other states will be changed as well.

1Given two distributions D, M , the cross-entropy is defined as H(D, M) = −ED [log M]

30 2. Approximate Solution Methods

Nowadays, many supervised learning methods are used to carry out the approxi-

mation task. It must be noted that not all function approximation methods are

well suited for a reinforcement learning task. In fact, it is important that learning

can occur online, while the agent interacts with the environment. In order to be

able to do so, a supervised learning method needs to learn efficiently from incre-

mentally acquired data. Furthermore, many reinforcement learning tasks involve a

non-stationary target function 2, thus making it necessary for the learning method

to be able to handle nonstationary data.

The Prediction Objective

In the prediction methods we have presented so far, we never specified an explicit

objective for prediction: in fact, in the tabular case, the learned value function

can converge to the true value function exactly, thus making it pointless to have a

measure of prediction quality. However, since we are now dealing with infinite or

very large state spaces, and we have by assumption far more states than weights,

it becomes infeasible to correctly approximate the value for all states. We thus

must specify a state distribution µ(s) ≥ 0, with ∑
s µ(s) = 1, representing how

much we weigh the error in each state s; such an error is measured as the square

of the difference between the approximate value V̂ (s, w) and the true value V π(s).

Weighting this over the state space by µ, we obtain a natural objective function,

the Mean Squared Value Error, Sutton, Barto (2018), denoted VE, defined as

VE(w) :=
∑
s∈S

µ(s)
(
V π(s)− V̂ (s, w)

)2
. (2.1)

2A process Yt is said to be covariance-stationary, Hamilton (1994), if neither the mean µt nor
the autocovariances γjt depend on the time t, that is

E[Yt] = µ for all t,

E[(Yt − µ)(Yt−j − µ)] = γj for all t and any j

2.1 Function Approximation 31

The square root of VE gives a rough measure of how much the approximate values

differ from true values.

2.1.2 Stochastic-Gradient Methods

In this section we will present one class of learning methods for function approx-

imation, that is, those based on Stochastic Gradient Descent (SGD). In gradient

descent methods, the weight vector is a column vector with a fixed number of

real-valued components w := (w1, w2, . . . , wm) ∈ Rm, and the approximate value

function V̂ (s, w) is a differentiable function of w for all s ∈ S. In these methods, w

is updated at each of a series of discrete time steps t = 0, 1, . . . , so we will denote

wt the weight vector at time step t. Assume now we are trying to minimize the

Mean Squared Value Error (2.1) by minimizing the error on the observed samples.

SGD methods will do so by adjusting the weight vector after each example by a

small amount in the direction that would most reduce the error on that sample.

The update rule for the weights would then be

wt+1 = wt −
1
2α∇

[
V π(St)− V̂ (St, wt)

]2
,

wt+1 = wt + α
[
V π(St)− V̂ (St, wt)

]
∇V̂ (St, wt).

(2.2)

where ∇f(w) denotes the column vector of partial derivatives of the expression

with respect to the components of the vector:

∇f(w) =
(

∂f(w)
∂w1

,
∂f(w)
∂w2

, . . . ,
∂f(w)
∂wm

)
.

The derivative vector is the gradient of f with respect to w, which gives the name to

the family of methods: in fact, SGD methods take a step in wt which is proportional

to the negative gradient of the sample’s error, which is the direction in which the

error falls most rapidly.

32 2. Approximate Solution Methods

2.1.3 Linear Function Approximation

Let us define a sequence of feature functions ϕj : X → R for each j = 1, 2, . . . , m

and we define ϕ : X → Rm as:

ϕ(x) : (ϕ1(x), ϕ2(x), . . . , ϕm(x)) .

We will treat ϕ(x) as a column vector for all x ∈ X . For Linear function approxi-

mation, the parameters are represented as a column vector w = (w1, w2, . . . , wm) ∈

Rm. It must be noted that Linear function approximation is based on the Gaussian

assumption3, so the cross-entropy loss function for a given set of data [xi, yi|1 ≤

i ≤ n] is defined as:

L(w) = 1
2n
·

n∑
i=1

(
ϕ(xi)T · w − yi

)2
.

We can easily notice that this loss function is identical to the Mean Squared

Error (MSE) 4 of the linear predictions ϕ(xi)T ·w relative to the response values yi

associated with the predictor values xi. Now, if we were to include L2 regularization

with λ as regularization coefficient we would get a Ridge regression, Hastie et al.

(2001),

L(w) = 1
2n

(
n∑

i=1
(ϕ(xi)T · w − yi)2

)
+ 1

2 · λ · |w|
2.

And the gradient of L(w) with respect to w is

∇wL(w) = 1
n
·
(

n∑
i=1

ϕ(xi) · (ϕ(xi)T · w − yi)
)

+ λ · w.

3It is the assumption of y|x following a Gaussian Distribution, with mean

EM [y|x] =
m∑

j=1
ϕj(x) · wj = ϕ(x)T · w.

and constant variance σ2.
4The MSE is given by 1

n

∑n
i=1(Yi − Ŷi)2, where Ŷi is the prediction and Yi is the true value.

2.1 Function Approximation 33

With the above formula for the gradient, we can find the optimal weights via

Stochastic Gradient Descent using the update rule as in (2.2).

Note that in linear function approximation, we can directly solve for the optimal

weights w∗ if m is not too large. If we denote Φ the n × m matrix defined as

Φi,j = ϕj(xi) and Y ∈ Rn the columns vector defined as Yi = yi, then we can find

the optimal weight as the solution of the following linear system of size m:

1
n
· ΦT (Φw∗ − Y) + λw∗ = 0,(

ΦT · Φ + nλ · Im

)
· w∗ = ΦT · Y,

w∗ =
(
ΦT · Φ + nλ · Im

)−1
· ΦT · Y.

2.1.4 Nonlinear Function Approximation with Artificial Neu-

ral Networks

In the previous section, we presented linear function approximation; now we will

generalize it in order to allow us to perform nonlinear function approximation using

a fully connected (FC) Artificial Neural Network (ANN), as in Rao, Jelvis (2022).

Throughout this section, we will try to use as much as possible the notation used

for the previous section.

Let us start by denoting as L the number of layers of an ANN, then we will denote

as l = 0, 1, . . . , L − 1 the hidden layers of the ANN, and the layer l = L will

be the output layer. Before we move on, it is also worth specifying that all the

vectors that we will deal with will be treated as column vectors. We will further

denote as il the input vector to layer l, and as ol the output of layer l. As for

standard notation in statistics, we will denote as x ∈ X the predictor variable and

as y ∈ R the response variable. We then have that the input of the first layer

will be i0 = ϕ(x) ∈ Rm, and the output of the last layer will be oL = EM [y|x].

Clearly, the input for every layer l + 1 will be the output of the layer l, that is,

34 2. Approximate Solution Methods

il+1 = ol,∀l = 0, 1, . . . , L− 1.

We will denote the parameters for layer l as a matrix wl of dimensions dim(ol)×

dim(il)5. Note that the number of neurons in layer l is always equal to the di-

mension of its output, that is, it is equal to dim(ol). The neurons in each layer l

define a linear transformation from layer input il to a variable we will denote as

zl, defined as:

zl = wl · il. (2.3)

Let us now denote the activation function of a layer l as a function gl : R → R.

In ANNs, the activation function is applied pointwise on each dimension of the

vector zl, yielding the output of the layer l; we will thus denote such an operation

as:

ol = gl(zl). (2.4)

If we now combine Equations 2.3 and 2.4 together with the input of the first layer

being i0 = ϕ(x), and the output of the final layer being oL = EM [y|x], we obtain the

calculation that is performed by the ANN, which is known as forward-propagation.

The following step is to derive an expression for the gradient of the cross-entropy

loss, namely ∇wl
L; the problem can be reduced to calculating the cross-entropy

loss gradient of each layer, that is ∇zl
L, which is possible through the chain rule:

in fact we can see that:
∂L
∂wl

= ∂L
∂zl

· ∂zl

∂wl

.

We thus have the following expression for the gradient

∇wl
L = ∇zl

L · iT
l , (2.5)

where with ∇zl
L · iT

l we represent the outer product, which yields a matrix of

dimensions dim(ol)× dim(il).

5When we use the notation dim(v), we refer to the dimension of a vector v.

2.1 Function Approximation 35

If we now denote as Pl the gradient of the loss function with respect to zl, that

is Pl = ∇sl
L, we can see that the gradient calculation has been reduced to the

calculation of Pl for each layer. As in, Rao, Jelvis (2022), we can introduce the

following theorem that is at the core of back-propagation, and provides us with a

recursive formulation of Pl.

Theorem 2.1. 6 For all l = 0, 1, . . . , L-1,

Pl = (wT
l+1 · Pl+1) ◦ g′

l(zl).

Where ◦ represents the point-wise multiplication of two vectors of the same dimen-

sion.

In order to calculate PL, we can run the above recursive formulation for Pl, estimate

the loss gradient, and perform gradient descent to obtain w∗
l . To calculate the

gradient of the last layer with respect to zL, that is, ∂L
∂zL

; with the intention of

calculating such a quantity, we need to assume a functional form for P[y|sL], Rao,

Jelvis (2022). The functional form of choice will be a generic exponential functional

form for the probability distribution function:

p(y|θ, τ) = h(y, τ)e
θ·y−A(θ)

d(τ) . (2.6)

In Equation 2.6, θ is the parameter related to the mean of the distribution, and

τ is the parameter related to the variance of the distribution. Further notice that

h(·, ·), A(·), d(·) are general functions whose specializations define the family of

distributions that can be modeled with this functional form: in the case of our

ANN, we can assume that τ is constant, and we can set θ to be zL, as follows:

P[y|zL] = p(y|zL, τ) = h(y, τ)e
zL·y−A(zL)

d(τ) . (2.7)

Now, before moving on, let us recall that zL, oL, PL are all scalars in the case that
6The proof of the Theorem 2.1 can be found at Rao, Jelvis (2022).

36 2. Approximate Solution Methods

we are considering7. Before moving on, let us denote the expectation taken under

the functional form in Equation 2.7 as Ep[·], and let us establish the following

Lemma:

Lemma 2.1. 8

Ep[y|zL] = A′(zL).

We can now require the prediction of the ANN to be equal to Ep[y|zL]:

oL = gL(zL) = Ep[y|zL] = A′(zL).

