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Introduction

The ultimate challenge for a gambler is to detect betting opportunities that

are able to generate positive returns. After spotting some attractive bargains, the

gambler must settle how much of their capital they are willing to bet on each

of them, as a rational person is expected to choose those that maximize their

expected return.

However, Daniel Bernoulli demonstrated that, paradoxically, a gambler should

bet no matter the cost and, instead of maximizing returns, economists and

probabilists have come to the conclusion that the gambler should maximize their

utility function.1 As stated by Daniel Bernoulli, a gambler should maximize the

utility function U(x) = log x where x represents the investment return.[2]

Subsequently, John Larry Kelly Jr. developed Bernoulli’s ideas and found some

remarkable properties of the utility function U(x) = log x[5]. His findings can be

extended to gambling scenarios in order to help a gambler determine which bets

are the most profitable ones and how much money they should put at stake.

More precisely, he came up with the fixed portion of capital that the gambler

should wage to maximize their utility function and achieve the highest level of

satisfaction given certain conditions, known as the Kelly Criterion.[6]

The main task for this research consists of investigating the core differences and

1A tool employed by economists as a measure of relative satisfaction and often sketched using

factors like consumption of different goods and services, wealth and spending of leisure time.
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similarities between gambling and investing by focusing on three main aspects:

loss mitigation, the time factor and collection of information. As a matter of fact,

the presence of the house advantage causes an investor’s expected return to be

usually better than a gambler’s over the long run, as the house advantage over

the gambler grows as they keep playing. Besides, investors have access to several

loss-mitigation strategies which are not available in case we bet on any gambling

activity and are provided with much more information compared to gamblers.

This analysis is conducted with the purpose of assessing whether the mathematical

tools used in the world of gambling can be proven effective also in maximizing

investors’ profits. In case this were possible, we would then evaluate which of the

two activities is more profitable in the long run by using the very same tools.

In order to accomplish this, we investigate many gambling settings and present

theorems and criteria for each of them, demonstrating also why those specific tools

are effective in offering the best solution to that particular problem.

The procedure described above will offer us a full picture of all the instruments

at our disposal and allow us to assess whether an investment position we want

to inspect matches the conditions needed to apply the mathematical theorems

considered in our analysis.

This thesis is organized in four parts: Chapter 1 defines gambling, focusing

on why it differs from speculating and investing and explaining how to recognise

whether someone exhibits gambling tendencies. In addition, it covers the concept

of casino mentality and offers some solutions to fight this dangerous mindset.

Chapter 2 offers a dissertation on gambling theory, with the aim of introducing

the reader to key concepts and definitions that settle the foundation of some useful

theorems and criteria. Furthermore, it shows how some of them can be applied

not exclusively to gambling, but also in some investment settings, by providing

numerous examples; more precisely, it illustrates how the Kelly Criterion can be
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useful also in investment theory, as it is crucial for investors to choose carefully

what fraction of their wealth should be allocated to stock investing.

Chapter 3 deals with the notion of house advantage, which can be defined as a

numerical index of the unfavorability of a wager; hence, the smaller the house

advantage, the more favorable the game is to the bettor and the better are their

chances of placing a winning wager. Then, we explain the importance and

application of the house advantage to betting games and develop the concepts of

volatility of a wager and expected loss per standard deviation, which are crucial

to assess the convenience and riskiness of wagers in games dealing with theoretical

probabilities like the roulette.

Lastly, in Conclusions are displayed the final remarks and draws the conclusion of

this thesis by analyzing the most evident drawbacks of gambling and explaining

the reasons why it would be wiser to rely on investment opportunities instead.
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Chapter 1

Gambling, Speculating and

Investing

Have you ever wondered why some people say that stock investing is just like

gambling at a casino or make comments of that sort?

As a matter of fact, both activities involve risk and choice (to be more specific,

risking capital hoping for future profit), but equity investing can last a lifetime,

while gambling is typically a short-term activity that comes to an end as soon as

the outcome of the bet is known.

Furthermore, gambling usually implies bearing a negative expected return over

the long run, also due to the presence of the house advantage that features the

majority of bets, whereas investing in the stock market often ensures a long-run

positive expected return on average.

1.1 Definition of Gambling

Gambling can be defined as “staking something on a contingency”, betting

money on some event having an uncertain (and potentially negative) outcome.
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Also known as betting or wagering, it consists of risking money on an event having

an uncertain outcome and strongly dependent on chance. Like investors, gamblers

must select thoughtfully the amount of funds they want to put at stake; some of

them use pot odds1 to determine their risk capital versus their risk versus reward

when playing card games: in case of favorable odds, the player is more likely to

call the bet.

Most professional gamblers are very skilled at risk management: they investigate

player/team history, or a horse’s lineage and track record. Looking for an edge,

card players usually look for clues from the other players at the table: some of

them can recall their opponents’ wagers from many hands back and even study

their betting patterns, hoping to catch useful information in order to build their

basic strategy. Griffin defines the basic strategy applied to blackjack as “the

strategy maximizing the player’s average gain playing one hand against a whole

deck of cards”. Thus, with a stated number of decks and fixed array of rules there

can be only one “basic strategy”, although there may be a bunch of (but slightly

inaccurate) versions of it. If we supply instructions on how to play the second and

subsequent cards of a split based on those used earlier, it is likely that nobody,

including experts, can discover what the basic strategy is.[4]

In casino gambling the bettor is challenging the house, whereas in sports betting

and lotteries bettors are competing against each other since the number of players

plays a part in estimating the odds. In horse racing, for instance, every bet placed

by a gambler is actually a wager against other bettors, as the odds on each horse

are defined by the sum of money put on that specific horse and undergo constant

alterations up until the start of the race.2 However, when trading gets involved,

gambling takes on a more complex dynamic because many traders are gambling

1The ratio between the current size of the pot and the cost of a contemplated call.
2Stephan A. Abraham, “Going All-in: Investing vs. Gambling”, Investopedia.com, October

21th 2023, https://www.investopedia.com/articles/basics/09/compare-investing-gambling.asp.
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without even realizing it, or by following an extremely dichotomous reasoning.

