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Abstract 
 
This research paper goes through the development and evaluation of a dynamic rebalancing 

model thought for passive portfolios, with a focus on the empirical implementation on the 

Bridgewater All Weather portfolio. The study here presented aims at investigating whether it is 

possible to refine long-term passive portfolio strategies by looking for market rules which 

manage to provide better performances. 

The paper presents the fundamental principles of portfolio theory, briefly exploring the origins 

of Markowitz Portfolio Theory and Risk Parity portfolio theory. The second section of our study 

introduces the Bridgewater All Weather portfolio, an investing strategy renowned for its ability 

to thrive across all economic seasons. Our comprehensive analysis of this portfolio serves as a 

benchmark against which we assess the dynamic rebalancing model’s impact on the portfolio 

performance. The primary objective and core section of the whole study is to introduce a 

practical and adaptive model for rebalancing a portfolio over extended investment horizons, 

which dynamically and automatically moves the allocation according to certain guidelines.  

Our findings reveal valuable insights into the effectiveness of this approach, shedding light on 

its ability to optimize returns while managing risk across different asset classes.  
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Introduction 
 

Within the intricate world of investments, portfolio management stands as a crucial discipline, 

requiring a delicate trade-off between the pursuit of optimal returns and the diligent 

management of risk. For investors, both individual and institutional, building portfolios that 

offer a balance between these two objectives has been a constant endeavor. 

In recent years, passive investing has taken center stage, offering a compelling proposition 

through its simplicity, cost-effectiveness, and adherence to a set-and-forget philosophy. Yet, 

within this strategy lies a challenge that has represented the focal point of our study: 

optimization of passive portfolios over extended investment horizons. 

This research paper embarks through a journey into the world of portfolio management, with 

the aim of developing, assessing, and refining a dynamic rebalancing model designed for 

passive portfolios, able to automatically adjust asset allocation. In our pursuit of this goal, we 

chose the Bridgewater All Weather portfolio as our primary case study, a portfolio known for 

its resilience and adaptability across various economic climates. 

Our study begins with a brief tour through the main milestones of portfolio theory. Modern 

Portfolio Theory (MPT), attributed to the work of Harry Markowitz, initiated a paradigm shift 

in the investment world by introducing the concept of diversification. MPT argued that by 

investing in uncorrelated asset classes, investors could achieve risk reduction and optimize risk-

return profiles.  

Building upon the foundations laid by MPT, we analyze a further approach, Risk Parity 

portfolio theory. This innovative theory seeks to address some of the limitations of traditional 

asset allocation methods. By equalizing risk contributions from various asset classes, Risk 

Parity aims to construct portfolios with a more balanced risk profile. It is a theory acutely 

attuned to the dynamic nature of financial markets, recognizing that traditional allocation 

strategies may not succeed in offering compelling advantages in terms of risk-return. 

Our investigation takes a practical turn as we move to the core section of the study, the dynamic 

rebalancing model, which distinguishes itself from static portfolio strategies through its 

adaptability and responsiveness to changing market conditions. This model, developed and 

tested across various asset classes, represents a proactive approach to portfolio management, 

by making the portfolio allocation change according to some inputs. While the All Weather 

portfolio aims to find the best combination of asset allocation in order to have the best 
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performing portfolio in any economic condition, the dynamic model allows it to provide a better 

performance in terms of both risk and return. 

As we navigate through the encouraging results deriving from the implementation of our model, 

we propose some further developments which might be useful to adopt in refining this 

rebalancing approach. 
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1) Portfolio theory 

Portfolio allocation is the process of investing in multiple assets with the aim of achieving 

maximum return while reducing risk. For a good understanding of the following sections of this 

paper it’s important to provide a broad overview of how asset allocation strategies have changed 

over time, in order to get a solid comprehension of the All Weather philosophy. Specifically, 

this section will go through two of the most popular portfolio allocation strategies: Markowitz 

portfolio allocation and Risk Parity portfolio allocation. Both these strategies have their 

strengths and weaknesses, and the choice of the most suitable approach depends on various 

factors such as risk appetite, investment goals and market conditions.  

 

1.1) Modern portfolio theory 

Among the various research and theories which have been developed to address the problem of 

building an efficient portfolio, the portfolio selection model proposed by Harry Markowitz in 

1952 is one of the most important and influential theories in this field. Markowitz’s approach 

frames the process of building an investment portfolio as a mathematical problem. The theory 

posits that by investing in uncorrelated stocks, the reduction in value of one stock can be offset 

by the increase in value of another one. 

The theory developed by Markowitz for building an efficient investment portfolio is based on 

several key assumptions. First, investors are generally risk-averse and seek to maximize their 

expected utility. Second, the model assumes there are no transaction costs nor taxes, which 

simplifies the analysis, even though it may not reflect reality. Third, markets are assumed to be 

perfectly competitive, which means that all investors have access to the same information and 

can freely buy and sell assets. Finally, the time horizon considered is a single period, from 𝑡 to 

𝑡 + 1, and there are N different assets available for investment. 

From these assumptions, the “Mean-Variance” principle is derived, which suggests that 

investors should choose assets that offer the highest expected return for a given level of risk or 

the lowest volatility for a given target of expected return. The model specifies that portfolio’s 

variance is function of the correlations among assets: 

𝜎!" =&𝑤#"𝜎#"

#

+&&𝑤#
$

𝑤$𝜎#𝜎$𝑝#$
#

 

The objective of Markowitz allocation is then to solve the following problem: 
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under some constraints: 

• 𝐸/𝑅!1 = ∑ 𝑤#𝐸(𝑅#)# 																	 

• ∑ 𝑤# = 1#  

• 𝑤# > 0	, hence there can’t be short positions. 

Therefore, the mean-variance principle aims at solving this constrained optimization in order 

to select the investment weights that will minimize the standard deviation of the portfolio, given 

a target expected return.  

Markowitz observed that when considering various combinations of efficient portfolios, these 

create a closed area known as the efficient frontier. This frontier represents the set of portfolios 

that provide the highest possible return for a given level of risk or the lowest possible risk for a 

given level of return.  

Visualizing the Efficient Frontier involves plotting portfolios on a graph where the x-axis 

represents portfolio’s standard deviation, while the y-axis represents portfolio’s expected 

return. The curve connecting the optimal portfolios forms the Efficient Frontier. Each portfolio 

lying below the Efficient Frontier is considered suboptimal, as it offers lower returns for a given 

level of risk or higher risk for a given level of return (Figure 1.1). 

 

 
Figure 1.1 – Matlab Script 
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Markowitz’s portfolio theory has encountered consistent critique for over half a century and 

has not gained complete acceptance among practitioners due to various factors. These include 

limitations such as variance being an inadequate risk measure, the portfolio’s susceptibility to 

errors in parameter estimation, the theory’s exclusive focus on overall risk disregarding the 

advantageous effects of risk diversification, and the fact that it doesn’t consider factors such as 

liquidity or market conditions, which may affect investors’ ability to buy or sell assets. Another 

important problem of Markowitz philosophy is that it often provides unreasonable optimal 

portfolios, be that a highly concentrated portfolio or the allocation of large weights on marginal 

markets.  

 

1.2) Risk Parity portfolio theory  

One approach that has gained popularity in recent years is the Risk Parity technique. Unlike 

modern portfolio theory, Risk Parity seeks to balance the contribution of each asset class to the 

overall portfolio risk. For example, a traditional 60% equity, 40% bond portfolio may not be 

diversified enough, as 90% of the risk of this portfolio derives from equities. Since stocks are 

historically three times more volatile than fixed-income securities, a traditional portfolio is not 

balanced in terms of risk. Risk Parity aims to eliminate this weakness by building a more 

diversified and balanced portfolio, ensuring that each asset class contributes equally to the 

portfolio’s risk.  

To implement this approach, there are several steps to be taken. Let’s consider a portfolio of 𝑁 

assets, we will call 𝑤# the weight associated to asset 𝑥#, where 𝑖 = 1:𝑁. We want to find the 

weights that make each asset contribute the same to the overall’s volatility.  

First, it is necessary to define the total risk of a portfolio. In most cases, this is measured by the 

volatility of the rate of return of the portfolio. However, VaR1 can also be used as a measure of 

total risk, as it allows for the incorporation of skewness and kurtosis. 

The volatility of our portfolio is given by the standard deviation of our weights 𝑤 multiplied by 

the expected return of our assets 𝑋, hence 𝑤′𝑋. By recalling that Σ is the assets covariance 

matrix2 and from Euler’s theorem3, we can write: 

 
1 VaR: Value at Risk is a risk measure in finance which estimates the maximum potential loss for an investment 
within a specific confidence level and time frame. 
2 Covariance matrix: A covariance matrix is a mathematical tool used in statistics and finance to measure how two 
or more variables move together (or apart) in a dataset. It quantifies the relationships and dependencies between 
variables, crucial for portfolio diversification and risk assessment. 
3 Euler’s theorem: Vinìcius Z., Palomar D. (2019). Fast Design of Risk Parity Portfolios 
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𝜎(𝑤) = =𝑤′Σ𝑤 

 

 

The derived formula can be rewritten as: 

𝜎(𝑤) =&𝑤#
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Having in mind what risk contribution actually means, we know that the sum of each risk 

contribution must be equal to the actual standard deviation of our portfolio: 

𝜎(𝑤) =&𝑅𝐶#

%

#&'

 

Hence we know that  

𝑅𝐶# =
𝑤#(Σ𝑤)# 	
√𝑤′Σ𝑤

 

As we want all risk contributions to be equal, this means that: 

𝑅𝐶# =
1
𝑁 	𝜎

(𝑤) 

Then weights are derived as   

𝑤! =
	#!
"#

∑ #$
"#%

$&#
=

#
'!

∑ #
'$

%
$&#

        ∀	𝑖, 𝑗 

Where: 

• 𝜎# is the standard deviation of asset i; 

• ∑ '
(!

%
$&'  is the sum of all assets’ standard deviations. 

Therefore, Risk Parity portfolios are “inverse volatility” strategies, as the higher the volatility 

of an asset class, the lower its weight within the portfolio. 
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1.3) Metrics description 

This section will go through a brief description of the main performance valuation metrics 

which will be used to analyze the whole study. 

Among the most important metrics to look at when analyzing the performance of a portfolio 

there is certainly the return generated by the asset allocation. Annualized return computes the 

average compound annual growth rate (CAGR) of a portfolio over a specified period. It helps 

investors understand how much their portfolio has grown or declined over time on average. A 

higher annualized return indicates better performance, while a lower return suggests lower 

growth or even losses. 

𝐶𝐴𝐺𝑅 = F
𝐸𝑛𝑑	𝑣𝑎𝑙𝑢𝑒
𝑆𝑡𝑎𝑟𝑡	𝑣𝑎𝑙𝑢𝑒O

'
)°	,-	./012

− 1 

A higher annualized return means better performance but might be consequence of a too volatile 

portfolio. A 100% equity portfolio might generate way higher performance in terms of return 

than a diversified portfolio, but it would be too volatile and could incur in enormous losses. 

This is why controlling volatility is as much important as looking at annualized return. Standard 

Deviation measures the dispersion of returns from the mean return of the portfolio. It quantifies 

the degree to which returns deviate from the portfolio’s average return. A higher standard 

deviation indicates higher volatility and, thus, higher risk.  

𝑆𝐷 = ,∑ (𝑅# − 𝑅)RRR"	%
#&'

𝑁  

Where: 

• 𝑅# is the return of each individual period; 

• 𝑅R is the mean return of the portfolio; 

• N is the number of periods (e.g., months, quarters, years). 

Another important indicator within a portfolio analysis is maximum drawdown. This metrics 

analyzes the maximum percentage decline in the value of a portfolio from a peak to its lowest 

point over a specific period. Hence it measures the worst loss experienced by an investor during 

a specific time frame. Understanding the concept of maximum drawdown helps investors 
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assessing the portfolio’s potential risk and its ability to recover from losses. Intuitively, the 

lower the maximum drawdown, the more defensive the portfolio within a high volatility period. 

𝑀𝐷𝐷 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ	𝑣𝑎𝑙𝑢𝑒 − 𝑃𝑒𝑎𝑘	𝑣𝑎𝑙𝑢𝑒

𝑃𝑒𝑎𝑘	𝑣𝑎𝑙𝑢𝑒  

Where: 

• Through value is the lowest value of the portfolio during the specific period considered; 

• Peak value is the highest value of the portfolio during the specific period considered. 

One of the core metrics used to analyze results provided by our analysis is the Sharpe ratio, 

which is a risk-adjusted performance metric that evaluates the excess return of a portfolio 

relatively to its risk, measured by the standard deviation. It provides a measure of how well a 

portfolio has performed, considering the level of risk taken to achieve that return. A higher 

Sharpe Ratio indicates a better risk-adjusted performance, as it means that the portfolio 

generates a higher return for each unit of risk taken. The formula used to compute the Sharpe 

ratio is the following: 

𝑆𝑅 =
𝑅! − 𝑅𝐹
𝑆𝐷  

Where: 

• 𝑅! is the portfolio’s annualized return; 

• 𝑅𝐹 is the risk-free rate4;  

• 𝑆𝐷 is the standard deviation of the portfolio. 

Sortino Ratio is another risk-adjusted performance metric that focuses on downside risk. Unlike 

the Sharpe Ratio, which considers both upside and downside volatility, the Sortino Ratio only 

takes into account the downside volatility, usually measured as the standard deviation of 

negative returns. It evaluates how well a portfolio has performed relatively to its downside risk. 

A higher Sortino Ratio indicates better risk-adjusted returns. The formula used to compute the 

Sortino Ratio is the following: 

 
4 Risk free rate: it’s the theoretical interest rate at which an investment can be done with zero risk. It serves as a 
benchmark for evaluating the return on investments and is typically associated with the yield on government bonds, 
representing a baseline for investment opportunities with no credit or default risk. 
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𝑆𝑂𝑅 =
𝑅! − 𝑅𝐹

𝐷𝑜𝑤𝑛𝑠𝑖𝑑𝑒	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

Where: 

• 𝑅! is the portfolio’s annualized return; 

• 𝑅𝐹 is the risk-free rate;  

• 𝐷𝑜𝑤𝑛𝑠𝑖𝑑𝑒	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 is the standard deviation of negative returns of the portfolio. 

Finally, we analyzed relative metrics, in order to assess performance with respect to our 

benchmark. For this purpose, we deal with Tracking Error and Information Ratio. The former 

measures the difference in returns volatility between the analyzed portfolio and its benchmark, 

providing a measure of the average distance from the benchmark return, while the latter 

computes the expected excess return over a benchmark on the corresponding tracking error 

volatility.  The formulas used to compute the above mentioned metrics are the following: 

𝑇𝐸𝑉 = ^
1

𝑇 − 1&/𝑟! − 𝑟31
"

4

5&'

 

𝐼𝑅 =
𝑟! − 𝑟3
𝑇𝐸𝑉  

Where: 

• 𝑟! are the portfolio’s returns; 

• 𝑟3 are the benchmark’s returns. 
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1.4) Empirical analysis 

This section will focus on an empirical analysis on a simulated portfolio, using both Markowitz 

and Risk Parity allocation above presented. This analysis aims at investigating the performance 

of the two portfolios to understand whether Risk Parity approach provides a better performance 

with lower risk than Markowitz approach. The analysis has been executed on Matlab5, by 

including 4 different asset classes: STOXX EUROPE 600 (SXXP), Gold (GLD), European 

long-term government bonds (LEATTREU), European short-term government bonds 

(LET1TREU), analyzing a time frame going from January 2004 to March 2023. The price series 

from which the analysis has been conducted were downloaded from Bloomberg6 (Figure 1.1). 

