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1. Introduction 
 
Portfolio optimization is a central theme in modern finance, playing a crucial role in the 

decision-making process of investors. Portfolio theory, introduced by Harry Markowitz 

in the 1950s, revolutionized the way investors perceive risk and return, laying the 

foundation for the quantitative analysis of investment decisions. The primary objective of 

this thesis is to explore and delve into portfolio optimization methods, with a particular 

focus on Merton’s problem and its practical applications. 

 

In 1969, Robert C Merton expanded Markowitz's model by adding time dynamics into 

the continuous-time portfolio optimization framework. Merton’s problem considers how 

to allocate resources between risky and risk-free assets in light of temporal effects and 

uncertain market environment. This has led to more advanced models incorporating 

stochastic volatility, among other market dynamics and making portfolio optimization an 

essential tool for investment management. 

 

The thesis takes a holistic approach towards portfolio optimization from its theoretical 

foundations through to practical applications. First part covers Merton’s problem together 

with various solution techniques such as value function approach, duality principle and 

dynamic programming . Next I will extend the Merton model allowing choice variables 

in models with finite/infinite time horizons, interest rate risk, habit formation or inclusion 

of stochastic volatility models. 

 

In its second part, the thesis considers some practical applications of portfolio 

optimization. The benefits of diversification and risk management can be shown through 

actual case studies in creating efficient portfolios. We look at different kinds of 

optimization problems under different investments scenarios: stock markets, bond 

markets, derivatives markets only to provide evidence on how these theories can be used 

for daily management of investments. 

 

To sum up this dissertation seeks to link theory with practice where it comes to portfolio 

optimization thus giving investors or people from industry advanced tools they need for 

enhancing investment strategies. It is important that one understands well these 
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techniques because they are crucial for success in navigating complex dynamics found 

within modern financial markets hence better informed risk-return management. 

2. Merton’s Problem 

2.1. Introduction to Merton’s portfolio optimization problem 

People making financial decisions always have to choose among different things, ranging 

from average to significant, depending on whether there are better results. Though 

unquantifiable, this is the definition of homo economicus. Therefore, I am going to 

proceed from Leonhard Euler's idea about universal optimization to a more complicated 

scenario whereby outcomes are not deterministic but market uncertainty-dependent. 

 

Robert C. Merton developed in 1969 what is known as Merton's Portfolio Problem. The 

problem lies in optimizing a stochastic value function modelled by differential equations 

and unpredictability inherent in financial systems. The main idea at the core of the 

problem is that an active investor heading toward retirement has to strike a balance 

between risk-free assets and risky assets. (Merton, 1969) 

 

Post-employment and pre-retirement spending require a balanced portfolio in order to 

increase the returns of the portfolio after retirement. 

 

In this section, I will also examine how dynamic programming and the Hamilton-Jacobi-

Bellman equation can be used to analyze Merton's Portfolio Problem. Stochastic calculus 

starts my analysis with Brownian motion, stochastic integrals, differential equations, and 

Itô's Lemma – the mathematical tool that lies at the foundation of these methods. 

 

After this point, I will proceed from the solution of the optimal control problem to the 

deterministic Hamilton-Jacobi-Bellman partial differential equation through the 

Verification Theorem that guarantees its validity. (Merton, 1969) 

 

Onward moving, I will examine some approaches used to resolve the different problems 

presented by Merton: value function duality, dynamic equilibrium models, and the value 
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function approach. These methods answer the above-given question while asking me 

about their effectiveness and under what conditions they are well-posed. 

 

The latter part of this study will expound about the practical implications, thereby 

showing their importance for potential applications. I will analyse how solutions relate to 

their parameters by examining how each influences others through its partial derivatives 

or simulated trajectories. This is an academic exercise and an educational toolbox for 

investors who want to navigate a random portfolio space effectively because of its 

practical orientation. It also underlines the significance of Merton's Portfolio Problem in 

real life for modern portfolio management purposes. 

 

Consequently, this chapter aims to comprehensively understand how modern portfolio 

theory applies Merton's foundational work in various financial contexts. Infact, profound 

implications can be drawn from Merton's problem regarding contemporary portfolio 

management. These open up several extensions and applications that have changed the 

face of financial decision-making. 

 

This section of the study marks the essence of the research and discusses various ways to 

navigate through the random waves that flow in financial markets. 

 

Therefore, I will examine the classical method of value function framework for solving 

stochastic control problems, I will delve a more detailed scrutiny of Merton’s portfolio 

problem. In summary, this part is concerned with different solution methods and 

multifaceted perspectives necessary for steering through dynamic randomness 

characterizing financial market operations. 

 

In particular I will explain the main solution approaches to the problem of portfolio 

optimization: 

 

- The classical value function approach. This method solves stochastic control 

problems by solving Hamilton-Jacobi-Bellman (HJB) equations such that you 

obtain a dynamic and recursive procedure for identifying optimal strategies. 
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- The duality approach. By shifting focus to its dual objective function, this 

method simplifies complex dynamics enabling easier manipulation algebraically. 

Simultaneously it opens new doors making certain solutions more economical 

coherent and more profound on economic ground than others.  

 

- The dynamic programming approach. This method is important when thinking 

about making investment decisions using temporally optimizing procedures like 

the passage through a puzzle or maze with numerous twists. This method works 

breaking down complex problems into simpler subproblems that lead from local 

decisions towards global optimality one step at a time 

 

 

These much twisted but strongly built theories provide a solid foundation for modern 

investment strategies. Other than being independent stances they combine analytical 

rigor with intuitive insights. 

 

2.2. Solution Approaches 

 

In delving into the domain of portfolio optimization, the solution approaches encompass 

a rich tapestry of methodologies, each addressing the multifaceted nature of investment 

decisions. The common theme is of an agent investing in one or more risky assets so as 

to optimize some objective. The dynamics of the agent’s wealth can be characterized 

through the equation 

 

dwt = rtwt dt + nt · ( dSt - rt St dt + δt dt ) + et dt - ct dt                         (1.1) 

= rt ( wt – nt · St ) dt + nt · ( dSt + δt dt ) + et dt - ct dt.                     (1.2) 

 

for some given initial wealth w0.  

 

In portfolio optimization, the wealth of an investor, influenced by various market factors, 

is described by a complex equation. The equation accounts for the dynamics of asset 

prices (S), represented as a multi-dimensional semimartingale, and the investor's 

decisions on the portfolio (n) and consumption (c), both of which are considered to be 
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predictable processes. Additionally, dividends (δ) from the assets, any income stream (e), 

and the risk-free interest rate (r) are factored into the wealth calculation, with the latter 

dictating growth in the absence of risky asset investments. (Roger, 2013) 

 

Investors who choose not to invest in risky assets can expect their wealth to grow risk-

free, influenced by their income and expenses. However, those who opt for a fixed 

number of risky assets will see their wealth composition at any given time, including the 

market value of these assets and the cash held in a bank account. This cash appreciates at 

the risk-free rate r and is affected by dividends received. This underscores the role of risky 

assets in wealth growth and the importance of a well-balanced investment strategy. 

 

During constructing an investment strategy, ensuring that the chosen portfolio and 

consumption processes are viable over time is paramount. An investment strategy is 

typically modulated at specified intervals, allowing the investor to adjust their portfolio 

in response to financial performance and other factors without causing abrupt changes in 

wealth. To formalize this concept, I introduce Definition 1.1: 

 

Definition 1.1: The pair (nt, ct)t≥0 is said to be admissible for initial wealth w0 if the wealth 

process wt given by equation (1.1) remains non-negative at all times. I denote this by  

 

 

 

This definition encapsulates the idea that, for a strategy to be deemed feasible, it must 

maintain the investor's wealth at or above zero throughout the investment horizon. The 

condition of non-negativity is critical; it prevents the portfolio from reaching a deficit, 

which would not be sustainable. I further generalize this by introducing the set A, which 

encompasses all possible admissible pairs (n, c) across different initial wealth levels: 

 

A = ⋃w>0 A(w) 

 

By setting these parameters, I limit my focus to strategies that promise theoretical 

profitability and adhere to practical constraints of risk and return. (Roger, 2013) 
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After establishing the prerequisites for admissible strategies, our attention shifts to the 

objectives steering the investor's decision-making process. At the core of the optimization 

challenge, the investor seeks to configure a combination of portfolio choices (n,c) within 

the realm of admissibility to maximize expected utility. This venture is succinctly 

captured by an objective function integrating utility derived from consumption over time 

and the terminal wealth at a specified time horizon, T. 

                                     

 

 

 

 

The time horizon T is generally taken to be a positive constant.  

