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1 Introduction

The advent of increased computational power has ushered in an era of progressively faster
finance. This evolution has engendered a more mathematical and complex approach to
trading, leading to the development of various pair trading and statistical arbitrage strate-
gies, including those grounded in cointegration. This thesis endeavors to demonstrate the
breadth and applicability of this concept, highlighting how it can be expanded dimension-
ally—specifically, by analyzing more than two stocks. The objective is to showcase the
potential for achieving superior risk-return ratios through a multidimensional approach
to cointegration. Through the simulation and analysis of the performances of portfolios
constructed using this approach, this study aims not merely to ascertain the profitability of
the strategy but also to affirm its capacity for risk neutrality, i.e., the ability to capitalize
on both the bullish and bearish phases of the market, a trait highly esteemed by hedge
funds.

Given its highly data-driven nature, this strategy necessitates the use of algorithms
for its implementation, encompassing the selection of assets and the management of posi-
tions. However, this thesis will not extensively delve into the practical aspects of portfolio
management or operational intricacies, as these are the domains of those who implement
such strategies in practice. The principal aim is to broaden the cointegration approach
within statistical trading, transitioning from the search for cointegrated pairs to the iden-
tification of cointegrated groups comprising multiple stocks. This necessitates devising
a strategy for portfolio creation and subsequent performance analysis. This process was
realized through the development of various Python functions, enabling the processing of
a considerable number of portfolios across a dataset spanning over 15 years.

The inaugural chapter delineates the theoretical underpinnings of the strategy, inter-
spersed with a succinct discussion on pair trading and the long/short strategy. Central to
this discourse is cointegration, particularly its identification via the Augmented Dickey-
Fuller test and the Johansen test. The ensuing chapter elucidates the structure of the trad-
ing strategy, commencing with dataset creation and the selection of cointegrated stocks,
followed by portfolio construction upon determining the appropriate weights. The final
chapter is dedicated to the analysis of portfolio performances, encompassing a compara-
tive evaluation of the returns and volatility of various portfolios against the benchmark,
culminating in the verification of the strategy’s market neutrality. Additional analyses in-
clude assessing skewness and kurtosis to gain deeper insights into the simulated returns of
the portfolios, and the computation of the Sharpe ratio to juxtapose the risk-return profiles
of the diverse portfolios.
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2 Theoretical basis of strategy: pair trading and cointe-
gration

The first chapter outlines the theoretical foundations of the strategy. Starting with the
economic fundamentals of trading such as long/short trading and market neutrality that
characterize the strategies of multiple hedge funds. Next, is introduced the concept of
pair trading and the underlying mathematical and empirical foundations, like the econo-
metric roots of cointegration. After that there is a discression on tests that help identify
cointegrated pairs: the Augmented Dickey Fuller test and the Johansen test.

2.1 Long/short strategy and market neutrality

Underlying any trading strategy implemented by hedge funds is the goal of obtaining a
return independent of what is happening in the market. As much as this observation defies
the Markowitz frontier and efficient market theory that is what hedge funds try to do. It
was within one of the very first funds that Alfred Winslow Jones introduced the concept
of long/short stategies as we know it today. This strategy is the foundation of many more
complex investment methodologies. Basically, a long/short strategy consists of opening
a long position in a security that is expected to increase in value while opening a short
position in a security where the value is expected to decrease. The goal is to profit from
both increases and decreases in stock prices.
Consider two stocks, X and Y , where X is the stock of a company with continuously
increasing revenues, and Y is the stock of a declining company. Assuming that the price
of X and Y at time t0 is $90 and $70, respectively, a trading strategy is implemented
where a long position is opened on X and a short position on Y . At time t1, the price of
X drops to $80, resulting in a loss for the long position. However, the price of Y falls to
$40, which, due to the short position, leads to a profit from the decrease in price.

Stock t0 t1 ∆ ∆%

X 90 80 -10 -11,1%
Y -70 -40 30 42,8%

Portfolio 20 40 20 12,5%

Despite the loss in the long position on X and the profit in the short position on Y , the
overall strategy yields a positive return of $20, which translates to a return percentage of
12.5%. The objective of a long/short exposure is to increase the potential return of a trade
and reduce the exposure to market risk. Accordingly, the long/short strategy can be said
to be a market neutral strategy.
For instance, consider the betas of stocks X and Y are 1,5 and 1,2, respectively. We
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compare the betas of two different portfolios: one in which we buy equal amounts of X
and Y , and another in which we buy as much of X as we short Y . The beta of a portfolio
is the weighted average of the betas of its constituents, leading to the following results:

βportfolio = wXβX + wY βY where wX + wY = 1 (1)

• For the equally weighted portfolio, the beta is calculated as:

βlong =
1

2
× 1, 5 +

1

2
× 1, 2 = 1, 35

• For the long/short portfolio, the beta is calculated as:

βlong/short =
1

2
× 1, 5− 1

2
× 1, 2 = 0, 15

Assuming equal dollar amounts invested in and shorted, the weights are equal and
opposite, leading to a reduced net beta.

Through market neutrality, one aims to achieve returns that are uncorrelated with the
market. This approach seeks to mitigate systemic market risks and relies on the skill of
the investor or trader to identify undervalued or overvalued assets. In addition, while
market neutral strategies do not necessarily reach a zero dollar cost condition - that is, a
scenario where the long positions are fully funded by the short positions - they tend to be
more capital-use efficient than traditional buy and hold strategies. This efficiency is due to
the simultaneous utilization of long and short positions, effectively leveraging the capital
in a more balanced and risk-adjusted manner. Compared to the latter, a long/short strategy
is more complex and requires the implementation of more advanced risk management. In
fact, the presence of short positions necessitates margin management to keep the position
open, as well as incurring higher fees. This demands a more in-depth knowledge of market
dynamics than is typically required for a long trade. On the other hand, a long/short
strategy tends to expose a portfolio less to the risk of market collapse and overall volatility.

There are numerous methods for selecting stocks on which to apply the long/short
strategy. Certainly, the most popular one is based on fundamental analysis, in which one
tries to identify the intrinsic value of a company around which the price fluctuates in
the medium term. Discounted Cash Flow (DCF) models are often used for this purpose.
Therefore, to estimate intrinsic value, future cash flows are estimated and discounted at a
rate of return, which represents the capital structure of the company.

To make the values of different companies comparable, different metrics such as the
price to earnings ratio (P/E) and price to book value ratio (P/B) are used. In each case in
fundamental analysis, accounting records such as the income statement and balance sheet
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are used to assess a range within which, with some margin of safety, a price reflecting the
intrinsic value of the company can be found.

The implementation of the long/short strategy is based on this by setting margins to
open and close positions, as well as all portfolio management.

A more quantitative approach to the long/short strategy is pair trading, which employs
mathematical and econometric models rather than fundamental assessments to identify
stocks to trade on. This strategy involves identifying pairs of stocks whose prices are
historically correlated and are expected to continue to move in tandem. When these pairs
diverge in terms of their price relationship, a trade is executed: one stock is bought long,
and the other is sold short. The expectation is that the prices will converge again, allowing
the trader to profit from the relative movement of the two stocks.

2.2 Pair trading

Pair trading is a form of statistical arbitrage that took hold in the late 20th century as a
complex investment strategy implemented by hedge funds. The model was first applied
by Morgan Stanley in 1980 through Nunzio Tartaglia’s quantitative group. Later thanks
to the likes of Engle and Granger, econometric studies led to statistical arbitrage and the
concept of cointegration.
The model exploits market inefficiencies, that is, when the price movements of two stocks,
which are historically correlated, diverge it means that an arbitrage possibility arises. The
underlying principle is that the two stocks are economically related, in fact they are often
part of the same industry, consequently their price should move similarly. Consequently
should the two prices diverge significantly without economic foundation the possibility
of pair trade would arise based on the expectation that prices will converge again.
The models used by Morgan Stanley therefore used models that identified relationships
between stocks based on common economic factors and exploited short-term fluctuations
to open positions. The simplest approach to pair trading is based on tracking variance,
which is the average distance between the prices of two stocks.
Mathematically it is defined as:

TV =
1

T

T∑
t=1

(QA,t −QB,t)
2 (2)

Where QA,t and QB,t are rate between the log prices of A and B in t and in 1. Qt = Pt/P1.
T is the number of periods considered. So, the tracking variance is the average of the
squared diviation of normalized prices. Therefore, one identifies the spread between the
two stocks as ∆ and identifies the thresholds as a function of σ∆, that is, the standard
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deviation. When thresholds are exceeded, positions are opened by buying the undervalued
stock and shorting the overvalued stock. The position is usually closed when the spread
converges to zero.
To give a brief example by considering Nasdaq stocks. Daily data for the past 20 years of
Nasdaq stocks were downloaded from Bloomberg. Then a function was written in python
to identify the pairs of stocks with a tracking variance less than 0.01, which is more than
sufficient for the illustrative purpose of this example.

Figure 1: Normalized prices and tracking variance of two stocks.