The equation above tells us that the activation value of the output layer L must

be equal to the derivative of the A(·) function. Now, combining all the above, we

can derive a single expression for PL.

Theorem 2.2. 9

PL = ∂L
∂zL

= oL − y

d(τ) .

Notice that at each iteration of gradient descent, we will require an estimate of

the loss gradient up to a constant factor, thus being able to ignore the constant

d(τ) and allowing us to calculate only PL = oL − y. Once we have calculated PL,

we can then recursively calculate Pl for each layer l from l = L− 1 to l = 0.

2.2 Policy Gradient Methods
In this section, we present a different class of reinforcement learning techniques

known as Policy Gradient methods. These methods offer an alternative approach

to solving reinforcement learning problems compared to the familiar action-value

methods we have explored thus far. Action-value methods focus on learning the
7This case is the univariate regression, where the response variable is y ∈ R
8The proof of Lemma 2.1 can be found at Rao, Jelvis (2022).
9The proof of Theorem 2.2 be found at Rao, Jelvis (2022).

2.2 Policy Gradient Methods 37

value of actions in a given state and then making decisions based on these esti-

mates; on the other hand, Policy Gradient methods directly learn a parameterized

policy to determine actions, bypassing the need for approximating the Value Func-

tion.

To formalize Policy Gradient methods, we will now introduce some essential no-

tation. We will represent the policy’s parameter vector as θ ∈ Rd, and define

π(a|s, θ) as the probability of selecting action a at time t given the current state s

and the policy parameter θ. In mathematical terms:

π(a|s, θ) = P {At = a|St = s, θt = θ} .

It is important to note that if a particular Policy Gradient method also incorporates

a learned value function, we denote the weight vector of this value function as

w ∈ Rm.

All Policy Gradient methods involve optimizing a scalar performance measure

denoted as J(θ). These methods aim to maximize this performance measure,

which leads to updates approximating gradient ascent in J . The update rule for

Policy Gradient methods typically takes the following form:

θt+1 = θt + ̂α∇J(θt). (2.8)

In this equation, ̂α∇J(θt) ∈ Rm represents a stochastic estimate, and its expected

value approximates the gradient of the performance measure with respect to the

policy parameter θt, Sutton, Barto (2018). Before moving on to the following

section, it is important to make a distinction between policy gradient methods and

actor-critic methods: in fact, in the former, the update is usually as in (2.8), in

the latter, on the other hand, we have an actor that learns the policy and a critic

that learn a value function, usually a state-value one.

In the subsequent sections, we will explore various Policy Gradient and Actor-

38 2. Approximate Solution Methods

Critic methods that operate based on this framework. These methods provide a

powerful toolset for solving reinforcement learning tasks, particularly when deal-

ing with problems where a parameterized policy is advantageous over traditional

action-value methods.

2.2.1 Policy Approximation
In policy gradient methods, the policy can be parameterized in any way, as long

as π(a|s, θ) is differentiable with respect to its parameters, that is, as long as

∇π(a|s, θ) exists and is finite for all s ∈ S, a ∈ A, and θ ∈ Rm. Moreover, we

generally require the policy to be stochastic, and never deterministic, to ensure

proper exploration of the environment.

Policy Gradient methods have proved to perform better than action-value methods

in tasks with continuous action spaces; however, as in our case, if the action

space is not too large, then it is usually preferred to form parametrized numerical

preferences h(s, a, θ) ∈ R for each state-action pair: the actions with the highest

preferences in each state are given the highest probabilities of being selected using

an exponential soft-max distribution:

π(a|s, θ) := eh(s,a,θ∑
b es,b,θ

. (2.9)

We call this kind of policy parametrization soft-max in action preferences.

2.2.2 Policy Gradient Theorem
In this section, we will present what is the base for all Policy Gradient (PG)

methods, which is the Policy Gradient Theorem (PGT). As we have mentioned

previously, in PG methods, we perform gradient ascent in J , which is a performance

measure for the parametrized policy π(a|s, θ). We now define such a performance

measure as

J(θ) := Eπ

[∞∑
t=0

γt ·Rt+1

]
. (2.10)

2.2 Policy Gradient Methods 39

For the state-value and action-value function we use the definitions in (1.9) and

(1.10), respectively.

Note that J(θ), V π, and Qπ are all measures of expected returns. However, they

differ in that J(θ) is the expected return when following policy π averaged over

all states s ∈ S and all actions a ∈ A, while V π(s) is the expected return for a

specific state s ∈ S when following policy π, and Qπ(s, a) is the expected return for

a specific state s ∈ S and a specific action a ∈ A when following a specific policy

π. We now introduce another function: the advantage function, which captures

how much more value one particular action provides relative to the average value

across actions for a given state. Such a function plays a crucial role in reducing

the variance of PG algorithms and is defined as

Aπ(s, a) = Qπ(s, a)− V π(s). (2.11)

Furthermore, we will introduce a function that denotes the probability of going

from state s to s′ in t steps by following policy π, namely p(s → s′, t, π). Using

such a function we can reformulate the expression for J in (2.10) as

J(θ) = Eπ

[∞∑
t=0

γt ·Rt+1

]
=

∞∑
t=0

γtEπ[Rt+1]

=
∞∑

t=0
γt ·

∑
s∈S

∑
S0∈S

p0(S0) · p(S0 → s, t, π)
 ·∑

a∈A
π(a|s, θ) · r(s, a)

=
∑
s∈S

∑
S0∈S

∞∑
t=0

γt · p0(S0) · p(S0 → s, t, π)
 ·∑

a∈A
π(a|s, θ) · r(s, a).

(2.12)

We can now define a reformulated performance measure as follows.

Definition 2.1. Let

ρπ(s) =
∑

S0∈S

∞∑
t=0

γt · p0(S0) · p(S0 → s, t, π),

40 2. Approximate Solution Methods

then we can reformulate the performance measure J as

J(θ) =
∑
s∈S

ρπ(s) ·
∑
a∈A

π(a|s, θ) · r(s, a).

In the above definition, we refer to ρπ(s) as the Discounted-Aggregate State-Visitation

measure; it is important to note that the distribution of states under the ρπ mea-

sure is an improper10 distribution reflecting the relative likelihood of occurrence of

states on a trace experience. We introduced the notion of improper distribution of

states under the measure ρπ in order to use the notation of expected value under

this distribution when needed.

We are now ready to present the PGT, which provides a powerful formula for the

gradient of J(θ) with respect to θ, thus allowing us to formulate update rules to

perform Gradient Ascent.

Theorem 2.3 (Policy Gradient Theorem11).

∇θJ(θ) =
∑
s∈S

ρπ(s) ·
∑
a∈A
∇θπ(a|s, θ) ·Qπ(s, a).

2.2.3 REINFORCE
The first PG algorithm we are going to present is the REINFORCE algorithm,

Williams (1992). It is important to point out that in Stochastic Gradient Ascent,

we need to obtain samples such that the expectation of the sample gradient is

proportional to the actual gradient of the performance measure as a function of

the parameter. In accomplishing this task, the PGT is crucial as it gives an exact

expression proportional to the gradient; all that is now needed is a way of sampling

whose expectation equals or approximates this expression. We can notice that the

right-hand side of the PGT is a sum over states weighted by how often the states
10We say that it is an improper distribution to convey the fact that

∑
s∈S ρπ(s) ̸= 1, that is,

the distribution is not normalized.
11The proof of Theorem 2.3 can be found at Sutton, Barto (2018).

2.2 Policy Gradient Methods 41

occur under the target policy π, thus we can rewrite the equation in theorem 2.3

as:

∇θJ(θ) = Eπ

[∑
a

Qπ(St, a)∇θπ(a|St, θ)
]

. (2.13)

We continue by introducing At in the same way as we introduced St in equation

2.13, that is, by replacing a sum over the random variable’s possible values with

an expectation under π, and then sampling the expectation. Continuing from

equation 2.13 we have

∇θJ(θ) = Eπ

[∑
a

π(a|St, θ)Qπ(St, a)∇θπ(a|St, θ)
π(a|St, θ)

]

= Eπ

[
Qπ(St, At)

∇θπ(At|St, θ)
π(At|St, θ)

]

= Eπ

[
Gt
∇θπ(At|St, θ)

π(At|St, θ)

]
.

(2.14)

Where the last expression is due to the fact that Eπ[Gt|St, At] = Qπ(St, At). The

final expression is also what we needed to perform gradient ascent, a quantity that

can be sampled on each time step whose expectation is equal to the gradient; the

REINFORCE update is then given by

θt+1 = θt + αGt∇θ log π(At|St, θt)12. (2.15)

12Notice that writing ∇ ln x is equivalent to ∇x
x

42 2. Approximate Solution Methods

Algorithm 2.1 REINFORCE, Source: Sutton, Barto (2018)
Input: a differentiable policy parametrization π(a|s, θ)
Parameter: the step size α > 0
Initialize: policy parameter θ ∈ Rd

for each episode do
Generate an episode S0, A0, R1, . . . , ST −1, AT −1, RT , following π(·|·, θ)
for each s dotep of the episode

G← ∑T
k=t+1 γk−t−1Rk

θ ← θ + αγtG∇θ ln π(At|St, θ)
end for

end for

REINFORCE with Baseline

The PGT (2.3) can be generalized to include a comparison of the action value to

a baseline denoted b(s), as presented in the following theorem.

Theorem 2.4 (Policy Gradient Theorem with Baseline).

∇θJ(θ) =
∑
s∈S

ρπ(s) ·
∑
a∈A

(Qπ(s, a)− b(s))∇θπ(a|s, θ). (2.16)

It is important to notice that the baseline can be any function, including a random

variable, as long as it does not vary with the action a. In fact, if such a condition

holds, the equation remains valid because the subtracted quantity is zero:

∑
a∈A

b(s)∇θπ(a|s, θ) = b(s)∇θ

∑
a∈A

π(a|s, θ) = b(s)∇θ1 = 0.

The PGT with baseline (2.4) can be used to derive the following update rule

θt+1 := θt + α (Gt − b(St))∇θ log π(At|St, θt). (2.17)

One trivial choice for the baseline can be an estimate of the state value, V̂ π(St, w), w ∈

Rm.