Two pivotal scenarios emerge in this context: the infinite-horizon problem, which 

transcends temporal bounds to maximize utility indefinitely  

 

 

and the terminal wealth problem,  

 

 

 

that concentrates exclusively on the utility of the accumulated wealth at time T, 

abstracting from the consumption aspect. 

 

This then is the problem: the agent aims to achieve (1.4) when his control variables must 

be chosen so that the wealth process w generated by (1.1) remains non-negative. There 

are methods to solve this problem, but there is a very important principle underlying many 

of the approaches:  

 

Theorem 1.1 (The Davis-Varaiya Martingale Principle of Optimal Control) 
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Suppose that the objective is (1.4), and that there exists a function V : [0, T] x R+ → R 

which is C1,2 , such that V(T, ·) = u(T, ·). Suppose also that for any (n, c) € A (w0) 

 

 

And that for some (n*, c*) € A(w0) the process Y is a martingale. Then (n*, c*) is optimal, 

and the value of the problem starting from initial wealth w0 is 

 

 

Proof. 

From the supermartingale property of Y, I have for any (n, c)  A (w0) 

 

 

using the fact that V(T,·) = u(T,·). Thus for any admissible strategy the value is no greater 

than V (0, w0); when I use (n*, c*), the value is equal to V (0, w0) since the 

(supermartingale) inequality in (1.9) becomes an equality. Hence (n*, c*) is optimal. 

(Roger, 2013) 

  

2.2.1. The Value Function Approach 

The traditional and widely used technique for addressing problems in stochastic optimal 

control is the value function approach, deeply anchored in the Martingale Principle of 

Optimal Control (MPOC). To approach this method systematically, I initially detail the 

dynamics of our assets; I shall suppose that 

 

 

 

where the σij and the μi are constants, and W is an d -dimensional Brownian motion.  
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Additionally, I will assume that the risk-free interest rate, denoted as r, is a constant value, 

and that the processes representing endowment, e, and dividends, δ, are consistently zero. 

The previously mentioned equation (1.10) can thus be succinctly rewritten in a more 

compact form: 

 

 

Notice that the wealth equation(1.1) can be equivalently (and more usefully) expressed 

as  

 

 

 

To identify a function  V  that meets the conditions set out in Theorem (1.1), one would 

directly construct the process  Y  as delineated in (1.7) and undertake an Itô expansion, 

premised on the assumption that  V  exhibits the necessary smoothness: 

 

 

 

The stochastic integral term in the Itô expansion is a local martingale; if I could assume 

that it was a martingale, then the condition for Y to be a supermartingale whatever (θ , c) 

was in use would just be that the drift were non-positive. Moreover, if the supremum of 

the drift were equal to zero, then I should have that V was the value function, with the 

pointwise-optimizing (θ , c) constituting an optimal policy. Setting all the provisos aside 

for the moment, this would lead us to consider the equation  

 

 

 

This (non-linear) partial differential equation (PDE) for the unknown value function V is 

the Hamilton-Jacobi-Bellman (HJB) equation . If I have a problem with a finite horizon, 

then I shall have the boundary condition V (T , ·) = u(T , ·); for an infinite-horizon 

problem, I do not have any boundary conditions to fix a solution, though in any given 
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context, I may be able to deduce enough growth conditions to fix a solution. The point is 

that if I am able to find some V which solves the HJB equation, then it is usually possible 

by direct means to verify that the V so found is actually the value function.  

If I am not able to find some V solving the HJB equation, then I really cannot say anything 

interesting about the solution.  

In order to get some reasonably explicit solution, I shall have to assume a simple form for 

the utility u, such as  

 

 

 

or 

 

 

where ρ,γ,R > 0 and R ̸= 1. Since the derivative of the utility (1.14) is just u′(t,x) = 

e−ρtx−R, in the case R = 1 I understand it to be 

 

 

All of these forms of the utility are very tractable, and if I do not assume one of these 

forms I will rarely be able to get very far with the solution. (Roger, 2013) 

Key example: the infinite-horizon Merton problem. To illustrate the main ideas in a 

simple and typical example, let’s assume the constant-relative-risk-aversion (CRRA) 

form (1.14) for u, which I write as  

 

 

The aim is to solve the infinite-horizon problem; the agent’s objective is to find the  

value function  
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And the admissible (n, c) which attains the supremum, if possible. I shall see that this 

problem can be solved completely. The steps involved are: 

 

Step 1: Using special features. What makes this problem easy is the fact that because of 

scaling, I can write down the form of the solution; indeed, I can immediately say that  

 

 

 

for some constant γM > 0. Thus finding the solution to the optimal investment/ 

consumption problem reduces to identifying the constant γM.  

 

Step 2: Using the HJB equation to find the value.  

 

 

 

then it is clear from the time-homgeneity of the problem that  

 

 

 

where V is as defined at (1.18). In view of the scaling form (1.19) of the solution,  I now 

suspect that  

 

 

 

and I just have to identify the constant γM . For this, I return to the HJB Eq. (1.13). The 

HJB equation involves an optimization over θ and c, which can be performed explicitly.  
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Optimization over θ.  

The optimization over θ is easy : 

 

 

Hence 

 

 

 

Using the suspected form (1.21) of the solution, this is simply  

 

 

To interpret this solution, let us introduce the notation  

 

 

 

a constant N-vector, called the Merton portfolio. What (1.23) tells us is that for each  

i, and for all t > 0, the cash value of the optimal holding of asset i should be  

 

 

 

so the optimal investment in asset i is proportional to current wealth wt , with constant of 

proportionality πi
M  

 

Optimization over c. 

 For the optimization over c, if I introduce the convex dual function  

 

 

of u, then I have for u(x) = x1−R/(1 − R) that  
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where R ̃ = R−1. Thus the optimization over c develops as  

 

 

Substituting in the suspected form (1.21) of the solution, this gives us  

 

with optimizing c* proportional to w: 

 

 

Putting it all together.  

Returning the candidate value function (1.21) to the HJB Eq. (1.13), I find that  

 

 

 

Where: 

 

is the market price of risk vector. This gives the value of γM : 

  

 

 

and hence the value function of the Merton problem (see (1.21)), VM (w) ≡ V (t, w), as  
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As I draw my discussion to a close, I am presented with two critical considerations. The 

first pertains to the implications of the expression for γM becoming negative, as outlined 

in expression (1.29). The second is a broader, more foundational inquiry, confirming the 

optimality of the solution I have deduced.  

 

Addressing the former necessitates a tailored response specific to the problem at hand, as 

it speaks to the well-posedness of the problem itself. The latter inquiry, however, 

transcends the particularities of any single problem and is relevant across a spectrum of 

cases. The methodology employed in affirming the optimality of a solution is broadly 

applicable and, therefore, will be our initial focus. With the assumption that γM, as given 

by (1.29), is indeed positive, I will subsequently circle back to address the first point of 

concern. 

Suppose that the initial wealth w0 is given, and consider the evolution of the wealth  

w* under the conjectured optimal control; I see 

 

 

 

Which is solved by 

 

 

 

Step 3: Finding a simple bound.  

The proof of optimality is based on the trivial inequality: 

 

 

 

which expresses the geometrically obvious fact that the tangent to the concave function u 

at x > 0 lies everywhere above the graph of u. If I consider any admissible (n, c) then, I 

am able to bound the objective by  
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where I have abbreviated 

 

 

 

after some simplifications using the explicit form of w∗. Now, the key point is that ζ is a 

state-price density, also called a stochastic discount factor; and there is the property that 

for any admissible (n, c)  

 

 

This may be verified directly by Itô calculus from the wealth equation (1.1) in this 

example, and I leave it to the reader to carry out this check. In general, I expect that the 

marginal utility of the optimal consumption should be a state-price density. The 

importance of the statement (1.35) is that since the wealth and consumption are non-

negative, the process Y is in fact a non-negative supermartingale, and hence  

 

Step 4: Verifying the bound is attained for the conjectured optimum.  

One last piece remains, and that is to verify the equality  

 

 

 

For the optimal consumtion process c*, and again this can be established by direct 

calculation using the explicit form of c*. Combining (1.33), (1.36) and (1.37) gives me 

finally that for any admissible (n, c) 
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which proves optimality of the conjectured optimal solution (n*, c*). (Roger, 2013) 

 

2.2.2. Duality Approach 

Consider this methodology as a nuanced iteration of the value function technique. It 

presents an alternative modality for engaging with the HJB equation. It potentially 

streamlines the HJB equation. The necessity to confirm the solution's validity remains; 

however, the complexities are significantly reduced through this approach. 

