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Abstract

This thesis investigates the use of the Partial Cointegration Model
(pci) for pair trading strategies, focusing on the Italian stock market.
It explores the theoretical basis of the pci model and its practical
application through simulation and empirical analysis. This study
aims to demonstrate the pci model’s effectiveness in identifying
statistical arbitrage opportunities, contributing to the quantitative
finance field by offering insights into optimizing trading strategies
in the context of a quantitatively evolving financial scenario.
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Introduction

In the contemporary financial landscape, characterized by an increasing shift
towards quantitative analysis, traditional trading methodologies are facing chal-
lenges in their efficacy, giving rise to the adoption of advanced econometric mod-
els. These models, particularly in the realm of pair trading, have shown promise
in exploiting the relative mispricing between closely linked assets through sta-
tistical arbitrage. Our thesis aims to explore the application of the Partial Coin-
tegration Model (pci), as initially conceptualized by Clegg & Krauss, within
the Italian market – a market potentially ripe with inefficiencies compared to
its larger counterparts like the American. The intent is to investigate the pci

model’s viability as a trading strategy, evaluating its profitability through prac-
tical application.

Our discussion begins with a comprehensive overview of pair trading con-
cepts and the spectrum of approaches that can be adopted. Subsequently, we
delve into the theoretical underpinnings of the pci model, dissecting its logic
and methodology for parameter estimation. The narrative progresses to outline
the construction of the trading strategy, detailing the entry and exit rules for
both the partial cointegration and the classical cointegration approach. Through
rigorous simulation, the robustness of the pci model is scrutinized, ensuring the
reliability of estimates and the strategy’s profitability. A comparative analysis of
these methodologies’ performance is conducted using real data from the most
capitalized stocks in the Italian market across a defined period of three years,
from 2021 to 2024.

In the concluding sections, the thesis will highlight the superior performance
and profitability of the pci model over traditional cointegration approach. Dis-
cussions will extend to the model’s limitations and potential avenues for en-
hancing its efficacy. This comprehensive exploration aims not only to contribute
to the academic discourse on quantitative finance but also to offer actionable
insights for practitioners in the field.





1. Pair Trading Literature Review

This chapter is dedicated to an exhaustive review of the literature on pair trad-
ing, also referred to as statistical arbitrage. It commences with an examination
of the fundamental principles and rationale underpinning the strategy before
progressing to a detailed discussion of various methodologies. These range
from the relatively straightforward, such as the well-known distance method
discussed in Section 1.1, to the more complex, such as the Partial Cointegration
model (par) and other approaches in the following sections.

1.1. Pair Trading Fundamentals

Pair trading is usually a market-neutral trading strategy that capitalizes on
the relationship between two historically correlated securities. The fundamen-
tal idea behind is that two assets that exhibit a historical tendency to move
together will continue to maintain this relationship over time. Practitioners us-
ing this scheme seek to identify pairs whose prices have diverged from their
expected behaviour.

When such a divergence occurs, a trader would simultaneously buy one asset
and sell the other, with the expectation that the prices will eventually revert to
their historical relation. This convergence allows the dealer to profit from the
narrowing of the spread between the two, independent of the market direction.

The rationale for this strategy is rooted in the belief that the prices of the
pairs are mean-reverting; that is, when they deviate from their historical norm,
they will tend to return to the mean, thanks to the forces of supply and demand,
arbitrage, or other market mechanisms.

Investors rely on quantitative methods to identify couples and to deter-
mine the timing of the operations. Statistical measures such as correlation and
standard deviation are key tools in assessing the strength and stability of the
relationship between the couples. A successful arbitrage1 does not require both
the long and short positions to make a profit; instead, the strategy is deemed
successful if for example the long position outpaces the short. This makes pair
trading a popular strategy among hedge funds2 and retail investors who seek to

1. Buying and selling an asset simultaneously in different markets to exploit price differences.
2. A private investment fund using varied and complex strategies, including leverage, to achieve
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reduce market risk and generate returns that are not correlated with the broader
market trends.

1.2. Distance Method

An examination is conducted of the method utilized in Gatev et al. (2006),
a seminal work in the domain of this ambit. This study employs one of the
most rudimentary quantitative techniques, which is predicated upon a distance
metric. This section is devoted to analysing the tracking variance, which is
defined as the average of the sum of squared deviations of normalized prices
over a series of time intervals. To illustrate, considering two stocks, � and �, the
tracking variance over a duration extending from time 1 to ) is delineated by
the following expression:

)+ =
1

)

)∑
C=1

(&�C −&�C )2.

Herein, &� and &� symbolize the normalized prices, where &C = %C/%1, with
% denoting the price of the two securities at time C. The selection of stock is
informed by this metric, opting for those with the minimal tracking variance.
Upon the identification of pairs, the ensuing strategy is articulated:

a. monitor the divergence Δ midst the normalized prices of the pair, which
will yield a temporal series of the spread;

b. establish a threshold, designated as 2� in this context, with � representing
the standard deviation of the spread;

c. activate the trading mechanism upon the breach of this threshold: execute
a short position on the stock with the elevated price and a long position
on the stock with the diminished price;

d. liquidate the positions when the stock prices converge (the spread reverts
to zero) or in the event of a divergence that prompts the activation of a
stop-loss order.3

In the subsequent discourse, a detailed examination of the naive distance method
will not be pursued. This decision is informed by findings from various studies,
including those by Krauss et al. (2015), which have empirically demonstrated
a decline in the profitability of such simplistic approaches over the years. The
attenuation in efficacy is largely attributed to the increasing sophistication of
market participants and the widespread adoption of more advanced statistical

high returns.
3. An order to close a trade position when it reaches a certain price, to limit potential losses.



pair trading literature review 11

methods in trading strategies, leading to a diminution of the opportunities that
such naive approaches once exploited. Thus, our focus will shift towards more
intricate methodologies that may offer sustainable profitability in the contempo-
rary trading landscape.

1.3. Classical Cointegration Approach

A time series is classified as stationary when the underlying stochastic process is
defined by constant parameters that are invariant through time. Stationary series
are amenable to prediction and exhibit mean-reverting behaviour. Theoretical
arbitrage opportunities arise when one can exploit the tendency of asset prices
to revert to their mean by purchasing securities when their prices are below this
mean and selling them when prices exceed it, thereby purportedly securing a
risk-free4 profit predicated on the premise of mean reversion.

Empirically, one may model a generic stock price time series as a random
walk, which constitutes the simplest archetype of an integrated process of the
first order, or �(1). The inherent unpredictability of random walk5 sequences un-
derscores the milestone achievement of Engle & Granger (1987), whose seminal
contributions have had profound implications for the development of statistical
arbitrage strategies rooted in cointegration.

The linchpin of such strategies is the recognition of the non-stationary nature
of assets prices. To be pertinent for cointegration analysis, a time series must
comport with the characteristics of an integrated process of order �(1). The aim
is to discern couples that are cointegrated, indicating a persistent, long-term
equilibrium relationship. This is formally expressed by the equation

GC + �HC = IC ,
where IC is stationary, �(0), ad GC , HC are the stock price time series that are
individually non-stationary but together form a stationary linear combination.
The investor’s goal is to leverage short-term deviations from this equilibrium,
with the cointegration coefficient serving as a guide to identify and capitalize
on transient mispricing.

The identification of stationary pairs within this framework necessitates the
implementation of statistical tests. These tests critically assess the cointegration
level to ensure that any identified relationship is statistically robust. Successful
testing leads to the selection of pair candidates suitable for a cointegration-based
trading strategy.

4. The rate of return of an investment with zero risk, typically represented by the yield on
government bonds like U.S. Treasury bills.
5. The Random Walk Model is a theory suggesting that stock market prices move unpredictably
and are not influenced by past movements.
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1.4. Partial Cointegration Approach

As previously mentioned in the introduction, each cointegrated or partially-
cointegrated series is comprised of two distinct elements: a mean-reverting
component, which is permanent, and a random walk component, which is tem-
porary. A fundamental issue with classical cointegration is the assumption that
any shock causing a deviation from the mean spread is temporary. However, this
deviation can become permanent for various reasons, such as changes in interest
rates or fundamental shifts in a company’s stock, as discussed in the seminal
works of Clegg & Krauss (2016). In such cases, a pair that appeared cointegrated
in historical analysis may not exhibit the same behaviour in future scenarios.

The Partial Cointegration (pci) model addresses this challenge by incorpo-
rating a stochastic element into the process, distinguishing it from the mean-
reverting component to provide more reliable signals.

Although the aggregate spread is directly observable, the individual compo-
nents, the mean-reverting and the random walk, are not, and must be estimated
using specific procedures. The nuances of partial cointegration, along with its
practical application, will be thoroughly examined in subsequent chapters. This
section aims to provide the reader with the essential theoretical framework
necessary for a comprehensive understanding of the entire thesis.

1.5. Other Approaches

In the realm of statistical arbitrage, a plethora of methodologies exists beyond
the common cointegration approach, catering to a range of complexities and
statistical foundations. Notable among these are the Copula procedure, which
captures the dependence structure between asset pairs; the cointegrated Logistic
Mixture Autoregressive (lmar) model, which introduces logistic transition func-
tions6 to model the mean-reverting behaviour; the quasi-multivariate method
that extends the univariate case to multiple assets; and the Support Vector Ma-
chines, which employs machine learning algorithms7 for pattern recognition
and predictions. While some of these techniques are intricate and others more
straightforward, the intent of this paragraph is to acknowledge the diversity of
strategies within pair trading. However, these alternative methods will not be
dissected in detail within this thesis, as our focus is dedicated to an in-depth
analysis of a stat arb strategy through the lens of the Partial Cointegration
(pci) model.