2.3 Actor-Critic Methods 43

Algorithm 2.2 REINFORCE with Baseline, Source: Sutton, Barto (2018)
1: Input: a differentiable policy parametrization π(a|s, θ)
2: Input: a differentiable state-value function parametrization V̂ π(s, w)
3: Parameter: the step size αθ > 0, αw > 0
4: Initialize: policy parameter θ ∈ Rd and state-value weights w ∈ Rm

5: for each episode do
6: Generate an episode S0, A0, R1, . . . , ST −1, AT −1, RT , following π(·|·, θ)
7: for each s dotep of the episode
8: G← ∑T

k=t+1 γk−t−1Rk

9: δ ← G− V̂ (St, w)
10: θ ← θ + αγtδ∇θ ln π(At|St, θ)
11: end for
12: end for

2.3 Actor-Critic Methods
It is important to begin this section by explaining why REINFORCE with Base-

line cannot be considered an actor-critic method: in fact, REINFORCE uses the

state-value function only as a baseline and not as a critic. The key difference is

that the value estimate for a state is not updated from the estimated values of

the subsequent states (bootstrapping), but rather is used as a baseline for the state

whose estimate is being updated. Notice that using bootstrapping techniques in-

troduces bias and dependence on the quality of the approximation for the critic

while reducing variance and accelerating learning. One of the most common ap-

proaches is to use the critic’s value function as the baseline, which results in the

TD error of the estimated value function.

2.3.1 Generalized Advantage Estimation
In this section, we will present a method to estimate the advantage function as in

Schulman et al. (2018). The objective is to produce an accurate estimate Ât if the

discounted advantage function Aπ(st, at). Such an estimate will then be used to

construct a PG estimator. Now, if we let V be an approximate value function, we

44 2. Approximate Solution Methods

can then define the TD error of V with discount γ as

δV
t := rt + γV (St+1)− V (St).

We can consider δV
t as an estimate of the advantage of action At, as if we have a

value function estimate such that V = V π, then it is a γ-just13 advantage estimator

and an unbiased estimator of Aπ14. Considering now the sum of k of these δ terms,

denoted Â
(k)
t , we will see that Â

(k)
t involves a k − step estimate of the returns,

minus a baseline term −V (St) 15. It can be noticed that the bias becomes smaller

as k →∞, in fact, taking k →∞, we get

Â
(∞)
t =

∞∑
l=0

γlδV
t+l = −V (St) +

∞∑
l=0

γlrt+l. (2.18)

The Generalized Advantage Estimator GAE(γ, λ) is then defined as the exponentially-

weighted average of these k-step estimators:

Â
GAE(γ,λ)
t := (1− λ)

(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)
= (1− λ)(δV

t + λ(δV
t + γδV

t+1 + λ2(δV
t + γδV

t+1 + γ2δV
t+2 + . . .)

= (1− λ)(δV
t (1 + λ + λ2 + . . .) + γδV

t+1(λ + λ2 + λ3 + . . .)

+ γ2δV
t+2(λ2 + λ3 + λ4 + . . .) + . . .)

= (1− λ)
(

δV
t

(
λ

1− λ

)
+ γδV

t+1

(
λ

1− λ

)
+ γ2δV

t+2

(
λ

1− λ

))

=
∞∑

l=0
(γλ)lδV

t+1.

(2.19)

13A definition of what is a γ-just advantage estimator is out of scope for this work. For a
definition of γ-just, see Schulman et al. (2018).

14The estimator is unbiased as

E[δV π

t |St+1] = E[rt + γV π(St+1)− V π(St)|St+1]
= E[Qπ(St, At)− V π(St)|St+1] = Aπ(St, At).

15For the detailed proof, see Schulman et al. (2018)

2.3 Actor-Critic Methods 45

2.3.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO), introduced by Schulman et al. (2017b), is a

method of the PG family, more specifically of the Trust Region one. PPO, in fact,

addresses those that are the the main problems of ’vanilla’ PG methods, such as

large policy updates and therefore training instability. In Trust Region methods,

the objective function is maximized by solving a constrained optimization problem

using the Kullback-Leibler (KL) divergence.

Definition 2.2 (Kullback-Leibler Divergence). The Kullback-Leibler divergence

is a measure of the distance between a probability distribution P and a reference

probability distribution Q. It is defined as

DKL(P ||Q) =
∑
x∈X

P (x) log
(

P (x)
Q(x)

)
.

Thus, in Trust Region Policy Optimization (TRPO), Schulman et al. (2017a), we

solve one of the following constrained optimization problem

max
θ

{
Et

[
πθ(At|St)

πθold(At|St)
Ât

]}

subject to Et [DKL[πθold(·|St), πθ(·|St)]] ≤ δ,

(2.20)

or

max
θ

{
Et

[
πθ(At|St)

πθold
(At|St)

Ât − βDKL[πθold
(·|St), πθ(·|St)]

]}
. (2.21)

In practice, the constrained problem described in Equation 2.20 is usually more

popular, as it does not involve the calibration of the penalization parameter β that

is present in Equation 2.21.

In PPO, a clipped surrogate objective function is used. Such an objective function

is derived from the Conservative Policy Iteration:

Et

[
πθ(At|St)

πθold
(At|St)

Ât

]
. (2.22)

46 2. Approximate Solution Methods

Now, letting rt(θ) = πθ(At|St)
πθold

(At|St) , we can define the clipped surrogate objective as

LCLIP
t (θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
. (2.23)

where clip(·, 1−ϵ, 1+ϵ) modifies the argument by clipping in the interval [1−ϵ, 1+ϵ].

It is important to notice that this new objective function is equal to the one of

Conservative Policy Iteration to first order around θold, Schulman et al. (2017b),

but they strand away as θ moves away from θold. Now that we have defined this

new objective function, we can present the final objective function, which makes

use of a learned value function in order to reduce variance, and an entropy16 bonus,

as follows.

LP P O
t (θ) = Et

[
LCLIP

t (θ)− c1L
V F
t (θ) + c2H(πθ(St))

]
. (2.24)

Furthermore, in PPO we run the policy for T timesteps, where T is usually much

less than the episode length, and then use the collected samples to perform an

update to the policy using minibatch SGD for K epochs.

16The entropy of a Random Variable is defined as

H(X) := −
∑
x∈X

p(x) log p(x) = E[− log p(X)]

Chapter 3

Methodology

3.1 The Model
The proposed Reinforcement Learning model is based on Proximal Policy Opti-

mization (PPO), which we presented in Section 2.3.2, and whose pseudo code we

will now present.

The algorithm will be implemented in Python, and is composed of three objects:

• the Agent;

• the Environment;

• the Data Loader;

3.1.1 The Agent
The Agent is the backbone of our Proximal Policy Optimization (PPO) framework.

Within the model, the Agent takes on the crucial role of interfacing with the

Environment, handling the collection of rewards, and, subsequently, carrying out

the optimization processes for both the Actor and the Critic components of the

model. Being the central decision-maker, the Agent is the one that determines

47

48 3. Methodology

when to buy, sell, or hold the asset based on the Actor’s policy parametrization

gained from its interactions with the Environment.

We constructed the Actor and the Critic as Fully Connected Artificial Neural Net-

works (FC-ANN). The Actor, which is represented by its policy parametrization, is

the one that picks the optimal actions to take in the Environment, effectively defin-

ing the trading strategy. In contrast, the Critic, which is represented by its value

network, provides feedback by estimating the value of state-action pairs, aiding

in assessing the effectiveness of chosen actions. It is important to stress that the

Critic is only used in the training phase, while the Actor is used in the test phase

by the Agent. The Actor and the Critic are continuously refined and adapted

through interactions with the financial Environment to maximize returns while

managing risk. The collaborative efforts of these components, under the Agent’s

guidance, form the core of our PPO-based trading framework, enabling adaptive

and informed decision-making in the complex landscape of financial markets.

3.1.2 The Environment
In our PPO-based trading model, the Environment assumes a central role, being

the link between the Agent and the financial markets. One of the most crucial

functions that the Environment carries out is providing real-time observations

from the state to the Agent: these observations encapsulate information, including

market conditions, asset prices, technical indicators, and relevant data points.

These observations allow the Agent to make informed decisions that adapt to the

dynamic nature of financial markets.

Furthermore, the Environment receives the Agent’s trading actions; these actions

dictate when to buy, sell, or hold the asset within the simulated trading envi-

ronment. This exchange between the Agent and the Environment mirrors the

real-world trading experiences.

However, the Environment’s role is far more important than being a mere link; in

3.1 The Model 49

fact, it assumes the essential task of computing the rewards, which the Agent then

uses to optimize the parameters of the networks. The rewards play a crucial role,

as they are the means through which the Agent receives feedback on its actions,

thus making it possible to reinforce behaviors that lead to profitable trades and

discourage trades that result in financial losses.

The Environment operates as an incubator for the Agent’s trading strategies, re-

fining them through a continuous feedback loop; this iterative process is the core

of optimizing the Agent’s decision-making capabilities.

In order to avoid overfitting, the Environment switches data set every n iterations:

the dataset that will be used for the next n iterations is chosen as follows. Let

Xi,t be a counting process that increases by 1 each time a dataset is used, where

i = 1, 2, . . . , K, with K being the number of data sets, and where t = 0, 1, . . . , T

is the training iteration. The Environment then picks the next dataset as the one

with the lowest value in its respective counting process; in the case of a tie, we

split it randomly.

3.1.3 The Data Loader
The Data Loader in our reinforcement learning model is a component that plays

a pivotal role in the entire system’s functionality. It is an interface responsible

for acquiring, transforming, and preparing financial data from external sources.

This object not only fetches the data but also undertakes preprocessing steps, as

mentioned in Section 3.2, to ensure the data is well-suited for the subsequent stages

of the model.

Its first responsibility is retrieving a wide array of financial information, such as

stock prices and trading volumes, depending on the use case. After obtaining

this raw data, the Data Loader performs a comprehensive data-wrangling pro-

cess, including handling missing values, dealing with outliers, performing feature

engineering, and normalizing data to create relevant input features for the Agent.

50 3. Methodology

The Data Loader is the cornerstone of the model’s data pipeline, bridging the gap

between external data providers and the Agent: in fact, its handling of financial

data facilitates more effective learning and enhances the model’s capacity to deal

with the complexities and uncertainties of the financial markets. A well-designed

and versatile Data Loader is thus crucial to ensure the model’s success in adapting

to changing market conditions and making informed investment choices.