The code implemented for the analysis will be attached in the appendix. 

 

 
Figure 1.2 – Matlab script 

 

 

 
5 MATLAB: it’s a high-level programming language and software environment primarily used for numerical 
computing, data analysis, and algorithm development. 
6 Bloomberg: it’s a global financial data, news, and analytics platform widely used by professionals in finance and 
related industries. It provides real-time and historical market data, as well as news and analytical tools, facilitating 
financial research, trading, and decision-making. 

2006 2008 2010 2012 2014 2016 2018 2020 2022
1.5

2

2.5

3

3.5

4

4.5

5
NORMALIZED ASSETS PERFORMANCE

SXXP
LEATTREU
LET1TREU
GLD



 16 

This analysis starts from an initial portfolio allocation for both the portfolios as follows: 

• SXXP: 40%; 

• LEATTREU: 20%; 

• LET1TREU: 20%; 

• GLD: 20%. 

The algorithm rebalances the two portfolios every three months through a loop which computes 

weights on each asset according to the two techniques. Here below it’s presented a graph 

reporting the rolling window weights allocation of our portfolios, hence how weights change 

over time (Figure 1.2). As we can see, Markowitz allocation shifts immediately from the initial 

weights right at the first rebalancing period. By doing so, the portfolio doesn’t maintain the 

initial level of diversification, which should be required in order to avoid periods of large 

volatility. On the other hand, the Risk Parity portfolio provides some slight shifts in the 

allocation, by maintaining a high level of diversification.  

 

 
Figure 1.3 - Matlab script 

Figure 1.4 plots an overview of how the two portfolios have performed over time. The Risk 

Parity portfolio seems to provide a lower performance in terms of return at the end of the period. 
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However, here we are more interested in the risk-adjusted return, as this analysis wants to 

investigate compelling advantages in terms of diversification and volatility. Indeed, the Risk 

Parity portfolio (red line) has a much smoother trend component7, proving less noise with 

respect to the Markowitz one (blue line).  

 

 
Figure 1.4 -Matlab script 

 

Also, by looking at Figure 1.5, we notice that the Risk Parity portfolio always has lower 

drawdowns with respect to the Markowitz one, showing a more defensive allocation during 

difficult times.  

 
7 Trend component: in time series analysis it represents the long-term or underlying pattern in a dataset, capturing 
the consistent and sustained movements in the data over time. It helps identify the overall direction of the series, 
excluding short-term fluctuations and noise, and is a crucial component for forecasting and understanding the 
underlying behavior of a time series. 
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Figure 1.5 - Matlab script 

 

By considering the entire dataset and by having a look at the performance metrics computed 

through the algorithm (Table 1.1), we conclude that the Risk Parity portfolio provides a higher 

Sharpe Ratio than the Markowitz one. Even though Markowitz portfolio has a higher annualized 

return, its standard deviation is much higher than the Risk Parity one. This is due to Risk Parity 

philosophy of weighting assets by controlling their risk contribution to the entire portfolio. 

 

Table 1.1 – Matlab script 

We should point out that the analysis here conducted is specific and not suitable for every kind 

of portfolio. There might be some specific cases in which portfolios built following a 

Markowitz allocation provide better results in terms of Sharpe ratio. However, we can say that 

Risk Parity philosophy manages to accomplish its main goal: reducing risk by maintaining 

substantial levels of diversification. 
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2) Bridgewater All Weather portfolio 
 

2.1) All Weather’s philosophy 

In 1971 Bretton Woods agreement left the international scene thanks to what passed to history 

as “The Nixon Shock”. The strong convertibility between gold and US dollar was canceled, due 

to some of the highest inflation rates of all time. This event taught Ray Dalio, the founder of 

Bridgewater Associates, the importance of having a broad perspective on markets and not 

relying solely on his own experiences. Dalio realized that he could understand how markets 

move by breaking them down into their components and studying the relationships between 

them over time. As Ray Dalio itself tells us, he investigated how markets behave looking at 

shifts in conditions relative to what is priced in, understanding that the greater the discrepancy 

between these conditions, the larger the shock.  

This approach, which he called “studying the economic machine”, represented the basis of the 

All Weather portfolio. As the name suggests, this portfolio was designed to perform well in 

every market environment, including those that were unexpected or surprising, by investing in 

a diversified mix of assets with low correlations among each other. 

Hence, the portfolio is designed to balance assets based on their structural characteristics, so 

that economic shocks can be reduced. This strategy is therefore passive and does not require 

predicting future conditions. Furthermore, it’s based on the Risk Parity philosophy, as each 

asset class considered should equally contribute to the overall portfolio’s risk. 

Over time, the principles and concepts that underpin All Weather began to emerge through 

discrete discoveries. One key insight was that different asset classes have environmental biases, 

meaning they perform better than others in certain economic environments. For example, bonds 

tend to perform best during disinflationary recessions, while stocks perform best during periods 

of economic growth. Understanding these biases was critical for constructing a well-diversified 

portfolio and laid the foundation for the inflation-growth framework which shaped the main 

philosophy behind this strategy. 
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2.2) How the economic machine works 

Understanding factors driving asset class returns and benefits of a balanced portfolio requires 

insight into the economic mechanisms that shape today’s economy. According to Ray Dalio, 

three primary forces drive the economy: productivity growth, the short-term debt cycle8, and 

the long-term debt cycle9. 

Despite the gradual and steady rise in the productivity trend line, real-world GDP experiences 

notable fluctuations due to the interplay of two cycles: short-term and long-term debt cycles. 

The short-term debt cycle results from rapid shifts in debt and spending growth. Central banks, 

like the US Federal Reserve (FED) or the European Central Bank (ECB), control these cycles 

by managing credit levels through interest rates, impacting aggregate demand. 

Over time, recurring short-term cycles contribute to a growing debt burden, evolving into the 

long-term debt cycle. Though this cycle has minor yearly movements, it leads to a higher debt-

to-GDP ratio. As this ratio becomes excessive, traditional monetary tools lose effectiveness, 

marking the peak of the long-term cycle.  

These three forces provide a simplified perspective of the economy’s short and long-term 

dynamics. They underscore how microeconomic actions collectively shape macroeconomic 

trends. 

While Ray Dalio recognized the potential for stocks and bonds to counterbalance each other in 

times of growth shocks, he was also aware that increasing inflation could negatively impact 

both types of assets. Therefore, another pivotal aspect in developing the All Weather approach 

was the framing of inflation as one of the core drivers for asset allocation decisions. 

It was discovered that the most successful portfolios were the ones which seemed to be resilient 

to surprises in inflation. This finding aligned with the historical context of inflationary and 

disinflationary trends. However, Ray Dalio contributed an additional perspective, proposing 

that the portfolio should jointly be adapted to both changes in inflation and economic growth. 

These dual considerations formed the bedrock for the creation of the 4 box economic scenarios 

diagram upon which this philosophy is built (Figure 2.1). 

 
8 Short-term debt cycle: it refers to the cyclical patterns in borrowing and lending that occur over relatively brief 
periods, typically ranging from several months to a few years. It reflects fluctuations in credit availability, 
interest rates, and economic activity and can have a significant impact on businesses and financial markets.  
9 Long-term debt cycle: it represents the extended economic cycles that typically span several decades and 
involve patterns of borrowing, lending, and deleveraging in an economy. It encompasses larger-scale 
fluctuations in interest rates, credit markets, and economic growth, and its understanding is crucial for assessing 
systemic financial risks and making long-term investment and policy decisions. 
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Figure 2.1 – Bridgewater 

This tool became a milestone for the All Weather strategy. It was rooted in the fundamental 

principle of decomposing a portfolio into its constituent parts, recognizing inherent 

environmental biases and adjusting risk profile of asset classes accordingly. This diagram 

enabled Bridgewater to grasp the spectrum of potential economic environments that investors 

might encounter and how to achieve equilibrium by allocating equal risk across each scenario. 

The framework was constructed to address surprises in a general sense, encompassing 

unexpected developments yet to transpire, by allocating equal risk on each possible scenario 

(Figure 2.2). 

 
Figure 2.2 – Bridgewater 
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This dynamic explains the unpredictable link between nominal bonds and stocks. For instance, 

stocks and bonds react in opposite ways to economic growth. Stocks tend to excel when growth 

surpasses expectations, benefiting from increased revenue projections. In contrast, bonds 

perform better in times of difficult economic growth. By blending these assets, their differing 

responses help lower overall portfolio risk. 

Similarly, the opposing reactions of bonds and commodities to inflation make their combination 

advantageous for risk mitigation. Lower than expected inflation favors bonds, as it can boost 

business profit margins through reduced input costs and central bank interest rate reductions. 

Conversely, commodities often perform well during periods of unexpected economic growth 

and inflation. Including these asset classes in the portfolio leverages their opposite inflation 

sensitivities to enhance balance and diversification of risk. 

Regarding specific asset classes, U.S. Treasuries are viewed as low risk securities due to their 

absence of call, event, or default risk, as well as minimal liquidity risk. They tend to perform 

better when economic growth and inflation fall short of predictions, as there’s a higher 

likelihood of central bank intervention to lower interest rates. Furthermore, Treasuries are 

considered a safe haven asset, providing a hedge during uncertain times, making them an 

attractive option for portfolio balance. 

Gold, another asset of interest, is debated for its correlation with inflation and economic growth. 

Nonetheless, it’s often seen as a hedge due to its money-like attributes and safe haven 

reputation, as during periods of expected higher inflation, investors might turn to gold to 

safeguard purchasing power.  

Hence, asset class selection in the portfolio is based on projected performance relative to 

economic growth and inflation. By recognizing how these classes respond to underlying risk 

factors, the portfolio seeks equilibrium and risk reduction. Blending assets with opposing 

reactions helps counterbalance risks and strengthens the diversification strategy’s resilience. 
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2.3) All Weather asset allocation  

Given a broad overview of the main fundamentals of such an asset allocation philosophy, we 

can proceed in illustrating how the All Weather portfolio is actually composed. 

Ray Dalio intentionally built the portfolio to result not over-complicated nor over-engineered, 

allocating 30% on equity, 55% on bonds, 15% on commodities, specifically on gold.  

As the strategy is built to consider the fact that we don’t know what the future holds and thus it 

implies the choice of thinking within a long-term time frame, only 30% of the portfolio is 

allocated on equity, reflecting the Risk Parity principle. Within this paper the fixed income 

component is divided in long-term bonds (25%), short-term bonds (25%) and corporate bonds 

(5%). However, some investors might decide to allocate slightly higher weights on long-term 

bonds rather than on short-term, depending on their risk aversion.  

Hence, by investing not only on long-term bonds, but also on short-term and corporate ones, 

the portfolio manages to reach a higher level of diversification, yet a lower volatility, as fixed 

income securities with longer volatility are usually more responsive to changes in economic 

conditions, hence riskier. Figure 2.3 shows a chart representation of the asset allocation. 

 
Figure 2.3 – Matlab Script 

 

The following section will illustrate an empirical analysis of the All Weather portfolio 

performance by comparing it against a traditional allocation portfolio (i.e. 60% equity, 40% 

bonds).   
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2.4) All Weather backtesting 

This analysis will be investigating the advantages of diversification within portfolio allocation. 

In this context we performed a backtesting10 on Matlab by building up both an All Weather 

portfolio and a classic one. The All Weather portfolio will be composed as follows: 30% equity, 

25% long-term government bonds, 25% short-term government bonds, 5% corporate bonds, 

15% gold. First, we will consider only American assets in the analysis, afterwards we will 

employ the same algorithm on European assets. The data here used have been downloaded from 

Bloomberg and are monthly time series of the following assets: 

• S&P 500 (SPX), 30% 

• LUATTRUU, 25% 

• LU13TRUU, 25% 

• LGCPTRUU, 5% 

• SPDR GOLD, 15% 

The S&P 500 (SPX) is here used as a proxy for the US stock market. For what concerns the 

fixed income component, we have selected LUATTRUU and LU13TRUU Bloomberg indexes, 

here taken as proxies for long-term and short-term US government bonds, respectively. To 

further enhance diversification and hedge against market volatility, a portion of the portfolio is 

allocated on LGCPTRUU, which represents global corporate bonds. Corporate bonds offer 

exposure to the credit market and can provide additional income and risk diversification. 

In order to incorporate a safe heaven asset, we allocated 15% of the portfolio in SPDR GOLD, 

which represents gold spot prices. As reported above, gold is usually considered as a hedging 

tool against inflation and provides diversification benefits due to its low correlation with other 

asset classes. 

In contrast, the classic allocation portfolio follows a traditional approach by investing 60% on 

equity and 40% on bonds. This allocation is a common benchmark for a balanced portfolio, 

representing a moderate risk profile with exposure to both stocks and bonds. For this portfolio 

we picked the same assets as before, but excluding gold, global corporate bonds and short-term 

bonds.  

 
10 Backtesting: it’s a quantitative analysis technique used to assess the performance of a trading or investment 
strategy by applying it to historical data to simulate how it would have performed in the past. This process helps 
evaluate the strategy's effectiveness, identify potential weaknesses or flaws, and inform decision-making for 
future investments or trading activities. 
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The algorithm first allocates the portfolio by employing initial weights reported above, and then 

rebalances weights every three months by adjusting them according to a Risk Parity approach, 

in order to make them equally contribute to the total risk of the portfolio. 

 
Figure 2.3 – Matlab Script 

Figure 2.3 shows the rolling window weights allocation of both the portfolios, hence how 

weights have changed over time according to the algorithm implemented. As the All Weather 

portfolio is rebalanced through a Risk Parity approach, weights don’t deviate much from the 

original ones, even though some slight changes occur. On the other hand, the classic portfolio 

is built in order to maintain the original 60/40 allocation.  

 

 
Table 2.1 – Matlab Script 

As before, we reported the main metrics of valuation for this analysis, in order to evaluate 

performance in terms of risk-return. The classic portfolio provides a higher annualized return 
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with respect to the All Weather’s, due to its larger exposure to equity. However, standard 

deviation is much lower for the All Weather portfolio, making it approximately 3% less volatile 

than the classic one. This gap in terms of standard deviation is due to the higher diversification 

that the All Weather portfolio benefits from. In particular, volatility is lowered since bonds 

allocation here is diversified between short-term and long-term, while in the classic one the 

portfolio invests only in long-term bonds, which historically are consistently more volatile than 

fixed income securities with shorter duration. On the other hand, the All Weather portfolio 

includes a significant weight on gold (15%), the most volatile asset among the ones here taken 

in consideration, but also uncorrelated with other asset classes, playing as a further driver of 

diversification. As a result, the All Weather portfolio manages to provide a Sharpe Ratio of 0,7, 

approximately 34% higher than the classic portfolio’s. 

 
Figure 2.4 – Matlab Script 

 

As reported in Figure 2.4, we can notice evidence of the All Weather portfolio having less noise 

and behaving more regularly through the time frame here considered. During both financial and 

economic crisis (2008, 2020), this portfolio manages to generate distinctive performances and 

offset massive losses with respect to a traditional allocation, as it’s also deducible from the 

drawdown analysis (Figure 2.5). 
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Figure 2.5 – Matlab Script 

 
Furthermore, as we wanted to evaluate whether these results were significant not only for 

American asset classes, the same analysis has been conducted by replacing SPX, LUATTRUU, 

LU13TRUU with SXXP, LEATTREU, LET1TREU, which are nothing but the correspondent 

European asset classes.  