6. Functions in logistic regression modelling the probability of an outcome based on input
variables.
7. Machine learning is a branch of artificial intelligence where computers learn from data to
improve their performance on tasks without explicit programming.



2. Methodology

In this chapter a comprehensive dissection of the trading model will be under-
taken from a theoretical standpoint. Section 2.1 will delve into the conceptual
underpinnings of the framework, laying the groundwork for the subsequent
empirical analysis.

Section 2.2 is designed to elucidate the methodologies employed in estimat-
ing the parameters that are critical to the model’s functionality. Moving forward,
Section 2.3 will be dedicated to validating the reliability of our estimates. This
will be accomplished through a series of simulations designed to test their ro-
bustness under various market conditions.

Following this we will explore an advanced procedure known as the Kalman
Filter. This powerful algorithm enables the separation of the mean-reverting
from the random walk component of the residual series. Concluding the Method-
ology section base on the renewed paper Pairs trading with partial cointegration by
Clegg & Krauss (2016), we will discuss the Akaike Information Criterion (aic)
test. The aic test, along with other criteria, plays a pivotal role by aiding in the
selection of the most statistically valid pairs.

2.1. Representation

The Partial Cointegration model represents a nuanced variation of traditional
cointegration, which accommodates for the presence of both mean-reverting
and random walk elements within a residual series. This framework is set forth
in line with the principles established by Engle & Granger (1987).

Definition: The components of the vector -C are said to exhibit partial cointe-
gration of order 3, 1, denoted as -C ∼ PCI (3, 1), if (i) each constituent of -C is
integrated of order 3 ; and (ii) there exist a non-zero vector  such that /C = 0′-C
decomposed into a sum /C = 'C +"C , where 'C ∼ �(3) and "C ∼ �(3 − 1).

In this section, the focus is placed on the most elementary form of partial
cointegration. This involves the examination of two price time series, denoted
as -1 = (-1,C)C∈) and -2 = (-2,C)C∈) , which are considered to be partially coin-
tegrated if there exist parameters �, �, �" , �' and initial conditions <0, A0 that
satisfy the specified model

-2,C = �-1,C +,C .
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Here, ,C represents a composite error term composed of

,C = "C + 'C ,
where "C and 'C are defined as

"C = �"C−1 + &",C , &",C ∼ #(0, �2

"),
'C = 'C−1 + &',C , &',C ∼ #(0, �2

'),
with � being the hedge ratio parameter, � ∈ (−1, 1) representing the �'(1)
coefficient, and &",C , &',C being mutually independent Gaussian white noise
processes with zero mean and respective variances �2

"
, �2

'
∈ R+.

To simplify the estimation of the model, we set the initial values <0 = 0 and
A0 being the initial residuals defined as

A0 = -2,0 − �-1,0.

The time series -2 and -1 are thus interconnected by a partially autoregressive
(par) model , = (,C)C∈) first discussed by Summers (1986) and Poterba &
Summers (1988), and subsequently detailed by Clegg (2015).

A central metric within the par model is the ratio of variance attributable to
mean reversion, articulated as

'2

"' =
Var

[
(1− �)"C

]
Var

[
(1− �),C

] = 2�2

"

2�2

"
+ (1+ �2)�2

'

, '2

"' ∈ [0, 1], (1)

where � signifies the backshift operator. If '2

"'
= 0, the autoregressive compo-

nent is nonexistent, thus rendering the series a pure random walk. Conversely,
if '2

"'
= 1, the random walk component is absent, and the series becomes fully

autoregressive.
Given that the error term ,C is not directly observable, a state space rep-

resentation becomes necessary for analysis. Brockwell & Davis (2010) lay the
groundwork by providing an introductory overview of state space models. For
a more extensive examination, Durbin & Koopman (2012) present a detailed
discussion. The state space framework comprises two fundamentals: the obser-
vation equation and the state equation. These are conventionally expressed as

-C = �C/C ++C (2)

/C = �C/C−1 +�C*C +,C . (3)

The system under consideration is characterized by a state variable /C , as indi-
cated in equation 3, which may elude direct observation. This state is presumed
to evolve according to a linear dynamic, potentially subject to an exogenous
input *C . Accompanying the state is a stochastic term ,C , endowed with a co-
variance matrix &C , encapsulating the system’s inherent noise. The part of the
system that can be observed is signified by -C , detailed in equation 2, which
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is reliant on the hidden state /C through a linear relationship captured by the
matrix �C , and is also affected by its own noise component +C , with an associ-
ated covariance matrix 'C . It is posited that +C is a zero-mean noise term and
that the system is devoid of any external control input, denoted by *C . Further-
more, the matrices �C that describe the dependence on the hidden state and
�C that account for the state transition are considered static over time. Under
these assumptions, the system’s equations are simplified, leading to a more
tractable form:

-C = �/C ,

/C = �/C−1 +,C .

Within the Partial Cointegration model framework, we have two observable
variables -1 and -2, as well as two hidden state variables " and '. For simplic-
ity in representation, -1 is treated as a third hidden state variable, meaning it
is included in both the observation and state equations. Thus, the observation
equation for the pci system is articulated as

-C =

[
-2,C

-1,C

]
= �/C =

[
� 1 1

1 0 0

] 
-1,C

"C

'C

 ,

and the corresponding hidden state equation is

/C =


-1,C

"C

'C

 = �/C +,C =


1 0 0

0 � 0

0 0 1



-1,C−1

"C−1

'C−1

 +

&-,C

&",C

&',C

 .

In this model, &-,C signifies the stochastic variance component of the -1 process
in its first differences and is assumed to follow a normal distribution1 with zero
mean and variance �2

-
, denoted as &-,C ∼ #(0, �2

-
). This term is considered to

be statistically independent from the noise components &",C and &',C .

2.2. Parameters Estimations

Referenced in Appendix A is a demonstration affirming the identifiability of the
Partial Cointegration (pci) model. This implies that for any given realization of
a pci system – potentially infinite in its manifestations – there exists a distinct
set of parameter that are responsible for that specific occurrence.

Parameter estimation within the model is conducted via the maximum likeli-
hood method 2, leveraging the capabilities of the associated Kalman filter. Given
that the system’s parameters are established and the innovations &-,C , &",C and

1. A symmetric, bell-shaped frequency distribution common in statistics.
2. A method for estimating parameters in a statistical model, maximizing the likelihood of
observed data.
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&',C are independent, identically distributed Gaussian variables with zero mean,
the Kalman filter operates to minimize the mean-squared error of the parameter
estimates. It remains the optimal linear estimator even when the innovations
are white, uncorrelated, and possess a non-Gaussian distribution, as asserted
by Simon (2006).

Within this framework, ΘC encapsulates all available information up to and
including the time C, while Φ symbolizes the parameters vector �, �, �- , �' and
�'. The Kalman filter defines the one-step ahead prediction error as

4C = -C − �[-C |ΘC−1,Φ].
For the pci model, this prediction error can be expressed as

4C =

[
�4-,C + &",C + &',C

&-,C

]
.

Assuming that the joint probability ?(�4-,C + &",C + &',C , &-,C) is equal to ?(&",C +
&',C , &-,C), since the errors are uncorrelated, the likelihood function for the
Kalman filter of the pci model is delineated as

ℒ(Φ) = ?(-1 |Φ)
=∏
:=2

?(&",: + &',: ; 0, �2

" + �
2

')
=∏
:=2

?(&-,: ; 0, �2

-),

where ? denotes the probability density function of the normal distribution,
and ?(-1 |Φ) is a constant term corresponding to the initial observation. The
optimization process focuses solely on the parameters �, �, �" and �' thereby
disregarding the constant term. Consequently, the maximum likelihood esti-
mates for �, �, �" and �' are obtained by maximizing the likelihood function

ℒ"'(�, �, �" , �') =
=∏
:=2

?(&",: + &',: ; 0, �2

" + �
2

').

This likelihood function is used as the objective function in the optimization
algorithm. A full derivation of it is shown in Appendix b.

2.3. Simulation of par Model
Tab. 2.1

Parameter Value

� 1

�" 0.5
�' 0.5
Sample size 300

In order to visualize the behavior of a Partially Au-
toregressive (par) model, we shall embark on a sim-
ulation exercise. The model parameters are set as fol-
lows: a value of 1is assigned to the autoregressive
coefficient (�), while the standard deviations of the
mean-reverting component (�") and the random walk
component (�') are both set to 0.5. The sample size

for this simulation is determined to be 300 data points as shown in table 2.1.
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The generation process for the mean-reverting and random walk components
will be conducted separately, adhering to the par model’s stipulated structure.
This bifurcated generation ensures that each component accurately reflects its
theoretical properties – mean-reversion and random walk, respectively.

For the synthesis of these time series elements, the Statsmodels library in
Python offers a suite of functions aptly suited for such stochastic simulations.
Upon the creation of these individual series, they will be aggregated to yield a
composite sequence. Below in figure 2.1, the plot of the simulation is presented
to illustrate the outcome of this synthesis visually.

Fig. 2.1

2.3.1 Consistency of the Estimates

Utilizing a maximum likelihood estimation approach, our estimators should
exhibit three key asymptotic properties – efficiency, lack of bias, and consistency
in terms of mean squared error (mse) – provided that the necessary regularity
conditions are met. To validate these theoretical properties, we conduct analyses
on an ensemble of synthetic data sets generated under the framework of Partial
Cointegration (pci) models.