The fundamental concept involves reformulating the HJB equation as shown in (1.13), 

applying an appropriate transformation. As for the utility function U, the requirement is 

not tied to a specific form. Rather, the criteria are its concavity, a strict increase in 

response to the second variable, and continuity concerning the first, ensuring broad 

applicability of this approach. 

 

 

 

which is necessary for the optimization to be well posed. 

Since I know that the value function is concave, the derivative Vw is monotone  

decreasing, so I am able to define a new coordinate system 

 

 

 

for (t,z) in A ≡ {(t,z) : Vw(t,∞) < z < Vw(t,0)}. Now I define a function J : A → R by  

 

 

 

and I notice that by standard calculus I have the relations  
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Now when I take the HJB equation (1.13) and optimize over θ and c I obtain  

 

 

 

which is a linear PDE for the unknown J. Here, u ̃(t, z) ≡ sup{u(t, x) − zx} is the convex 

dual of u. (Roger, 2013) 

 

The key example again. To see this in action, let us take the infinite-horizon Merton  

problem, and suppose that  

 

 

 

for some concave increasing non-positive u, which I do not assume has any particular 

form. In this instance, I know that V (t, w) = e−ρt v(w) for some concave function v which 

is to be found. From the definition (1.41) of the dual value function J, I have  

 

 

Notice that since u is non-positive, it has to be that V is also non-positive, and that j is 

non-positive.  

If I introduce the variable y = zeρt, simple calculus gives 

 

 

and substituting into (1.46) gives the equation for j 

 

 

 

I can write the solution of (1.48) as  
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where α < 0 and β > 1 are the roots of the quadratic  

 

 

and j0 is a particular solution. Observe that the equation (1.48) can be expressed as 

 

 

where G ≡ 
1

2
 |κ|2y2D2 + (ρ − r)yD is the infinitesimal generator of a log-Brownian motion  

 

So one solution would be to take 

 

 

Since u ̃ is non-positive decreasing, it is clear that j0 is also; moreover, since u ̃ is convex, 

and the dynamics for Y are linear, it is easy to see that j0 must also be convex. The solution 

j which I seek, of the form (1.49), must be convex, decreasing, and non-positive, so j0 is 

a possible candidate, but what can I say about the terms Ay−α + Byβ in (1.49)? By 

considering the behaviour of j near zero, we see that the only way I can have j (given by 

(1.49)) staying decreasing and non-positive is if A = 0. On the other hand, since j0 is 

convex non-positive, it has to be that |j0(y)| grows at most linearly for large y, and if B ̸= 

0, this would violate10 either the convexity or the non-positivity of the solution j. I 

conclude therefore that the only solution of (1.48) which satisfies the required properties 

is j0. (Roger, 2013) 

 

 

 

2.2.3. Dynamic Programming 

Dynamic programming is widely recognized in the area of continuous-time portfolio 

optimization as a powerful tool. This chapter will explore the foundations of dynamic 

programming and demonstrate its application through DSGE models. 
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A common trap in financial modeling is to model derived quantities and neglect their 

roots. This is what Rogers & Tehranchi discussed, leading to inconsistencies between 

these variables. Another similar mistake is that mathematical finance treats market 

clearing prices for asset prices as fundamental when they are not. 

 

Therefore, one should pay attention to the agents’ preferences, asset holdings and output 

processes which are the most important aspects of this problem. They represent general 

equilibriums which are difficult to solve. Nevertheless, it is necessary to derive models 

from these basic elements. 

 

Suppose there exists an economy with a single asset that produces δt streams. The 

preference of the agents is specified by von Neumann-Morgenstern utility functions: 

being derived from fundamentals this mistake results in lack or inappropriate connections 

among such variables according Rogers & Tehranchi. A similar omission can be found in 

mathematical finance where asset prices derived from market-clearing prices in general 

equilibrium are often mistakenly treated as fundamentals. 

 

This error must be rectified by focusing on the actual fundamentals such as agent’s 

preferences, asset holding, and output process. These elements form a complete system 

and finding their solution may prove difficult at times but when possible, it makes sense 

to build models based on these components. 

 

Imagine now that I have an economy having only one asset producing stream δt. The 

preferences of agents can be described by von Neumann-Morgenstern utility functions: 

 

where uj (t, ⋅) is increasing, strictly concave, and satisfies the Inada conditions. 

 

Equilibrium and Price Processes 

The goal is to find equilibrium price processes for assets and interest rates that clear the 

market. This implies that the total output is consumed, and the total wealth matches the 
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asset itself. The individual agents' optimal solution links their marginal utility of 

consumption to their state-price density: 

 

which defines the state-price density for agent j, determining how agent j prices all assets 

and contingent claims. 

Market-Clearing Conditions 

For markets to clear: 

 

This signifies that all the output of the asset is exactly consumed and the total wealth 

equals the asset itself. In equilibrium, the asset price at time t can be valued by any agent 

j as: 

 

 

Central Planner Equilibrium 

A central planner equilibrium is considered as a variant of the representative agent 

equilibrium, where a central planner optimizes the weighted sum of individual utilities 

subject to the aggregate consumption constraint. 

Complete Market Case 

In a complete market, a unique state-price density up to constant multiples exists, and 

market-clearing conditions provide the relationship: 

 

 

where ηj are constants derived from the initial wealth of the agents. 

Example: Single Asset Economy 

Consider an economy with a single asset that provides a log-Brownian dividend process. 

The goal is to determine the equilibrium price of this asset and the state-price density in 

a complete market setting.  

The dividend process 𝛿𝑡 follows a log-Brownian motion: 

dδt =δt(σdWt+μdt), 
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where, σ is the constant volatility, μ is the constant drift, Wt is a standard Brownian 

motion. 

Assume the agents have utility functions of the form:  

uj(t,c)=e−ρtuj(c), 

 

where ρ is the common discount rate, and uj(c) is the utility derived from consumption c, 

which is C2, strictly concave, increasing, and satisfies the Inada conditions. 

The market-clearing condition in this economy is:  

δt=∑jIj(ηjeρtζt), 

 

where Ij is the inverse of the marginal utility function uj′, ηj are constants derived from 

the agents' initial wealth, and ζt is the state-price density. 

To find the state-price density ζt, we introduce the function f:  

eρtζt=f(δt)≡f(xt). 

 

This function can be inverted to find δt in terms of ζt. 

The stock price St at time t can be expressed using the state-price density and the expected 

discounted value of future dividends:  

 

where: 

 

Given that agent j's consumption stream is cj
t
 =Ij(ηjeρtζt), which is a function of xt alone, 

we can deduce the wealth process wj(t) as: 

 

Using the resolvent operator R0 of the diffusion, we have:  

- f(x)ϕ(x)=(R0F)(x),   

- f(x)ψj(x)=(R0Qj)(x),  

where F(x)=eρtf(x) and Qj(x)=f(x)qj(x). 

The resolvent density for the log-Brownian motion is given by: 
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where 

. 

Hence 

 

in which we recognize a convolution integral, which can be evaluated numerically using 

Fast Fourier Transform.  

 

For the special case where all agents share a common CRRA (Constant Relative Risk 

Aversion) utility: I(x)=x−1/R, f(x)=e−Rx. In this case, from the above equations, we get that 

St ∞ δt, aligning with the Black-Scholes-Merton model for a stock paying dividends at a 

constant proportional rate. 

The example illustrates how dynamic programming and equilibrium models provide a 

rigorous foundation for understanding asset pricing and wealth distribution in an 

economy. The solution involves finding the state-price density and using it to determine 

equilibrium prices and agents' optimal consumption and wealth processes. 

 

 

This chapter illustrates that dynamic programming in continuous-time portfolio 

optimization is a robust framework that integrates economic theory with mathematical 

rigor. It ensures that investment strategies derived from such models are not only 

mathematically coherent but also economically justifiable. (Jacobsson, 2022) 

 

2.3. Implications of the Merton Problem on Modern Portfolio 

Theory 

The Merton Paradox, which was named after Robert C. Merton, an economist who went 

beyond the theories of Paul Samuelson and advanced the boundaries of portfolio 

planning, is one of the critical contributions to Modern Portfolio Theory (MPT). Merton’s 

continuous-time optimization framework has led to a far reaching impact on MPT, 
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altering our perception about optimum investment and consumption options in an 

uncertain environment over time. 

 

This paper articulates a dynamic wealth accumulation and allocation process whereby an 

investor seeks to maximize utility from consumption and terminal wealth over a 

continuous time horizon. It uses stochastic control methods for determining optimal 

portfolio paths that adapt to changing market conditions and personal circumstances. 