Figure 1 shows in the first graph shows the log prices of AAPL-ASML, i.e., the first
pair identified by the Python function with tracking variance less than 0.01. In fact, it can
be seen that the two time series have a very similar trend. The graph below, on the other
hand, shows the tracking variance; in fact, it can be seen that when the trend of the two
time series diverges, the tracking variance increases, creating opportune profit opportuni-
ties.
From an empirical point of view, it is important to cite Pairs Trading: Performance

of a Relative-Value Arbitrage Rule by Evan Gatev, William Goetzmann, and K. Geert
Rouwenhorst, a study initially conducted in 1998 and later updated in 2006. This seminal
work offers an in-depth analysis of the pair trading strategy, in which stocks are matched
based on the minimum deviation between their normalized historical prices. The data
considered in the study span daily records from 1962 to 1997. One of the key findings is
that portfolios composed of the top 120 pairs can realize over 12 percent average annu-
alized excess returns, which are higher than the estimated transaction costs. This study
provides a detailed examination of the dynamics of mispricing among correlated stocks.
Furthermore, it confirms that the returns from pair trading predominantly come from this
mispricing rather than from conventional measures of risk, thus validating pair trading as
a market-neutral strategy.
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2.3 Cointegration

Cointegration is the basis of several modern pair trading strategies. This is a statistical
property according to which nonstationary time series maintain an equilibrium relation-
ship according to which the spread between these series remains stationary. In other
words, it means that two time series are said to be cointegrated when although they are in-
dividually nonstationary (in trend), there is a linear combination of them that is stationary.
Arbitrage opportunities are found in short-run fluctuations, since if a series is stationary
it will return toward long-run equilibrium.
The fundamental concept of cointegration and the econometric study of time series is
stationarity. Basically, a time series is said to be stationary if the stochastic process that
generated it has the parameters that are independent of time.
Define a stochastic process like a collection of random variables {Xt(ω); t ∈ T} defined
on the same probability space (Ω,F , P ), where T is the index set of the process. The
process can be discrete if T is a subset of Z, can be continuous if T is a subset of the real
numbers R.

So if T is a subset of Z set of time points is finite T = {t1, . . . , tn} and the cumulative
distribution function (CDF) of X = {Xi(ω); i ∈ T} is defined as:

Ft1,...,tn(xt1 , . . . , xtn) = P (Xt1(ω) ≤ xt1(ω), . . . , Xtn(ω) ≤ xtn(ω)) (3)

which, for the generic stochastic process X , is denoted as:

FX(xt1 , . . . , xtn) (4)

Given a definition of a stochastic process we now need to define stationarity, a funda-
mental characteristic for the study and prediction of time series. Mathematically, a strict
stationary series requires that the joint distribution of any set of observations remains the
same when shifted in time. However, this definition is quite stringent. In practice, often
a weaker form, known as “second-order” or “weak-form” stationarity, is considered. For
a time series Xt to be considered second-order stationary, it must satisfy the following
criteria:

1. Constant Mean: The first moment of the series remains constant over time. Math-
ematically:

E[Xi] = µ, ∀t (5)

2. Finite Variance: The second moment the series is finite over time. Mathematically:

E[X2
i ] < ∞, ∀t (6)
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which implies that:
E[(Xi − µ)2] < ∞, ∀t (7)

3. Constant Covariance: The covariance between the ith term and the jth term should
not be a function of time, implying that every lag λ has constant variance. It is same
for autocovariance function γX(i, i + m) that depends only on m (the difference
between i and i+m), not on time t. Mathematically:

cov(Xi, Xj) = cov(Xi+k, Xj+k), ∀i, j, k (8)

The above properties ensure that the series does not exhibit any trend, its fluctuations
around the mean have a consistent spread, and its short-term movements are entirely rep-
resented by its autocovariances, which remain consistent across time.
Practically the characteristic of the stationary series that allows arbitrage is mean-reverting,
that is, the fact that after deviating from the mean for a short period they tend to converge
back to it. Empirically, one can consider the time series of a stock price as a random walk.

Let X1, X2, X3,... be a sequence of independent and identically distributed (i.i.d.)
random variables, where each Xi represents a single step of the walk. The position of the
random walk at time n is then given by the sum of the first n steps: Sn = S0+X1+X2+

. . .+Xn.

Sn = S0 +
n∑

i=1

Xi (9)

If we consider that Xi can take value 1 or -1 with a chance of 50% each we will have that
the expected value of Sn will be 0 while its variance σ2

n, so since the variance depends on
time a random walk is not stationary and not predictable. Consequently it is necessary to
remove the time component and make the series stationary by taking their first difference
as an example. Figure 2 shows AAPL’s log price graph at the top, you can see that the time
series is not stationary. While the bottom graph was generated by a function written in
Python that takes a time series as input and applies a difference transformation iteratively
until the time series is stationary. The differentiation process functions in this way, first
the first difference is calculated, which is defined as:

∆Yt = Yt − Yt−1 (10)

Sometimes, first differencing is insufficient to achieve stationarity. Higher-order differ-
encing may then be employed:

∆2Yt = ∆(∆Yt) = ∆Yt −∆Yt−1 = Yt − 2Yt−1 + Yt−2 (11)
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Figure 2: Normalized prices a first difference trasformation of a time series.

Generally, for dth order differencing:

∆dYt = ∆(∆d−1Yt) (12)

Therefore, the fundamental insight of cointegration is that it is possible to combine and
transform nonstationary processes into stationary processes in order to study and predict
them. In fact, two processes of can be called cointegrated if there is a linear combination
of them that is stationary. If the prices of two stocks are cointegrated, it means that they
comove. If yt and xt are historical stock prices there are two coefficients β and α such
that:

βxt + αyt = zt where zt is a stationary process (13)

Given the long-run equilibrium relationship above, deviations from the short-run equilib-
rium can be exploited. Assuming that α is 1 and β is -1 if zt is positive it means that
xt is overvalued relative to yt so one must buy yt and sell xt, since over the long run zt

should return to 0. Conversely if zt is negative one must sell yt and buy xt since the latter
is undervalued compared to yt which is overvalued. The same concept can be expanded
by looking for a stationary series consisting of more than 2 stocks. Consider historical
stock prices xt, yt, zt, and wt. There exist coefficients α, β, γ, and δ such that the linear
combination:

αxt + βyt + γzt + δwt = ut (14)

where ut is a stationary process.
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2.4 Testing for cointegration: ADF test

The first tool for detecting stationarity, a prerequisite for cointegration, in the framework
of time series analysis is the augmented dickey-fuller (ADF) test. In nonstationary pro-
cesses the effects of short-term shocks persist in the long run, while in stationary processes
such shocks are temporary. Mathematically it means that nonstationary series often have
a unit root. The ADF test is precisely an expanded version of the Dickey-Fuller tests that
are based on time series with an AR(1) process.Taking the simplest model, i.e., a random
walk, as an example

yt = ϕyt−1 + ϵt (15)

where ϕ is the coefficient of the lagged term at t-1 and ϵt is the error term in t. We can
transform this AR(1) model into an MA(infinity) model by iteratively substituting lagged
values of Y . The first substitution gives:

yt = ϕ(ϕyt−2 + εt−1) + εt

yt = ϕ2yt−2 + ϕεt−1 + εt

Continuing this process, we obtain :

yt = yt0 +
t−1∑
k

ϕkεt−k

yt = ϕyt−1 + ϵt = yt0 +
t−1∑
k

ϕkεt−k (16)

Assuming that the expected value of ϵt is 0 and that the variance of each ϵt is the same we
get that the expected value and variance of the process are:

E(yt) = ϕty0 (17)

V ar(yt) = σ2(ϕ0 + ϕ2 + ϕ4 + . . .+ ϕ2(t− 1)) (18)

Thus it can be seen that expected value and variance depend solely on the modulus of ϕ.
Three possible scenarios arise, depending on whether the absolute value of ϕ is larger,
smaller, or equal to 1. If |ϕ| is larger than one, it means that the series is nonstationary
and will explode with time. If |ϕ| is smaller than 1, the expected value with time will
converge to zero while the variance will converge to σ2

1−ϕ2 . Therefore, if the absolute
value of the scaling coefficients is less than one, we are in a stationary condition since
the expected value and variance are constant in time. In contrast, in the unit root case,
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which means that the absolute value of ϕ is 1, the variance becomes time-dependent, i.e.,
tσ2, and consequently nonstationary. Now that we can expand the model, moving to
the Augmented Dickey Fuller, which considers higher-order correlation, including lagged
difference terms of time series, so we move from an AR(1) process to an AR(p):

∆yt = µ+ δyt−1 +

p∑
i=1

γi∆yt−i + ϵt (19)

where µ is the drift term and γi is the coefficient of the lagged difference term. The null
hypothesis of the ADF test is that:

H0 : δ = 0

H1 : δ < 0

To test the series, it is necessary to calculate the t-statistic, tδ̂, of δ and compare it with the
Dickey-Fuller distribution. If the t-statistic is less than the critical value of the Dickey-
Fuller distribution, tcritical, the null hypothesis of a unit root is rejected. Therefore, the
stationarity hypothesis is not rejected.
The ADF is used in the Engle-Granger approach to test the cointegration. The approach
has 2 steps:

1. Estimate the regression between the two time series yt and xt to obtain the residuals
ϵ̂t.

2. Test the residuals for a unit root using the ADF test.

2.5 Testing for cointegration: Johansen test

As an alternative to the Engle-Granger approach using the ADF, one can use The Jo-
hansen Test. The latter allows one to analyze cointegration in multivariate time series. In
fact, one can consider this test as a multivariate extension of the ADF. Although derived
from the same econometric framework there are 2 different statistics for determining the
cointegration relationship in a set of nonstationary time series: eigenvalue statistic and
trace statistic. These differ on how the null hypothesis is tested.

• Trace Statistics: The null hypothesis is that the number of cointegrated vectors is
less than or equal to r versus the hypothesis that it is larger.

Trace = −T
n∑

i=r+1

ln(1− λi),
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where T is the sample size and λi is the eigenvalue. The test is done sequentially
starting from r = 1 and the first r for which the null hypothesis is not rejected is
taken as the estimator of r. Therefore, a relevant trace statistic means that there are
more than r cointegrated vectors.

• Eigenvalue Statistics: It shares the null hypothesis with trace statistics, but as an
alternative it has r + 1 cointegrating vectors.

Max-eigen = −T ln(1− λr+1),

As with the trace, the test is performed sequentially starting from r = 1 and the first
r for which the null hypothesis is not rejected is taken as the estimator. The two
tests are very similar so they can be used together to increase the consistency of the
results.

