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ABSTRACT

The realm of energy trading is at its early stages, marked by the relative novelty of this domain. Despite

being an nascent field, recent years have witnessed the formulation of various strategies in the market,

encompassing both speculative approaches and the management of physical assets.Traditionally, the

implementation of speculative strategies in the energy market has been considered peripheral, often

standing alongside financial hedging trading practices. This form of trading involves companies seeking

to mitigate risks associated with energy price fluctuations by safeguarding contracts through financial

transactions.This thesis diverges from the conventional by developing a wholly speculative strategy, akin

to bot trading prevalent in financial markets. The approach employed focuses on pure financial commod-

ity trading to define profits. The research demonstrates that profitable strategies can be cultivated in the

energy market through the exclusive utilization of statistical forecasting (employing ARIMA model estima-

tions) and data modeling techniques.The financial instruments under scrutiny in this study, specifically

Italian power futures Q121, Q221, Q321, Q421 quoted in 2020, and Q122, Q222, Q322, Q422quoted in

2021.The overarching vision of this thesis postulates that, in the forthcoming years, the energy market

will increasingly resemble the stock market. Speculative strategies, detached from reliance on assets or

client contracts, are anticipated to become the prevailing norm.
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INTRODUCTION

The objective of this thesis is to develop a profitable trading strategy based on the Italian power futures

prices of the 2022 quarters and 2021 quoted in 2021 and 2020; a comparative analysis will be carried

out to choose on which quarter to implement the trading strategy and obtain the desired ROI. The data

that are going to be used are from 2020 and 2021 because the aim of this thesis is to find a trading

strategy that can be used in the future to predict the market. Both data before 2020 and those after 2021

aren’t enough good (the first because the market was stationary and the second because the fundamen-

tal price of the commodities is lower than the actual level). So the data of 2020 and 2021 are useful

to understand the future because we will have a market that is going to be near the fundamental until

news and other driver are going to create a bull pattern. The data of this two year are useful because

represent this situation a period of stability that is going to be change by the geopolitics. The market in

the future is not going to be stable as before and overreacting as it was in the past, its going to be at

midpoint.It is important to think about the situation of Houti and Gaza.1 .These two events would have

created great bull movement in the past but since the market is now used to similar situations such as

the Russian war, it is not overreacting. Often in energy companies especially in Italy a type of hedging

or Market access trading is implemented to hedge contracts, speculative trading is less and less used

especially after the numerous bankruptcies of energy companies that used speculative energy trading a

lot during the beginning of the Russia Ukraine War. In this thesis, a trading strategy will be developed

which, however, does not 100% represents the "quintessential" speculative trading strategy in the energy

trading world; an attempt will be made to use a method that can also be reused in other return-based

asset classes.The "typical" strategy of energy trading instead is to receive orders for energy contracts

(example PSV DA.2 3, several quarters etc.) "hold them in panic" and then decide when to execute them.

In conventional energy trading, a common practice involves waiting for opportune moments to capitalize

on more favorable prices, thereby yielding profit margins. For instance, when an order materializes for 1

GW of power for the first quarter of 2021 (Q121), traders typically opt to delay transactions until prices

are deemed advantageous. However, this thesis pioneers an alternative methodology. This innovative

approach commences with meticulous data initialization, wherein dates and daily prices are meticulously

recorded. Specifically, prices and data pertaining to the quarters of 2021 are quoted in 2020, while those

for the quarters of 2022 are quoted in 2021. To validate the efficacy of forecasting models, the thesis em-

ploys a rigorous cross-validation methodology. Cross-validation encompasses resampling and sample

splitting methodologies, leveraging distinct segments of the dataset for both model training and testing

across numerous iterations. This technique is particularly prevalent in predictive contexts, where the

primary aim is to evaluate the model’s predictive accuracy in real-world scenarios. Typically, the model

is trained on a dataset comprising known data, termed the training dataset, and subsequently evaluated

on a dataset of unseen or first-seen data, known as the validation dataset or testing set. The overarch-

1https://ctc.westpoint.edu/houthi-war-machine-guerrilla-war-state-capture/
2The PSV DA is the PSV spot
3The acronym PSV stands for Virtual Exchange Point, the place where the exchange or sale of natural gas takes place, the

meeting point between gas supply and demand in Italy
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ing objective of cross-validation transcends mere model validation; it serves to uncover potential issues

such as overfitting or selection bias, thus providing insights into the model’s generalizability to unseen

data. By subjecting the predictive model to diverse datasets, including those unseen during the training

phase, cross-validation offers a robust framework for assessing the model’s reliability and performance

in practical energy trading scenarios. First, the price returns are going to be estimate over the duration

of the sample. After that, the log returns will be estimated. The third step and modeling using the ARIMA

as done by Newbold (1983), Box et al. (2015) models, to estimate the different forecasts. There will be

the comparisons of the forecasts on the graph and then the mean square deviation using the return that

occurred as a reference, from there than the mean square deviation will be the best estimation since

the smaller the mean square deviation the closer it is to the reference return.The mean square errors

measures the extremely useful dispersion defined as the square root of the sum of the quadratic devia-

tions from the arithmetic mean, divided by N. After that as done by Mincer and Zarnowitz (1969),Byun

and Cho (2013),Boos and Grob (2023), we are going to do the Mincer and Zarnowitz regression on the

various samples. The final step before trading strategies is the Diebold Mariano Test as done by Chen

et al. (2021), which will be used to decree the best forecast. The best forecast will be used for the Trading

strategy. The application will be done by defining two confidence intervals one lower and one higher and

depending on whether the return will rise above or below the intervals there will be stock decisions. At the

end of the process the ROE of the different quarters will be calculated. The best quarters with the best

performance is going to be select. Prior to delving into practical applications, this thesis will be struc-

tured into five comprehensive chapters, each delving into distinct facets of energy trading and market

dynamics. Chapter 1: FUNDAMENTALS OF ENERGY MARKET WITH FOCUS ON ITALIAN POWER

MARKET: The inaugural chapter serves as a foundational exploration into the intricacies of power fun-

damentals, elucidating the mechanisms of supply and demand within the electricity market. Notably, it

sheds light on the fundamentals of various European countries, offering insights into their energy infras-

tructure, regulatory frameworks, and market dynamics. A significant focal point of this chapter will be the

discussion surrounding the challenge of market illiquidity, dissecting its underlying causes and potential

ramifications on trading strategies and market efficiency. Chapter 2: RELATIONSHIP AND INFLUENCE

OF GAS AND ITALIAN POWER MARKET: Chapter two shifts focus towards the domain of gas trading,

providing a comprehensive analysis of its fundamentals. Special attention will be devoted to examining

the geopolitical landscape, particularly the dynamics surrounding gas supply and distribution, with a keen

eye on the situation involving Russia. Furthermore, this chapter will undertake an analysis of prominent

gas trading hubs, such as PSV (Punto di Scambio Virtuale) and TTF (Title Transfer Facility). Chapter 3:

METODOLOGIES FOR THE TRADING STRATEGIES: The third chapter offers an expansive overview of

the statistical and econometric instruments that underpin the analysis and forecasting of energy markets.

By delving into established methodologies such as ARIMA models and regression analyses, this chapter

equips readers with the necessary tools to navigate the complexities of energy market data. Chapter

4:TRADING STRATEGIES: Chapter four marks a pivotal juncture in the thesis, wherein the focus shifts

towards the development of trading strategies aimed at optimizing profitability. Through a synthesis of

empirical data and theoretical frameworks, this chapter endeavors to identify the most lucrative quarters

8



for energy trading. By leveraging insights gleaned from preceding chapters, such as market dynamics

and statistical analyses, this section aims to formulate data-driven strategies tailored to exploit market

inefficiencies and capitalize on emerging trends. Chapter 5: CONCLUSION: The concluding chapter of-

fers a retrospective analysis of the results obtained from the preceding chapters, contextualizing findings

within the broader landscape of energy trading. Moreover, it proffers insights into potential avenues for

future research and implementation, offering recommendations for refining existing methodologies and

exploring untapped opportunities within the energy market. By synthesizing key takeaways and impli-

cations, this chapter aims to furnish readers with a comprehensive understanding of the intricacies of

energy trading and pave the way for future advancements in the field.
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Chapter 1

FUNDAMENTALS OF ENERGY

MARKET WITH FOCUS ON ITALIAN

POWER MARKET
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1.1 Introduction

The Energy Market defines the power price (electricity price) of each country by relating the market’s

electricity demand to the electricity supply in the same market. In determining the price, a normal is

often considered, which represents the different values of the fundamentals of both demand and supply.

Some important variations, which may be both negative and positive, below and above the normal, lead

to variations in the DA power price since the power price is developed the day before, through the study of

the different fundamentals and the market news; analyzing these elements the price of the following day is

developed. The Power price of each CWE country.1 and of the other European countries is volatile and is

represented by the supply-demand relationship which is also variable and difficult to predict in the medium

to long term. When talking about the energy market it is very important to define that energy cannot be

stored and, especially for the transportation of energy, you need specific laws. When they say that energy

cannot be stored, it is thus partly true; on the other hand, you had better say that it cannot be stored for

a reasonable cost. One way to store energy is to use and generate hydropower reserves. However,

this cannot be done in all the countries since, as we will see later, it depends on various fundamentals

and, above all, it must be said that to create an industry that produces hydropower energy and makes

reserves, must need favorable weather conditions. About the storage depend, for sure the transportation

can be done. The transport of electricity occurs through Kirchhoff’s law2. Basically, this law states that

the intensity on all nodes must be zero, the voltage in all loops must be zero. The transfer capacities that

are available for the exchange among the states first need to generate the hypothesis and then they can

take place. As concerns the NTC net capacity transfers, it is handled by ENTSOE (European Network

System Operator for Electricity). In the first year of using European and continental energy markets, an

auction mechanism was used. This method was very simple and caused so much inefficiency in the

market and adverse inflows (as a matter of fact, there were coordination problems between the markets

and the transmission capacities). Over the years, market participants have developed and implemented

the possibility of trading among different areas; this method has been used by different players in the

continental energy market under the name of market coupling.

1.2 Market Microstructure

In each country the market structure is made up of different purposes and different times scales. Is

possible to distinguish three types of markets: 1) The intraday market and/or the balance mechanism:

the balance mechanism consists of exchanges intraday and Spot and market players to make sure that

there are energy exchanges at the balance between generation consumption of consumers; 2) The day-

1Central West Europe (covering Benelux, France and Germany)
2Kirchhoff’s circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in

the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. This
generalized the work of Georg Ohm and preceded the work of James Clerk Maxwell. Widely used in electrical engineering, they
are also called Kirchhoff’s rules or simply Kirchhoff’s laws. These laws can be applied in time and frequency domains and form the
basis for network analysis. Both of Kirchhoff’s laws can be understood as corollaries of Maxwell’s equations in the low-frequency
limit. They are accurate for DC circuits, and for AC circuits at frequencies where the wavelengths of electromagnetic radiation are
very large compared to the circuits.
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ahead market: quantities are traded the day before being deliberated for the next 24/48 hours of the

following day. 3) The futures market: in this case, companies, individuals, investment banks, those who

are part of the market can trade energy for future times, for example, they may decide to trade a defined

amount of energy for the coming quarter. Focus on the Intraday market is can discovered that. In the

short term, energy market participants will define the price and the balance between generation and

consumption of their portfolio. The short time frame taken into consideration will be approximately 12

hours. The TSO will be more focused on making sure that there is a balance between generation and

consumption within the system. Thus, within the intraday market, two systems coexist: the first one is

designated by the TSO which takes into account the budget mechanism that adjusts the generation and

the consumption while the other system is composed by cost cutters who trade and generate to reduce

and satisfy their own energy needs. The day ahead structure is about the day ahead market that is

based on a fixed supply of trading. Every day before 12 a.m. Market participants begin to insert some

Bids which will then determine the price for the following day . In the European Union each country has

its own day-ahead market. If there’s no coordination, prices among the countries will be too different; for

this reason, to make countries have the same prices market coupling is used.

1.3 Electricity Demand Fundamentals

Electricity demand is a very important factor in price setting; it can be defined as the main driver of the

daily settlement of a DA spot price in Europe. It depends on various factors such as temperature, spot

energy prices, general energy sentiment, geopolitics, news and other less important factors. Of course,

each country is influenced by these drivers, in different proportions. In France, for example, an increase

in temperature in summer or a decrease in winter can drive up the demand and consequently the price

since heating in France is fully electric and therefore temperature is a very important driver. The ratio in

the transalpine country is in summer for every degree increase in temperature and a rise in consumption

by 2000 MWh/h (2 GWh/h). In summer, above-normal temperature rises lead to proportional increases

in demand. Of course, if the other fundamentals led to a bullish view, the price would spike high in

the market. In winter, on the other hand, below-normal temperatures will lead to price spikes because

electricity demand will be pushed up (by the use of radiators and other types of heaters). In this time

of the year, the industrial demand is the main driver in the market demand so much so that it is crucial

to define what the normal of industrial consumption is in a country because if the Gaussian were to be

overestimated or underestimated, the DA Power price that would be defined would be completely wrong.

Industrial demand in recent years has decreased due to the relocation of many European industries: the

crisis, the covid and the increase in energy prices following the Russian invasion of Ukraine.3 have led the

electricity market to prices that had never been reached before due to an extremely high speculation and

the crisis of fundamentals that had only predicted a bullish market trend (low gas storage, dependence

on Russia, sanctions against Russia, intrinsic fear in the market, etc.).