3.1.4 Network Architecture

Both the Actor and the Critic have been implemented as an FC-ANN, specifically,

we opted for a 3-layer, 128 neurons per layer architecture. The only difference

between the Actor’s and the Critic’s network stands in the final layer: in fact, the

Actor presents 3 neurons with SoftMax activation, one for each action, while the

Critic presents a single linear layer. As for the activation function of the hidden

layer, we choose to experiment with a variety of activation functions, such as the

ReLU and the Tanh, depicted below.

Fig. 3.1: ReLU and Tanh Activation Functions

3.2 Data Processing 51

3.2 Data Processing
In this section, we present the process that the raw data goes through before being

used to train the model. The data we use is going to be used in the Proximal

Policy Optimization algorithm that we implemented. The objective is to model

the financial markets as an MDP so that we can apply the algorithms and methods

we presented in the previous sections to stock trading. Specifically, we have that

the state space S is composed of the close, high, open, and low price, the technical

features, past returns, and the gross position of the agent. The action space A

is just a three-dimensional vector, with each position representing one action in

{short, f lat, long}, we are thus dealing with a discrete action space. For the reward

Rt, we decided to opt for two formulations: the first one is just the percentage

change in portfolio value, and the second one is the Sharpe Ratio of the previous

trading month.

3.2.1 Tickers
The choice of the tickers is related to the way the Environment interacts with the

agent: in fact, since the Environment switches data set every n iterations, we can

use this property to our advantage to both reduce overfitting and to bring diversity

in the Agent’s training. Thus, in order to bring diversity, we choose to pick several

stocks, some broad market indices, and a commodity index. It is however very

important to avoid as much as possible having redundant information, which in

our setting translates to having highly correlated time series.

3.2.2 Features
In this section, we will go over the Feature Engineering (FE) process, which allows

us to create many features from a single financial time series. These features in

finance are often referred to as technical indicators; they are mainly used to remove

52 3. Methodology

noise from and highlight some properties of the time series itself. Before presenting

the features, we will introduce some notation that is used throughout the section.

The opening price at each time step is denoted as Ot, the closing price Ct, the

highest price Ht, and the lowest price Lt, with the Trading Volume each day being

denoted as Vt.

Simple Moving Average

The Simple Moving Average (SMA) is a technical indicator that is computed as

SMAt(w) =
∑T

t=T −w xt

w
, (3.1)

where w is the so-called window size, which identifies the number of periods that

are included in the calculation of the SMA, and xt is the observation at time t of

our process. In using an SMA, the choice of w is of crucial importance: in fact,

choosing a small value for w, such as 9 or 10 will lead our SMA to be extremely

reactive, but also very noisy; on the other hand, choosing a larger value for w,

such as 21, or even 240, will lead to a less reactive but also less noisy indicator.

The criterion that should be used when using an SMA as a technical indicator

is actually very intuitive: if at time t the process we are observing has a value

xt higher than the SMA, then we can consider the process to be in an ascending

trend. Clearly, the larger the value for the window size, the larger the power of

the signal. In the figure below it is possible to how two different SMAs react to

price changes.

3.2 Data Processing 53

Fig. 3.2: SMA 10, SMA 242 and the SP500 Index

Exponential Moving Average

The Exponential Moving Average (EMA) is a technical indicator of the same family

of the SMA, that is, the moving average one. The difference with SMA is the way

in which the rolling average is computed, in fact, in EMA, the weights of the past

observation decay exponentially, whereas in the SMA there is no weight decay.

EMA can be calculated with the following recursive formula:

EMAt = λ · xt + (1− λ) · EMAt−1, (3.2)

The parameter λ ∈ [0, 1] is the decay factor, which represents the rate at which

the weights of past observations decay as you move further back in time; a higher

λ gives more weight to recent data, while a lower λ gives more equal weight to

historical data.

54 3. Methodology

Fig. 3.3: Weight decay in EMA for different values of λ

Moving Average Convergence Divergence

The Moving Average Convergence Divergence (MACD) is a crucial technical indi-

cator in technical analysis. It provides valuable insights into the momentum and

direction of asset prices. We can calculate the MACD from two exponential mov-

ing averages (EMAs), typically a 12-period EMA and a 26-period EMA. MACD

is then calculated as the difference between these EMAs and is used to identify

potential trend reversals or continuations: in fact, when the MACD crosses above

the signal line, it generates a bullish signal, suggesting upward momentum; on the

other hand, we can consider a crossover below the signal line to be bearish, indicat-

ing a possible downtrend. Additionally, the MACD histogram, which represents

the difference between the MACD and signal line, visually represents momentum

strength. Traders often use these MACD components to make informed decisions

regarding market entry and exit points. The equations for MACD components are

3.2 Data Processing 55

as follows:

MACD = EMA12 − EMA26,

Signal Line = EMA9(MACD),

Histogram = MACD− Signal Line.

(3.3)

Fig. 3.4: Smoothed Histogram of the MACD(26, 12) compared to the SP500 index

On Balance Volume

The On Balance Volume (OBV) is the first indicator of the Volume family. The

OBV technical indicator is a popular tool in technical analysis. It helps traders

and analysts assess the strength of a price trend by measuring the cumulative

volume flow. We can calculate OBV by adding the volume on days when the price

increases and subtracting the volume when the price decreases. This indicator

effectively shows buying or selling pressure behind a price movement. When OBV

confirms a price trend, it can provide valuable insights, indicating potential trend

reversals or continuations. Analysts often use OBV with other technical indicators

to make more informed trading decisions. In mathematical terms, we can express

56 3. Methodology

the OBV as:

OBVt = OBVt−1 +

Vt, if Ct > Ct−1

−Vt, if Ct < Ct−1

0, if Ct = Ct−1

. (3.4)

Fig. 3.5: OBV compared to the SP500 index

Money Flow Index
The Money Flow Index (MFI) is another popular tool in technical analysis, offering

insights into the strength of a price trend and potential reversal points. MFI

combines price and volume data to determine overbought and oversold conditions.

Its calculation involves the average price of an asset over a specified period, the

typical price, and the money flow. The money flow (MF) is the product of the

typical price (TP) and the trading volume, and the MFI is then calculated based

on the Money Flow Ratio (MFR), which is the ratio of positive money flow (MF+)

to negative money flow (MF−). MFI values range from 0 to 100, with overbought

conditions typically indicated when the MFI surpasses 70 and oversold conditions

when it falls below 30. Traders use the MFI to identify potential trend reversals or

3.2 Data Processing 57

continuations, the divergence between price and MFI signals, and to make more

informed decisions about entry and exit points in the market. The equations for

calculating the MFI components are as follows:

TPt = Ht + Lt + Ct

3 ,

MFt = TPt × Vt,

MF+
t =

t∑
i=t−n

I{TPi>TPi−1} ×MFi,

MF−
t =

t∑
i=t−n

I{TPi<TPi−1} ×MFi,

MFRt = MF+
t

MF−
t

,

MFIt = 100− 100
1 + MFRt

.

(3.5)

Fig. 3.6: MFI compared to the SP500 index

Chaikin Money Flow

The Chaikin Money Flow (CMF) is a popular technical indicator used by traders to

assess the strength and direction of money flow in a financial instrument, typically a

58 3. Methodology

stock. It helps traders make informed decisions by providing insights into whether

a security is under buying or selling pressure. The CMF is calculated using two

key components: the Money Flow Multiplier (MFM) and the Money Flow Volume

(MFV).

MFMt = (Ct − Lt)− (Ht − Ct)
Ht − Lt)

,

MFVt = MFMt × Vt,

CMFt =
∑t

i=t−n MFVi∑t
i=t−n Vi

.

(3.6)

Note that the result is often smoothed with a moving average to generate a more

easily interpretable indicator. Traders use CMF to identify potential trend rever-

sals, the divergence between price and money flow, and overbought or oversold

conditions. A positive CMF suggests accumulation and potential bullish momen-

tum, while a negative CMF indicates distribution and potential bearish pressure.

Fig. 3.7: CMF compared to the SP500 index

3.2 Data Processing 59

Commodity Channel Index

The Commodity Channel Index (CCI) is a technical indicator developed by Donald

Lambert in the 1980s; CCI primarily identifies overbought or oversold conditions

in an asset and potential trend reversals. We can calculate CCI using the following

formula:

CCIt = (TPt − SMA(n))
0.015×Mean Deviation ,

where Mean Deviation =
t∑

i=t−n

(TPi − SMA(n)i)
n

.
(3.7)

Traders typically use CCI values above +100 to indicate overbought conditions,

suggesting a potential bearish reversal, and values below -100 to signify oversold

conditions, hinting at a potential bullish reversal. CCI is a valuable tool to comple-

ment other technical and fundamental analysis methods in making well-informed

trading decisions.

Detrended Price Oscillator

The Detrended Price Oscillator (DPO) is a technical indicator that helps traders

identify short-term price trends by removing the long-term trend component from

a price series. To calculate the DPO, one has to select a specific period to calculate

the DPO, and then calculate the closing prices’ simple moving average (SMA) over

the chosen period. Shift the SMA backward by half the selected period, creating

a displaced moving average, then subtract the displaced moving average from the

current closing price to obtain the DPO value. The resulting DPO values oscillate

around zero, and traders use them to identify potential overbought or oversold

conditions in the short term. When the DPO crosses above zero, it suggests that

short-term prices are above the long-term average, indicating a potential bullish

trend. Conversely, short-term prices are below the long-term average when the

DPO crosses zero, indicating a potential bearish trend. Traders use these signals

60 3. Methodology

with other technical and fundamental analyses to make informed trading decisions.

Relative Strength Index

The Relative Strength Index (RSI) is a technical indicator traders use to assess

the strength and potential direction of a financial instrument’s price movement. It

oscillates between 0 and 100 and is typically employed to identify overbought or

oversold conditions in the market. We consider an RSI above 70 as signaling an

overbought asset, suggesting a potential sell signal, while an RSI below 30 as an

oversold asset, signaling a potential buy opportunity. We can calculate the RSI as

follows:

RSIt = 100− 100
(1 + RSt)

,

where RSt =
∑t

i=t−14 |rt| × I{rt>0}∑t
i=t−14 |rt| × I{rt<0}

.

(3.8)

In the above calculation, rt indicates the percentage return between Ct−1 and Ct.

Average True Range

The Average True Range (ATR) is a technical indicator that traders use to assess

market volatility. To calculate the ATR, first determine the true range (TR) for

each period and then calculate the average of these values; this average is the ATR,

representing the average volatility over that specified period.