 

2.3.1 Extending the Markowitz Approach 

Conventional MPT entailed optimizing portfolios through a trade-off between risk and 

return based on a single period model developed by Harry Markowitz. This is augmented 

by Merton's continuous time model which incorporates lifetime span in a stochastic 

environment thereby bringing temporal element into investment decision making 

(Markowitz, 2008). Key Contributions to MPT 

 

1. Optimal Consumption and Investment Strategies: In order to make wealth useful over 

time it takes into account the consumption aspect while embedding it in the investment 

problem. 

 

2. Incorporation of Stochastic Processes: The model links investment strategies with 

predictable or unpredictable events throughout any investor’s lifespan by capturing 

randomness associated with market returns as well as other phenomena. 

 

3. Dynamic Asset Allocation: He introduced this concept as a means where proportions 

of risky assets are never constant making them vary when market conditions change or 

situations change for investors. 

 

4. Intertemporal Hedging Demand: This strategy mitigates uncertainty regarding future 

investments opportunities or preferences related to what will be consumed tomorrow, next 

year or in future general. 

 

2.3.2 Modern Portfolio Management 
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Modern portfolio management largely relies on the approach adopted by analysts who try 

to apply more dynamic frameworks such as: 

• Human Capital Considerations: These can involve aspects like labor income and 

retirement planning for an investor that can be integrated into asset allocation 

exercises. 

 

• Liability Driven Investing: That takes into account future liabilities OE 

objectives since individual utility is unique to each person. 

 

• Lifecycle Investing: This means a change of the nature of the risk profile over 

time, most often maturing from high-risk to low-risk assets with age among 

investors. 

 

However, Merton’s model has certain assumptions that have been criticized and modified 

in recent applications as follows: 

 

• Utility Functions: The new versions of utility functions take into consideration 

the various behavior patterns as well as different degrees of risk aversion. 

 

• Market Completeness: There are situations where real markets are not complete 

thus there is need for adjustments to this effect by looking at market frictions and 

constraints in such models. 

 

• Computational Complexity: In other words, solutions to numerical problems 

associated with implementation of Merton’s policies continue to be developed up 

to date under the field referred to as computational finance. 

 

The Merton Problem has brought about significant changes in MPT. Based on this 

problem, this paper refers to a broad-based portfolio optimization framework which fits 

with the whole industry rather than just one aspect. It features wealth formation versus 

distribution alongside an investment strategy decision setup for an entire life range. 

Therefore it remains an integral part of financial economics influencing both theoretical 

development and practical asset management. 
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3. Extension of the Merton Model 

3.1 Choice variables in models with finite and infinite time 

horizon 

In investment models, choice variables in portfolio optimization signify the most 

important parts of the decision-making process that affect an investor’s asset allocation. 

These components are used to develop a strategic plan for allocating assets to maximize 

returns, minimize risks, or attain an optimal balance between these two aims. They are so 

important in portfolio management because they can be used directly to create investment 

strategies, shaping and affecting the overall performance and healthiness of the 

investments made. 

 

What makes choice variables strategically significant is their direct influence on risk and 

return relationships within a given portfolio. For instance, one may choose to adjust 

his/her investments towards more risky securities such as shares, which carry higher 

expected earnings but also expose him/her to a greater probability of losing significant 

amounts of money. Similarly, someone else might decide to increase bonds or other fixed 

incomes, thus reducing volatility levels within his/her investment while at the same time 

depressing potential rewards from it. Therefore, it becomes essential that we make precise 

changes to them if we want particular goals achieved through investments. 

 

All in all, effective management of choice variables is key to realizing desired financial 

outcomes. Whether an individual wants to save for retirement, generate steady income or 

protect wealth; he/she must intelligently adjust these parameters so that they can help 

design appropriate strategies taking into account ones’ risk appetite, time horizon among 

other things related with personal finance planning . By integrating deep knowledge about 

them into practice, people would have better chances of gaining success not just during 

different market cycles but also in various institutional settings where financial services 

are rendered. Such approach fosters more refined decision making process required when 

dealing with intricacies prevailing in today’s money markets. 
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3.1.1 Fundamental Aspects of Choice Variables and Types of Choice 

Variables 

Principles of Essential Variables of Choice 

1. Nature and Purpose: Understanding choice variables is crucial as they are the 

specific, controllable actions within an investment strategy. For instance, they dictate 

the allocation of the portfolio across various asset classes such as stocks, bonds, 

commodities, or alternative investments like real estate and private equity. This 

understanding empowers you to make informed decisions about your investments. 

2. Strategic Implications: The selection and manipulation of these key inputs 

significantly impact the expected return on investment (ROI) and riskiness measured 

by standard deviation (SD), among other factors. This information can guide you in 

building your portfolio based on your personal financial objectives, risk appetite, and 

current market views. 

3. Dynamic Adjustments: It's essential that choice variables adapt over time to changes 

in ambient conditions such as market environments. This flexibility allows you to 

remain consistent with your targets while also being able to adapt if necessary, 

ensuring the robustness of your portfolio under various economic scenarios. 

 

Types Of Decision-Making Factors 

1. Asset Allocation: It is arguably the most important one, i.e., where money should 

be put and distributed across various forms of investments. Allocation decisions 

are guided by anticipated returns on each class vis-à-vis its risks plus correlations 

between these classes which may impact overall volatility levels within a given 

portfolio. 

2. Rebalancing Strategy: How often should I adjust my holdings to match up 

against benchmarks? When do you decide what assets have gained too much value 

and those that have not performed well enough? Rebalancing becomes necessary 

to maintain the original balance while keeping the desired exposure level constant 

over time once target asset allocation has been achieved. 

3. Derivative Utilization: Derivatives like options or futures can hedge against risks 

or amplify rewards, respectively. It matters whether specific derivative 

instruments will be included in a particular plan and how extensively they might 
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be employed since such decisions can significantly affect results regarding 

portfolios. 

4. Tax Considerations: Tax consequences remain essential, especially regarding 

personal investment decisions. What matters here is maximizing pre-tax returns 

and after-tax ones, thereby making tax efficiency a vital goal that should be 

considered during the strategy formulation process. 

5. Liquidity Requirements: Liquidity, or the ease with which assets can be 

converted to cash without a significant loss in value, is another important choice 

variable. Investors need to decide how much liquidity is necessary to meet 

potential cash flow needs without disrupting the investment strategy's overall 

effectiveness. 

 

Application in Models 

 

In models of portfolio optimization, the decision variables are frequently parameters 

which can be altered within the model’s bounds to locate the greatest possible investment 

portfolio given some assumptions. Scenarios may be examined and results produced by 

using quantitative approaches such as mean-variance optimization or Monte Carlo 

simulations or more advanced machine learning methods based on different values for 

these inputs. 

 

Setting and adjusting choice variables correctly is crucial in aligning investment strategies 

with personal requirements and prevailing market circumstances; thus making them key 

elements of successful portfolio management. 

3.1.2 Choice Variables in Infinite Time Horizon Models 

Infinite time horizon models is a method of managing investments in the portfolio 

optimization universe without any fixed endpoint. Such models are necessary for cases 

where the goal is to perpetuate wealth through generations or endowments which have 

perpetuity as their main purpose. In these scenarios, sustainability becomes more 

important than anything else since what is needed primarily is an investment plan that can 

allow for continuous withdrawals while at the same time keeping its value intact over 

unlimited period of time. 
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Choice Variables in Infinite Time Horizon Models 

•  Sustainable Withdrawal Rate: The most important thing about these models is 

finding out what withdrawal rate will not compromise with how long portfolio 

survives. The problem lies on determining what percentage should be used so that 

it grows together with investment; this means that there should be no withdrawal 

exceeding return generated from investing. This rate has to consider inflation 

impact, market changes and need for principal to last forever. 

• Asset Allocation: Asset allocation under infinite time horizon models takes place 

throughout different phases dynamically. It requires strategic thinking which 

focuses not only on present income but also total return encompassing capital 

gains plus interest earned over time. Thus, allocations ought to respond flexibly 

towards shifting economic environment and include those types of assets that offer 

higher prospects of long run growth or stability. 

• Risk Management: Risk management within infinite time context needs complex 

strategies due to various reasons involved in it. Here we are looking at risks 

associated with finance over extended periods such as those related to market 

unstability, economic recessions and high inflations. At this level diversification 

becomes very significant together with assets capable of hedging against different 

forms of risks during different times. Henceforth resilience must be built into a 

portfolio so that it can survive through ups & downs cycles without compromising 

ability to make regular withdrawals even when economy slows down. 