3The 2022 Russian invasion of Ukraine is the military offensive initiated by the Armed Forces of the Russian Federation on
February 24, 2022, invading Ukrainian territory and thus marking an abrupt escalation of the ongoing Russian-Ukrainian conflict
since 2014
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1.4 Electricity supply fundamentals

The electricity supply must be able to meet the electricity demand. It may happen that at certain times,

the energy required to meet electricity demand is not attainable given non-productive fundamentals in the

different European countries. So, the goal for a country is to have much higher installed capacities than

demands so that there are no periods where demand cannot be met and the price becomes unmanage-

able. Here it is also important for a country to study the balance between consumption and generation in

real time since an imbalance can lead to blackouts and production stoppages on the side of companies

and stops in consumption on the side of consumers. Talking about energy reserves, they are capacity

generators that can be used given advance notice. This, however, depends on the response time of

the generators. There are various types of reserves: the primary reserve and the secondary reserve, in

some cases even a tertiary reserve. As concerns the primary reserve, it can be mobilized in less than 15

minutes and, in this case, the national system operator will place the order. The secondary part is after

15 minutes. The tertiary reserve, on the other hand, consists of two parts: the first one is fast and can be

mobilized in 15 minutes, up to an hour and can be a complementary factor to the secondary demand. To

give an example, in France, the minimum demand values per hour are 50 gigawatts in no -peak hours up

to 100 gigawatts in peak hours in summer. The fundamentals of electricity supply vary among the differ-

ent European countries and the CWE ones. We can distinguish between two types of supply: one is the

renewable supply, which comes from clean, the so-called green, sources; the other supply comes from

nuclear or continuous-cycle, non-renewable sources (coal- red power stations, gas- red power stations

and waste-to-energy plants). The peculiarities of the two offers are: 1).The main sources of renewable

production.4 are wind, solar and hydropower . The wind supply is divided into onshore and offshore

wind. Renewable supply, for example, energy derived from renewable sources, is characterized by its

dependence on weather factors. Of course, renewable energy sources are neither a closed-cycle or a

continuous cycle; they are dependent on weather conditions. Wind depends on the windiness, so the

construction of these types of renewable sources usually takes place in areas characterized by a high

presence of constant and strong wind. If the weather conditions do not foresee a high wind, naturally

the production will be much lower and non-performing, and therefore there will be a non-continuous pro-

duction. To give a concrete example, Germany is a country that has focused so much on renewable

energy sources, especially on wind power, so when there are weeks of high wind strength in Germany,

the power price can even become negative because there is a disproportionate supply compared to a

much lower demand. Solar power also depends on weather conditions, especially on the intensity of

the sun and of the temperature. It is important for photovoltaic panels to be located in areas where the

presence of sunlight is constantly high, for example, areas that are not cloudy but have a high degree

of solar penetration. The temperature, on the other hand, can be a bearish factor for the performance

of solar panels because, since the semiconductors inside the silicon solar panels are made of silicon,

high temperatures may reduce the performance of the solar panels Hydrological production depends on

4This is an important driver of the prices too, because when there is a great production by renewable energy the prices are low
because the cost of renewable energy are lower than other sources
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rainfall, on the level of rivers and the amount of snow in the Alps and the Apennines (always referring

to Italy). 2.)Continuous cycle production such as nuclear power and non-renewable energies like gas

and coal are certainly more stable and more reliable as sources of production.They are internal cycles

; this means that production takes place entirely within the power plant and is not often influenced by

exogenous factors. The only factors that can influence them are the CCS and DSS (clean spark spreads

and dark spark spreads), which for gas and coal-fired power stations represent the production costs for

gas and the dark represents the production costs for coal-fired power stations.Of the three types of pro-

duction, nuclear power plants are the least reliable and can lead to very high market spikes, as they are

producers that can satisfy the needs of entire municipalities and entire cities and therefore any planned or

unplanned maintenance can lead to very high supply spikes, which, especially in situations of sustained

demand, both for temperatures well above normal in summer and for temperatures well below normal in

winter, lead to increases in demand and in price France is the perfect example for analyzing the nuclear

power plant supply situation as it is very dependent on nuclear production so if several nuclear power

plants are not in production, the French Power price will certainly rocket upwards creating high market

mirrors and a very bullish Power price. In Europe over the past few years there has been a trend, which

is being reinforced this year, to increase renewable energy sources in all countries except for France,

where there are plans to increase nuclear production and not support renewables, which, on the con-

trary, in Germany and Spain have now become the country’s main production. Interconnections.5 are a

fundamental supply driver that is very often overlooked because we tend to erroneously consider only the

supply from renewables and non-renewables, high and low efficiency, oil, etc. Interconnections, on the

contrary, are a fundamental supply driver for the energy sector and the definition of the price. An exam-

ple is given by the relationship between France and Germany, so when France has days when demand

is high and nuclear supply is in crisis, Germany, if it has a high level of sustained supply, can support

France and balance and support the price so that it doesn’t rise much. The interconnections are valid in

all European countries; another important example may be given by France and Great Britain, the two

countries can indeed support each other if Great Britain has a lower demand in high supply and Germany

vice versa has a high demand in low supply, Great Britain will be able to pass energy and support France

thus stabilizing the Power price .

5Interconnections are also important for trading strategies such as on the JAO platform where one can buy cables for days,
weeks and months between one country and another and thus has the right to transfer Power from one country to another and
therefore speculate on the price spikes that can occur in one or more countries and on the spread between the two countries
sharing cable bought by the trader or the trading company willing to speculate on the spreads between prices.
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1.5 Fundamentals: France

France is one of the most important countries within the European Union with the second largest popula-

tion after Germany. France represents a peculiar situation within the European energy scene as it is one

of the main industrial powers in Europe, it has many consumers and is dependent on nuclear energy.

Nuclear power is the most important source thanks to which France is able to meet its power consumption

needs. This peculiarity may also represent a challenge for the transalpine country because the French

demand is a consistent one that depends on the variability of the temperature (indeed all systems , even

the domestic ones, are completely electric). This is another characteristic, even compared to Italy, which

mostly has domestic gas sources. In summer, for every degree above normal you have 1000 megawatts

more of consumption and in winter when it’s -1° you’ll have 1000 megawatts more of consumption. The

other renewable sources in France are not as important as nuclear power, which accounts for almost

60% of production. As concerns wind, this is in any case quite interconnected with German wind in the

sense that they very often have the same variations, perhaps being in nearby areas. Another country,

which is very much interconnected with France, is Great Britain, which is an equally important country

for the production of energy consumption within the European continent.

Figure 1.1: In this graph, the sources for electric generation in France are depicted. The violet segment
represents nuclear production, which peaked at 69% of total production in 2021. Gas is represented by
the blue segment, accounting for 7% of the total. Hydropower is represented by the light blue segment,
constituting 13% of the total. Solar energy is depicted by the yellow segment, representing 3% of the
total, while wind energy is shown in the green segment, comprising 7%. The remaining 2% is attributed to
other sources, represented by the remaining portion of the graph.Graph taken by https://aleasoft.com/it/

The peculiarity of France is that it has an inelastic market; it has macro reactions which sometimes are

exaggerated even towards soft movements of the nuclear supply. As a consequence, the main bullish

factor in Europe, which can lead to changes in the market, depends on the constant and continuous

maintenance of the French power plant, which in any case does not give great stability to the European

power price . In recent times, however, the low level of nuclear production has also been helped by

a contraction in demand. Demand in France has been fairly high, although it has recovered since last

spring, whereas before that it used to be fairly below or close to the norm. This is also due to prices,
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which two year reached new heights and historical records as bullish prices, especially after the war in

Ukraine and the sanctions against Russia, which brought uncertainty and above all a bullish wave to the

European Power market. So to cut a long story short, the fundamentals in France are represented by

the nuclear offer.

1.6 Fundamentals: Germany

Germany is the locomotive of Europe with the highest industrial production on the continent, the highest

industrial demand on the continent and above all the country with the highest population within Europe.

The Teutonic country alone has an electricity demand equal to half of the entire European electricity

demand, so the German power price manages to influence the entire European power price, being by

far the most important country and the country that manages to converge the most in terms of energy

production. In recent years, Germany has been known to invest heavily in wind and solar technology and

this has led it to cover half of its production with renewable technology in the spring and in the windiest

months, when prices are even negative. This is not strange because Germany has a wind production

force that can satisfy and lower the power price, even if it is bullish in France and in other interconnections

and above all it can bring down the power price in its own country. So the effect of this export benefits

other countries within the continent Central Europe when Germany’s strong wind power on average has

a price at a much lower price than expected because this is also a low-cost energy being renewable. In

addition, last year, it has been decided to close the nuclear power plants, which represented about two

and a half gigawatts of production per hour, and also to reduce the production of coal-fired power stations

(coal used to be an important production tool for Germany).
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Figure 1.2: In this graph,is defined the shares of energy sources in gross German power produc-
tion in 2023. The violet segment represents nuclear production, which peaked at 7,2% of total pro-
duction in 2023. Lignite is represented by the brown segment, accounting for 17% of the total.Hard
Coal is represented by the light black segment, constituting 8,6% of the total. Renewables energy
is depicted by the orange segment, representing 52% of the total. Gas in grey is 15,6% and Min-
eral oil is 1% ,other 4,5% .Graph from https://www.cleanenergywire.org/factsheets/germanys-energy-
consumption-and-power-mix-charts

The German country has become a point of reference for other European countries, which are trying to

shake off old, highly polluting productions and achieve low-cost productions with a very low or even zero

environmental impact. However, as mentioned earlier, this means that Germany is also very dependent

on weather conditions, even though Germany can reopen coal-fired power stations and repair everything

in low-wind conditions if it wishes, but this would lead to heavy pollution. Anyway, as it has just said,

summer 2024 and the first three months of 2025 will be crucial, because any shocks caused by low

nuclear offers in France could drive the market into a bullish perspective and Germany will not be able

to offset the market upturn with wind power production. As is possible to see in the figure Germany

has particular fundamentals, which are a strong presence of renewables, but, along with this, a strong

presence of coal-fired and gas-fired power station productions.

1.7 Fundamentals: Italy

Consumption in Italy is very similar to that in the UK, both in terms of population and type of consump-

tion. The Italian production share is characterized by a high dependence on the gas source. About half

of our country’s average annual electricity production is usually satisfied by this source. Before the war in

Ukraine, Russia was its main supplier. Currently, a diversification of supply is taking place thanks to coun-

tries such as Libya, Algeria and Azerbaijan which suffer from lack of stability. That is why the regulator and

the governor are pushing for an increase in renewable energy through incentives and other instruments.
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Other less obvious dependencies concern the correlation with hydroelectric production being renewable

in general, especially wind, which is mostly present in Southern Italy, but low-cost technologies influence

the price by lowering it. Gas dependency is a key factor since the Italian power price depends on the

quotation of TTF gas. The PSV which is the gas quoted in Italy is not very liquid so the Dutch one is

taken as a reference. Seasonality is reflected in different productions from renewable sources. This has

a calming effect on the PUN, which is usually lower between winter-spring, when first wind, then solar

and hydro productions are higher. In recent years, the increased volatility of renewable production and

especially drought are making the calming effect of renewables less evident and predictable.

Figure 1.3: The distribution of energy supply in 2022.There is the natural gas that is the most important
with 40.5%, after oil 35.3%,Biofuels 10.2%,wind solar and others 6.9%,coal%5,4 and Hydro 1,8%. taken
by statista.com.

1.8 The problem of liquidity

It was seen how the TTF Calendar 2024 quotation suddenly rose and the spread reacted promptly, but

unexpectedly. As Italy is more sensitive than Germany to the gas price, analysts would have expected

to see Italy higher than Germany with a positive spread instead the opposite happened. The more liquid

Germany absorbed the increase in gas prices more quickly by raising its price while the less liquid Italy

followed the trend late, causing the spread to open in a negative direction. Liquidity is a very important

issue for Italy as the Italian power market has very little volatility. The Italian PSV gas market also has

low liquidity so the much more liquid Dutch TTF is considered. Low liquidity is not a small problem for

a country because when faced with bearish or bullish fundamentals the market does not immediately

absorb changes because ,with low liquidity, prices remain stable or take longer to change trend and
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follow market logic. Germany, Holland, Great Britain and France have much more liquid markets than

Italy.
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Chapter 2

RELATIONSHIP AND INFLUENCE OF

GAS AND ITALIAN POWER MARKET
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2.1 GAS demand

Gas is a key element in the European energy market. It was highly volatile last year. To be able to define

a possible gas price, it is necessary to study supply and demand. Beyond that, gas is very useful in

countries such as Italy, Great Britain, and Sweden. Italy in particular is very dependent on gas, so much

that during the crisis, caused by the war in Ukraine, the country faced a supply crisis. Since Italy’s main

supplier was Russia with the embargoes put in place after the outbreak of the war, it found itself in an

’unhappy’ position. Gas is a key element in Italy because many household appliances use gas as an

energy source. The same thing happens in England, another country highly dependent on gas. Gas

demand.1 is directly proportional to consumption and inversely proportional to renewable production

and to other types of production. This means that gas demand decreases with stable consumption,

if renewable energy production increases because renewable resources are cheaper the consumer will

then prefer to consume renewable production. The demand for gas therefore depends on a country’s total

consumption and the production of other sources of energy supply, for example, renewables, nuclear,

coal and so on. Demand for gas increases exponentially in summer and winter. In winter, the increase in

demand is even more pronounced as many air conditioning and heating systems inside the house need

gas to function. In particularly harsh winters, such as we had in past years, gas production is essential

for the livelihood of households, consumers and businesses. Fortunately, winter 2023 was a very warm

winter so there was no super demand for gas. As previously specified the amount of demand is not stable

over time but varies depending on many factors :temperature, seasonality ,other productions and even

on the price of the same gas. An example is given by last winter when the demand for gas increased for

the very low temperatures and there was a sharp increase in general demand. This increase was not

proportional to other years because the price of gas both in the market and in consumer’s perception was

high. The consumers’ perception of gas price isn’t very often real but,influenced by the media ,Internet

and so on. So, sometimes, the price of gas may not be very high but, if consumers’ perception defines a

high price, the demand for gas will not be increasing because consumers will not want to pay for gas at

very high prices. Last winter, the consumer’s perception and the fairly above-average price meant that

the growth in demand for gas was not proportional to the growth in demand and the drop in temperatures.

Who are the consumers? In Europe we have already mentioned Italy ,Great Britain, etc. In addition to

the European states, important players in world demand are Asian countries such as Japan, South Korea

and China. China represents a key driver for the so-called ’Asian demand’. It therefore represents the
1The basis for this switch is a trivial question, how much does it cost to produce from coal rather than gas? To begin with, it is

important to define the inverse correlation with the price of gas; in fact, if the price of gas goes above 130€/MW, energy production
costs become too high and therefore there begins to be a preference for operators to produce from coal. Of course in this case
the price of coal will rise because there will be a much higher demand than normal. Naturally, the European Union is trying not
to let this happen and has introduced new rules for certain production sectors, which will have to respect a maximum emission
threshold. In recent years, gas has seen its price rise, first with the war in Ukraine where a real rally began, then with the storage
crisis. The short-term marginal cost of power generation of combined cycle plants using gas has become very high, far above the
competitive costs of coal or coal-fired combined cycle generation. Since autumn 2022, however, the real change has begun: the
price of gas has fallen dramatically from the €300/MWh ,it has peaked to €30/MWh in summer 2023. In order to study this measure
of change and the switch between gas and coal, one has to study clean dark spreads and clean spark spreads. This study shows
that taking into account the baseload energy contracts, gas reached very efficient competitive costs at the beginning of 2023 while
coal was able to defend itself and did not arrive in the full area of the switch. So the costs of the two productions, even though gas
is becoming more and more efficient, are quite even. Anyway, the switch between the two sources of energy production has not
taken place yet even though a timeline has now emerged that will ensure that energy production will take place mainly through gas
and no longer through coal, which has a high pollution coefficient.
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demand that comes from outside the Asian continent which has been very volatile in recent times so that

the United States preferred to supply Europe which was willing to pay much higher prices than the Asian

continent. Right now Chinese demand is not very strong partly because the main industrial country of

Asia is not willing and does not want to pay high sums for gas,for that their demand is still much lower

than they could be. Market participants know very well that if China were to resume its demand for

gas, the price of LNG could spike and increase the price of gas in Europe. Obviously, if there’s low gas

demand the price of gas decreases but in the face of high demand above normal the price of gas could

rise proportionally much more, because, in addition to being driven by fundamentals ,there would also

be speculative components that would cause the price to rise proportionally more than it should do in a

balanced market. As defined earlier, demand is a very important driver of gas prices. When, last month,

China was thought to want to increase its demand, the price of TTF soared in the face of likely higher

demand. African demand and South American demand along with demand from countries within the

Oceania have no impact on the global gas price because they are much lower and willing to pay similarly

lower prices than the European and Asian countries that are the key drivers of the gas price.

2.2 The storage and GAS supply

Gas storage is a key component that determines a country’s demand. Indeed, after the crisis in Ukraine,

Europe found itself with storage at its lowest level and thus unable to cope with the lack of supply from

Russia then blocked by the European embargoes.. In these years the situation has completely changed

since European countries, during the fall and winter, filled their storage reaching very high levels above

70/80%; in this way, if there were to be less production and less gas delivery, the countries in question

would not suffer much but could still use the reserves until the situation stabilizes. The high levels of gas

storage meant that there was a halt to the high speculation carried out by the investment fund market

and by various parties who tried to earn as much as possible thanks to price spikes.

The supply of gas depends on many factors, the first one is the production and import by supplier

countries.2. The gas producing countries are Russia ,Azerbaijan ,Algeria, Libya, Iran and other Middle

Eastern and African countries that make up the world gas supply and support the big consumers such

as Europe, Asia and North America. The United States is also a very important producer of gas, they

use a technique, fracking, that allows them to produce gas and sell it in the market, the American gas

is a liquefied one :LNG gas. Now an attempt will be made to analyze the different drivers of both global

and European and Italian gas supply. Concepts such as LNG, LNG, SS, CSS, regasification plants,

producing countries, gas storage and influence with other factors will be introduced.