TRt = max

Ht − Lt,

|Ht − Ct−1|,

|Lt − Ct−1|

,

ATRt = 1
n

t∑
i=t−n

TRi.

(3.9)

A higher ATR indicates greater market volatility, while a lower ATR suggests lower

volatility. Traders utilize the ATR to set stop-loss and take-profit levels, determine

3.2 Data Processing 61

position sizes, and assess overall risk, allowing them to make more strategic and

informed trading decisions in various market conditions.

3.2.3 Data Normalization
The last step in the Data Preparation process is to normalize our data; this is a

widespread practice, as it makes training faster and helps to avoid getting stuck in a

local minimum, Bishop (1995). In practice, the two most popular transformations

that are applied to the data in order to scale it are the Min-Max Normalization

and the Z-Score Normalization, Patro, Sahu (2015), Pires et al. (2020).

Min-Max Normalization

The Min-Max normalization is one of the most popular transformations applied

to data, and, given a vector of data D, and the interval [a, b], that we want our

transformed data to be in, we can define the transformation as

D′ = D −min(D)
max(D)−min(D) × (b− a) + a, (3.10)

where each calculation is performed element-wise.

Z-Score Normalization

The Z-score normalization is the second data transformation we present; again,

given a vector of data D, we define the transformation as

D′ = D −mean(D)
std(D) , (3.11)

where mean(D) and std(D) represent the sample mean and sample standard de-

viation, respectively.

The two transformations we have just presented are both valid ones, however, it

is important to make some remarks: in fact, if we use the one in Equation 3.2.3,

we must be certain that the minimum and the maximum values of the dataset

62 3. Methodology

will not change in the test set; if this was the case, we would find ourselves with

some values outside the interval [a, b], which would probably be considered as

influential observations by the algorithm. On the other hand, if we dispose of only

a small amount of data, the choice of the transformation in Equation 3.11 might

not be optimal, as we might not be able to rely on a good sample estimate for the

mean and the variance; furthermore, when using the z-score transformation we

also assume that the distribution from which our data is sampled does not change

between the training and the test set.

3.3 Performance Measures

In this section, we will present the metrics we will use to evaluate the performance

of the PPO-Agent strategy over time. In fact, in order to gauge if the model’s

Agent is actually achieving good performance, we will compare its metrics with

those of a simple buy and hold (B&H) strategy. We will now rapidly go through

the metrics that we will adopt.

Sharpe Ratio

The Sharpe Ratio (SR) is a risk-adjusted performance measure that relates the

expected return and the standard deviation of returns of a given portfolio. Infor-

mally, it shows how much compensation the investors get for an extra unit of risk,

Sharpe (1966). For the return on a portfolio RP and the return on a benchmark

RB, it is calculated as

SR = D

σD

, (3.12)

3.3 Performance Measures 63

where

Dt = RP,t −RB,t,

D = 1
T

T∑
t=1

Dt,

σD =

√√√√∑T
t=1

(
Dt −D

)2

T − 1 .

Clearly, a risk-averse investor will prefer to invest in a portfolio with a higher SR,

since it rewards more the risk they take on by investing.

Maximum Drawdown
The maximum drawdown (MDD) is the worst loss among successive declines from

peaks to troughs during a given period. MDD is the worst-case scenario for an

investor who starts his/her investment in the period. Investors prefer smaller

MDDs to more significant drawdowns in portfolio performance, Choi (2021). Let

R(t, τ) be the log-return between time t and time τ , then we define the MD as:

MDD = − min
τ∈[0,T]

{
min

t∈[0,T]
R(t, τ)

}
. (3.13)

Calmar Ratio
The Calmar Ratio (CR) was introduced in Young (1991). It is yet another risk-

adjusted performance measure that can be used to judge a portfolio’s returns. It

is constructed similarly to the SR in Equation 3.12 but uses the MDD in Equation

??, rather than the standard deviation. It is generally computed using the average

annual return over a period [0, T], and the maximum drawdown in the same period.

Letting Rt,t+12 denoting the annual return of a security, we can calculate the CR

as:

CR =
∑T −12

t=1 Rt,t+12

MDD . (3.14)

64 3. Methodology

Sortino Ratio

The Sortino Ratio (STR), Rollinger, Hoffman (2013), is a risk-adjusted perfor-

mance measure that is extremely similar to the SR in Equation 3.12: in fact, in

the STR, we use the semi-standard deviation of the returns distribution, rather

than the standard deviation. The semi-standard deviation is a Lower Partial Mo-

ment (LPM) 1, which simply calculates the standard deviation of the returns below

a threshold τ . A sample estimate of semi-standard deviation for a threshold τ can

be calculated as:

SemiSD(τ) =
√∑T

t=1 max(τ − r, 0)2

T
. (3.15)

The STR is then defined, in the same way as the SR, therefore we will use the

same notations and definitions:

STR = D

SemiSD(τ) . (3.16)

Note that the choice of τ clearly influences greatly the STR; therefore one should

always specify the threshold that has been used for the calculation, in order to

avoid any possible misunderstanding. A sensible choice for τ can be 0, therefore

only accounting for negative returns, or the minimum acceptable return for the

investor.

Value at Risk

Value at Risk (VaR) is a risk measure that tells us, given a specified confidence

level, what is the maximum amount we can lose over one day. Let the confidence

level be denoted as α, then the α-VaR can be calculated as follows: select a series

of returns over a time period [0, T]; then we can calculate the quantile of the

returns distribution given this confidence level, that is, find a return r∗ such that:

P {r ≤ r∗} = 1− α,

1For more information and detail about LPMs, one can see LPM (1975)

3.3 Performance Measures 65

then the Value at Risk is simply calculated as:

VaR(α) = −r∗.

VaR has the property of being a coherent2 risk measure that is, it has monotonicity,

translation invariance, homogeneity, and sub-addittivity.

Conditional Value at Risk

Conditional Value at Risk(CVaR) or Expected Shortfall (ES), McNeil et al. (2015),

is the last risk measure that we will present. CVaR helps us to gauge what is the

average loss if the VaR is exceeded. In fact, since VaR is actually just a quantile

of the returns distribution, it gives us no knowledge of what happens if we happen

to go past the VaR: it can be said the VaR is the best of worse-case scenarios. For

these reasons, we now present the CVaR. CVaR can be calculated as the average

of the VaR that exceed our confidence level, that is in integral form:

CVaR(α) = 1
α

∫ α

−∞
VaRqdq. (3.17)

Note that CVaR assumes neutrality of investors beyond the VaR level, in fact, it

weighs all the returns past the VaR equally.

Robustness to Transaction and Borrowing Costs

The last part of our analysis of the Agent’s strategy will involve a series of further

tests to gauge how much the strategy is sensitive to transaction costs and borrowing

costs, that is incurred when the Agent takes a short position on the asset, and it

does so by borrowing at the current rate.

2For more details about the definition of coherent risk measure, one can see Artzner et al.
(1999)

Chapter 4

Results

4.1 Preliminary Remarks
In this Chapter, we are going to present the results of applying the model to empir-

ical data. It is important to note that these results were obtained with technology

that is available to everyone: the algorithms were implemented in Python, the

data was downloaded online from Yahoo! Finance, and the training and testing of

the model was carried out on a device with the following specifics.

Component Specifics
CPU 8 Cores, 16 threads @ 2.20GHz
GPU NVIDIA GeForce GTX 1650 Max-Q, 4GB
RAM 16GB DDR4, 2933MHz, SODIMM

Table 4.1: Hardware Specifics

4.2 Data Summary
In this section, we are going to briefly present the data we have selected to train

and test the model. The tickers we selected for the training are the following. We

selected a training period of 8 years that goes from 2010-01-01 to 2018-01-01 and a

test period of 3 years that goes from 2018-01-01 to 2021-01-01. The test period also

67

68 4. Results

goes over 2020, the year of the COVID-19 pandemic, which caused great distress

to the financial markets, causing a period of high volatility and negative returns;

however, since a black swan event is always unpredictable and unexpected, it was

highly informative to include 2020 in the test for our model.

Fig. 4.1: Correlation between the returns of the selected time series

In Figure 4.1, we can see the correlations between the returns of the selected

tickers: the correlations we tested have been found to be within an acceptable

range. Using highly correlated time series might have led to redundant information

in the model, making the dataset switch procedure we adopted while training the

model less effective.. For the training and testing of our model, we selected the

following tickers:

• Apple Inc., ticker: $AAPL;

4.3 Model Hyperparameters 69

• Eversource Energy, ticker: $ES;

• FTSE 100 Index, ticker: $FTSE;

• Google LLC, ticker: $GOOGL;

• Nasdaq Composite Index, ticker: $IXIC;

• Nikkei 225 Index, ticker: $N225;

• Procter & Gamble, ticker: $PG.

After downloading the data for the training and test period, we performed the

feature engineering and data normalization process described in Section 3.2.2, and

Section 3.2.3 respectively. It is important to point out that the Data Normalization

was performed by calculating the mean and standard deviation of the series on the

training set, and not on the whole data set, according to Equation 3.11, in order

to avoid having a look-ahead bias in the model.

4.3 Model Hyperparameters
A hyperparameter can be described as a model parameter that cannot be estimated

directly from the data, and for which we have no analytical formula available,

Kuhn, Johnson (2018). There are some frameworks that are used to optimize the

hyperparameters of a Machine Learning model, such as Random Search, Bergstra,

Bengio (2012), Bayesian Optimization, Rasmussen, Williams (2006), and Tree-

structured Parzen Estimators (TPEs), Franceschi et al. (2017). However, due

to the computational burden of the optimization of hyperparameters, and the

computational constraint imposed by the technology used, we were only able to

optimize the following hyperparameters manually, and not in an extensive way.

We will now describe the main Hyperparameters of the model, which can also be

70 4. Results

found in Section 2.3.2. A summary can be found in Table ?? at the end of the

section.

