
Department of Business and Management
Bachelor’s Degree in Management and Computer Science

Course of Algorithms

Machine Learning Algorithms: Focus on Tree Based and

Gradient Boosting Algorithms to Predict NYSE

Investments

Supervisor:
Prof. Irene Finocchi

Candidate:
Demetrio Francesco Cardile

ID No. 267281

Academic Year 2023/2024

Machine Learning Algorithms: Focus on Tree Based and
Gradient Boosting Algorithms to Predict NYSE

Investments

Demetrio Francesco Cardile

Contents

1 Abstract 3

2 Introduction to Artificial Intelligence and Machine Learning 4
2.1 Artificial Intelligence . 4
2.2 Machine Learning . 5
2.3 Deep Learning . 8

3 Financial Applications of Artificial Intelligence and Machine Learning 10
3.1 Machine Learning for Stock Market Prediction 10
3.2 Machine Learning for Fraud Detection . 11
3.3 Machine Learning for Credit Scoring . 12

4 Predictive Modeling on NYSE Investments 13
4.1 Introduction . 13
4.2 Overview of the Dataset . 13
4.3 Metrics of interest . 14

5 Data Preprocessing 17
5.1 Inspecting for duplicates . 17
5.2 Inspecting for missing values . 17
5.3 Removing outliers . 17
5.4 Removing variables . 18

1

5.5 Handling imbalanced data . 18
5.6 Transforming given variables into factor type 20
5.7 Scaling and standardization of variables . 20

6 Exploratory Data Analysis (EDA) 21
6.1 Investigating distribution of numerical variables 21
6.2 price_buy VS price_sell . 25
6.3 volatility_buy VS volatility_sell . 26
6.4 investment VS nominal_return . 27
6.5 ratios VS nominal_return . 27
6.6 ratios VS investment . 34
6.7 Correlation matrix . 35

7 Model Implementation 36
7.1 Splitting the dataset: Train set / Test set . 36
7.2 Normalizing data with Min - Max Scaling 37
7.3 Logistic Regression . 37
7.4 K-Nearest Neighbors (KNN) . 40
7.5 Tree Based Algorithms . 42
7.6 Classification And Regression Trees (CART) 43
7.7 Ensemble Learning . 46
7.8 Random Forest . 48
7.9 Gradient Boosting Algorithms . 50
7.10 XGBoost . 52
7.11 LightGBM . 55

8 Conclusion 59

References 61

2

1 Abstract

The research explores machine learning applications in financial contexts with the latest
trends and challenges discussed. The paper goes beyond traditional descriptions given in
current research on the subject, and puts these methods into practice to estimate the prof-
itability of shares investments.
A comprehensive analysis is done using a dataset consisting of more than 400,000 random
stock transactions that took place at NYSE over a period spanning ten years. By closely
examining them in order to determine their accuracy rates among others like Recall or even
ROC-AUC scores, it was found that just simple predictive models, say logistic regressions
or decision trees, actually worked quite well.
More advanced methods of classification seemed to give better results. Among these are Tree
Based algorithms (notably Gradient Boosting Algorithms), which always turn out far better
predictions when compared to their competitors. This thesis provides an insightful docu-
ment about the application of machine learning in finance and also indicates how advanced
algorithms can contribute to better investment decisions.

3

2 Introduction to Artificial Intelligence and Machine
Learning

Within the rapidly shifting landscape of technology, it is without a doubt that Artificial
Intelligence (AI), Machine Learning (ML) as well as Deep Learning (DL) seem to be leading
the pack since they come with highly transformative power and are very promising in terms
of what can be achieved through them. Spanning through different sectors such as finance or
health care among others; computer science has seen these three being integrated leading to
change beyond our imagination for it promises to redefine our engagement and application
of technology.
In the following comprehensive exploration, we aim to delve into the definitions, distinctions,
and frontiers of AI, ML, and Deep Learning. By elucidating their fundamental concepts and
highlighting the latest advancements, we aim to provide a deeper understanding of their role
in shaping the future of computational intelligence. Moreover, we are going to elaborate on
the formal definitions not only of Artificial Intelligence, but even of Machine Learning, and
Deep Learning, emphasizing the features that prevent the three above from being regarded
as a single concept.

2.1 Artificial Intelligence

Providing a definition of Artificial Intelligent is not trivial at all. Numerous experts in various
fields have tried to come up with a broad but comprehensive definition, but failing in their
intent.
As pointed out by Kok et al. (2009), one dictionary alone (namely The New International
Webster’s Comprehensive Dictionary of the English Language) provides four definitions of
Artificial Intelligence. Among these definitions, AI is presented as an area of study in the field
of computer science, [. . .] concerned with the development of computers able to engage in
human-like thought processes such as learning, reasoning, and self-correction; or, similarly, as
the extension of human intelligence though the use of computers. However, albeit accurate,
these definitions still are incomplete.
As mentioned upon, defining Artificial Intelligence tackles a considerable challenge, encom-
passing a quite wide array of interpretations and applications. The integration of AI into our
society really needs a comprehensive understanding of its essence, development trajectory,
and current status. Various definitions abound in the discourse, and they all reflect the
complexity and dynamism inherent in AI. At its core, AI can be undesrtood as an umbrella-
term encompassing algorithms which are designed to simulate human intelligence. However,
according to Sheikh, Prins, and Schrijvers (2023), equating AI solely with algorithms is a
failure in the attempt to capture its essence, given the ubiquitous nature of algorithms in
diverse fields predating AI. An overly restrictive definition, constricting AI to the imitation
of human intelligence, discounts the progress achieved in current applications, portraying AI
as an elusive future prospect rather than a present reality.

4

The last three authors discussed also give dissimilar views, the last one describing AI as the
technology that makes machines behave just like human beings in terms of complicated things
carried out by humans. However, they fail in making it explicit which specific capacities are
involved; the result is that such definitions seem to be repeating themselves without aiding
in any better understanding. Several expressions go deeper into the very operations involved
in AI – such as analysis of the surroundings, seeking of objectives, and acting on one’s own
accord. Nonetheless, these statements often sound vague as they are open to interpretation,
and do not embrace all phenomena classified as AI. The problem of defining AI arises from
its resemblance with human intelligence, which remains partly understood despite immense
studies like those from psychology to neuroscience. Thus human intelligence and artificial
intelligence are now seen to shape each other mutually. Examples from the past, like the
rise of chess machines, show how our concept of what is intelligent has changed over time as
well as the replication of such an artificial intelligence.
Moravec paradox shows that AI and human beings are not the same in many ways because
there are tasks which are very simple to human that machines cannot execute and vice
versa. This transformation from time to time in the perception of AI underscores the shifting
borders of intelligence when computational capabilities are enhanced. Some have resorted to
the introduction of new terms like prediction machines or oracles since these more accurately
describe the nature of AI than anything else we might come up with. In spite of this
conceptual challenge, it still seems as if AI remains so entrenched that people resist finding
better terms for it. The rise of machine learning in the near future and recent strides in deep
learning, whose progress we will detail later in this chapter, have focused attention on AI and
prompted advances in areas such as facial recognition systems, game playing among others.
The current trends in ML and DL reveal their modern application of pattern identification
though not without constraints; this leads us to its different versions.
Due to its multifaceted character as well as a constantly changing landscape, there is need
for open definitions that accommodate various technologies alongside future evolution of the
same. In order to be specific yet flexible enough not lock out other possibilities at some point
in future, AI HLEG proposes a definition that best describes AI systems which demonstrates
intelligent behavior and functions autonomously when they want to achieve their goals. We
must also understand that today’s artificial intelligence applications fall under the heading
of weak or narrow AI, focusing on specific problems rather than trying to replicate all human
mental processes. Pedro Domingos rightly says that AI is all around us hence there is need
for realistic goals concerning intelligence.
On the other hand, the complexity of defining Artificial Intelligence is analogous to the
development of the field itself. To understand the current role of AI in contemporary society,
it is important that we consider some aspects drawn from historical developments which will
also help us appreciate how far this technology has come since its inception.

2.2 Machine Learning

What talking about Artificial Intelligence, most of the times people refer to Machine Learn-
ing, since the two are usually regarded as the same concept. Actually, it turns out that

5

Machine Learning is a subset of Artificial Intelligence that focuses on developing algorithms
and models enabling computers to learn from data without need of explicit programming.
In fact, Machine Learning algorithms autonomously learn patterns and relationships from
large datasets, thereby improving their performance over time through experience.
Hence, the key distinction between AI and ML lies in their objectives. More specifically,
Artificial Intelligence aims to replicate human intelligence when achieving various tasks;
instead, Machine Learning is about algorithms’ ability to learn from data, adjust themselves
for errors and make predictions based on such learning process. In simpler terms, ML deals
with the learning aspect, employing statistical techniques to enable computers to improve
their performance on specific tasks through experience.
Supervised and Unsupervised Machine Learning serve as basic principles underlying AI with
distinct ways of deriving insights from data. In Supervised Learning, the algorithms learn
from labeled datasets where an input has its corresponding output label. Consequently, an
algorithm that follows this approach manages to understand the relationship between input
features and output labels, making it easier for us to work on tasks like classification and
regression. Unlike this approach, Unsupervised Learning deals with untagged information
in order to discover some concealed structures or patterns which are not obvious. This often
involves grouping together similar data points or reducing dataset’s dimensionality so as to
expose underlying relationships.
These two paradigms serve as the foundations for machine learning applications, thereby
leading to innovative measures taken towards predictive modelling as well as data analy-
sis and pattern recognition in various fields. A closer examination into the methodologies
and applications of supervised as well as unsupervised learning in artificial intelligence will
provide for a better understanding of these concepts.

2.2.1 Supervised Machine Learning

Supervised Machine Learning is a branch of artificial intelligence wherein algorithms are
trained on labeled datasets. According to this model, every input has its own corresponding
output tag. The core aim of supervised learning is that the algorithm should be able to
learn relationships between features of input and those of output using labeled training
data. It allows predictions or classifications in an unknown, fresh data by generalizing from
known patterns within data through analysis of such patterns inside it. Supervised learning
falls into two major categories: classification and regression. In classification problems, the
output is made of discrete classes since it takes on the form of category labels. Using input
data as well as patterns noted from labeled training information, such algorithms can make
preassigned classes. Regression tasks are characterized by continuous output values which
help in predicting numerical data from a set of features. Some of the algorithms utilized in
supervised learning include k-NNs (k-Nearest Neighbor), decision trees and support vector
machines used for classification tasks. In addition, they are used to model other spheres like
business (marketing), image recognition, etc. Examples of classification algorithms include:

• Logistic Regression

6

• Support Vector Machines (SVM)

• Decision Trees and Random Forests

• k-Nearest Neighbors (k-NN)

• Naive Bayes Classifier

• Neural Networks (e.g., Multilayer Perceptrons)

2.2.2 Unsupervised Machine Learning

On the other hand, Unsupervised Machine Learning constitutes a branch of artificial in-
telligence focused on analyzing unlabeled datasets. In comparison to supervised learning,
unsupervised learning includes datasets that do not have pre-determined output labels or
target variables. The main aim of unsupervised learning is for the algorithm to detect hidden
patterns, structures or relationships among data points without supervision. One of them is
clustering, which leads toward dimensionality reduction technique employed within this con-
text to compress it. Clustering algorithms work by grouping together similar objects based
on how close they are while in feature space, making an algorithm split its input data into
some distinct groups or parts. They include k-means, hierarchical clustering (HC), density-
based spatial clustering applications with noise (DBSCAN) among others. When it comes
to dimensionality reduction techniques, they aim at diminishing input feature size through
retaining critical pieces of information intrinsic within dataset. Such methods are useful for
visualizing high-dimensional data, eliminating noise from it and enhancing future prediction
models efficiency within different areas. Examples of dimensionality reduction techniques are
principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE),
linear discriminant analysis (LDA), autoencoders.
Unsupervised learning tasks can be broadly categorized into two main types: Clustering and
Dimensionality Reduction.
Clustering algorithms group similar data points together based on their inherent similar-
ities or distances in the feature space. The algorithm partitions the data into clusters, with
data points within the same cluster being more similar to each other than to those in other
clusters. Examples of clustering algorithms include:

• K-Means Clustering

• Hierarchical Clustering (Agglomerative and Divisive)

• DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

• Gaussian Mixture Models (GMM)

• Self-Organizing Maps (SOM)

7

Dimensionality reduction techniques aim to reduce the number of input features while
preserving the essential information present in the data. This helps in visualizing high-
dimensional data, removing noise, and improving the efficiency of subsequent machine learn-
ing algorithms. Examples of dimensionality reduction techniques include:

• Principal Component Analysis (PCA)

• t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Linear Discriminant Analysis (LDA)

• Independent Component Analysis (ICA)

• Autoencoders

These supervised and unsupervised learning algorithms form the backbone of machine learn-
ing applications, enabling computers to learn from data and extract valuable insights for
decision-making, pattern recognition, and predictive modeling in various domains.