From a mathematical point of view, a vector autoregressive model (VAR), i.e., the multi-
variate version of an AR process, is applied. In detail, a Vector Error Correction Model
(VECM). Given a vector Xt of n nonstationary time series, a VAR model of order p can
be written as:

Xt = Φ1Xt−1 + Φ2Xt−2 + · · ·+ ΦpXt−p + µ+ εt

In matrix form: 
X1t

X2t

...
Xnt

 =Φ1


X1,t−1

X2,t−1

...
Xn,t−1

+ Φ2


X1,t−2

X2,t−2

...
Xn,t−2

+ · · ·+

Φp


X1,t−p

X2,t−p

...
Xn,t−p

+


µ1

µ2

...
µn

+


ε1t

ε2t
...
εnt


Where each Φi (where i = 1, 2, . . . , p) is represented as:

Φi =


ϕ
(i)
11 ϕ

(i)
12 · · · ϕ

(i)
1n

ϕ
(i)
21 ϕ

(i)
22 · · · ϕ

(i)
2n

...
... . . . ...

ϕ
(i)
n1 ϕ

(i)
n2 · · · ϕ

(i)
nn


Now taking the first difference of Xt we get a Vector Error Correction Model (VECM):
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∆Xt = ΠXt−1 +

p−1∑
i=1

Γi∆Xt−i + µ+ εt

Where:

• Π = −(Φ1 + Φ2 + · · ·+ Φp − I) is an n× n matrix.

• Γi = −(Φi+1 + Φi+2 + · · ·+ Φp) for i = 1, 2, . . . , p− 1 are n× n matrices.

• ∆Xt = Xt −Xt−1 is the first difference of Xt.

• µ is an n× 1 vector of constants.

• εt is an n× 1 vector of error terms.

The VECM makes it possible to capture the relationships between different variables by
also allowing the identification of cointegration between multiple non-stationary time se-
ries. Looking at the formula of the VECM, it can be seen that Π represents the long-term
relationships among the various time series, while Γi encloses the coefficients showing
the short-term dimanics. The Johansen test is based on the decomposition and analysis
of the eigenvalues and eigenvectors of the Π matrix. In fact, eigenvalues are used to cal-
culate statistics and thus measure the degree of cointegration of the time series, while
eigenvectors are the cointegrating vectors. Considering the above, the rank ofΠ indicates
the number of cointegrated vectors, so if the rank is zero, it means that there is no cointe-
grated time series; on the other hand, if the matrix is full rank, it means that all variables
are cointegrated. Unlike the Engle-Granger approach the Johansen test allows for more
agile work in order to individual multiple cointegrated time series.
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3 Strategy implementation

This section illustrates the structure of the trading strategy. It delves into the rationale be-
hind the strategy and the details of its practical implementation. The steps are as follows:

1. Choose the data to be analyzed and create the datasets, aiming to optimize the
utilization of available data. Then,identify the size of the training set, validation
set, and test set.

2. Select cointegrated sets of stocks and categorize them.

3. Analyze the group of the cointegrated sets of stock to establish operational param-
eters and rank the groups.

4. Simulate the application of the trading parameters obtained from the training set on
the test set and calculate the returns of the stock groups.

5. Apply the weights to the stock groups and create the portfolios.

The entire strategy, from initial data preparation to the analysis and comparison of returns,
was meticulously crafted using Visual Studio Code with Python.

3.1 Dataset preparation

The dataset selection is pivotal to the trading strategy. The chosen dates consist of the
daily data from the constituent stocks of prominents market indices, particularly the S&P
and Euronext. The rationale behind selecting these datasets is to analyze a broad spec-
trum of stocks while mitigating the risk associated with illiquid stocks, minimizing the
liquidity risk inherent in this strategy. By taking other indexes it would probably be pos-
sible to identify many more cointegrated stocks, but from an operational point of view the
low liquidity of the traded stocks would have a negative impact on the performance of the
strategy.
The daily data considered are those from 08/03/2007 to 13/02/2023 downloaded from
bloomberg, with a total of 4158 observations per share. Such a large dataset was chosen
in order to have a more consistent analysis from a time perspective as well as to con-
sider only stocks that have been in the index for a long time. For these reasons, the first
dataframe created containing analyzable data contains 455 stocks.
This study adopts a rigorous empirical approach to validate the proposed trading strategy,
characterized by a meticulous division of the dataset into distinct subsets: training, valida-
tion, and testing. Each subset plays a pivotal role in the comprehensive evaluation of the
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strategy’s efficacy and robustness. The initial phase involves the exploitation of the train-
ing set to discern and identify groups of cointegrated stocks. This phase is foundational,
establishing the underpinnings of the trading strategy by leveraging statistical techniques
to reveal potential cointegration relationships among various stock entities. Subsequent to
the training phase, the validation set is employed to rigorously scrutinize the persistence
of the cointegration assumptions. This critical evaluation serves to confirm or refute the
initial findings, providing an essential checkpoint before further deployment of the strat-
egy. Upon successful validation, the strategy progresses to a crucial stage of parameter
analysis and optimization, informed by the data and insights accrued from both training
and validation phases. The culmination of this process is marked by a simulated imple-
mentation of the trading strategy on the validated pairs in the test set. This simulation is
instrumental in gauging the practical applicability and potential profitability of the strat-
egy under real-market conditions.
This tripartite methodological framework is imperative for approximating real-life trad-
ing scenarios, thereby enabling a rigorous and objective assessment of the model’s pre-
dictive prowess. Absent this structured demarcation, the analysis risks being predicated
on prospective data, thus yielding a potentially erroneous representation of the strategy’s
true performance capabilities.
Cointegration, a statistical relationship between time series, is inherently transient in na-
ture. Consequently, the search for cointegrated stocks across an excessively expansive
dataset is not practically advantageous. It is imperative to identify a temporal window
within which groups of cointegrated stocks manifest and sustain their interdependencies,
thus facilitating the strategic opening and closing of trading positions. In the realm of
empirical research, there exists no universally prescribed guideline for the optimal dura-
tion of these windows. The choice is largely influenced by the specificities of the study
at hand. For the purposes of this analysis, a one-year period has been designated for the
formation of groups, followed by a subsequent six-month window for the execution of
trading operations. These particular time frames were determined through extensive em-
pirical testing.
To maximize the utility of the available dataset, the data was segmented into 31 sub-
datasets. Each of these subdatasets comprises approximately 378 observations, roughly
equating to one and a half years of financial data. Furthermore, each dataset was equi-
tably divided into three distinct sets: training, validation, and test, each encompassing 126
observations. The methodology employed involves using the first six months of data to
identify cointegrated groups. The subsequent six months are dedicated to the validation
of these groups. Finally, the last six months of each subdataset are utilized to simulate the
trading strategy. This approach employs a dynamic rolling window, wherein the valida-
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tion and test sets of one subdataset seamlessly become the training and validation sets of
the subsequent subdataset, respectively.

ValidationSub dataset 1

Training

Test Sub dataset 2 Validation

Training

Test Sub dataset 3 Validation

Training

TestSub dataset 4 Validation

Training

Test Sub dataset 5 Validation

Training

Test Sub dataset 6 Validation

Training

Test

Subdataset 28 Validation

Training

Test Subdataset 29 Validation

Training

Test Subdataset 30 Validation

Training

TestSubdataset 31 Validation

Training

Test

Dataset

Figure 3: Dynamic rolling window dataset structure

3.2 Sets selection

Having prepared the datasets, one can proceed to search for cointegrated sets of stocks.
Beyond the conventional approach of pairing stocks, this study expands its scope to
encompass sets comprising multiple stocks, specifically targeting groupings of 3 to 10
stocks. This methodology aims to provide a more comprehensive understanding of the
cointegration phenomenon within the stock market. The primary challenge in this en-
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deavor lies in the combinatorial nature of the problem. The task involves assessing the
potential cointegration among numerous combinations of stocks, quantified by the bino-
mial coefficient:

C(n, k) =
n!

k!(n− k)!
(20)

where n represents the total number of stocks under consideration and k is the number of
stocks in a given set. While the analysis of pairs (k = 2)—yielding 103,285 combina-
tions—remains computationally feasible, the expansion to larger sets introduces a signif-
icant computational burden. This is attributable to the exponential growth in the number
of combinations, as depicted in the ensuing table: The computational challenge in identi-

k Set Time
2 103,285 2 min 9 sec
3 15,596,035 5 hours 24 min 55 sec
4 1,762,351,955 25 days
5 158,964,146,341 6 years
6 11,922,310,975,575 472 years
7 764,731,089,719,025 30.000 years
8 4.28× 1016 1.696.959 years
9 2.13× 1018 84.290.219 years

10 9.49× 1019 3.760.278.779 years

Table 1: Number of sets n=455 for k

fying cointegrated stock sets extends beyond the mere counting of possible combinations.
The last column of the provided table estimates the time required for the available hard-
ware to analyze all potential combinations. Given the enormity of this computational task,
it became impractical to exhaustively analyze every possible set.

As a result of these computational constraints, a random sampling methodology was
employed. For each value of k, representing the number of stocks in a set, 200,000 sets
were randomly selected. The level of cointegration within these randomly chosen sets
was then rigorously tested. The decision to limit the number of sets to 200,000 for each
k was also dictated by hardware limitations. To test all chosen sets across all subdatasets
required approximately 12 hours. This approach provides a viable method for exploring
cointegration in larger sets of stocks. The adoption of a random sampling strategy offers
a practical solution to the otherwise prohibitive task of exhaustive analysis.
To assess the presence of cointegration in the sample sets of stocks, we utilized the Jo-
hansen test methodology, as discussed in the previous chapter. Specifically, the Python
function coint_johansen was employed for this purpose. This function, which op-
erates on time series data as input, returns several critical pieces of information crucial to
our analysis:
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• Trace statistic and Maximum eigenvalue statistic, along with their corresponding
critical values.

• Cointegration vectors.