Activation Function

While Activation Functions are not hyperparameters, we decided to include them

in this section as the thought process behind the decision of which one to use is

similar to the one used for hyperparameters: in fact, there is no specific analytical

formula that one can use to find which activation is most suited for a specific task,

and there is no way to estimate it directly. We can however make some considera-

tions: we considered that our data, after the normalization process, is distributed

as a standard normal random variable so it can take both positive and negative

values with equal probability, this leads us to tend more toward activation func-

tions that presented an output range which is not limited to R+, such as the ReLU

activation function. Furthermore, the distribution of our data presents also the

property of being symmetric, we thus also would like this property in the activation

function we use; symmetric activation functions are functions like the sigmoid and

the hyperbolic tangent (tanh). After some initial experiments, we noticed that the

Agents that made use of the tanh activation function overperformed the others in

terms of cumulative reward during the test. It is worth pointing out, as we did in

Section 4.1, that this research on optimal activation function was not carried out

with any precise method other than a trial and error approach, thus there might

be a better choice of the activation function.

Number of Games

The number of games we train the algorithm is a crucial hyperparameter of the

model. In fact, since we do not dispose of any validation set, we risk overfitting

the data if we train the model for too many games. On the other hand, if we

train the model for a few games, we risk interrupting the learning process before

4.3 Model Hyperparameters 71

achieving a suitable policy parametrization. For these reasons, we tried different

settings for the number of games, ranging from 300 to 1000.

Horizon

The horizon is what in Section 2.3.2 we denoted to as T , that is, the number of

timesteps after which we perform an update to the policy. Clearly, the horizon

should not be bigger than the Maximum Episode Length, and the common practice

is to have a horizon that is a lot smaller than the Maximum Episode Length. It

is important to bear in mind, however, that more frequent policy updates, that

is a shorter horizon, should be treated with caution, as they can easily lead to

overfitting of the model; for this reason, we usually adjust the horizon and the

learning rate of the optimizer together. We should also consider the balance of

the horizon with the discount factor γ, in order to properly define how far should

future rewards influence the policy. We decided to test different settings, with the

horizon ranging from 84 to 1280 timesteps.

Minibatch

The minibatch simply indicates the dimension of the batch on which we are going

to perform SGD. In continuous action spaces, it is common to have a very large

minibatch dimension, however, since the action space of our task is discrete, we

can use way smaller minibatches. We decided to set the minibatch as a fraction

of the Horizon ranging from 21 to 128 timesteps.

Epochs

The epochs parameter is what we denoted as K in Section 2.3.2. It is what regulates

how many updates we perform once the horizon is reached. Clearly, a higher

number should also be related to a greater minibatch dimension, and should be

treated with caution as it might lead to more unstable learning and overfitting. In

72 4. Results

our setting, given the discrete action space and the horizon choice, we decided to

have the epochs ranging from 2 to 4 per update.

Clipping Range
The clipping range, denoted as ϵ, is the parameter that controls the maximum and

minimum size of the policy updates. A large ϵ can lead to faster learning but also

to more unstable learning. In fact, if we set the parameter too large, we might

have a destructive update to the policy that leads the performance to collapse.

For this parameter, we followed the best practice to set the value of ϵ close to the

ones of Schulman et al. (2017b), that is, ϵ = 0.2.

Discount Factor
The discount factor, denoted as γ, is the parameter that regulates how far future

rewards influence the policy. In some settings, it might be useful to set the gamma

to a predefined value if, for example, we know it already from the problem state-

ment; in our case, however, we did not have such a situation, thus we decided to

set the value of the parameter to the standard one, that is 0.99.

GAE Lambda
The GAE lambda parameter, denoted simply λ, is the parameter that governs the

exponential weighted average used in Equation 2.19. Practically speaking, this

parameter governs how much the Agent is making use of the current value estimate

when updating its value estimate: lower values lead to higher bias, weighting more

the current value estimate; on the other hand high values of λ lead to a higher

variance of the updates, weighting more the rewards obtained in the environment.

We decided to experiment with a range that goes from 0.9 to 0.97.

Value Function Coefficient
The Value Function coefficient is what we denoted as c1 in Equation 2.24, and

regulates how much the Value Loss contributes to the total loss. We set this

4.4 Model Training 73

parameter to 0.5 as in the original paper.

Entropy Coefficient

The Entropy Coefficient, denoted as c2 in Equation 2.24, is what regulates the

entropy bonus, which encourages exploration. An extreme value of this parameter

again might lead to excessive exploration and slower learning speed. Note that in

cases in which exploration of the Environment is not necessary if not detrimental,

we set this parameter to 0. In our case, this ranges from 0.01 to 0.001.

Parameter Value
Number of Games 300-1000

Activation Function Tanh
Horizon 84-1280

Minibatch 21-128
Epochs 2-4

Clipping Range 0.2
Discount Factor 0.99
GAE Lambda 0.9-0.97

Value Function Coefficient 0.5
Entropy Coefficient 0.001-0.1

Table 4.2: Main Hyperparameters of the model and their values

4.4 Model Training
The training of the model was carried out using the Environment described in

section 3.1.2, switching between data sets every 5 iterations. The number of iter-

ations between each switch was chosen in order to avoid overfitting and excessive

specialization of the policy to a single asset’s dynamics. During training we kept

track of the rewards per episode, the entropy of the distribution, and the total

loss. After a trial and error process, we managed to achieve a configuration of

hyperparameters that allowed us to obtain satisfactory results on our measures.

The reward formulation we opted for is the monthly Sharpe ratio, so at each time

74 4. Results

step the agent receives as reward the Sharpe ratio calculated on the previous 21

time steps.

The main challenges that we faced during training were due to the wide search

space of the hyperparameters: in fact, as we mentioned in Section 4.3, one would

need a proper optimization tool in order to find the best configuration. After

a process of trial and error, we managed to obtain satisfactory results with the

following configuration:

Parameter Value
Number of Games 500

Activation Function Tanh
Horizon 1280

Minibatch 64
Epochs 4

Clipping Range 0.1
Discount Factor 0.99
GAE Lambda 0.97

Value Function Coefficient 0.5
Entropy Coefficient 0.001

Table 4.3: Hyperparameters configuration of the model

As we can see in Figure 4.2, the reward formulation we adopted allowed the Agent

to rapidly learn the dynamics of the environment, obtaining satisfactory results

already around the game 200.

4.5 Results on the Test 75

Fig. 4.2: rewards obtained on the training set

4.5 Results on the Test

In this section, we will present the most significant results obtained in the testing

phase of the models, using the hyperparameters configuration described in Table

4.3. As we anticipated in Section 4.2, we will test the Agent in three consecutive

periods, that is, the year 2018, the year 2019, and the year 2020. In order to

evaluate the models, we used the metrics described in Section 3.3. Note that we

are going to include in this section only the most significant results that help us

showcase the policy of the Agent; one can find all the results in Appendix A.

76 4. Results

$GOOGL, 2018
Statistic Agent Benchmark
Volatility (%) 24.3 29.11
Return (%) 8.73 -11.61
Sharpe Ratio 0.5 -0.32
Maximum Drawdown (%) 18.73 23.4
Calmar Ratio 2.17 -2.08
Semi Volatility (%) 21.26 21.53
Sortino Ratio 0.57 -0.43
Value at Risk (%) -2.6 -3.1
Conditional Value at Risk (%) -3.79 -4.5

Table 4.4: Summary statistics for the year 2018 on $GOOGL

As we can see in Table 4.4, the agent managed to overperform the Benchmark in

all performance measures, in fact, in this scenario, the Agent managed to generate

a positive return even if the benchmark generated a negative one; the impressive

fact is that the agent managed to generate such a higher return while attaining

also a lower volatility, and a lower value in all risk metrics.

Fig. 4.3: Agent performance vs Benchmark, $GOOGL, 2018

4.5 Results on the Test 77

As a matter of fact, as we can see in Figure 4.3, in this case, the Agent managed

to interpret extremely well the data coming in from the Environment, in fact, not

only it managed to not lose in periods of higher volatility, but it also managed

to correctly short sale the asset in some occasions. This last fact is of extreme

importance: in fact, one of the main issues we faced in the implementation of the

model was the fact that, with many of the hyperparameters configurations tested,

the Agent learned a buy and hold strategy in many of the cases, a flat-only strategy

in some of the cases, and in a very little minority it actually managed to learn

to switch position correctly through time. We thus consider this result extremely

satisfactory, as even though the Agent might not generate incredibly high rewards,

it succeeded in developing an actual strategy, which proved to be over-performing

the benchmark in terms of risk metrics, even when it underperformed in terms of

raw returns.

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. 4.4: $GOOGL, 2018

In Figure 4.4a and 4.4b, we can see the returns distribution of the Agent and the

impact of transaction and borrowing costs on the terminal return of the Agent. In

78 4. Results

order to properly present the Agent’s results, we will now proceed to show another

informative result in the following table.

$IXIC, 2018
Statistic Agent Benchmark
Volatility (%) 11.59 21.56
Return (%) -5.5 -10.47
Sharpe Ratio -0.26 -0.45
Maximum Drawdown (%) 21.72 23.64
Calmar Ratio -2.83 -3.24
Semi Volatility (%) 15.67 16.66
Sortino Ratio -0.3 -0.59
Value at Risk (%) -1.99 -2.43
Conditional Value at Risk (%) -2.76 -3.33

Table 4.5: Summary statistics for the year 2018 on $IXIC

As we can see above, the Agent did not manage to generate any return this year,

but rather ended up with a negative return of −5.5%; however, we must point out

that even when practically losing money, the Agent still manages to overperform

the buy and hold benchmark: it does so in every statistic, from lower risk statistics

to higher risk-adjusted returns.

4.5 Results on the Test 79

Fig. 4.5: Agent performance vs Benchmark, $IXIC, 2018

In Figure 4.5, we can see that the agent managed to do extremely well in the first

half of the year, reaching 10% return already from June 2018. After that point,

the agent already has a high Sharpe ratio for the previous month. in fact, we can

see graphically that the portfolio has very low volatility and high returns. This

condition might have led the agent to consider that any action was likely to receive

a lower reward than the one obtained by going flat for the next days and keep the

low volatility and high return of the past month. We can see in fact that as we get

closer to the month, and thus the window on which the Sharpe ratio moves away

from the period of high returns and low volatility, the Agent starts to trade again

to increase its reward. This behavior can be seen also throughout the other tests:

this is mainly accountable to the fact that the Sharpe Ratio weighs equally the

returns on all preceding time steps, thus high returns influence heavily the Agent’s

strategy for the next month, as opposed to low returns that make the Agent more

prone to trade frequently to increase its reward.