In the reference work by Clegg and Krauss, a series of simulations are exe-
cuted to explore the behavior of estimators across various levels of the mean-
reverting variance �" and the autoregressive coefficient �. Their findings indi-
cate that for every positive value of �" , the mean squared error (mse) tends to
zero, affirming the consistency of the mse of the estimates. The scenario where
�" is set to zero is an exception; here, the model reduces to a pure random
walk, and consequently, the estimates become inconsistent due to the absence
of variance in the mean-reverting component.

Similarly, for all values within the range [0.6, 1) for �, the estimates remain
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consistent. It is only at the upper bound of this interval, where � =1, that the
model’s estimations falter. At this point, the aggregate residual of the series is
effectively a combination of two random walk processes, leading to inconsis-
tent estimates.

For the purpose of this thesis, rather than conducting multiple simulations,
we will generate a single one adhering to the parameter values specified in
table 2.2. This aims to verify whether the estimated parameters align with their
true values. The primary focus of this study is not on the exhaustive verification
of the model’s statistical properties but rather on the practical application of the
trading strategy and the analysis of its performance. By limiting the scope of
simulation, we allocate more resources to comprehensively assess the efficacy
of the trading strategy derived from the pci model in real-world scenarios.

Tab. 2.2

� �- �" �' � <0 A0

1. 0000 0. 0236 1. 0000 1. 0000 0. 9000 0. 0000 0. 0000

To construct and plot a sample of partially cointegrated time series, first we
produce -1 as a geometric random walk3 starting at the value of 100. Then we
generate par residuals and calculate -2 according to the model definition of
the paper (table 2.2 and figure 2.2).

Fig. 2.2

3. A model where logarithms of successive price steps are independent and identically dis-
tributed, typically used in finance.
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The parameter �4 is set to unity to represent a standard equilibrium re-
lationship between the paired series. The time series -C , signifying price, is
constructed as a cumulative return series commencing at a value of 100, with
a mean of zero, and a standard deviation �- = 0.0236. This value mirrors the
median volatility of all stocks that have been part of the S&P 500 index from
1990 until 2015. The standard deviations for the mean-reverting component �"
and the random walk component �' are both set for simplicity to one. In this
context, the absolute values of these deviations are less significant than their
ratio, as this affects the variance portion attributed to mean-reversion as speci-
fied in equation 1. The autoregressive coefficient � is determined at 0.90 in the
baseline case, equating to a mean-reversion half-life of approximately 6.60 days.

Tab. 2.3

� 1. 017 393 379 309 3202

�- 0. 897 453 189 861 2403

�" 1. 067 106 928 991 5014

�' 0. 929 718 060 458 8074

ln ! −1985. 304 095 002 2935

Our forthcoming step encompasses the
deployment of a procedure for the estima-
tion of the model’s parameters. Initially, al-
pha and beta are estimated by employing an
Ordinary Least Squares (ols)5 regression of
-2 on -1. These preliminary estimations are
then leveraged to ascertain initial values for
the parameters of the par model using the
lagged-variance method. These are refined
by fitting to the residuals ,C . With these preliminary estimates established, the
ensuing phase involves their concurrent optimization via a maximum likelihood
approach.

In table 2.3 we observe the estimated values of the model’s parameters.
Notably, these estimates align closely with the true values, confirming the ro-
bustness of the model.

2.4. Kalman Filter Application

The Kalman filter is a recursive statistical algorithm that estimates the state
of a linear dynamic system from a series of incomplete and noisy measure-
ments. Theoretically, it operates under the premise that both the system and
the measurement processes are governed by Gaussian noise, enabling the filter
to produce estimates that are optimal in the sense of minimizing the mean of
the squared error. In the context of our model, we employ the Kalman filter
to disentangle the mean-reverting component from the stochastic trend, or ran-
dom walk, within a time series. The extracted mean-reverting is then harnessed
to generate trading signals, while the actual trading is executed on the overall

4. A measure in finance showing how an asset’s price movements are related to the market or
to other asset class. Here it is used to identify the weights of the two components of the couple.
5. A method for estimating unknown parameters in a linear regression model.
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spread, which encompasses the total residual series.
In our case, upon obtaining the fitted values for parameters �, �" and �',

the Kalman gain, denoted by �, is calculated. This gain can be precisely derived
using a closed-form expression as indicated in Clegg (2015), or estimated via
the iterative process.

Once � is determined, the estimated values of "C and 'C are computed
utilizing the following recursive relationships

"C = �"C−1 + ��C , 'C = 'C+1 + (1− �)�C ,
�C =,C − �"C−1 − 'C−1, ,C = %C − �&C ,

where �C denotes the one-step prediction error from the Kalman filter. These
equations are utilized within the formation period to generate an in-sample
estimate of "C and its standard deviation �. In the subsequent trading period,
the same equations are employed daily to update estimates of "C .

2.5. Properties of aic test

The Akaike Information Criterion (aic), developed by Hirotsugu Akaike in
1974, serves as a pivotal tool for selecting statistical models by striking a delicate
balance between effectively fitting data and minimizing model complexity. It
quantifies the trade-off between these two critical aspects by estimating the
information loss incurred when a model is utilized to represent the underlying
data-generation process.

Calculation of the aic involves considering the number of independent vari-
ables and the maximum likelihood estimate of its fit. The preferred model is one
that attains the lowest aic value, signifying its ability to elucidate a substantial
portion of data variability using the fewest inputs.

The test is computed using the formula

aic = 2 − 2 lnℒ
Here,  denotes the count of independent variables, and ℒ, represents the like-
lihood function. The iterative progression of  begins at 2 and increases by 2

for each additional input incorporated.
When one model demonstrates an aic value surpassing another one by more

than two units, it is conventionally regarded as significantly superior. This dis-
crepancy in aic values implies a balance between goodness of fit and simplicity.

Our specific aim is to leverage this test to discern the most fitting model
among par, ar, and rw for our dataset. Our goal involves pinpointing pairs
exhibiting reduced aic values relative to the par model. This approach will
facilitate the selection of tradable pairs that manifest a superior fit concerning the
pci, potentially enhancing the identification of profitable trading opportunities.



3. Trading Strategy

The primary objective of this chapter is to examine the steps required to imple-
ment the trading strategy based on the methodologies described in the previous
modules. Section 3.1 will delineate the division of data into training and test-
ing phases. Additionally, this part will expound upon the methodology used
to compute returns for individual paired trades as well as for the overall port-
folio. Section 3.2 will discuss the rationale for selecting the tradable couples,
finally Section 3.3 will address the generation of trading signals, including the
establishment of trigger thresholds for both traditional and pci-based strategies.

3.1. Study Periods

In this part, we aim to elucidate the rationale behind data partitioning and
delineate the accurate methodology for computing Profit and Loss (P&L) within
this specific arbitrage approach.

3.1.1 Splitting Data

Our analysis bifurcates the trading timeline into two distinct periods: the in-
sample, or training period, and the out-of-sample, or testing period. During the
in-sample period, we focus on calibrating our strategy by estimating the model’s
parameters, applying the selection criteria for tradable pairs, and conducting a
preliminary back-test1 to gauge profitability. The testing period then serves to
validate the strategy’s effectiveness in a real-world scenario, providing a robust
measure of its potential profitability outside the confines of the training dataset.
We use 2/3 of the dataset as train and the remain part of 1/3 as test.

3.1.2 Asset Return

The daily returns of the long and short positions within the pair are computed
in the following manner, respectively, for a long and a short position:

A8,C = BA8,C ·F8,C , A8,C = −BA8,C ·F8,C ,

1. That is, testing a trading strategy on past data to see how it would have performed.
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where A8,C denotes the return of asset 8 at time C, factoring in reinvested payoffs,
and BA8,C signifies the simple return of asset 8, derived from the percentage
change in prices between time C and C − 1. Here, F8,C represents the cumulative
wealth level of asset 8 at time C, calculated as

F8,C = F8,C−1(1+ A8,C−1) =
C−1∏
C=1

(1+ A8,C),

which is the product of wealth accumulation over time, considering the returns
at each time step C.

3.1.3 Portfolio Returns

In our trading framework, which incorporates constraints on quantity, we cannot
equally distribute the weight of assets H and G within a pair as was possible in
Gatev et al. (2006), since the cointegration coefficient � is not always equal to one.
Consequently, the allocation of weights to each asset in the pair at any given
time t is determined by their respective market prices. Moreover, it’s crucial
to adjust the computed return by the number of pairs to ensure proportional-
ity. Specifically, the weights of assets H and G in the pair are governed by the
following equations

@H,C =
?H,C

?H,C + � ?G,C

1

=
,

@G,C =
� ?G,C

?H,C + � ?G,C

1

=
= (1− @H)

1

=
.

Here, ?H,C and ?G,C signify the market prices of H and G assets at time C, and � rep-
resents the cointegration coefficient, and n is the count of pairs. These weights
remain static for the duration that the position is open but are recalculated to
reflect market price shifts whenever the position is closed and subsequently
reopened.

To calculate the intrapair returns, we apply the weights @C to the individual
asset return at each time C :

A? 9,C =
@ 9,C BA 9,C F 9,C∑
9∈% @ 9,C F 9,C

.

The total return of the portfolio at time C is thus formulated as

A?C =
∑
9∈%

A? 9,C .