2.3 Deep Learning

When it comes to machine learning (ML), almost everyone uses what is known as deep-
learning since they think they both represent the same thing, as if artificial inteligence and
deep learning are under the same umbrella. This is wrong. What actually happens is that
deep-learning belongs to a sub-category known as ML, and it involves utilizing multi-layered
neural nets referred to as deep neural networks whose performance emulates the intricate
thought processes that humans exhibit. Majority of the artificial intelligence (AI) applica-
tions we interact with in our day to day lives today are driven by this approach. A deep
neural network (DNN) is one that has three layers or more than three although many im-
plementations have more than three layers. In order to do pattern recognition, identify
relationships and understand certain occurrences, these networks undergo extensive train-
ing on large datasets which enable them to predict things more accurately than humans
do. Unlike traditional machine learning techniques where one has to preprocess the data
before applying an algorithm, deep-learning has made it easier for algorithms to consume
raw unstructured data such as texts and images because it automates feature extraction and
also reduces reliance on experts during the process. Through methods like backward pass
or gradient descent using backpropagation, our solutions keep adjusting ourselves till we ap-
proach perfection i.e., until either all mislabeled instances become correct ones. Otherwise
at this moment let us say that these instances are too far apart from being right predictions
compared to their true labels from which extent they have moved away due noise present
there etc.; henceforth we are working on moving closer towards global minimum/optimum
solution when working within some search space set by its constraints. As an example, hu-
mans brains have inspired other artificial neural networks models since their basic operating
principles mimic biological systems. Forward movement occurs whenever signals pass from

8

one layer of units to another within the hidden layer whose output becomes input at subse-
quent layers beginning at input levels, and forward ends at an output node where prediction
may be done during backpropagation; it consists mainly in error estimation that adjusts
weights & biases in whole network structure to learn something new during training process.
At the bottom, one arrives at various network types such as convolutional neural networks
(CNN) or recurrent ones (RNN), developed for specific tasks like object recognition. Convo-
lutional neural network (CNN) and recurrent neural network (RNN) are types of deep neural
networks employed in solving computer vision problems among others. Deep-learning appli-
cations cut across sectors like law enforcement, financial services, customer service industry,
health care sector etc., whereby they increase automation levels; improve analytical abilities
while boosting effectiveness through different industries thus reshaping our daily technology
interactions

9

3 Financial Applications of Artificial Intelligence and
Machine Learning

As reported by Nazareth and Reddy (2023), the banking and financial sectors derive sub-
stantial benefits from AI. As a result, AI makes it possible for banks to identify fraud in
transactions and enables managers to evaluate the credit rating, ranking, and providing of
loans. The assistance of chats to customers through robo-advisers is carried out while at
the same time asset allocation platforms provide risk-return evaluations for investors; au-
tomated insurance services are offered by machines that also cater to policyholders among
other applications found in finance industry. Machine learning has become an indispensable
tool in data analysis due to its ability to process large datasets plus its effectiveness in han-
dling non-linearities within data sets. Recent years have seen a surge in research leveraging
computational intelligence in financial contexts as discussed by Ozbayoglu, Gudelek, and
Sezer (2020) . This paper consolidates and assesses emerging trends in numerical folkways
in six fiscal areas: stock exchanges, holdings operation, forex markets, failure and indebt-
edness, monetary meltdown, and cryptocurrency. It considers several frameworks such as
k-Nearest Neighbors, Bayesian Classifier, Decision Trees, Random Forest, Support Vector
Machine, alongside Deep Learning Models like Artificial Neural Network/Deep Neural Net-
work, Feed-forward Neural Network, Backpropagation Neural Network, Multilayer Percep-
tron, Convolutional Neural Network, Recurrent Neural Network, Long Short-Term Memory,
Gated Recurrent Units, Reinforcement Learning Models, hybrid as well as ensemble models.
Additionally, it determines why these models are vital for definite uses in the banking sector
so as to effectively respond to numerous fiscal challenges.
Below, we will discuss some of the numerous Machine Learning applications in finance.

3.1 Machine Learning for Stock Market Prediction

As discussed by Nazareth and Reddy (2023), predicting the stock market is an engaging but
tough course of study because of the underlying properties of financial time series: erraticism,
confusion, and lack of stability. The prevailing point of view of Efficient Market Hypothesis,
claiming that it is near impossible to beat the market, notwithstanding advancements in
technology have contributed in an increase in the precision of predictions made by analysts,
hence making it possible for traders to achieve potential financial goals. The attention of
investors and academics has been caught by the complexity of the stock market together with
its numerous interconnected factors. A collection of factors such as political unrest, natural
calamities, global interactions in foreign investments and changes in corporate management
among others may lead to changes in the stock market behavior. Nevertheless, the mere
identification of these elements and estimating how much they influence it is not enough:
what matters is to include these aspects into predictive models by turning available data into
meaningful features; this is an essential component of deep learning and machine learning
models. In the field of financial time series forecasting, these variables play a vital part. The
inherent noise and volatility found within stock market time series constitute very rigorous
tests which determine whether machine learning techniques are strong or weak. In a thorough

10

literature review, machine learning models have had the most significant impact on the stock
market forecasting application, representing about 41% of all cited papers (N=126).

3.2 Machine Learning for Fraud Detection

In the realm of financial security, machine learning has emerged as a powerful tool for fraud
detection. By analyzing vast amounts of transactional data, machine learning algorithms
can detect suspicious patterns and anomalies that may indicate fraudulent activity. This ap-
proach not only enables financial institutions to identify potential threats more efficiently but
also allows for the adaptation and improvement of detection methods over time, ultimately
enhancing overall security measures.
An interesting work on machine learning applications for fraud detection is the one linking
to Awoyemi, Adetunmbi, and Oluwadare (2017). The study indicates that more and more
scams are on the rise in the finance industry, corporation, and government. Financial fraud,
as cheating with the aim of gaining illegitimate money, is becoming common due to the wide
use of internet based transactions like buying and selling products with credit cards. Owing
to this fact that nowadays individuals are buying goods using internet based transactions,
especially on credit cards, fraudulent use of credit cards appears to be on the rise through
both inward and external dimensions; while it involves collusion between holders and banks
using fake identities internally, it is a synonymous with exploiting robbed credit card details
for unlawful acquisition of cash externally. Over the years, research has been carried out to
help in determining external credit card thefts which are part of fake activities for majority
cases. With the advent of computational approaches in particular big data times, these are
no longer functional since they take more time before producing outcomes therefore there
is need to switch such techniques as time goes on with technology changes for instance
implementing computational approaches since traditional manual detection approaches are
no longer applicable especially in such era which is characterized by big data.
Data mining is one of the distinguished methodologies utilized to detect fraudulent activities
on credit cards. It involves categorizing transactions as valid or invalid depending on the
study of how money is spent. This form of method has several methods that have been
explored in Artificial Neural Networks, Genetic Algorithms, Support Vector Machines, Fre-
quent Itemset Mining, Decision Trees and Naïve Bayes Classifiers among others. In this
regard, certain problems continue to face these types of systems including ever changing
profiles of fraudulent behaviours, lack of enough credit card transaction datasets that are
imbalanced or scarce, feature selection criteria and technique performance evaluation on
skewed data. This study therefore seeks to address some of these issues through a compar-
ison of binary credit card fraud detection using three algorithms: Naïve Bayes, K- Nearest
Neighbors and Logistic Regression based on highly skewed datasets. In specific terms, the
analysis would be based on measures such as accuracy rates, sensitivity, Matthews’s corre-
lation coefficient or MCC.

11

3.3 Machine Learning for Credit Scoring

Machine learning applications for credit scoring represent a transformative approach in the
financial industry, offering advanced tools to assess the creditworthiness of individuals and
businesses. Traditionally, credit scoring relied on rule-based systems and statistical models
to evaluate borrowers’ creditworthiness based on a limited set of criteria. However, machine
learning techniques have revolutionized this process by enabling the analysis of extensive
and diverse data sets to generate predictive models with enhanced accuracy and predictive
power.
The applications leverage advanced algorithms that help in monitoring various factors like
repayment status, borrowed capital use rate (revolving debt), duration of using borrowed
finances (credit history), different types of credit (credit mix) as well as recent queries about
borrowing money. When looking at past loans and information of people who usually apply
for loans, then there are complex trends that may not be noticed by many other methods
except using modern technology. With this, one can get an insight into finer points which
leads to better estimation while improving the quality regarding loans assessment on the
whole.
The great thing about machine learning applied to credit scores is its capability for self-
improvement through time. When compared with fixed rule-based systems, ML approaches
are able to learn on new information streams continuously adjusting their forecasts based
on them. Thus, such a dynamic feature enables us refining and developing models of credit
scoring within altered market environments, regulatorioal enironments and customers’ con-
duct.
Additionally, ML methods enable creation of more personalized credit products than ever
before. The software incorporates all necessary information about client’s financial behav-
ior, which allows them to establish particular risks and sets prices for loans. It not only
makes loan decision-making more accurate but also contributes to higher levels of customer
satisfaction and retention. Moreover, machine learning makes it possible for banks to reduce
risks tied with loans. By means of forecasting techniques, they may anticipate circumstances
that will lead to financial difficulties or failure in deadline meeting; this helps them reduce
exposure to risks by taking preventive measures against them.

12

4 Predictive Modeling on NYSE Investments

4.1 Introduction

The central focus of this thesis centers on the empirical application of machine learning
methodologies to predict stock market investments within the New York Stock Exchange
(NYSE) domain. The investigation unfolds through a structured exploration encompassing
distinct phases essential for comprehensive analysis.
Primarily, the initial phase involves meticulous Data Preprocessing procedures. This
stage entails the careful curation and refinement of the dataset comprising more than 400,000
randomly sampled NYSE investments. The data preprocessing phase is critical as it lays the
foundation for subsequent analytical endeavors, ensuring the integrity and suitability of the
data for model implementation.
Following data preprocessing, the subsequent phase involves Exploratory Data Analysis
(EDA), a critical step in comprehensively understanding the characteristics and inherent
patterns within the dataset. EDA facilitates the elucidation of underlying trends, distribu-
tions, and potential relationships among variables, thereby informing subsequent modeling
decisions.
Subsequently, the core of the study unfolds in the Model Implementation phase, where
a suite of machine learning algorithms is deployed to construct predictive models for stock
market investments. Leveraging the insights garnered from data preprocessing and EDA,
various machine learning techniques are employed to develop robust predictive models aimed
at forecasting investment outcomes within the NYSE domain.
Finally, the culmination of this empirical endeavor is encapsulated in the Conclusion sec-
tion. Here, the findings derived from the model implementation phase are synthesized and
evaluated in the context of the broader research objectives. Furthermore, the implications
of the study’s findings are discussed, along with avenues for future research and potential
extensions of the current work.