We will now explore the sneaking ways in which gambling crawls into trading

activities, analysing the possible stimuli that can drive someone to trade (and

possibly gamble) in the first place.

1.2 Hidden Gambling Tendencies

People who are embarking or have already embarked on gambling tendencies

usually display two common traits during trading:

• if someone trades for excitement or social proofing purposes, rather than in

a systematic way, they are likely gambling;

• if someone trades with the mere goal of winning, they are likely trading in a

gambling style; traders manifesting a “must-win” attitude will often have a

hard time identifying a losing trade and leave their position.

People who suppose they do not display gambling tendencies will likely struggle

to admit having them if it turns out they are indeed acting by pursuing gambling

impulses. Apart from when actually trading, some demeanors are perceivable even

before trading takes place and these same motivators keep impacting traders even

when they get more experienced and become regular market participants, causing

them to make very unfortunate choices.

1.2.1 Social Proofing

Some people may not even be interested in trading or investing in financial

markets, but social pressure pushes them to trade or invest anyway, especially

if people close to them are discussing investments. In this situation, people feel

pressure to conform to their social circle and hence they invest in order not to
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disrespect or overlook others’ beliefs or even feel left out.

Trading to relieve social forces is not gambling by itself if people are actually aware

of their own actions. Nevertheless, entering into a financial transaction without a

full understanding is gambling, as ignorance prevents those people from exerting

control over the profitability of their choices.3

The availability of so many variables in the market, matched with misinformation

diffused among investors or traders, creates a gambling scenario; since knowledge

enabling people to overcome the odds of losing has been developed, gambling has

been taking part in every market transaction.

1.2.2 Trading for Excitement

Even a losing trade can shake a sense of might or fulfillment, particularly if

related to social proofing: if everyone in your social circle is losing money, losing on

a trade yourself will allow you to better fit in the conversation and share your own

experience. When someone trades for either excitement or social proofing reasons,

they are most likely trading in a gambling style as this behavior is often driven by

psychological factors rather than rational decision-making. As a matter of fact,

this excitement is usually expected to draw you away from acting in a systematic

and methodical way, which is crucial in any odds-based scenario.

Individuals may trade for excitement to experience the rush linked to market

volatility, the anticipation of gains, or the activity of placing trades. For this

reasons, it can be likened to gambling, where the process itself provides a form of

entertainment. This behavior can lead to impulsive decisions and disregarding risk

management principles, which can result in significant financial losses, as decisions

are often based on emotions rather than careful analysis.

3Cory Mitchell, “Are You Investing or Gambling”, Investopedia.com, October 9th 2023,

https://www.investopedia.com/articles/basics/10/investing-or-gambling.asp.
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Easily accessible trading platforms and apps have made it easier for any user

to engage in trading: features like instant notifications and social trading can

amplify the excitement factor and encourage more frequent trading. Also online

communities, forums, and social media platforms can contribute to the excitement

owing the fact that sharing trading experiences and following trends can create a

sense of fellowship and fuel the excitement even further.

1.2.3 Trading to Win

Winning appears to be the most obvious reason to trade: after all, what is

the point in trading if you have no chance of winning? Nevertheless, there is a

hidden flaw lying in this view: while earning money is the craved ultimate purpose,

trading to win can truly lead you further away from earning a profit. If winning

is the main motivator, an analogous scenario is likely to happen:

Jane buys a stock she deems oversold. The stock keeps on falling, placing Jane

in a negative position but, instead of figuring out the stock is not simply oversold

and deciding to sell, Jane continues to hold, hoping the stock price will rise back

so she can earn (or at least break even) on the trade. In this case the focus on

winning has prevented her from getting out of a bad position just because she did

not want to admit she lost.

Holding losing positions after original entry conditions have transformed or gone

negative points out that the trader is now gambling and no longer adopting safe

trading strategies.4 On the other hand, good traders admit when they make a

mistake and try to limit damages: not having to always win and accepting losses

when implied is what allows them to be successful over many trades.

4Cory Mitchell, “Are You Investing or Gambling”, Investopedia.com, October 9th 2023,

https://www.investopedia.com/articles/basics/10/investing-or-gambling.asp.
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1.3 Speculation vs. Gambling

Speculation and gambling are operations used to increase wealth while facing

risk or uncertainty; they both involve engaging money to high-risk events that may

or may not pay off but they differ consistently for what concerns expected results.

Speculation entails some kind of positive expected return, even though the final

result may be a loss. On the other hand, the expected return for a gambler is

negative despite the fact that someone may get lucky and win. In the world of

investing, gambling refers to wagering money in an event that has an uncertain

outcome hoping to win more money, while speculation involves taking a calculated

risk with an uncertain outcome.

Although we could find some shallow analogies linking the two concepts, a rigorous

definition of both terms unveils the key differences between the two. A standard

dictionary defines speculation as “engagement in a risky business transaction on

the chance of quick or considerable profit”. The same dictionary explains gambling

as: “the activity of playing a game of chance for stakes or betting on an uncertain

outcome. To stake or risk money, or anything of value, by taking a chance or

acting recklessly”.5

Speculation implies calculating risk and carrying out research before entering a

financial transaction. Speculators buy or sell assets hoping for a potential gain

bigger than the amount they risk; they know that, in theory, the greater risk they

take, the higher their potential gain and they are also aware of the fact that they

may lose more than their potential gain.6

Even though speculation is risky, it often yields a positive expected return which

5Both definitions of speculation and gambling are taken by the American Heritage Dictionary.
6Steven Nickolas, “Speculation vs. Gambling: What’s the Difference?”, Investo-

pedia.com, December 11th 2023, https://www.investopedia.com/ask/answers/042715/what-

difference-between-speculation-and-gambling.asp.
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however may never manifest; in contrast, gambling always features a negative

expected return, as the house still has an advantage.

When you gamble, the probability of losing what you have bet is usually higher

than the probability of winning more than that same amount and, compared to

speculation, gambling has a higher risk of losing your investment.