2.3 LNG and GNL

LNG gas is much more expensive than conventional gas. It has managed to find space in Europe thanks

to the war in Ukraine. Before that, American gas was only in Asia. LNG ships transport liquefied gas all
2This is the most important requirement for gas supply. Just think of Russia two years ago , because of the war it suffered an

embargo, which in turn led to a huge drop in gas supply throughout Europe.
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over the world. It is a very interesting business because it is made up of private individuals. By private

individuals, we mean non-governmental companies transporting LNG all over the world by business. The

market has grown exponentially over the last year and has become a key factor in gas supply. Of course,

the market is based on the demand for gas, so when regasification plants in Europe stop working, the

demand grows disproportionately. An example may be the period in early July when maintenance in

Norway, which is a major producer and exporter of gas throughout Europe, came to a halt. During this

period, the lng market met the production shortfall. Demand is directly proportional to gas demand and is

inversely proportional to gas producers, renewables and other energy sources and supply. When regasi-

fication plants and gas producing countries export gas through pipelines, demand for LNG decreases

proportionally. In the last months LNG.3. demand has increased in Europe and Asia, making the cost

quite high.

2.4 CSS AND SS

When gas arrives in importing countries, it will be used in gas-fired combined cycle plants for energy

production. This driver is called SS and CSS. These two factors SS and CSS tell us nothing more than

how much producing energy costs to a combined cycle gas plant. Since gas producing countries such as

Russia, Azerbaijan, Libya, Algeria and Burkina Faso produce gas in advance, they then export it through

pipelines, ships in the case of LNG, to importing countries. The importing countries will produce energy

through gas. The demand of the importing countries will therefore depend on the price of gas since

very high prices.4 will lead to less demand for gas . In this case, importing countries will demand other

sources such as renewables, coal, etc. to produce energy The cost of gas depends on the country you

are in. In Italy the gas price is represented by the PSV. In Europe, on the other hand, the TTF is used,

which is much more liquid than the Italian index. The selling price for Italy is the PUN. The PUN is nothing

more than the National Unit Price. Since there are different areas in Italy with different prices, the PUN

is the unit price for the whole country.5.

2.5 Italian Gas Report and the situation with Russia

The Italian production share is characterized by a high dependence on the gas source. About half of the

electricity production in our country averages annually is satisfied by this source. This causes a very high

dependence of the power price.6. on the gas price. Apart from this difference, a correlation exists for

both the TTF hub and the PSV. The correlation is present both in the spot market but also in the futures

market, offering possibilities for trades. The supply relationship between Italy and Russia. Until the war

in Ukraine, Russia was Italy’s main energy partner for gas imports; it satisfied 40% of Italian gas demand.

This energy source came to the peninsula via the TAG pipeline which was then connected to the Italian
3Another Example is the Houti situation in the Red Sea that with their attack are creating a bullish trend in the LNG market
4Production Cost=(Gas Cost/Plant Yield)+(C02 factor)+ Fixed Costs

SS=Sales Price-(Gas Cost/Plant Yield)
CSS=SS-Factor C02.
5In Italy there are many different zone for elettricity price :Nord,Centro Nord,Centro Sud,Sud,Calabria,Sicilia,Sardegna
6On the elettricity market if the price of the Gas increase by one unit the power price is going to increase of two units
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network in Tarvisio. This dependence has always been investigated and contested by the Italian secret

services. The parliamentary committee for the security of the Republic (Copasir) has pointed out in its

report on the consequences of the conflict between Russia and Ukraine in the field of energy security

last April stating:

Figure 2.1: Point of entrance for GAS supply in Italy.In the Figure there is the point of entrance for the gas
supply .Passo Gries is for the gas that comes from the north of Europe, Tarvisio is the GAS that comes
from Russia ,Meledugno is the gas that comes from Azerbajian,Gela is the GAS from Libia and Mazzara
del Vallo is from Algeria.This point of entrance is the papeline that connects Italy with the producers
.LNG regasification terminals are the point that connect LNG Navy with the pipelines in Italy.These points
are Panigaglia and Cavarzere.Graph taken by https://www.spglobal.com/commodityinsights/en/market-
insights/blogs/natural-gas/072920-italys-gas-market-an-ecosystem-where-price-takers-thrive.

"Relations between Italy and Russia in the energy sector have deep roots..... Gas was the subject

of the first agreements at the end of the 1960s and the volume of supply has grown progressively since

then”. The reliance on Russia as the main supplier of gas coincided with Putin’s rise to power. Today’s

dramatic events denote how that orientation had objectively underestimated the problem of energy de-

pendence and diversification of supplies, which had therefore become an instrument of pressure used
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by the Russian power towards European countries, especially Italy". When the price of gas continues to

rise, especially in summer, it is also due in part to Russia, which has made sure to use this instrument of

political pressure on the states. Before, the gas has increased,because Russia reduced the flow of gas

while the supply and demand in the European Union remained constant, causing the price to rise. As in

the most classic market law, if demand is the same but supply falls, that good becomes more valuable

and therefore the price rises

2.6 ITALY NEW GAS SUPPLIERS

In summer 2022 Italy was in the midest of searching for new strategic gas supply partners and turned its

attention to Algeria. As a matter of fact, the North African state, for years Spain’s main gas supplier, had

suspended its 20-year friendship treaty with Spain in June 2022; this was due to the change of position

of President Pedro Sanchez, who had decided to support the Moroccan autonomy plan for the Western

Sahara, an area south of Morocco where there is a dispute between Morocco and Algeria over who

owns the rights to the area. Spain, Algeria’s historical ally in this matter, has therefore lost the favors of

its main energy partner. Italy is trying to use this situation to its advantage by strengthening its alliance

with Algiers. In June, the Italian Prime Minister, Mario Draghi, visited the North African country and the

delegations signed 15 memorandums of understanding including one on gas. Another alternative to

Russia is liquefied natural gas. This particular type of gas can be transformed into a liquid state in order

to be transported by ship to countries that then request it. Once in the country of destination, this gas

then returns to its gaseous state and the process is carried out by the so-called regasification plants.

In Italy there are three regasification plants and there is a project to increase their quantity; moreover,

there are some methane tankers at disposal as well. The project is to expand the fleet as there are only

two ships, one in Ravenna and one in Piombino at the moment. As Copasir reports, Italy is moving to

look for new partners to import gas. In this sense, Italy is moving towards Libya and Azerbaijan, through

the existing gas pipeline networks, or is sounding out Egypt, Qatar, Congo, Mozambique, Angola and

Nigeria for liquid gas. In particular, in this last case, production is also managed by Eni (a historical Italian

company in the petrochemical and energy sector in general). Copasir, however, is continuing with the

close alliance with Algeria in order to make it our first gas supplier through the TransMed pipeline.

2.7 Analysis on the Italian situation on supplies and possible de-

velopments

As Think Thank ECCO reports, it is not really necessary for Italy to equip itself with new infrastructure such

as gas pipelines and regasification plants since the response to the energy issue would be unsustainable

and uneconomic in the short and long term. For if one thinks the new gas pipelines or LNG carriers

will come into service in a few years when the situation will be stabilized and will burden consumers

for decades to come. As the International Energy Agency shows in its guidance on the global path to

climate neutrality, new investments at the beginning of the fossil energy value chain are inconsistent with
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climate policies, so investment on regasification plants,LNG ships etc. should not be considered but

more should be done towards renewable energies . As Copasir points out, Italy must, therefore, urgently

face two situations that have grown over the years and revealed all the fragility and volatility in the energy

supply market: the problem of energy dependence and the diversification of supplies: this is the new

open game for Italy and all European countries. For the peninsula it can also be a huge gamble since

there are not very large renewable facilities within the country yet.
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Chapter 3

METODOLOGIES FOR THE TRADING

STRATEGIES

3.1 introduction

In the forthcoming methodologies chapter regarding trading strategies, an organized and coherent ap-

proach will be adopted to ensure a logical progression in the analysis. The chapter will commence by

elucidating the conceptual underpinnings of derivatives, followed by an exhaustive examination of en-

ergy derivatives, thereby setting the stage for subsequent discussions. Subsequently, the phenomena

of backwardation and contango will be explicated to provide a comprehensive understanding of mar-

ket dynamics. Furthermore, the chapter will introduce the fundamental statistical components pertinent

to trading strategies. Initially, attention will be directed towards the ARIMA model, scrutinizing it both

theoretically and practically. Subsequent to model identification, a systematic approach will be under-

taken to introduce statistical and econometric tests aimed at assessing forecast quality. The Autocorre-

lation Function (ACF) and Partial Autocorrelation Function (PACF) will be elucidated, providing essential

tools for time series analysis. Lastly, the chapter will culminate with the introduction of advanced sta-

tistical methodologies, including the Mercier-Zarnowitz regression and the Diebold-Mariano test. These

methodologies will serve to evaluate the efficacy of various forecasts generated by the ARIMA model,

facilitating the identification of optimal forecasts for utilization within trading strategies. This systematic

and structured approach ensures coherence and clarity in the presentation of methodologies, laying a

robust foundation for subsequent analysis and application in trading scenarios.

3.2 Derivates

Derivatives represent financial instruments whose value is derived from an underlying market. Predomi-

nantly found in equity trading, currency values, and interest rates for loans, these instruments are ideal

for both speculation and risk hedging due to their market-based foundation. Their popularity stems from

the ability to engage in market speculation even with limited investment capital. In today’s market, vari-
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ous energy derivatives serve distinct purposes, ranging from risk management in the energy industry to

providing speculative opportunities for investors. The primary energy derivatives in use are futures and

options contracts. Futures, traded on exchanges, are forward contracts, while options provide the buyer

with the right to buy or sell a specific asset at a predetermined price. Notably, derivatives often carry the

classification of securities. This categorization arises because the underlying asset, such as gold or oil,

can be held in a trust’s bank account. In turn, the trust issues a certificate to the investor, confirming their

ownership of a corresponding amount of the underlying asset.

3.3 Future energy derivates

Futures are a type of derivative that is common in the financial industry. They are traded on an exchange

and serve as a contract between two parties. One investor must give the other investor a specific amount

of the underlying asset (the underlying asset is energy, for example). A futures contract can either be

traded on the exchange for cash or for a different futures contract. For example, in the case of energy,

the investor can either cash in on the contract or take a contract that has a value that is equivalent to the

value of the first contract. Futures contracts are very versatile and can be used for different purposes.

They can be used to hedge against risk or for speculation on the market. The two parties involved in the

contract have different ways of profiting from it. In a bull market, for example, the buyer can profit from

the futures contract by taking the cash value of the contract at the end of the contract. Conversely, a

seller can profit when the market is bearish, or the underlying asset’s price goes down. This is because

the seller will make a profit from the difference in the price of the contract when they sell it.

3.4 Contango and backwardiation

Contango in the energy market occurs when the futures prices of commodities like oil or power are higher

than the current spot prices. This situation indicates an anticipation of future price increases or a surplus

in the current market. Investors or traders may encounter contango when the cost of storing the energy

commodity for future delivery, including associated storage and financing costs, contributes to the higher

futures prices. Contango can influence trading strategies and investment decisions in the energy sector.

Backwardation1 in the energy market is characterized by futures prices being lower than the current

spot prices of commodities like EUA or natural gas. This scenario suggests an expectation of declining

prices or a current shortage in the market. Backwardation may arise when the cost of storing the energy

commodity is perceived as lower than the potential future savings in futures prices. Traders and investors

often analyze backwardation to make informed decisions, as it may reflect immediate market conditions

and impact hedging strategies in the energy industry.

1In february 2024 the price of the calendar 2026 is less then the spot prices, because the market is bearish on the future
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Figure 3.1: The backwardations is represented by the light blue curve.The contango is the Blue curve
that is when the future price are higher compared to the spot price,the spot is the red line in the center.The
graph shows how contango line will converge on the spot line along with the backwardiation line at time
to maturity when the product goes into delivery.
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3.5 ARIMA

3.5.1 Introduction ARIMA and applications

In this thesis, the ARIMA model is used for the prediction of time series (future energy prices), because as

many papers have shown, the model can make reliable forecasts and has already been used successfully

in the past. The ARIMA model was introduced by Box and Jenkins (1970) as a generalization of the

ARMA model. To enhance comprehension of the dataset or to project future series points, both ARIMA

and seasonal differencing models are employed in the analysis of time series data. ARIMA models

are particularly useful when the data exhibit non-stationarity primarily in terms of mean, necessitating

initial differencing steps to render the mean function stationary, thereby eliminating trends. Seasonal

differencing is employed when there is evidence of seasonality within the time series, aimed at removing

the seasonal component. This model has been used in many academic papers in the fields of statistics

and econometrics as done by Box et al. (2015) for time series forecasting, or by Brockwell and Davis

(2016), Hamilton (1994) for time series analysis or as done by Newbold (1983) for time series analysis and

then was compared with the ARMA model and then as a forecasting method in the papers of Hyndman

and Athanasopoulos (2018),Makridakis et al. (1998). In the energy trading, the model has been used

by Gupta and Kumar (2020) for mid load forecasting,or by Shikhina et al. (2020) , another example is

done by Contreras et al. (2003) for the prediction of DA prices. In the paper written by Gao et al. (2017)

analyzes how to predict electricity prices in the UK market and places importance on how in today’s

increasingly stock-like electricity market it has become critical to develop forecasts to have an edge over

competitors . An important application of the ARIMA model is done by Karabiber and Xydis (2019) for

price forecasting in the energy market in Denmark ,analysis done on the hourly spot price. However,

this paper is inapplicable in other European countries as it exploits the unique characteristics of the

Scandinavian country.2 which has extremely different fundamentals than CWE countries and Italy. As

described by de Oliveira and Oliveira (2018) the ARIMA model is used for consumption forecasting.This

application demonstrates how through the model consumption can be forecasted which is a fondamental

element on any trading strategy for both short term and long term. Another possible application, on the

other hand, is in hedging strategies for an electric portfolio of a utility operating in the energy sector. The

ARIMA model is a very important tool as demonstrated in the antecedent papers. There are numerous

applications in the energy market to be able to predict prices and be able to develop trading strategies,

or to predict commodity market fundamentals in this case of POWER.

3.5.2 ARIMA Model

In the thesis, when conducting the trading strategy, we will first follow this step to understand which

parameters to use in the ARIMA model . We are going to determine whether the series is stationary

or not by considering the graph of ACF. If a graph of ACF of the time series values either cuts offfairly
2Denmark has an energy demand that is almost completely met by renewable, this makes prices move very differently from other

countries that are dependent on continuous cycle production(GAS,COAL,OIL),example Italy has a completely different structure
as it is very dependent on the gas price and production as written in chapter two is also based on CSS values at that time
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quickly or dies down fairly quickly, then the time series values should be considered stationary. If a graph

of ACF dies down extremely slowly,then the time series values should be considered non-stationary. If

the series is not stationary, it can often be converted to a stationary series by differencing.Thanks to

these passage we can understand if we have to use the parameter D. The ARIMA model developed

by Box and Jenkins (1970) combines three main components: AR (AutoRegressive), I (Integrated), and

MA (Moving Average). The AR component measures the relationship between an observation and its

previous observations within a time interval. The order of AR, denoted as 𝑝, specifies how many previous

periods are used to predict the current observation. The AR formula is generally expressed as:

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + . . . + 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 (3.5.1)

where:

• 𝑦𝑡 is the observation at time 𝑡,

• 𝜙1, 𝜙2, . . . , 𝜙𝑝 are the autoregressive coefficients,

• 𝑐 is a constant,

• 𝜀𝑡 is the white noise error term.