4.2 Overview of the Dataset

The last decade has seen more than 400,000 investments on the New York Stock Exchange
(NYSE) that lasted from one day to two years. The dataset offers a broad view of investing
on the NYSE over an extensive period. The dataset contains examples of investments in
various sectors and reflects ongoing changes in finances that can help in understanding market
trends, behaviors of investors, as well as economic fluctuations. The dataset is inclined
towards scrutinizing short-term to medium-term investment strategies involving those whose
holding period fall within one and two years, with insight into how well such investments
have worked out or otherwise, risk entailed or even likelihood of returns. Consequently, it is
appropriate for addressing events or transactions involving these assets due to its large size,
making it possible to inquire into investment patterns, estimate performance parameters

13

and opportunities among others based on past happenings of this nature at the NYSE using
analytics by academicians, financial experts or merchants.
Below, we list all the variables, providing a brief description for each one:

1. X : index
2. company: company in which the investment was undertaken
3. sector : industry in which the company operates
4. horizon_days: number of days from buy to sell
5. amount: amount of dollars invested
6. date_of_buy: date in which the security was purchased
7. date_of_sell: date in which the security was sold
8. price_buy: price of buy
9. price_sell: price of sell

10. volatility_buy: volatility when the security was purchased
11. volatility_sell: volatility when the security was sold
12. sharpe_ratio: Sharpe Ratio
13. expected_return_yearly: expected yearly return during the time horizon
14. inflation: inflation during the time horizon
15. nominal_return: nominal return
16. investment (target variable): variable consisting in two labels - namely GOOD or

BAD
17. ESG_ranking: ESG ranking
18. PE_ratio: Price-to-Earnings ratio
19. EPS_ratio: Earnings-per-Share ratio
20. PS_ratio: Price-to-Sales ratio
21. PB_ratio: Price-to-Book ratio
22. NPM_ratio: Net-Profit-Margin ratio
23. current_ratio: Current Ratio
24. roa_ratio: Return-on-Assets ratio
25. roe_ratio: Return-on-Equity ratio

4.3 Metrics of interest

When evaluating the performance of a machine learning model, three key metrics are com-
monly employed: accuracy, precision, and recall. Accuracy, defined as the ratio of correctly
predicted instances to the total number of instances, provides an overall measure of the
model’s correctness. Precision, expressed as the ratio of true positives to the sum of true
positives and false positives, assesses the model’s ability to correctly identify positive in-
stances. It quantifies the proportion of positive identifications that are accurate. For in-
stance, a precision score of 0.7 indicates that 70% of the positive identifications made by the
model are correct. Recall, on the other hand, is the ratio of true positives to the sum of true
positives and false negatives. It gauges the model’s capacity to correctly identify all relevant
instances, capturing the proportion of actual positives correctly identified by the model. A

14

recall score of 0.2 suggests that the model accurately identifies 20% of all positive instances.
These metrics are instrumental in evaluating the efficacy and reliability of machine learning
models, offering insights into their performance across various scenarios.
Accuracy

Accuracy = TN + TP

N

Precision

Precision = TP

TP + FP

Recall

Recall = TP

TP + FN

Another measure used for classification tasks is AUC (also known as Area Under Curve),
which is tied with ROC curve concept.
One can use Receiver Operating Characteristic (ROC) curve and its associated Area Under
the ROC Curve (AUC) to evaluate how good a classification model is.
ROC curve is a graphical representation of the trade-off between the true positive rate
(sensitivity) and the false positive rate (1 - specificity) obtained at various discrimination
thresholds. Given different threshold levels at which observations could be classified into
positive or negative categories, each point on a graph corresponds to some specific threshold
value. When plotted against different thresholds on a graph, these points show how well
classes are separated over all possible values that can be used for classification purposes:
AUC is a way to summarize the entire classification model in one metric, which calculates
the area under the curve formed by plotting sensitivity versus false positive rate across
all possible threshold settings. It measures the probability of ranking a randomly chosen
positive instance higher than a randomly chosen negative instance. AUC lies between 0 and
1, with higher values indicating better discrimination between positive and negative cases;
the values are expected to be between .5 and 1. In case of .5, the model is considered no
better than random guessing while 1 stands for perfect classification.
Briefly speaking, the ROC curve together with the AUC are useful summary statistics that
assess discriminatory power and overall performance of classifiers in terms of correctly clas-
sifying cases on different threshold levels.
F1-score and Confusion Matrix are the last two metrics that are considered in evaluating
the performance of any model.
F1 score is an evaluation measure for the performance of classification models that is com-
monly used especially in the situation of class imbalance.

15

The F1 Score is calculated based on the harmonic mean of precision and recall, where
precision calculates the ratio of correct positive predictions made by a model among all
positive predictions, and recall measures the proportion of actual positive instances with
respect to true positive predictions. More specifically:

F1 = 2 × precision × recall

precision + recall

A high F1 Score indicates that the model has both high precision and high recall, meaning
it makes accurate positive predictions while minimizing false positives and false negatives.
Conversely, a low F1 Score suggests that the model struggles to achieve a balance between
precision and recall.
A confusion matrix is a table used in classification analysis to assess the performance of a
machine learning model. It allows for the visualization of the performance of a classification
algorithm by presenting the actual and predicted classifications of a dataset.
The confusion matrix consists of four main components:

1. True Positives (TP): The number of observations correctly predicted as positive by the
model.

2. True Negatives (TN): The number of observations correctly predicted as negative by
the model.

3. False Positives (FP): The number of observations incorrectly predicted as positive by
the model (actually negative).

4. False Negatives (FN): The number of observations incorrectly predicted as negative by
the model (actually positive).

Each cell in the confusion matrix represents different outcomes of the model’s predictions
based on the actual class labels. By examining the values in the confusion matrix, various
performance metrics such as accuracy, precision, recall, and F1 score can be calculated to
evaluate the effectiveness of the classification model.

16

5 Data Preprocessing

Data preprocessing serves as a foundational step in the analytical pipeline, playing a pivotal
role in ensuring the quality, integrity, and suitability of the data for subsequent analysis. This
crucial phase encompasses a series of systematic procedures aimed at cleaning, transforming,
and preparing raw data into a structured format conducive to analytical exploration and
modeling.
Key tasks within data preprocessing may include handling missing values, addressing outliers,
standardizing or normalizing variables, encoding categorical variables, and partitioning the
data into appropriate training and testing subsets. However, some of these steps - namely
normalization/standardization and partitioning of the data into training and test set - will
be performed at a later stage, right after the Exploratory Data Analysis.
By meticulously attending to these preprocessing tasks, researchers can mitigate potential
biases, enhance the robustness of subsequent analyses, and derive meaningful insights from
the data. Moreover, effective data preprocessing lays the groundwork for the successful
implementation of advanced analytical techniques, such as machine learning algorithms,
thereby fostering reliable and actionable outcomes in various domains, including finance,
healthcare, and social sciences.

5.1 Inspecting for duplicates

Inspecting duplicates in a dataset is vital for ensuring high quality of data. This process
involves identifying instances where observations have identical characteristics. By detecting
duplicates, researchers can assess data integrity, identify potential errors, and make informed
decisions about handling redundant information. This step is essential for maintaining the
reliability and accuracy of subsequent model implementations and analysis. More specifically,
based on our research, the dataset we are going to employ does not contain any duplicates.

5.2 Inspecting for missing values

Detecting and managing missing values is crucial for data integrity. This involves identifying
instances where data is absent and implementing strategies like imputation or deletion to
maintain dataset reliability. Addressing missing values ensures the accuracy of analyses and
the validity of insights derived from the data.
More specifically, it is good practice to replace missing numerical values with mean, while
missing categorical values with mode. After performing such inspection, it seems that the
dataset we are considering does not contain any missing value.

5.3 Removing outliers

Addressing outliers by removing them is a critical preprocessing step in data analysis, aimed
at enhancing the robustness and accuracy of statistical models and machine learning algo-

17

rithms. Outliers are data points that deviate significantly from the rest of the observations
in a dataset (i.e. from the distribution of the given variable), potentially skewing statisti-
cal analyses and misleading model predictions. By systematically identifying and removing
outliers, researchers can mitigate their adverse effects on the integrity of the data. This pro-
cess involves employing statistical techniques, such as z-score or interquartile range (IQR)
method, to detect observations that fall beyond certain thresholds of deviation from the mean
or quartile boundaries. More specifically, according to IQR (inter-quartile range) method,
the threshold Q1−1.5×IQR represents the lower bound, while the threshold Q3+1.5×IQR
represents the upper bound. Any value laying below the lower bound, or above the upper
bound, is to be considered an outlier. Notice that one can either extend or restrict the range
of acceptable values by adjusting the multiplying parameter (1.5 in this case).
Once identified, outliers can be safely removed from the dataset to ensure that the resulting
analysis are more representative and reliable. However, it is essential to exercise caution
when removing outliers, as their exclusion may lead to information loss or bias in the data.
Therefore, careful consideration of the context and domain knowledge is paramount in de-
termining the appropriate approach for outlier removal in R.
In our dataset, after manual inspection in R, numerical variables apparently do not contain
outliers in their distribution, being their observations’ values within a reasonable range.
However, at a later stage, namely when performing EDA, we will be able to assess any
eventual presence of outliers through boxplots.

5.4 Removing variables

We decide to remove some variables. More specifically:

• Index variable: superfluous since indexes are tracked in R by default.

• date_buy and date_sell variables: redundant since we are already indirectly keeping
track of such information through the variable horizon_days, the latter expressing the
amount of time (in days) for which the security was hold.

5.5 Handling imbalanced data

Balancing data, particularly with regard to the target variable, is a pivotal step in any data
preprocessing phase. When there are differences in the frequency or distribution among
classes within the target variable, it becomes what is referred to as imbalanced data. The
result is that the model undergoes unfair training having an inclination for the more prevalent
class while it poorly handles the less common classes. For a model to be able to make a good
prediction, we must first address this issue of imbalance.
There exist several methods – among which oversampling (increasing number of cases be-
longing to minority groups) or undersampling (reducing cases that belong to the dominant
group) – that can help us deal with such situations where our dataset suffers from class

18

inequality between different classes in the independent variable (i.e. the target one). It is
also possible that specific algorithms have been developed to manage such data types like
ensemble methods or cost-sensitive learning approaches. By properly handling imbalanced
data, researchers can improve the accuracy of predictive models, leading to more reliable
insights for guiding decision making.
Below, we investigate the distribution of our target variable, namely investment.

Figure 1: Distribution of Target Variable

As one may notice in Figure 1, data seems to be heavily imbalanced. In fact, 65% of the
observations belong to BAD class, while only 35% belong to GOOD class. We will address
this issue by undersampling.
Undersampling is a technique used to address class imbalance by reducing the size of the
majority class to match that of the minority class. In R, this process involves first identifying
the minority and majority classes in the dataset. Then, a subset of instances from the
majority class, equal in size to the minority class, is randomly selected using functions like
sample(). These selected instances are combined with all instances from the minority class
to create the undersampled dataset. To prevent any unintentional bias, it’s recommended
to shuffle the order of instances in the undersampled dataset. This step-by-step approach

19

ensures a balanced class distribution, which can improve the performance of machine learning
models trained on imbalanced datasets.

5.6 Transforming given variables into factor type

Transforming categorical variables (char type in R) into factors is a crucial preprocessing
step in data analysis, particularly in statistical modeling and machine learning tasks. Cat-
egorical variables are qualitative data represented by distinct categories (or levels), such as
gender, country, or product type. By converting these variables into factors in R, we create
a specialized data type that represents each category as a unique integer code, facilitating
efficient storage and manipulation of categorical data. Factors in R also preserve the inherent
order and levels of the categories, enabling accurate modeling and interpretation of results.
Moreover, factors enhance the performance of statistical analysis and machine learning algo-
rithms by treating categorical variables appropriately during model training and prediction.
Finally, transforming categorical variables into factors in R is essential for ensuring proper
handling and utilization of qualitative data in analytical workflows.
We will transform into factor type the variables sectors and investment (target variable),
sine it seems reasonable to us to treat them as different levels.