Each long position on a spread involves purchasing a quantity (G) of the second
asset (G2) and selling a calculated quantity (�G) of the first asset (G1). Conversely,
initiating a short position on the spread entails selling a quantity (G) of the
second asset and buying a calculated quantity (�G) of the first asset.
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3.2. Pairs Selection

This section delineates the selection criteria utilized for pinpointing the most
advantageous stock pairs on which to apply our trading strategy.

We initiate our selection by aggregating a set of potential pairs from the
universe of available stocks, constraining our choices to those within the same
Global Industry Classification Standard (gics) sector.2 This ensures computa-
tional efficiency and curtails the incidence of identifying couples with insignifi-
cant correlations, in alignment with the methodologies established by Gatev et
al. (2006) and Do & Faff (2010, 2012).

Within the Cointegration strategy, a pair’s eligibility is contingent upon it
not substantiating the null hypothesis of no cointegration at a 5% significance
level, as evidenced by both the Augmented Dickey-Fuller (adf) and Johansen
cointegration tests. This approach is corroborated by Huck (2015) and Rad et
al. (2015), and operationalized by Caldeira & Moura (2013). The selection for
the Partial Cointegration (pci) strategy incorporates distinct criteria: a pair is
considered suitable if the aic for the par is lower than that of the competing
ar and random walk models, if the mean reversion coefficient � exceeds 0.5,
and if the proportion of variance due to mean reversion '2 is greater than 0.5.
These conditions exclude pairs that mean revert too quickly, thereby reducing
the influence of the bid-ask spread on trading gains and ensuring robustness in
parameter estimation.

An additional criterion for both strategies is a � value for the couples that
is close to 1, specifically between 0.75 and 1.25, to maintain market-neutral
exposure.

In conclusion, we conduct an in-sample back-test. Each pair is assigned
an in-sample Sharpe Ratio following the methodologies of Dunis et al. (2010),
Bertram (2010), and Caldeira & Moura (2013), with pairs organised based on
this metric. The top-ranked are then selected as tradable couples. This process
culminates in the creation of a portfolio comprising the top twenty stocks and
their corresponding partners.

3.3. Trading Signals

This segment revisits the comprehensive steps undertaken for parameter esti-
mation and the construction of a trading strategy underpinned by econometric
modelling. Additionally, it will elaborate on the methodology for generating
entry and exit signals or trigger levels.

2. A classification system defining sectors and industries for stocks.
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3.3.1 Cointegration-based Pairs Trading

We embark on a methodical approach by initially generating all potential pairs
from a chosen universe of stocks. This extensive collection forms the basis of our
analysis. We then proceed by dividing the dataset into two distinct segments,
allocating two-thirds for in-sample analysis and one-third for out-of-sample
testing. The in-sample data will undergo the steps detailed below, while the
out-of-sample data is reserved for the final back-testing phase.

The next critical step involves parameter estimation. Here, we employ the
Ordinary Least Squares (ols) regression to determine the key parameters: ,
which represents the constant term, and �, denoting the hedge ratio. This is
achieved by regressing the second price of the pair against the first.

Then, we apply two stationarity tests, namely the Augmented Dickey-Fuller
(adf) test on the regression residuals and the Johansen test on the price series.
Only the pairs that successfully reject the null hypothesis of non-stationarity at
a 95% confidence level are considered further.

Upon identifying the viable pairs, we proceed to spread construction. This
involves combining the prices of the two stocks and the zero mean residuals ,C ,
creating what are known as synthetic spreads. These spreads form the basis of
our trading signals.

,C = -2,C −  − �-1,C

Signal generation is a crucial step where we normalize the spread of the residual
series. We calculate the mean and standard deviation of Wt and then determine
the /-score3 using the formula

/C =
,C −mean

�
.

Finally, the strategy undergoes a test in the form of out-of-sample back-testing.
For the Cointegration strategy, the thresholds for initiating and closing trades

are set (�0 = ±2 and �0 = 0), respectively, following Huck (2015) and Rad et
al. (2015). This strategy does not incorporate a stop-loss mechanism, which
aligns with the recommendations of Nath (2003) and Caldeira & Moura (2013)
and reflects the evolution of pairs trading profitability as analyzed by Jacobs
& Weber (2015).

3.3.2 pci-based Pairs Trading

In the methodology for pci-based pairs trading, the initial stages mirror those
of the standard cointegration strategy, involving the generation of stock pairs
and the division of the dataset into segments for in-sample estimation and

3. /-score is a statistical measurement that describes a value’s relationship to the mean of a
group of values. /-score is measured in terms of standard deviations from the mean.
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out-of-sample validation.
The estimation of parameters is a multi-step process where we determine

the constituents of the par model, including the vector [�, �" , �'], as well as the
cointegration parameters  and �. Given the potential complexity of parameter
estimation, it is prudent to synthesize the process into discrete stages, commenc-
ing with an initial guess of the parameters and culminating in an optimization
via maximum likelihood. The model is articulated as follows:

-2,C =  + �-1,C +,C , ,C = "C + 'C ,
"C = �"C−1 + &",C , &",C ∼ #(0, �2

"),
'C = 'C−1 + &',C , &',C ∼ #(0, �2

'),
Initially, � is estimated by regressing the price of stock -2 on that of -1. The
intercept  is then obtained by adjusting the first observation of -2 with the
product of the first observation of -1 and the estimated � :

 = -2,0 − �-1,0.

With  and � established, we construct the residual series ,C , which represents
the synthetic spread, by inverting the cointegration equation:

-2,C =  + �-1,C +,C .

Having computed the synthetic spread, we proceed to estimate the parameters
[�, �" , �'] using an initial estimate derived from the Lagged Variance method.
This method is encapsulated by the following formulas:

$: = Var
[
(1− �):-C

]
, � =

$1 − 2$2 + $3

2($1 − $2)
,

�2

" =
1

2

� + 1

� − 1

($2 − 2$1), �2

' =
1

2

($2 − �2

"),

where � denotes the backshift operator.
Following the preliminary estimation, we engage in the optimization of

[, �, �, �" , �'] through maximization of the log-likelihood function. This opti-
mization is iteratively performed ten times to ensure robustness – initially using
the parameters extrapolated via Lagged Variance and subsequently employing
random values.

Regarding the mean-reverting component "C and the random walk compo-
nent 'C , both critical yet unobservable elements that must be inferred through
estimation. The Kalman filter serves as the inferential tool, applying the pre-
viously optimized parameters: the mean reversion coefficient �, the standard
deviation of the mean-reverting process �" , and the standard deviation of the
random walk �'. The Kalman gain �, a pivotal factor in updating the estima-
tions, can be ascertained either by a closed-form solution or through iterative
approximations provided by the Kalman filter methodology as discussed in
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Section 2.4.
Upon entering the trading phase, identical computational procedures are

executed on a daily basis to refresh "C estimates. A normalized /-score, given
by /C = "C/�, is then crafted to formulate trading signals. The thresholds for
initiating (�0 = ±1) and terminating (�0 = ±0.5) trades have been systematically
optimized by conducting multiple simulations on synthetic data as explicated
by Clegg & Kraus. A salient aspect of the pci strategy, distinguishing it from its
cointegration-only counterpart, is the inherent risk of loss stemming from the
random walk component – a risk absent when trades are concluded before the
end of the trading interval in a strictly cointegration-based model, where profits
are typically assured.



4. Trading on Simulated Data

Within this section, the focus shifts to the execution of the previously delineated
steps, aiming to back-test the pci strategy across various simulated datasets.
This approach is undertaken to conduct a thorough validity analysis, leveraging
simulated data to subject the method to a broad spectrum of hypothetical market
scenarios. Such testing is instrumental in assessing the strategy’s durability
and its ability to withstand market fluctuations that some historical data may
not capture.

Additionally, the empirical trials are designed to critically evaluate the per-
formance differentials exhibited by the pci in comparison to the traditional
cointegration model. The intention is to determine the relative effectiveness of
the pci approach when confronted with data characterized by partial cointe-
gration. By back-testing against simulated scenarios, we can gather empirical
evidence on the strategy’s operational soundness and its capacity to generate
favourable outcomes.

4.1. Parameters Calibration

In the referenced study by Clegg and Krauss, a comprehensive analysis is con-
ducted through a series of simulations to evaluate the impact of adjusting certain
parameters, such as the mean reversion coefficient (�) and the proportion of vari-
ance due to mean reversion ('2

"'
), on the profitability and effectiveness of the

strategies. This critical examination serves to underpin the selection criteria for
pairs as articulated in Section 3.2. The findings lay the groundwork for the subse-
quent examinations, which are not aimed at exhaustive parameter optimization
but rather at affirming the strategy’s performance across different simulated
market scenarios. The ultimate goal is to apply these well-founded thresholds
to real-world market data in the forthcoming procedures.

Both cointegration and Partial Cointegration (pci) strategies exhibit limi-
tations in generating substantial returns when the random walk component
dominates the variance of the pair ('2

"'
< 0.5). However, as the mean-reverting

component gains prominence, returns escalate across all values of �, suggest-
ing that a strong mean-reverting dynamic is conducive to enhanced trading
outcomes.
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The simulations further reveal that the pci strategy outperforms classical
cointegration when � < 0.9, losing its edge as � escalates towards one, where
the �'(1) process verges on becoming a random walk. As the '2

"'
metric

approaches unity, the pci and traditional cointegration methodologies converge,
diminishing the differential benefits and aligning the strategies more closely.

The study emphasizes that variations in the first differences of the spread
process’s variance only affect the absolute magnitude of returns without al-
tering the relative strategic advantage between the methodologies. Similarly,
the spread ,C remains unaffected by changes in the standard deviation of the
series �G , reaffirming the strategies’ robustness against different levels of under-
lying volatility.