The MA component measures the relationship between an observation and a residual error from a

moving average of order 𝑞. The MA component formula is generally expressed as:

𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + 𝜃𝑞𝜀𝑡−𝑞 (3.5.2)

where:

• 𝜃1, 𝜃2, . . . , 𝜃𝑞 are the moving average coefficients,

• 𝜀𝑡 is the white noise error term.

ARMA

Φ(𝐵)𝑋𝑡 = Θ(𝐵)𝜀𝑡 with 𝜀𝑡 ∼ 𝑊𝑁 (0, 𝜎2). (3.5.3)

In the general form, the ARMA(𝑝, 𝑞) model writes:

(1 − 𝜙1𝐵 − 𝜙2𝐵
2 − . . . − 𝜙𝑝𝐵

𝑝)𝑋𝑡 = (1 + 𝜃1𝐵 + 𝜃2𝐵
2 + . . . + 𝜃𝑞𝐵

𝑞)𝜀𝑡 , (3.5.4)

or equivalently:

𝑋𝑡 = 𝜙1𝑋𝑡−1 + . . . + 𝜙𝑝𝑋𝑡−𝑝 + 𝜃1𝜀𝑡−1 + . . . + 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡 . (3.5.5)

ARIMA as mentioned before is a generalization of ARMA.The extra part will be introduced in the next

paragraph.It is important to note that an ARIMA without part I behaves like an ARMA.As in the case of
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this thesis after analyzing the ACF it was decided to compile a forecast on the ARIMA model without

using part I.

I (Integrated)

The I component refers to differencing the time series to make it stationary. Stationarity is crucial

because many statistical models, including ARIMA, assume that the statistical properties of the time

series are constant over time. The order of differencing is denoted as 𝑑.

The differencing can be represented as:

Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 (3.5.6)

where Δ represents the differencing operator. As said as before the overall order of an ARIMA model

is represented as ARIMA(p, d, q), where 𝑝 is the AR order, 𝑑 is the differencing order, and 𝑞 is the MA

order. The orders can vary depending on the characteristics of the time series under analysis. The goal

is to find the optimal order that provides the best model for describing the data.

3.5.3 Forecasting with ARMA

Having used an ARIMA without Part I, the forecast of an ARMA will be analyzed here, which represents

the forecast then used by us in the next chapter before implementing the trading strategy. Consider the

ARMA(1,1) model given by

𝑋𝑡 = 𝛿 + 𝜙𝑋𝑡−1 + 𝜃𝜖𝑡−1 + 𝜖𝑡 .

The one-step ahead forecast is given by

𝑥𝑡+1 = 𝐸𝑡 (𝑋𝑡+1)

= 𝐸𝑡 (𝛿 + 𝜙𝑋𝑡 + 𝜃𝜖𝑡 + 𝜖𝑡+1)

= 𝛿 + 𝜙𝑥𝑡 + 𝜃𝜖𝑡 .

The forecast error is

𝑒𝑡+1 = 𝑋𝑡+1 − 𝑥𝑡+1 = 𝜖𝑡+1.

Its variance is

Var(𝑒𝑡+1) = 𝜎2.

The forecast for 𝑘 = 2 is

𝑥𝑡+2 = 𝐸𝑡 (𝑋𝑡+2)

= 𝐸𝑡 (𝛿 + 𝜙𝑋𝑡+1 + 𝜃𝜖𝑡+1 + 𝜖𝑡+2)

= 𝛿 + 𝜙𝑥𝑡+1

= 𝛿(1 + 𝜙) + 𝜙2

2
𝑥𝑡 + 𝜃𝜙𝜖𝑡 .
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The forecast error is

𝑒𝑡+2 = 𝑋𝑡+2 − 𝑥𝑡+2

= 𝛿 + 𝜙𝑋𝑡+1 + 𝜃𝜖𝑡+1 + 𝜖𝑡+2 − (𝛿 + 𝜙𝑥𝑡+1)

= 𝜙𝜖𝑡+1 + 𝜃𝜖𝑡+1 + 𝜖𝑡+2

= (𝜙 + 𝛿)𝜖𝑡+1 + 𝜖𝑡+2.

Notice that it has zero expected value and variance equal to

Var(𝑒𝑡+2) = 𝜎2 ((𝜙 + 𝛿)2 + 1).

Iterating, the 𝑘 steps ahead forecast is given by

𝑥𝑡+𝑘 = 𝛿(1 + 𝜙 + 𝜙2 + · · · + 𝜙𝑘−1) + 𝜙𝑘𝑥𝑡 + 𝜃𝜙𝑘−1𝜖𝑡 .

As 𝑘 goes to ∞, the variance tends to the unconditional variance of the process.

Notice that after the second step ahead, the predictor resembles that of an AR(1). Indeed, its asymp-

totic behavior is exactly that of an AR(1), i.e., when 𝑘 > 1, the behavior of the forecast is dominated by

the autoregressive part.

For a general ARMA(𝑝, 𝑞) model, similar results to those seen for the ARMA(1, 1) can be obtained.

When 𝑘 > 𝑞, the autoregressive part drives the forecast that converges to the unconditional mean of the

ARMA(𝑝, 𝑞) as 𝑘 tends to ∞. Similarly, the variance of the forecast error converges to the unconditional

variance.

3.6 ACF

Introduced by Yule (1927) ,the ACF is a statistical measure that evaluates the correlation between an ob-

servation in a time series and its previous observations at different time lags. In this thesis is fondamental

in the energy trading strategies as said before to understand better how to use ARIMA. The formula of

ACF is given by:

𝜌𝑘 =
Cov(𝑋𝑡 , 𝑋𝑡−𝑘)√︁

Var(𝑋𝑡 ) · Var(𝑋𝑡−𝑘)
(3.6.1)

where:

• 𝜌𝑘 autocorrelation of the lag 𝑘.

• 𝑋𝑡 time 𝑡.

• Cov(𝑋𝑡 , 𝑋𝑡−𝑘)covariance between observation 𝑋𝑡 e 𝑋𝑡−𝑘 .

• Var(𝑋𝑡 ) e Var(𝑋𝑡−𝑘) are the variance 𝑋𝑡 e 𝑋𝑡−𝑘 .
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The function 𝜌𝑘 indicates how much the observations to a delay 𝑘 are correlated with the current obser-

vation. A value near 1 indicates strong positive correlation, a value near -1 indicates strong negative

correlation, and a value near 0 indicates poor correlation. The coefficient of correlation between two

values in a time series is called the autocorrelation function (ACF). As done by Shikhina et al. (2020)

after we are going to use in the trading strategies.

Figure 3.2: Thi is an example of AXF and PACF used in this thesis.The analisys of autocorrelation shows
an autocorrelations at lag 1 that is significative.

3.7 PACF

The PACF measures the autocorrelation between 𝑋𝑡 and 𝑋𝑡+ℎ after removing their linear dependence

with the other intermediate variables (recall the partial correlation coefficient in multiple regression). It

takes to compute

𝜙ℎℎ = Corr(𝑋𝑡 , 𝑋𝑡+ℎ |𝑋𝑡+1, 𝑋𝑡+2, . . . , 𝑋𝑡+ℎ−1). (3.7.1)

PACF can be derived as follows: consider a regression model where the dependent variable 𝑋𝑡+ℎ is

regressed against 𝑋𝑡+ℎ−1, 𝑋𝑡+ℎ−2, . . . , 𝑋𝑡 , i.e.,

𝑋𝑡+ℎ = 𝜙ℎ1𝑋𝑡+ℎ−1 + 𝜙ℎ2𝑋𝑡+ℎ−2 + . . . + 𝜙ℎℎ𝑋𝑡 + 𝑒𝑡+ℎ, (3.7.2)

where 𝜙ℎ 𝑗 represents the parameter of the regression of 𝑋𝑡+ℎ with respect to the variable 𝑋𝑡+ℎ− 𝑗 , and 𝑒𝑡+ℎ

is the shock uncorrelated with 𝑋𝑡+ℎ− 𝑗 for 𝑗 ≥ 1.

We are considering a zero-mean process. Multiplying both sides by 𝑋𝑡+ℎ− 𝑗 and taking the expected
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values, we get:

𝛾( 𝑗) = 𝜙ℎ1𝛾( 𝑗 − 1) + 𝜙ℎ2𝛾( 𝑗 − 2) + . . . + 𝜙ℎℎ𝛾( 𝑗 − ℎ), (3.7.3)

thus,

𝜌( 𝑗) = 𝜙ℎ1𝜌( 𝑗 − 1) + 𝜙ℎ2𝜌( 𝑗 − 2) + . . . + 𝜙ℎℎ𝜌( 𝑗 − ℎ). (3.7.4)

For 𝑗 = 1, 2, . . . , ℎ, we obtain the following system of equations, known as Yule-Walker equations:

𝜌(1) = 𝜙ℎ1𝜌(0) + 𝜙ℎ2𝜌(1) + . . . + 𝜙ℎℎ𝜌(ℎ − 1) (3.7.5)

𝜌(2) = 𝜙ℎ1𝜌(1) + 𝜙ℎ2𝜌(0) + . . . + 𝜙ℎℎ𝜌(ℎ − 2) (3.7.6)
...

𝜌(ℎ) = 𝜙ℎ1𝜌(ℎ − 1) + 𝜙ℎ2𝜌(ℎ − 2) + . . . + 𝜙ℎℎ𝜌(0). (3.7.7)

It can be shown that, after some computations for ℎ = 1, 2, . . ., we get:

𝜙11 = 𝜌(1) (3.7.8)

𝜙22 =
1

𝜌(1)
©«
𝜌(1) 𝜌(2)

𝜌(2) 𝜌(1)
ª®¬ (3.7.9)

𝜙33 =
1

𝜌(1)2 − 𝜌(2)2

©«
𝜌(1) 𝜌(2) 𝜌(3)

𝜌(2) 𝜌(1) 𝜌(2)

𝜌(3) 𝜌(2) 𝜌(1)

ª®®®®¬
. (3.7.10)

3.8 Mincer and Zarnowitz Regression

After estimating the different forecasts using the ARIMA model, as demonstrated by Guler et al. (2017),

we will apply the Mincer and Zarnowitz regression within a model to assess forecast accuracy. The Mincer

and Zarnowitz regression, examines the relationship between a dependent variable𝑌 and an independent

variable, typically representing time or a specific predictor variable. This method is particularly useful in

economic research and forecasting.

3.8.1 Regression Model: Mincer and Zarnowitz

The Mincer and Zarnowitz regression can be represented as:

𝑌𝑡+ℎ = 𝛽0 + 𝛽1𝑌𝑡+ℎ |𝑡 + 𝜀𝑡+ℎ |ℎ (3.8.1)

where:

• 𝑌𝑡+ℎ denotes the dependent variable at time 𝑡 + ℎ.

• 𝑌𝑡+ℎ |𝑡 represents the independent variable at time 𝑡+ℎ, often representing a predictor or explanatory

variable.
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• 𝛽0 is the intercept term.

• 𝛽1 is the coefficient associated with the independent variable.

• 𝜀𝑡+ℎ |ℎ represents the error term, capturing unobserved factors affecting 𝑌𝑡+ℎ.

In our case h is egual to 1 because we are using daily returns.

3.8.2 Hypothesis Test

The unbiasedness and efficiency of the forecast can be evaluated by testing the intercept and slope

through the joint hypothesis:

𝐻0 : 𝛽0 = 0, 𝛽1 = 1 (3.8.2)

Optimal forecast is characterized by the upholding of 𝐻0.

3.8.3 Results and Implications

The results of the Mincer and Zarnowitz regression can be presented in a table, detailing the estimated

coefficients and their statistical significance. Researchers can then interpret these results to draw con-

clusions about the relationship between the independent variable and the dependent variable.We are

going to have conclusion about the different forecast.

3.8.4 Conclusion

The Mincer and Zarnowitz regression, when applied provides a valuable tool for understanding the impact

of a factor on a dependent variable over time. Its application can offer insights into economic and social

phenomena by examining the relationship between a predictor variable and the outcome of interest.

3.9 The diebold mariano Test

As introduce in Chen et al. (2014)Mariano (2002) the Diebold Mariano Test is a statistical test widely

used in the field of forecasting to assess whether one predictive model outperforms another in terms of

forecast accuracy. Named after Francis X. Diebold and Robert S. Mariano, this test is particularly useful

when comparing the forecast performance of two competing models.In this thesis is going to be used as

last step before the trading strategies.

3.9.1 Hypotheses

Consider two forecasting models, Model A and Model B. The null hypothesis and alternative hypothesis

for the Diebold-Mariano test are defined as follows:

• Null Hypothesis (𝐻0): There is no significant difference in forecast accuracy between Model A

and Model B.
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• Alternative Hypothesis (𝐻1): Model A significantly outperforms Model B in terms of forecast ac-

curacy.

3.9.2 Test Statistic

The Diebold-Mariano test statistic is computed as:

𝐷𝑀 =
𝑒𝐴 − 𝑒𝐵√︃

𝑠2
𝑑

𝑇

(3.9.1)

where:

• 𝑒𝐴 and 𝑒𝐵 are the mean forecast errors for Model A and Model B, respectively.

• 𝑠2
𝑑

is the variance of the differences in forecast errors.

• 𝑇 is the number of forecast observations.

3.9.3 Decision Rule

Under the null hypothesis, the test statistic 𝐷𝑀 follows a standard normal distribution. Researchers

typically compare the computed test statistic to critical values from the standard normal distribution to

make a decision.

• If |𝐷𝑀 | > 𝑍𝛼/2, where 𝑍𝛼/2 is the critical value at significance level 𝛼/2, the null hypothesis is

rejected in favor of the alternative hypothesis.

• If |𝐷𝑀 | ≤ 𝑍𝛼/2, there is insufficient evidence to reject the null hypothesis.

3.9.4 Conclusion

The Diebold-Mariano test provides a robust method for comparing the forecast accuracy of two models. It

is widely applied in empirical research to determine whether a new forecasting model offers a statistically

significant improvement over an existing one.
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Chapter 4

TRADING STRATEGIES

4.1 Structure of Trading strategies

In the fourth chapter, our analytical focus centers on the POWER futures, specifically targeting the 2021

quarters (quoted in 2020 ) and 2022 quarters (quoted in 2021). The objective is to formulate forecasts

for the ensuing 2022 quarters (quoted in 2021), and subsequently, to devise trading strategies based on

these forecasts. At that time prices were correlated to the difficult geopolitical context1. To initiate this pro-

cess, we employ cross-validation techniques to rigorously develop forecasts. Subsequently, we subject

these forecasts to comprehensive evaluations utilizing statistical tests, including the Mincer-Zarnowitz re-

gression and the Diebold-Mariano test. These assessments are paramount for appraising the forecasting

accuracy, facilitating an informed selection of the most robust models. Our approach maintains consis-

tency across all quarters under scrutiny. The foundational steps include a meticulous plot representation,

log returns calculation and an exploration of autocorrelation and partial autocorrelation to discern series

properties. The subsequent modeling phase involves the application of diverse configurations, ranging

from 0,0,0 to 2,0,2.There will be a model selections. The model performances are pitted against each

other using mean square root comparisons. The Mincer-Zarnowitz regression is then applied to further

evaluate the forecasting accuracy. The Diebold-Mariano test emerges as the decisive factor in select-

ing the optimal forecast for subsequent implementation in the development of trading strategies. The

strategies commence with the definition of confidence intervals, manifested as upper and lower barri-

ers. The trading strategy hinges on strategic buy and sell decisions, executed when prices breach below

or above the confidence interval, respectively. Subsequent to these transactions, meticulous calcula-

1The prices taken in the analysis that run from the beginning of 2020 to the end of 2021 are stable for almost the entire time
frame, but at the end we see the beginning of a dizzying bullish trend in prices. This disruptive trend so unprecedented in energy
("a financial asset class considered by many to be dead") was made possible by a violent geopolitical crisis caused by the Russia
of "czar" Vladimir Putin. Russia for years after the Euromaidan crisis has been trying to impose its own "puppet" in Ukraine, but
after the Crimean crisis and the Donbass war the former Soviet country has only one card left to play. A mobilization of more
than 100,000 soldiers of the Russian Armed Forces was observed on Ukraine’s borders in March and April 2021; representing the
largest mobilization since the end of the Cold War, this triggered a serious international crisis, which was later contained after a
meeting in Geneva between U.S. President Joe Biden and Russian President Vladimir Putin. The crisis had a serious moment
when a Russian Navy ship and two aircraft opened fire at a British Navy ship, firing warning shots and dropping bombs a few
dozen meters from the NATO ship. The crisis re-exploded violently when a large Russian mobilization of more than 100,000 troops
was observed again in October 2021. By January 2022, Russian forces on the Ukrainian border numbered 150,000-180,000 men.
Such a massive exercise only presaged the worst. Markets reacted by sending Energy commodity prices soaring, especially power
Italy.
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tions of returns and percentage returns are performed, illuminating the Return on Equity (ROE) to gauge

the investment’s performance. This chapter encapsulates a systematic and statistically sound approach,

where forecasting prowess converges with trading strategy development, ensuring a robust and informed

foray into the dynamics of POWER futures.