 

Considerations for Long-term Growth and Stability 

When optimizing the financial goals over time, there is a strong emphasis on those 

strategies that seek continuous development. This could involve putting money into 

various assets such as shares with good track records on dividends, bonds that give 

reliable yields, real estate, and even alternative investment vehicles expected to appreciate 

over long periods. 

The designs tend to be conservative because they provide stability rather than speculative 

gains. However, this does not mean that the methods do not have inflation-beating targets; 

they should ensure purchasing power protection against erosion with time. Therefore, 

balancing short-term market downturn protection and long-term growth positioning for 

any given set of investments is necessary. 
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The optimization process also considers legal and fiscal frameworks that may impact 

estate planning or endowment funding within unlimited life span models. This means that 

individuals can structure their portfolios in ways that would enable them to benefit from 

tax-efficient growth. At the same time, institutions need only comply with relevant 

regulations governing the management of these funds. 

In conclusion, success in managing portfolios with infinitely enduring targets will depend 

mainly on how skillfully one manipulates decision variables. It implies making wise 

choices that guarantee survival across different eras, catering to current financial demands 

alongside future needs, or aligning organizational objectives toward sustainable 

development over extended periods. (ReSolve Asset Management, n.d.) 

 

3.1.3 Choice Variables in finite Time Horizon Models 

Finite time horizon models in portfolio optimization are made for the investment period, 

which is fixed and specified. Such models are helpful when investors clearly know where 

they want to reach, for example, retirement, buying a house, or funding education. 

Judging whether the portfolio meets those objectives by a given deadline is essential in 

such cases. 

 

Features Of Finite Time Horizon Models 

These are characterized as models that are designed to achieve investment goals over 

some time frame. This means there is an upper limit on how long we can wait until we 

recover from potential losses, affecting risk and return management. Since this point will 

be reached soon enough, usually towards the end of the day, it may require changing our 

approach towards investing, starting from growth-oriented strategies up to capital 

preservation initiatives aimed at ensuring the availability of funds whenever needed. 

 

Choice Variables In Finite Time Horizon Models 

• Asset Allocation: This refers to deciding on initial percentages of different 

securities within a given portfolio, such as stocks and bonds. In the early stages 

of investments, one might choose more risky assets like shares. However, as time 

goes by, this could change so that more conservative instruments, such as 

government debt, become preferable due to their low volatility levels relative to 

equities. 
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• Rebalancing Frequency: How often should rebalancing take place? It is essential 

to know what frequency works best under specific circumstances. Failure to adjust 

allocations may expose us to too much or too little risk depending on market 

conditions throughout the investment period. For instance, rebalances may need 

to occur frequently when approaching the terminal date, enabling slow-down 

exposure toward volatile areas. 

• Consumption Rate: The rate at which people spend money matters most, 

especially if one wants to retire comfortably without running out of cash before 

dying. Also known as optimal consumption rate setting, it involves balancing 

immediate needs for current income production against future withdrawal 

requirements based on maintaining adequate reserves capable of generating 

additional revenue streams required to survive longer life spans. 

 

Considerations for Optimizing Terminal Wealth 

Different considerations come into play when optimizing terminal wealth in managing 

finite time horizon portfolios: 

• Expected Returns and Risks: The choice of assets may be influenced by their 

expected returns and associated risks. Understanding the risk-return profiles for 

various classes of assets can help us design a portfolio that will deliver desired 

levels of return while keeping within tolerable limits on risk. 

• Liquidity Needs: Liquidity becomes more critical as we approach the endpoint. 

Therefore, it is necessary to ensure that our portfolio has enough liquidity so that 

we do not sell them in unfavorable market conditions, thus incurring significant 

losses. 

• Tax Considerations: Taxes impact net returns from investments through 

purchase, holding, and sale phases. It is, therefore, essential to plan taxes 

efficiently and know which accounts or investments are tax-advantaged to 

maximize after-tax returns required towards achieving financial goals set at the 

endpoint. 

• Adjustment for Changing Market Conditions: Financial markets are constantly 

changing, with time being a critical resource constraint. To this effect, any strategy 

with fixed limits must allow for adjustments whenever necessary lest gains made 

should be lost because opportunities were missed but still within the overall risk 

management strategy. 
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All these factors considered by investors who use finite time horizon models will enable 

them to increase their wealth and safeguard their accrued profits towards realizing 

critical points in relation to attaining personal monetary targets. In other words, such an 

approach ensures that our investments are contextually relevant vis-à-vis current market 

realities and future-oriented given individual aspirations. (ReSolve Asset Management, 

n.d.) 

3.2 Interest rate risk and Habit formation 

In this part, I focus on the influence of fluctuating rates on handling investment 

portfolios. In less complicated models, I work with a more practical situation than a 

fixed interest rate. Such a scenario assumes that the interest rate changes over time since 

this happens in reality, where rates can be up or down, affecting investment choices and 

returns significantly. 

To represent these variations in interest rates, I adopt the Vasicek model, a 

mathematical model. This model will enable us to understand and predict how interests 

behave when changing. Thus, our primary objective is to find out how we can best 

manage the portfolio, given these unpredictable fluctuations of rates. 

I shall look into some complex mathematics equations, which describe an increase in an 

individual’s wealth over time when investing in risky assets such as savings accounts or 

government bonds with variable interest rates. The formulas are complex and, therefore, 

do not have direct solutions; hence, I will rely on computer-based methods for 

determining optimal investment strategy. 

To sum up, my concern is about what should be done with my money, considering 

different possibilities brought about by changing the interest rates, hence getting better 

results. This means balancing consumption today and saving for tomorrow while riding 

along waves of these interest rates. 

3.2.1 Interest rate Risk 

This time I take the wealth dynamics to be  
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the salient difference being that the riskless rate is no longer supposed constant, but 

follows a Vasicek process. The parameters σr and r ̄ are constants, and the two Brownian 

motions W and B are correlated, dWdB = ηdt. The objective will be  

 

where as usual u(w) = w1−R/(1 − R). 

A moment’s reflection shows that the solution of the Merton problem now will still scale, 

with the value function taking the form  

 

 

Writing down the HJB equation for this problem, I find (with c = qw, θ = sw)  

 

Now optimising this over q and s gives us  

 

and when substituted back in gives the following second-order ODE for the HJB 

equations: 

 

The HJB ODE derived from the optimization problem does not have a closed-form 

solution, meaning that one cannot simply write down an explicit equation for the solution. 

As a result, numerical methods must be used. The method chosen for the numerical 

solution is based on the concept of policy improvement. This is a technique often used in 
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dynamic programming, which iteratively improves the control policy (in this case, the 

investment/consumption strategy) until an optimal policy is found. To implement the 

numerical method, the continuous problem is discretized. This means that the continuous 

range of possible interest rates is broken up into a finite set of values on a grid. This grid 

is centered around the long-term mean of the interest rate, r∞, and is designed to cover a 

wide range of interest rates by extending multiple standard deviations (specifically seven 

standard deviations in this example) on either side of this mean. When solving differential 

equations, it's important to specify boundary conditions. Here, the boundary conditions 

are set to be reflecting at both ends of the interval defined by the grid. Reflecting boundary 

conditions imply that the solution will not "pass through" these boundaries; this can be 

thought of as the interest rate 'bouncing back' if it reaches a value at the edge of the 

considered range. To test the sensitivity of the numerical solution to the choice of grid 

and ensure that the numerical solution is robust it is important to calculate the efficiency 

at r=0 using different grid widths (standard deviation grids).  (Roger, 2013) 

 

3.2.2 Habit formation 

Habit formation is a crucial idea for understanding personal spending and saving. It has 

been noted that what people consume in the present is highly influenced by what they 

consume in the past. In this chapter, we look at habit formation theory related to portfolio 

choice and consumption-saving decisions to gain insight into how individuals change 

their investment strategies over time while being sensitive to habitual consumption 

patterns. 

 

Under traditional utility maximization models, consumers compare current consumption 

levels with previous periods. The model introduced by Constantinides in this section does 

this by considering an exponentially smoothed moving average of historical consumption 

records when computing an agent’s utility. 

 

The dynamics taken are a simple variant of the usual wealth equation:  
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The agent’s objective in Constantinides’ account is  

 

so that present consumption is in some sense evaluated relative to the exponentially- 

weighted (EW) average c ̄t of past consumption. If I use a CRRA utility u, then what I 

find is that the consumption may never fall below c ̄, so the agent must keep c ̄t /r in the 

bank account to guarantee that level of consumption, and then he invests the remaining 

wealth wt − c ̄t /r . very much as before. (Roger, 2013) 

What I propose to do here is to keep the dynamics of the model, but to take as the objective  

 

 

which rewards the ratio of current consumption to the EW average. This objective permits 

current consumption to fall below the EW average of past consumption at various times, 

again a more realistic feature.  