The lag parameter in the Vector Error Correction Model (VECM) was setted equal 1, the
function consequently computes the Π matrix and a single Γ matrix. However, our analy-
sis primarily focuses on the eigenvalues of the Π matrix, which are central to the Johansen
test. The coint_johansen function provides critical values at the 10%, 5%, and 1%
significance levels. Therefore, all sets for which both the Trace statistic and the Maximum
eigenvalue statistic exceed these thresholds, and thus cannot be rejected, are categorized
into dictionaries according to their significance level. A non-rejection scenario implies
that the cointegration relationship encompasses all the time series in the set, indicating
that all betas in the cointegrated vectors are non-zero. Initially, the test was conducted on
the training dataset. Subsequently, the sets identified as cointegrated were subjected to
another Johansen test, this time including the validation dataset. If the statistical values
continued to surpass the critical thresholds, the sets were retained; otherwise, they were
discarded. The cointegrated sets identified thus far demonstrate resilience in terms of
cointegration. However, our requirement extends beyond mere cointegration; we necessi-
tate that the linear combination of prices, as indicated by the Johansen test, be genuinely
stationary. The Johansen test, while adept at capturing relationships among multiple time
series, exhibits limitations in verifying the stationarity of these relationships, especially
when juxtaposed with the Augmented Dickey-Fuller (ADF) test. To ascertain the station-
arity of the time series constructed using the cointegrating vectors, we apply the ADF test
to the entire dataset, encompassing both training and validation periods. Sets whose coin-
tegrated vector yield a p-value exceeding 0.05 in the ADF test are subsequently discarded.
This process results in a refined collection of cointegrated sets, each exhibiting stationary
characteristics. A notable observation from this secondary selection phase is the elimina-
tion of sets across all confidence levels of cointegration identified by the Johansen test.
This underscores a disparity in the information captured by the Johansen and ADF tests
from the time series relationships. Additionally, a higher proportion of sets with fewer
stocks (smaller size) are discarded, suggesting complexities that cannot be readily ex-
plained due to observable data asymmetry. After this rigorous selection procedure, the
number of cointegrated sets diminishes significantly. The table below illustrates the re-
duced number of sets identified in each period for each set dimension after the application
of the ADF test:
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Subdataset/Set 2 3 4 5 6 7 8 9 10
1 290 571 249 128 58 51 21 22 16
2 337 898 257 98 29 12 3 4 1
3 298 1346 858 418 214 193 186 82 132
4 406 788 240 104 71 61 69 153 150
5 241 565 285 127 79 57 35 22 22
6 125 189 72 37 22 6 22 7 17
7 383 800 179 56 28 16 29 46 89
8 821 1533 510 188 76 25 22 16 15
9 378 888 396 171 90 72 35 21 13

10 273 592 177 59 41 11 11 10 7
11 222 416 145 88 51 26 21 6 8
12 254 524 199 69 30 22 15 18 12
13 381 781 205 81 30 17 8 8 4
14 72 245 146 49 31 15 12 9 6
15 410 812 285 127 70 34 23 15 11
16 177 507 149 49 23 20 10 5 7
17 183 585 447 321 200 138 72 42 38
18 356 866 448 223 127 67 58 34 28
19 1540 2386 748 223 79 31 19 14 10
20 194 233 50 19 2 4 0 1 2
21 335 702 287 170 94 51 38 29 33
22 332 834 400 226 125 71 44 37 35
23 229 543 186 80 34 21 14 18 2
24 279 591 229 70 51 25 14 17 16
25 119 1101 801 552 441 336 239 194 163
26 2089 6209 2758 1066 362 150 60 44 15
27 278 433 120 36 15 9 2 1 3
28 414 641 164 62 26 13 7 5 11
29 253 425 131 54 37 16 10 9 7
30 392 887 328 182 46 21 17 22 6
31 197 641 346 168 78 35 21 18 10

Table 2: Number of cointegrated set for each subdataset

It is observable that the number of cointegrated sets diminishes as the size of the
stocks involved in the cointegration increases. This phenomenon can be attributed to
the computational constraints imposed by the sheer volume of potential sets that can be
analyzed. While one might initially assume that the absolute number of cointegrated sets
would escalate with an increase in set size, the reality is nuanced.

As the number of analyzable sets grows exponentially with the size, the proportion of
cointegrated sets within this expanding universe represents an increasingly smaller frac-
tion. This leads us to the concept of the curse of dimensionality, a term originally coined
in the context of high-dimensional statistical analysis. In essence, as the dimensions of an
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analyzable space expand, the data sought within that space become increasingly sparse.
This sparsity renders the observation of such data more challenging, as they are dispersed
over a progressively larger volume.

Thus, the curse of dimensionality aptly describes the situation encountered in the
search for cointegrated sets: the larger the set size, the more rarefied the cointegrated
sets become, making them increasingly elusive in a vast dimensional space.

3.3 Sets Ranking and cointegration analysis

Despite the extensive search process, the number of identified sets remains excessively
large. Given the high number of iterations involved, it becomes imperative to mitigate the
occurrence of false positives. Consequently, the strategy necessitates a further reduction
in the number of sets, focusing on those that are more likely to yield favorable trading
outcomes.

A crucial criterion for sorting the sets is their mean reversion characteristic. Mean
reversion, in this context, refers to the rate at which a stationary time series, after deviating
from its mean, reverts back to it. The time series of interest here is the cointegrated
series derived from the cointegrated sets. Sets exhibiting higher mean reversion rates offer
more frequent opportunities for profit. This is due to the fact that a set with faster mean
reversion diminishes trading uncertainty and reduces market exposure. To quantitatively
assess and rank the mean reversion of the sets, the concept of half-life is employed. Half-
life is defined as the time required for a financial instrument to revert to half of its deviation
from the mean.

From a formal perspective, half-life is deduced from a mean reversion model. In such
a model, where the current value of a process is a function of its deviation from the mean
in the preceding period, the rate of autocorrelation decay is calculated. As such, sets with
a lower half-life are deemed more attractive for implementation in a cointegration-based
trading strategy.

Formally, a mean-reverting process is modeled as a first-order autoregressive process
(AR(1)). This can be represented by the equation:

Xt = ϕXt−1 + et

where Xt is the cointegrated series or spread series.
Once the parameter ϕ is estimated through Ordinary Least Squares (OLS) regression,

the half-life (denoted as h) of the process is calculated using the formula:

h = − ln(2)

ln(ϕ)
(21)
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This calculation indicates the time required for the process to revert to half of its current
deviation from the mean. Subsequently, the sets are sorted based on their calculated half-
life, starting with the lowest. From this sorting, the top 100 sets with the shortest half-life
are retained for further analysis or trading strategies.

Figure 4: Normalized prices of HD, OMT, TTE and VRSN.

Figure 4 illustrates the normalized prices of four cointegrated stocks identified as viable
for the trading strategy. These include HD (The Home Depot), a major U.S. company
in the DIY retail sector; OMC (Omnicom Group), operating in the advertising industry;
TotalEnergies (TTE), in the fossil fuels sector; and Verisign (VRSN), which specializes
in grid infrastructure.

Figure 5: Normalized cointegrated series of HD, OMT, TTE and VRSN.
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Figure 5 depicts the cointegrated vector of these four stocks, expressed formally as:

Cvt = X · β

where Cvt is the cointegrated vector, X is the matrix of normalized prices,

X = [XHD, XOMC, XTTE, XVRSN]

and β is the vector of standardized cointegration coefficients,

β = [βHD, βOMC, βTTE, βVRSN] = [−1.199, 4.098,−0.818,−1.080]

Here, X is an n×k matrix, and β is a k×1 vector, where n is the number of observations
and k is the number of stocks in the set. The obtained cointegrated vector Cvt is then
standardized:

scvt =
(Cvt − µCv)

σCv

where µ is the mean of the vector Cvt and σ is its standard deviation. To establish trad-
ing parameters based on the standardized cointegrated vector SCvt, positions are opened
when Scvt exceeds the thresholds of 1 or -1. Specifically, the conditions for opening
positions are as follows:

If SCvt exceeds 1, a short position is opened. In the above example, this means
opening a long position on HD, TTE, and VRSN for 1.199, 0.818, and 0.451, respectively,
and opening a short position of 4.09 on OMC.he short position is closed when SCvt

returns to the mean, which is 0. So, if there is a short position, you will add to open long
positions on assets with negative beta, while opening shorts on those with positive beta.

HD OMC TTE VRSN Total

Opening price $3.562 $3.953 $3.997 $3.389
Closing price $3.556 $3.905 $3.961 $3.436

Starting position $1.199 $-4.098 $0.818 $1.080 $-1
Closing position $1.197 $-4.048 $0.811 $1.095 $-0.944

Return $-0.002 $0.050 $-0.007 $0.015 $0.056

The table provides an example of a short position identified in the training set. The
weights are already standardized, and their sum is equal to either 1 or -1. It’s worth noting
that not all positions need to be in the positive to make the trade as a whole profitable.

If SCvt falls below -1, a long position is opened. As illustrated in the following table,
this entails opening long positions on assets with positive beta and opening short positions
on assets with negative beta.
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HD OMC TTE VRSN Total

Opening price $3.588 $3.959 $4.002 $3.375
Closing price $3.594 $4.004 $3.996 $3.388

Starting position $-1.199 $4.098 $-0.818 $-1.080 $1
Closing position $-1.201 $4.144 $-0.817 $-1.084 $1.041

Return $-0.002 $0.046 $0.001 $-0.004 $0.041

Operationally speaking, this strategy involves a long/short approach in which it is
also possible to create zero-dollar portfolios, where the long positions finance the short
positions. In terms of parameters, it is also possible to adjust the strategy thresholds by
multiplying them by a scalar. Specifically , the thresholds for opening positions can be
modified as follows: +1/− 1× std × scalar. If the resulting number is less than 1, it will
trigger more trades with lower margins. Conversely, if the number is greater than 1, it will
reduce the number of trade opportunities but potentially result in more profitable trades.