1.4 Is Investing Basically Gambling?

Investing consists of committing capital to an asset expecting a return in the

form of income or price appreciation, which can be considered the core premise

of investing. Risk and return are directly proportional in investing, as low risk

typically implies low expected returns while higher returns often imply higher

risk. However, risk and return expectations change widely also within the same

class of assets and spreading your capital across different assets will probably help

impair potential losses.[7]

On the other hand, gambling is betting money on an uncertain outcome which

will likely turn out to be negative. Furthermore, a gambler owns nothing, while

an investor owns a share of a company as some of them actually refund investors

for their ownership with stock dividends.

1.4.1 Is Investing in the Stock Market the same as Casino

Betting?

Investing in the stock market can be considered playing in a casino in case you

purchase stocks randomly or solely based on rumors. However, if you manage to

build a well-diversified portfolio or invest passively in a broad stock market index,

you will face a positive expected return and foster your wealth over time. On the

other hand, experts state that “once you have entered a casino you are already
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down money”.

Trading can be exciting, stimulating and can urge reward pathways in the brain:

earning a profit or simply getting pumped about a potential one cause the brain to

unload feel-good neurochemicals like dopamine and serotonin; because of this, peo-

ple can develop an addiction, just like with gambling or using drugs.7 As any deep

addiction, trading addiction can jeopardise your job and personal relationships, as

well as your wealth.

1.5 The Casino Mentality

Data show that most of the traders dealing at the shallow end of the market

pool will sooner or later fail in their quest as between 70% and 90% of them end

up losing their money over time8; some of them hand over the reins to a money

manager, others simply give up and look for alternative ways to make profits. Most

of them never had the chance to get a positive return because they entered the

market with a “casino mentality” that brought them to failure.

This section unfolds what this casino mentality is exactly and how it impairs an

investor’s quest for profitability. Then, we attempt to convene whether this flawed

approach is bound to beginners only or also experienced traders get caught up in

this conduct. Finally, we illustrate the most valid tool to overcome this mentality

and how to substitute it with a disciplined approach fostering gainful speculation.

7Alan Farley, “The Casino Mentality in Trading”, Investopedia.com, November 2nd 2023,

https://www.investopedia.com/articles/investing/070815/casino-mentality-trading.asp.
8Oddmund Groette, “What Percentage Of Traders Fail? (How Many

Lose Money? Statistics)”, Quantified Strategies.com, January 6th 2024,

https://www.quantifiedstrategies.com/what-percentage-of-traders-fail/.
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1.5.1 Understanding the Casino Mentality

Traders who are not familiar with basic trading strategies and are unaware of

the nature of risk compare their involvement in the financial markets to a trip to

the casino, hoping the stack of cash they decided to invest can be traded in for a

bigger one when they leave, hypnotized by the greed that features all the so called

get-rich-quick schemes.

Just like a slot machine, minor and regular compensation increase their motivation

to wage more money, disregarding whether or not those are fit to running market

conditions and possibilities in play; this greed rarely attains a big win and mainly

causes consistent losses over time, leaving the floor to failure and a terminal exit

from trading. The lack of a definable verge seals investors’ fate, just like gamblers

betting out of eagerness usually miss to learn the odds and suitable strategies

for each game to cut down or wipe out the house advantage. In the meantime,

both gamblers and investors get secondary reinforcement for their detrimental

conduct because their bodies release adrenaline and endorphins whenever they

play, regardless of the outcome.9

The casino mentality rises the biggest capital losses when dealing with binary

events, like earnings reports or economic releases causing sudden higher or lower

security prices; in these situations, clever traders step down or hedge positions at

these inflection points since they do not know the aftermath and guessing is not a

smart scheme.10 Indeed, Liz Ann Sonders, managing director and chief investment

strategist of Charles Schwab, once said:

“...it’s not what you know that matters, meaning about the future. When’s the

9American Psychiatric Association, “What Is Gambling Disorder?”,

https://www.psychiatry.org/patients-families/gambling-disorder/what-is-gambling-disorder.
10Alan Farley, “The Casino Mentality in Trading”, Investopedia.com, November 2nd 2023,

https://www.investopedia.com/articles/investing/070815/casino-mentality-trading.asp.
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next move up or down the market? It’s what you do that matters. Investors often

think the key to success is knowing what’s going to happen and then positioning

accordingly in advance, and that’s just gambling on moments in time.”

1.5.2 Beginner’s Flaw or Lifetime Affliction?

The casino mentality mainly affects novices, as it is generally caused by a

misunderstanding of financial markets and their functioning; sooner or later, many

investors will learn from their mistakes, using previous losses as a wake-up call and

taking the subject matter more seriously.

While beginners sticking with the casino mentality wash out quickly, experienced

traders can keep on adopting this destructive mindset for years; even though it

does not overcome their typical strategies, it can show up in case discipline gets

overpowered by greed. Nevertheless, if used in small amounts, it may introduce

some fun into trading as long as position size is kept down.

1.5.3 How to Overcome the Casino Mentality

Education undoubtedly grants the most powerful shield to use as a defense

against the casino mentality: you should consult didactic materials on investing,

trading and the evolution of financial markets; then analyse materials dedicated

to your area of interest, including both fundamental and technical analysis, before

starting your investing career.

However, many beginners avoid the educational journey because they are fine

with chasing the flattery of easy money, hoping for big payouts without any effort

from their side. Logistically, this benefits the most serious-minded participants,

who will deal with a large number of clueless investors that increase their potential

reward at key market turning points.

Overcoming the casino mentality implies the adoption of a disciplined and
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strategic approach. To shift from speculative trading to responsible investing,

traders should define specific, measurable, achievable and relevant goals for their

investments. They should also focus more on long-term objectives (retirement,

buying a house or funding education) rather than short-term gains.

This can be achieved with the creation of a diversified portfolio matching their

risk tolerance, time horizon and financial goals, combined with an asset allocation

strategy to stick to, making adjustments only when necessary based on significant

life changes or financial goals. That leads to the need of implementing some

risk management techniques, such as the use of stop-loss orders to limit potential

losses and regularly review and balance the portfolio to maintain the desired level

of risk. It would also be very wise for the most unexperienced investors to involve

a financial advisor or investment professional who can provide objective guidance

and help them develop and stick to a long-term investment plan.

In the next chapter, we will introduce several settings, related both to the

investing and gambling worlds, and solve them by showing that instruments usually

used in gambling scenarios can be useful to assess also investment opportunities.