The problem does not admit a simple closed-form solution, in contrast to the problem 

studied by Constantinides, but there is an obvious scaling, for any α > 0:  

 

 

 

which allows us to write more simply   

 

 

The solution is a function of the scaled variable xt ≡ wt /c ̄t alone, so I must first understand 

how this process evolves. I introduce the notation qt = ct /c ̄t for the scaled consumption 

rate. Some routine calculations with Itô’s formula give us the dynamics of x:  

 

 

 

where φ = θ/c ̄. This dynamic is interesting because, although the dependence on the 

portfolio variable φ is conventional, the dependence on the consumption variable q is not. 

One observation should be made straight away. It is always a feasible strategy to come 
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out of the risky asset completely (φ ≡ 0), and to maintain x at its current level; from the 

last equation, this implies that I could maintain q at the constant value  

 

forever, guaranteeing that the value of the problem would be ρ−1u(q(0)). So the value is 

bounded below by  

 

For very small x , I would expect that the portfolio φ would have to be small, since x has 

to be kept non-negative, and if φ remained bounded away from zero as x ↓ 0, the volatility 

arising from the investment in the risky asset would carry x below zero. This gives us the 

boundary condition  

 

I have reduced the problem to finding  

 

In these terms, the HJB equations become more simply  

 

As usual, optimal values of q and φ are found explicitly from  

 

 

I can transform to the dual equation (via z ≡ v′(x), J(z) = v(x) − xz), but the second-order 

ODE which results:  

 

no longer admits a closed-form solution, so I am forced down a numerical path.  

 

To estimate the optimal consumption and investment policies within this framework, has 

been implemented two distinct numerical methods. 

 

The first method is rooted in policy improvement. This approach assumes that the 

specified lower boundary condition strictly holds at the termini of the chosen numerical 

grid. Policy iteration refines decision-making rules step by step by turning the 
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optimization task into a Markov decision process that stops at boundary points. The 

algorithm converges to an optimal policy over the discretized state space because it is 

iterative. (Roger, 2013) 

 

At the same time, I have also tried another way of dealing with dual Hamilton-Jacobi-

Bellman equations. After replacing s = logz, where z represents a transformation of value 

function, the original HJB equation becomes a differential equation with constant 

coefficients. Next, the Newton-Raphson method was utilized, considering its ability to 

find the roots of the equation for solving this new formulation. I used natural boundary 

conditions and made λ take on different values to robustly obtain our solutions using a 

comparative diagnostic check.  

 

A series of plots were used to present numerical results obtained through these 

approaches, consistent with expected theoretical behaviors. In particular, the wealth-

consumption trajectory initially goes up rapidly but starts leveling off once it reaches 

higher levels of wealth. This pattern reveals the effect produced by habituation and 

confirms that consumption should speed up as people get richer but slow down when they 

become more accustomed to things. 

 

To summarize, the part on numbers shows why we need complicated computational 

techniques if there are no analytic answers for models involving habits. Numerical 

findings back what theory predicted, proving the effectiveness of numerical methods used 

and showing relevant portfolio selection and savings decisions under habit formation.  

 

3.3 Incorporating Stochastic Volatility Models 

Financial markets thrive on unpredictability. It is an indicator of price changes in 

unceasing assets. Conventional decision-making models in investments rely on constant 

volatility; this assumption does not consider the disorderly nature of trading floors. 

However, it only works when the market is stable and fragile and frequently collapses 

under real-world pressure. 

Sophisticated financial analysis deals with uncertainty directly. Stochastic volatility 

models are the most significant breakthroughs because they do not accommodate 

randomness or variability. Instead, they assume them, model them, and wrap their every 
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part around these forces instead of their constant-volatility counterparts, which work best 

under stable market conditions alone. 

We need to rethink our portfolio optimization, given stochastic volatility. Now, the 

decision variables – points where an investor can act on his strategy – move against a 

backdrop that keeps shifting. Asset allocations were optimized for static environments, 

so they should be revised considering changing risk profiles brought about by 

stochastically volatile settings. 

What this chapter does is link practical mechanics of portfolio management with an 

advanced sense of volatility brought by these random elements into our models, which 

enables us to react faster, sharpening investment strategies vis-a-vis current situations and 

then opening up the next chapter more deeply analyzing how traditional models should 

adjust for capturing proper awareness about dynamicity induced into optimization 

landscape through stochastic volatilities affecting markets awareness. 

3.3.1 Literature Review 

The financial markets have been transformed by using models with stochastic volatility, 

which has changed my thinking about them. My thoughts have been influenced by 

important papers that were practical guides for the industry and paved new directions for 

research in academia. In this paper, I will discuss some implications of using these models 

in finance theory and practice while adding to ongoing discussions on their strengths and 

weaknesses. 

 

Stochastic volatility models took a significant leap forward with Heston’s model (1993). 

It was an extension from Black-Scholes, which introduced stochasticity into the process 

of pricing options – a square-root diffusion process capable of capturing clusteredness 

and smile effect of volatilities observed in real-world markets (Black & Scholes, 1973). 

The breakthrough here is that Heston made it possible to analytically price European 

options, something rarely done for exotic derivatives whose payoffs depend on multiple 

variables. (Heston, 1993) 

 

Hull and White (1987) achieved another similar level when they proposed an 

autoregressive structure for modeling volatilities within financial instruments; moreover, 

they devised a calibration procedure against market data, making it more realistic. Hull-

White served as an inspiration point where various researchers could either modify them 
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further or even extend beyond what has been done so far toward describing how one deals 

with uncertainty under different situations surrounding globalizing economies driven 

mainly by technological changes. (HULL & WHITE, 1987) 

 

These new contributions resulted in many academic papers that tried to examine the 

relations between the prices of assets and their volatility in a way that had not been done 

before. Such works considered different types of stochastic volatility, ranging from mean-

reverting models to those allowing for jumps or levy processes, among others, to represent 

more faithfully what goes on in markets. 

 

However, this was relevant to abstract research and had practical implications for finance-

oriented businesses like banks, where risk management systems were greatly enhanced 

by these methods introduced through such models. For example, they became handy tools 

for derivative pricing, portfolio optimization, or strategic financial planning. 

 

With time, other scholars continued working on these ideas, making them better by 

mixing them with empirical results and taking into consideration various computational 

advances achieved throughout history, which eventually led to models with more 

sophistication, such as Bates’ stochastic volatility ones that incorporate jumps or 

Barndorff-Nielsen and Shephard’s time-varying volatilities among others thus expanding 

our understanding about this subject matter. 

 

The more people learned the more they could do in different situations. At one point, the 

literature started incorporating trader sentiment into investor behavior regulatory effect 

on asset prices, thus enabling a wide range of model options that could be used by traders, 

analysts, and portfolio managers to know what is happening in the market 

comprehensively. This continuous exploration of different stochastic volatility models 

shows that these instruments are still highly applicable in contemporary finance because 

they connect theoretical finance with actual market conditions. 

 

3.3.2 Theorethical Framework 

Stochastic volatility models are important in financial mathematics because they help 

describe complex market movements. These models are based on stochastic differential 
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equations (SDEs)—strong mathematical tools that specify how both asset prices and their 

volatilities change over time. 

 

The main idea behind stochastic volatility is that it treats volatility as a dynamic random 

process rather than a fixed parameter. This stands in contrast to the constant volatility 

assumption made in the Black-Scholes model, which is foundational but not very realistic 

given what we see happening in real-world markets. 

 

Usually, SDEs for such models involve several linked equations. The first one of these 

describes how prices move and includes a variable factor for volatility instead of 

assuming it to be constant like in simpler setups. Another SDE then governs the path that 

volatility follows, often with mean-reverting features and other stochastic elements 

designed to capture empirical regularities like sudden shifts or different sensitivities to 

events depending on where we’re coming from vis-à-vis current levels.To understand the 

derivation of these SDEs, I begin with the foundational model for asset price St, typically 

expressed as: 

𝑑𝑆𝑡  = 𝜇𝑆𝑡𝑑𝑡 + √vt𝑆𝑡𝑑𝑊𝑡
𝑆 

 

where μ is the drift coefficient, vt  represents the stochastic volatility process, and dWt
S is 

a Wiener process representing the random market movements influencing the asset price. 

The stochastic volatility vt itself is modeled by an equation such as: 

 

 𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜎√𝑣𝑡𝑑𝑊𝑡
𝑣 

 

where κ is the rate of mean reversion, θ is the long-term mean volatility,σ is the volatility 

of the volatility, and dWt
v is another Wiener process that may be correlated with dWt

S. 