The investigation concludes that only pairs with a pronounced mean-reverting
trait are suitable for trading. The pci strategy is particularly effective for inter-
mediate values of � and tends to converge with the performance of the cointe-
gration-based strategy as either � or '2

"'
increase.

Clegg and Kraus show that as the opening threshold becomes grater, the
monthly mean return tends to decline. This inverse relationship between open-
ing thresholds and mean returns can be attributed to the trade-off between the
frequency and the profitability per trade. A higher threshold may result in fewer
trades but potentially higher returns, and vice versa. Notably, the difference in
average profit between a moderate threshold (�0 = ±1.0) and a high threshold
(�0 = ±1.5) is exacerbated when accounting for the amplified transaction costs
associated with fewer number of trades. For pragmatic trading implementations,
an opening threshold (�0) of ±1.0 and a closing threshold (�c) respectively of
±0.5 strikes a balance between the frequency of trading opportunities and the
impact of transaction costs.

4.2. Cointegration Results

The commencement of the back-test and parameters calibration phase involves
generating a simulated instance of two partially cointegrated time series, -1

and -2, replicating the method outlined in Section 2.3. This simulation spans
1000 days (figure 4.1), designated as the training period, followed by a 125

observations trading period, as shown in figure 4.2. The ordinary least squares
(ols) regressor is applied during the training period to ascertain the parameters
alpha and beta, which are used in the computation of the spread.

Tab. 4.1

Total return apr Sharpe Max DD Max DD duration

ci algo −0.001613 −0.003248 −0.010944 −0.059508 49.0
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Fig. 4.1

Fig. 4.2

Subsequent to the generation of the time series, the Johansen and adf tests
are applied to both series to verify stationarity, thus confirming the viability of
a cointegration strategy. With the stationary relationship validated, the spread
is then computed and charted for the subsequent trading period.

From the graphical representation, it becomes evident that the conventional
cointegration-based trading strategy does not yield profitable outcomes within
this simulation. The spread fails to revert to its historical mean, indicating a
divergence rather than the anticipated mean reversion. Nevertheless, for the sake
of thoroughness, the strategy is back-tested. The thresholds for trade initiation
and termination are established following the methodology of Huck (2015) and
Rad et al. (2015), with open trades triggered at a /-score of ±2 and closed at a
/-score of 0.

Fig. 4.3

The performance analysis, illustrated in the graph plotting the historical
cumulative returns (figure 4.3), corroborates the initial assessment. It reveals that
the cointegration-based strategy does not exhibit profitability in this simulated
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environment, as the spread does not demonstrate the expected mean-reverting
behaviour within the trading period.

4.3. pci Results

The approach to back-testing the Partial Cointegration (pci) based trading strat-
egy begins with parameter estimation for the model on historical data to estab-
lish the spread. The Kalman filter is then applied to tease out the mean-reverting
component, which is crucial for generating trading signals. The trading rules
are constructed around the /-score of the mean-reverting part, a methodology
that was detailed in the previous section on parameter calibration.

Figure 4.4 illustrates the residual series ,C over the training period (shown
in blue) and the trading period (depicted in yellow), providing a visual repre-
sentation of the model’s behavior over time.

Following the application of the Kalman filter, the mean-reverting compo-
nent along with its standard deviation (�") is plotted (figure 4.5), as indicated
by the dotted line in the second graph. This visualization is particularly infor-
mative as it highlights the thresholds at which the trading signals for enter-
ing trades will be triggered, based on the standardized deviation of the mean-
reverting component.

Fig. 4.4

Fig. 4.5

The backtesting of the strategy is conducted under the following rules:

• Long position is opened when it is below −�" ;

• Long position is closed when it is above 0.5 �" ;



trading on simulated data 31

• Short position is opened when it is above �"

• Short position is closed when it is below −0.5 �" .

The displayed results (table 4.2) illustrate the comparative performance of a
trading strategy predicated on partial method against a traditional cointegration,
while figure 4.6 represents the P&L chart of the pci approach. The analysis
reveals a significant outperformance by the partial, as evidenced by the positive
returns over a span of 120 observations. The strategy not only yielded positive
returns but also exhibited a Sharpe Ratio1 exceeding 1, indicative of a robust
risk-adjusted despite the relatively modest absolute returns.

Tab. 4.2

Total return apr Sharpe Max DD Max DD duration

ci algo −0. 001 613 −0. 003 248 −0. 010 944 −0. 059 508 49.0
pci algo 0. 037 885 0. 077 486 1. 099 020 −0. 031 999 65.0

Fig. 4.6

4.4. Multiple Simulations

While the results are promising, they should be interpreted with caution, as
a single data sample may not fully capture the variability and potential risks
inherent in live market conditions. To ensure a comprehensive evaluation of
the trading strategy, we will extend our analysis beyond a single data set and
conduct 5000 simulations. Each simulation will generate a pair of partially coin-
tegrated time series, reflecting the same underlying parameters. Upon these
simulated data sets, we will back-test both the classical cointegration and the
partial cointegration strategies, recording their respective performance metrics.

The histograms presented (figure 4.7a and figure 4.7b) offer a visual com-

1. A measure of risk-adjusted return, comparing the excess return of an investment to its
volatility. Sharpe Ratio = ('? − ' 5 )/�? , where '? is the return of the portfolio, ' 5 is the risk-
free rate, and �? is the standard deviation (volatility) of the portfolio’s excess return.
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Fig. 4.7

Fig. 4.8

parison of the distributions of total returns and Sharpe ratios for standard and
partial cointegration. The returns distribution for the first one is centred around
zero, indicating an equal likelihood of positive and negative outcomes. In con-
trast, the second one demonstrates a positive skewness, suggesting a higher
prevalence of profitable trades compared to losses.

Furthermore, the distribution of Sharpe ratios, showcases a marked disparity
between the two strategies. The pci not only achieves a higher average Sharpe,
which approximates 1, but also shows a distribution that is decisively more
favourable than that of the classical method, whose average is closer to zero.
This implies that the pc provides a more consistent and superior risk-adjusted
performance relative to its counterpart.



5. Empirical Application on Real Data

In this final part of our study, we will put theory into practice by applying our
methods in a live market environment.

Section 5.1 will outline the dataset we have selected for applying our strate-
gies, detailing the reasons for focusing on that particular market segment.

Section 5.2 will evaluate the effectiveness of cointegration against the pci

methodology. We will demonstrate that, for the chosen dataset and specific
historical timeframe, our Partial Cointegrated approach can yield superior risk-
adjusted returns when compared to standard benchmarks. The essence of our
work is captured in this segment, as it will confirm whether our sophisticated
econometric model can actually be utilized to generate profits in real-world.

In Section 5.3, we will examine and calculate two risk management measures,
specifically historical and parametric Value-at-Risk (VaR). These metrics will
help us understand the necessary capital requirements to manage and absorb
potential daily losses.

Finally, Section 5.4 will address additional considerations for refining and
enhancing the entire process to maximize performance outcomes.

5.1. Data Preparation

Our pairs trading strategy is designed to test the effectiveness of statistical
arbitrage on the Italian Stock Exchange from October 27, 2015, to December 20,
2023, with data provided by Bloomberg.1 We have chosen the Italian market
for its potential to unveil inefficiencies and opportunities that might not be as
evident in larger markets like the American one, and which might be overlooked
by simpler models.

Using Python and Microsoft Excel, we have deployed two strategies across
the top 40 stocks of the ftse mib Index. The leading stock index of Borsa Italiana,
undergoes a quarterly review. It reflecting the most actively traded stock classes,
accounts for about 80% of the total Italian market capitalization.

With each review, it may be updated to include or exclude stocks based on
criteria such as market capitalization and liquidity. For our study, we have used
the stock composition as per the most recent update from Borsa Italiana’s official

1. A global company providing financial software tools, data, and other financial services.
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website2 (21 December 2023).
Two-thirds of the period is dedicated to in-sample analysis for estimating

parameters and extrapolating time series for the mean-reverting portion, which
spans from October 27, 2015, to March 21, 2021. The remaining one-third of the
period, from March 22, 2021, to December 20, 2023, is allocated for out-of-sample
back-testing to evaluate the strategies’ performance.

5.2. Standard vs pci Performance Analysis

5.2.1 Strategy 1

Our analysis begins with the traditional method of cointegration. After run-
ning a linear regressor across all potential stock pair combinations to estimate
alpha and beta parameters for spread construction, we involve a two-step veri-
fication process that incorporates both the Augmented Dickey-Fuller (adf) test
and the Johansen test on the residual series of each pairs. A stock couple is
deemed suitable for trading only if it successfully passes the adf test by reject-
ing the hypothesis of non-stationarity at a 95% confidence level and similarly
surpasses the Johansen test’s threshold by dismissing the null hypothesis of
non-cointegration at a 90% level. This adjustment to a lower confidence level
for the Johansen test is a pragmatic response to the limited number of pairs
typically rejecting the null hypothesis at the more conventional 95% threshold.

An additional layer of selection is based on the beta values obtained from
the regression. To ensure a market-neutral position only pairs with a � within
the range of 0.75 to 1.25 are chosen. This range ensures that the capital allocated
to each stock in a pair is balanced, maintaining the desired market neutrality.
After applying this additional condition we are left with the following pairs
(table 5.1).