5.7 Scaling and standardization of variables

Scaling and standardization of variables play crucial roles in data preprocessing, particularly
in statistical modeling and machine learning tasks. These techniques aim to transform vari-
ables to comparable scales or distributions, facilitating more accurate and efficient analyses.
In R, scaling involves transforming numerical variables to a common scale, typically between
0 and 1 or -1 and 1, by dividing each observation by the maximum or range of the variable.
Standardization, on the other hand, involves transforming variables to have a mean of 0 and
a standard deviation of 1, by subtracting the mean and dividing by the standard deviation.
These transformations ensure that variables with different units or magnitudes contribute
equally to analyses, preventing biases due to scale discrepancies. Additionally, scaling and
standardization enhance the stability and convergence of optimization algorithms in machine
learning models, leading to more reliable and interpretable results. Overall, incorporating
scaling and standardization techniques into data preprocessing workflows in R is essential
for improving the accuracy and effectiveness of statistical analyses and predictive modeling
endeavors.
More specifically, we will perform such operations on numerical data at a later stage, when
needed for model implementation. Instead, we will perform Exploratory Data Analysis using
the original scales of variables, thus enhancing readability and visualization.

20

6 Exploratory Data Analysis (EDA)

Examining data to find out its characteristics is vital at the beginning stage when we want
to construct a meaningful analysis. We can learn about different patterns as well as relations
that are present within datasets at this point. The collection of statistical information along
with visualization methods make up EDA methods that allow those involved in research
or analysis process to know more about what they have; its size, quality, shape. Detect-
ing outliers, missing values, instances of some abnormal behavior in general can be done
through EDA (statistical description) or we can see direction of development using them.
Deep dive into EDA permits developing hypothesis; shaping future investigations, and sup-
porting decision-making based on data. Besides this will help us understand the area under
consideration and context of any particular problem related to information, hence leading
to more meaningful interpretations and insights that inform the next steps in analysis or
modeling process. In general terms, exploratory data analysis is essential for conducting
research with a discovery purpose, generating hypotheses and creating suchlike for financial
institutions, medical organisations, etc.

6.1 Investigating distribution of numerical variables

21

Figure 2: Distribution of Numerical Variables

The histograms presented in Figure 2 illustrate a departure from the assumption of normality
for the analyzed variables, as evidenced by their right-skewed distributions. This observa-
tion holds significant implications for model implementation, particularly in the context of
machine learning algorithms, where the assumption of normality is often implicit or desired.
Given the skewness observed in the data, a prudent strategy may involve the normaliza-
tion of these variables. Normalization, a preprocessing technique aimed at scaling numerical
features to a standardized range, offers a means to address the non-normality of the data dis-
tributions. By transforming the variables to a comparable scale, normalization enhances the
interpretability and performance of machine learning models, particularly those sensitive to
the distribution and scale of input features. Thus, in light of the right-skewed nature of the
variables, normalization emerges as a strategic preprocessing step to mitigate the effects of
non-normality and optimize model performance in subsequent analyses.Investigating outliers
for numerical variables.

22

23

Figure 3: Boxplots of numerical variables

Boxplots in Figure 3 are the primary tool for identifying outliers during an EDA phase.
They provide insights into the distribution of observations by indicating the spread of data
points relative to the interquartile range (IQR), which encapsulates the central 50% of the
dataset’s observations. Upon examination of the boxplots presented, it becomes apparent
that numerous variables exhibit instances that may be apparently labelled as outliers, as
evidenced by the considerable number of instances lying beyond the 75th percentile. However,
one should be cautious in classifying these instances as genuine outliers. In fact, upon closer
inspection, it becomes evident that many of these potential outliers fall within a reasonable
range on the y-scale (i.e. a reasonable range of the variable), suggesting that their exclusion
may result in a loss of valuable information. For example, the variable volatility_buy displays
an IQR range of 0.2 < IQR < 0.3, yet numerous observations identified as outliers under
the conventional interquartile range rule fall within the range of 0.4 to 0.6. Such occurrences
are plausible, especially in the context of small-cap stocks characterized by higher volatility.
Similar considerations apply to other factors such as nominal_return and current_ratio.
Consequently, this observation warrants careful consideration when implementing outlier
removal strategies during the subsequent stages of model development.

24

6.2 price_buy VS price_sell

Figure 4: Comparison of stocks prices

The interpretation of the scatterplot in Figure 4 is quite straightforward. The upward
trajectory inferred from the smoothing line clearly indicates that there is a relationship
between the buying price of a stock and what that stock will be sold for later on. Besides,
stocks purchased at approximately the same prices are likely to fetch slightly more than or
less than the initial cost without much variance; this idea captures one of the basic principles
underlying stock market. This is further confirmed through all points being near each other
on the graph which suggests less variation among them.

25

6.3 volatility_buy VS volatility_sell

Figure 5: Comparison of stocks volatilities

Analogous to the preceding scatterplot, Figure 5 also suggests a positive relationship
between the volatility observed during purchase (volatility_buy) and that during sale
(volatility_sell). However, a notable distinction lies in the heightened dispersion of data
points within this plot. Particularly noteworthy is the trend towards elevated values of
“volatility_sell,” indicating that a significant proportion of stocks purchased with a specific
volatility subsequently experienced higher volatility levels upon sale.

26

6.4 investment VS nominal_return

Figure 6: Nominal return impact on target variable

The boxplots in Figure 6 investigate the influence of nominal_return on the target variable
investment. The objective of this analysis is to discern any potential relationship between
the target variable labels (specifically, GOOD or BAD) and the values of the nominal return
variable. In simpler terms, we seek to determine whether investments classified as GOOD
exhibit higher nominal returns, thereby evaluating the predictive capacity of this variable.
However, contrary to expectations, the median values for both GOOD and BAD investment
classes appear to converge around similar levels. Moreover, the interquartile range IQR for
both classes exhibits comparable distributions, suggesting minimal differentiation between
the two investment categories in terms of nominal returns.

6.5 ratios VS nominal_return

Financial ratios are powerful tools that help businesses assess their financial health, perfor-
mance and efficiency. These ratios are based on financial statements and give an understand-
ing into different aspects of an organisation’s operations, its management teams as well as

27

its profitability. Shareholders use them to assess a company’s ability to make profits, repay
its debts and meet its short-term financial obligations by looking at such ratios as profitabil-
ity ratios (ROA, ROE), liquidity ratios (current ratio, quick ratio), solvency ratios (D/E
ratio, interest coverage ratio), just to mention a few among others. Financial ratios also
help investors (both individual and institutional) compare different time periods, industries
and competitors in order to make better decisions about investments, loans or strategies.
Financial ratios, then, can be seen as key tools in analysing financial issues since they serve
the purpose of providing a means for evaluating the financial performance and condition of
companies
An insightful analysis of financial ratios’ impact on stock prices was conducted by Arkan
et al. (2016). The aim of their study is to establish the importance of financial ratios
that can be derived from financial statements in predicting stock prices’ movements in the
context of growing markets. Twelve financial ratios were assessed statistically to judge their
reliability in terms of prediction using data from 2005 to 2014 across fifteen companies from
three different sectors at the Kuwait stock market. To estimate stock prices at various
sectors, differentiating factors variable were eliminated through regression model followed by
an elimination technique called STEPWISE. It was indicated by the results that a number
of ratios were highly associated with stock price behaviors and trends in robust and positive
statistical manner. More specifically, ROA, ROE and Net Profit Ratio were found to be
dominant with regards to their impacts on stock prices for industrial sector. With regard
to service and investment sectors, significant influences were recognized in P/E ratio as well
as EPS ratio along with other ratios such as return on assets (ROA) among them return on
equity (ROE) just like P/E ratio and EPS ratio respectively. The study underscores certain
financial ratios tailored for each sector which can be used as prediction model for stock price.
Consequently, decision makers mainly investors should use financial ratio analysis to advise
on their decision making processes relating to finance and operations.
Below, we illustrate all the financial ratios provided in our dataset, digging not only into their
computation, but even into their understanding and impact on companies’ performance.
Price-to-Earnings ratio (PE_ratio)
The Price-to-Earnings (PE) ratio is a key financial metric used to gauge the valuation of a
company’s stock. It compares the market price per share to the company’s earnings per share
(EPS), offering insight into investor sentiment and growth expectations. More specifically:

P/E ratio = Market V alue per Share

Earnings per Share

The price-to-earnings (P/E) ratio is a fundamental metric used to evaluate the relative
valuation of a company’s stock. It compares the current market price of a company’s stock
to its earnings per share (EPS). A high P/E ratio suggests that investors are willing to pay
more for each unit of earnings, indicating that the stock may be overvalued. Conversely, a
low P/E ratio implies that the stock may be undervalued, as investors are paying less for
each unit of earnings.
As anticipated above, financial ratios are good predictors of stock market’s movements.

28

This is the case of price-to-earnings ratio. Actually, in one of their studies, Shen (2000)
demonstrate empirically - using data gathered from 1995 to early 2000s - that high P/E ratios
are tied with low long-run returns in the stock market. More specifically, their study delves
into the historical correlation between price-earnings ratios and subsequent stock market
performance, while also considering the possibility that past trends may not necessarily apply
in the current context. The analysis reveals a robust historical pattern where high price-
earnings ratios often precede lackluster stock market performance over both short and long
terms. Specifically, periods of elevated price-earnings ratios tend to coincide with sluggish
long-term growth in stock prices. Additionally, when high price-earnings ratios diminish
the earnings yield on stocks compared to alternative investments, short-term stock market
performance has typically suffered. Despite the compelling historical evidence, it remains
uncertain whether these past relationships hold the same relevance today, given potential
shifts in the underlying economic landscape.
Earnings-Per-Share ratio (EPS_ratio)
EPS ratio, or earnings per share ratio, is a vital financial metric used to assess a company’s
profitability. It indicates the portion of a company’s profit assigned to each outstanding
share of common stock. More specifically:

EPS ratio = Net Income − Preferred Dividends
End-of-Period Common Shares Outstanding

The earnings per share (EPS) metric serves as a gauge of a company’s profitability, reflect-
ing the amount of profit generated per share of its stock. It is computed by dividing the
company’s net profit by its outstanding shares of common stock. Typically, a higher EPS
value indicates greater profitability for the company.
The impact of EPS ratio, together with others such as Net Profit Margin and Return on
Equity (which will be discussed separately at a later stage), has been assessed by Nalurita et
al. (2016). In this study, the authors aimed at examining the relationship between earnings
per share (EPS), net profit margin ratio (NPM), return on equity (ROE), price-to-book value
ratio (PBV) and stock prices. Companies listed in the Indonesia Stock Exchange (IDX) for
LQ45 2015-2018 period were our target population. The index is used as an important
measure of comparison by which to assess performance of shares on the exchange market
in Indonesia. Stock price is how one can tell if management is doing well in their company
according to this research, aimed at enlightening people concerning management skills among
other things. EPS is found to have positive significant influence upon share prices whereas
ROE indicates negative significant relationship. PBV shows positive significant association
with stock prices, while NPM shows an insignificant negative influence on them.
Price-to-Sales ratio (PS_ratio)
The Price to Sales (P/S) ratio is a financial metric used to evaluate a company’s stock price
relative to its revenue. This ratio provides insight into how much investors are willing to pay
for each dollar of a company’s sales and can be used to assess a company’s valuation relative
to its revenue generation. Here is the formula:

29

P/S ratio = Market Capitalization

Annual Sales

This ratio provides insight into how much investors are willing to pay per dollar of a com-
pany’s sales. A lower P/S ratio may indicate that a company is undervalued relative to its
revenue generation, while a higher ratio may suggest overvaluation. However, interpreting
the P/S ratio requires considering industry norms and comparing it to peers. Additionally,
the P/S ratio can be particularly useful when assessing companies with volatile or negative
earnings. Overall, while the P/S ratio is just one of many factors to consider when analyzing
a stock, it offers valuable insights into a company’s valuation and growth potential.
Price-to-Book ratio (PB_ratio)
The Price-to-Book (P/B) ratio is a key financial metric used by investors to gauge the market
value of a company’s stock relative to its book value per share. It offers insights into whether
a stock is overvalued or undervalued, with a lower ratio suggesting potential undervaluation
and a higher ratio indicating overvaluation. More specifically:

P/B ratio = Market Price per Share

Book V alue per Share

According to Chiu, Chen, and Che (2021), the notion of market efficiency holds significant
importance in the realm of finance. Over the past two decades, numerous anomalies have
emerged that challenge the efficient market hypothesis. While extensive evidence of market
anomalies exists in the U.S. market, research on the Australian equity market remains rela-
tively scarce. In their study, the authors listed above delve into several anomalies, such as
PE ratios, price-to-book ratios, and the firm size effect, within an Australian context. Initial
findings suggest that PE ratios and firm size lack predictive power in determining stock
returns. However, a noteworthy association between low price-to-book ratios and significant
returns has been identified.
Net-Profit-Margin ratio (NPM_ratio)
The net profit margin ratio provides insight into a company’s profitability by indicating the
proportion of revenue that translates into profit after accounting for all expenses. More
specifically:

NPM ratio = R − COGS − E − I − T

R

where:

• R indicates the Revenues

• COGS represents the Cost of Goods Sold

• E stands for Operating and other Expenses

• I stands for Interest

30

• T stands for Taxes

Pratama and Jahja (2021) explore the effect of financial ratios on stock returns in the In-
donesian market with a focus on companies listed in the LQ45 2019 index. The foundation
of this analysis is established using panel data gathered from LQ45 index stocks between
February and July 2019 and/or August 2019 and January 2020, representing the period be-
tween December 2014 and December 2019. The study treats financial ratios as independent
variables while at the same time taking into account quarterly and annual stock returns as
dependent variables. The study demonstrates that different individual stock analyses yield
different results, showing that both Price-to-Earnings Ratio (PER) and Price-to-Book Value
(PBV) are major determinants. From aggregate analysis, a negative relationship emerges
between Dividend Yield (DY) and yearly returns, which implies that financial ratios cannot
always describe stock returns. Further scrutiny with a 2–4 quarter information lag reveals
disparate results where significant effects of Return on Equity (ROE), Net Profit Margin
(NPM) are observed, indicating delayed information absorption process.Therefore, accord-
ing to the analysis carried out within LQ45 2019 index, in some cases specific to individual
companies, lag periods should be considered for predictive value of financial ratios like PER,
PBV, ROE or NPM across different stocks and lags(pattern).
Current ratio (current_ratio)
The current ratio measures a company’s ability to cover short-term liabilities with its current
assets. It’s calculated by dividing current assets by current liabilities. A higher current ratio
indicates stronger liquidity and better ability to meet short-term obligations. In particular:

Current ratio = Current Assets
Current Liabilities

As mentioned upon, the current ratio is a liquidity ratio assessing the ability of a company
to meet its short-term obligations (particularly those deriving from day-to-day management
activities). Its interpretation is straightforward: a current ratio greater than 1 would imply
current assets > current liabilities, which is a positive situation for any company. However,
current ratios exceeding too much such threshold are not indicators of a better economic
situation. Actually, a too high current ratio may be an indicator of missed opportunities by
the management, which is holding too much liquidity that may be reinvested in potentially
profitable investments.
Return-on-Assets ratio (roa_ratio)
ROA, or Return on Assets, is a fundamental financial metric used to evaluate a company’s
efficiency in generating profit from its assets. It measures the company’s ability to generate
earnings relative to its total assets. ROA is a key indicator of management’s effectiveness in
utilizing assets to generate profits and is widely used by investors and analysts to assess a
company’s profitability and operational performance. More specifically:

ROA ratio = Net Income

Total Assets

31

The predictive power of such ratio in emerging markets has been investigated for quite a long
time. Arkan et al. (2016) investigate the impact of financial ratios derived from financial
reports of companies listed on the Tehran Stock Exchange (TSE) on stock returns. In
particular, utilizing financial data from 120 manufacturing companies listed on the TSE from
2003 to 2008, multivariable regression patterns and lagged variable models were employed
to test the research hypotheses at both general and industry-specific levels. Results indicate
that, at the general level, ROA and ROE ratios significantly affect stock returns, while
financial leverage shows no significant effect. However, at the industry-specific level, the
impact of financial ratios on stock returns varies across different industries, highlighting
their distinctiveness.
Return-on-Equity (roe_ratio)
The Return on Equity (ROE) ratio is a key financial metric used to assess a company’s
profitability and efficiency in generating profits from shareholders’ equity. It measures the
company’s ability to generate net income as a percentage of shareholders’ equity. A higher
ROE ratio indicates better profitability and efficiency in utilizing shareholders’ funds to
generate earnings. More specifically:

ROE ratio = Net Income

Avg. Shareholders′ Equity

As anticipated before, the Return on Equity (ROE) ratio measures a company’s profitability
by evaluating how effectively it generates profits from shareholders’ equity. A higher ROE
typically indicates that a company is efficiently using its equity to generate profits. It’s an
essential metric for investors to assess a company’s performance and its ability to create
value for shareholders. ROE can also serve as a benchmark for comparing the profitability
of different companies within the same industry. Moreover, it may even serve as a predictor
in assessing stocks’ performances (as discussed by Arkan et al. (2016)).
Having said that, we can now investigate the impact of such ratios on both nominal_return
and investment variables.

32

Figure 7: Impact of ratios on nominal return

What one may notice from the scatterplots in Figure 7 is that there are not any anomalies.
In fact, nominal returns tend to lay in reasonable ranges (all quite low ones), for the given
values of the ratios. Peaks in nominal returns may coincide with particularly successful
investment strategies. However, we may still find some relevant considerations:

• low PE_ratio investments are tied with high returns, which is reasonable since such
stocks would be undervalued ones (hence, good buying opportunities).

• low EPS_ratio stocks investments are connected to high nominal returns, which is
quite surprising given that low EPS ratios usually allude to low profitability of the
company.

• high roe_ratio stocks are tied with higher nominal returns, which is reasonable enough
(even though there is no direct connections between the two variables). Instead, the
same does not hold for roa_ratio.

33

6.6 ratios VS investment

Figure 8: Impact of ratios on target variable

The boxplots in Figure 8 aimed at investigating whether profitable investments (label GOOD
of target variable investment) were associated with given values of the financial ratios.
However, as one may intuitively notice, this is not the case. In fact, it seems that financial
ratios are not the main drivers of the profitability of a stock investment, since the median
values lay all in the same range for both labels of the target variable.

34

6.7 Correlation matrix

Figure 9: Exploring correlation among numerical variables

Consider the heatmap in Figure 9, the latter being quite self-explanatory. It implies that
there is almost zero association among the variables of our analyis, which may lead to
consequences during model implementation phase. The truth about minimal correlation
among numeric variables in machine learning models is complex. To begin with, it becomes
difficult to detect feature importance – hence making it hard for an interpreter to understand
the model. Secondly, the need arises for more elaborate structures within models in order
to capture adequately data patterns, thus causing an increment in complexity as well as
computational expenses. Furthermore, there is a likelihood of over fitting therefore calling for
regularization techniques alongside cross validation. Feature engineering carries more weight
with regards to how we can develop meaningful attributes that would enhance prediction
quality. However, even with those noisy features, ensemble methods like Random Forests
or Gradient Boosting can still perform well since they are not sensitive to them. Hence,
when dealing with numeric variables whose correlation is low, this should be taken as a sign
for careful model building process if one is to come up with accurate and robust predictive
models.

35

7 Model Implementation

During the model implementation phase, we embark on the practical application of machine
learning techniques to address our specific problem. In the realm of finance, our objective
is to predict whether an investment can be classified as either “GOOD” or “BAD,” which
inherently constitutes a classification problem due to the categorical nature of the target
variable. Unlike regression problems that deal with predicting continuous outcomes, classi-
fication tasks involve assigning categorical labels to instances based on their features.
In this context, our goal is to explore and evaluate various classification algorithms to identify
the most suitable model for our task, given our dataset. By leveraging the strengths of each
algorithm and understanding their underlying mechanisms, we aim to develop predictive
models that can accurately classify investments and generalize well to unseen data.
The models we plan to implement encompass a diverse range of machine learning approaches,
each offering unique advantages and characteristics:

1. Logistic Regression: A widely-used linear model that estimates the probability of a
binary outcome based on input features.

2. K-Nearest Neighbors (KNN): A non-parametric algorithm that classifies instances
based on the majority vote of their k nearest neighbors in feature space.

3. Classification and Regression Trees (CART): Decision tree-based models that
recursively partition feature space to make binary decisions.

4. Random Forest: An ensemble learning method that constructs multiple decision
trees and aggregates their predictions to improve accuracy and robustness.

5. XGBoost: An advanced gradient boosting algorithm known for its efficiency and
performance in classification tasks.

6. Light Gradient Boosting Machine (LGBM): a fast and efficient gradient boosting
framework for machine learning tasks. Known for its speed and performance, it uses
tree-based algorithms.

By systematically evaluating these models and comparing their performance metrics such as
accuracy, precision, recall, and F1 score, we aim to identify the most effective approach for
our classification problem and gain insights into the underlying factors driving investment
classification.

7.1 Splitting the dataset: Train set / Test set

In this phase, we undertake the crucial step of splitting our dataset into a training set and
a test set, namely with a distribution of 80% for the training set and 20% for the test set.

36

This division is fundamental for assessing the performance and generalization ability of the
machine learning models that we will implement at a later stage.
By using a training set to train our models and a separate test set to evaluate their perfor-
mance, we can gauge how well our models will perform on unseen data, which is crucial to
estimate the predictive power of the models. This process helps us avoid overfitting, which
is a process according to which models memorize the training data rather than learning
patterns that generalize to new data. Thus, the training-test split phase is a pivotal step in
ensuring the reliability and effectiveness of our machine learning models.

7.2 Normalizing data with Min - Max Scaling

Normalizing data with min-max scaling involves rescaling the features of a dataset so that
they fall within a specified range, typically between 0 and 1. This process is also known as
feature scaling or min-max normalization.
Whenever we work with percentages besides factors that differ in orders of magnitude, or
when dealing with different units altogether, it becomes essential to employ min-max scaling
because some attributes are fractions and others far exceed one percent. This makes all
attributes directly comparable by placing them in similar numerical ranges. In particular, it
prevents any single attribute from having undue influence over any subsequent analyses or
training processes in a model. Additionally, it can enhance convergence rates for optimiza-
tion techniques like gradient descent within machine learning algorithms. Mathematically
speaking, this process is described by the following formula:

Xscaled = X − Xmin

Xmax − Xmin

where:

• X is the original value of the feature

• Xmin is the minimum value of the feature across the dataset

• Xmax is the maximum value of the feature across the dataset

Moreover, we will scale the predictors of the test set using the mean and standard deviation
of the training set. Instead, we will not scale the target variable (namely investment), as it
consists of a categorical variable that we have already treated as a factor.