4.2 Trading Strategies Applications and Result

4.2.1 Future Q1

Primarily, data is sourced from the Excel file, previously obtained through Reuters DataStream. The

columns containing price and date information are extracted. Subsequently, the data that is the daily

Italian future power price2 Q1 2021 quoted in 2020 and Q1 2022 quoted in 2021 is taken3. Following

this, leveraging the cross-validation method, the forecast for the year 2021 is conducted.

Figure 4.1: There is the energy future power price Q121 and Q122 quoted in the data 2020 2021 Q1.The
prices are on the y-axis, and the dates are on the x-axis.

Following the data download, the subsequent steps involve the execution and calculation of yields.

To ensure the attainment of stationary data , logarithmic returns are computed.

2ITALY BASELOAD QUARTERLY EEX
3The exchange in this case is the EEX
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Figure 4.2: There are the Log returns of the 2021Q1 quoted in 2020 and 2022Q1 quoted in 2021.The
dates are on the x-axis and the logreturns on the y-axis.

The next step is doing ACF on a sample of 20 Lags. This is important to understand the property of

the series and if is useable the ARIMA model.

Figure 4.3: The ACF and PACF show autocorrelation and partial autocorrelation.The analisys of auto-
correlation shows an autocorrelations at lag 1 that is significative, that justify the use of the model.

This aspect is beneficial for the analysis as it signifies the feasibility of conducting future estimation

and forecasting processes. We are going to do the Training Sample, which comprises data from the year

2020. This dataset serves as the foundation for training the ARIMA model to predict data for the following

year, 2021. Diverse forecasts are generated to correspond with different orders within the ARIMA model.

Conversely, the Test_Set comprises the actual outcomes and serves as a benchmark for evaluating

the efficacy of the forecasts. This comparison allows for a comprehensive assessment of the forecast

performance against the real-world data. As done by Xue et al. (2022) we are going to estimate the

forecast through the ARIMA model. Once completed tests will be run so that the various estimations can
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then be examined. The subsequent step involves assessing predictive accuracy through mean square

errors. This entails comparing the forecasts with the test set. In this context, the objective of the analysis

is to minimize the mean square errors, aiming for the most accurate prediction. The formula shows that

Forecast MSE
Fore_000 0.0017370
Fore_100 0.0016809
Fore_001 0.0016066
Fore_101 0.0016435
Fore_200 0.0016013
Fore_201 0.0016607
Fore_002 0.0016484
Fore_102 0.0016388
Fore_202 0.0017047

Table 4.1: In this table there are the different forecast with their MSE; Fore_000=0.0017370,
Fore_100=0.0016809, Fore_001=0.0016066, Fore_101=0.0016435, Fore_200=0.0016013,
Fore_201=0.0016607, Fore_002=0.0016484, Fore_102=0.0016388, Fore_202=0.0017047

the best MSE is the fore_200 . So we can say that these forecast is the best estimations for now, since is

the ones that is closest to the testset. The subsequent stage involves the implementation of the Mincer

and Zarnowitz regression, employed to examine and assess the properties inherent in various forecasts.

This regression analysis serves as a methodological tool for scrutinizing the accuracy and reliability of

the forecasted values, thereby contributing to a comprehensive evaluation of forecasting performance.As

done by Byun and Cho (2013) we are going to implement the regression.

Forecast ALPHA BETA
fore000 0.004 (0.08) -0.1 (0.97090)
fore100 0.016 (0.86) 0.89 (0.00090)
fore001 0.001 (0.01) 0.97 (0.00070)
fore101 0.004 (0.41) 1.01 (0.00012)
fore200 0.001 (0.01) 1.07 (0.00002)
fore201 0.024 (0.18) 1.34 (0.00340)
fore002 0.005 (0.45) 0.76 (0.00780)
fore102 0.004 (0.32) 0.90 (0.00145)
fore202 0.006 (0.02) -0.8 (0.64000)

Table 4.2: Table that shows the alpha and beta of the Mincer and Zarnowitz regression.The value
between parentesis are the p-values.fore000=0.004 (0.08)and beta= -0.1 (0.97090);fore100=0.016
(0.86)and beta=0.89 (0.00090);fore001=0.001 (0.01)and beta=0.97 (0.00070);fore101=0.004 (0.41)and
beta=1.01 (0.00012);fore200=0.001 (0.01) and beta=1.07 (0.00002);fore201=0.024 (0.18)and beta
=1.34 (0.00340);fore002=0.005 (0.45) and beta=0.76 (0.00780);fore102=0.004 (0.32)and beta=0.90
(0.00145);fore202=0.006 (0.02) and beta=-0.8 (0.64000)

As done by Drachal (2021) we are going to develop the Diebold-Mariano test , conducted on the best-

estimated forecasts(fore_200 and fore_001 based on MSE), reveals a positive relationship between the

two forecasts. So because the MSE of the fore_200 is smaller than MSE of the fore_001 , we are going to

use this in the trading strategies. The articulated trading strategy comprises the following key elements:

Utilization of the best forecast Definition of two confidence intervals (upper and lower) Execution of a buy

order when yields fall below the lower threshold. Execution of a sell order when yields surpass the upper

threshold. The final step involves the computation of returns on the investment . The selected company

41



is allocated a budget of 1,000,000 .Upon observing returns falling below the lower band, the trading bot

initiates a purchase of 20,000, subsequently selling when returns surpass the upper band. Employing a

confidence interval of 70% the profit margin is determined to be 4.71%. This outcome signifies a positive

result for the investment strategy, indicating its viability and success.

Figure 4.4: Showcases the application of the trading startegies. The green circles represent the selling
points , and the red circles represent the buying point.

4.2.2 Future Q2

Initially, data is retrieved from an Excel file, which was originally acquired via Reuters DataStream. The

columns containing price and date details are then extracted. Subsequently, the data pertaining to the

daily Italian future power prices for Q2 2021 quoted in 2020 and Q2 2022 quoted in 2021 are isolated4.

Using the cross-validation method, a forecast for the year 2021 is then generated.

Figure 4.5: There is the power future price Q221 and Q222 quoted in the data 2020 2021 Q1.The prices
are on the y-axis, and the dates are on the x-axis.

4These prices are sourced from the EEX exchange
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On these data, the execution and calculation of yields are realized. Logarithmic returns are computed.

Figure 4.6: There are the Log returns of the 2021 Q2 quoted in 2020 and 2022Q2 quoted in 2021.The
dates are on the x-axis and the logreturns on the y-axis.

The subsequent procedure entails conducting an Autocorrelation Function (ACF) analysis spanning

a sample of 20 lags.

Figure 4.7: The ACF and PACF show autocorrelation and partial autocorrelation.The analisys of auto-
correlation shows an autocorrelations at lag 1 that is significative, that justify the use of the model.

This aspect is useful for the analysis as it denotes the utility of conducting future estimation and

forecasting processes. The Training Sample, comprising data from the year 2020. This dataset serves

as the basis for training the ARIMA model to forecast data for the ensuing year, 2021. Multiple forecasts

are generated corresponding to different orders within the ARIMA model. On the other hand , the Test_Set

comprises the actual outcomes and serves as a benchmark for evaluating the efficacy of the forecasts.

This comparison allows for a comprehensive assessment of the forecast performance against the real-

world data. As done by Gao et al. (2017) we are going to carry out the ARIMA model . Different tests
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will be conducted to scrutinize the various estimations. Subsequently, the process involves evaluating

predictive accuracy through mean square errors. This involves comparing the forecasts with the test set.

In this context, the aim of the analysis is to minimize the mean square deviation, striving for the utmost

precision in prediction. As done by Manchalwar et al. (2023) we are goin to implement and doing different

MSE comparing the different forecast to the test_set.

Forecast MSE
Fore_100 0.0010681
Fore_001 0.0010393
Fore_101 0.0010724
Fore_200 0.0010644
Fore_201 0.0010903
Fore_002 0.0010208
Fore_102 0.0011014
Fore_202 0.0011584
Fore_000 0.0013270

Table 4.3: In this table there are the different forecast with their MSE. Fore_000=0.001270,
Fore_100=0.0010681, Fore_001=0.0010393, Fore_101=0.0010724, Fore_200=0.0010644,
Fore_201=0.0010903, Fore_002=0.0010208, Fore_102=0.0011014, Fore_202=0.0011584

The formula shows that the best MSE is the one for forecast fore_002 . So we can say that these one

is the best estimations for now, since this one is the closest to the testset. The next step is the application

of the Mincer & Zarnowitz regression, used to test and carp the properties of the different forecasts. The

result of Mincer and Zarowitz regression is: The Parameter Values are quite good since the first beta

Forecast ALPHA BETA
fore000 0.005 (0.18) -0.1 (0.97090)
fore100 0.003 (0.21) 0.83 (0.00400)
fore001 0.003 (0.21) 0.84 (0.00400)
fore101 0.002 (0.31) 1.04 (0.00019)
fore200 0.002 (0.33) 1.07 (0.00002)
fore201 0.003 (0.25) 1.07 (0.00020)
fore002 0.003 (0.25) 0.96 (0.00670)
fore102 0.003 (0.02) 1.01 (0.00012)
fore202 0.006 (0.02) -0.8 (0.64000)

Table 4.4: Table that shows the alpha and beta of the Mincer and Zarnowitz regression.The value
between parentesis are the p-values.fore000=0.005 (0.18)and beta= -0.1 (0.97090);fore100=0.003
(0.21)and beta=0.83 (0.00400);fore001=0.003 (0.21)and beta=0.84 (0.0400);fore101=0.002 (0.31)and
beta=1.04 (0.00019);fore200=0.002(0.33) and beta=1.07 (0.00002);fore201=0.003(0.25)and beta
=1.07 (0.00020);fore002=0.003 (0.25) and beta=0.96 (0.00670);fore102=0.003 (0.02)and beta=1.01
(0.00012);fore202=0.006 (0.02) and beta=-0.8 (0.64000)

coefficient must tend to one while the second one which is alpha must tend to 0. The next test that will

be done to evaluate the best forecast for the investment strategy as done by Chen et al. (2021)is the

Diebold Mariano. As done by Xu and Zhang (2023) we are going to use the Diebold-Mariano test that

is conducted on the best-estimated forecasts(fore_001 and fore_002 based on MSE).The test reveals a

negative relationship between the two forecasts. The difference between the two test shows that fore_002

is better. We are going to use the "fore_002" . Subsequently, the focus shifts towards the formulation

and implementation of a trading strategy. The articulated trading strategy comprises the following key

44



elements and components: Utilization of the optimal forecast. Establishment of two confidence intervals

(upper and lower). Initiation of a buy order when yields decline below the lower threshold. Initiation of a

sell order when yields exceed the upper threshold. The concluding step involves computing returns on the

investment. The designated company is allocated a budget of 1,000,000. Upon observing returns dipping

below the lower band, the trading bot initiates a purchase of 20,000 units, subsequently selling when

returns exceed the upper band. Employing a confidence interval of 70%, the profit margin is determined

to be 389.97%. This outcome signifies a positive result for the investment strategy, indicating its viability

and success

Figure 4.8: Showcases the application of the trading startegies. The green circles represent the selling
points , and the red circles represent the buying point.

4.2.3 Future Q3

As always, data is sourced from the Excel file, previously obtained through Reuters DataStream. In this

case data is the daily Italian future power price Q3 2021 quoted in 2020 and Q3 2022 quoted in 20215.

Following this, leveraging the cross-validation method, the forecast for the year 2021 is conducted.

5The exchange in this case is the EEX
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Figure 4.9: There is the power future price Q321 and Q322 quoted in the data 2020 2021 Q3.The prices
are on the y-axis, and the dates are on the x-axis.

Following the data download, the subsequent steps involve the execution and calculation of yields.

Logarithmic returns are computed.

Figure 4.10: There are the Log returns of the 2021 Q3 quoted in 2020 and 2022Q3 quoted in 2021.The
dates are on the x-axis and the logreturns on the y-axis.

The next step is doing ACFand PACF on a sample of 20 Lags.
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Figure 4.11: The ACF and PACF show autocorrelation and partial autocorrelation.The analisys of auto-
correlation shows an autocorrelations at lag 1 that is significative, that justify the use of the model.

This aspect is advantageous for the analysis as it signifies the feasibility of conducting future estima-

tion and forecasting processes. The Training Sample, comprising data from the year 2020. This dataset

is employed to train the ARIMA model to predict data for the following year, 2021. Diverse forecasts

are producted . Conversely, the Test_Set comprises the actual outcomes and serves as a benchmark

for evaluating the efficacy of the forecasts. This comparison allows for a comprehensive assessment

of the forecast performance against the real-world data. Subsequently, the procedure entails evaluating

predictive accuracy through the utilization of mean square errors. This involves juxtaposing the forecasts

against the test set. Within this framework, the primary objective of the analysis is to minimize mean

square errors, thereby endeavoring to achieve the utmost precision in prediction. As done by Miseta

et al. (2022) we are going to perform the MSE.

Forecast MSE
Fore_100 0.0012573
Fore_001 0.0012972
Fore_101 0.0012349
Fore_200 0.0012321
Fore_201 0.0012670
Fore_002 0.0012257
Fore_102 0.0012398
Fore_202 0.0013419
Fore_000 0.001423

Table 4.5: In this table there are the different forecast with their MSE. Fore_000=0.001270,
Fore_100=0.0012573, Fore_001=0.0012972, Fore_101=0.0012349, Fore_200=0.0012321,
Fore_201=0.0012670, Fore_002=0.0012257, Fore_102=0.0012398, Fore_202=0.0013419

The formula shows that the best MSE is the fore_002 . So we can say that these two are the best

estimations for now, since they are the ones that are closest to the testset. The next step is the application

of the Mincer & Zarnowitz regression, used to test and carp the properties of the different forecasts. As

done by Bhattacharya and Gupta (2016) the regression is going to by estimate and the results of Mincer
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and Zarowitz regression are:

Forecast ALPHA BETA
fore000 0.003 (0.13) 0.98 (0.56000)
fore100 0.003 (0.13) 0.59 (0.12757)
fore001 0.003 (0.21) 0.84 (0.00400)
fore101 0.003 (0.20) 0.94 (0.01861)
fore200 0.003 (0.21) 0.82 (0.01515)
fore201 0.004 (0.08) 0.49 (0.12764)
fore002 0.002 (0.29) 1.05 (0.00839)
fore102 0.003 (0.15) 0.83 (0.02589)
fore202 0.005 (0.02) -0.9 (0.74000)

Table 4.6: Table that shows the alpha and beta of the Mincer and Zarnowitz regression.The value
between parentesis are the p-values.fore000=0.003(0.13)and beta=0.98 (0.00060);fore100=0.003
(0.12)and beta=0.59 (0.12575);fore001=0.003 (0.21)and beta=0.84 (0.0400);fore101=0.003 (0.20)and
beta=0.94 (0.018);fore200=0.003(0.21) and beta=0.82 (0.01515);fore201=0.004(0.08)and beta
=1.05 (0.00839);fore002=0.002 (0.29) and beta=1.05 (0.00839);fore102=0.003 (0.15)and beta=0.83
(0.02589);fore202=0.005(0.02) and beta=-0.9 (0.74000).