These equations together form a system that reflects the intertwined evolution of asset 

prices and volatility. The correlation between dWt
S and dWt

v captures the leverage effect, 

a key market observation that asset prices and volatility are negatively correlated. 

A quintessential manifestation of stochastic volatility in financial markets is the volatility 

smile—an empirical observation that the implied volatility of options is a function of 

strike price and expiration. Traditional models, which assume constant volatility, predict 

a flat structure for implied volatility across strikes. The smile effect, however, reveals 
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higher implied volatilities for deep in-the-money and out-of-the-money options. 

Stochastic volatility models account for this curvature and offer a theoretical foundation 

for understanding and quantifying the smile. 

As I contemplate the inclusion of stochastic volatility into portfolio optimization, the 

volatility smile serves as a crucial point. It reminds us that the assumptions governing our 

choice of models have profound implications on the strategies I devise. In the following 

sections, I will integrate these stochastic volatility constructs into portfolio optimization 

frameworks, examining their implications for asset allocation decisions and overall 

portfolio management. (Samuelson, 1969) 

 

3.3.3 Model Implementation 

Integrating stochastic volatility into the Merton portfolio optimization framework is a 

complex yet insightful endeavor. It requires an expansion of the traditional Hamilton-

Jacobi-Bellman (HJB) equations to factor in the variable nature of market volatility. This 

extension enables the modeling of an investor's wealth where asset prices and volatility 

evolve according to stochastic processes. 

 

The starting point is to redefine the investor's wealth dynamics, considering not only a 

risk-free asset and a risky asset but also the uncertain movements of the volatility itself. 

Under this model, the investor’s wealth Wt at any given time t is a function of the chosen 

rate of consumption ct, the portion of wealth πt invested in the risky asset, and a stochastic 

risk-free interest rate rt: 

 

𝑑𝑊𝑡 = (𝑟𝑡𝑊𝑡 + 𝜋𝑡(𝜇𝑡 − 𝑟𝑡) − 𝑐𝑡)𝑑𝑡 + 𝜋𝑡𝜎𝑡𝑑𝑍𝑡  

 

where μt and σt are the expected return and stochastic volatility of the risky asset, 

respectively, and dZt denotes the Brownian motion. 

To account for these additional layers of randomness, the HJB equation—which describes 

the optimal control of the portfolio—must be adjusted. This equation now encapsulates 

the maximization of the investor's expected utility derived from both consumption and 

the terminal wealth, with the added complexity of a volatile market environment: 
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In this equation, V is the value function representing the maximized expected utility, Vrt 

and Vrtrt are its first and second derivatives with respect to the stochastic rate rt, f(rt) and 

g(rt) represent the dynamics of the stochastic rate, and λ(ct,Wt) is the utility function of 

consumption. 

To empirically implement and solve the extended HJB equation, simulation techniques 

such as Monte Carlo methods or finite difference schemes are often employed. These 

simulations explore the efficacy of portfolio optimization under both constant and 

stochastic volatility scenarios, contrasting the outcomes to highlight the influence of 

volatility's randomness on investment decisions. 

Through such a comparative analysis, one can evaluate the alterations in optimal asset 

allocation and consumption strategies necessitated by stochastic volatility. The findings 

typically reveal significant differences in risk-return profiles between portfolios 

optimized under constant versus stochastic volatility conditions. These insights provide 

an empirical testament to the practical significance of accommodating stochastic 

volatility in the pursuit of portfolio optimization, enhancing our understanding of risk 

management and strategic financial planning. 

  

4. Practical Application and Case Study 

Bearing this in mind, portfolio optimization — as discussed in this paper — is a powerful 

mathematical technique that can be used to construct effective investment portfolios. 

Optimization models are used to determine an ideal return for a given level of risk or the 

minimum risk for a desired return by evaluating the risk and return attributes of different 

assets. 

 

However, as many have said, ‘What good is it if it does not work?’ The following section 

looks at how we can put these ideas into practice when dealing with real-world 
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investments. I intend to look at case studies that will help us understand better how 

portfolio optimization translates from theory into practice. 

 

During these instances, I will see how much difference optimization methods can make, 

showing what investors could achieve even with dissimilar aims and risk tolerance levels. 

I will also examine various optimization models designed around diversified investing 

scenarios comprising stocks, bonds –– and derivatives. These types of funds consider 

different classes of assets, thus widening my understanding of the flexibility of portfolio 

optimization in reality. 

 

This part seeks to fill in some gaps between theories and their applications. By studying 

examples like this one while applying them to different models, I can gain insights into 

how people can use Portfolio Optimization to meet their financial objectives. 

4.1 Real Case Analysis of Portfolio Optimization 

Case Study 1: Diversification and Risk Reduction (Connecting to Merton's Problem) 

1. Investor Situation: An entrepreneur named Michael recently sold his startup for a 

significant sum (say, $5 million). He seeks to invest the proceeds to achieve long-

term financial security but is concerned about the risk of a single investment 

downturn. 

2. Problem: Merton's Problem highlights the risk associated with concentrating capital 

in a single asset. If the startup's success was heavily reliant on a specific market or 

technology, Michael's entire investment could be vulnerable to unforeseen 

circumstances. 

3. Optimization Approach: A financial advisor recommends portfolio optimization 

with a focus on diversification. This involves allocating Michael's wealth across 

various asset classes with low correlations, such as: 

o Stocks in different sectors and geographic regions 

o Bonds with varying maturities and credit risks 

o Potentially alternative investments like real estate or commodities 
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4. Results: By implementing a diversified portfolio, Michael achieves several benefits 

that align with Merton's Problem's focus on managing risk: 

o Reduced overall portfolio risk: Diversification spreads the risk across 

different asset classes. Even if a specific sector experiences a downturn, 

losses would be offset by the stability of other asset classes, similar to the 

concept of optimal investment decisions in Merton's Problem. 

o Potentially increased returns: By including a mix of asset classes with 

varying risk-return profiles, the portfolio could potentially achieve higher 

returns compared to a single, concentrated investment. 

Case Study 2: Risk Management for Retirement Planning  

Investor Situation: Sarah, approaching retirement, has accumulated a significant nest 

egg (say, $1 million) in her retirement portfolio. She desires a steady income stream 

throughout retirement but worries about market volatility impacting her savings. 

• Problem: Merton's Problem emphasizes the importance of considering risk 

tolerance and future liabilities when making investment decisions. Sarah's 

primary concern is preserving capital to ensure a comfortable retirement, 

highlighting the need for risk management strategies. 

• Optimization Approach: A portfolio optimization strategy is implemented with 

a focus on risk management. This might involve: 

o Allocating a significant portion of the portfolio to low-risk assets like 

high-quality bonds and government securities. 

o Including a smaller portion of growth-oriented assets like stocks, but with 

a focus on lower volatility options (e.g., dividend-paying stocks). 

o Utilizing a dynamic asset allocation strategy that adjusts the portfolio 

composition based on market conditions, potentially reducing exposure to 

riskier assets during market downturns. 

• Results: By employing a risk-managed portfolio, Sarah achieves several benefits 

that align with Merton's Problem's focus on optimal investment decisions 

considering risk: 

o Reduced portfolio volatility: The allocation prioritizes low-risk assets, 

ensuring a more stable income stream throughout retirement. 
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o Potential for growth: The inclusion of some growth-oriented assets offers 

the possibility of long-term capital appreciation to maintain purchasing 

power in the face of inflation. 

o Alignment with risk tolerance: The portfolio prioritizes capital 

preservation, aligning with Sarah's risk tolerance as she approaches 

retirement. 

Case Study 3: Targeted Risk Management with Options  

• Investor Situation: David, a young professional with a high-risk tolerance, has a 

significant portion of his portfolio invested in a concentrated portfolio of 

technology stocks. While he enjoys the growth potential, he wants to hedge 

against a major market downturn in the technology sector. 

• Problem: Merton's Problem highlights the importance of considering downside 

risk. While David enjoys the potential for high returns from his technology stocks, 

a major sector downturn could significantly impact his portfolio. 

• Optimization Approach: A portfolio optimization strategy is implemented with 

targeted risk management utilizing options. This might involve: 

o Maintaining the core allocation to technology stocks for growth potential. 

o Purchasing put options on a technology sector ETF (Exchange Traded 

Fund). Put options provide downside protection by allowing David to sell 

his holdings at a predetermined price (strike price) even if the market price 

falls. 