If implemented correctly, these tools can represent an effective solution to outplay

the casino mentality.
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Chapter 2

Martingales

In this chapter we will deal with stochastic processes, which are defined as

random quantities that evolve when a parameter (time, for example) changes.

In particular we will focus on martingales, that is to say stochastic processes

associated to fair games in the context of gambling.

2.1 Stochastic Processes and Filtrations

Imagine playing the same game at the casino many times and being interested

in counting the total quantity of money that you win during the rounds. If we

denote by Xi the quantity of money won in the i-th round, then the total quantity

of money won in the first n rounds is

Sn =
n∑

i=1
Xi

The total quantity of money won during the rounds is expressed by the sequence of

random variables S1, S2, S3, ..., Sn and the sequence of random variables {Sn}n∈N>0

is a stochastic process since it describes the evolution of the total amount of money
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earned as the number of rounds n varies. To compute Sn, we need to know the

value of X1, ..., Xn and the sequence of random variables {Xn}n∈N>0 represents the

information that we accumulate during the rounds, hence we can consider such a

sequence a filtration. A stochastic process is a sequence of random variables that

describes the evolution of a random quantity during the variation of a parameter,

while a filtration is a sequence of random variables that represents the information

we collect while studying the evolution of a stochastic process. In the next section

we will consider a particular type of stochastic process called martingale.

2.2 Martingales and Super/Sub martingales

Suppose to toss a coin many times and each time you win 1 euro if the result

is head and you lose 1 euro if the result is tail. Imagine having an initial fixed

capital S0 > 0 and that P(head) = p ∈ [0, 1]. Denote by Xi the quantity of money

won in the i-th round:

Xi =


1, with probability p ,

−1, with probability 1 − p

(2.1)

where {Xn}n∈N>0 is a family of i.i.d. random variables and by Sn the capital after

n rounds where

Sn = S0 +
n∑

i=1
Xi.

Suppose to have concluded the n-th round and that we wonder about our

average capital at round n + 1. Since we have already played n rounds, we know

exactly the values of X1, ..., Xn, so we want to compute

E[Sn+1|X1, ..., Xn] .

Notice that, since we know the values of X1, ..., Xn, we also know Sn = S0+∑n
i=1 Xi.
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Hence, since

Sn+1 = S0 +
n+1∑
i=1

Xi = S0 +
n∑

i=1
Xi + Xn+1 ,

the only unknown in Sn+1 is Xn+1. Therefore

E[Sn+1|X1, ..., Xn] = E[Sn + Xn+1|X1, ..., Xn] =

= E[Sn|X1, ..., Xn] + E[Xn+1|X1, ..., Xn] .

Since Sn is known when knowing X1, ..., Xn, then E[Sn|X1, ..., Xn] = Sn. Moreover,

given that {Xn}n∈N>0 are independent, we have E[Xn+1|X1, ..., Xn] = E[Xn+1] and

the previous equation becomes

E[Sn+1|X1, ..., Xn] = E[Sn|X1, ..., Xn] + E[Xn+1|X1, ..., Xn] =

= Sn + E[Xn+1] = Sn + p − (1 − p) = Sn + 2p − 1 .

So we have:

• if p = 1
2 , the coin is fair and the game is fair since E[X1] = 0). Furthermore

E[Sn+1|X1, ..., Xn] = Sn ,

meaning that the average capital we will have in the next round is equal to

what we have now. This is the main property of a martingale.

• if p < 1
2 , the coin is not fair and the game is subfair since E[X1] < 0).

Furthermore

E[Sn+1|X1, ..., Xn] < Sn ,

meaning that the average capital we will have in the next round is less than

what we have now. This is the main property of a supermartingale.

• if p > 1
2 , the coin is not fair and the game is superfair since E[X1] > 0).

Furthermore

E[Sn+1|X1, ..., Xn] > Sn ,
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meaning that the average capital we will have in the next round is more than

what we have now. This is the main property of a submartingale.

Note that {Xn}n∈N>0 represents a filtration, that is the information we accumulate

during the rounds, in order to evaluate the stochastic process {Sn}n∈N>0.

Definition 2.1. Given two sequences of random variables {Sn}n∈N>0 and {Xn}n∈N>0 ,

{Sn}n∈N>0 is a martingale with respect to the filtration {Xn}n∈N>0 if the following

three conditions are met:

(i) E[|Sn|] < ∞ for any fixed n ∈ N>0 ;

(ii) {Sn}n∈N>0 is adapted to the filtration {Xn}n∈N>0 , that is, known the value

of X1, ..., Xn , we know also the value of Sn;

(iii) E[Sn+1|X1, ..., Xn] = Sn .

Definition 2.2. Given two sequences of random variables {Sn}n∈N>0 and {Xn}n∈N>0,

{Sn}n∈N>0 is a supermartingale with respect to the filtration {Xn}n∈N>0 if the

following three conditions are met:

(i) E[|Sn|] < ∞ for any fixed n ∈ N>0 ;

(ii) {Sn}n∈N>0 is adapted to the filtration {Xn}n∈N>0 , that is, known the value

of X1, ..., Xn , we know also the value of Sn ;

(iii) E[Sn+1|X1, ..., Xn] ≤ Sn .

Definition 2.3. Given two sequences of random variables {Sn}n∈N>0 and {Xn}n∈N>0 ,

{Sn}n∈N>0 is a submartingale with respect to the filtration {Xn}n∈N>0 if the

following three conditions are satisfied:

(i) E[|Sn|] < ∞ for any fixed n ∈ N>0 ;
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(ii) {Sn}n∈N>0 is adapted to the filtration {Xn}n∈N>0 , that is, known the value

of X1, ..., Xn, we know also the value of Sn ;

(iii) E[Sn+1|X1, ..., Xn] ≥ Sn .

Note that if {Sn}n∈N>0 is a supermartingale and/or a submartingale, both

with respect to the filtration {Xn}n∈N>0 , then {Sn}n∈N>0 is also a martingale with

respect to the filtration {Sn}n∈N>0 . Let us check that the two first properties are

satisfied in the previous example by using the Triangular Inequality.1

Let us consider again the case of Sn = S0 + ∑n
i=1 Xi , where S0 > 0 is a fixed

number and {Xn}n∈N>0 is a sequence of i.i.d. random variables, with Xi defined

as in (2.1). Since Sn = S0 + ∑n
i=1 Xi, we know its value by knowing the values

of X1, ..., Xn, so {Sn}n∈N>0 is adapted to the filtration {Xn}n∈N>0 (property (ii)).