The Parameter Values are accetptables. As done as before in the other applications now is the

step of the Diebold Mariano. The Diebold-Mariano test reveals a positive relationship between the two

forecast(fore_001 and fore_002). The decision of which forecast using is totally subjective. As done in the

other squarters now there is the final step of the applivcations of the trading strategies. The process of the

strategy is the same as before. Employing a confidence interval of 70%, the profit margin is determined

to be 6.56%. This outcome signifies a positive result for the investment strategy, indicating its viability

and success

Figure 4.12: Showcases the application of the trading startegies. The green circles represent the selling
points,and the red circles represent the buying point.

4.2.4 Future Q4

Initially, data is extracted from the Excel file, which was obtained through Reuters DataStream. Specif-

ically, the columns containing price and date information are retrieved. Next, the data pertaining to the
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daily Italian future power price for Q4 2021 quoted in 2020 and Q4 2022 quoted in 2021 are selected6.

Subsequently, utilizing the cross-validation method, forecasting for the year 2021 is performed

Figure 4.13: There is the power future price Q421 and Q422 quoted in the data 2020 2021 Q4.The prices
are on the y-axis, and the dates are on the x-axis.

After the data has been downloaded, the subsequent steps entail executing and computing yields.Logarithmic

returns are computed.

Figure 4.14: There are the Log returns of the 2021Q4 quoted in 2020 and 2022Q4 quoted in 2021.The
dates are on the x-axis and the logreturns on the y-axis.

The next step is doing ACF and PACF on a sample of 20 Returns. This is important to understand

the property of the series and if is useable the ARIMA model.

6The exchange used in this case is the EEX
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Figure 4.15: The ACF and PACF show autocorrelation and partial autocorrelation.The analisys of auto-
correlation shows an autocorrelations at lag 1 that is significative, that justify the use of the model..

This is good for the analysis because it indicates that a future estimation and forecasting process can

take place. The Training Sample, encompassing the data from the year 2020. This dataset is utilized

to train the ARIMA model for predicting the data in the subsequent year, 2021 . Various forecasts are

generated corresponding to distinct order within the ARIMA model. Conversely, the Test Set comprises

the actual outcomes and serves as a benchmark for evaluating the efficacy of the forecasts. This com-

parison allows for a comprehensive assessment of the forecast performance against the real-world data.

As done by Gao et al. (2017) we are going to perform the ARIMA model . Following completion, tests

will be conducted to scrutinize the various estimations. Subsequently, the procedure involves assessing

predictive accuracy through the utilization of mean square errors. This involves meticulous comparison of

the forecasts with the test set. Within this framework, the primary objective of the analysis is to minimize

mean square errors, with the aim of achieving the utmost precision in prediction.

Forecast MSE
Fore_100 0.0012238
Fore_001 0.0018319
Fore_101 0.0011887
Fore_200 0.0011742
Fore_201 0.0012136
Fore_002 0.0011753
Fore_102 0.0012163
Fore_202 0.0012648

Table 4.7: In this table there are the different forecasts with their MSE. Fore_000=0.001270,
Fore_100=0.0012573, Fore_001=0.0012972, Fore_101=0.0012349, Fore_200=0.0012321,
Fore_201=0.0012670, Fore_002=0.0012257, Fore_102=0.0012398, Fore_202=0.001341
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The equation indicates that the optimal Mean Squared Error (MSE) corresponds to the forecast

fore_200. Therefore, we can assert that this forecast exhibits the most favorable estimations at present,

as it closely aligns with the test set. The subsequent stage involves implementing the Mincer & Zarnowitz

regression, aimed at examining and elucidating the characteristics of the various forecasts. As done by

Bhattacharya and Gupta (2016) the regression is going to by estimate and the outcome of the Mincer

and Zarnowitz regression is:

Forecast ALPHA BETA
fore000 0.002 (0.04) 1.25 (0.43408)
fore100 0.004 (0.05) 0.26 (0.38222)
fore001 0.003 (0.21) 0.84 (0.00400)
fore101 0.003 (0.12) 0.60 (0.05186)
fore200 0.003 (0.16) 0.65 (0.00858)
fore201 0.003 (0.08) 0.41 (0.00080)
fore002 0.003 (0.18) 0.74 (0.01793)
fore102 0.004 (0.08) 0.35 (0.19262)
fore202 0.004 (0.04) 0.12 (0.60000)

Table 4.8: Table that shows the alpha and beta of the Mincer and Zarnowitz regression.The value between
parentesis are the p-values.fore000=0.002(0.04)and beta=1.25 (0.43408);fore100=0.004(0.05)and
beta=0.26(0.38222);fore001=0.003 (0.21)and beta=0.84 (0.0400);fore101=0.003 (0.12)and
beta=0.60 (0.05186);fore200=0.003(0.16) and beta=0.65 (0.00858);fore201=0.003(0.18)and
beta =0.41 (0.00080);fore002=0.003(0.18) and beta=0.74 (0.01793);fore102=0.004(0.08)and
beta=0.35(0.19262);fore202=0.004(0.04) and beta=0.12 (0.60000)

The Parameter Values are quite good since the first beta coefficient must tend to one while the second

one which is alpha must tend to 0. The next test that will be done to evaluate the best forecast for the

investment strategy is the Diebold Mariano as done by Chen et al. (2021). The Diebold-Mariano test ,

conducted on the best-estimated forecasts(fore_200and fore_002 based on the MSE), reveals a negative

relationship between the two forecast. The best forecast come out from the difference is the fore_200.

Subsequently, the focus shifts towards the formulation and implementation of a trading strategy as used

in the other quarters. Employing a confidence interval of 70%, the profit margin is determined to be

387,87%. This outcome signifies a positive result for the investment strategy, indicating its viability and

success
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Figure 4.16: Showcases the application of the trading startegies. The green circles represent the selling
points , and the red circles represent the buying point.
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Chapter 5

CONCLUSION

The primary objective of this thesis is to formulate a profitable trading strategy centered on Italian power

futures prices for the 2022 quarters, as quoted in the year 2021.The selection of specific quarters for

strategy implementation have been based on a comprehensive comparison of yields. The overarching

goal has achieved the desired Return on Investment (ROI). In the realm of energy companies, particu-

larly in Italy, the prevalent practices involve hedging or market access trading to mitigate contract risks.

Speculative trading, once widely employed, has diminished, especially in the aftermath of numerous en-

ergy company bankruptcies during the early stages of the Russia-Ukraine War. This thesis has aimed

at developing a trading strategy that, while not conforming entirely to the conventional speculative en-

ergy trading strategy, endeavors to adopt a methodology applicable to other return-based asset classes.

In contrast to the typical energy trading strategy, which involves receiving energy contract orders and

strategically timing their execution, this approach has started with data initialization. Dates and prices for

each quarter over two years (2020 with Q1 2021 and Q1 2022quoted in 2021 as the prediction subject)

have been used employing the cross-validation method. The procedural steps have included estimat-

ing price returns over the sample duration, calculating log returns and modeling using ARIMA models

to generate different forecasts. Comparison of forecasts on graphs, mean square errors computations

and Mincer-Zarnowitz regressions have followed. The Diebold-Mariano Test has then been employed

to identify the best forecast, subsequently informing the trading strategy. Among the various trading

strategies explored, the Q2 strategy emerges with significantly higher returns, making it the preferred

choice. This thesis has demonstrated the feasibility of implementing a successful speculative strategy in

the energy market. As a prospective extension, constructing an investment portfolio in the commodities

sector may be considered. This entails applying Markowitz’s Portfolio Theory and studying covariances

to ensure non-positive correlations between invested commodities. Diversifying risks may be achieved

through different trading strategies within the portfolio, each based on distinct commodities Furthermore,

an examination of quantiles would be insightful for integrating risk measures and safeguarding invested

capital. Quantile regression, a statistical method, provides detailed insights into the variability of returns

distribution tails. Additionally, risk measures such as Value at Risk (VAR)as done by Sadeghi and Shav-

valpour (2006) Jackson (2010) Denton et al. (2003)and backtesting applications could be explored for
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comprehensive risk assessment.
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MATLAB CODE

1 % Questo Q1

2 Data=readtable(’DATI␣2021␣tesi.xlsx’);

3 Dataq121=flipud(table2array(Data(1:516,13)));

4 prezziq121=flipud(table2array(Data(1:516,14)));

5 plot(Dataq121,prezziq121)

6

7

8 ret=diff(log(prezziq121))

9 plot(Dataq121(2:516),ret)

10 subplot(2,1,1);

11 autocorr(ret, 20);

12 title(’Funzione␣di␣autocorrelazione’);

13

14 subplot(2,1,2);

15 parcorr(ret, 20);

16 title(’Funzione␣di␣autocorrelazione␣parziale’);

17

18 plot(Dataq121(2:516),ret)

19 xlabel(’Date’);

20 ylabel(’log␣return’);

21 axis tight;

22 datetick(’x’, ’yyyy’);

23

24 [~,pvalues\_ret]=adftest(ret,’lags’,0:2)

25

26 %%

27 subplot(2,1,1)

28 autocorr(ret,22)

29 subplot(2,1,2)

30 parcorr(ret,22)

31 %%%%%%%%%

32

33

34 wind=250

35 T=size(ret,1)

36 fore=zeros(T-wind,1);

37 test\_set=ret(wind+1:end);

38

39

40 %arima(0,0,0)
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41 fore\_000=zeros(T-wind,1);

42 tic

43 for i=1:(T-wind);

44

45 MdL\_000 = arima(0,0,0);

46 EstMdl = estimate(Mdl\_000,ret(i:wind+i-1));

47 fore\_000(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

48 end

49 toc

50

51 %%%%%%%%%%arima(1,0,0)%%%%%%%%%%%%%%%%%%%%%

52 fore\_100=zeros(T-wind,1);

53 tic

54 for i=1:(T-wind);

55

56 Mdl\_100 = arima(1,0,0);

57 EstMdl = estimate(Mdl\_100,ret(i:wind+i-1));

58 fore\_100(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

59 end

60 toc

61 fore\_001=zeros(T-wind,1);

62 tic

63 for i=1:(T-wind);

64

65 Mdl\_001 = arima(0,0,1);

66 EstMdl = estimate(Mdl\_001,ret(i:wind+i-1));

67 fore\_001(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

68 end

69 toc

70 %%%%%%%%%%arima(1,0,1)%%%%%%%%%%%%%%%%%%%%%

71 fore\_101=zeros(T-wind,1);

72 tic

73 for i=1:(T-wind);

74

75 Mdl\_101 = arima(1,0,1);

76 EstMdl = estimate(Mdl\_101,ret(i:wind+i-1));

77 fore\_101(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

78 end

79 toc

80

81 fore\_200=zeros(T-wind,1);

82 tic
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83 for i=1:(T-wind);

84

85 Mdl\_200 = arima(2,0,0);

86 EstMdl = estimate(Mdl\_200,ret(i:wind+i-1));

87 fore\_200(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

88 end

89 toc

90

91 fore\_201=zeros(T-wind,1);

92 tic

93 for i=1:(T-wind);

94

95 Mdl\_201= arima(2,0,1);

96 EstMdl = estimate(Mdl\_201,ret(i:wind+i-1));

97 fore\_201(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

98 end

99 toc

100

101 fore\_002=zeros(T-wind,1);

102 tic

103 for i=1:(T-wind);

104

105 Mdl\_002 = arima(0,0,2);

106 EstMdl = estimate(Mdl\_002,ret(i:wind+i-1));

107 fore\_002(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

108 end

109 toc

110

111 fore\_102=zeros(T-wind,1);

112 tic

113 for i=1:(T-wind);

114

115 Mdl\_102 = arima(1,0,2);

116 EstMdl = estimate(Mdl\_102,ret(i:wind+i-1));

117 fore\_102(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

118 end

119 toc

120

121 fore\_202=zeros(T-wind,1);

122 tic

123 for i=1:(T-wind);

124
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125 Mdl\_202 = arima(2,0,2);

126 EstMdl = estimate(Mdl\_202,ret(i:wind+i-1));

127 fore\_202(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

128 end

129 toc

130

131

132 plot(test\_set(1:end),"black")

133 hold on

134 plot(fore\_100,’r’)

135 hold on

136 plot(fore,’cyan’)

137 hold on

138 plot(fore\_101,’green’)

139 hold on

140 plot(fore\_200,’red’)

141 hold on

142 plot(fore\_201,’yellow’)

143 hold on

144 plot(fore\_002,’magenta’)

145 hold on

146 plot(fore\_102,’white’)

147 hold on

148 plot(fore\_202,’blue’)

149

150 if ~isempty(test\_set)\\\&\& all(isfinite(test\_set(2:end)))\\ \&\& all(isfinite(

fore))

151 MSE = sum((test\_set(1:end)-fore(1:end)).\^2) / numel(test\_set(1:end));

152 MSE\_100 = sum((test\_set(1:end)-fore\_100).\^2) / numel(test\_set(1:end));

153 MSE\_101 = sum((test\_set(1:end)-fore\_101).\^2) / numel(test\_set(1:end));

154 MSE\_200 = sum((test\_set(1:end)-fore\_200).\^2) / numel(test\_set(1:end));

155 MSE\_201 = sum((test\_set(1:end)-fore\_201).\^2) / numel(test\_set(1:end));

156 MSE\_002 = sum((test\_set(1:end)-fore\_002).\^2) / numel(test\_set(1:end));

157 MSE\_102 = sum((test\_set(1:end)-fore\_102).\^2) / numel(test\_set(1:end));

158 MSE\_001 = sum((test\_set(1:end)-fore\_001).\^2) / numel(test\_set(1:end));

159 MSE\_202 = sum((test\_set(1:end)-fore\_202).\^2) / numel(test\_set(1:end));

160 M = [MSE, MSE\_100, MSE\_101, MSE\_200, MSE\_201, MSE\_002, MSE\_102, MSE\_202];

161 else

162 disp(’Warning:␣Test␣set␣contains␣NaN␣or␣Inf␣values,␣MSE␣calculation␣skipped.’);

163 end

164

165
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166 param0=fitlm(fore\_002,test\_set(1:end),1)

167 param2=fitlm(fore\_100,test\_set(1:end),1)

168 param3=fitlm(fore\_101,test\_set(1:end),1)

169 param4=fitlm(fore\_102,test\_set(1:end),1)

170 param6=fitlm(fore\_200,test\_set(1:end),1)

171 param7=fitlm(fore\_201,test\_set(1:end),1)

172 param8=fitlm(fore\_000,test\_set(1:end),1)

173 param9=fitlm(fore\_202,test\_set(1:end),1)

174 param10=fitlm(fore\_001,test\_set(1:end),1)

175

176

177 %%%DM

178 DM\_FINAL=dmtest(fore\_200-test\_set,fore\_001-test\_set,1)

179

180 FORE\_final=MSE\_200-MSE\_001

181

182

183

184

185

186 capitale\_iniziale = 1000000;

187 capitale = capitale\_iniziale;

188 investimento\_fisso = 20000;

189 posizione = 0;

190

191

192 confidenza = 0.7;

193

194

195 for t = 1:length(fore\_200)

196

197 previsione = fore\_200(t);