3.4 Trading results

In each designated period of our dataset analysis, the initial year is dedicated to iden-
tifying cointegrated sets and calculating their respective weights. This entails applying
the weights identified within the training set to the test set for each group of stocks. For
the subsequent six-month period, a simulation of the trading strategy is undertaken. The
process involves standardizing the cointegrated series for each stock set, monitoring the
standardized series to identify when it exceeds predefined thresholds (thus triggering the
opening and closing of positions), and forcefully closing any open position at the end of
the period, irrespective of profit or loss. Future decisions regarding the allocation of in-
vestable capital among various sets necessitate a clear methodology for calculating returns
on individual sets. Returns are fully reinvested throughout the trading period, spanning
six months. This implies that profits derived from a trade within a cointegrated set are
reinvested in the same stock set until the end of the trading period. As a result, returns for
each set in each period are compounded continuously, causing the relative weight of each
set in the portfolio to adjust dynamically, becoming either heavier or lighter by the end of
the six-month interval.
Given the inherently quantitative nature of the proposed trading strategy, which encom-
passes both long and short positions, the segmentation of capital allocation emerges as a
critical risk management measure. This strategy, while analytically rigorous, carries the
potential for substantial loss, including the complete erosion of invested capital under cer-
tain circumstances. A primary concern is the possibility of incurring significant losses due
to large and negative beta values on a particular stock within a cointegrated set. Should
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the cointegration framework fail to hold, or if the stock price deviates excessively, there
is a heightened risk of losing the entire capital allocated to that set. In scenarios where
multiple sets simultaneously perform poorly, an evenly redistributed return mechanism
could potentially deplete the entire capital base. To mitigate such risks, it is imperative to
discretely parcel out the capital to each set. This approach ensures that underperformance
in one specific set does not disproportionately impact the overall portfolio. Incorporating
short trades into the strategy necessitates the consideration of a finite budget allocation
for each set. This budget constraint implies that in instances where a set’s performance
is so dismal that its value diminishes to zero, any subsequent negative returns will not be
considered. Under these circumstances, the capital allocated to the underperforming set
would be deemed as lost. This measure serves to contain the impact of negative returns,
preventing them from cascading across the entire portfolio.
In the realm of financial instruments suitable for the application of our trading strategy,
Contracts for Differences (CFDs) emerge as the instrument of choice. CFDs represent an
agreement between an investor and a financial institution to trade on the future value of
an underlying asset. The key aspect of a CFD is that the profit or loss is determined by
the difference between the asset’s value at the opening and closing of the contract, with
the net difference being settled in cash. CFDs offer several distinct advantages that align
well with the requirements of our trading strategy:

1. Leverage: CFDs enable investors to manage trades that are significantly larger than
the actual capital invested. This leverage aspect is particularly beneficial in ampli-
fying the potential returns from small price movements of the underlying assets.

2. Fractional Ownership: The flexibility to purchase any fraction of a stock through
CFDs enhances the adaptability of the strategy, especially when dealing with high-
value stocks.

3. Liquidity and Lower Costs: CFDs are known for their high liquidity and relatively
lower costs and fees. This feature makes them ideal for strategies that entail a high
frequency of daily trades.

The characteristics of CFDs, including leverage, fractional ownership, and cost-effectiveness,
synergize well with the proposed trading strategy. They facilitate a more dynamic and
responsive approach to market movements, thereby enhancing the potential for profit re-
alization in a highly fluid trading environment.
Having established the foundational assumptions and provided necessary clarifications,
we now proceed to elucidate the methodology employed for calculating the returns of
individual sets for each designated period.
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The returns of each stock within a set are calculated using the formula:

ri,t =
Pi,t+1 − Pi,t

Pi,t

where i denotes the stock, t represents the period, and Pt+1,i is the price of the stock in
the subsequent period t+ 1.

To account for the nature of the trade, whether long or short, the returns are adjusted
as follows:

r
(I)
i,t = ri,t × It

Here, It assumes the values 1, -1, or 0, corresponding to a long position, a short position,
or no position, respectively.

The return for the entire period T for stock i in the set is calculated using the formula:

r
(I)
i,T =

(
T=t∏
t=0

(1 + r
(I)
i,t )

)
− 1

This formula represents the product of the day-by-day, position-adjusted returns.
Given the above, the return of a set over the period T is:

rs,T =
∑
i∈S

Wi × r
(I)
i,T

where Wi =
βi∑
i∈S βi

and βi is the cointegration coefficient of the time series in the set.
In complete form, the return of a set for one period is calculated as:

rs,T =
∑
i∈S

Wi ×

(
T=t∏
t=0

(1 + ri,t × It)

)
− 1 (22)

As deduced from the formula, the returns from each individual set are not only reinvested
in the same set for the entire period, but the allocation within the sets also remains con-
stant from the onset of the period. This implies that the returns generated by individual
stocks within a set are compulsorily reinvested.
In the context of trading with Contracts for Difference (CFDs), the estimation of commis-
sions takes into account both the bid/ask spread and overnight commissions:

• The bid/ask spread, representative of the difference between the buying and sell-
ing prices, functions akin to a commission applied to each trade. Given that the
underlying assets are shares of the S&P 500 and Euronext, the spread applied can
be considered relatively low, typically around 0.05%. The spread cost for a trading
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period is calculated by multiplying this percentage with the trading volumes of the
period.

• Overnight commissions refer to fees levied by CFD brokers for maintaining an
open position overnight. This fee is applicable for each day the position remains
open. An annual rate of 5% can be considered standard for such commissions.
The total cost of these overnight commissions is calculated by taking the average
transaction amount, multiplying it by the average duration of the transaction, and
then multiplying this by the total number of transactions. This product is further
multiplied by the annual overnight rate, which is then divided by 365, the number of
days in a year. This calculation method considers the daily accrual of the overnight
rate over the entire period of the transaction.

Set Ave Return Duration Ave Spread Ave Overnight Net Ave Return
2 0.0099 13.5541 0.0009 0.0014 0.0076
3 0.0321 11.4186 0.0056 0.0070 0.0195
4 0.0323 10.3379 0.0077 0.0087 0.0159
5 0.0241 9.6522 0.0064 0.0068 0.0108
6 0.0279 9.0653 0.0080 0.0080 0.0120
7 0.0251 8.4735 0.0086 0.0080 0.0085
8 0.0472 8.0770 0.0158 0.0140 0.0174
9 0.0369 7.7262 0.0146 0.0124 0.0099
10 0.0428 7.3202 0.0129 0.0104 0.0195

Table 3: Average returns and costs for trade for each set

A notable trend observed from the data is the inverse relationship between the number
of stocks in a set and the duration of trades. As the set size increases, the duration of
each trade tends to shorten. This observation would generally lead to the expectation
of reduced overnight commission costs, due to the shorter holding period of each trade.
However, an increase in the number of stocks within a set also leads to an increase in
leverage. This heightened leverage results in higher commissions related to the traded
quantity. Furthermore, the data indicates a positive correlation between set size and both
overnight commission and spread costs. As the number of stocks in a set escalates, there
is a discernible increase in both overnight commissions and the spread. This pattern
highlights the intricate balance between set size, trade duration, and the cumulative cost
impact on the overall trading strategy. The table also provides insight into the average
return per trade, both before and after accounting for commission costs. This data facil-
itates a comprehensive understanding of the net profitability of trades across various set
sizes, considering the direct and indirect costs associated with each trade.
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The graph below illustrates the performance of individual sets during a specific period. In
this analysis, we focus on sets composed of 7 stocks identified in period 6. The choice
of this period is primarily for the sake of graph comprehensibility, as it allows a clear
presentation of the relevant information.

Figure 6: P&L of each set.

The sets displayed in the graph are carefully selected based on their composition of 7
stocks during the specified period. It is noteworthy that certain stocks, such as ENEL, are
present in multiple sets. The potential impact of such overlap on exposure is contingent
upon the cointegration coefficients of the stocks within the sets and the specific nature of
open trades.

Figure 7 provides insights into the average performance of the sets previously depicted
in Figure 6, considering both gross and net returns. The analysis distinguishes between
returns before and after accounting for various fees, namely overnight fees and the spread.
In the absence of commissions, the average return for the period stands at 4%, showcasing
the strategy’s raw potential. However, when accounting for fees, the net return is approx-

27



Figure 7: Average gross P&L vs net P&L.

imately 2%. This stark contrast underscores the substantial impact that fees have on the
overall results of the trading strategy. The following table shows the average cumulative
returns net of fees per set each size in each period
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Table 4:
Index 2 3 4 5 6 7 8 9 10