Let us focus now on property (i); by Triangular Inequality we have

|Sn| =
∣∣∣∣∣S0 +

n∑
i=1

Xi

∣∣∣∣∣ ≤ |S0| +
n∑

i=1
|Xi| = S0 +

n∑
i=1

|Xi|

and hence

E[|Sn|] ≤ E
[
S0 +

n∑
i=1

|Xi|
]

= S0 +
n∑

i=1
E[|Xi|] .

Since

E[|Xi|] = |1| · p + | − 1| · (1 − p) = 1 ,

we have that

E[|Sn|] ≤ S0 +∑n
i=1 E[|Xi|] = S0 +∑n

i=1 1 = S0 +n < ∞ for any fixed n ∈ N>0.

So property (i) of (super/sub)martingales is verified. As discussed before Definition

2.1, we have

E[Sn+1|X1, ..., Xn]



= Sn , if p = 1
2 ,

≤ Sn , if p ≤ 1
2 ,

≥ Sn , if p ≥ 1
2 .

1See Proposition A.1 in Appendix for reference.
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Having proved properties (i) and (ii), we have shown that the stochastic process

{Sn}n∈N>0 is, with respect to the filtration {Xn}n∈N>0, a martingale if p = 1
2 , a

supermatringale if p ≤ 1
2 , a submartingale if p ≥ 1

2 . A direct consequence of the

third property of the (super/sub)martingales is the monotonicity of the expectation

of the stochastic process. More precisely, we have the following result:

Proposition 2.2.1. Given two sequences of random variables {Sn}n∈N>0 and

{Xn}n∈N>0, we have that:

(i) if {Sn}n∈N>0 is a martingale with respect to the filtration {Xn}n∈N>0, then

E[Sn] is constant in n, that is

E[Sn+1] = E[Sn] = ... = E[S1]

(ii) if {Sn}n∈N>0 is a supermartingale with respect to the filtration {Xn}n∈N>0,

then E[Sn] is decreasing in n, that is

E[Sn+1] ≤ E[Sn] ≤ ... ≤ E[S1]

(iii) if {Sn}n∈N>0 is a submartingale with respect to the filtration {Sn}n∈N>0, then

E[Sn] is increasing in n, that is

E[Sn+1] ≥ E[Sn] ≥ ... ≥ E[S1]

Proof. If {Sn}n∈N>0 is a martingale with respect to the filtration {Xn}n∈N>0 then,

by property (iii) in Definition 2.1, we have

Sn = E[Sn+1|X1, ..., Xn] .

If we apply the expectation to both the members of the previous identity we get

E[Sn] = E[E[Sn+1|X1, ..., Xn]] .
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Using the Tower Property for the second member, we have

E[Sn] = E[Sn+1] .

Iterating this identity up to n = 1, we get the thesis. In case of supermartingales

and submartingales the computation is identical, but we start from property (iii)

in Definition 2.2 and Definition 2.3, respectively.

In the next example, we will see how to study if a stochastic process is a

martingale in the case where Sn = ∏n
i=1 Xi.

Example 2.1. Consider a sequence of i.i.d. random variables {Xn}n∈N>0 , with

E[X1] ∈ (0, ∞) and define for n ∈ N>0

Sn =
n∏

i=1
Xi .

We are interested in assessing whether the stochastic process {Sn}n∈N>0 is a

(super/sub)martingale with respect to the filtration {Sn}n∈N>0. Note that

E[|Sn|] = E
[∣∣∣∣∣

n∏
i=1

Xi

∣∣∣∣∣
]

= E
[

n∏
i=1

|Xi|
]

=
n∏

i=1
E[|Xi|]

where in the last identity we have used the fact that {Xn}n∈N>0, are independent

random variables and, as a consequence, also |X1|, |X2|, ..., |Xn| are independent

random variables. Since X1, X2, ..., Xn are i.i.d., they also have the same expected

value and hence

E[|Sn|] =
n∏

i=1
E[|Xi|] = (E[X1])n < ∞

for each fixed n ∈ N>0, being E[X1] < ∞. So property (i) of (super/sub)martingales

holds. Also property (ii) is verified as, knowing the values of X1, ..., Xn, we can

compute Sn by using the definition Sn = ∏n
i=1 Xi. Let us try to prove property (iii):

E[Sn + 1|X1, ..., Xn] = E
[

n+1∏
i=1

Xi|X1, ..., Xn

]
= E

[
Xn+1 ·

n∏
i=1

Xi|Xi, ...Xn

]
=

=
n∏

i=1
Xi · E[Xn+1|X1, ..., Xn] = Mn · E[Xn+1|X1, ..., Xn] ,
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where we have that, when conditioning on X1, ..., Xn,
∏n

i=1 Xi is a number and

hence goes out from the expectation. Notice that, since Xn+1 is independent on

X1, ..., Xn, the conditioning on X1, ..., Xn does not affect the expectation of Xn+1.

Therefore

E[Xn+1|X1, ..., Xn] = E[Xn+1] = E[X1]

Hence we deduce that

E[Mn+1|X1, ..., Xn = Mn · E[X1] .

As a consequence:

• if E[X1] = 1 , {Sn}n∈N>0 is a martingale with respect to the filtration {Xn}n∈N>0 ;

• if E[X1] ∈ (0, 1) , {Sn}n∈N>0 is a supermartingale with respect to the filtration

{Xn}n∈N>0 ;

• if E[X1] > 1 , {Sn}n∈N>0 is a submartingale with respect to the filtration

{Xn}n∈N>0 .