Tab. 5.1

Stock Pairs  � adf Johansen

g-ucg 1. 173 650 0. 809 321 1.0 1.0
srg-bmed 2. 529 798 0. 979 232 1.0 1.0
mb-cnhi 0. 181 598 0. 901 064 1.0 1.0
azm-bgn 8. 440 925 1. 024 048 1.0 1.0
ldo-ucg 2. 660 296 1. 034 159 1.0 1.0
eni-spm −1. 787 521 0. 880 781 1.0 1.0
eni-ucg 0. 825 725 0. 936 846 1.0 1.0

2. https://www.borsaitaliana.it/homepage/homepage.htm.

https://www.borsaitaliana.it/homepage/homepage.htm
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The next steps involve running an in-sample back-test on the /-score of
each synthetic spread series, then ranking the pairs in descending order based
on their Sharpe Ratio (sr). Finally, only pairs with an sr greater than zero are
selected, under the premise that pairs unprofitable in-sample are unlikely to be
profitable out-sample. As a result, we have the following seven pairs (table 5.2).

Tab. 5.2

Stock Pairs
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Sharpe 0.804804 0.791131 0.718494 0.710586 0.668573 0.629183 0.580099

Tab. 5.3
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Returns 0.955632 0.364960 1.884446 1.185734 1.118688 1.120573 1.533610

In our concluding analysis, we back-tested our strategy on a test dataset to
assess its performance.

Of the seven pairs tested, two recorded losses, with one pair experiencing a
substantial 70% decline. However, the losses from these underperforming pairs
were fully offset and surpassed by gains from the remaining five, particularly a
pair yielding over 80% profit, as shown in figure 5.1 and table 5.3.

Fig. 5.1

Despite the mixed individual pair performances, the overall portfolio, with
equal capital allocation to each pair, concluded with a total cumulative return of
23.25%. This translates to a respectable expected yearly rate of 7.22%, suggesting
potential attractiveness. However, the strategy was largely dormant for the initial
part of the testing period, with significant activity and gains materializing only
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Fig. 5.2

in the later stages (figure 5.2).
This situation significantly affected our primary risk-adjusted metric, the

Sharpe Ratio, which registered a relatively low 0.62 (table 5.4). A critical con-
tributor to this subdued ratio was the pronounced volatility during June and
July 2022, particularly marked by the significant losses from the eni vs spm pair.
This period coincided with central banks’ decisions to hike interest rates, end-
ing a long era of low rates. Such a shift likely induced alterations in company
fundamentals or the statistical patterns of price series. The next section will
explore how the pci approach improves this problem, solving problems related
to idiosyncratic shocks, that assumed to be temporally, when instead they are
permanent (Jondeau et al. 2015).

Delving into additional performance metrics, the Probability Sharpe Ratio3

stands at 85.26%, indicating a strong likelihood that the portfolio’s Sharpe Ratio
reflects real performance and not just random fluctuation. The Sortino Ratio4,
which only considers downside risk, is recorded at 0.92, surpassing the Sharpe
Ratio due to its exclusive focus on negative returns, thereby not penalizing pos-
itive performance. Lastly, the Ω Ratio5 is observed at 1.16, signifying that the
investment’s returns are more favorably skewed above the minimum accept-

3. A probabilistic version of the Sharpe Ratio, assessing the likelihood of achieving a certain
risk-adjusted return: psr = Φ

(√
) − : ((̂' − ('∗)/�̂

(̂'

)
, where Φ is the cumulative distribution

function of the standard normal distribution, ) is the track record, : is the number of estimated
parameters, (̂' is the estimated Sharpe ration of the strategy, ('∗ is the benchmark Sharpe
ration and �̂

(̂'
is the standard error of the Sharpe Ratio estimator.

4. A modification of the Sharpe Ratio that differentiates harmful volatility from total overall
volatility by using the standard deviation of negative asset returns, called downside deviation:
Sortino Ratio = ('? −' 5 )/�3, where '? is the return of the portfolio, ' 5 is the risk-free rate and
�3 is the donwside deviation, which is the standard deviation of the negative portfolio returns.
5. A measure of the performance of an investment relative to a minimum acceptable return,
considering both upside and downside volatility, given by

Ω Ratio =
∫ ∞

mar

(
1− �(A)

)
dA

/∫
mar

−∞
�(A)dA,

where �(A) is the cumulative distribution function of the returns, mar is the minimum accept-
able return, the numerator calculates the area under the return distribution curve above the
mar, representing gains and the denominator calculates the area under the return distribution
curve below the mar, representing losses.
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Tab. 5.4. Cointegration Performance Analysis

Start Period 2021 03 23 Expected Daily % 0.03%
End Period 2023 12 20 Expected Monthly % 0.62%
Risk-Free Rate 0.0% Expected Yearly % 7.22%
Time in Market 100.0% Best Day 9.83%
Cumulative Return 23.25% Worst Day −7.46%
cagr % 7.91% Best Month 6.21%
Sharpe 0.62 Worst Month −11.17%
Prob. Sharpe 85.26% Best Year 16.5%
Smart Sharpe 0.52 Worst Year −1.07%
Sortino 0.92 Avg. Drawdown −2.7%
Smart Sortino 0.77 Avg. Drawdown Days 46

Sortino/
√

2 0.65 Recovery Factor 1.16

Smart Sortino/
√

2 0.55 Ulcer Index 0.07

Ω 1.16 Serenity Index 0.22

Max Drawdown −20.1% Avg. Up Month 2.17%
Longest DD Days 323 Avg. Down Month −2.48%
Volatility (ann.) 13.52% Win Days % 54.55%
Calmar 0.39 Win Month % 67.65%
Skew 0.96 Win Quarter % 50.0%
Kurtosis 41.6 Win Year % 66.67%

N. of trades 10

able return than below, offering a balanced view of the potential for both gain
and loss.

In the out-sample period, the strategy executed a total of 10 trades, aver-
aging 1 or 2 trades per pair, ensuring continuous market engagement with all
couples held in position by the end of the back-test. This reflects a 100% mar-
ket participation rate,6 typical of a strategy always maintaining at least one
open position. The trading frequency is relatively low, characteristic of cointe-
gration approaches, with just a few trades annually. This observation suggests
potential benefits in exploring the strategy over different sub-periods or em-
ploying a more frequent trading interval to possibly enhance trading activity
and risk-adjusted performance. The upcoming discussion on adopting a par-
tial cointegration approach is anticipated to further address and potentially
increase trade frequency. For the comprehensive performance assessment, the
Quantstats Python library was utilized, offering a robust set of performance
metrics commonly employed in hedge fund strategies.

Table 5.5 showcases the most significant drawdowns experienced during
the back-testing period, with the most severe reaching approximately 20% and

6. Amount of time in which you have opened at least one position of the strategy.
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lasting 323 days until full recovery. Given these substantial drawdowns and
the strategy’s year-long period of underperformance or losses, the fluctuating
and inconsistent returns cast doubt on the method’s reliability in the examined
market over the specified period.

Tab. 5.5

Start Valley End Days Max Drawdown 99% Max Drawdown

2022 07 12 2022 08 26 2023 05 31 323 −20. 095 866 −19. 652 739

2022 05 31 2022 06 24 2022 06 28 28 −7. 684 061 −4. 585 677

2021 12 01 2022 03 07 2022 05 16 166 −6. 894 592 −5. 888 763

2023 09 12 2023 12 11 2023 12 20 99 −4. 674 510 −4. 579 572

2022 06 40 2022 07 04 2022 07 07 7 −3. 617 322 −3. 279 390

Fig. 5.3

The distribution is notably positively skewed, as displayed in figure 5.4, with
a skewness measure of 0.96. This metric indicates a longer or heavier right tail,
suggesting more frequent occurrences of returns significantly above the mean
than significantly below. This particularity is typically favoured in finance as it
implies the potential for larger gains over losses.
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Fig. 5.4

However, the strategy also exhibits a high kurtosis7 of 41.69. This high num-
ber means the returns are more prone to extreme values, both positive and
negative, than a normal distribution would suggest. While the pronounced
peak implies frequent modest incomes, the fat tails indicate a higher probability
of significant fluctuations, introducing elevated levels of investment risk and
potential for unexpected extreme events.

Figure 5.5 reveals the monthly return percentages, pinpointing July as the
most challenging month, coinciding with central bank policy shifts that intro-
duced significant market volatility. Interestingly, post-policy enactment, the strat-
egy appeared to stabilize and even perform well, suggesting potential market
correction or fortuitous timing.

Fig. 5.5

7. Statistical measure that describes the shape of a distribution’s tails in relation to its central
peak, indicating the presence of extreme values (outliers) in comparison to a normal distribution.
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Given these observations, it seems prudent to reevaluate the approach un-
der different training and testing periods. For instance, recalibrating the model
with data from 2021 and 2022 and then back-testing it for just the most recent
year could provide insights into how the strategy adapts to the long-term ef-
fects of the interest rate shift. This approach would allow for the integration of
this significant market event into the strategy’s parameters. Additionally, using
a two-year window for parameter estimation might offer a more accurate or
relevant basis for predicting the thresholds that trigger trade decisions in the
context of these synthetic spread series.

In our final analysis, we compare our strategy’s performance against the ftse

mib, the benchmark Italian stock index. A cursory review of the performance
graph reveals that the market, like our strategy, struggled during the same
period (figure 5.6).