7.3 Logistic Regression

Logistic Regression is a fundamental statistical technique used for binary classification tasks.
Despite its name, it’s not a regression algorithm but rather a classification one. It’s widely

37

applied across various domains such as healthcare, finance, marketing, and more due to its
simplicity, interpretability, and effectiveness.
The core idea behind logistic regression is to model the probability that an observation
belongs to a particular category. This probability is then used to make predictions about the
class membership of new observations. Unlike linear regression, which predicts continuous
values, logistic regression predicts the probability of the outcome being true given the input
features.
The logistic regression model employs the logistic function, also known as the sigmoid func-
tion, to transform the output of a linear combination of input features and their corre-
sponding weights into a probability score between 0 and 1. This function ensures that the
predicted probabilities are bounded and lie within the range [0, 1]. Mathematically, the
logistic function is defined as:

σ(z) = 1
1 + e−z

where z represents the linear combination of input features and their weights. The logistic
function maps z to the probability that the outcome variable equals 1, given the input
features.
The model learns the optimal weights for each input feature through a process called pa-
rameter estimation. This process involves optimizing the model parameters to minimize
the difference between the predicted probabilities and the actual class labels in the training
data. Common optimization techniques used for this purpose include gradient descent and
maximum likelihood estimation.
One of the main advantages of logistic regression is its simplicity and interpretability. The
model provides clear insights into the relationship between the input features and the prob-
ability of the outcome, making it easy to understand and explain to non-technical stake-
holders. Additionally, logistic regression is computationally efficient and can handle large
datasets with ease. It’s also robust to noise in the data and performs well even with small
sample sizes.
However, logistic regression also has its limitations. It assumes a linear relationship between
the input features and the log-odds of the outcome, which may not always hold true in
practice. This restricts its ability to capture complex nonlinear relationships in the data.
Logistic regression is also limited to binary classification tasks and may require modifications
or extensions for multi-class problems. Furthermore, the model can be sensitive to outliers
in the data, which can affect its performance and predictions.
As anticipated upon, logistic regression finds application in various fields ranging from health-
care industry to the finance one, which is the field we are most interested in. Several works
have been published about financial applications of logistic regression models. Among these,
I recall the one from Gong and Sun (2009) . Investors in today’s economic environment
are very much interested with predicting future stock price trends according to the author.
Stock price prediction models continue to face adversity in various fronts such as prediction
efficiency, complexity of techniques and choice of feature index variables.

38

They have devised a service which runs on Logistic Regression so as to be able to foretell
stock price movement within next one month using current month’s information. Their
approach is characterized by two principal attributes; simplicity and accessibility of feature
index variables explained in terms easily understood by the private investor and which can be
obtained from daily stock trading data. A unique yet critical step in the prediction process
entails optimizing prediction parameters. Such a method is not only time-effective, but also
very practical as users can use it to predict next month’s stock price movements based only
off current month’s financial data without need for tedious and long term researched analysis
as well as data collection.
The research uses Shenzhen Development stock A (SDSA) from the RESSET Financial
Research Database as a case study and model training/test data consists of daily integrated
data, spanning three years from 2005 through 2007. The experimental results show that a
minimum forecast accuracy of 83% could be achieved using our method. Such complexity
levels would compare favorably with this method when compared against others e.g., the
RBF-ANN prediction model in terms of prediction accuracy decrease relative to rise in
diffusion rate.
In brief, logistic regression serves as one of those multi-use and easily-understood classifi-
cation algorithms due to its extreme simplicity. It may fail in some application, but still
it remains among some of the most valuable tools meant for data miners undertaking the
binary categorization tasks.

39

Figure 10: Logistic Regression: ROC Curve

7.4 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a fundamental supervised machine learning algorithm used for
both classification and regression tasks. Its principle is straightforward and intuitive, making
it an excellent choice for beginners and a useful benchmark for more complex models.
In KNN, the prediction for a new data instance is determined by the majority class or average
value of its K nearest neighbors in the feature space. To illustrate how KNN works, let’s
consider a simple example:
Let’s consider a scenario in the finance world where we want to predict whether a stock will
perform well (labeled as “Buy”) or poorly (labeled as “Sell”) based on two features: price-
to-earnings (P/E) ratio and return on equity (ROE). We have historical data for various
stocks, including their P/E ratios, ROE values, and corresponding performance labels.
Now, let’s say we have a new stock with a P/E ratio of 15 and an ROE of 12%. To classify
this stock using the KNN algorithm, we first calculate its distance to all other stocks in the
dataset based on these two features. Then, we select the K nearest neighbors based on the
smallest distances.

40

Suppose we choose K = 5. If the five nearest neighbors are classified as “Buy,” “Buy,”
“Sell,” “Buy,” and “Sell,” respectively, then the majority class among these neighbors is
“Buy.” Therefore, the new stock would be classified as a “Buy” using the KNN algorithm.
One of the main advantages of KNN is its simplicity and ease of implementation. It does
not make any assumptions about the underlying data distribution and can handle complex
decision boundaries. Additionally, KNN can perform well on both linear and nonlinear data.
However, KNN also has some disadvantages. One drawback is its computational complexity,
especially as the size of the dataset grows, since it requires storing all data points and
computing distances for each prediction. Moreover, KNN is sensitive to the choice of the
distance metric and the value of K, which can significantly affect its performance. Another
limitation is its susceptibility to the presence of irrelevant features or noisy data, as these
can distort the distance measurements and lead to inaccurate predictions.
K-nearest neighbors (KNN) algorithm finds applications in finance, notably in stock market
prediction. With its versatility, KNN helps investors make informed choices and optimize
their investment strategies. This is what emerges from the study conducted by Chen and
Hao (2017) .
This study delves into the prediction of stock market indices, a crucial area of research in
investment and applications, aiming to enhance profits and returns while minimizing risk
through effective trading strategies. Machine learning methods have emerged as promising
approaches for accurate prediction. There, the authors introduce a hybridized framework
combining feature-weighted support vector machine (SVM) and feature-weighted K-nearest
neighbor (KNN) for stock market index prediction. The approach involves assigning varying
weights to features based on their importance for classification, determined through infor-
mation gain estimation. Subsequently, they employ feature-weighted KNN to predict future
stock market indices by considering the weighted nearest neighbors from historical data.
Experimental results on two prominent Chinese stock market indices, the Shanghai and
Shenzhen stock exchange indices, demonstrate the effectiveness of the model. The proposed
algorithm exhibits improved prediction capabilities for the Shanghai Stock Exchange Com-
posite Index and Shenzhen Stock Exchange Component Index across short, medium, and
long-term horizons. Moreover, the adaptable nature of their model allows for its application
to other stock market indices prediction tasks.
In summary, KNN is a versatile algorithm suitable for various machine learning tasks, but
its performance depends on the specific characteristics of the dataset and the parameter
settings. It is essential to carefully consider these factors when applying KNN in practice.

41

Figure 11: KNN: ROC Curve

7.5 Tree Based Algorithms

Tree-based algorithms are a class of machine learning methods used for both classification
and regression tasks. They operate by recursively partitioning the feature space into smaller
regions, or leaves, based on the values of input features. These partitions create a hierarchical
structure resembling a tree, where each internal node represents a decision based on a specific
feature, and each leaf node corresponds to a prediction or class label.
The basic idea behind tree-based algorithms, such as Decision Trees, CART (Classification
and Regression Trees), Random Forest, Gradient Boosting Machines (GBM), XGBoost, and
LightGBM, is to divide the feature space into regions that are as homogeneous as possible
with respect to the target variable. This partitioning process is guided by splitting criteria,
which aim to maximize the purity or homogeneity of the resulting subsets. For example,
in classification tasks, popular splitting criteria include Gini impurity and information gain
(entropy), while for regression tasks, mean squared error (MSE) or mean absolute error
(MAE) are commonly used.
One of the key advantages of tree-based algorithms is their ability to handle both numerical
and categorical features without requiring extensive preprocessing. Additionally, they are

42

robust to outliers and can capture complex nonlinear relationships between input features
and the target variable. Moreover, tree-based models are interpretable, as they provide
a clear decision-making process that can be easily visualized and understood by domain
experts.
However, tree-based algorithms also have certain limitations. One major drawback is their
tendency to overfit the training data, particularly when the trees are allowed to grow too
deep. Overfitting occurs when the model captures noise or irrelevant patterns in the training
data, leading to poor generalization performance on unseen data. To mitigate overfitting,
techniques such as pruning, limiting the tree depth, and using ensemble methods like Random
Forest and Gradient Boosting are employed.
Another limitation is their susceptibility to high variance, especially when dealing with
imbalanced datasets or noisy features. Additionally, tree-based algorithms may struggle
to capture interactions between features that occur at different scales or exhibit complex
nonlinear relationships.
In summary, tree-based algorithms offer a powerful and versatile approach to machine learn-
ing tasks, capable of handling diverse types of data and providing interpretable models.
While they have certain limitations, such as overfitting and high variance, these can be
mitigated through proper parameter tuning, ensemble methods, and feature engineering
techniques. Overall, tree-based algorithms remain a popular choice in various applications
due to their effectiveness and interpretability.

7.6 Classification And Regression Trees (CART)

Classification and Regression Trees (CART) are powerful machine learning algorithms used
for both classification and regression tasks. They operate by recursively partitioning the
feature space into distinct regions, each associated with a specific class label or predicted
value. CART is widely used in various fields, including finance, healthcare, and marketing,
due to its simplicity and effectiveness.
The basic idea behind CART is to split the feature space into smaller, more homogeneous
subsets based on the values of input features. This splitting process is done iteratively, with
each split maximizing the purity or homogeneity of the resulting subsets. The algorithm
selects the optimal split at each node by evaluating different splitting criteria, such as Gini
impurity or entropy for classification tasks, and mean squared error for regression tasks.
To illustrate how CART works, let’s consider a classification example involving the prediction
of whether a customer will purchase a financial product based on their age and income. The
CART algorithm would start by selecting the feature (e.g., age) and threshold value that
best separates the data into two groups, one containing customers who are likely to purchase
the product and the other containing those who are not. This process is repeated recursively
for each subset until certain stopping criteria are met, such as reaching a maximum tree
depth or minimum number of samples in each leaf node.
One of the main advantages of CART is its interpretability. The resulting decision tree
can be easily visualized and understood, making it useful for explaining the underlying

43

decision-making process to stakeholders. Additionally, CART can handle both numerical
and categorical features, as well as missing values, without requiring extensive preprocess-
ing. Moreover, CART is robust to outliers and can capture nonlinear relationships between
features and the target variable.
However, CART also has some disadvantages. One limitation is its tendency to overfit the
training data, especially when the tree is allowed to grow too deep or when the dataset is
small. Overfitting occurs when the model captures noise or irrelevant patterns in the training
data, leading to poor generalization performance on unseen data. To mitigate overfitting,
techniques such as pruning, which involves removing unnecessary branches from the tree,
can be applied. Another drawback of CART is its instability to small changes in the training
data, which can result in different trees being generated for similar datasets.
CART find numerous applications in finance: the algorithm’s ability to handle nonlinear
relationships and interpretability makes it valuable for predicting stock prices, identifying
trading patterns, and risk assessment. Some of these financial applications of CART are
discussed by Ma (2013) .
This paper investigates data mining methods, specifically utilizing a combination of Decision
Tree and Clustering algorithms. Additionally, it achieves stock forecasting by integrating
the CART and DBSCAN algorithms to develop a predictive model. Through extensive
parameter testing, the model demonstrates high accuracy and offers a scientific basis for
investment decision-making.
In summary, CART is a versatile and interpretable machine learning algorithm suitable for
a wide range of classification and regression tasks. Its effectiveness lies in its ability to
partition the feature space into simple, easily interpretable decision rules. However, care
must be taken to avoid overfitting and instability, particularly when dealing with complex
or noisy datasets.