Let us see now an example applied to a betting game:

Example 2.2. Imagine to repeat the same bet many times and at each round you

can win a euro (where a > 0) with probability p, lose b euro (where b > 0) with

probability q, or have a tie with probability r, where p + q + r = 1. We denote by

Xi what is won in the i-th round, that is

Xi =



a , with probability p ,

0 , with probability r ,

−b , with probability q .

where {Xn}n∈N>0 is a sequence of i.i.d. random variables. Denote by Sn the total

capital obtained in n rounds and by S0 the initial capital (a fixed positive constant).
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So

Sn = S0 +
n∑

i=1
Xi

and we want to study the stochastic process {Sn}n∈N>0 and check if it is a

(super/sub) martingale with respect to the filtration {Xn}n∈N>0. By Triangular

Inequality, we have

E[|Sn|] ≤ E
[
|S0| +

n∑
i=1

|Xi|
]

= S0 +
n∑

i=1
E[|Xi|]

where we have used the fact that S0 > 0 by initial assumption. Since {Xn}n∈N>0

are identical distributed, they have also same expectation, so the above expression

becomes

E[|Sn|] ≤ S0 + nE[|X1|]

where

E[X1] = |a| · p + |0| · r + | − b| · q = ap + bq .

Here we have a, b > 0, hence −b is negative and its absolute value is b. So we get

E[|Sn|] ≤ S0 + nE[|X1|] = S0 + n · (ap + bq) < ∞

for any fixed n ∈ N>0 . Hence we have proved the first property of (super/sub)martingales.

Let us check for the second one: we have to verify that, known the values of

X1, ..., Xn, we know the value of Sn, meaning that {Sn}n∈N>0 is adapted to the

filtration {Sn}n∈N>0. This is true since, known the values of X1, ..., Xn, to compute

Sn it is enough to compute S0 +∑n
i=1 Xi (recall that S0 is a fixed constant known

from the start), so we have verified the second property. Let us now check the third

one: we have to study E[Sn+1|X1, ..., Xn]. Note that, since we know the values of

X1, ..., Xn, we also know the value of Sn. Hence, since

Sn+1 = S0 +
n+1∑
i=1

Xi = Sn = S0 +
n∑

i=1
Xi + Xn+1 = Sn + Xn+1 ,
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the only unknown part in Sn+1 is Xn+1. Therefore

E[Sn+1|X1, ..., Xn] = E[Sn + Xn+1|X1, ..., Xn] =

= E[Sn|X1, ..., Xn] + E[Xn+1|X1, ..., Xn] .

Since Sn is known when knowing X1, ...Xn, then E[Sn|X1, ..., Xn] = Sn. Moreover,

being {Xn}n∈N>0 independent, we have E[Xn+1|X1, ..., Xn] = E[Xn+1] and the

previous equation becomes

E[Sn+1|X1, ..., Xn] = E[Sn|X1, ..., Xn] + E[Xn+1|X1, ..., Xn] =

= Sn + E[Xn+1] = Sn + ap − bq .

Hence

• if E[X1] = ap − bq = 0 , {Sn}n∈N>0 is a martingale with respect to the

filtration {Xn}n∈N>0 ;

• if E[X1] = ap − bq < 0 , {Sn}n∈N>0 is a supermartingale with respect to the

filtration {Xn}n∈N>0 ;

• if E[X1] = ap − bq > 0 , {Sn}n∈N>0 is a submartingale with respect to the

filtration {Xn}n∈N>0

where the considerations above are independent on r (probability of tie).

This last example will be extremely relevant in the Gambler’s ruin setting,

which will be the main topic of Section 2.5.

Example 2.3. Suppose to have a fixed initial capital K0 > 0 and let Kn be the

total capital after n rounds of the following game: for n ∈ N>0, at the n-th round

we bet Kn−1 and we win Kn, where

Kn =



q
p

· Kn−1 , with probability p ,

p
q

· Kn−1 , with probability q ,

Kn−1 , with probability r
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where p, q > 0, r ≥ 0 and p + q + r = 1. Defining

Xi =



1 , with probability p ,

−1 , with probability q ,

0 , with probability r .

we have

Kn = (q/p)XnKn−1

and if we iterate this formula we get

Kn = (q/p)X1+...+XnK0 . (2.2)

Let us show that the stochastic process {Kn}n∈N>0 is a martingale with respect to

the filtration {Xn}n∈N>0 for any possible values of p,q,r. In this case it is easier to

prove the second and the third property before the first one. Note that {Kn}n∈N>0

is adapted to the filtration {Xn}n∈N>0 since, by (2.2), if we know the values of

X1, ..., Xn, we know also Kn. So the second property of the martingales is proved

and we can know focus on the third one:

E[Kn+1|X1, ..., Xn] = E
[
(q/p)X1+...+Xn+Xn+1K0|X1, ..., Xn

]
=

= E
[
(q/p)Xn+1 · (q/p)X1+...+Xn+XnK0|X1, ..., Xn

]
=

= E
[
(q/p)Xn+1 · Kn|X1, ..., Xn

]
.

(2.3)

Since {Kn}n∈N>0 is adapted to the filtration {Xn}n∈N>0, we have

E[Kn|X1, ..., Xn] = Kn .

Moreover, since {Xn}n∈N>0 are independent random variables, we get

E
[
(q/p)Xn+1|X1, ..., Xn

]
= E

[
(q/p)Xn+1

]
=

= (q/p)1 · p + (q/p)−1 · q + (q/p)0 · r = q + p + r = 1 .
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So equation (2.3) becomes

E[Kn+1|X1, ..., Xn] = E
[
(q/p)Xn+1 · Kn|X1, ..., Xn

]
=

= KnE
[
(q/p)Xn+1 |X1, ..., Xn

]
= Yn · 1 = Yn .

(2.4)

Hence, up to now we have shown that E[Kn+1|X1, ..., Xn] = Kn and that {Kn}n∈N>0

is adapted to the filtration {Xn}n∈N>0. By proving that E[|Kn|] < ∞, we get that

{Kn}n∈N>0 is a martingale with respect to the filtration {Xn}n∈N>0. Since Kn ≥ 0

for all n ∈ N>0, we have |Kn| = Kn, so it is enough to show that E[Kn] < ∞ .

Using the Tower Property we get

E[Kn] = E[E[Kn|X1, ..., Xn−1]] = E[Kn−1] ,

where in the last identity we have used (2.4). This proves that the expectation of

Kn is constant in n; more precisely, this implies that

E[Kn] = E[K0] = (q/p)1 · p + (q/p)−1 · q + (q/p)0 · r = q + p + r = 1 < ∞ .