 
Table 2.2 – Matlab Script 

Table 2.2 reports the main results deriving from this implementation, which seem to be even 

stronger than when employing American assets. Not only here we get significant reduction in 

volatility, but also some gain in absolute returns, driving to a Sharpe Ratio which is double the 

one of the classic allocation. Figure 2.6 shows the portfolios performance over time.  
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Figure 2.6 – Matlab Script 

 
The difference in terms of risk-return here is due to the poorer performance over the last 20 

years of the STOXX EUROPE 600 (SXXP), with respect to the S&P500 (SPX). The geographic 

switch in the equity component massively affects the classic allocation portfolio, which is 

largely invested in stocks.  
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3) Dynamic rebalancing model 
During the whole analysis here conducted we’ve always approached the All Weather as a 

passive portfolio, which is built to perform well in any economic condition. This approach aims 

to provide consistent returns and mitigate the impact of unpredictable market fluctuations, 

without directly intervening on the portfolio allocation. As we’ve seen before, the implemented 

portfolio is rebalanced every 3 months with a Risk Parity approach. According to this 

philosophy weights don’t deviate much from the ones implemented at the beginning of the 

analyzed time frame, in order to maintain stable levels of risk contribution for each asset.  

In this chapter the analysis aims to investigate several financial markets rules that, over the long 

run, might be implemented within portfolio management in order to generate a better 

performance in terms of risk/return. By doing so we switch from a static rebalancing setting to 

a dynamic one. This section will go through the core analysis of the study, by first analyzing 

how a dynamic rebalancing portfolio works with respect to a static one, and by then presenting 

the core model we built by implementing the Matlab script which will be reported in the 

appendix. 

 

3.1) Techniques differences 

Switching from a static rebalancing portfolio to a dynamic one can offer several compelling 

advantages within an All Weather investment framework.  

One key reason for adopting a dynamic rebalancing strategy is the recognition that market 

conditions and asset class performances are not static. Economic environments can change, and 

asset classes may experience varying levels of volatility and returns over time.  

Through a dynamic perspective, instead of adhering to fixed weightings, the portfolio’s 

allocation is regularly reviewed and rebalanced to maintain the desired risk profile and 

capitalize on opportunities presented by changing market conditions. This active approach 

allows the portfolio to take advantage of potential shifts in asset class performance and optimize 

risk-adjusted returns. 

Furthermore, this approach applied to the All Weather can be can be particularly advantageous  

due to the underlying asset classes’ sensitivity to different economic factors. As mentioned 

earlier, asset classes such as equities, bonds, and commodities have varying performance 

characteristics in relation to economic growth and inflation. By dynamically rebalancing the 
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portfolio, it becomes possible to adjust the allocation based on the expected shifts in these 

conditions. 

For instance, during periods of economic expansion and high growth, equities may outperform 

other asset classes. In this scenario, a dynamic rebalancing approach would involve increasing 

the allocation in equities to capture the potential upside. Conversely, during periods of 

economic contraction or lower growth, bonds and other defensive assets may be more 

favorable. Dynamic rebalancing would then prompt a shift in allocation towards these asset 

classes to mitigate risk and preserve capital.  

Moreover, dynamic rebalancing can potentially enhance risk-adjusted returns over the long-

term. By capitalizing on the opportunities presented by changing market conditions, the 

portfolio can capture favorable returns and reduce the likelihood of significant losses.  

However, we should also take in consideration the disadvantages of such a switch in our 

analysis. First of all the All Weather portfolio has always been thought as a passive portfolio, 

which takes as core philosophy the concept of allocating assets and leaving them grow in the 

long-term. By moving to a dynamic approach this concept no longer holds. However, the 

dynamic model we’re referring to assumes that we set some rebalancing rules at the beginning 

of the period, and make them change the allocation accordingly and automatically, without any 

further intervention. Therefore, on the one hand such an approach makes the portfolio active, 

as asset classes don’t maintain the same weights over time, on a different note it still maintains 

passive portfolios features, as it’s thought to work on predefined rules and outperform its static 

peer in any economic condition over the long run.  

Another disadvantage that in the real life might affect the performance is that by switching to a 

dynamic approach, the turnover 11of the portfolio increases, as more transactions are executed. 

This aspect may affect the overall return, due to higher transaction costs. However, as this 

analysis tries to create a general model which is then adjustable accordingly by each individual 

investor, we won’t take in consideration transaction costs. 

 

 

 

 

 
11 Turnover: it’s a measure that quantifies the trading activity within the portfolio over a specific period. It 
calculates the proportion of assets bought or sold relative to the total portfolio value during that period. Turnover 
is a key metric for assessing the trading costs, tax implications, and overall efficiency of portfolio management, 
with higher turnover implying more frequent buying and selling of assets within the portfolio. 
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3.2) Data description  

For this analysis we implemented a similar approach to what we have presented above. The 

asset class will be the same as the ones used in the previous chapter, but there is a further step 

regarding diversification: each asset class will be invested both in Europe and in the United 

States. This variable will be useful in considering geographic diversification to assess whether 

this factor is determinant in terms of portfolio performance. 

The dynamic portfolio will have the same initial asset allocation: 30% equity, 50% government 

bonds, 5% corporate bonds, 15% gold. Specifically, geographic diversification will be 

implemented by equally splitting each asset class. The data here used have been downloaded 

from Bloomberg and are monthly price series of the following assets:    

• S&P 500 (SPX), 15% 

• STOXX EUROPE 600 (SXXP), 15% 

• LEATTREU, 12,5% 

• LET1TREU, 12,5% 

• LUATTRUU, 12,5% 

• LU13TRUU, 12,5% 

• LGCPTRUU, 5% 

• SPDR GOLD, 15% 

As before, S&P 500 (SPX) and STOXX EUROPE 600 (SXXP) are used as proxies for the US 

stock market and the Eurozone stock market, respectively. For what concerns the fixed income 

allocation, we have selected both European and American government bonds. LEATTREU and 

LET1TREU are proxies for long-term and short-term European government bonds, 

respectively, while LUATTRUU and LU13TRUU represent long-term and short-term 

American government bonds. As before 5% of the portfolio is allocated on LGCPTRUU, which 

represents global corporate bonds, while the commodity component is still represented by gold, 

here SPDR GOLD. 

The performance of this portfolio will be analyzed against its benchmark, which is nothing but 

the same portfolio with the static rebalancing technique implemented before in the analysis.   
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3.3) Rebalancing model used in the analysis and inputs description	

This dynamic rebalancing model is built by investigating some rules that, over the long run, 

seem to provide correlation between macroeconomic indicators and assets performance. In the 

implemented rebalancing model three key aspects are evaluated, in order to move weights 

accordingly. We wanted to incorporate allocation shifts regarding the bond component, the 

equity side and finally the geographic diversification. 

 

3.3.1) Bonds 

Fixed income assets in All Weather portfolios represent the biggest part of the whole asset 

allocation, namely 55%. The input here presented will not make this overall percentage 

decrease, but instead will work on the allocation between short-term and long-term securities. 

Here we refer to the concept of duration of the portfolio, which is a key point in portfolio 

management, and a crucial concept to incorporate in our rebalancing model.  

Duration refers to the weighted average time it takes to recover the initial investment from a 

fixed-income security. For example, consider a bond with a duration of 5 years. This means 

that, on average, it will take approximately 5 years to receive back the bond’s cash flows 

(coupon payments and principal repayment). Duration takes into account both the timing and 

magnitude of these cash flows, giving investors an idea of when they can expect to receive the 

majority of their investment back. Intuitively, short-term bonds will have lower duration with 

respect to long-term ones. 

In asset management duration is crucial as it is also a measure of the sensitivity of a fixed-

income security’s price to changes in interest rates. As bonds prices have an inverse relationship 

with interest rates, when interest rates rise, bond prices generally decrease, and vice versa. As 

we can see from Figure 3.1, where “GDBR10” is the index tracking the 10 years bund yield12, 

duration helps investors understand the magnitude of these price changes. Whenever yields 

moves up or down, high duration bonds (LEATTREU in this case) will move inversely with 

more volatility with respect to low duration bonds (LET1TREU here). 

 
12 Yield of a bond: it’s a measure of the total return an investor can expect to earn from holding the bond until it 
matures. It takes into account the bond's current market price, coupon payments, and the time remaining until 
maturity.  
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Figure 3.1 – Bloomberg Terminal  

Hence, the higher the duration of a bond, the more sensitive it is to changes in interest rates. 

This is because cash flows from long-duration bonds are received later with respect to short-

duration ones, making them riskier and more exposed to changes in interest rates over time. 

From this recap on why duration plays a key role in portfolio management, it’s easy to 

understand that the model here presented will provide different weights within the fixed income 

allocation of the portfolio, accordingly to what are the market conditions in each moment of the 

analyzed period. As we have seen that bonds with high duration are more volatile than those 

with low duration, the former will perform better on average while yields are going down, while 

the latter will lose less when yields are going up. This is due to the core reasoning behind bonds 

market: if yields are going up that means that there is more uncertainty, so investors will move 

their allocation to safer assets, in this case, shorter term securities. On the other hand, when 

yields decrease, markets consider economic conditions to be more stable, and investors will 

move their allocation accordingly to longer term securities.  

Hence, short-term fixed income securities are in some way a defensive asset, in order to lose 

less performance, as their volatility is lower.  

The model now has to predict different macro-economic conditions, in order to deviate from 

the initial weights. As we can see from Figure 3.2, one of the key drivers of bond yields is the 

refinancing rate13 decided from central banks. Here we plotted on Bloomberg the 10 years 

 
13 Refinancing rate: it’s issued by a central bank and also known as the policy rate or benchmark interest rate. It 
represents the interest rate at which commercial banks can borrow funds from the central bank to meet their short-
term liquidity needs. It serves as a key tool for the central bank to influence overall economic conditions, including 
inflation and economic growth. By changing the refinancing rate, the central bank can impact borrowing costs, 
credit availability, and investment decisions in the broader economy. It is a crucial indicator for monetary policy 
and financial markets. 
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German government bond (GTDEM10YR), against the ECB refinancing rate (EURR20W) 

over the period considered (2004-2023).  

 

 
Figure 3.2 – Bloomberg Terminal  

 

As we can see there is evidence of correlation between the two time series. Specifically, when 

the European central bank releases interest rates hikes, the 10 years bund yield increases, while 

the opposite happens when the central bank releases interest rates cuts. However, we should 

take in consideration that this reasoning makes sense on the long run, as in real life markets 

move accordingly to data expectations. This means that government bonds yields move due to 

several factors, be that how central banks presidents speaks about their moves, or how much 

the released data deviate from analyst expectations. In this analysis we can’t incorporate these 

aspects, as they depend on specific short-term market conditions. However, we can use the 

central bank refinancing rate as the main input to shift duration in our portfolio. As it’s possible 

to notice in both Figure 3.3 and Figure 3.4, there’s evidence of inverse correlation between 

refinancing rates and bonds prices, both in Eurozone and in the United States. 
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Figure 3.3 – Bloomberg Terminal  

 

 
Figure 3.4 – Bloomberg Terminal  

 

3.3.1.1) Model implementation 

The algorithm takes FED and ECB refinancing rates separately and works on the differential of 

the time series within the time frame considered (2004-2023). To make the input as smooth as 

possible, we dealt with the moving average14 at 12 months of the series, so as to avoid the input 

to be activated for slight changes in the differential. 

Whenever a reverting pattern is found, the algorithm assumes that the reference government 

bond yield moves accordingly. Hence whenever the moving average of interest rates differential 

is positive, this means that central banks are likely to become dovish in the subsequent months. 

 
14 Moving average: it’s a statistical calculation used in data analysis and time series forecasting. It involves 
taking an average of a set of data points within a moving window of a specified size, sliding that window 
through the dataset, and calculating a new average for each position. Moving averages help to smooth out 
fluctuations and highlight underlying trends or patterns in the data, making them valuable tools for identifying 
trends, seasonality, and short-term fluctuations in various types of data. 
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As this implies government bond yields to likely go down, then bond prices will probably start 

a bullish rally.  

Our aim then is to capture performance in these periods by allocating more on high duration 

bonds rather than on low duration ones. On the other hand, whenever the opposite is detected, 

the algorithm will follow the same approach by allocating more on low duration bonds and less 

on the high duration ones, in order to contain losses. 

In particular, the model will increase LEATTREU/LUATTRUU by 10% and decrease 

LET1TREU/LU13TRUU by 10%, while it will increase LE1TREU/LU13TRUU by 10% and 

decrease LEATTREU/LUATTRUU by 10% when the opposite situation occurs.  
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3.3.2) Equity 

The second input we incorporate in the model refers to equity related securities. As we’ve 

shown before, the initial asset allocation of our portfolio is built to have 30% in equity, 

allocating 15% on the major American index (S&P500) and 15% on the major European index 

(STOXX Europe 600).  

This model adopts a fundamental approach to portfolio allocation by incorporating real 

economic indicators, specifically GDP15, to make investment decisions. Using GDP as an input 

provides valuable insights into the economic health and growth prospects of both US and 

Eurozone economies, which can significantly impact various asset classes, particularly equities. 

Intuitively we should increase our equity allocation whenever GDP is likely to increase. This 

approach aligns with the common investment principle of “buying into strength”, as an 

expanding economy is generally associated with increasing corporate earnings and potential 

stock market gains. By allocating more to equities during economic expansions, our model aims 

to capitalize on the positive correlation between GDP growth and equity market performance. 

Reversely, we should decrease our equity allocation whenever GDP is likely to decrease. This 

defensive approach aligns with the concept of risk management during economic downturns. 

Economic contractions are typically associated with reduced consumer spending, corporate 

profits, and market uncertainty, which can lead to declines in equity prices. By reducing equity 

exposure during economic downturns, the model seeks to protect the portfolio from potential 

losses. 

As we can see from Figure 3.5 and Figure 3.6, which plot both the S&P500 index against the 

US real GDP rate and the STOXX Europe 600 against the European real GDP rate, there is 

evidence of correlation between the direction of economic growth and the performance of the 

major indexes.  

 
15 GDP: it stands for Gross Domestic Product and it’s a comprehensive economic indicator that measures the total 
value of all goods and services produced within a country's borders during a specific period, typically a year or a 
quarter. It serves as a key measure of a nation's economic activity and is often used to assess its overall economic 
health, growth, and performance. GDP can be calculated using three different approaches: production, income, 
and expenditure, providing insights into various aspects of an economy. 
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Figure 3.5 – Bloomberg Terminal  

 

 
Figure 3.6 – Bloomberg Terminal  

However, this might not be enough: although it seems true that whenever there is a recession 

stocks perform poorly, there is also evidence that the simple real GDP rate series doesn’t 

provide sufficient information in order to move the allocation. One might intuitively think to 

reduce equity allocation whenever GDP rates are below zero and do the opposite whenever it 

is above. Nevertheless, by following this approach the model wouldn’t include many 

movements throughout the years, as technical recession16 happened only a few times in the time 

frame here analyzed.  

 

 
16 Technical recession: it refers to an economic condition characterized by two consecutive quarters of negative 
GDP growth. It is a quantitative indicator used to identify a period of economic contraction. Unlike a regular 
recession, which may involve broader economic factors and impacts, a technical recession is defined solely by the 
specific criteria of negative GDP growth for two consecutive quarters and is often used as an official benchmark 
to assess economic performance. 
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3.3.2.1) Model implementation 

We want to incorporate changes in direction of macro trends in order to catch up any possible 

direction of the stock market. To provide such output we work on the differential of the GDP 

rate series, by analyzing how the economic indicator changes with respect to the previous 

period. As we want the input to work as smoothly as possible, we computed the moving average 

at 15 months of the differential. This further step is crucial to make the input take in 

consideration only significant changes in GDP rate, instead of any as it would be without 

implementing the moving average. 