1 0.0465 -0.4442 0.0634 0.0585 0.0672 0.0667 -0.0577 0.1201 -0.0592
2 0.0907 0.1020 0.2699 -0.0034 -0.0371 -0.0026 -0.0209 0 0
3 0.1331 0.0744 0.0392 0.0640 0.0926 -0.0389 0.5545 0.1056 0.0684
4 0.0334 0.0947 0.0793 0.0585 0.0318 0.0468 -0.0042 0.0678 -0.0174
5 0.0669 0.1721 0.0545 0.0540 0.0628 0.0054 142.3087 0.0673 0.0408
6 0.1894 0.0630 0.0324 0.1049 -0.0028 0.0212 0.1148 0.0324 -0.0112
7 0.0304 0.0626 0.0549 0.0349 -0.0174 0.0334 0.0108 0.0335 -0.0074
8 0.0584 0.1055 0.0322 0.0387 -0.0195 0.0703 0.0109 0.0738 -0.0016
9 0.0720 0.0769 0.0489 0.0385 0.0191 0.0203 0.1623 0.0377 0.0059
10 0.0123 0.0588 0.0401 0.0040 0.0747 0.0195 -0.0227 0.0174 0.2053
11 0.0472 0.1829 0.0612 0.0330 0.0779 0.1082 0.0336 0.0081 0.0266
12 0.0362 0.0537 0.0472 0.0303 -0.0654 0.0061 0.0824 0.0549 0.0528
13 0.0216 0.0480 0.0522 0.0683 0.2562 0.0845 0.0030 0.2297 -0.0083
14 0.0347 0.0462 0.2844 0.0507 0.0286 0.0521 -0.0157 0.0145 -0.0087
15 0.0071 0.0467 0.0228 0.0375 0.0395 0.0163 0.0068 0.0103 -0.0108
16 0.0295 0.0478 0.1261 0.0204 0.0082 0.1500 0.0161 0.0246 0.0046
17 0.0346 0.0746 0.0827 0.0404 0.0106 0.0147 -0.1275 0.0469 -0.0419
18 0.0169 0.0324 -0.0228 0.0486 0.0420 0.0082 0.0379 0.0179 0.0260
19 0.0334 -0.0410 0.0508 0.1049 0.0256 0.0242 0.0223 0.0359 -0.0464
20 0.0236 0.0578 0.0217 0.1297 0.5011 -0.0024 0 -0.0045 -0.0140
21 0.0202 0.1233 0.1434 0.0346 0.0076 0.0428 0.0001 0.0354 -0.0015
22 0.1086 -0.0685 0.0515 0.0283 0.0995 0.0232 0.0519 0.0617 0.0197
23 0.0278 0.0277 0.0995 0.0256 -0.0772 0.1699 0.0035 0.0345 0.1073
24 0.0115 0.0835 0.0430 0.0373 0.2760 0.0115 0.0061 0.0164 -0.0212
25 -0.0341 0.0037 -0.0057 -0.0138 -0.0368 -0.0236 -0.2117 0.0522 -0.0672
26 0.0171 0.1639 0.2092 0.0476 0.0254 0.0307 -0.0264 0.1968 -0.0122
27 0.0099 0.0367 0.0462 0.0200 -0.0127 0.0301 -0.0073 0.0066 -0.0037
28 0.0159 0.0364 0.0645 0.0271 0.0130 0.0641 -0.0117 0.0290 -0.0392
29 0.0196 0.0367 0.0419 0.0249 0.0084 0.0008 0.0091 0.0578 0.0007
30 0.0247 0.1034 0.0515 -0.0986 0.0494 0.0924 0.0391 0.0112 0.0744
31 0.0639 0.0834 0.0947 0.0720 0.0472 0.0394 -0.0057 0.0017 -0.0391
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3.5 Creation of Portofolios

Given a set of N assets, the objective of portfolio optimization is to determine the optimal
allocation of weights to these assets, maximizing return and minimizing risk. This prob-
lem can be formalized using the framework of Modern Portfolio Theory, particularly the
Markowitz optimization model. The optimization problem is posed as follows:

Minimize
1

2

N∑
i=1

N∑
j=1

wiwjσij

subject to
N∑
i=1

wi = 1

N∑
i=1

wiRi = target return

wi ≥ 0 per i = 1, 2, . . . , N

(23)

Here, wi represents the weight of the i-th asset in the portfolio. The term σij denotes the
covariance between the returns of assets i and j, and Ri represents the expected return
of the i-th asset. The first constraint ensures that the sum of the weights is equal to 1
(i.e., the entire budget is allocated), the second constraint sets the portfolio’s expected
return to a pre-specified target value, and the final constraint ensures that the weights are
non-negative, reflecting a no-short-selling condition.

Markowitz’s Portfolio Theory, a cornerstone of modern portfolio management, is
predicated on several assumptions that pose significant challenges from an implemen-
tation standpoint. Key among these is the assumption of a normal distribution of returns.
This assumption becomes particularly tenuous during periods of extreme market volatility
or financial crises, as well as in scenarios involving assets that are cointegrated, as is the
case here.

Furthermore, Markowitz’s model assumes the stability of parameters such as returns
over time. Given that portfolio optimization is inherently sensitive to parameter inputs,
even minor variations in these parameters can lead to significant alterations in the portfo-
lio’s composition. This sensitivity underscores the practical difficulties of implementing
Markowitz’s model in dynamically changing markets.

In light of these challenges, a simpler and more pragmatic approach to capital alloca-
tion may be adopted: the equal weight portfolio strategy. Under this strategy, if there are
n assets in the portfolio, each asset is assigned a weight:

wi =
1

n
for i = 1, 2, . . . , n. (24)
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Here, wi denotes the weight assigned to the i-th asset. This strategy ensures an egal-
itarian distribution of capital across all assets, circumventing the need for complex pa-
rameter estimation. The focus thus shifts solely to the number of assets in the portfolio,
simplifying the portfolio construction process.

The efficiency of an equal weight portfolio is particularly notable when the underly-
ing assets have similar returns and volatility profiles. An equal weight strategy, offers a
compelling alternative to more complex weighting schemes, especially in contexts with
significant uncertainty in parameter estimation.

DeMiguel’s 2006 study underscores this point, revealing that equal weight portfolios
often outperform more intricately constructed portfolios over the long term. This en-
hanced performance is attributed to the inherent uncertainty associated with forecasting
future returns. Moreover, as highlighted in the studies conducted by Alexander Swade,
one of the key advantages of equal weight portfolios in the long run can be traced to their
increased exposure to small-cap companies, approximately three times higher than that of
capital-weighted portfolios.

Swade’s research contrasts equal weight portfolios with capital-weighted portfolios,
the latter being the most prevalently utilized model in portfolio construction. In the con-
text of this analysis, it becomes evident that the equal weight approach offers a robust
alternative, especially when considering portfolios composed of cointegrated sets of as-
sets.

Given the mathematical and statistical nature of cointegration, the decision was made
to eschew market capitalization-based weights in favor of focusing on the characteristics
of time series formed through cointegration coefficients. This approach stems from the
belief that, for such sets, the market capitalization of individual stocks is less relevant than
the dynamics captured by the cointegrated relationships.

An alternative approach to weight allocation in portfolio management, grounded in the
principles of Modern Portfolio Theory, focuses on minimizing portfolio risk independent
of returns. This method seeks to identify a combination of assets that achieves the lowest
possible portfolio variance. The optimization problem can be formulated as follows:

Minimize: σ2
p = w⊤Σw,

subject to:
∑
i

wi = 1,

where:

• σ2
p represents the variance of the portfolio.
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• w is the vector of portfolio weights.

• Σ is the covariance matrix of asset returns.

• w⊤ denotes the transpose of the vector of weights.

However, this allocation scheme is not without its drawbacks. Primarily, it may lead
to an overexposure to assets with low volatility. This is because the optimization process
inherently favors assets with smaller variances in the pursuit of minimizing the overall
portfolio variance. Such overexposure could potentially limit the portfolio’s diversifica-
tion benefits and may lead to suboptimal performance under certain market conditions.

In the realm of portfolio management, advancing beyond traditional capital allocation
ratios, one can employ risk budgeting measures. This approach focuses not on the capital
ratios but on the risk ratios one wishes to allocate to various assets. Unlike the tradi-
tional risk-return optimization approach, risk budgeting does not necessitate assumptions
regarding various parameters. Instead, weights are determined in advance based on the
level of risk one is willing to expose to each asset.

In the context of risk budgeting, risk parity is a concept analogous to equal weighting
in capital allocation. Equal weighting implies allocating capital equally across assets,
whereas risk parity involves distributing risk equally across assets. This is based on the
understanding of how portfolio risk is defined and the individual risk contribution of each
asset.

The formula for the risk contribution (RCi) of a single asset in a portfolio is given by:

RCi =
w2

i · σ2
i +

∑
j ̸=iwiwj · σij

σ2
p

(25)

where:

• RCi is the risk contribution of asset i.

• wi and wj are the weights of assets i and j in the portfolio.

• σ2
i is the variance of asset i.

• σij is the covariance between the returns of assets i and j.

• The summation
∑

j ̸=i denotes the sum over all assets j, excluding asset i.

To construct a risk parity portfolio, the goal is to equalize the risk contributions of
all assets. This objective can be achieved by minimizing the difference between the risk
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contributions of each asset in the portfolio:

min
w

N∑
i=1

(
w2

i · σ2
i +

∑
j ̸=i wiwj · σij

σ2
p

−RC

)2

(26)

In order to illustrate the differences in allocation strategies between equal-weighted
and risk parity portfolios, we present two graphical representations. These graphs com-
pare the allocation strategies using a set of seven stocks as an example. The process of

Figure 8: Equal weighted Portfolio.

portfolio construction, particularly when dealing with cointegrated sets of assets, involves
a practical approach to determining the appropriate weights for each asset in the portfolio.
This process can be described as follows:

1. Identification of Cointegrated Sets: In each period, the first step involves iden-
tifying sets of assets that exhibit cointegration. This identification is crucial as it
dictates the composition of the portfolio for the upcoming period.

2. Estimation of the Covariance Matrix: Once the cointegrated sets have been iden-
tified, the next step is to estimate the covariance matrix of these sets. This estimation
is typically performed using historical data, split into training and validation sets,
to ensure robustness and validity of the covariance estimates.
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Figure 9: Risk Parity Portfolio.

3. Calculation of Weights: Based on the estimated covariance matrix, weights for
each asset in the cointegrated sets are calculated. These weights are crucial as they
determine the proportion of capital allocated to each asset in the portfolio.

4. Application of Weights: At the beginning of each period, the calculated weights
are applied to the portfolio. This step marks the actual implementation of the port-
folio strategy, where the theoretical weights are put into practice.

This approach ensures that the portfolio is constructed in a systematic and data-driven
manner, taking into account the dynamic nature of asset relationships and market con-
ditions. By updating the weights at the beginning of each period, the strategy remains
responsive to the changing market environment.
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4 Portfolio results

In this chapter, we undertake a comprehensive evaluation of the performance of 18 distinct
portfolios, each constructed from cointegrated sets of stocks. For each set of cointegrated
stocks, two distinct portfolios were constructed: one with equal capital allocation across
each set (termed as "Equal Weighted"), and the other with risk distributed equally ("Risk
Parity").
A crucial aspect of our analysis is to assess whether the strategy can be considered mar-
ket neutral. Market neutrality in this context implies that the portfolio’s performance is
independent of the movements in the broader market, represented here by the S&P 500
index. To analyze the relationship between the S&P 500 and the returns of the portfolios,
a regression analysis was conducted. This analysis involved regressing the returns of the
portfolios against the returns of the S&P 500. The primary objective of this regression is
to determine the beta of each portfolio. The beta, a measure of the portfolio’s volatility
relative to the market, is a critical indicator in this assessment. A beta close to zero would
suggest that the portfolio is market neutral, meaning its returns are largely unaffected by
market swings.