80 4. Results

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. 4.6: $IXIC, 2018

Chapter 5

Conclusions and Further

Developments

5.1 Conclusions
Let us now draw some conclusions on the work done. In this work, we have

embarked on a journey through the intricate landscape of reinforcement learning

and its application in developing trading strategies. Our exploration has been

organized into distinct sections, each contributing to a holistic understanding of

the subject.

The technical foundation, presented in Section 1, has provided us with a solid

grasp of Markov decision processes (MDPs), dynamic programming, and the core

concepts of prediction and control through reinforcement learning. Through metic-

ulous examination, we have established the theoretical groundwork necessary to

build and analyze our trading strategies.

Section 2 introduced approximate solution methods, a crucial bridge between the-

ory and practical application. With a focus on function approximation and pol-

icy gradient methods, we have unlocked the potential of reinforcement learning;

81

82 5. Conclusions and Further Developments

furthermore, we presented stochastic gradient methods, linear function approxi-

mation, and the burgeoning power of neural networks, which equipped us with

a versatile toolbox to tackle real-world trading challenges. Actor-critic methods,

particularly the Generalized Advantage Estimation and Proximal Policy Optimiza-

tion algorithms, have further enriched our arsenal of techniques for constructing

and refining trading policies.

In Section 3, we presented our methodology: we introduced the core components

of our model, including the agent, environment, data loader, and network architec-

ture, which collectively constitute the backbone of our trading system. Detailed

insights into data processing, encompassing tickers, features, and data normal-

ization, have ensured that our model is well-prepared to handle the complexities

of financial data. Additionally, we have elucidated our approach to performance

measurement, a critical facet in evaluating the effectiveness and robustness of our

trading strategies.

As we turn our attention to Section 4, we encounter the culmination of our efforts,

that is, the results. Preliminary remarks have set the stage for a comprehensive

data summary, allowing us to comprehend the intricacies of the financial markets

under consideration. Hyperparameters, a pivotal aspect of our work, have been

meticulously tuned to achieve optimal performance. We then unveiled the test

results: through empirical evidence and careful analysis, we evaluated the effec-

tiveness of our reinforcement learning-based trading strategies in the real-world

context. These results showcase the practicality and potential of our work, re-

inforcing the notion that the integration of cutting-edge reinforcement learning

techniques can enhance trading performance. In fact, the Agent managed to over-

perform the benchmark in most of the risk metrics we have proposed. It must be

noted however that our model did have one main issue, that is the reward formula-

tion: in fact, as we have seen in Section 4.5, the monthly Sharpe Ratio (SR) weighs

5.2 Further Developments 83

equally all past rewards in the previous month. In fact, the SR is constructed as

the ratio between a simple arithmetic average and a standard deviation, which

leads the Agent to be influenced by returns he obtained in the past month. This

leads to a behavior that can be seen throughout the majority of the tests: after a

period of good trades, the Agent tends to reduce the number of trades to the point

that it goes flat most of the time, and on the other hand, after a period of bad

trades, the Agent tends to increase the number of trades. We can nonetheless be

satisfied with the results of our work: in fact, we managed to develop from scratch

an implementation of the PPO algorithm and to train the Agent effectively, so as

to obtain good results in the test set. One final remark is that we should consider

the results in the later years of the test with more caution: in fact, as we move on

with time, e.g. in the 2020 test, we are actually using a model that is two years

old, while in practice we would probably have at least trained the model with more

recent data, if not changed some configurations in the model.

To conclude, as the financial world continues to evolve, this work offers a glimpse

into the exciting possibilities that lie ahead for those who seek to harness the

potential of reinforcement learning in the pursuit of trading excellence.

5.2 Further Developments
In this final section, we are going to provide some ideas to extend the work done

in this thesis. The first suggestion is to experiment with other choices of function

approximation: in fact, in this work, we used a Fully Connected Artificial Neural

Network, but the landscape of Machine Learning and Deep Learning offers many

more algorithms to carry out function approximation. The second suggestion is

again related to function approximation: in fact, in this work, we did not use

any sequential data; it would definitely be interesting to see how the Agent’s

performance changes with the use of architectures such as Convolutional Neural

84 5. Conclusions and Further Developments

Networks, Recurrent Neural Networks, or even more state-of-the-art architectures

such as Transformers. The last suggestion is to dedicate time and research to the

reward: in fact, this is the only way in which we can effectively communicate with

the Agent, giving him a direction to follow when trading; one improvement could

be to adopt an exponentially weighted formulation of the Sharpe Ratio, so to have

a ’smoother’ weight decay of the past observations.

Appendix A

Results

A.1 $AAPL

$AAPL
Agent Benchmark

2018 2019 2020 2018 2019 2020
Volatility (%) 23.97 20.82 27.8 29.66 26.23 46.71
Return (%) -7.99 13.5 10.97 -5.79 85.95 76.71
Sharpe Ratio -0.26 0.72 0.51 -0.07 2.51 1.45
Maximum Drawdown (%) 37.6 16.89 11.3 36.73 18.16 31.43
Calmar Ratio -2.19 1.92 3.62 -1.19 12.2 10.78
Semi Volatility (%) 22.25 21.14 21.62 21.03 21.46 34.36
Sortino Ratio -0.28 0.7 0.66 -0.1 3.07 1.98
Value at Risk -2.83 -1.65 -2.59 -3.16 -2.07 -4.49
Conditional Value at Risk -4.03 -2.86 -3.53 -4.33 -3.68 -6.76

Table A.1: Summary statistics for the test years on $AAPL

85

86 A. Results

Year 2018

Fig. A.1: Agent performance vs Benchmark, $AAPL, 2018

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.2: $AAPL, 2018

A.1 $AAPL 87

Year 2019

Fig. A.3: Agent performance vs Benchmark, $AAPL, 2019

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.4: $AAPL, 2019

88 A. Results

Year 2020

Fig. A.5: Agent performance vs Benchmark, $AAPL, 2020

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.6: $AAPL, 2020

A.2 $ES 89

A.2 $ES

$ES
Agent Benchmark

2018 2019 2020 2018 2019 2020
Volatility (%) 15.91 10.66 24.99 17.84 12.86 45.26
Return (%) 7.41 3.18 18.34 3.09 33.99 3.94
Sharpe Ratio 0.57 0.35 0.8 0.28 2.35 0.31
Maximum Drawdown (%) 12.59 11.68 16.21 16.2 8.13 36.85
Calmar Ratio 1.77 2.17 2.91 0.74 14.27 0.4
Semi Volatility (%) 13.03 6.98 25.11 14.13 8.07 34.24
Sortino Ratio 0.7 0.53 0.79 0.35 3.75 0.41
Value at Risk (%) -1.62 -1.17 -1.68 -1.83 -1.15 -3.71
Conditional Value at Risk (%) -2.33 -1.37 -3.83 -2.85 -1.64 -6.7

Table A.2: Summary statistics for the test years on $ES

Year 2018

Fig. A.7: Agent performance vs Benchmark, $ES, 2018

90 A. Results

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.8: $ES, 2018

Year 2019

Fig. A.9: Agent performance vs Benchmark, $ES, 2019

A.2 $ES 91

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.10: $ES, 2019

Year 2020

Fig. A.11: Agent performance vs Benchmark, $ES, 2020

92 A. Results

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.12: $ES, 2020

A.3 $FTSE

$FTSE
Agent Benchmark

2018 2019 2020 2018 2019 2020
Volatility (%) 11.65 9.47 29.17 13.54 11.88 29.54
Return (%) -2.24 11.74 -10.8 -10.69 12.0 -15.04
Sharpe Ratio -0.16 1.24 -0.25 -0.86 1.03 -0.41
Maximum Drawdown (%) 13.55 6.87 33.72 16.41 8.06 34.93
Calmar Ratio -1.42 9.06 -1.62 -4.59 4.74 -2.88
Semi Volatility (%) 9.94 8.22 25.74 10.26 8.4 24.57
Sortino Ratio -0.19 1.43 -0.29 -1.14 1.46 -0.5
Value at Risk (%) -1.21 -0.91 -3.34 -1.37 -1.09 -3.34
Conditional Value at Risk (%) -1.68 -1.39 -4.68 -1.96 -1.68 -4.68

Table A.3: Summary statistic for the test years on $FTSE

A.3 $FTSE 93

Year 2018

Fig. A.13: Agent performance vs Benchmark, $FTSE, 2018

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.14: $FTSE, 2018

94 A. Results

Year 2019

Fig. A.15: Agent performance vs Benchmark, $FTSE, 2019

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.16: $FTSE, 2019

A.3 $FTSE 95

Year 2020

Fig. A.17: Agent performance vs Benchmark, $FTSE, 2020

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.18: $FTSE, 2020

96 A. Results

A.4 $GOOGL

$GOOGL
Agent Benchmark

2018 2019 2020 2018 2019 2020
Volatility (%) 24.3 14.18 23.85 29.11 23.73 38.48
Return (%) 8.73 -3.06 32.74 -11.61 26.99 28.05
Sharpe Ratio 0.5 -0.15 1.3 -0.32 1.13 0.84
Maximum Drawdown (%) 18.73 14.36 10.88 23.4 19.86 30.87
Calmar Ratio 2.17 -1.56 9.02 -2.08 4.93 4.13
Semi Volatility (%) 21.26 16.33 19.98 21.53 17.42 30.18
Sortino Ratio 0.57 -0.13 1.56 -0.43 1.54 1.07
Value at Risk (%) -2.6 -1.38 -2.11 -3.1 -2.17 -4.08
Conditional Value at Risk (%) -3.79 -2.39 -3.01 -4.5 -3.31 -5.82

Table A.4: Summary statistics for the test years on $GOOGL

Year 2018

Fig. A.19: Agent performance vs Benchmark, $GOOGL, 2018

A.4 $GOOGL 97

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.20: $GOOGL, 2018

Year 2019

Fig. A.21: Agent performance vs Benchmark, $GOOGL, 2019

98 A. Results

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.22: $GOOGL, 2019

Year 2020

Fig. A.23: Agent performance vs Benchmark, $GOOGL, 2020

A.5 $IXIC 99

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.24: $GOOGL, 2020

A.5 $IXIC

$IXIC
Agent Benchmark

2018 2019 2020 2018 2019 2020
Volatility (%) 17.59 13.62 21.88 21.56 15.69 35.55
Return (%) -5.5 25.31 15.39 -10.47 34.6 41.75
Sharpe Ratio -0.26 1.73 0.76 -0.45 1.98 1.16
Maximum Drawdown (%) 21.72 6.12 15.57 23.64 10.18 30.12
Calmar Ratio -2.83 11.79 5.61 -3.24 12.62 6.13
Semi Volatility (%) 15.67 9.76 14.97 16.66 11.98 31.69
Sortino Ratio -0.3 2.42 1.11 -0.59 2.59 1.3
Value at Risk (%) -1.99 -1.16 -1.54 -2.43 -1.51 -3.72
Conditional Value at Risk (%) -2.76 -1.8 -2.62 -3.33 -2.33 -5.62