Then, the input activates whenever the moving average of the differential changes sign. When 

it is positive, the allocation in equity related assets within the portfolio increases of 6%, by 

equally decreasing other asset classes by 1,5%. Conversely, when the GDP reverts its trend, 

hence when the moving average of the differential becomes negative, the model reduces equity 

allocation by 6% and allocates it on the other asset classes.  

We set 6% as weight change as we’ve tested it’s the optimal shift in order to avoid too big 

deviations from a risk diversification perspective.  

It’s important to acknowledge that GDP is one of many factors influencing equity markets. 

Market sentiment, interest rates, corporate earnings reports, geopolitical events, and central 

bank policies are just a few other factors that can impact equity performance. However, we 

should still take in mind that this model provides inputs that are likely to be efficient on the 

long run, hence it might fail in addressing a better performance at some time, but it will work 

well by widening the time frame.  
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3.3.3) Currency 

While asset allocation across different classes like stocks, bonds, and commodities is a well-

known practice, the importance of currency allocation within portfolio management often goes 

overlooked. First of all, currency allocation provides an additional layer of diversification 

within a portfolio. Currencies are influenced by various factors such as economic indicators, 

geopolitical events, and central bank policies. By including different currency diversification 

in a portfolio, investors can mitigate risk associated with any single country’s volatility or 

weakness. When one currency depreciates, others may appreciate, offsetting potential losses 

and reducing overall portfolio risk. By closely monitoring and analyzing global economic 

trends, investors can identify opportunities for currency allocation. For example, during periods 

of economic growth and stability, investors might allocate more capital to countries 

experiencing positive economic indicators. This approach enables investors to align their 

portfolios with long-term macroeconomic trends, potentially boosting returns. 

In this model we are dealing with European and American assets, therefore our currency 

allocation will be on securities denominated in Euro and in US dollar.  

As mentioned before, one among the key drivers of the forex market17 is central banks policy. 

In particular, we have to deal with Federal Reserve and European Central Bank decisions on 

interest rates. 

Specifically, when a central bank becomes hawkish18, hence starts to increase the refinancing 

rate, then the home currency usually appreciates. The opposite happens whenever the central 

bank becomes dovish19 and seems to be in the ending state of its hiking cycle.  

This relationship can be attributed to the attractiveness of higher interest rates for investors 

seeking higher returns. As a result, there is an increased demand for the home currency, leading 

to an appreciation in its value relative to others. 

Figure 3.7 and Figure 3.8 show the EUR/USD against the ECB refinancing rate, and then the 

USD/EUR against the FED refinancing rate, to see whether it shows signs of correlation or not. 

 
17 Forex market: the foreign exchange (forex or FX) market is a global decentralized marketplace for trading 
currencies. It is the largest and most liquid financial market in the world, where participants buy, sell, exchange, 
and speculate on the value of various currencies. 
18 Hawkish: it refers to a policy stance that prioritizes controlling inflation and price stability over promoting 
economic growth. When a central bank is described as hawkish, it indicates a willingness to raise interest rates or 
implement other monetary tightening measures to combat inflationary pressures or perceived economic 
overheating.  
19 Dovish: it refers to a policy stance that prioritizes supporting economic growth and employment over controlling 
inflation. When a central bank is described as dovish, it indicates a willingness to implement monetary policies 
that promote economic expansion. This often involves lowering interest rates or using other measures to stimulate 
borrowing and spending by businesses and consumers.  
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Figure 3.7 – Bloomberg Terminal  

 

 
Figure 3.8 – Bloomberg Terminal  

 

Although in the long run the two series seem to show correlation, this is clearly not enough to 

shift from the initial weights regarding currencies. This comes from the fact that as we are 

looking for some input which affects the EUR/USD ratio, this has to take into account both the 

decisions of the ECB and the ones of the FED. Therefore, we have to deal with the differential 

between the ECB refinancing rate and the FED refinancing rate, by plotting it against 

EUR/USD (Figure 3.9).  This is nothing but the difference between the interest rates issued by 

the two central banks.   
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Figure 3.9 – Bloomberg Terminal  

 

The graph illustrates much more correlation between EUR/USD exchange rate and the 

differential of the interest rates set by Federal Reserve (FED) and European Central Bank 

(ECB). 

When the interest rate differential decreases, meaning that the FED is more hawkish than the 

ECB, and hence it raises rates at a faster pace or more aggressively, the graph shows that the 

EUR/USD tends to decrease, as the US dollar appreciates.  

Conversely, when the interest rate differential increases or the ECB raises rates more rapidly 

than the FED, the graph shows that the EUR/USD tends to appreciate.  

As before, it is still important to remark that while the correlation between EUR/USD and the 

interest rate differential is evident, other factors can influence currency movements as well. 

Market sentiment, economic indicators, geopolitical events, and monetary policy decisions 

beyond interest rates can also impact exchange rates. However as highlighted before, by only 

taking into account the interest rate differential variable, we are trying to make this input work 

specifically for a long-term time frame.  

 

3.3.3.1) Model implementation  

Our model captures EUR/USD fluctuations by detecting peaks and valleys of the differential 

time series between the two interest rates. The algorithm uses the MATLAB built-in function 

to retrieve the dates at which the time series reverts its direction. One can intuitively think that 

the main driver is the 0 level, meaning that whenever the interest rate differential changes sign, 



 43 

the allocation should change accordingly. However, markets move due to expectations, so 

instead of looking at the sign of the differential, we pay more attention at whenever the 

derivative of the differential reverts. By doing so we’re considering what the real meaning of 

this indicator is: different directions of central banks policies. 

Once the peaks and valleys dates are detected, the algorithm generates as output an allocation 

switch between American and European assets. As we want to incorporate diversification, this 

shift will be done with a threshold of 4% change on each asset class. This means that whenever 

a peak date is detected, hence the differential between ECB and FED rates is likely to increase, 

then the allocation shifts accordingly by increasing each European asset of 4%, and by 

decreasing each American asset of the same percentage.  
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4) Analysis of results 

This section will focus on the main results of the analysis conducted through the dynamic 

rebalancing model above implemented. The chapter will additionally go through the asset 

allocation contribution by every input implemented.  

 
4.1) Results description 

To measure the performance of the dynamic portfolio we compared it against an equivalent 

portfolio but rebalanced through a static approach. Specifically, this passive portfolio will have 

the same initial weights as the dynamic one, but it will be rebalanced only according to the Risk 

Parity technique, without any input driving the allocation. Additionally, performance will be 

evaluated against a classic 60% equity, 40% bonds portfolio, in order to get an overview of the 

pros and cons of our model, with respect to a traditional approach. 

 
Figure 4.1 – Matlab script 

As we can see from Figure 4.1, the dynamic All Weather portfolio grows at a substantial faster 

rate with respect to both the static All Weather portfolio and the classic portfolio. Specifically, 

its capitalized annual growth rate stands at a level of 6,1%, respectively 1.5% and 1.6% higher 

than the one of its benchmarks.  
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Table 4.1- Matlab script 

Furthermore, by looking at Table 4.1, we can notice that also in terms of volatility the dynamic 

portfolio performs better. This takes this allocation to provide significant result in terms of both 

Sharpe ratio and Sortino ratio. The Dynamic All Weather has a Sharpe ratio of 1.21, which is 

more than double the one of the classic portfolio, and approximately 45% higher than the one 

of its direct benchmark, the static All Weather. Furthermore, here we have results in terms of 

Tracking Error and Information Ratio, which provide some information about the relative 

performance of the dynamic portfolio with respect to the static one. As expected, they’re both 

positive. 

 
Figure 4.2 – Matlab script 
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By analyzing Figure 4.2, we can also provide significant results in terms of maximum 

drawdown. The Dynamic portfolio seems to always defend the best with respect to its peers. 

The maximum drawdown for this model stands at 8,1%, against a value of 8,3% for the static, 

and 17% for the classic portfolio. 

 
Figure 4.3 – Matlab Script 

Figure 4.3 shows the rolling window weights allocation for the three portfolios. As highlighted 

here, our model moves the allocation at any period it’s supposed to. Therefore, the turnover for 

this portfolio is significantly higher, as the model tries to capture any market condition and 

change weights accordingly. 
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Rolling Window Weights Allocation - Static AW Portfolio

2006 2008 2010 2012 2014 2016 2018 2020 2022
Time

0

0.2

0.4

0.6

0.8

1

W
ei
gh
ts

LUATTRUU
LU13TRUU
SPX
LEATTREU
LE13TREU
SXXP
CORP
GLD

Rolling Window Weights Allocation - Classic Portfolio
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4.2) Asset allocation contribution by inputs 

After having shown the strong results deriving from the implementation of our model, we 

provide in this section a deeper analysis regarding the contribution of each input to the overall 

asset allocation. Specifically, we want to investigate how each input changes the allocation and 

how the model behaves when two or more inputs overlap.  

 

4.2.1) Bonds input 

As explained in the previous section the input related to the internal fixed income allocation 

shifts weights between long-term and short-term bonds according to decisions of central banks 

on interest rates. Here in Figure 4.4 and Figure 4.5 are shown rolling window weights 

allocations for both Eurozone and United States.  

Weights here reported aim to provide a comprehensive understanding of how the internal bonds 

allocation changes according to our input. For this reason, here we have rolling window weights 

only related to fixed income assets within the two separate regions. The second time series of 

both Figure 4.4 and Figure 4.5 reports the effective functioning of the model input. Here is 

plotted the moving average differential of the central bank refinancing rate. By working on this 

time series rather than on the simple refinancing rate’s (3rd graph on both Figure 4.4 and Figure 

4.5), the model captures shifts in steepness, so as to incorporate a more dovish/hawkish 

behavior. Therefore, whenever the moving average differential changes sign, the model adjusts 

the allocation. Green lines are plotted whenever the series changes sign from positive to 

negative, hence when a tightening cycle from the central bank is likely to be over, while black 

lines are plotted whenever the opposite happens, hence when the central bank is likely to 

increase interest rates.  

As expected, weights shift accordingly, hence right after every green line long-term securities 

are increased while short-term assets are decreased, in order to capture more volatility when 

fixed income securities are likely to grow, while right after every black line the opposite 

happens, so as to defend potential losses. 
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Figure 4.4 – Matlab Script 
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Figure 4.5 – Matlab script  
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4.2.2) Equity input  

Here is analyzed the model input operating on equity related securities. As explained in the 

previous chapter this input operates due to changes in the moving average of the GDP 

differential. In Figure 4.6 and Figure 4.7 is reported the rolling window weights allocation 

related to this input.  

 
Figure 4.6 – Matlab script 
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Figure 4.7 – Matlab script 

As before, the first graph of both Figures is implemented with vertical lines. Green vertical 

lines occur when the moving average of GDP differential passes from positive to negative, 

meaning that GDP is likely to decrease in the upcoming future, while black lines occur when 

the opposite happens, hence when GDP is likely to increase. Allocation is moved accordingly, 

therefore, after every green line equity securities are reduced while other assets are increased, 

while after every green line, the model provides the opposite asset allocation.  

The second and third graph of both Figures plot respectively the moving average GDP 

differential and the GDP growth rate. 
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4.2.3) Currency input 

 
Figure 4.8 – Matlab script 

Figure 4.8 shows the same rolling window weights allocation as before, but with aggregated 

European assets (in orange) and American assets (in blue) in order to visualize how the 

allocation had changed due to the currency input. Take in mind that weights here reported are 

not the actual weights working in our portfolio, here in fact we’re taking out global corporate 

bonds and gold from the input implementation and consequently from the graph. As both gold 

and corporate bonds are US dollar denominated securities, this approach might seem counter 

intuitive, as it would imply always having an overweight on US dollar. However, if we included 

these assets within the currency input, allocation would have been extremely changed, not only 
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in geographic terms, but also in a structural way. As our priority is always to maintain a 

substantial level of diversification, we acknowledge this aspect and build the input as explained 

above.  

Moreover, we plotted some vertical lines in order to detect when a valley or a peak in the 

differential between central banks interest rates occur. Specifically green vertical lines represent 

dates in which a valley is detected, hence when the differential is likely to increase in the 

subsequent periods and expectations of Euro to appreciate against US dollar, while black 

vertical lines represent the opposite. The white horizontal line represents the 50% level, hence 

when American assets and European assets have the same weights within the portfolio. As 

expected, we notice that right after every green line, American assets are decreased and 

European assets are increased, while the opposite happens right after a black vertical line.  

We should also take in consideration an aspect that might not be trivial to derive from the graph. 

Since this model works due to three inputs, weights here derived might be affected from 

multiple decisions taken by the model. For instance, there are some fluctuations of European 

and American assets weights between 2012 and 2019 even though the differential between 

interest rates doesn’t reach neither a valley nor a peak. This is due to the overlap among the 

three inputs which might have caused some slight fluctuations. However, this is pretty much 

expected and doesn’t change the overall positive output generated by the currency input. 
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5) Suggestions for future research  

Building on what we covered earlier, this section will go through some suggestion for possible 

future research on the study. Now, we’re shifting our focus to explore some additional inputs 

we can bring into the model. These inputs, although not directly integrated into the initial model 

due to the possibility of overlapping with the core inputs, are important to consider because 

they could potentially enrich the model’s adaptability and efficacy. 

Within the current model framework, we should highlight that all the inputs we’ve integrated 

so far belong to the world of macroeconomics. This strategic decision has been driven by the 

aim to concentrate primarily on broader economic indicators, which hold the capacity to better 

adapt to a long-term period. However, it’s important to recognize that the absence of financial-

related inputs could potentially impose certain limitations, particularly in capturing some 

market trends and patterns. As we make progress, we’ll go through the implications of this 

macroeconomic focus and contemplate how the incorporation of financial inputs could 

potentially heighten the model’s accuracy in reflecting market dynamics. Furthermore, this 

chapter will introduce a further asset class to the portfolio, which might enrich the overall 

performance. 

 

5.1) P/E Ratio 

As we move to a financial setting in determining potential additional inputs to implement in the 

model, we first go through one of the most important indicators used when analyzing stocks or 

equity-related securities: the P/E Ratio. 

The Price-to-Earnings ratio (P/E ratio) is a financial metric that is widely used by investors and 

analysts to assess the relative valuation of a stock. It’s calculated by dividing the current market 

price of a  stock by its earnings per share (EPS) over a specific period, often the last four quarters 

(trailing P/E), or sometimes the projected earnings for the next four quarters (forward P/E). 

Mathematically, the P/E ratio can be expressed as: 

 

𝑃𝐸	 =
𝑀𝑎𝑟𝑘𝑒𝑡	𝑃𝑟𝑖𝑐𝑒	𝑝𝑒𝑟	𝑠ℎ𝑎𝑟𝑒
𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠	𝑝𝑒𝑟	𝑠ℎ𝑎𝑟𝑒  

 

This metric provides insights into how much investors are willing to pay for each unit of 

earnings generated by the company. A high P/E ratio might indicate that a company’s stock is 

trading at a premium due to high growth expectations, which could also imply higher risk if 
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those expectations are not met, while a low P/E ratio may indicate that the company’s stock is 

undervalued or that investors have lower expectations for future growth. 

Therefore, in portfolio management P/E ratio is one among the tools used to determine whether 

an equity-related security is overvalued or undervalued with respect to the intrinsic value20 of 

the underlying company. This reasoning makes sense not only for single stocks, but also for 

market indexes. 

As we move forward with our analysis, we want to find an input which moves the allocation 

according to this metric. Specifically, we may want to intervene on the geographic allocation 

of the equity component, by deviating from the equal division between STOXX Europe 600 

(SXXP) and S&P500 (SPX). Among the three inputs implemented in our model, the one which 

operates on currency exposure aims at shifting allocation among European and American 

assets. By doing so this input will change weights on every asset related to that geographic 

zone, yet it will not intervene directly on equity valuation. Furthermore, as the name itself 

suggests, the currency input is driven just by central banks interest rate differential, aiming at 

capturing deviations in the EUR/USD exchange rate, without considering any financial aspect. 