198 errore\_std = sqrt(EstMdl.Variance);

199

200 previsione\_intervallo\_inferiore = previsione - norminv((1 - confidenza) / 2) *

errore\_std;

201 previsione\_intervallo\_superiore = previsione + norminv((1 + confidenza) / 2) *

errore\_std;

202

203 if previsione < previsione\_intervallo\_inferiore \\\&\& posizione <= 0

204

205 quantita\_acquistata = investimento\_fisso / previsione;
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206 capitale = capitale - investimento\_fisso;

207 posizione = posizione + quantita\_acquistata;

208 fprintf(’Compra␣\%f␣unit␣di␣asset␣a␣t=\%d\n’, quantita\_acquistata , t);

209 elseif previsione > previsione\_intervallo\_superiore \&\& posizione >= 0

210

211 quantita\_venduta = min(posizione , investimento\_fisso / previsione);

212 capitale = capitale + quantita\_venduta * previsione;

213 posizione = posizione - quantita\_venduta;

214 fprintf(’Vendi␣\%f␣unit␣di␣asset␣a␣t=\%d\n’, quantita\_venduta, t);

215 end

216 end

217

218

219 valore\_finale = capitale + posizione * previsione;

220

221 fprintf(’Valore␣finale␣dell␣investimento:␣\%.2f\n’, valore\_finale);

222 profitto=valore\_finale-capitale

223

224

225 ritorno = (valore\_finale - capitale\_iniziale) / capitale\_iniziale;

226 profitto\_percentuale = (valore\_finale - capitale\_iniziale) / capitale\_iniziale *

100;

227

228 fprintf(’Ritorno␣sull’’investimento␣(ROI):␣\%.2f\%\%\n’, ritorno * 100);

229 fprintf(’Profitto␣percentuale:␣\%.2f\%\%\n’, profitto\_percentuale);

230

231

232 tempi = 1:length(fore\_200);

233

234

235 figure;

236 plot(tempi, fore\_200, ’b-’, ’LineWidth’, 2);

237 hold on;

238

239

240 compra = fore\_200(fore\_200 < previsione\_intervallo\_inferiore);

241 vendi = fore\_200(fore\_200 > previsione\_intervallo\_superiore);

242 plot(find(fore\_200 < previsione\_intervallo\_inferiore), compra, ’ro’, ’MarkerSize’

, 8);

243 plot(find(fore\_200> previsione\_intervallo\_superiore), vendi, ’go’, ’MarkerSize’,

8);

244
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245

246 title(’Trading␣Strategy’);

247 xlabel(’Tempo’);

248 ylabel(’Previsioni’);

249 legend(’Previsioni’, ’Acquisto’, ’Vendita’, ’Location’, ’Best’);

250

251 hold off;

252 %Q2

253 Data=readtable(’DATI␣2021␣tesi.xlsx’);

254 Dataq221=flipud(table2array(Data(1:516,16)));

255 prezziq221=flipud(table2array(Data(1:516,17)));

256 plot(Dataq221,prezziq221)

257 xlabel(’prezziq221’)

258 ylabel(’Dataq221’)

259

260

261 ret=diff(log(prezziq221))

262 plot(Dataq221(2:516),ret)

263 subplot(2,1,1);

264 autocorr(ret, 20);

265 title(’Funzione␣di␣autocorrelazione’);

266

267 subplot(2,1,2);

268 parcorr(ret, 20);

269 title(’Funzione␣di␣autocorrelazione␣parziale’);

270

271 plot(Dataq221(2:516),ret)

272 xlabel(’Date’);

273 ylabel(’log␣return’);

274 axis tight;

275 datetick(’x’, ’yyyy’);

276

277 [~,pvalues\_ret]=adftest(ret,’lags’,0:2)

278

279 %%

280 subplot(2,1,1)

281 autocorr(ret,22)

282 subplot(2,1,2)

283 parcorr(ret,22)

284 %%%%%%%%%

285

286
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287 wind=250

288 T=size(ret,1)

289 fore=zeros(T-wind,1);

290 test\_set=ret(wind+1:end);

291

292

293 %%%%%%arima(0,0,0)

294 fore\_000=zeros(T-wind,1);

295 tic

296 for i=1:(T-wind);

297

298 Mdl\_000 = arima(0,0,0);

299 EstMdl = estimate(Mdl\_000,ret(i:wind+i-1));

300 fore\_000(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

301 end

302 toc

303

304 %%%%%%%%%%arima(1,0,0)

305 fore\_100=zeros(T-wind,1);

306 tic

307 for i=1:(T-wind);

308

309 Mdl\_100 = arima(1,0,0);

310 EstMdl = estimate(Mdl\_100,ret(i:wind+i-1));

311 fore\_100(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

312 end

313 toc

314

315 fore\_001=zeros(T-wind,1);

316 tic

317 for i=1:(T-wind);

318

319 Mdl\_001 = arima(0,0,1);

320 EstMdl = estimate(Mdl\_001,ret(i:wind+i-1));

321 fore\_001(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

322 end

323 toc

324

325 %%%%%%%%%%arima(1,0,1)

326 fore\_101=zeros(T-wind,1);

327 tic

328 for i=1:(T-wind);
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329

330 Mdl\_101 = arima(1,0,1);

331 EstMdl = estimate(Mdl\_101,ret(i:wind+i-1));

332 fore\_101(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

333 end

334 toc

335

336

337 %%%%%%%%%%arima(2,0,0)%%%%%%%%%%%%%%%%%%%%%

338 fore\_200=zeros(T-wind,1);

339 tic

340 for i=1:(T-wind);

341

342 Mdl\_200 = arima(2,0,0);

343 EstMdl = estimate(Mdl\_200,ret(i:wind+i-1));

344 fore\_200(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

345 end

346 toc

347

348

349

350 fore\_201=zeros(T-wind,1);

351 tic

352 for i=1:(T-wind);

353

354 Mdl\_201= arima(2,0,1);

355 EstMdl = estimate(Mdl\_201,ret(i:wind+i-1));

356 fore\_201(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

357 end

358 toc

359

360

361 fore\_002=zeros(T-wind,1);

362 tic

363 for i=1:(T-wind);

364

365 Mdl\_002 = arima(0,0,2);

366 EstMdl = estimate(Mdl\_002,ret(i:wind+i-1));

367 fore\_002(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

368 end

369 toc

370
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371

372

373 fore\_102=zeros(T-wind,1);

374 tic

375 for i=1:(T-wind);

376

377 Mdl\_102 = arima(1,0,2);

378 EstMdl = estimate(Mdl\_102,ret(i:wind+i-1));

379 fore\_102(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

380 end

381 toc

382

383 fore\_202=zeros(T-wind,1);

384 tic

385 for i=1:(T-wind);

386

387 Mdl\_202 = arima(2,0,2);

388 EstMdl = estimate(Mdl\_202,ret(i:wind+i-1));

389 fore\_202(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

390 end

391 toc

392

393

394 plot(test\_set(1:end),"cyan")

395 hold on

396 plot(fore\_100,’r’)

397 hold on

398 plot(fore,’black’)

399 hold on

400 plot(fore\_101,’green’)

401 hold on

402 plot(fore\_200,’red’)

403 hold on

404 plot(fore\_201,’yellow’)

405 hold on

406 plot(fore\_002,’magenta’)

407 hold on

408 plot(fore\_102,’white’)

409 hold on

410 plot(fore\_202,’blue’)

411
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412 if ~isempty(test\_set)\ \&\& all(isfinite(test\_set(2:end))) \&\& all(isfinite(fore)

)

413 MSE = sum((test\_set(1:end)-fore(1:end)).\^2) / numel(test\_set(1:end));

414 MSE\_100 = sum((test\_set(1:end)-fore\_100).\^2) / numel(test\_set(1:end));

415 MSE\_101 = sum((test\_set(1:end)-fore\_101).\^2) / numel(test\_set(1:end));

416 MSE\_200 = sum((test\_set(1:end)-fore\_200).\^2) / numel(test\_set(1:end));

417 MSE\_201 = sum((test\_set(1:end)-fore\_201).\^2) / numel(test\_set(1:end));

418 MSE\_002 = sum((test\_set(1:end)-fore\_002).\^2) / numel(test\_set(1:end));

419 MSE\_102 = sum((test\_set(1:end)-fore\_102).\^2) / numel(test\_set(1:end));

420 MSE\_202 = sum((test\_set(1:end)-fore\_202).\^2) / numel(test\_set(1:end));

421 MSE\_001 = sum((test\_set(1:end)-fore\_001).\^2) / numel(test\_set(1:end));

422 M = [MSE, MSE\_100, MSE\_101, MSE\_200, MSE\_201, MSE\_002, MSE\_102, MSE\_202];

423 else

424 disp(’Warning:␣Test␣set␣contains␣NaN␣or␣Inf␣values,␣MSE␣calculation␣skipped.’);

425 end

426

427

428 param0=fitlm(fore\_002,test\_set(1:end),1)

429 param2=fitlm(fore\_100,test\_set(1:end),1)

430 param3=fitlm(fore\_101,test\_set(1:end),1)

431 param4=fitlm(fore\_102,test\_set(1:end),1)

432 param6=fitlm(fore\_200,test\_set(1:end),1)

433 param7=fitlm(fore\_201,test\_set(1:end),1)

434 param8=fitlm(fore\_000,test\_set(1:end),1)

435 param9=fitlm(fore\_202,test\_set(1:end),1)

436 param10=fitlm(fore\_001,test\_set(1:end),1)

437

438

439 %%%DM sui migliori

440 DM\_FINAL=dmtest(fore\_001-test\_set,fore\_002-test\_set,1)

441

442 capitale\_iniziale = 1000000;

443 capitale = capitale\_iniziale;

444 investimento\_fisso = 20000;

445 posizione = 0;

446

447

448 confidenza = 0.7;

449

450

451 for t = 1:length(fore\_002)

452
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453 previsione = fore\_002(t);

454 errore\_std = sqrt(EstMdl.Variance);

455

456

457 previsione\_intervallo\_inferiore = previsione - norminv((1 - confidenza) / 2) *

errore\_std;

458 previsione\_intervallo\_superiore = previsione + norminv((1 + confidenza) / 2) *

errore\_std;

459

460

461 if previsione < previsione\_intervallo\_inferiore\ \&\& posizione <= 0

462

463 quantita\_acquistata = investimento\_fisso / previsione;

464 capitale = capitale - investimento\_fisso;

465 posizione = posizione + quantita\_acquistata;

466 fprintf(’Compra␣\%f␣unit␣di␣asset␣a␣t=\%d\n’, quantit\_acquistata , t);

467 elseif previsione > previsione\_intervallo\_superiore\ \&\& posizione >= 0

468 quantita\_venduta = min(posizione , investimento\_fisso / previsione);

469 capitale = capitale + quantita\_venduta * previsione;

470 posizione = posizione - quantita\_venduta;

471 fprintf(’Vendi\%f␣unit␣di␣asset␣a␣t=\%d\n’, quantita\_venduta, t);

472 end

473 end

474

475

476 valore\_finale = capitale + posizione * previsione;

477

478 fprintf(’Valore␣finale␣dell␣investimento:␣\%.2f\n’, valore\_finale);

479 profitto=valore\_finale-capitale

480

481 ritorno = (valore\_finale - capitale\_iniziale) / capitale\_iniziale;

482 profitto\_percentuale = (valore\_finale - capitale\_iniziale) / capitale\_iniziale *

100;

483

484 fprintf(’Ritorno␣sull’’investimento␣(ROI):\␣\%.2f\%\%\n’, ritorno * 100);

485 fprintf(’Profitto␣percentuale:␣\%.2f\%\\\%\n’, profitto\_percentuale);

486

487

488 tempi = 1:length(fore\_002);

489

490 figure;

491 plot(tempi, fore\_002, ’b-’, ’LineWidth’, 2);
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492 hold on;

493

494

495 compra = fore\_002(fore\_002 < previsione\_intervallo\_inferiore);

496 vendi = fore\_002(fore\_002 > previsione\_intervallo\_superiore);

497 plot(find(fore\_002 < previsione\_intervallo\_inferiore), compra, ’ro’, ’MarkerSize’

, 8);

498 plot(find(fore\_002 > previsione\_intervallo\_superiore), vendi, ’go’, ’MarkerSize’,

8);

499

500

501 title(’Trading␣Strategy’);

502 xlabel(’Tempo’);

503 ylabel(’Previsioni’);

504 legend(’Previsioni’, ’Acquisto’, ’Vendita’, ’Location’, ’Best’);

505

506 hold off;

507 %Q3

508 Data=readtable(’DATI␣2021␣tesi.xlsx’);

509 Dataq321=flipud(table2array(Data(1:475,19)));

510 prezziq321=flipud(table2array(Data(1:475,20)));

511 plot(Dataq321,prezziq321)

512 xlabel(’prezziq321’)

513 ylabel(’Dataq321’)

514

515

516 ret=diff(log(prezziq321))

517 plot(Dataq321(2:475),ret)

518 subplot(2,1,1);

519 autocorr(ret, 20);

520 title(’Funzione␣di␣autocorrelazione’);

521

522 subplot(2,1,2);

523 parcorr(ret, 20);

524 title(’Funzione␣di␣autocorrelazione␣parziale’);

525

526 plot(Dataq321(2:475),ret)

527 xlabel(’Date’);

528 ylabel(’log␣return’);

529 axis tight;

530 datetick(’x’, ’yyyy’);

531
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532 [~,pvalues\_ret]=adftest(ret,’lags’,0:2)

533

534 %%

535 subplot(2,1,1)

536 autocorr(ret,22)

537 subplot(2,1,2)

538 parcorr(ret,22)

539 %%%%%%%%%

540

541

542 wind=250

543 T=size(ret,1)

544 fore=zeros(T-wind,1);

545 test\_set=ret(wind+1:end);

546

547

548 %%%%%%arima(0,0,0)%%%

549 fore\_000=zeros(T-wind,1);

550 tic

551 for i=1:(T-wind);

552

553 Mdl\_000 = arima(0,0,0);

554 EstMdl = estimate(Mdl\_000,ret(i:wind+i-1));

555 fore\_000(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

556 end

557 toc

558

559 %%%%%%%%%%arima(1,0,0)%%%%%%%%%%%%%%%%%%%%%

560 fore\_100=zeros(T-wind,1);

561 tic

562 for i=1:(T-wind);

563

564 Mdl\_100 = arima(1,0,0);

565 EstMdl = estimate(Mdl\_100,ret(i:wind+i-1));

566 fore\_100(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

567 end

568 toc

569 fore\_001=zeros(T-wind,1);

570 tic

571 for i=1:(T-wind);

572

573 Mdl\_001 = arima(0,0,1);
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574 EstMdl = estimate(Mdl\_001,ret(i:wind+i-1));

575 fore\_001(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

576 end

577 toc

578

579

580

581 %%%%%%%%%%arima(1,0,1)%%%%%%%%

582 fore\_101=zeros(T-wind,1);

583 tic

584 for i=1:(T-wind);

585

586 Mdl\_101 = arima(1,0,1);

587 EstMdl = estimate(Mdl\_101,ret(i:wind+i-1));

588 fore\_101(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

589 end

590 toc

591

592

593 %%%%%%%%%%arima(2,0,0)%%%%%%%%%%%%%%%%%%%%%

594 fore\_200=zeros(T-wind,1);

595 tic

596 for i=1:(T-wind);

597

598 Mdl\_200 = arima(2,0,0);

599 EstMdl = estimate(Mdl_200,ret(i:wind+i-1));

600 fore\_200(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

601 end

602 toc

603

604

605

606 fore\_201=zeros(T-wind,1);

607 tic

608 for i=1:(T-wind);