• Results: By incorporating options, David achieves several benefits: 

o Preserves capital in a downturn: If the technology sector experiences a 

significant decline, the put options will allow David to sell his holdings at 

the strike price, limiting his losses. 

o Maintains growth potential: He retains the upside potential of his 

technology stocks if the market performs well. 

o Manages risk within his tolerance: This strategy allows David to maintain 

his aggressive investment style while mitigating potential downside risk, 

aligning with the risk management concepts in Merton's Problem. 

These case studies showcase how portfolio optimization, building upon the theoretical 

foundation of Merton's Problem, translates into practical applications. By considering risk 
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tolerance and utilizing diversification or risk management strategies, investors can create 

portfolios that optimize returns within their acceptable level of risk. 

4.2 Application of models in diversified investment scenarios: 

stocks, bonds, and derivatives 

Portfolio optimization builds upon the theoretical foundation established by Merton's 

Problem. While Merton's Problem focuses on optimal investment decisions for a single 

decision-maker, portfolio optimization extends these concepts to create efficient 

portfolios for investors with diverse goals and risk tolerances. This section explores how 

different models handle various asset classes (stocks, bonds, and potentially derivatives) 

within a portfolio optimization framework, considering the importance of risk 

management as highlighted by Merton's Problem. 

1. Mean-Variance Optimization (MVO): 

MVO remains a valuable tool for portfolio optimization, especially for basic asset 

allocation decisions involving traditional assets. Let's revisit its functionalities: 

• Strengths: 

o Focuses on Risk-Return Trade-off: MVO explicitly considers both 

expected return and risk (volatility) of individual assets, similar to how 

Merton's Problem emphasizes balancing potential gains with downside 

risk. MVO's framework allows investors to quantify these factors and 

make informed decisions about their portfolio composition, similar to the 

calculations involved in Merton's Problem to determine the optimal 

investment strategy. 

o Provides Optimal Allocation for Risk Tolerance: By analyzing risk and 

return data, MVO helps determine the portfolio allocation that achieves 

the desired level of return within an investor's acceptable risk tolerance. 

This directly aligns with the core objective of Merton's Problem - making 

optimal investment decisions considering both potential returns and the 

level of risk an investor is willing to take. MVO helps investors find the 

efficient frontier, a concept similar to the optimal investment strategy 

identified in Merton's Problem. 
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• Limitations: 

o Relies on historical data: MVO assumes historical returns and volatilities 

are reliable predictors of future performance, which might not always be 

the case. 

o Ignores transaction costs: The model doesn't account for transaction 

costs associated with buying and selling assets, which can impact portfolio 

performance. 

• Application in Diversified Scenarios: 

o MVO is a good starting point for optimizing portfolios with traditional 

assets like stocks and bonds, which are often considered in Merton's 

Problem framework. These asset classes are well-suited for MVO's 

historical data analysis, and the risk-return trade-off directly addresses the 

decision-making process outlined in Merton's Problem. 

o By focusing on risk management through the risk-return trade-off, MVO 

helps investors construct portfolios that align with their risk tolerance and 

potential investment goals, similar to the decision-making process in 

Merton's Problem. Investors can utilize MVO to achieve a level of 

diversification that manages risk and optimizes return within their 

acceptable risk tolerance, similar to the optimal investment strategy 

identified in Merton's Problem. 

2. Multi-Factor Models (Example: GARCH): 

While MVO provides a solid foundation, more sophisticated models can incorporate 

additional factors for a more nuanced approach, particularly when considering 

derivatives. Here's an example: 

• GARCH Model: 

o The GARCH model is an example of a multi-factor model that addresses 

a limitation of MVO. 

o It accounts for volatility clustering, a phenomenon where periods of high 

or low volatility tend to persist. This can be particularly relevant for assets 

with higher volatility swings, like some derivative instruments. 

• Strengths: 
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o Addresses volatility clustering: By capturing volatility dynamics, GARCH 

provides a more realistic picture of risk compared to MVO's reliance on 

historical averages. 

o Can incorporate additional factors: Multi-factor models can go beyond just 

return and volatility to consider factors like market liquidity, credit risk 

(for bonds), or industry trends, potentially enhancing portfolio 

optimization for complex scenarios. 

• Limitations: 

o Increased complexity: Multi-factor models involve more complex 

calculations and require a deeper understanding of financial theory. 

o Data requirements: These models often require more data points for 

accurate estimation, which can be challenging with limited historical data, 

particularly for newer or more complex asset classes. 

• Application in Diversified Scenarios: 

o GARCH is particularly useful for portfolios with assets prone to volatile 

swings, like some derivative instruments. This aligns with Merton's 

Problem's focus on managing risk, as derivatives can introduce additional 

risk factors beyond the scope of traditional asset classes considered in 

Merton's Problem. GARCH can help investors using derivatives to 

quantify and manage this additional risk. 

o Multi-factor models, in general, are suitable for investors seeking a more 

sophisticated approach that considers additional risk factors beyond just 

historical averages, especially when dealing with diversified portfolios 

that may include derivatives, which Merton's Problem might not explicitly 

consider. These models can provide a more comprehensive analysis of 

risk, aligning with the spirit of Merton's Problem, which emphasizes 

making informed investment decisions considering all relevant factors. 

Challenges and Opportunities of Derivatives: 

Derivatives introduce unique challenges and opportunities in portfolio optimization: 

• Challenges: 
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o Derivatives can be complex instruments with leverage, making risk 

assessment more intricate. GARCH-like models can be helpful in this 

regard. 

o Many derivatives are relatively new, with limited historical data for model 

estimation. This can be a limitation for multi-factor models that rely 

heavily on historical data. 

• Opportunities: 

o Derivatives can be used for risk management strategies like hedging or 

portfolio protection. For example, options contracts can be used to hedge 

against downside risk in specific asset classes. 

o Options can provide targeted exposure to specific market movements for 

potential return enhancement. However, careful consideration of the risks 

involved is crucial. 

Model Selection: 

Model selection ultimately depends on the specific needs of the investor and the 

complexity of the portfolio. 

• Basic Allocation with Traditional Assets: MVO remains a valuable tool for 

basic portfolio optimization with traditional asset classes like stocks and bonds. 

• Complex Scenarios with Derivatives: Multi-factor models like GARCH can be 

beneficial for portfolios with more complex asset classes like derivatives, where 

volatility clustering and additional risk factors play a significant role. 

By understanding the strengths and limitations of different models, investors and financial 

advisors can choose the most appropriate tool for optimizing diversified investment 

scenarios. 
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5. Conclusion 
 
This thesis has explored the multifaceted realm of portfolio optimization, delving into 

both its theoretical underpinnings and practical applications. Beginning with the 

foundational work of Harry Markowitz and extending through the dynamic models 

introduced by Robert C. Merton, the study has illuminated the evolution and 

sophistication of investment strategies over the past decades. 

Merton’s problem, with its focus on optimizing a portfolio in a continuous-time setting 

under conditions of uncertainty, has been a central theme. This work has examined 

various solution approaches to Merton’s problem, including the value function approach, 

duality, and dynamic programming. Each methodology has provided unique insights into 

the complex interplay between risk and return, and how investors can navigate this 

relationship to achieve optimal outcomes. 

The thesis also extended the Merton model to incorporate additional dimensions such as 

finite and infinite time horizons, interest rate risk, habit formation, and stochastic 

volatility. These extensions have demonstrated the model's versatility and its ability to 

adapt to different investment scenarios and market conditions, providing a more 

comprehensive framework for portfolio optimization. 

In the practical domain, real-world case studies have been instrumental in bridging theory 

and practice. The analysis of diversified portfolios, risk management strategies, and the 

application of various optimization models has shown how theoretical concepts can be 

effectively translated into actionable investment strategies. By examining scenarios 

involving stocks, bonds, and derivatives, the thesis has highlighted the importance of 

diversification and tailored risk management in achieving robust and resilient portfolios. 

Key takeaways from this study include the critical role of diversification in mitigating 

risk, the utility of dynamic asset allocation in responding to changing market conditions, 

and the benefits of incorporating advanced models such as GARCH to address volatility 

clustering and other market anomalies. These insights underscore the importance of a 

nuanced and flexible approach to portfolio management, one that is responsive to both 

the investor's goals and the prevailing market environment. 

In conclusion, the exploration of portfolio optimization in this thesis has underscored its 

fundamental importance in modern finance. By providing a rigorous analysis of both 

theoretical models and practical applications, this work aims to equip investors and 

financial professionals with the tools and knowledge necessary to enhance their 
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investment strategies. As financial markets continue to evolve, the principles and 

techniques discussed herein will remain vital in guiding informed and effective decision-

making, ensuring that portfolios are both optimized for return and resilient against risk. 
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