As the PE ratio is a functional valuation metric, we will study movements in the relation 

between the major American and European stock indexes PE ratios. We will refer to this ratio 

as the “PE spread”21. 

𝑃𝐸	𝑠𝑝𝑟𝑒𝑎𝑑 =
𝑃𝐸	𝑆&𝑃500

𝑃𝐸		𝑆𝑇𝑂𝑋𝑋	𝐸𝑈𝑅𝑂𝑃𝐸	600 

 

Intuitively, once the PE spread is above 1, it means that valuations in Europe seem to be more 

attractive with respect to American ones, as it benefits from a lower PE ratio than the one related 

to American companies, while the opposite happens when the PE spread is below 1. 

Figure 5.1 shows the PE spread against the normalized performance of both the STOXX Euro 

600 and the S&P 500 indexes. The black horizontal line is the 1 level, hence when valuations 

are exactly the same in both the regions. 

 
20 Intrinsic value of a stock: it represents the estimated true worth or fair value of a company's shares based on 
fundamental analysis. It is determined by assessing various financial factors, such as the company's earnings, 
cash flow, assets, and growth prospects.  
21 PE spread: it refers to the ratio between the SPX PE Ratio and the SXXP PE Ratio  
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Figure 5.1 – Matlab script 

From this graph we deduce that whenever the PE spread (yellow line) is below the 1 level (black 

line) we should expect European companies to be undervalued with respect to American’s, 

hence we may move our allocation in order to capture potential additional returns, while the 

opposite occurs when it’s above the 1 level. However, by looking at the graph we should notice 

that, over the considered time period (20 years), the PE spread has been below the 1 level only 

12 quarters out of 79. This disequilibrium is not solely due to reflections in intrinsic value of 

stocks, as we mentioned that PE ratio may be influenced by multiple factors. American indexes 

have historically had higher ratios, also due to their higher percentage of “growth” companies, 

rather than “value”. 

Therefore, relying solely on this input would bring our portfolio to be over allocated on 

European indexes 85% of the times, lacking not only in terms of diversification, but also in 

terms of performance.  
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Figure 5.2 – Matlab script 

A smoother approach might be once again making use of moving averages. Figure 5.2 plots the 

same series as before, but with the PE spread moving average series. Therefore, a suitable input 

might be shifting allocation whenever the observed PE spread deviates from the moving 

average by at least one standard deviation. Doing so would allow to incorporate the discrepancy 

between the two regions’ PE ratios, by avoiding to rely on the biased level of 1 as main driver. 

Furthermore, yellow line and purple line serves as a brake to avoid the model to shift too 

frequently. In fact, by setting a threshold above and below which the input activates, we further 

suggest the model to shift the allocation only when the difference in the PE spread is significant. 

  

2006 2008 2010 2012 2014 2016 2018 2020 2022
0.4

0.6

0.8

1

1.2

1.4

1.6
PE SPREAD

PE SPREAD
MA PE SPREAD
Positive STD
Negative STD

2006 2008 2010 2012 2014 2016 2018 2020 2022
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
EQUITY PERFORMANCE

SPX
SXXP



 58 

5.2) Inflation linked bonds 

While it is true that many investment strategies often incorporate inflation linked bonds (ILBs) 

for their hedging properties, our specific model has intentionally excluded them from asset 

allocation. This decision arises from the consideration of a potential overlap between this asset’s 

properties and other inputs already implemented. We have designed our model to maintain a 

balanced approach, avoiding undue complexity. However, in order to provide a comprehensive 

understanding of this asset class, which might be useful for further studies, we present a brief 

overview of how inflation linked bonds work and how they might be introduced within a 

dynamic rebalancing model.  

These bonds offer a unique advantage in protecting the portfolio against the eroding effects of 

inflation, especially over extended investment horizons, providing investors with returns that 

adjust for changes in the Consumer Price Index (CPI) or other inflation measures. By 

incorporating them into a portfolio, investors can effectively shield their investments from the 

diminishing purchasing power of currency over time.  

In addition to realized inflation, the factors affecting the performance and risks of ILBs also 

include price changes driven by fluctuations in real yields. This element is not relevant if the 

bond is held till maturity. The bond’s market value, however, fluctuates in relation to its 

nominal value prior to maturity. Inflation-linked bonds appreciate if real yields decline and 

depreciate if real yields rise, like nominal bonds, whose prices change in reaction to changes in 

nominal interest rates. The inflation-adjusted capital may be less than the nominal value if 

deflation takes place while an ILB is in effect. The value adjusted for deflation will serve as the 

basis for further coupon payments. However, many countries that issue ILBs provide a deflation 

floor when they mature: the investor still receives the nominal value at maturity even if deflation 

lowers the capital’s value below the nominal value. Thus, while coupon payments are based on 

capital adjusted for inflation or deflation, at maturity, the investor receives the higher between 

the capital adjusted for inflation and the initial nominal value. 

Furthermore, adding ILBs to a portfolio can significantly boost its level of diversification, 

lowering volatility. ILBs have traditionally demonstrated low correlation with stocks, 

commodities, and other asset classes and can respond differently to economic conditions. Here, 

it’s helpful to briefly compare ILBs with nominal government bonds in order to assess their 

relative worth. A valuable approach is looking at the differential between nominal and real 

yields, also known as the break-even inflation rate. Figure 5.3 reports the US break-even 

inflation rate at 10 years against the actual US inflation (US CPI).  



 59 

 

 
Figure 5.3 – Bloomberg Terminal 

 
The rate differential at which the projected returns of ILBs and nominal bonds are equal serves 

as a proxy for market inflation expectations. Investors earn more with ILBs while bearing less 

inflation risk if the real inflation rate during the bond’s life is higher than the break-even rate. 

Conversely, if the actual inflation rate is below expectations, the nominal government bond 

with the same maturity offers a higher return, even though with higher inflation risk.  

Therefore, a possible approach to refine a long-term portfolio allocation might be to incorporate 

this asset class within the portfolio, by also allowing the dynamic model to shift the allocation 

whenever expectations of inflation deviate from the break-even rate.  
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Conclusions 

Through this research paper we wanted to build a dynamic rebalancing model for passive 

portfolios over an extended time horizon, with a specific focus on the All Weather portfolio as 

our primary test case. The study systematically examined various aspects of portfolio theory, 

delving into Modern Portfolio Theory and Risk Parity portfolio theory, establishing a 

foundational understanding of the metrics used in the analysis, and presenting empirical insights 

on their underlying philosophies. 

Our investigation into the Bridgewater All Weather strategy allowed us to grasp its distinctive 

asset allocation, which aims to withstand different economic environments. We also considered 

the insights from Ray Dalio’s main works to provide valuable context to the portfolio’s design 

and its applicability in varying market conditions.  

Through backtesting, we assessed the performance of the All Weather portfolio, providing a 

historical perspective on its effectiveness as an investment strategy. This allocation allowed the 

portfolio to be significantly diversified, hence less exposed to several shocks over the time 

frame considered. The All Weather portfolio managed to generate a distinctive performance in 

terms of volatility, yet providing a significant annualized return, with respect to the classic 

60/40 portfolio. This historical analysis served as a crucial benchmark for evaluating the 

effectiveness of our proposed dynamic rebalancing model. 

The core section of our research was dedicated to developing and implementing a dynamic 

rebalancing model. Our model accounted for various asset classes adjustments, working due to 

three inputs employed on different asset classes, namely bonds, equities, and currency 

exposure. It was built to encompass several key aspects in the daily life of a portfolio manager, 

trying to capture the core drivers of asset allocation within a long-term horizon. 

Analyzing the model, we unveiled essential insights into the impact of our dynamic rebalancing 

model, showing encouraging results in terms of performance. Not only this strategy allowed to 

generate a better annualized return, but it also managed to significantly reduce the volatility of 

the portfolio. The three inputs make the portfolio work more aggressively or defensively 

depending on market conditions. This section also provided a detailed breakdown of asset 

allocation contributions by inputs, to get the effective functioning of each driver.  

In the pursuit of enhancing portfolio management practices, we also explored additional 

implementable inputs, expanding the possibilities for future research and model refinement, by 

providing an insight on a possible financial-related input and on a further asset class which 

might be useful to implement in hedging inflation erosion. 
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While our analysis yielded promising insights, it is crucial to recognize that the financial 

landscape is dynamic and ever-evolving. Further research and refinement of the model are 

warranted to adapt to changing market conditions and continue improving portfolio 

management strategies. As investors seek resilient and efficient portfolio management 

approaches, the exploration of dynamic rebalancing models remains an important way for 

future investigation. 
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Appendix A) Markowitz vs Risk Parity 
%% RISK PARITY MODELS VS MARKOWITZ MODELS 
%In this code we execute an analysis on 2 different portfolio allocation 
%philosophies. For the purpose of this analysis, we want to show 
%that a Risk Parity model generates better results in terms of 
%diversification, and consequently on the risk-adjusted performance of the 
%portfolio.  
  
clc 
clear all 
  
datagen = xlsread('TESI DATASET'); 
Dates = datagen(:, 1) + 693960; 
d = datestr(Dates); 
dates_gen = datetime(d); 
  
%% LOAD DATA 
LEATTREU=datagen(1:end,11); % European bond long-term 
LET1TREU=datagen(1:end,12); % European bond short-term 
LUATTRUU=datagen(1:end,13); % American bond long-term 
LU13TRUU=datagen(1:end,14); % American bond short-term 
LGCPTRUU=datagen(1:end,15); % Global corporate bond 
  
%STOCKS 
SXXP=datagen(1:end,16); %STOXX Europe 600 
SPX=datagen(1:end,17); %S&P500 Index 
GLD=datagen(1:end,20); %Gold spot 
price_data=[SXXP,LEATTREU,LET1TREU,GLD]; 
  
  
  
%% RETURNS and REBALANCING 
% Compute returns 
returns = price2ret(price_data,1:233,'Periodic'); 
cumulativereturns=cumprod(1+returns); 
series=(1+cumulativereturns); 
  
%Plot price series 
Figure 
plot(dates_gen(2:end),series) 
legend('SXXP', 'LEATTREU','LET1TREU','GLD') 
title('NORMALIZED ASSETS PERFORMANCE') 
  
  
%% 
numAssets = length(price_data(1,:)); 
numPeriods = length(price_data(:,1)); 
  
% Set rebalancing frequency (in months) 
freq = 3; 
  
% Initialize portfolio weights 
weights_Markowitz = zeros(numAssets, numPeriods); 
weights_rp = zeros(numAssets, numPeriods); 
initWeights = [0.4;0.2;0.2;0.2]; 
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% Set initial weights 
weights_Markowitz(:,1) = initWeights; 
weights_rp(:,1) = initWeights; 
  
% Iterate over periods 
for i = 2:numPeriods 
    % Rebalance portfolio every rebalFreq periods 
    if mod(i-1, freq) == 0 
        % Compute portfolio returns over the past rebalFreq periods 
        returns_window = returns(max(1, i-freq):i,:); 
         
        % Compute mean returns and covariance matrix 
        meanReturns = mean(returns_window, 2); 
        covMatrix = cov(returns_window'); 
         
        % Compute optimal weights using the mean-variance optimization 
(Markowitz) 
        [PortRisk, PortReturn, optWeights] = portopt(meanReturns, 
covMatrix,1); 
        optWeights_Markowitz = optWeights; 
        optWeights_Markowitz = 
optWeights_Markowitz/sum(optWeights_Markowitz); 
        weights_Markowitz(:,i) = optWeights_Markowitz; 
         
      
        % Compute optimal weights using Risk Parity 
        covMatrix_reg = covMatrix + 0.01*eye(numAssets); 
        riskContribution = sqrt(diag(covMatrix)) ./ 
sum(sqrt(diag(covMatrix))); 
        invCovMatrix = inv(covMatrix_reg); 
        onesVec = ones(numAssets,1); 
        invCovOnes = invCovMatrix*onesVec; 
        riskParityWeights = invCovOnes./sum(invCovOnes); 
        weights_rp(:,i) = riskParityWeights; 
         
         
    else 
        % Use previous weights 
        weights_Markowitz(:,i) = weights_Markowitz(:,i-1); 
        weights_rp(:,i) = weights_rp(:,i-1); 
    end 
end 
  
weights_Markowitz = weights_Markowitz(:,2:end)'; 
weights_rp = weights_rp(:,2:end)'; 
  
%% COMPUTE RESULTS 
% Compute portfolio returns 
portfolioReturns_MV = sum(weights_Markowitz.*returns, 2); 
portfolioReturns_RP = sum(weights_rp.*returns, 2); 
  
% Compute cumulative returns for each portfolio 
cumulativeReturns_MV = cumprod(1 + portfolioReturns_MV) - 1; 
cumulativeReturns_RP = cumprod(1 + portfolioReturns_RP) - 1; 
  
% Compute annualized returns as CAGR 
numPeriodsPerYear = 12; 
numYears = numPeriods/numPeriodsPerYear; 
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annualizedReturns_MV = (1 + cumulativeReturns_MV(end))^(1/numYears) - 1; 
annualizedReturns_RP = (1 + cumulativeReturns_RP(end))^(1/numYears) - 1; 
  
disp(['Markowitz PTF annualized return: ' num2str(annualizedReturns_MV)]); 
disp(['Risk Parity PTF annualized return: ' 
num2str(annualizedReturns_RP)]); 
  
% Compute annualized standard deviation of returns for each portfolio 
StdDev_MV = std(portfolioReturns_MV)*sqrt(12); 
StdDev_RP = std(portfolioReturns_RP)*sqrt(12); 
  
disp(['Markowitz PTF STD: ' num2str(StdDev_MV)]); 
disp(['Risk Parity PTF STD: ' num2str(StdDev_RP)]); 
% Set RISK FREE RATE 
rf_rate=0.02; 
% Compute Sharpe ratio for each portfolio 
Sharpe_MV = (annualizedReturns_MV-rf_rate) / StdDev_MV; 
Sharpe_RP = (annualizedReturns_RP-rf_rate) / StdDev_RP; 
disp(['Markowitz PTF sharpe ratio: ' num2str(Sharpe_MV)]); 
disp(['Risk Parity PTF sharpe ratio: ' num2str(Sharpe_RP)]); 
  
figure 
scatter(StdDev_MV,annualizedReturns_MV) 
hold on 
scatter(StdDev_RP,annualizedReturns_RP) 
ylabel('Annualized Return') 
xlabel('Standard Deviation') 
legend('Markowitz PTF','RISK PARITY PTF') 
  
  
%% PTF SERIES COMPARISON 
%Here we assume that we invest an initial sum of 1000$ and we notice that 
%the Risk Parity portfolio provides a better payoff at the end of the 
%period with significant lower risk. 
  
initialInvestment = 10000; 
  
ptf_MV = initialInvestment * cumprod(1 + sum(weights_Markowitz .* returns, 
2)); 
ptf_RP = initialInvestment * cumprod(1 + sum(weights_rp .* returns, 2)); 
  
figure 
plot(dates_gen(2:end,:), ptf_MV, 'b') 
hold on 
plot(dates_gen(2:end,:), ptf_RP, 'r') 
title('COMPARISON PLOT') 
legend('Markowitz', 'Risk Parity') 
  
%% ROLLING WINDOW WEIGHTS ALLOCATION 
barWidth = 0.85; 
  
% Set the x-axis values 
x = 1:numPeriods; 
  