So we have E[|Kn|] = E[Kn] < ∞ and hence {Kn}n∈N>0 is a martingale with

respect to the filtration {Xn}n∈N>0. Notice how the thesis is independent on the

values of p,q,r.

2.3 Optional Stopping Theorem

Let us consider the example discussed in (2.1) and define τ as the first time we

get head, meaning the first round i such that Xi = 1. τ is a random variable since

depends on the outcomes of the tossings and it can be rewritten as

τ = inf {i ∈ N>0|Xi = 1} (2.5)

from which we get

{τ = k} = {X1 ̸= 1, X2 ̸= 1, ..., Xk−1 ̸= 1, Xk = 1} . (2.6)
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Indeed τ = k if and only if we always got tail in the first k − 1 rounds and we got

head at the k-th round. To establish if τ = k, we need information up to round k

and this property defines what we call a stopping time.

Definition 2.4. Given a filtration {Xn}n∈N>0, we say that a discrete random

variable τ is a stopping time with respect to the filtration {Xn}n∈N>0 if it assumes

values in N and, to establish the occurrence of the event {τ = k}, it is necessary

to know only the values of X1, ..., Xk.

The random variable τ in (2.5) is a stopping time with respect to the filtration

{Xn}n∈N>0 since (2.6) holds. If instead we consider the random variable σ defined

as the last time in which we get head, we have

{σ = k} = {Xk = 1, Xk+1 = 1, Xk+2 = 1, ...} .

Indeed σ = k if and only if we get head at the k-th round and we have no heads

in future rounds. Since to establish the occurrence of the event {σ = k} we need

to know future information with respect to the k-th round (Xk, Xk+1, Xk+2, ..., ),

σ is not a stopping time with respect to the filtration {Xn}n∈N>0. The next result

shows the distribution of a particular stopping time and it will prove that the

latter has finite expectation.

Proposition 2.3.1. Given a filtration {Xn}n∈N>0 of i.i.d. random variables,

consider a value α ∈ Im(Xn), (α is a value assumed by {Xn}n∈N>0.) Let

p = P(Xn = α) > 0 (and hence P(Xn ̸= α) = 1 − p) and define

τ = inf {k ∈ N>0|Xk = α} ,

σ = inf {k ∈ N>0|Xk ̸= α} .

Then τ and σ are both stopping times with respect to the filtration {Xn}n∈N>0 and

τ ∼ Geom(p) , σ ∼ Geom(1 − p) .

Consequently we have E[τ ] = 1
p

< ∞ and E[σ] = 1
1−p

< ∞ .
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To prove that:

{τ = n} = {X1 ̸= α, X2 ̸= α, ..., Xn−1 ̸= α, Xn = α} ,

{σ = n} = {X1 = α, X2 = α, ..., Xn−1 = α, Xn ̸= α} .

Then

P(τ = n) = P(X1 ̸= α, X2 ̸= α, ..., Xn−1 ̸= α, Xn = α) ,

P(σ = n) = P(X1 = α, X2 = α, ..., Xn−1 = α, Xn ̸= α) .

Since {Xn}n∈N>0 are i.i.d., then

P(τ = n) = P(X1 ̸= α, X2 ̸= α, ..., Xn−1 ̸= α, Xn = α) = P(X1 ̸= α)n−1P(X1 = α) ,

P(σ = n) = P(X1 = α, X2 = α, ..., Xn−1 = α, Xn ̸= α) = P(X1 = α)n−1P(X1 ̸= α) .

Given that P(X1 = α) = p and P(X1 ̸= α) = 1 − p, we have

P(τ = n) = P(X1 ̸= α)n−1P(X1 = α) = (1 − p)n−1p ,

P(σ = n) = P(X1 = α)n−1P(X1 ̸= α) = pn−1(1 − p) ,

from which we get the thesis.

Remark 1. Note that τ and σ are not bounded random variables, so we cannot

say that τ and σ are less than some precise constant with probability 1; indeed

a geomtric random variable has image N>0 (not a bounded set). However, τ

and σ have finite expectation, that is in average they are finite. Hence we can

conclude that τ and σ are not bounded random variables, but are finite in average.

Actually, being geometric random variables, we can also say that they are finite

with probability 1. Indeed

P(τ < ∞) =
∞∑

n=1
P(τ = n) =

∞∑
n=1

(1 − p)n−1p =

= p
∞∑

n=1
(1 − p)n−1 =

j=n−1
p

∞∑
j=0

(1 − p)j = p · 1
1 − (1 − p) = 1 ,
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where in the last identity we have used the fact that, if |a| < 1, then ∑∞
n=0 an = 1

1−a
.

The same holds also for σ (it is enough to exchange p with 1 − p).

Proposition 2.2.1 establishes a relation between the stochastic process at a

fixed time n and at time 0. Now, we wonder if such a relation holds also with a

random time τ instead of the fixed time n: the answer is given by the Optional

Stopping Theorem that we formulate in case of martingales, supermartingales and

submartingales, with hypotheses being the same for all three cases.

Proposition 2.3.2. (Optional Stopping Theorem for Martingales). Let

{Mn}n∈N>0 be a martingale and let τ be a stopping time both with respect to the

same filtration {Xn}n∈N>0. Assume that one of the following hypotheses is satisfied

(a) ∃C > 0 such that P(τ < C) = 1 (τ is bounded almost surely);

(b) P(τ < ∞) = 1 and ∃C > 0 such that ∀n ∈ N it holds P(|Mn| ≤ C) = 1

(τ is finite almost surely and {Mn}n∈N>0 is uniformly bounded almost surely,

meaning that the constant C does not depend on n);

(c) E[τ ] < ∞ and ∃C > 0 such that P(|Mn+1 − Mn| ≤ C) = 1 holds ∀n ∈ N

(τ is finite in average and {Mn}n∈N>0 has uniformly bounded increments

almost surely, meaning that the constant C does not depend on n);

(d) P(τ < ∞) = 1 and Mn ≥ 0 ∀n ∈ N (τ is finite almost surely and it is a

non-negative process).