Fig. 5.6

Tab. 5.6

Cumulative Return 25.15 %
cagr% 8.52 %
Sharpe 0.51

Max Drawdown −27.73 %
Longest DD Days 540

Volatility (ann.) 19.47 %
Calmar 0.31

Skew −0.48

Kurtosis 3.65

Specifically, the market exhibited a
slightly lower Sharpe Ratio compared to
our strategy (table 5.6). Furthermore, the
maximum drawdown was more severe, in-
creasing from 20% to 27.7%, with a longer
recovery period extending beyond a year.
The benchmark’s additional performance
metrics align with the empirically demon-
strated stylize facts: a generally negative
skewness and a kurtosis approaching the
normative value around 3, reflecting typical
market behavior.
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In summary, while the classic cointegration strategy may not have delivered
robust or particularly favorable results during this specific historical period, it’s
important to contextualize its performance by comparing it with its benchmark,
over the same timeframe. This comparison reveals that despite the strategy’s
less-than-ideal results, it still managed to outperform the market.

5.2.2 Strategy 2

After confirming the theoretical soundness and simulated effectiveness of the
model, we proceed to apply the pci approach in a practical context to assess
its real-world profitability. We begin by estimating the vector of parameters
[�, �" , �']. The selection of the most promising asset pairs is based on a set of
criteria. The aic for the par must be lower than that for the AR and RW models,
ensuring we choose the model that best fits the data with the least complexity.
We seek couples with an AR coefficient greater than 0.5 to ensure a substantial
level of mean reversion. Moreover, we require that the proportion of variance
due to mean reversion is over 0.5.

In addition to the metrics expressed in Clegg and Krauss’s research, we
incorporate two auxiliary conditions. We focus on pairs where the AR coefficient
is not only above 0.5 but also below 0.8, as lower values have been associated
with better performance. Finally, to maintain dollar neutrality, we select pairs
where the � is between 0.75 and 1.25.

Upon applying the established conditions, we identify only two asset pairs
that fulfil all the criteria for potential profitability, as shown in table 5.7

Tab. 5.7

Stock Pairs  � � �" �'

srg-trn 0. 742 387 0. 993 45 0. 685 573 0. 034 416 0. 023 692

her-trn 2. 112 866 1. 039 41 0. 560 373 0. 044 284 0. 036 306

Fortunately, both selected pairs exhibit strong performance in the in-sample
back-test, with Sharpe ratios of approximately 1.4 and 1.3, indicating their via-
bility as tradable pairs (table 5.8).

Tab. 5.8

Stock Pairs Sharpe

srg-trn 1. 394 371

her-trn 1. 283 294

Before proceeding to the out-of-sample back-
test, we construct the residual series ,C and isolate
the mean-reverting from the random walk part. Fig-
ures 5.7, 5.8, display the synthetic spreads, the AR
component and its /-score, with horizontal lines
marking the thresholds for initiating and closing
trades.
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Fig. 5.7

Tab. 5.9

srg-trn her-trn

1. 236 072 1. 856 616

When the back-test is carried out to the test dataset,
both pairs demonstrate robust returns, with srg vs
trn yielding 23.6% and her vs trn yielding 85.66%
as we can see in figure 5.9 and table 5.9. Despite a
lacklustre performance in the first year, the strategy’s

returns significantly improved in the second and third years.
We end up with a cumulative return of 53.14%, assuming equal investment

in both stock pairs (figure 5.10). This strategy appears less impacted by the
July 2022 interest rate shifts, showing steadier performance without signifi-
cant volatility spikes. Post the interest rate hike, the strategy’s performance
improved, though it’s unclear if this uptick is directly attributable to central
bank policy changes.

The performance metrics (table 5.10) reveal that market engagement has
decreased to 86% from the previous strategy’s 100%, primarily due to more
frequent but shorter-duration trades. The number of trades has surged from 10
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Fig. 5.8

Fig. 5.9

Fig. 5.10
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to a total of 57, averaging about 10 trades per year. Concurrently, the duration
of trades has reduced from around a month to just a few days.

Tab. 5.10. Partial Cointegration Performance Analysis

Start Period 2021 03 23 Expected Daily % 0.06%
End Period 2023 12 20 Expected Monthly % 1.26%
Risk-Free Rate 0.0% Expected Yearly % 15.27%
Time in Market 86.0% Best Day 3.42%
Cumulative Return 53.15% Worst Day −4.5%
cagr % 16.8% Best Month 7.02%
Sharpe 1.38 Worst Month −3.54%
Prob. Sharpe 98.94% Best Year 31.52%
Smart Sharpe 1.34 Worst Year 0.76%
Sortino 2.14 Avg. Drawdown −1.85%
Smart Sortino 2.07 Avg. Drawdown Days 22

Sortino/
√

2 1.51 Recovery Factor 6.47

Smart Sortino/
√

2 1.46 Ulcer Index 0.02

Ω 1.3 Serenity Index 5.48

Max Drawdown −8.22% Avg. Up Month 3.14%
Longest DD Days 219 Avg. Down Month −1.04%
Volatility (ann.) 11.5% Win Days % 52.81%
Calmar 2.04 Win Month % 55.88%
Skew 0.0 Win Quarter % 75.0%
Kurtosis 4.67 Win Year % 100.0%

N. of trades 57

Despite the potential impact on transaction costs, 10 trades per year are
considered manageable. The notable cumulative return of 53.15% far exceeds
the previous strategy’s 23.25%. A Sharpe ratio of 1.38 indicates a respectable
risk-adjusted performance, especially compared to the benchmark’s lower ratio
of 0.51. The probability-adjusted Sharpe Ratio’s increase to approximately 99%
instills further confidence in the strategy’s robustness. Enhanced performance
is also evident in other metrics like the Sortino Ratio and Ω, all of which are
superior to those of the previous approach.

The strategy exhibits manageable drawdown levels (table 5.11), with the
highest being only 6% and a recovery period of no more than three months for
losses, aside from the initial unprofitable year.

Tab. 5.11

Start Valley End Days Max Drawdown 99% Max Drawdown

2021 08 17 2022 03 21 2022 03 24 219 −8. 219 499 −7. 370 208

2022 03 30 2022 04 05 2022 04 20 21 −7. 874 333 −6. 128 989

2022 08 10 2022 08 29 2022 11 07 89 −4. 463 634 −4. 154 324

2023 06 07 2023 07 17 2023 09 11 96 −4. 001 707 −4. 848 091

2023 01 16 2023 02 27 2023 03 23 64 −3. 691 508 −3. 611 328
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The higher number of trades in this strategy yields a symmetric distribution
of returns (figure 5.11), approximately zero skew, and a kurtosis of 4.67, aligning
closely with a normal one. Although the positive skew of classical cointegration
is generally favourable, its lower trade frequency can cast doubt on its effec-
tiveness. Conversely, the pci model’s increased market executions lend more
credibility to its results.

Fig. 5.11

Fig. 5.12

Figure 5.12 detailing monthly results suggests that while it would have been
illustrative to see the cointegration strategy falter post-July 2022 – thereby high-
lighting the par model’s capability to mitigate the effects of permanent shocks
not addressed by traditional cointegration – the reality is different. Contrary
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to expectations, the cointegration strategy actually performed better after the
central banks’ decision. Notably, this strategy began to excel even before the
rate change, presenting a contrast to the anticipated narrative.

In conclusion, by comparing our strategy’s performance with the ftse mib

in figure 5.13, it seems that shortly after the market began to decline, our method
started to generate profits. The fact that it earns during market downturns, while
the benchmark index declines, indicates that the strategy is market-neutral and
not correlated with general market trends.

Fig. 5.13

The strategy significantly outperforms the Buy and Hold approach on the
Italian Index, evidenced by its 53.15% return compared to the benchmark’s
25.15% and a superior Sharpe Ratio of 1.38 against the benchmark’s 0.51 (ftse

mib performance metrics are shown in previous Subsection 5.2.1). It excels
across various performance metrics, including trade frequency and controlled
drawdowns. However, the reliance on just two pairs raises questions about the
breadth and luck factor in its success. Therefore, expanding the study to include
a larger sample beyond 40 stocks would provide a more comprehensive and
credible evaluation of the strategy’s efficacy.

5.3. Value-at-Risk Computation

Value at Risk (VaR) is a widely used risk management tool that quantifies the
potential loss of a risky asset or portfolio over a defined period, for a given con-
fidence level. Essentially, VaR provides a probabilistic estimate of the minimum
loss expected from an investment over a specified time frame due to market
risks. It’s particularly useful in financial institutions for determining capital
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reserves, risk management, and regulatory compliance.
Instead, Conditional Value at Risk (CVaR), also known as Expected Shortfall

(ES), is a risk assessment measure that provides an estimate of the expected
losses that will occur beyond the VaR threshold within a given confidence level.
Unlike the first one, which gives a threshold value for losses, CVaR gives the
average of the losses that exceed the VaR, effectively capturing the tail risk or
the extreme loss scenarios.

We will explore and calculate the potential future losses using two different
approaches: a historical one and parametric one.

5.3.1 Historical and Parametric VaR

The Historical VaR method involves computing the potential loss by directly
examining historical price movements or returns of the asset or portfolio. By
ranking these historical changes from worst to best and selecting a percentile
that corresponds to the desired confidence level, Historical VaR directly reflects
the observed variability and distribution of returns over the chosen historical
period.