% Create a bar graph for the Markowitz portfolio weights 
figure 
subplot(2,1,1) 
bar(dates_gen(2:end),weights_Markowitz, barWidth, 'stack'); 



 65 

xlim([dates_gen(1) dates_gen(end)]); 
ylim([0 1]); 
xlabel('Time'); 
ylabel('Weights'); 
title('Rolling Window Weights Allocation - Markowitz Portfolio'); 
legend('SXXP', 'LEATTREU','LET1TREU','GLD', 'Location', 'northwest'); 
hold on 
% Create a bar graph for the Risk Parity portfolio weights 
subplot(2,1,2) 
bar(dates_gen(2:end),weights_rp, barWidth, 'stack'); 
xlim([dates_gen(1) dates_gen(end)]); 
ylim([0 1]); 
xlabel('Time'); 
ylabel('Weights'); 
title('Rolling Window Weights Allocation - Risk Parity Portfolio'); 
legend('SXXP', 'LEATTREU','LET1TREU','GLD', 'Location', 'northwest'); 
  
%% COMPARISON DRAWDOWNS PLOT 
maxReturns_MV = cummax(ptf_MV); 
drawdowns_MV = -(maxReturns_MV - ptf_MV)./maxReturns_MV; 
durations_m = diff(find([1;drawdowns_MV(1:end-1)<0 & 
drawdowns_MV(2:end)>=0;1])); 
maxDD_MV=min(drawdowns_MV); 
negative_ret_MV=portfolioReturns_MV(portfolioReturns_MV<0); 
downside_MV=std(negative_ret_MV)*sqrt(12); 
SOR_MV = (annualizedReturns_MV-rf_rate) / downside_MV; 
disp(['CLASSIC PTF Sortino ratio: ' num2str(SOR_MV)]); 
  
  
maxReturns_RP = cummax(ptf_RP); 
drawdowns_RP = -(maxReturns_RP - ptf_RP)./maxReturns_RP; 
durations_RP = diff(find([1;drawdowns_RP(1:end-1)<0 & 
drawdowns_RP(2:end)>=0;1])); 
maxDD_RP=min(drawdowns_RP); 
negative_ret_RP=portfolioReturns_RP(portfolioReturns_RP<0); 
downside_RP=std(negative_ret_RP)*sqrt(12); 
SOR_RP = (annualizedReturns_RP-rf_rate) / downside_RP; 
disp(['CLASSIC PTF Sortino ratio: ' num2str(SOR_RP)]); 
  
  
% Plot drawdowns 
figure 
plot(dates_gen(2:end),drawdowns_MV) 
xlabel('Date') 
ylabel('Drawdown') 
hold on 
plot(dates_gen(2:end),drawdowns_RP) 
hold off 
title('Drawdown Analysis') 
legend('Markowitz','Risk Parity') 
%% 
Metrics=["Annualized return";"Standard Deviation";"Sharpe Ratio";"Sortino 
Ratio";"Maximum Drawdown"]; 
Markowitz=[annualizedReturns_MV;StdDev_MV;Sharpe_MV;SOR_MV;maxDD_MV] 
RiskParity=[annualizedReturns_RP;StdDev_RP;Sharpe_RP;SOR_RP;maxDD_RP] 
a=table(Metrics, Markowitz, RiskParity) 
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Appendix B) All Weather backtesting 
 
%% ALL WEATHER VS CLASSIC ALLOCATION PORTFOLIO - US EQUITY 
% In this code we execute an analysis on 2 portfolios. Here we want to  
% investigate the advantages of All Weather 
% portfolios, by proving they generate a better performance in terms 
% of risk-adjusted return with respect to a classic allocation portfolio 
(60% 
% EQUITY, 40% BONDS).  
  
clc 
clear all 
  
%% IMPORT DATES 
datagen=xlsread('TESI DATASET'); 
Dates=datagen(1:end,1)+693960; 
d=datestr(Dates); 
dates_gen=datetime(d); 
  
%% IMPORT DATA 
ECB=datagen(1:end,2); %EURR02W 
FED=datagen(1:end,3); %FDTR 
EURR_FED=datagen(1:end,4); %Differential EURR02W-FDTR 
GDP_US=datagen(1:end,5); %GDP United States 
GDP_UE=datagen(1:end,8); %GDP European Union 
%BONDS 
LEATTREU=datagen(1:end,11); % European bond long-term 
LET1TREU=datagen(1:end,12); % European bond short-term 
LUATTRUU=datagen(1:end,13); % American bond long-term 
LU13TRUU=datagen(1:end,14); % American bond short-term 
LGCPTRUU=datagen(1:end,15); % Global corporate bond 
%STOCKS 
SXXP=datagen(1:end,16); %STOXX Europe 600 
SPX=datagen(1:end,17); %S&P500 Index 
PE_UE=datagen(1:end,18); 
PE_US=datagen(1:end,19); 
%GOLD 
GLD=datagen(1:end,20); %Gold spot 
%CHANGE 
EURUSD=datagen(1:end,21); %Euro US Dollar Change 
  
STOCKS = [SPX]; 
BONDS = [LUATTRUU, LU13TRUU, LGCPTRUU]; 
americani = [LUATTRUU, LU13TRUU, SPX]; 
europei=[LEATTREU,LET1TREU,SXXP]; 
ASSETS = [americani, LGCPTRUU, GLD]; 
  
%% ALL WEATHER ALLOCATION 
 %30% SPX 
 %25% LUATTRUU 
 %25% LUT13TRU  
 %5%  LGCPTRUU 
 %15% GLD 
  
returns = price2ret(ASSETS,1:233,'Periodic'); 
std_ASSETS=std(returns); 
std_ASSETS=std_ASSETS*sqrt(12); 
numAssets = size(ASSETS, 2); 
numPeriods = size(ASSETS, 1); 
SUMERT_SpX=cumprod(1+returns(:,3))-1 
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%% REBALANCING WEIGHTS STATIC 
weights_2 = zeros(numAssets, numPeriods); 
initWeights_2 = [0.25; 0.25; 0.30; 0.05; 0.15]; 
weights_2(:, 1) = initWeights_2; 
freq = 3; 
  
for i = 2:numPeriods 
    % Rebalance portfolio every rebalFreq periods 
    if mod(i-1, freq) == 0 
       returns_window_2 = returns((i-freq):i,:); 
       
       % Compute mean returns and covariance matrix 
        meanReturns_2 = mean(returns_window_2, 2); 
        covMatrix_2 = cov(returns_window_2); 
         
         % Compute optimal weights using Risk Parity 
        covMatrix_reg_2 = covMatrix_2 + 0.01*eye(numAssets); 
        invCovMatrix_2 = inv(covMatrix_reg_2); 
        onesVec = ones(numAssets,1); 
        invCovOnes_2 = invCovMatrix_2*onesVec; 
        riskParityWeights_2 = invCovOnes_2./sum(invCovOnes_2); 
        weights__2(:,i) = riskParityWeights_2; 
         
        % Apply the constraint that each asset allocation doesn't deviate 
by more than 5% 
        targetWeights_2 = initWeights_2; 
        newWeights_2 = riskParityWeights_2; 
        for j = 1:numAssets 
            if newWeights_2(j) > targetWeights_2(j) * 1.25 
                newWeights_2(j) = targetWeights_2(j) * 1.25; 
            elseif newWeights_2(j) < targetWeights_2(j) * 0.75 
                newWeights_2(j) = targetWeights_2(j) * 0.75; 
            end 
        end 
         
        % Normalize the weights 
        newWeights_2 = newWeights_2 ./ sum(newWeights_2); 
        weights_2(:,i) = newWeights_2; 
    else 
        % Use previous weights 
        weights_2(:,i) = weights_2(:,i-1); 
    end 
end 
weights_2=weights_2'; 
weights_2=weights_2(2:end,:); 
portfolioReturns_2 = sum(weights_2.*returns, 2); 
  
  
  
%% CLASSIC ALLOCATION PORTFOLIO  
DATA_C=[SPX,LUATTRUU]; 
  
returns_C = price2ret(DATA_C,1:233,'Periodic'); 
numAssets_C=size(DATA_C,2); 
numPeriods_C=size(DATA_C,1); 
weights_C = zeros(numAssets_C, numPeriods_C); 
initWeights_C = [0.6;0.4]; 
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weights_C(:,1) = initWeights_C; 
freq=3; 
  
% REBALANCING WEIGHTS 
for i = 2:numPeriods_C 
    % Rebalance portfolio every rebalFreq periods 
    if mod(i-1, freq) == 0 
       returns_window_C = returns_C((i-freq):i,:); 
       
       % Compute mean returns and covariance matrix 
        meanReturns_C = mean(returns_window_C, 2); 
        covMatrix_C = cov(returns_window_C); 
         
         % Compute optimal weights using Risk Parity 
        covMatrix_reg_C = covMatrix_C + 0.01*eye(numAssets_C); 
        invCovMatrix_C = inv(covMatrix_reg_C); 
        onesVec_C = ones(numAssets_C,1); 
        invCovOnes_C = invCovMatrix_C*onesVec_C; 
        acweights = invCovOnes_C./sum(invCovOnes_C); 
        weights_C(:,i) = acweights; 
         
        % Apply the constraint that each asset allocation doesn't deviate 
by more than 5% 
        targetWeights_C = initWeights_C; 
        newWeights_C = acweights; 
        for j = 1:numAssets_C 
            if newWeights_C(j) > targetWeights_C(j) * 1.05 
                newWeights_C(j) = targetWeights_C(j) * 1.05; 
            elseif newWeights_C(j) < targetWeights_C(j) * 0.95 
                newWeights_C(j) = targetWeights_C(j) * 0.95; 
            end 
        end 
         
        % Normalize the weights 
        newWeights_C = newWeights_C ./ sum(newWeights_C); 
        weights_C(:,i) = newWeights_C; 
    else 
        % Use previous weights 
        weights_C(:,i) = weights_C(:,i-1); 
    end 
end 
weights_C=weights_C'; 
weights_C=weights_C(2:end,:); 
portfolioReturns_C = sum(weights_C.*returns_C, 2); 
  
%% PTF SERIES PLOT 
init_cap=10000; 
cumulativeReturns_2 = cumprod(1 + portfolioReturns_2) - 1; 
cumulativeReturns_C = cumprod(1 + portfolioReturns_C) - 1; 
portfolio_series_2=init_cap*(1+cumulativeReturns_2); 
portfolio_series_C=init_cap*(1+cumulativeReturns_C); 
  
figure 
plot(dates_gen(2:end,:), portfolio_series_2, 'r') 
hold on 
plot(dates_gen(2:end,:),portfolio_series_C) 
legend('All Weather','Classic PTF') 
hold off 
title('PTF SERIES') 
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%% Compute annualized returns as CAGR for ALL WEATHER 
nmonths = 12; 
numYears = numPeriods/nmonths; 
  
annualizedReturns_2 = (1 + cumulativeReturns_2(end))^(1/numYears) - 1; 
disp(['Risk Parity PTF annualized return: ' 
num2str(annualizedReturns_2)]); 
  
% Compute annualized standard deviation of returns for each portfolio 
StdDev_2 = std(portfolioReturns_2)*sqrt(12); 
  
disp(['Risk Parity PTF STD: ' num2str(StdDev_2)]); 
% Set RISK FREE RATE 
rf_rate=0.01; 
% Compute Sharpe ratio for each portfolio 
Sharpe_2 = (annualizedReturns_2-rf_rate) / StdDev_2; 
disp(['Risk Parity PTF sharpe ratio: ' num2str(Sharpe_2)]); 
  
negative_ret_2=portfolioReturns_2(portfolioReturns_2<0); 
downside_2=std(negative_ret_2)*sqrt(12); 
SOR_2 = (annualizedReturns_2-rf_rate) / downside_2; 
disp(['ALL WEATHER PTF Sortino ratio: ' num2str(SOR_2)]); 
%% Compute annualized returns as CAGR for CLASSIC 
nmonths = 12; 
numYears = numPeriods/nmonths; 
  
annualizedReturns_C = (1 + cumulativeReturns_C(end))^(1/numYears) - 1; 
disp(['CLASSIC PTF annualized return: ' num2str(annualizedReturns_C)]); 
  
% Compute annualized standard deviation of returns for each portfolio 
StdDev_C = std(portfolioReturns_C)*sqrt(12); 
  
disp(['CLASSIC PTF STD: ' num2str(StdDev_C)]); 
% Set RISK FREE RATE 
rf_rate=0.01; 
% Compute Sharpe ratio for each portfolio 
Sharpe_C = (annualizedReturns_C-rf_rate) / StdDev_C; 
disp(['CLASSIC PTF sharpe ratio: ' num2str(Sharpe_C)]); 
  
negative_ret_C=portfolioReturns_C(portfolioReturns_C<0); 
downside_C=std(negative_ret_C)*sqrt(12); 
SOR_C = (annualizedReturns_C-rf_rate) / downside_C; 
disp(['CLASSIC PTF Sortino ratio: ' num2str(SOR_C)]); 
%% ROLLING WINDOW WEIGHTS ALLOCATION 
barWidth = 0.95; 
x = 1:numPeriods; 
 
figure 
subplot(2,1,1) 
bar(dates_gen(2:end),weights_2, barWidth, 'stack'); 
ylim([0 1]); 
xlabel('Time'); 
ylabel('Weights'); 
title('Rolling Window Weights Allocation - ALL WEATHER Portfolio'); 
legend('SPX','LUATTRUU','LU13TRUU','LGCPTRUU','GLD', 'Location', 
'northwest'); 
subplot(2,1,2) 
bar(dates_gen(2:end),weights_C, barWidth, 'stack'); 
ylim([0 1]); 
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xlabel('Time'); 
ylabel('Weights'); 
title('Rolling Window Weights Allocation - CLASSIC Portfolio'); 
legend('SPX','LUATTRUU', 'Location', 'northwest'); 
 
%% DRAWDOWNS PLOT 
maxReturns = cummax(portfolio_series_2); 
drawdowns = -(maxReturns - portfolio_series_2)./maxReturns; 
maxDrawdown_2 = min(drawdowns); 
endDates_2 = find(drawdowns == 0); 
DD_check=maxdrawdown(portfolio_series_2); 
  
maxReturns_c = cummax(portfolio_series_C); 
drawdowns_c = -(maxReturns_c - portfolio_series_C)./maxReturns_c; 
maxDrawdown_c = min(drawdowns_c); 
endDates_c = find(drawdowns_c == 0); 
DD_check_c=maxdrawdown(portfolio_series_C); 
  
figure 
plot(dates_gen(2:end),drawdowns) 
hold on 
plot(dates_gen(2:end),drawdowns_c) 
hold off 
title('Drawdown Analysis') 
legend('All Weather','Classic portfolio') 
  
  
%% RESULTS TABLE 
Metrics=["Annualized return";"Standard Deviation";"Sharpe Ratio";"Sortino 
Ratio";"Maximum Drawdown"]; 
AllWeather=[annualizedReturns_2;StdDev_2;Sharpe_2;SOR_2;maxDrawdown_2] 
Classic=[annualizedReturns_C;StdDev_C;Sharpe_C;SOR_C;maxDrawdown_c] 
a=table(Metrics,Classic,AllWeather) 
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Appendix C) Dynamic rebalancing model 
 