Let: Rp represent the portfolio returns,

Rm represent the market (S&P 500) returns.

Then, the regression model is: Rp = α + βRm + ϵ,

where α is the intercept, β is the portfolio’s beta, and ϵ is the error term

Beta Alpha r-value p-value Std Err

2 0.0027201 0.0003708 0.004075 0.7998 0.01073
3 0.0079362 0.0004207 0.009716 0.5455 0.01313
4 0.01700 0.0006066 0.02085 0.1946 0.01310
5 0.0064252 0.0003320 0.01357 0.3985 0.007609
6 -0.0067195 0.0004869 -0.006591 0.6817 0.01638
7 -0.01605 0.0004365 -0.01437 0.3711 0.01794
8 -0.42013 0.02191 -0.004244 0.7917 1.5909
9 0.0021105 0.0004102 0.003222 0.8411 0.01053

10 0.01004 0.0001524 0.01085 0.4997 0.01488

Table 5: Equal Weighted Portfolios regression results

Table 5 demonstrates that, with the exception of the portfolio composed of sets of 8
stocks, all other portfolios exhibit betas very close to 0. This finding confirms the strat-
egy’s risk neutrality with respect to the market. In contrast, the portfolio consisting of
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Beta Alpha r-value p-value Std Err

2 -2.137e-06 0.000147 -0.00001446 0.9993 0.002375
3 0.0005143 0.0001540 0.005809 0.7178 0.001423
4 0.0003613 0.0001241 0.004405 0.7840 0.001318
5 0.0018501 0.0001142 0.02122 0.1867 0.001401
6 0.0003638 0.00009314 0.002780 0.8626 0.002103
7 0.0022097 0.00006210 0.01834 0.2538 0.001936
8 0.0015805 -0.00003640 0.004695 0.7702 0.005409
9 -0.0002431 0.0001447 -0.001429 0.9291 0.002734

10 0.0101065 0.0001606 0.01093 0.4963 0.01485

Table 6: Risk Parity Portfolios regression results

8-stock sets has a notably negative beta relative to the market, specifically at -0.42. Sim-
ilar observations can be made from Table 6, which pertains to the risk parity portfolios.
Here again, the betas are consistently low across the board. A common feature in both
tables is the r-value being very close to 0. It is important to note that this value represents
the Pearson correlation coefficient, which ranges from -1 to 1. A value of 1 indicates
perfect positive correlation, while -1 indicates perfect negative correlation. Furthermore,
it is observed that in both tables, all p-values are significantly high, suggesting that the
betas are not statistically significant. This implies that the beta values may not reliably
predict future performance with respect to market movements. Regarding Jensen’s alpha,
the data show that they are positive for all portfolios except for the one consisting of 8
cointegrated stocks. This exception suggests a different performance characteristic for
this specific portfolio configuration.

4.1 Portfolio Returns

In the following section, we present a series of graphs that illustrate the performance of
various portfolios. For the sake of interpretability, these portfolios are paired based on
the number of cointegrated stocks within their respective sets. This approach allows for a
more nuanced comparison of portfolio behaviors under similar cointegration conditions.
Each portfolio’s performance is also compared against the S&P 500 index, serving as a
benchmark. This comparison is crucial to understand how each portfolio stands relative to
a broad market indicator and provides insights into their relative performance in different
market conditions.
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Figure 10: Cumulative returns of Portfolios of sets of 2 stocks.

Figure 11: Cumulative returns of Portfolios of sets of 3 stocks.

Figure 12: Cumulative returns of Portfolios of sets of 4 stocks.
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Figure 13: Cumulative returns of Portfolios of sets of 5 stocks.

Figure 14: Cumulative returns of Portfolios of sets of 6 stocks.

Figure 15: Cumulative returns of Portfolios of sets of 7 stocks.
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Figure 16: Cumulative returns of Portfolios of sets of 8 stocks.

Figure 17: Cumulative returns of Portfolios of sets of 9 stocks.

Figure 18: Cumulative returns of Portfolios of sets of 10 stocks.
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As indicated in Table 7, among the equal-weighted portfolios, the one composed
of 4-stock cointegrated sets emerges as the top performer with an impressive return of
761.14%. Observing its graphical representation in Figure 12, it is evident that the portfo-
lio’s value increases exponentially with rising market volatility. Portfolios constituted of
3, 4, 6, 8, and 9-stock cointegrated sets outperformed the classic pair-based cointegrated
portfolio. The performance of portfolios with 5 and 7-stock sets is also commendable,
closely matching the net return level. However, it is crucial to consider the long-term im-
pact of fees on these portfolios, which are likely to be significantly higher than those for
the pairs portfolio. Remarkably, all portfolios, except for the one composed of 10-stock
sets, surpassed the benchmark. The portfolio with 1 0-stock sets yielded a mere return
of 36.89%, marking it as the least successful. Moreover, the instability of the portfolio
comprising 8-stock sets is notable. As previously discussed, the increase in the number
of cointegrated stocks results in a reduction in the number of identifiable sets. This di-
minishing data pool renders the comparison of sets with more than 6 cointegrated stocks
increasingly challenging. A particular issue arises in the portfolios composed of 10-stock
sets, where at different times the portfolio consisted of only 1 or 2 sets. This limitation led
to a scenario where the application of various weighting strategies resulted in similar port-
folio performances. Notably, this scenario represents the only case where the risk parity
portfolio outperforms the equal weighted portfolio. However, as depicted in Table 8 and
corroborated by the respective graphical representations, the risk parity portfolios gener-
ally underperform, not only in comparison to their equal-weighted counterparts but also
relative to the benchmark. A striking example is the portfolio with 8-stock sets, which
even demonstrates a negative return of -16.12%.

Tables 10 and 11 detail the annualized returns of these portfolios. It is evident that, ex-
cluding the portfolio with 10-stock sets, the equal-weighted portfolios consistently yield
higher returns than the benchmark. This pattern underscores the relative performance
advantage of the equal-weighted strategy over the risk parity approach in most cases.

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 set of 10

263.85% 327.02% 761.14% 242.82% 362.97% 251.02% 396.07% 334.11% 36.89%

Table 7: Cumulative returns of Equal Weighted Portfolios

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 set of 10

75.60% 81.39% 61.72% 55.97% 42.85% 26.85% -16.12% 74.22% 41.67%

Table 8: Cumulative returns of Risk Parity Portfolios
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Cumulative Annualized

169.33% 6.65%

Table 9: Returns of S&P 500

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 set of 10

8.75% 9.89% 15.02% 8.33% 10.47% 8.5% 10.97% 10.01% 2.06%

Table 10: Annualized returns of Equal Weighted Portfolios

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 set of 10

3.73% 3.95% 3.17% 2.93% 2.34% 1.56% -1.14% 3.69% 2.29%

Table 11: Annualized returns of Risk Parity Portfolios
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4.2 Volatility of Portfolios

The first measure for calculating portfolio risk is annualized volatility. Annualized volatil-
ity is a commonly used statistical measure of the variation in a portfolio’s returns over time
and is often employed as an indicator of the investment’s risk. It signifies the extent to
which the investment’s returns can vary over a year. The higher the volatility, the greater
the risk associated with the investment, as it indicates a higher uncertainty in future re-
turns.

Annualized Volatility = Daily Standard Deviation ×
√
252

Where:

• Daily Standard Deviation is the standard deviation of daily returns.

• Number of Periods per Year depends on the frequency of the data: for daily data, it
is typically 252 (the average number of trading days in a year).

This measure provides a clear idea of how much the portfolio’s return can fluctuate on an
annual basis, allowing investors to better assess the associated risk. In this analysis, we

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 Set of 10

0.1391 0.1702 0.1670 0.0986 0.2125 0.2327 20.6325 0.1365 0.1929

Table 12: Annualized volatility of Equal Weighted Portfolios

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 Set of 10

0.0308 0.0184 0.0171 0.0182 0.0273 0.0251 0.0701 0.0355 0.1926

Table 13: Annualized volatility of Risk Parity Portfolios

consider the annualized volatility of a benchmark, which is set at 0.20. It is observed that,
with the of the portfolio composed of sets of 8 equal-weighted cointegrated stocks, which
exhibits elevated volatility, all other portfolios closely match the benchmark’s volatility.

In addition to annualized volatility, calculating the Max Drawdown (MD) is crucial.
The MD represents the maximum percentage loss that an investor might suffer if they
purchase an asset at its peak value and sell it at its lowest point. This measure is partic-
ularly useful as it provides a more tangible perspective for understanding compatibility
with investment strategies. The MD can be mathematically represented as:

MD =
Bottom t-value

Peak i-value
(27)
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The following tables demonstrate the max drawdowns of the portfolios. Comparing these
with the benchmark’s max drawdown of -0.57, it is noted that, again, the portfolio con-
sisting of sets of 8 cointegrated stocks with equal weight stands out.

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 Set of 10

-0.4033 -0.5519 -0.1839 -0.1137 -0.2506 -0.3374 -0.9796 -0.1377 -0.2734

Table 14: Max Drawdown of Equal Weighted Portfolios

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 Set of 10

-0.0826 -0.0371 -0.0408 -0.0364 -0.0489 -0.0561 -0.2858 -0.0303 -0.2734

Table 15: Max Drawdown of Risk Parity Portfolios

For equal-weighted portfolios, the portfolio with the lowest max drawdown is the one
composed of sets of 5 stocks cointegrated, with an MD of -0.1137. Conversely, for risk
parity portfolios, the one with the best performance is the one composed of sets of 9, with
an MD of -0.1376.