Fig. 5.14

When comparing the historical outcomes at 99% confidence level between
cointegration and partial-cointegration (figure 5.14), the second demonstrates a
lower VaR, indicating a reduced risk level. Specifically, the partial-cointegration’s
VaR is −1.58 compared to the cointegration’s −1.91, both suggesting a mod-
erate risk of loss. A more pronounced difference emerges when considering
Conditional VaR. Here, the partial-cointegration strategy shows a CVaR of ap-
proximately −2.57, significantly lower than the cointegration strategy’s −3.95,
as shown in table 5.12. This indicates that the partial-cointegration method not
only has a lower average loss beyond the VaR threshold but also a diminished
likelihood of incurring large, extreme losses, providing a more favorable risk
profile especially in the tail ends of the loss distribution.

Unlike the Historical VaR, Parametric VaR assumes that asset returns are
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Tab. 5.12

Cointegration pci

Historical VaR (99) −1. 910 044 552 074 3254 % −1. 582 153 720 815 9167 %
Historical CVaR (99) −3. 955 276 809 954 533 % −2. 568 303 842 317 08 %

normally distributed and utilizes the mean and standard deviation of these
returns to estimate risk. It calculates VaR using the formula VaR = / �

√
C,

where / is the value related to the desired confidence level (e.g., 1.65 for 95%
confidence), � is the standard deviation of the returns, and C is the time horizon.
This method is computationally straightforward and allows for easy aggregation
of risks across different assets. However, its reliance on the normal distribution
assumption and a constant volatility may not capture extreme events or changes
in market conditions effectively.

Even with the alternative method, the results affirm that the partial cointe-
gration (pci) strategy presents lower VaR and CVaR values compared to the
traditional model, with an increased difference particularly in the CVaR. The
historical approach, which yields slightly better results than the parametric one,
emphasizes its effectiveness due to its reliance on actual market data, capturing
anomalies and extreme market conditions more accurately (table 5.13).

Tab. 5.13

Cointegration pci

Parametric VaR (99) −1. 947 288 394 326 874 % −1. 620 563 611 998 130 %
Parametric CVaR (99) −4. 246 453 854 000 351 % −2. 708 941 879 226 996 %

5.4. Other Considerations

Upon comprehensive analysis of the model both theoretically and practically,
we are prepared to offer final observations and suggest avenues for future re-
search. Notably, neither of the strategies employed a stop-loss mechanism. In
cointegration, it might be prudent to implement a stop at levels of ±4 standard
deviations, while for partial cointegration, following Krauss’s academic sugges-
tions, closing trades at a 10% loss could be considered. Additionally, time-based
stop-loss mechanisms, such as automatically closing trades after a set duration,
could significantly impact strategy performance and should be explored.

Transaction costs, including commissions, the impact of bid-ask spreads and
slippage,8 were not accounted for in our analysis. Even though the trade fre-

8. The difference between the expected price of a trade and the price at which the trade is exe-
cuted.
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quency is moderate, incorporating these costs is crucial for a realistic assessment
of strategy profitability.

Finally, integrating machine learning could offer a dynamic approach to both
classical cointegration and partial strategies. Parameters could be estimated over
a specific in-sample period (e.g., a month) and then applied in trading for the
subsequent 15 days (out-sample), followed by a rolling window adjustment.
This method, although computationally intensive, would adapt more fluidly to
changing market conditions, and it would be interesting to analyze the outcomes
of such approach.





6. Conclusion

In conclusion, our research demonstrates how, in the current financial landscape,
not only have traditional macro strategies and technical analysis seen a decline
in their potential, but even quantitative approaches of a relatively simple nature
are experiencing diminished effectiveness. This can be attributed to the fact
that the widespread adoption of simplistic strategies leads to market efficiency
against these methods, consequently reducing the profitability of such simplistic
strategies. In contrast, more complex quantitative approaches, which are less
commonly employed, still present opportunities to exploit market inefficiencies
for profit. The complexity and competitiveness of the ever-evolving financial
market dictate that profitability for traders today necessitates a continual pursuit
and study of innovative models to seize opportunities not yet recognized by
competing traders.





Appendices

a. Identifiability

This appendix details the conditions for the identifiability of a system from its
data. A system is identifiable if two conditions hold true for a pair of series -1

and -2 : to begin, the first differences of -1, therefore (1− �)-1,C , are stationary;
and second, these differences are independent from the first differences of a
noise and market impact term, (1− �)("C + 'C).

To confirm the identifiability of a system, we analyze its state space represen-
tation. Identifiability is assured if the first difference of -1,C , denoted as �C and
having variance �2

G , is independent from the noise &",C and &',C . The first differ-
ence of -1,C is then independent of the combined market and noise impact term
(1− �)("C + 'C), leading to a zero covariance between �C and (1− �)("C + 'C),
so

Cov
[
�C , (1− �)("C + 'C)

]
= 0.

Considering this, the first difference of -2,C is expressed as (1− �)(�-1,C +"C +
'C). The covariance between the first differences of -1,C and -2,C can be broken
down into two parts: the covariance of �C with itself and the covariance of
�C with the impact term, the latter of which is zero. Thus, the covariance is
simplified to � times the variance of �C . In other words:

(1− �)-2,C = (1− �)(�-1,C +"C + 'C) = ��C + (1− �)("C + 'C).
Consequently,

Cov
[
(1− �)-1,C , (1− �)-2,C

]
= Cov

[
�C , ��C + (1− �)("C + 'C)

]
=

= Cov[�C , ��C] +Cov
[
�C , (1− �)("C + 'C)

]
=

= �Var[�C].
The parameter � is recoverable via the ratio of the covariance of the first differ-
ences of -1,C and -2,C to the variance of the first difference of -1,C :

� =
Cov

[
(1− �)-1,C , (1− �)-2,C

]
Var

[
(1− �)-1,C

] .
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Once � is obtained, the serie ,C can be computed:

,C = -2,C − �-1,C = "C + 'C .
the sequence ,C is recognized to be partially autoregressive and identifiable
(Clegg, 2015). Knowing that

E: = Var
[
(1− �:),C

]
,

we can estimate the subsequent parameters:

� = −
E1 − 2E2 + E3

2E1 − E2

, �2

" =
1

2

� + 1

� − 1

(E2 − 2E1), �2

' =
1

2

(E2 − 2�2

").

b. Likelihood Function Proof

Let ΘC represent the information set available up to and including a specific
point in time, C, and let Φ symbolize the set of parameters [�, �, �- , �" , �']. With
-1, -2, . . . , -= denoting the sequence of observations, and Φ the corresponding
parameter values, the likelihood function can be expressed accordingly as

ℒ()) = ?(-1 |Φ)
=∏
:=2

?(-: |Θ:−1,Φ).

Through the Markov property the expression becomes

ℒ()) = ?(-1 |Φ)
=∏
:=2

?(-: |-:−1,Φ).

We can extend this expression for the element -C obtaining

ℒ()) = ?(-1,1,-2,1 |Φ)
=∏
:=2

?(-1,: ,-2,: |-1,:−1,-2,:−1,Φ).

We remember from the rules of probability that ?(�, �|�) = ?(�|�,�) ?(�|�).
Concentrating only on this term of the product ?(-1,: ,-2,: |-1,:−1,-2,:−1,Φ) we
have

?(-1,: ,-2,: |-1,:−1,-2,:−1,Φ) =
= ?(-2,: |-1,:-1,:−1,-2,:−1,Φ) ?(-1,: |-1,:−1,-2,:−1,Φ)

We advance by individually assessing the two terms on the right side of the
preceding equation, beginning with the first term for analysis

?(-1,: |-1,:−1,-2,:−1,Φ) = ?(-1,: −-1,:−1 |-1,:−1,-2,:−1,Φ) =
= ?(&-,: |-1,:−1,-2,:−1,Φ) =
= )(&-,: ; 0, �2

-).
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Here, ) symbolizes the probability density function of the normal distribution
characterized by a mean of zero and a variance of �2

-
. To assess the probability

?(-2,: |-1,:-1,:−1,-2,:−1,Φ) we observe that

-2,: − �(-2,: |-1,:<Θ:−1,Φ) = �-1,: +": + ':+
− �(�-1,: +": + ': |-1,:Θ:−1,Φ) =

= ": + ': − �(": + ': |-1,: ,Θ:−1,Φ) =

= ": − �(": |-1,: ,Θ:−1,Φ)+
+ ': − �(': |-1,: ,Θ:−1,Φ) =

= �":−1 + &",: − �(�":−1 + &",: |-1,: ,Θ:−1,Φ)+
+ ':−1 + &',: − �(':−1 + &',: |-1,: ,Θ:−1,Φ) =

= &",: − �(&",: |-1,: ,Θ:−1,Φ)+
+ &',: − �(&',: |-1,: ,Θ:−1,Φ) =

= &",: + &',: .

And so

?(-2,: |-1,:-1,:−1,-2,:−1,Φ) = ?(&",: + &',: |-1,:-1,:−1,-2,:−1,Φ)
= )(&",: + &',: ; 0, �2

" + �
2

').
Integrating the previously discussed components and revisiting the likelihood
function, we arrive at a comprehensive formula that encapsulates all the anal-
ysed elements:

ℒ()) = ?(-1,1,-2,1,Φ)
=∏
:=2

?(-1,: ,-2,: |-1,:−1,-2,:−1,Φ) =

= ?(-1,1,-2,1,Φ)
=∏
:=2

)(&-,: ; 0, �2

-))(&",: + &',: ; 0, �2

" + �
2

')

= ?(-1,1,-2,1,Φ)
( =∏
:=2

)(&-,: ; 0, �2

-)
) ( =∏

:=2

)(&",: + &',: ; 0, �2

" + �
2

')
)

= ?(-1,1,-2,1,Φ) ℒ-(�-) ℒ"'(�, �, �" , �').
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