%% DYNAMIC ALL WEATHER PTF VS STATIC ALL WEATHER PTF VS CLASSIC ALLOCATION 
PORTFOLIO 
% In this code we want to execute an analysis on different portfolio 
allocation and 
% rebalancing techniques by building up a model which deviates from the 
% static All Weather portfolio of the previous code. Here we want to 
% investigate whether it's possible to highlight some rebalancing rules 
that, 
% over the long run, allows the portfolio to generate a better performance 
% in terms of risk and return. Here we will build our model by introducing 
% 3 inputs that modify the portfolio when occurring during the 20 years 
period 
% investigated (2004-2023). 
%     1) EUR/USD INPUT 
%     2) BONDS DURATION INPUT 
%     3) GDP-EQUITY INPUT 
  
clc 
clear all 
  
 
%% IMPORT DATES 
datagen = xlsread('TESI DATASET'); 
Dates = datagen(:, 1) + 693960; 
d = datestr(Dates); 
dates_gen = datetime(d); 
  
 
 
 
%% IMPORT DATA 
ECB = datagen(:, 2); % EURR02W 
DECB=diff(ECB); %Differential 
MDECB=movmean(DECB,12); %Moving Average of differential 
  
FED = datagen(:, 3); % FDTR 
DFED=diff(FED); %Differential 
MDFED=movmean(DFED,12); %Moving Average of differential 
  
EURR_FED = datagen(:, 4); % Differential EURR02W-FDTR 
  
GDP_US = datagen(:, 5); % GDP United States 
DGDP_US=diff(GDP_US); 
MDGDP_US=movmean(DGDP_US,15); %Moving Average of differential 
  
GDP_UE = datagen(:, 8); % GDP European Union 
DGDP_UE=diff(GDP_UE); 
MDGDP_UE=movmean(DGDP_UE,15); %Moving Average of differential 
%BONDS 
LEATTREU = datagen(:, 11); % European bond long-term 
LET1TREU = datagen(:, 12); % European bond short-term 
LUATTRUU = datagen(:, 22); % American bond long-term 
LU13TRUU = datagen(:, 23); % American bond short-term 
LGCPTRUU = datagen(:, 15); % Global corporate bond 
%STOCKS 
SXXP = datagen(:, 16); %STOXX Europe 600 
SPX = datagen(:, 24); %S&P500 Index 
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PE_UE = datagen(:, 18); 
PE_US = datagen(:, 19); 
%GOLD 
GLD = datagen(:, 20); %Gold spot 
%CHANGE 
EURUSD = datagen(:, 21); %Euro US Dollar Change 
  
STOCKS = [SXXP, SPX]; 
BONDS = [LEATTREU, LET1TREU, LUATTRUU, LU13TRUU, LGCPTRUU]; 
americani = [LUATTRUU, LU13TRUU, SPX]; 
europei = [LEATTREU, LET1TREU, SXXP]; 
ASSETS = [LUATTRUU, LU13TRUU, SPX, LEATTREU, LET1TREU, SXXP, LGCPTRUU, 
GLD]; 
  
returns = price2ret(ASSETS,1:233,'Periodic'); 
numAssets = size(ASSETS, 2); 
numPeriods = size(ASSETS, 1); 
weights_rp = zeros(numAssets, numPeriods); 
initWeights = [0.125; 0.125; 0.15; 0.125; 0.125; 0.15; 0.05; 0.15]; 
weights_rp(:, 1) = initWeights; 
freq = 3; 
  
%% FIND PEAKS AND VALLEYS  
%FOR INTEREST RATES DIFFERENTIAL  
[peakValues, peakIndices] = findpeaks(EURR_FED);% Find relative maximums 
(peaks) 
[valleyValues, valleyIndices] = findpeaks(-EURR_FED);% Find relative 
minimums (valleys) 
valleyValues = -valleyValues;% Convert valleyValues back to positive values 
for easy comparison 
peakDates = dates_gen(peakIndices);% Find the corresponding dates for peaks  
valleyDates = dates_gen(valleyIndices);% Find the corresponding dates for 
valleys 
STATIONARYPTS = [peakDates; valleyDates]; 
  
% Define your allocation changes based on peakDates and valleyDates 
% Example allocation changes: Increase European assets at peakDates, 
increase American assets at valleyDates 
change = 0.05; 
POS_CHANGE = 0.1; 
NEG_CHANGE = -0.1; 
 
 
 
%% REBALANCING WEIGHTS DYNAMIC 
for i = 2:numPeriods 
    % Rebalance portfolio every rebalFreq periods 
    if mod(i - 1, freq) == 0 
       returns_window = returns((i - freq):i, :); 
       
       % Compute mean returns and covariance matrix 
       meanReturns = mean(returns_window, 2); 
       covMatrix = cov(returns_window); 
         
       % Compute optimal weights using Risk Parity 
       covMatrix_reg = covMatrix + 0.01 * eye(numAssets); 
       invCovMatrix = inv(covMatrix_reg); 
       onesVec = ones(numAssets, 1); 
       invCovOnes = invCovMatrix * onesVec; 
       riskParityWeights = invCovOnes ./ sum(invCovOnes); 
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       weights_rp(:, i) = riskParityWeights; 
         
       % Apply the constraint that each asset allocation doesn't deviate by 
more than 25% 
       targetWeights = initWeights; 
       newWeights = riskParityWeights; 
       for j = 1:numAssets 
           if newWeights(j) > targetWeights(j) * 1.25 
               newWeights(j) = targetWeights(j) * 1.25; 
           elseif newWeights(j) < targetWeights(j) * 0.75 
               newWeights(j) = targetWeights(j) * 0.75; 
           end 
       end 
        
 
 
 
       % EURUSD INPUT 
       currentDate = dates_gen(i); 
       isPeakDate = any(currentDate >= peakDates & currentDate <= peakDates 
+ calyears(1)); 
       isValleyDate = any(currentDate >= valleyDates & currentDate <= 
valleyDates + calyears(1)); 
        
       if isPeakDate 
           newWeights(1:3) = newWeights(1:3) +change;% Decrease European 
asset allocation 
           newWeights(4:6) = newWeights(4:6) -change; % Increase American 
asset allocation 
       elseif isValleyDate 
           newWeights(1:3) = newWeights(1:3) -change;% Increase European 
asset allocation 
           newWeights(4:6) = newWeights(4:6) +change;% Decrease American 
asset allocation 
       end 
        
 
 
        
       % EQUITY INPUT  
       if MDGDP_UE(i) > 0.01 
           newWeights(6) = newWeights(6) + 0.06;% Increase SXXP  
           newWeights(4) = newWeights(4) - 0.015;% Decrease LONG-TERM  
           newWeights(5) = newWeights(5) - 0.015;% Decrease SHORT-TERM 
           newWeights(7) = newWeights(7) - 0.015;% Decrease CORP 
           newWeights(8) = newWeights(8) - 0.015;% Decrease GLD 
        
       elseif MDGDP_UE(i) <= 0.01 && MDGDP_UE(i) >= -0.01 
           newWeights(6) = newWeights(6); 
           newWeights(4) = newWeights(4); 
           newWeights(5) = newWeights(5); 
           newWeights(7) = newWeights(7); 
           newWeights(8) = newWeights(8); 
            
       else 
           newWeights(6) = newWeights(6) - 0.06;% Decrease SXXP  
           newWeights(4) = newWeights(4) + 0.015;% Increase LONG-TERM  
           newWeights(5) = newWeights(5) + 0.015;% increase LONG-TERM 
           newWeights(7) = newWeights(7) + 0.015;% Increase CORP 
           newWeights(8) = newWeights(8) + 0.015;% Increase GLD 
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       end 
        
       if MDGDP_US(i) > 0.01 
           newWeights(3) = newWeights(3) + 0.06;% Increase SPX 
           newWeights(1) = newWeights(1) - 0.015;% Decrease LONG-TERM  
           newWeights(2) = newWeights(2) - 0.015;% Decrease SHORT-TERM 
           newWeights(7) = newWeights(7) - 0.015;% Decrease CORP 
           newWeights(8) = newWeights(8) - 0.015;% Decrease GLD 
           
        elseif MDGDP_US(i) <= 0.01 && MDGDP_US(i) >= -0.01 
           newWeights(3) = newWeights(3); 
           newWeights(1) = newWeights(1); 
           newWeights(2) = newWeights(2); 
           newWeights(7) = newWeights(7); 
           newWeights(8) = newWeights(8); 
            
       else  
           newWeights(3) = newWeights(3) - 0.06;% Decrease SPX 
           newWeights(1) = newWeights(1) + 0.015;% Increase LONG-TERM  
           newWeights(2) = newWeights(2) + 0.015;% Increase SHORT-TERM 
           newWeights(7) = newWeights(7) + 0.015;% Increase CORP 
           newWeights(8) = newWeights(8) + 0.015;% Increase GLD 
       end 
        
        
       % DURATION INPUT      
       if MDECB(i) < 0 
           newWeights(4) = newWeights(4) + 0.08;% Increase LONG-TERM 
           newWeights(5) = newWeights(5) - 0.08; % Decrease SHORT-TERM 
       elseif MDECB(i)==0 
           newWeights(4) = newWeights(4) ;% Increase LONG-TERM 
           newWeights(5) = newWeights(5) ; % Decrease SHORT-TERM 
       else  
           newWeights(5) = newWeights(5) + 0.08;% Increase SHORT-TERM  
           newWeights(4) = newWeights(4) - 0.08;% Decrease LONG-TERM  
       end 
        
       if MDFED(i) < 0 
           newWeights(1) = newWeights(1) + 0.08;% Increase LONG-TERM 
           newWeights(2) = newWeights(2) - 0.08; % Decrease SHORT-TERM 
       elseif MDFED(i)==0 
           newWeights(1) = newWeights(1) ;% Increase LONG-TERM 
           newWeights(2) = newWeights(2) ; % Decrease SHORT-TERM 
       else  
           newWeights(2) = newWeights(2) + 0.08;% Increase SHORT-TERM  
           newWeights(1) = newWeights(1) - 0.08;% Decrease LONG-TERM  
       end 
       newWeights = newWeights ./ sum(newWeights); 
       weights_rp(:, i) = newWeights; 
    else       
       weights_rp(:, i) = weights_rp(:, i - 1); 
    end 
     
end 
weights_rp = weights_rp'; 
weights_rp = weights_rp(2:end, :); 
portfolioReturns_RP = sum(weights_rp .* returns, 2); 
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%% REBALANCING WEIGHTS STATIC 
weights_2 = zeros(numAssets, numPeriods); 
initWeights_2 = [0.125; 0.125; 0.15; 0.125; 0.125; 0.15; 0.05; 0.15]; 
weights_2(:, 1) = initWeights_2; 
freq = 3; 
  
for i = 2:numPeriods 
    % Rebalance portfolio every rebalFreq periods 
    if mod(i-1, freq) == 0 
       returns_window_2 = returns((i-freq):i,:); 
       
       % Compute mean returns and covariance matrix 
        meanReturns_2 = mean(returns_window_2, 2); 
        covMatrix_2 = cov(returns_window_2); 
         
         % Compute optimal weights using Risk Parity 
        covMatrix_reg_2 = covMatrix_2 + 0.01*eye(numAssets); 
        invCovMatrix_2 = inv(covMatrix_reg_2); 
        onesVec = ones(numAssets,1); 
        invCovOnes_2 = invCovMatrix_2*onesVec; 
        riskParityWeights_2 = invCovOnes_2./sum(invCovOnes_2); 
        weights__2(:,i) = riskParityWeights_2; 
         
        % Apply the constraint that each asset allocation doesn't deviate 
by more than 25% 
        targetWeights_2 = initWeights_2; 
        newWeights_2 = riskParityWeights_2; 
        for j = 1:numAssets 
            if newWeights_2(j) > targetWeights_2(j) * 1.25 
                newWeights_2(j) = targetWeights_2(j) * 1.25; 
            elseif newWeights_2(j) < targetWeights_2(j) * 0.75 
                newWeights_2(j) = targetWeights_2(j) * 0.75; 
            end 
        end 
         
        % Normalize the weights 
        newWeights_2 = newWeights_2 ./ sum(newWeights_2); 
        weights_2(:,i) = newWeights_2; 
    else 
        % Use previous weights 
        weights_2(:,i) = weights_2(:,i-1); 
    end 
end 
weights_2=weights_2'; 
weights_2=weights_2(2:end,:); 
portfolioReturns_2 = sum(weights_2.*returns, 2); 
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%% CLASSIC ALLOCATION PORTFOLIO  
DATA_C=[SPX,SXXP,LUATTRUU,LEATTREU]; 
  
returns_C = price2ret(DATA_C,1:233,'Periodic'); 
numAssets_C=size(DATA_C,2); 
numPeriods_C=size(DATA_C,1); 
weights_C = zeros(numAssets_C, numPeriods_C); 
initWeights_C = [0.2;0.2;0.3;0.3]; 
weights_C(:,1) = initWeights_C; 
freq=3; 
  
 
 
% REBALANCING WEIGHTS 
 
for i = 2:numPeriods_C 
 
    % Rebalance portfolio every rebalFreq periods 
 
    if mod(i-1, freq) == 0 
       returns_window_C = returns_C((i-freq):i,:); 
       
 
       % Compute mean returns and covariance matrix 
        meanReturns_C = mean(returns_window_C, 2); 
        covMatrix_C = cov(returns_window_C); 
         
 
         % Compute optimal weights using Risk Parity 
        covMatrix_reg_C = covMatrix_C + 0.01*eye(numAssets_C); 
        invCovMatrix_C = inv(covMatrix_reg_C); 
        onesVec_C = ones(numAssets_C,1); 
        invCovOnes_C = invCovMatrix_C*onesVec_C; 
        acweights = invCovOnes_C./sum(invCovOnes_C); 
        weights_C(:,i) = acweights; 
 
         
        % Apply the constraint that each asset allocation doesn't deviate 
by more than 5% 
        targetWeights_C = initWeights_C; 
        newWeights_C = acweights; 
        for j = 1:numAssets_C 
            if newWeights_C(j) > targetWeights_C(j) * 1.05 
                newWeights_C(j) = targetWeights_C(j) * 1.05; 
            elseif newWeights_C(j) < targetWeights_C(j) * 0.95 
                newWeights_C(j) = targetWeights_C(j) * 0.95; 
            end 
        end 
         
        % Normalize the weights 
        newWeights_C = newWeights_C ./ sum(newWeights_C); 
        weights_C(:,i) = newWeights_C; 
    else 
        % Use previous weights 
        weights_C(:,i) = weights_C(:,i-1); 
    end 
end 
 
 
weights_C=weights_C'; 
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weights_C=weights_C(2:end,:); 
portfolioReturns_C = sum(weights_C.*returns_C, 2); 
  
 
 
%% PTF SERIES PLOT 
init_cap=10000; 
cumulativeReturns_RP = cumprod(1 + portfolioReturns_RP) - 1; 
cumulativeReturns_2=cumprod(1 + portfolioReturns_2) - 1; 
cumulativeReturns_C = cumprod(1 + portfolioReturns_C) - 1; 
portfolio_series_rp=init_cap*(1+cumulativeReturns_RP); 
portfolio_series_2=init_cap*(1+cumulativeReturns_2); 
portfolio_series_C=init_cap*(1+cumulativeReturns_C); 
  
 
 
 
figure 
plot(dates_gen(2:end,:), portfolio_series_rp, 'r') 
hold on 
plot(dates_gen(2:end,:),portfolio_series_2) 
hold on 
plot(dates_gen(2:end,:),portfolio_series_C) 
legend('DYNAMIC AW','STATIC AW','Classic PTF') 
hold off 
title('PTF SERIES') 
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%% DYNAMIC AW METRICS 
numPeriodsPerYear = 12; 
numYears = numPeriods/numPeriodsPerYear; 
  
annualizedReturns_RP = (1 + cumulativeReturns_RP(end))^(1/numYears) - 1; 
disp(['DYNAMIC AW PTF annualized return: ' num2str(annualizedReturns_RP)]); 
  