Table A.5: Summary statistics for the test years on $IXIC

100 A. Results

Year 2018

Fig. A.25: Agent performance vs Benchmark, $IXIC, 2018

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.26: $IXIC, 2018

A.5 $IXIC 101

Year 2019

Fig. A.27: Agent performance vs Benchmark, $IXIC, 2019

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.28: $IXIC, 2019

102 A. Results

Year 2020

Fig. A.29: Agent performance vs Benchmark, $IXIC, 2020

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.30: $IXIC, 2020

A.6 $N225 103

A.6 $N225

$N225
Agent Benchmark

2018 2019 2020 2018 2019 2020
Volatility (%) 15.79 9.77 21.93 19.38 13.91 26.61
Return (%) 6.64 19.63 -12.0 -11.76 20.93 18.27
Sharpe Ratio 0.55 2.04 -0.52 -0.66 1.55 0.81
Maximum Drawdown (%) 14.39 4.32 30.66 20.37 9.17 31.15
Calmar Ratio 1.79 12.78 -2.07 -3.52 10.65 3.76
Semi Volatility (%) 14.49 7.78 23.48 16.03 9.11 18.32
Sortino Ratio 0.6 2.56 -0.49 -0.79 2.37 1.18
Value at Risk (%) -1.62 -0.88 -2.19 -2.24 -1.37 -2.56
Conditional Value at Risk (%) -2.64 -1.3 -3.71 -3.29 -1.94 -3.85

Table A.6: Summary statistics for the test years on $N225

Year 2018

Fig. A.31: Agent performance vs Benchmark, $N225, 2018

104 A. Results

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.32: $N225, 2018

Year 2019

Fig. A.33: Agent performance vs Benchmark, $N225, 2019

A.6 $N225 105

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.34: $N225, 2019

Year 2020

Fig. A.35: Agent performance vs Benchmark, $N225, 2020

106 A. Results

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.36: $N225, 2020

A.7 $PG

PG
Agent Benchmark

2018 2019 2020 2018 2019 2020
Volatility (%) 18.73 13.14 27.0 20.01 16.57 32.52
Return (%) 1.34 -5.43 -9.04 6.46 36.83 12.75
Sharpe Ratio 0.17 -0.36 -0.22 0.44 1.98 0.53
Maximum Drawdown (%) 17.85 15.26 21.33 17.84 6.37 23.16
Calmar Ratio 0.44 -4.33 -3.08 1.78 13.53 3.11
Semi Volatility (%) 13.9 10.31 30.34 13.76 11.08 26.23
Sortino Ratio 0.23 -0.46 -0.19 0.64 2.97 0.66
Value at Risk (%) -1.93 -1.17 -1.73 -1.85 -1.61 -3.26
Conditional Value at Risk (%) -2.64 -1.79 -4.31 -2.84 -2.26 -5.22

Table A.7: Summary statistics for the test years on $PG

A.7 $PG 107

Year 2018

Fig. A.37: Agent performance vs Benchmark, $PG, 2018

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.38: $PG, 2018

108 A. Results

Year 2019

Fig. A.39: Agent performance vs Benchmark, $PG, 2019

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.40: $PG, 2019

A.7 $PG 109

Year 2020

Fig. A.41: Agent performance vs Benchmark, $PG, 2020

(a) Returns distribution of the Agent’s
Portfolio

(b) Impact of Transaction and Borrow-
ing costs on the raw return of the Agent

Fig. A.42: $PG, 2020

Bibliography

Mean-Risk Analysis with Risk Associated with Below-Target Returns // The

American Economic Review. 1975. 67, 2. 116–126.

Agarwal Praveen, Jleli Mohamed, Samet Bessem. Banach Contraction Principle

and Applications // Fixed Point Theory in Metric Spaces: Recent Advances

and Applications. Singapore: Springer Singapore, 2018. 1–23.

Artzner Philippe, Delbaen Freddy, Jean-Marc Eber, Heath David. Coherent Mea-

sures of Risk // Mathematical Finance. 07 1999. 9. 203 – 228.

Bellman Richard. Dynamic Programming. 1957a.

Bellman Richard. A Markovian Decision Process // Journal of Mathematics and

Mechanics. 1957b. 6, 5. 679–684.

Bergstra James, Bengio Yoshua. Random Search for Hyper-parameter Optimiza-

tion // Journal of Machine Learning Research. 2012. 13, Feb. 281–305.

Bishop C.M. Neural networks for pattern recognition. 1995.

Choi Jaehyung. Maximum Drawdown, Recovery, and Momentum // Journal of

Risk and Financial Management. 2021. 14, 11.

Franceschi Luca, Donini Michele, Frasconi Paolo, Pontil Massimiliano. Forward

and Reverse Gradient-Based Hyperparameter Optimization // Proceedings of

111

112 BIBLIOGRAPHY

the 34th International Conference on Machine Learning-Volume 70. 2017. 1165–

1173.

Hamilton James D. Time Series Analysis. 1994.

Hastie Trevor, Tibshirani Robert, Friedman Jerome. The Elements of Statistical

Learning. New York, NY, USA: Springer New York Inc., 2001. (Springer Series

in Statistics).

Howard R. A. Dynamic Programming and Markov Processes. Cambridge, MA:

MIT Press, 1960.

Huang Chien Yi. Financial Trading as a Game: A Deep Reinforcement Learning

Approach. 2018.

Kuhn Max, Johnson Kjell. Applied Predictive Modeling. New York, NY: Springer,

2018.

McNeil Alexander J., Frey Rüdiger, Embrechts Paul. Quantitative Risk Man-

agement: Concepts, Techniques and Tools. 2015. Revised edition. (Economics

Books).

Mnih Volodymyr, Kavukcuoglu Koray, Silver David, Graves Alex, Antonoglou Ioan-

nis, Wierstra Daan, Riedmiller Martin. Playing Atari with Deep Reinforcement

Learning. 2013.

Patro S Gopal, Sahu Dr-Kishore Kumar. Normalization: A Preprocessing Stage

// IARJSET. 03 2015.

Pires Ivan, Hussain Faisal, Garcia Nuno, Lameski Petre, Zdravevski Eftim. Ho-

mogeneous Data Normalization and Deep Learning: A Case Study in Human

Activity Classification // Future Internet. 11 2020. 12.

BIBLIOGRAPHY 113

Rao A., Jelvis T. Foundations of Reinforcement Learning with Applications in

Finance. 2022. 1st.

Rasmussen C. E., Williams C. K. I. Gaussian Processes for Machine Learning.

2006.

Rollinger Thomas, Hoffman Sabrina. Sortino Ratio: A Better Measure of Risk //

Futures Magazine. February 2013. 40–42.

Rossi R.J. Mathematical Statistics: An Introduction to Likelihood Based Infer-

ence. 2018.

Schulman John, Levine Sergey, Moritz Philipp, Jordan Michael I., Abbeel Pieter.

Trust Region Policy Optimization. 2017a.

Schulman John, Moritz Philipp, Levine Sergey, Jordan Michael, Abbeel Pieter.

High-Dimensional Continuous Control Using Generalized Advantage Estima-

tion. 2018.

Schulman John, Wolski Filip, Dhariwal Prafulla, Radford Alec, Klimov Oleg. Prox-

imal Policy Optimization Algorithms. 2017b.

Sharpe William F. Mutual Fund Performance // Journal of Business. January

1966. 119–138.

Silver David, Huang Aja, Maddison Chris J., Guez Arthur, Sifre Laurent, Driess-

che George van den, Schrittwieser Julian, Antonoglou Ioannis, Panneershelvam

Veda, Lanctot Marc, Dieleman Sander, Grewe Dominik, Nham John, Kalch-

brenner Nal, Sutskever Ilya, Lillicrap Timothy, Leach Madeleine, Kavukcuoglu

Koray, Graepel Thore, Hassabis Demis. Mastering the game of Go with deep

neural networks and tree search // Nature. 2016. 529, 7587. 484–489.

114 BIBLIOGRAPHY

Sutton Richard S., Barto Andrew G. Reinforcement Learning: An Introduction.

2018. Second.

Tesauro Gerald. Temporal Difference Learning and TD-Gammon // Commun.

ACM. mar 1995. 38, 3. 58‚Äì68.

Watkins Christopher J. C. H., Dayan Peter. Q-learning // Machine Learning.

May 1992. 8, 3. 279–292.

Williams Ronald J. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning // Machine Learning. May 1992. 8, 3. 229–256.

Young Terry W. Calmar Ratio: A Smoother Tool // Futures. October 1 1991.

	Introduction
	Technical Background
	Markov Decision Processes
	Rewards and Returns
	Policy
	Value and Action-Value Function
	Optimal Policy and Optimal Value Function

	Dynamic Programming
	Fixed-Point Theory
	Bellman Policy Operator and Policy Evaluation
	Policy Improvement
	Policy Iteration
	Value Iteration

	Prediction and Control with Reinforcement Learning
	Monte Carlo Methods
	Temporal Difference Learning

	Approximate Solution Methods
	Function Approximation
	Value Function Approximation
	Stochastic-Gradient Methods
	Linear Function Approximation
	Nonlinear Function Approximation with Artificial Neural Networks

	Policy Gradient Methods
	Policy Approximation
	Policy Gradient Theorem
	REINFORCE

	Actor-Critic Methods
	Generalized Advantage Estimation
	Proximal Policy Optimization

	Methodology
	The Model
	The Agent
	The Environment
	The Data Loader
	Network Architecture

	Data Processing
	Tickers
	Features
	Data Normalization

	Performance Measures

	Results
	Preliminary Remarks
	Data Summary
	Model Hyperparameters
	Model Training
	Results on the Test

	Conclusions and Further Developments
	Conclusions
	Further Developments

	Conclusion
	Results
	$AAPL
	$ES
	$FTSE
	$GOOGL
	$IXIC
	$N225
	$PG