In each case, it is observed that equal-weighted portfolios have a higher max draw-
down than risk parity portfolios, reflecting the greater prudence of the latter type com-
pared to equal-weighted portfolios.

4.3 Kurtosis and Skewness

In addition to measuring the volatility of returns, studying the distribution of returns by
calculating kurtosis and skewness can provide deeper insights into the behavior of finan-
cial instruments.

Kurtosis is a statistical measure used to describe the heaviness of the tails of a prob-
ability distribution. More specifically, it measures the extent to which the tails of the
distribution differ from those of a normal distribution, which has a kurtosis value of 3.
Formally, kurtosis is the fourth standardized moment of the data.

Given a random variable X with mean µ and standard deviation σ, and xi as the
observations of X , the kurtosis is calculated as:

Kurtosis =
1

n

n∑
i=1

(
xi − µ

σ

)4

(28)

Where:

• n is the total number of observations.
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• xi is the i-th observation.

• µ is the mean of the observations.

• σ is the standard deviation of the observations.

The formula for kurtosis typically yields a value of 3 for a normal distribution. To
assess the extent to which a distribution deviates from normality, the concept of excess
kurtosis is used. This is obtained by subtracting 3 from the kurtosis value:

Excess Kurtosis = Kurtosis − 3 (29)

A value of 0 in excess kurtosis indicates a normal distribution. A value greater than 0
suggests fatter tails compared to a normal distribution, while a value less than 0 indicates
lighter tails.

Skewness is a crucial statistical measure that captures the degree of asymmetry of
a probability distribution relative to its mean. It is a key concept in understanding the
distribution characteristics of financial returns and other data sets.

Skewness quantifies both the direction and the extent of asymmetry. A distribution
that is symmetric will have a skewness of 0. In contrast, distributions with asymmetric
tails will exhibit non-zero skewness values.

Formally, the skewness of a distribution is akin to the standardized third moment of
the data. Given a random variable X with mean µ and standard deviation σ, where xi

represents the observations of X , the skewness is calculated as:

Skewness =
1

n

n∑
i=1

(
xi − µ

σ

)3

(30)

Where:

• n is the total number of observations.

• xi is the i-th observation.

• µ is the mean of the observations.

• σ is the standard deviation of the observations.

The sign of the skewness value indicates the direction of the asymmetry:

• A positive skewness indicates a distribution with a longer right tail.

• A negative skewness indicates a distribution with a longer left tail.

This information is particularly important in financial analysis as it can indicate a propen-
sity for extreme values in one direction over the other.
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Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 Set of 10

178.7118 142.9806 34.1045 18.8456 32.9462 83.9041 3853.6398 16.5741 34.7323

Table 16: Kurtosis of Equal Weighted Portfolios

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 Set of 10

79.8635 26.4472 35.6849 25.5518 65.5922 16.3217 83.1992 7.9411 35.0017

Table 17: Kurtosis of Risk Parity Portfolios

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 Set of 10

-3.0100 -4.6048 1.1804 0.2948 1.0194 2.1063 62.0346 0.1985 -0.0726

Table 18: Skewness of Equal Weighted Portfolios

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 Set of 10

-2.6892 0.5268 0.7948 0.5282 2.4499 -0.0789 -2.1084 0.0978 -0.0737

Table 19: Skewness of Risk Parity Portfolios
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Among the equal-weighted portfolios, the portfolio composed of sets of 8 cointegrated
stocks exhibits the highest kurtosis. This is immediately followed by the portfolios com-
posed of 2 stocks, and then by those of 3 stocks. In each of these cases, the tails are
much larger than in a normal distribution. For risk parity portfolios, kurtosis is also high,
indicating that these portfolios have fatter tails in their distribution. As shown in Table 18,
equal-weighted portfolios with sets of 2, 3, and 10 stocks have negative skewness, i.e., the
left tail is larger than the right tail. Conversely, the skewness is positive for the other port-
folios. In risk parity portfolios, those with sets of 2, 7, 8, and 10 stocks exhibit negative
skewness. With the exception of portfolios consisting of 10 stocks, both skewness and
kurtosis values are lower for risk parity portfolios compared to equal-weighted portfolios,
indicating a lower risk exposure. The skewness and kurtosis of the benchmark are 11.49
and -0.24, respectively. This suggests that the distribution has larger tails than a normal
distribution, with the left tail being larger than the right tail. Among the equal-weighted
portfolios, those composed of sets of 4, 5, 6, 7, 8, 9, and 10 stocks have higher kurtosis
and skewness than the benchmark. This indicates a greater presence of positive returns
relative to the benchmark. For risk parity portfolios, all but those composed of 2 and 8
stocks show different skewness and kurtosis characteristics compared to the benchmark.

4.4 Sharpe Ratio

To make different portfolios comparable under a broader plan, it is important to consider
not only returns but also volatility. This leads to the consideration of the trade-off between
these two characteristics. Consequently, the Sharpe Ratio is calculated, which is the most
widely used measure of the risk-return ratio. The Sharpe Ratio is formally defined as
the average excess return over the portfolio’s annualized volatility. The formula for the
Sharpe Ratio is given by:

Sharpe Ratio =
Rp −Rf

σp

where:

• Rp is the expected return of the investment portfolio.

• Rf is the return on a risk-free asset, such as the 3-month U.S. Treasury Bill.

• σp is the standard deviation of the portfolio’s excess returns, representing the risk
of the portfolio.

The Sharpe ratio of the benchmark is 0.22. As seen in Table 20, the equal-weighted
portfolios with 2, 3, 4, 5, 6, 7, and 9 stocks are preferable to the benchmark. Among
them, those with 4, 5, and 9 stocks are preferable to the cointegrated pairs portfolio. The
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best among these is the portfolio with 4 stocks, which has a Sharpe Ratio of 0.77. This is
3.5 times better than the benchmark and about 1.5 times that of the pairwise portfolio.

As per Table 21, the Sharpe Ratios of the portfolios with 2, 3, 4, 5, and 9 stocks are
higher than that of the S&P 500.

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 Set of 10

0.49 0.46 0.77 0.64 0.40 0.28 0.01 0.59 0.01

Table 20: Sharpe Ratio of Equal Weighted Portfolios

Set of 2 Set of 3 Set of 4 Set of 5 Set of 6 Set of 7 Set of 8 Set of 9 Set of 10

0.56 1.05 0.69 0.51 0.13 -0.18 -0.45 0.47 0.02

Table 21: Sharpe Ratio of Risk Parity Portfolios

47



5 Conclusion

This study commenced by laying the theoretical foundations, initiating with the long/short
strategy employed by hedge funds and its economic-financial attributes. Subsequently,
pair trading was introduced, followed by a comprehensive exploration of cointegration,
encompassing stationarity and cointegration tests - notably the ADF and Johansen tests -
essential in identifying cointegrated stocks.

The primary objective of the thesis was to develop and simulate the application of
a statistical arbitrage strategy predicated on cointegration among various stock groups.
This aimed at evaluating its practicality and observing the outcomes. For this purpose, a
program was devised that initially selects the most profitable sets based on the quantity
of cointegrated stocks and validates them. Based on cointegration, criteria for opening
and closing positions were then established. Subsequently, the program simulated the
portfolios’ performance over test periods, gathering data for both equal weighted and risk
parity portfolios composed of cointegrated sets ranging from 2 to 10 stocks.

The portfolios underwent testing over a period extending from September 2007 to
February 2023, divided into 31 datasets. The equal weighted portfolios generally outper-
formed both the risk parity portfolios and the benchmark in terms of returns. These port-
folios also exhibited comparatively low volatility and maximum drawdowns relative to the
S&P 500. Observations of kurtosis and skewness indicated that the equal weighted port-
folios generally maintained a robust profile against the benchmark index. Conversely, the
risk parity portfolios, while demonstrating significantly limited volatility and maximum
drawdown, were unable to sustain a satisfactory return profile. This was evident from
the observed skewness and kurtosis, as the risk parity portfolios appeared to constrain the
positive asymmetry of returns. Although the Sharpe ratios were predominantly positive
and frequently surpassed the benchmark’s ratio, portfolios comprising larger cointegrated
sets, such as 8, 9, and 10, faced computational challenges in identifying an adequate num-
ber of sets, resulting in somewhat unstable portfolios across various metrics, particularly
noticeable in those with 8 and 10 cointegrated stocks.

Excluding these, the remaining portfolios performed commendably across almost all
parameters, affirming the efficacy of a multidimensional cointegration-based approach to
pair trading. The most outstanding portfolio was the equal weighted one comprising 4
cointegrated stocks, which boasted the highest Sharpe ratio. Several risk parity portfo-
lios also surpassed the benchmark’s Sharpe ratio but were not as competitive in terms of
returns. The study posits that in this strategy, the use of risk parity weights to diminish
volatility and equitably distribute risk excessively impacts the returns, leading to inef-
ficient capital allocation. Nevertheless, all strategies demonstrated market neutrality, as
evidenced by their beta values being closely aligned with zero.

48



Despite the profitability of applying a multidimensional pair trading strategy, various
factors warrant consideration. The computational constraint in set selection emerged as
a significant challenge, complicating the identification of viable sets. As the size of the
cointegrated sets increased, so did the complexity of portfolio management. This was
particularly evident in larger sets where trading commissions had a more pronounced im-
pact. Although trading commissions were estimated satisfactorily, major costs associated
with short operations were overlooked. Moreover, risks inherent to short operations, such
as margin risk and recall risk, were present. Despite the apparent insulation from market
risk, the specific risk of holding individual stocks and potential limited market liquidity,
mitigated by initial stock selection, remained pertinent concerns. These factors could po-
tentially be managed through diverse money management measures or precautions like
implementing a stop loss. Ultimately, this thesis did not extensively delve into the op-
erational nuances of the strategy but rather demonstrated the feasibility of expanding the
dimensionality of the cointegration approach within the statistical arbitrage framework.
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