44

Figure 12: CART: ROC Curve

45

Figure 13: CART: Variables’ Order of Importance

7.7 Ensemble Learning

Ensemble learning is a powerful machine learning technique that involves combining the
predictions of multiple individual models to improve overall predictive performance. The
fundamental idea behind ensemble learning is rooted in the concept of “wisdom of the crowd,”
where the collective intelligence of a diverse group of individuals often outperforms that of
any single member.
The key intuition behind ensemble learning lies in the fact that different models may capture
different aspects of the underlying data and make different types of errors. By leveraging
the diversity among these models and aggregating their predictions, ensemble methods can
achieve better generalization, reduce overfitting, and improve robustness compared to indi-
vidual models.
There are several types of ensemble learning methods, each with its own approach to com-
bining the predictions of individual models. Some of the most common ensemble techniques
include:

1. Bagging (Bootstrap Aggregating): Bagging involves training multiple instances of

46

the same base learning algorithm on different subsets of the training data, typically
selected with replacement. Each model learns from a slightly different perspective of
the data, and their predictions are combined through averaging or voting to produce the
final ensemble prediction. Random Forest is a popular example of a bagging ensemble
method, where decision trees are trained on random subsets of the dataset.

2. Boosting: Boosting is an iterative ensemble method that trains a sequence of weak
learners (models that perform slightly better than random guessing) sequentially, with
each subsequent model focusing on the examples that the previous models have strug-
gled with. In boosting, each model in the sequence corrects the errors of its prede-
cessors, leading to progressively improved performance. Gradient Boosting Machines
(GBM) and AdaBoost are common examples of boosting algorithms.

3. Stacking (Meta-Learning): Stacking combines the predictions of multiple diverse base
models by training a meta-model (or blender) on the outputs of these models. The
base models’ predictions serve as features for training the meta-model, which learns
how to best combine these predictions to make the final prediction. Stacking is partic-
ularly effective when the base models capture different aspects of the data or exhibit
complementary strengths and weaknesses.

Ensemble learning offers several advantages. Among them:

• Improved Accuracy: By leveraging the collective knowledge of multiple models,
ensemble methods can often achieve higher predictive accuracy than any individual
model.

• Robustness: Ensemble methods are less susceptible to overfitting and variance, as
errors made by individual models may cancel out when aggregated.

• Versatility: Ensemble methods are versatile and can be applied to various types of
machine learning tasks, including classification, regression, and anomaly detection.

• Interpretability: In some cases, ensemble methods can provide insights into the
underlying data relationships by examining the contribution of different models to the
final prediction.

However, ensemble learning also comes with certain challenges:

• Computational Complexity: Training and maintaining multiple models can be
computationally intensive, especially for large datasets or complex model architectures.

• Increased Model Complexity: Ensemble methods may result in more complex
models, which can be harder to interpret and debug compared to simpler models.

• Potential Overfitting: While ensemble methods are designed to reduce overfitting,
there is still a risk of overfitting if the individual models in the ensemble are highly
correlated or if the ensemble is overly complex.

47

In summary, ensemble learning is a powerful approach that leverages the diversity of multiple
models to improve predictive performance and robustness. By combining the strengths of
different models, ensemble methods can effectively tackle a wide range of machine learning
tasks and deliver superior results in many real-world applications.

7.8 Random Forest

Random Forest is a versatile and powerful machine learning algorithm that is widely used
for both classification and regression tasks. It is an ensemble learning method that operates
by constructing a multitude of decision trees during the training phase and then combining
their predictions to generate the final output.
To understand how Random Forest works, let’s delve into its mechanism. Suppose we have
a dataset with various features and corresponding labels indicating whether a particular in-
stance belongs to class A or class B. During the training phase, the Random Forest algorithm
randomly selects subsets of the data and builds decision trees on each subset. Each decision
tree is constructed by recursively partitioning the data based on the values of the features.
At each node of the tree, the algorithm selects the best feature to split the data, aiming to
maximize the purity or homogeneity of the resulting subsets.
Once all decision trees are constructed, the Random Forest algorithm aggregates their predic-
tions to make the final classification. In the case of classification tasks, it typically employs
a majority voting scheme, where each tree “votes” for the class label of a given instance.
The class with the most votes across all trees is then assigned as the predicted label for that
instance.
One of the key advantages of Random Forest is its ability to handle high-dimensional data
with a large number of features, as well as datasets with a mixture of numerical and cat-
egorical variables. Additionally, Random Forest is less prone to overfitting compared to
individual decision trees, thanks to its built-in mechanism of random feature selection and
bootstrapping.
However, Random Forest does have some limitations. For instance, it may not perform well
on datasets with highly imbalanced class distributions, as it tends to favor the majority
class in the voting process. Moreover, the interpretability of Random Forest models can be
challenging, especially when dealing with a large number of trees.
To illustrate how Random Forest would classify a data instance, let’s consider a scenario
in the context of credit risk assessment. Suppose we have a dataset containing information
about individuals applying for loans, including features such as income, credit score, and
employment status. The task is to predict whether a loan applicant is high-risk or low-risk
based on these features.
After training a Random Forest model on this dataset, we can use it to classify a new loan
applicant. For instance, if we have a new applicant with an income of $50,000, a credit
score of 700, and stable employment, we can input these features into the trained Random
Forest model. The model will then utilize the decision trees it has learned to evaluate the
applicant’s risk level, considering factors such as income, credit score, and employment status.

48

Based on the aggregated predictions of all decision trees, the Random Forest algorithm will
output a classification label indicating whether the applicant is high-risk or low-risk. This
classification can then be used by lenders to make informed decisions about approving or
denying the loan application.
An interesting financial application of Random Forest is discussed by Tan, Yan, and Zhu
(2019) . Their study evaluates the effectiveness of the random forest (RF) model in stock
selection within the Chinese market context. The RF model is trained using two types of
feature spaces: fundamental/technical features for long-term price trend forecasting and pure
momentum features for short-term predictions. Results indicate significant excess returns
over the past five years for both feature paradigms, with respective Sharpe ratios of 2.75 and
5. Although the excess returns have decreased in recent years, the findings suggest a market
that remains inefficient and far from equilibrium.

Figure 14: Random Forest: ROC Curve

49

Figure 15: Random Forest: Variables’ Order of Importance

7.9 Gradient Boosting Algorithms

Gradient boosting algorithms, including popular variants like Gradient Boosting Machines
(GBM), XGBoost, LightGBM, and CatBoost, are powerful machine learning techniques
used for regression and classification tasks. They work by sequentially training a series of
weak learners (typically decision trees) to correct the errors of their predecessors, ultimately
creating a strong predictive model.
The core idea behind gradient boosting algorithms can be summarized as follows:

1. Sequential Learning: Gradient boosting trains a sequence of weak learners itera-
tively, with each learner focusing on the mistakes made by the ensemble of models
trained so far. This sequential learning process allows the algorithm to progressively
improve its predictive performance over multiple iterations.

2. Gradient Descent Optimization: At each iteration, gradient boosting minimizes a
loss function by using gradient descent optimization. The loss function measures the
difference between the predicted values and the true labels of the training data. By

50

iteratively updating the model parameters in the direction that minimizes the loss,
gradient boosting aims to improve the model’s predictions with each step.

3. Gradient Calculation: The gradient descent optimization in gradient boosting in-
volves computing the gradient of the loss function with respect to the model’s predic-
tions. This gradient represents the direction and magnitude of the error, providing
valuable information on how to update the model to reduce prediction errors.

4. Weak Learners: Gradient boosting typically uses decision trees as weak learners,
often referred to as “base learners” or “base models.” These decision trees are shallow
(i.e., have a limited number of levels or splits) and are trained to capture simple patterns
in the data. Each weak learner contributes a small amount to the overall prediction,
and their predictions are combined through weighted averaging or summation.

5. Ensemble Combination: The predictions of the weak learners are combined to
produce the final ensemble prediction. In regression tasks, the predictions are usually
summed, while in classification tasks, they may be combined through averaging or
voting. The weights assigned to each weak learner’s prediction are determined during
the optimization process, with more accurate learners receiving higher weights.

Advantages of gradient boosting algorithms include:

• High Predictive Accuracy: Gradient boosting algorithms often yield state-of-the-
art performance on a wide range of machine learning tasks, achieving high predictive
accuracy even with complex and noisy datasets.

• Robustness to Overfitting: By sequentially minimizing the loss function, gradient
boosting naturally reduces overfitting, producing models that generalize well to unseen
data.

• Flexibility: Gradient boosting algorithms can handle various types of data and can
be applied to both regression and classification tasks. They can also accommodate
different loss functions and regularization techniques to customize the learning process.

• Feature Importance: Gradient boosting algorithms provide insights into feature
importance, allowing users to interpret the relative contributions of different features
to the model’s predictions.

Despite their strengths, gradient boosting algorithms also have some limitations:

• Computationally Intensive: Training gradient boosting models can be computa-
tionally expensive, especially when dealing with large datasets or complex model ar-
chitectures. This can limit their scalability and practicality for real-time applications.

• Sensitive to Hyperparameters: Gradient boosting algorithms require careful tun-
ing of hyperparameters, such as the learning rate, tree depth, and regularization pa-
rameters, to achieve optimal performance. Improper parameter settings may lead to
suboptimal results or overfitting.

51

• Black Box Nature: Like other ensemble methods, gradient boosting models are often
considered black-box models, meaning that their internal workings may be difficult to
interpret or explain. This lack of interpretability can be a drawback in domains where
model transparency is important.

In summary, gradient boosting algorithms are powerful and versatile machine learning tech-
niques that excel at predictive tasks. By iteratively improving model predictions through
gradient descent optimization and ensemble combination, gradient boosting algorithms can
produce highly accurate and robust models across a wide range of applications. However,
users should be aware of the computational costs and parameter tuning requirements asso-
ciated with these algorithms.

7.10 XGBoost

XGBoost, which stands for Extreme Gradient Boosting, is an optimized and scalable im-
plementation of gradient boosting algorithms that has gained popularity for its exceptional
performance in both regression and classification tasks. Developed by Tianqi Chen, XG-
Boost is known for its speed, accuracy, and flexibility, making it a popular choice among
data scientists and machine learning practitioners.
At its core, XGBoost builds an ensemble of decision trees sequentially, where each tree
is trained to correct the errors of its predecessors. The algorithm iteratively minimizes a
predefined loss function by adding decision trees to the ensemble, with each tree capturing
additional patterns in the data. The key components and working principles of XGBoost
can be summarized as follows:

1. Gradient Boosting Framework: XGBoost follows the gradient boosting framework,
which involves sequentially training a series of weak learners (decision trees) to improve
the overall predictive performance of the model. Each weak learner is trained to min-
imize a specified loss function by adjusting its parameters (split points, leaf values)
based on the gradient of the loss with respect to the predictions.

2. Regularization Techniques: XGBoost incorporates various regularization tech-
niques to prevent overfitting and improve generalization. These techniques include
shrinkage (learning rate), tree depth regularization (max_depth), minimum child
weight, and column subsampling (feature subsampling). By controlling the complexity
of individual trees and the overall ensemble, XGBoost can achieve better performance
on unseen data.

3. Optimized Implementation: XGBoost is designed for efficiency and scalability, with
optimizations implemented at various levels of the algorithm. It utilizes a distributed
computing framework to parallelize training and inference tasks, enabling faster pro-
cessing of large datasets. Additionally, XGBoost employs advanced data structures and
algorithms, such as the approximate tree learning algorithm and the histogram-based
split finding technique, to accelerate training and reduce memory usage.