% Compute annualized standard deviation of returns for each portfolio 
StdDev_RP = std(portfolioReturns_RP)*sqrt(12); 
  
disp(['DYNAMIC AW PTF STD: ' num2str(StdDev_RP)]); 
% Set RISK FREE RATE 
rf_rate=0.01; 
% Compute Sharpe ratio for each portfolio 
Sharpe_RP = (annualizedReturns_RP-rf_rate) / StdDev_RP; 
disp(['DYNAMIC AW PTF sharpe ratio: ' num2str(Sharpe_RP)]); 
  
negative_ret_RP=portfolioReturns_RP(portfolioReturns_RP<0); 
downside_RP=std(negative_ret_RP)*sqrt(12); 
SOR_RP = (annualizedReturns_RP-rf_rate) / downside_RP; 
disp(['DYNAMIC AW PTF Sortino ratio: ' num2str(SOR_RP)]); 
  
%% STATIC AW METRICS 
numPeriodsPerYear = 12; 
numYears = numPeriods/numPeriodsPerYear; 
  
annualizedReturns_2 = (1 + cumulativeReturns_2(end))^(1/numYears) - 1; 
disp(['STATIC AW PTF annualized return: ' num2str(annualizedReturns_2)]); 
  
% Compute annualized standard deviation of returns for each portfolio 
StdDev_2 = std(portfolioReturns_2)*sqrt(12); 
  
disp(['STATIC AW PTF STD: ' num2str(StdDev_2)]); 
% Set RISK FREE RATE 
rf_rate=0.01; 
% Compute Sharpe ratio for each portfolio 
Sharpe_2 = (annualizedReturns_2-rf_rate) / StdDev_2; 
disp(['STATIC AW PTF sharpe ratio: ' num2str(Sharpe_2)]); 
  
negative_ret_2=portfolioReturns_2(portfolioReturns_2<0); 
downside_2=std(negative_ret_2)*sqrt(12); 
SOR_2 = (annualizedReturns_2-rf_rate) / downside_2; 
disp(['STATIC AW PTF Sortino ratio: ' num2str(SOR_2)]); 
  
  
  
 
 
  
%% CLASSIC PTF METRICS 
numPeriodsPerYear = 12; 
numYears = numPeriods/numPeriodsPerYear; 
  
annualizedReturns_C = (1 + cumulativeReturns_C(end))^(1/numYears) - 1; 
disp(['CLASSIC PTF annualized return: ' num2str(annualizedReturns_C)]); 
  
% Compute annualized standard deviation of returns for each portfolio 
StdDev_C = std(portfolioReturns_C)*sqrt(12); 
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disp(['CLASSIC PTF STD: ' num2str(StdDev_C)]); 
% Set RISK FREE RATE 
rf_rate=0.01; 
% Compute Sharpe ratio for each portfolio 
Sharpe_C = (annualizedReturns_C-rf_rate) / StdDev_C; 
disp(['CLASSIC PTF sharpe ratio: ' num2str(Sharpe_C)]); 
  
negative_ret_C=portfolioReturns_C(portfolioReturns_C<0); 
downside_C=std(negative_ret_C)*sqrt(12); 
SOR_C = (annualizedReturns_C-rf_rate) / downside_C; 
disp(['CLASSIC PTF Sortino ratio: ' num2str(SOR_C)]); 
  
%% TRACKING ERROR VOLATILITY DYN-STAT 
[infoRatio, TE] = inforatio(portfolioReturns_RP, portfolioReturns_2); 
  
%% ROLLING WINDOW WEIGHTS ALLOCATION 
barWidth = 1; 
x = dates_gen; 
  
%DYNAMIC AW 
figure 
subplot(3,1,1) 
bar(x(2:end),weights_rp, barWidth, 'stack'); 
ylim([0 1]); 
xlabel('Time'); 
ylabel('Weights'); 
title('Rolling Window Weights Allocation - Dynamic AW Portfolio'); 
legend('LUATTRUU', 'LU13TRUU', 'SPX', 'LEATTREU','LET1TREU','SXXP', 'CORP', 
'GLD'); 
  
%STATIC AW 
hold on 
subplot(3,1,2) 
bar(x(2:end),weights_2, barWidth, 'stack'); 
ylim([0 1]); 
xlabel('Time'); 
ylabel('Weights'); 
title('Rolling Window Weights Allocation - Static AW Portfolio'); 
legend('LUATTRUU', 'LU13TRUU', 'SPX', 'LEATTREU','LET1TREU','SXXP', 'CORP', 
'GLD'); 
  
%CLASSIC PTF 
hold on 
subplot(3,1,3) 
bar(x(2:end),weights_C, barWidth, 'stack'); 
ylim([0 1]); 
xlabel('Time'); 
ylabel('Weights'); 
title('Rolling Window Weights Allocation - Classic Portfolio'); 
legend('SPX','SXXP','LUATTRUU','LEATTREU'); 
hold off 
  
  
  
%% DRAWDOWNS PLOT 
maxReturns = cummax(portfolio_series_rp); 
drawdowns = -(maxReturns - portfolio_series_rp)./maxReturns; 
maxDrawdown = min(drawdowns); 
endDates_RP = find(drawdowns == 0); 
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DD_check=maxdrawdown(portfolio_series_rp); 
  
maxReturns_c = cummax(portfolio_series_C); 
drawdowns_c = -(maxReturns_c - portfolio_series_C)./maxReturns_c; 
maxDrawdown_c = min(drawdowns_c); 
endDates_c = find(drawdowns_c == 0); 
DD_check_c=maxdrawdown(portfolio_series_C); 
  
maxReturns_2 = cummax(portfolio_series_2); 
drawdowns_2 = -(maxReturns_2 - portfolio_series_2)./maxReturns_2; 
maxDrawdown_2 = min(drawdowns_2); 
endDates_2 = find(drawdowns_2 == 0); 
DD_check_2=maxdrawdown(portfolio_series_2); 
  
figure 
plot(dates_gen(2:end),drawdowns) 
hold on 
plot(dates_gen(2:end),drawdowns_c) 
hold on 
plot(dates_gen(2:end),drawdowns_2) 
hold off 
title('Drawdown Analysis') 
legend('AW DYNAMIC','Classic portfolio','AW STATIC') 
  
 
 
%% BONDS INPUT 
 
% FED 
barWidth = 0.99; 
POS_change_MDFED = find(diff(sign(MDFED)) > 0); 
MDFED_POS = dates_gen(POS_change_MDFED + 1);   
NEG_change_MDFED = find(diff(sign(MDFED)) < 0); 
MDFED_NEG = dates_gen(NEG_change_MDFED + 1);   
  
x = dates_gen; 
weights_DUR_US=[(weights_rp(:,1)),(weights_rp(:,2))]./(sum(weights_rp(:,1:2
)')'); 
  
figure 
subplot(3,1,1) 
bar(x(2:end),weights_DUR_US, barWidth,'stack') 
ylim([0 1]); 
xlabel('Time'); 
ylabel('Weights'); 
title('Rolling Window Weights Allocation - BONDS INPUT US'); 
for i = 1:length(MDFED_POS) 
    xline(MDFED_POS(i), 'k', 'LineWidth', 3.5); % Vertical line at 
desired_dates(i) with black color 
end 
  
for i = 1:length(MDFED_NEG) 
    xline(MDFED_NEG(i), 'g', 'LineWidth', 3.5); % Vertical line at 
desired_dates(i) with green color 
end 
legend('LUATTRUU','LU13TRUU','Location','northwest'); 
hold on  
subplot(3,1,2) 
plot(dates_gen(2:end),MDFED,'LineWidth', 4) 
yline(0,'r') 
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title('FED MOVING AVERAGE REFINANCING RATE DIFFERENTIAL') 
hold on 
subplot(3,1,3) 
plot(dates_gen,FED,'k','LineWidth', 4) 
title('FED REFINANCING RATE') 
  
 
 
% ECB 
barWidth = 0.99; 
POS_change_MDECB = find(diff(sign(MDECB)) > 0); 
MDECB_POS = dates_gen(POS_change_MDECB + 1);   
NEG_change_MDECB = find(diff(sign(MDECB)) < 0); 
MDECB_NEG = dates_gen(NEG_change_MDECB + 1);   
% Set the x-axis values 
x = dates_gen; 
weights_DUR_UE=[(weights_rp(:,4)),(weights_rp(:,5))]./(sum(weights_rp(:,4:5
)')'); 
 
figure 
subplot(3,1,1) 
bar(x(2:end),weights_DUR_UE, barWidth, 'stack') 
ylim([0 1]); 
xlabel('Time'); 
ylabel('Weights'); 
title('Rolling Window Weights Allocation - BONDS INPUT UE'); 
for i = 1:length(MDECB_POS) 
    xline(MDECB_POS(i), 'k', 'LineWidth', 4); % Vertical line at 
desired_dates(i) with black color 
end 
  
for i = 1:length(MDECB_NEG) 
    xline(MDECB_NEG(i), 'g', 'LineWidth', 4); % Vertical line at 
desired_dates(i) with green color 
end 
legend('LEATTRUU','LET1TREU','Location','northwest'); 
hold on  
subplot(3,1,2) 
plot(dates_gen(2:end),MDECB,'LineWidth', 4) 
yline(0,'r') 
title('ECB MOVING AVERAGE REFINANCING RATE DIFFERENTIAL') 
hold on 
subplot(3,1,3) 
plot(dates_gen,ECB,'k','LineWidth', 4) 
title('ECB REFINANCING RATE') 
  
  
  
 
%% EQUITY INPUT 
%US 
barWidth = 0.99; 
POS_change_MDUS = find(diff(sign(MDGDP_US)) > 0 & diff(MDGDP_US)>0.05); 
MDUS_POS = dates_gen(POS_change_MDUS + 1);   
NEG_change_MDUS = find(diff(sign(MDGDP_US)) < 0 & diff(MDGDP_US) <-0.05); 
MDUS_NEG = dates_gen(NEG_change_MDUS + 1);   
  
 
x = dates_gen; 
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weights_EQ_US=[(weights_rp(:,3)),(weights_rp(:,1)),(weights_rp(:,2)),(weigh
ts_rp(:,7)),(weights_rp(:,8))]./((weights_rp(:,3)+weights_rp(:,1)+weights_r
p(:,2)+weights_rp(:,7)+weights_rp(:,8))); 
 
figure 
subplot(3,1,1) 
bar(x(2:end),weights_EQ_US, barWidth, 'stack') 
ylim([0 1]); 
xlabel('Time'); 
ylabel('Weights'); 
title('Rolling Window Weights Allocation - EQUITY INPUT US'); 
for i = 1:length(MDUS_POS) 
    xline(MDUS_POS(i), 'k', 'LineWidth', 4); % Vertical line at 
desired_dates(i) with black color 
end 
  
for i = 1:length(MDUS_NEG) 
    xline(MDUS_NEG(i), 'g', 'LineWidth', 4); % Vertical line at 
desired_dates(i) with green color 
end 
legend('S&P 
500','LUATTRUU','LU13TRUU','LGCPTRUU','GOLD','Location','northwest'); 
hold on  
subplot(3,1,2) 
plot(dates_gen(2:end),MDGDP_US,'LineWidth', 4) 
yline(0,'r') 
yline(0.01,'k') 
yline(-0.01,'k') 
title('GDP US MOVING AVERAGE DIFFERENTIAL') 
hold on 
subplot(3,1,3) 
plot(dates_gen,GDP_US,'k','LineWidth', 4) 
yline(0,'r') 
title('GDP US CHAINED YoY') 
  
  
  
  
%UE 
barWidth = 0.99; 
POS_change_MDUE = find(diff(sign(MDGDP_UE)) > 0 & diff(MDGDP_UE)>0.01); 
MDUE_POS = dates_gen(POS_change_MDUE + 1);   
NEG_change_MDUE = find(diff(sign(MDGDP_UE)) < 0 & diff(MDGDP_UE) <-0.01); 
MDUE_NEG = dates_gen(NEG_change_MDUE + 1);   
x = dates_gen; 
weights_EQ_UE=[(weights_rp(:,6)),(weights_rp(:,4)),(weights_rp(:,5)),(weigh
ts_rp(:,7)),(weights_rp(:,8))]./((weights_rp(:,6)+weights_rp(:,4)+weights_r
p(:,5)+weights_rp(:,7)+weights_rp(:,8))); 
  
figure 
subplot(3,1,1) 
bar(x(2:end),weights_EQ_UE, barWidth, 'stack') 
ylim([0 1]); 
xlabel('Time'); 
ylabel('Weights'); 
title('Rolling Window Weights Allocation - EQUITY INPUT EUROZONE'); 
for i = 1:length(MDUE_POS) 
    xline(MDUE_POS(i), 'k', 'LineWidth', 4); % Vertical line at 
desired_dates(i) with black color 
end 
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for i = 1:length(MDUE_NEG) 
    xline(MDUE_NEG(i), 'g', 'LineWidth', 4); % Vertical line at 
desired_dates(i) with green color 
end 
 
legend('STOXX EUROPE 
600','LEATTREU','LET1TREU','LGCPTRUU','GOLD','Location','northwest'); 
hold on  
subplot(3,1,2) 
plot(dates_gen(2:end),MDGDP_UE,'LineWidth', 4) 
yline(0,'r') 
yline(0.01,'k') 
yline(-0.01,'k') 
title('GDP UE MOVING AVERAGE DIFFERENTIAL') 
hold on 
subplot(3,1,3) 
plot(dates_gen,GDP_UE,'k','LineWidth', 4) 
yline(0,'r') 
title('GDP EURO CHAINED YoY') 
  
  
 
 
  
%% CURRENCY INPUT 
barWidth = 0.95; 
  
% Set the x-axis values 
x = dates_gen; 
weights_CURR=[sum(weights_rp(:,1:3)')',sum(weights_rp(:,4:6)')']./(sum(weig
hts_rp(:,1:5)')'); 
% Create a bar graph for the Risk Parity portfolio weights 
figure 
subplot(3,1,1) 
bar(x(2:end),weights_CURR, barWidth, 'stack') 
ylim([0 1]); 
xlabel('Time'); 
ylabel('Weights'); 
yline(0.5,'w') 
title('Rolling Window Weights Allocation - CURRENCY INPUT'); 
for i = 1:length(peakDates) 
    xline(peakDates(i), 'k', 'LineWidth', 4); % Vertical line at 
desired_dates(i) with black color 
end 
  
for i = 1:length(valleyDates) 
    xline(valleyDates(i), 'g', 'LineWidth', 3.5); % Vertical line at 
desired_dates(i) with green color 
end 
legend('AMERICAN ASSETS','EUROPEAN ASSETS','Location','southwest'); 
hold on  
subplot(3,1,2) 
plot(dates_gen,EURR_FED,'LineWidth', 3) 
yline(0,'k') 
title('ECB-FED INTEREST RATES DIFFERENTIAL') 
hold on 
subplot(3,1,3) 
plot(dates_gen,EURUSD,'k','LineWidth', 3) 
title('EUR/USD') 
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%% RESULTS TABLE 
Metrics=["Annualized return";"Standard Deviation";"Sharpe Ratio";"Sortino 
Ratio";"Maximum Drawdown";"Tracking Error";"Information Ratio"]; 
DYNAMIC_AllWeather=[annualizedReturns_RP;StdDev_RP;Sharpe_RP;SOR_RP;maxDraw
down;TE;infoRatio] 
STATIC_AllWeather=[annualizedReturns_2;StdDev_2;Sharpe_2;SOR_2;maxDrawdown_
2;0;0] 
Classic=[annualizedReturns_C;StdDev_C;Sharpe_C;SOR_C;maxDrawdown_c;0;0] 
a=table(Metrics, STATIC_AllWeather,DYNAMIC_AllWeather,Classic) 
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