609

610 Mdl\_201= arima(2,0,1);

611 EstMdl = estimate(Mdl\_201,ret(i:wind+i-1));

612 fore\_201(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

613 end

614 toc

615
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616

617 fore\_002=zeros(T-wind,1);

618 tic

619 for i=1:(T-wind);

620

621 Mdl\_002 = arima(0,0,2);

622 EstMdl = estimate(Mdl\_002,ret(i:wind+i-1));

623 fore\_002(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

624 end

625 toc

626

627

628

629 fore\_102=zeros(T-wind,1);

630 tic

631 for i=1:(T-wind);

632 ;

633 Md\l\_102 = arima(1,0,2);

634 EstMdl = estimate(Mdl\_102,ret(i:wind+i-1));

635 fore\_102(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

636 end

637 toc

638

639 fore\_202=zeros(T-wind,1);

640 tic

641 for i=1:(T-wind);

642

643 Mdl\_202 = arima(2,0,2);

644 EstMdl = estimate(Mdl\_202,ret(i:wind+i-1));

645 fore\_202(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

646 end

647 toc

648

649

650 plot(test\_set(1:end),"cyan")

651 hold on

652 plot(fore\_100,’r’)

653 hold on

654 plot(fore,’black’)

655 hold on

656 plot(fore\_101,’green’)

657 hold on
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658 plot(fore\_200,’red’)

659 hold on

660 plot(fore\_201,’yellow’)

661 hold on

662 plot(fore\_002,’magenta’)

663 hold on

664 plot(fore\_102,’white’)

665 hold on

666 plot(fore\_202,’blue’)

667

668 if ~isempty(test\_set) \&\& all(isfinite(test\_set(2:end)))\ \&\& all(isfinite(fore)

)

669 MSE = sum((test\_set(1:end)-fore\_000(1:end)).\^2) / numel(test\_set(1:end));

670 MSE\_100 = sum((test\_set(1:end)-fore\_100).\^2) / numel(test\_set(1:end));

671 MSE\_101 = sum((test\_set(1:end)-fore\_101).\^2) / numel(test\_set(1:end));

672 MSE\_200 = sum((test\_set(1:end)-fore\_200).\^2) / numel(test\_set(1:end));

673 MSE\_201 = sum((test\_set(1:end)-fore\_201).\^2) / numel(test\_set(1:end));

674 MSE\_002 = sum((test\_set(1:end)-fore\_002).\^2) / numel(test\_set(1:end));

675 MSE\_102 = sum((test\_set(1:end)-fore\_102).\^2) / numel(test\_set(1:end));

676 MSE\_202 = sum((test\_set(1:end)-fore\_202).\^2) / numel(test\_set(1:end));

677 MSE\_001 = sum((test\_set(1:end)-fore\_001).\^2) / numel(test\_set(1:end));

678 M = [MSE, MSE\_100, MSE\_101, MSE\_200, MSE\_201, MSE\_002, MSE\_102, MSE\_202];

679 else

680 disp(’Warning:␣Test␣set␣contains␣NaN␣or␣Inf␣values,␣MSE␣calculation␣skipped.’);

681 end

682

683 param0=fitlm(fore\_002,test\_set(1:end),1)

684 param2=fitlm(fore\_100,test\_set(1:end),1)

685 param3=fitlm(fore\_101,test\_set(1:end),1)

686 param4=fitlm(fore\_102,test\_set(1:end),1)

687 param6=fitlm(fore\_200,test\_set(1:end),1)

688 param7=fitlm(fore\_201,test\_set(1:end),1)

689 param8=fitlm(fore\_000,test\_set(1:end),1)

690 param9=fitlm(fore\_202,test\_set(1:end),1)

691 param10=fitlm(fore\_001,test\_set(1:end),1)

692

693

694 %%%DM sui migliori

695 DM\_FINAL=dmtest(fore\_001-test\_set,fore\_002-test\_set,1)

696

697

698
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699

700

701

702 capitale\_iniziale = 1000000;

703 capitale = capitale\_iniziale;

704 investimento\_fisso = 20000;

705 posizione = 0;

706

707

708 confidenza = 0.9;

709

710

711 for t = 1:length(for\e\_002)

712

713 previsione = fore\_002(t);

714 errore\_std = sqrt(EstMdl.Variance);

715

716 previsione\_intervallo\_inferiore = previsione - norminv((1 - confidenza) / 2) *

errore\_std;

717 previsione\_intervallo\_superiore = previsione + norminv((1 + confidenza) / 2) *

errore\_std;

718

719 if previsione < previsione\_intervallo\_inferiore\ \&\& posizione <= 0

720

721 quantita\_acquistata = investimento\_fisso / previsione;

722 capitale = capitale - investimento\_fisso;

723 posizione = posizione + quantita\_acquistata;

724 fprintf(’Compra␣\%f␣unit␣di␣asset␣a␣t=\%d\n’, quantita\_acquistata , t);

725 elseif previsione > previsione\_intervallo\_superiore \&\& posizione >= 0

726

727 quantita\_venduta = min(posizione , investimento\_fisso / previsione);

728 capitale = capitale + quantita\_venduta * previsione;

729 posizione = posizione - quantita\_venduta;

730 fprintf(’Vendi␣\%f␣unit␣di␣asset␣a␣t=\%d\n’, quantita\_venduta, t);

731 end

732 end

733

734

735 valore\_finale = capitale + posizione * previsione;

736

737 fprintf(’Valore␣finale␣dell␣investimento:␣\%.2f\n’, valore\_finale);

738 profitto=valore\_finale-capitale
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739

740

741 ritorno = (valore\_finale - capitale\_iniziale) / capitale\_iniziale;

742 profitto\_percentuale = (valore\_finale - capitale\_iniziale) / capitale\_iniziale *

100;

743

744 fprintf(’Ritorno␣sull’’investimento␣(ROI):␣\%.2f\%\%\n’, ritorno * 100);

745 fprintf(’Profitto␣percentuale:␣\%.2f\%\%\n’, profitto\_percentuale);

746

747 tempi = 1:length(fore\_002);

748

749

750 figure;

751 plot(tempi, fore\_002, ’b-’, ’LineWidth’, 2);

752 hold on;

753

754

755 compra = fore\_002(fore\_002 < previsione\_intervallo\_inferiore);

756 vendi = fore\_002(fore\_002 > previsione\_intervallo\_superiore);

757 plot(find(fore\_002 < previsione\_intervallo\_inferiore), compra, ’ro’, ’MarkerSize’

, 8);

758 plot(find(fore\_002 > previsione\_intervallo\_superiore), vendi, ’go’, ’MarkerSize’,

8);

759

760

761 title(’Trading␣Strategy’);

762 xlabel(’Tempo’);

763 ylabel(’Previsioni’);

764 legend(’Previsioni’, ’Acquisto’, ’Vendita’, ’Location’, ’Best’);

765

766 hold off;

767 %%%%%

768 %Q4

769 Data=readtable(’DATI␣2021␣tesi.xlsx’);

770 Dataq421=flipud(table2array(Data(1:502,22)));

771 prezziq421=flipud(table2array(Data(1:502,23)));

772 plot(Dataq421,prezziq421)

773 xlabel(’prezziq421’)

774 ylabel(’Dataq421’)

775

776

777 ret=diff(log(prezziq421))

77



778 plot(Dataq421(2:502),ret)

779 subplot(2,1,1);

780 autocorr(ret, 20);

781 title(’Funzione␣di␣autocorrelazione’);

782

783 subplot(2,1,2);

784 parcorr(ret, 20);

785 title(’Funzione␣di␣autocorrelazione␣parziale’);

786

787 plot(Dataq421(2:502),ret)

788 xlabel(’Date’);

789 ylabel(’log␣return’);

790 axis tight;

791 datetick(’x’, ’yyyy’);

792

793 [~,pvalues\_ret]=adftest(ret,’lags’,0:2)

794

795 %%

796 subplot(2,1,1)

797 autocorr(ret,22)

798 subplot(2,1,2)

799 parcorr(ret,22)

800 %%%%%%%%%

801

802

803 wind=250

804 T=size(ret,1)

805 fore=zeros(T-wind,1);

806 test_set=ret(wind+1:end);

807

808

809 %%%%%%arima(0,0,0)%%%%

810 fore\_000=zeros(T-wind,1);

811 tic

812 for i=1:(T-wind);

813

814 Mdl\_000 = arima(0,0,0);

815 EstMdl = estimate(Mdl\_000,ret(i:wind+i-1));

816 fore\_000(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

817 end

818 toc

819

78



820 %%%%%%%%%%arima(1,0,0)%%%%%%%%%%%%%%%%%%%%%

821 fore\_100=zeros(T-wind,1);

822 tic

823 for i=1:(T-wind);

824

825 Mdl\_100 = arima(1,0,0);

826 EstMdl = estimate(Mdl\_100,ret(i:wind+i-1));

827 fore\_100(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

828 end

829 toc

830

831

832

833 %%%%%%%%%%arima(1,0,1)%%%%%%%%%%%%%%%%%%%%%

834 fore\_101=zeros(T-wind,1);

835 tic

836 for i=1:(T-wind);

837

838 Mdl\_101 = arima(1,0,1);

839 EstMdl = estimate(Mdl\_101,ret(i:wind+i-1));

840 fore\_101(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

841 end

842 toc

843

844

845 %%%%%%%%%%arima(2,0,0)%%%%%%%%%%%%%%%%%%%%%

846 fore\_200=zeros(T-wind,1);

847 tic

848 for i=1:(T-wind);

849 ;

850 Mdl\_200 = arima(2,0,0);

851 EstMdl = estimate(Mdl\_200,ret(i:wind+i-1));

852 fore\_200(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

853 end

854 toc

855

856

857

858 fore\_201=zeros(T-wind,1);

859 tic

860 for i=1:(T-wind);

861
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862 Mdl\_201= arima(2,0,1);

863 EstMdl = estimate(Mdl\_201,ret(i:wind+i-1));

864 fore\_201(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

865 end

866 toc

867

868

869 fore\_002=zeros(T-wind,1);

870 tic

871 for i=1:(T-wind);

872

873 Mdl\_002 = arima(0,0,2);

874 EstMdl = estimate(Mdl\_002,ret(i:wind+i-1));

875 fore\_002(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

876 end

877 toc

878

879

880

881 fore\_102=zeros(T-wind,1);

882 tic

883 for i=1:(T-wind);

884

885 Mdl\_102 = arima(1,0,2);

886 EstMdl = estimate(Mdl\_102,ret(i:wind+i-1));

887 fore\_102(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

888 end

889 toc

890

891 fore\_202=zeros(T-wind,1);

892 tic

893 for i=1:(T-wind);

894

895 Mdl\_202 = arima(2,0,2);

896 EstMdl = estimate(Mdl\_202,ret(i:wind+i-1));

897 fore\_202(i,1) = forecast(EstMdl,1,’Y0’,ret(i:wind+i-1));

898 end

899 toc

900

901 plot(test\_set(1:end),"cyan")

902 hold on

903 plot(fore\_100,’r’)
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904 hold on

905 plot(fore,’black’)

906 hold on

907 plot(fore\_101,’green’)

908 hold on

909 plot(fore\_200,’red’)

910 hold on

911 plot(fore\_201,’yellow’)

912 hold on

913 plot(fore\_002,’magenta’)

914 hold on

915 plot(fore\_102,’white’)

916 hold on

917 plot(fore\_202,’blue’)

918

919 if ~isempty(tes\t\_set)\ \&\& all(isfinite(test\_set(2:end)))\\ \&\& all(isfinite(

fore))

920 MSE = sum((test\_set(1:end)-fore\_000(1:end)).\^2) / numel(test\_set(1:end));

921 MSE\_100 = sum((test\_set(1:end)-fore\_100).\^2) / numel(test\_set(1:end));

922 MSE\_101 = sum((test\_set(1:end)-fore\_101).\^2) / numel(test\_set(1:end));

923 MSE\_200 = sum((test\_set(1:end)-fore\_200).\^2) / numel(test\_set(1:end));

924 MSE\_201 = sum((test\_set(1:end)-fore\_201).\^2) / numel(test\_set(1:end));

925 MSE\_002 = sum((test\_set(1:end)-fore\_002).\^2) / numel(test\_set(1:end));

926 MSE\_102 = sum((test\_set(1:end)-fore\_102).\^2) / numel(test\_set(1:end));

927 MSE\_202 = sum((test\_set(1:end)-fore\_202).\^2) / numel(test\_set(1:end));

928 M = [MSE, MSE\_100, MSE\_101, MSE\_200, MSE\_201, MSE\_002, MSE\_102, MSE\_202];

929 else

930 disp(’Warning:␣Test␣set␣contains␣NaN␣or␣Inf␣values,␣MSE␣calculation␣skipped.’);

931 end

932

933

934 param0=fitlm(fore\_002,test\_set(1:end),1)

935 param2=fitlm(fore\_100,test\_set(1:end),1)

936 param3=fitlm(fore\_101,test\_set(1:end),1)

937 param4=fitlm(fore\_102,test\_set(1:end),1)

938 param6=fitlm(fore\_200,test\_set(1:end),1)

939 param7=fitlm(fore\_201,test\_set(1:end),1)

940 param8=fitlm(fore\_000,test\_set(1:end),1)

941 param9=fitlm(fore\_202,test\_set(1:end),1)

942 param10=fitlm(fore\_001,test\_set(1:end),1)

943

944
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945

946 %%%DM sui migliori

947 DM\_FINAL=dmtest(fore\_200-test\_set,fore\_002-test\_set,1)

948 diff=MSE\_200-MSE\_002

949

950

951

952

953 capitale\_iniziale = 1000000;

954 capitale = capitale\_iniziale;

955 investimento\_fisso = 20000;

956 posizione = 0;

957

958

959 confidenza = 0.7;

960

961

962 for t = 1:length(fore\_200)

963

964 previsione = fore\_200(t);

965 errore\_std = sqrt(EstMdl.Variance);

966

967

968 previsione\_intervallo\_inferiore = previsione - norminv((1 - confidenza) / 2) *

errore\_std;

969 previsione\_intervallo\_superiore = previsione + norminv((1 + confidenza) / 2) *

errore\_std;

970

971

972 if previsione < previsione\_intervallo\_inferiore \&\& posizione <= 0

973

974 quantita\_acquistata = investimento\_fisso / previsione;

975 capitale = capitale - investimento\_fisso;

976 posizione = posizione + quantita\_acquistata;

977 fprintf(’Compra␣\%f␣unit␣di␣asset␣a␣t=\%d\n’, quantita\_acquistata , t);

978 elseif previsione > previsione\_intervallo\_superiore\ \&\& posizione >= 0

979

980 quantita\_venduta = min(posizione , investimento\_fisso / previsione);

981 capitale = capitale + quantita\_venduta * previsione;

982 posizione = posizione - quantita\_venduta;

983 fprintf(’Vendi␣\%f␣unit␣di␣asset␣a␣t=\%d\n’, quantita\_venduta, t);

984 end
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985 end

986

987

988 valore\_finale = capitale + posizione * previsione;

989

990 fprintf(’Valore␣finale␣dell␣investimento:␣\%.2f\n’, valore\_finale);

991 profitto=valore\_finale-capitale

992

993

994

995 ritorno = (valore\_finale - capitale\_iniziale) / capitale\_iniziale;

996 profitto\_percentuale = (valore\_finale - capitale\_iniziale) / capitale\_iniziale *

100;

997

998 fprintf(’Ritorno␣sull’’investimento␣(ROI):␣\%.2f\%\%\n’, ritorno * 100);

999 fprintf(’Profitto␣percentuale:␣\%.2f\%\%\n’, profitto\_percentuale);

1000

1001 tempi = 1:length(fore\_200);

1002

1003

1004 figure;

1005 plot(tempi, fore\_200, ’b-’, ’LineWidth’, 2);

1006 hold on;

Listing 5.1: Matlab codex future
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