52

XGBoost carries numerous advantages. First. it typically achieves state-of-the-art perfor-
mance on a wide range of machine learning tasks, including structured data analysis, text
mining, and image recognition. XGBoost is highly customizable and supports various loss
functions, evaluation metrics, and hyperparameters, allowing users to tailor the model to spe-
cific requirements. Moreover, XGBoost provides feature importance scores, enabling users
to interpret the relative contributions of different features to the model’s predictions.
Despite its many strengths, XGBoost also has some limitations. Training XGBoost models
can be computationally intensive, especially when dealing with large datasets or complex
model architectures. Tuning the hyperparameters of XGBoost models requires careful ex-
perimentation and domain knowledge, as improper settings may lead to suboptimal results
or overfitting. Additionally, the black-box nature of ensemble models like XGBoost can make
them challenging to interpret and explain, which may be a drawback in applications where
model transparency is important.
Financial applications of XGBoost are mainly linked to stock market prediction. More
specifically, stock price forecasting is a significant and intriguing aspect of financial markets,
with the potential to yield substantial economic benefits. Numerous researchers have delved
into this area to develop accurate forecasting methods. With this respect, the paper by
Wang and Guo (2020) introduces the DWT-ARIMA-GSXGB hybrid model for stock price
prediction. Initially, the discrete wavelet transform divides the dataset into approximation
and error components. The ARIMA models (0, 1, 1), (1, 1, 0), (2, 1, 1), and (3, 1, 0)
process the approximation data, while the improved XGBoost model (GSXGB) handles the
error data. The prediction outcomes are then combined through wavelet reconstruction.
Experimental analysis on 10 stock datasets reveals that the DWT-ARIMA-GSXGB model
exhibits lower errors compared to individual ARIMA, XGBoost, GSXGB, and DWT-ARI-
MA-XGBoost models. Simulation results demonstrate the model’s strong approximation and
generalization abilities, particularly in fitting the opening stock index prices. Overall, the
proposed model significantly enhances predictive performance compared to single ARIMA
or XGBoost models in stock price prediction.

53

Figure 16: XGBoost: ROC Curve

54

Figure 17: XGBoost: Variables’ Order of Importance

[1] "AUC of XGBoost: 1"

[1] "Accuracy of XGBoost: 1"

[1] "F1 Score of XGBoost: 1"

[1] "Precision of XGBoost: 1"

[1] "Recall of XGBoost: 1"

7.11 LightGBM

Light Gradient Boosting Machine (LGBM) is a powerful machine learning algorithm that
belongs to the family of gradient boosting methods. It is known for its efficiency, scalability,
and high performance in handling large datasets. LGBM works by building an ensemble of
weak learners, typically decision trees, in a sequential manner. Each new tree is trained to

55

correct the errors made by the existing ensemble, with a focus on minimizing the overall
prediction error.
One of the key advantages of LGBM is its speed. Unlike traditional gradient boosting
algorithms, LGBM uses a novel technique called Gradient-based One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB) to efficiently select the most informative samples and
features during the training process. This significantly reduces the computational cost and
memory usage, making LGBM well-suited for large-scale datasets.
Another advantage of LGBM is its ability to handle categorical features naturally. Unlike
other tree-based algorithms that require one-hot encoding of categorical variables, LGBM can
directly handle categorical features by using a technique called the ‘leaf-wise’ split strategy.
This allows LGBM to effectively capture non-linear relationships and interactions between
features without the need for extensive preprocessing.
However, LGBM also has some disadvantages. One limitation is its sensitivity to overfitting,
especially when dealing with noisy or high-dimensional datasets. To mitigate this issue,
proper tuning of hyperparameters such as tree depth, learning rate, and regularization pa-
rameters is crucial. Additionally, LGBM may not perform well on small datasets where the
benefits of its optimization techniques are less pronounced.
To illustrate how LGBM works, consider a scenario where we want to predict whether a
customer will purchase a product based on various demographic and behavioral features.
We can train an LGBM model using historical data on customer attributes and purchase
outcomes. During training, LGBM will iteratively build decision trees that partition the
feature space to minimize prediction errors. The final ensemble of trees forms a predictive
model that can accurately classify new customers as potential buyers or non-buyers.
Light Gradient Boosting Machine (LGBM) and XGBoost, two prominent gradient boosting
algorithms, exhibit differences in optimization techniques, handling of categorical features,
and computational efficiency.
LGBM utilizes Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB) to efficiently select informative samples and features during training. GOSS reduces
instances for evaluation in each split, while EFB bundles exclusive features to reduce memory
usage. In contrast, XGBoost employs a regularized gradient boosting algorithm optimizing
a differentiable loss function with second-order derivatives. It utilizes a pre-sorted algorithm
for finding the best split points, which may be computationally expensive for large datasets.
Regarding categorical features, LGBM handles them directly without one-hot encoding,
using a ‘leaf-wise’ split strategy. Conversely, XGBoost typically requires one-hot encoding
for categorical variables, leading to increased memory usage and computational overhead.
In terms of computational efficiency, LGBM is renowned for its speed and scalability due
to optimized sampling techniques and parallelization capabilities. On the other hand, while
XGBoost is efficient, it may be slower for very large datasets due to its use of pre-sorted
algorithms and lack of direct support for categorical features.
There exist numerous financial applications of Light GBM, and some of the latter include
algorithms that combine both Light GBM and XGBoost. One of these applications was

56

discussed by Yang et al. (2021) .
Leveraging the dataset provided by Jane Street - one of the greatest trading firms worldwide,
their study employs the XGBoost and LightGBM models to forecast stock prices. Given the
extensive nature of the training data, which includes anomalies like missing values, initial
data preprocessing involves feature engineering. Notably, missing values are imputed with
the mean value to render the data suitable for modeling.
Empirical findings indicate that the amalgamated XGBoost and LightGBM model outper-
forms both individual models and neural networks in terms of prediction accuracy.

Figure 18: LightGBM: ROC Curve

57

Figure 19: LightGBM: Variables’ Order of Importance

58

8 Conclusion

Figure 20: Comparing models’ performances

The findings presented in Figure 20 underscore the pivotal role of machine learning algo-
rithms, particularly tree-based methods, in the realm of stock market prediction. Notably,
while logistic regression and KNN exhibit respectable performance metrics, it is the tree-
based models—CART, Random Forest, XGBoost, and LGBM—that truly shine in terms of
accuracy, AUC, F1 score, precision, and recall.
The exceptional performance of tree-based algorithms can be attributed to their innate abil-
ity to capture intricate relationships and nonlinear dependencies present in financial datasets.
Unlike linear models, which assume linear relationships between predictors and outcomes,
tree-based models can effectively handle complex interactions and nonlinear patterns inher-
ent in stock market data. This capability is especially crucial in the highly dynamic and
volatile environment of financial markets, where traditional linear methods often fall short.
Among the tree-based models, ensemble methods such as Random Forest excel by aggre-
gating predictions from multiple decision trees, thereby reducing overfitting and improving
generalization performance. On the other hand, gradient boosting algorithms like XGBoost
and LGBM leverage a sequential optimization process to iteratively refine weak learners,
resulting in highly accurate predictions. This iterative nature allows gradient boosting algo-
rithms to focus on correcting errors made by previous models, leading to superior predictive
performance.
Furthermore, the outstanding results achieved by gradient boosting algorithms highlight
their adaptability and robustness in capturing intricate patterns and trends in stock market
data. By sequentially refining models based on the residuals of previous iterations, XG-

59

Boost and LGBM can effectively extract valuable insights from large and complex datasets,
enabling investors to make informed decisions and devise profitable trading strategies.
In conclusion, the exemplary performance of tree-based algorithms, particularly gradient
boosting methods, underscores their significance as indispensable tools for stock market pre-
diction. Their ability to navigate the intricacies of financial data and deliver accurate fore-
casts empowers investors to capitalize on market opportunities and mitigate risks, thereby
enhancing their overall success in the dynamic world of finance.

60

References
Arkan, Thomas et al. 2016. “The Importance of Financial Ratios in Predicting Stock Price

Trends: A Case Study in Emerging Markets.” Finanse, Rynki Finansowe, Ubezpieczenia,
no. 79: 13–26.

Awoyemi, John O, Adebayo O Adetunmbi, and Samuel A Oluwadare. 2017. “Credit Card
Fraud Detection Using Machine Learning Techniques: A Comparative Analysis.” In
2017 International Conference on Computing Networking and Informatics (ICCNI), 1–9.
IEEE.

Chen, Yingjun, and Yongtao Hao. 2017. “A Feature Weighted Support Vector Machine and
k-Nearest Neighbor Algorithm for Stock Market Indices Prediction.” Expert Systems with
Applications 80: 340–55.

Chiu, Yu-Jing, Kuang-Chin Chen, and Hui-Chung Che. 2021. “Patent Predictive Price-
to-Book Ratio (PB) on Improving Investment Performance–Evidence in China.” World
Patent Information 65: 102039.

Gong, Jibing, and Shengtao Sun. 2009. “A New Approach of Stock Price Prediction Based
on Logistic Regression Model.” In 2009 International Conference on New Trends in
Information and Service Science, 1366–71. IEEE.

Kok, Joost N, Egbert J Boers, Walter A Kosters, Peter Van der Putten, and Mannes Poel.
2009. “Artificial Intelligence: Definition, Trends, Techniques, and Cases.” Artificial
Intelligence 1 (270-299): 51.

Ma, Yibu. 2013. “The Research of Stock Predictive Model Based on the Combination
of CART and DBSCAN.” In 2013 Ninth International Conference on Computational
Intelligence and Security, 159–64. IEEE.

Nalurita, Febria et al. 2016. “Impact of EPS on Market Prices and Market Ratio.” Business
and Entrepreneurial Review 15 (2): 111–30.

Nazareth, Noella, and Yeruva Venkata Ramana Reddy. 2023. “Financial Applications of
Machine Learning: A Literature Review.” Expert Systems with Applications 219: 119640.

Ozbayoglu, Ahmet Murat, Mehmet Ugur Gudelek, and Omer Berat Sezer. 2020. “Deep
Learning for Financial Applications: A Survey.” Applied Soft Computing 93: 106384.

Pratama, Peter, and Junino Jahja. 2021. “Effect of Financial Ratio on Lq45 2019 Stock
Return.” In International Conference on Business and Engineering Management
(ICONBEM 2021), 176–83. Atlantis Press.

Sheikh, Haroon, Corien Prins, and Erik Schrijvers. 2023. “Artificial Intelligence: Definition
and Background.” In Mission AI: The New System Technology, 15–41. Springer.

Shen, Peter. 2000. “The p/e Ratio and Stock Market Performance.” Economic Review-
Federal Reserve Bank of Kansas City 85 (4): 23–36.

Tan, Zheng, Ziqin Yan, and Guangwei Zhu. 2019. “Stock Selection with Random Forest:
An Exploitation of Excess Return in the Chinese Stock Market.” Heliyon 5 (8).

Wang, Yan, and Yuankai Guo. 2020. “Forecasting Method of Stock Market Volatility in
Time Series Data Based on Mixed Model of ARIMA and XGBoost.” China Communi-
cations 17 (3): 205–21.

Yang, Yue, Yang Wu, Peikun Wang, and Xu Jiali. 2021. “Stock Price Prediction Based on
Xgboost and Lightgbm.” In E3s Web of Conferences, 275:01040. EDP Sciences.

61

	Abstract
	Introduction to Artificial Intelligence and Machine Learning
	Artificial Intelligence
	Machine Learning
	Deep Learning

	Financial Applications of Artificial Intelligence and Machine Learning
	Machine Learning for Stock Market Prediction
	Machine Learning for Fraud Detection
	Machine Learning for Credit Scoring

	Predictive Modeling on NYSE Investments
	Introduction
	Overview of the Dataset
	Metrics of interest

	Data Preprocessing
	Inspecting for duplicates
	Inspecting for missing values
	Removing outliers
	Removing variables
	Handling imbalanced data
	Transforming given variables into factor type
	Scaling and standardization of variables

	Exploratory Data Analysis (EDA)
	Investigating distribution of numerical variables
	price_buy VS price_sell
	volatility_buy VS volatility_sell
	investment VS nominal_return
	ratios VS nominal_return
	ratios VS investment
	Correlation matrix

	Model Implementation
	Splitting the dataset: Train set / Test set
	Normalizing data with Min - Max Scaling
	Logistic Regression
	K-Nearest Neighbors (KNN)
	Tree Based Algorithms
	Classification And Regression Trees (CART)
	Ensemble Learning
	Random Forest
	Gradient Boosting Algorithms
	XGBoost
	LightGBM

	Conclusion
	References