Then E[Mτ ] < ∞ and

E[Mτ ] = E[M0] .

As previously stated, the theorem holds also for super/sub martingales; in

particular, if {Mn}n∈N>0 is a supermartingale and τ is a stopping time both with

respect to the same filtration {Xn}n∈N>0 and one of the four hypothesis is true,
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then E[Mτ ] < ∞ and E[Mτ ] ≤ E[M0].

If instead {Mn}n∈N>0 is a submartingale and τ is a stopping time both with respect

to the same filtration {Xn}n∈N>0 and one of the four hypothesis is true, then

E[Mτ ] < ∞ and E[Mτ ] ≥ E[M0].

Example 2.4. Consider the sequence {Xn}n∈N>0 defined as in (2.1) and define

Sn = ∑n
i=1 Xi. Let us consider the stopping time

τ = inf{n ≥ 0|Xn = 1} .

We would like to assess whether the Optional Stopping Theorem can be applied to

understand the relation between E[Sτ ] and E[S1], hence we have check if one of

the hypothesis (a), (b), (c) and (d) is verified by the process {Sn}n∈N>0 and by the

stopping time τ. Note that τ is a stopping time of the form described in Proposition

2.3.1 and so we know that τ is a geomteric random variable of parameter

P(Xi = 1) = p > 0. By Remark 1 we know that τ is a finite random variable

almost surely but it is not bounded, so we have that P(τ < ∞) = 1 and does not

exist a constant C > 0 (independent on n) such that P(τ ≤ C) = 1. Hence we

know that hypothesis (a) of Optional Stopping Theorem is not verified. Let us

check hypothesis (b). We have already said that P(τ < ∞) = 1 and hence we have

to verify if there exists a constant C independent on n such that P(|Sn| < C) = 1.

Note that Sn = ∑n
i=1 Xi (and hence the values that Sn may assume) oscillate from

its minimum (obtained when Xi = −1 for all i = 1, ..., n) to its maximum (obtained

when Xi = 1 for all i = 1, ..., n). So −n ≤ Sn ≤ n, and hence |Sn| ≤ n. Therefore,

we should define C = n in order to have P(|Sn| ≤ C) = 1, but such a C depends

on n and hence it is not valid. This shows that the hypothesis (b) of the Optional

Stopping Theorem is not satisfied. Let us see if the hypothesis (c) is verified. By

Proposition 2.3.1 we have E[τ ] < ∞, so we are left to see if there exists C > 0
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(independent on n) such that P(|Sn+1 − Sn| ≤ C) = 1. Note that

Sn+1 − Sn =
n+1∑
i=1

Xi −
n∑

i=1
Xi =

n∑
i=1

Xi + Xn+1 −
n∑

i=1
Xi = Xn+1 ,

from which

|Sn+1 − Sn| = |Xn+1| ≤ max{|1|, | − 1|} = 1 .

So if we choose C = 1, we have |Sn+1 − Sn| ≤ C for any n ∈ N>0 and hence

P(|Sn+1 − Sn| ≤ C) = 1

for any n ∈ N>0. Note that this time the constant C = 1 is independent on n

and then it is a valid constant for the theorem. So hypothesis (c) of the Optional

Stopping Theorem is verified and we can conclude that:

• if p = 1
2 , {Sn}n∈N>0 is a martingale with respect to the filtration {Xn}n∈N>0

and we get

E[Sτ ] = E[S1] = E[X1] = 0 ;

• if p ≤ 1
2 , {Sn}n∈N>0 is a supermartingale with respect to the filtration {Xn}n∈N>0

and we get

E[Sτ ] ≤ E[S1] = E[X1] = 1 · p − 1 · (1 − p) = 2p − 1 ;

• if p ≥ 1
2 , {Sn}n∈N>0 is a submartingale with respect to the filtration {Xn}n∈N>0

and we get

E[Sτ ] ≥ E[S1] = E[X1] = 1 · p − 1 · (1 − p) = 2p − 1 .

For completeness, we can state that hypothesis (d) is not verified since {Sn}n∈N>0 is

not a non-negative process, as it may happen that Sn < 0 for some n (for example

if X1 = ... = Xn = −1 and hence Sn = −n) .
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In gambling theory, the Optional Stopping Theorem is also known as Principle

of Conservation of Fairness of a game. Indeed, given a game, it is possible to

see a stopping time as a quitting strategy from the game. With this in mind, the

Principle of Conservation of Fairness establishes that, if the game satisfies one of

the hypothesis (a), (b), (c) or (d), it is impossible to find a quitting strategy from

the game that transforms a subfair game into a superfair game. Indeed, as shown

in the previous example, if we work with a supermartingale we have E[Sτ ] ≤ E[S1]

and hence there is no stopping time τ satisfying the hypothesis of the theorem for

which E[Sτ ] > E[S1]. We will cover betting systems in the next sections and we

will see how the Martingale system escapes from the Principle of Conservation of

Fairness, allowing to have E[Sτ ] > E[S1] even if {Sn}n∈N>0 is a supermartingale.

2.4 Betting Systems

Imagine betting on a game and denote by X the quantity of money won or

lost for unit bet. Suppose to repeat the same bet many times and denote by

X1, X2, ... the quantity of money won or lost for unit bet at each round (so if at

the fifth round we bet 9, we win 9X5 at the fifth round). Being the mechanism of

the game independent on the previous rounds, the random variables X1, X2, ... are

obviously independent and, since the bet is the same for each round, X1, X2, ...

are also identically distributed. Let us assume now that at round n we bet a

quantity of money Bn that is dependent on the outcomes of the previous rounds

(X1, ..., Xn−1.) Then we can write

B1 = g1 > 0, Bn = gn(X1, ..., Xn−1) for n ≥ 2 , (2.7)

where gn is a decision rule that takes X1, ..., Xn−1 as input and gives the quantity

of money to bet at round n as output, while B1 is a fixed positive quantity g1 > 0

since the quantity of money to be bet on the first round is decided in a deterministic
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way. Since Xn is the quantity of money won at round n for unit bet and Bn denotes

the quantity of money bet at the n-th round, then the quantity of money won at

the n-th round is BnXn. The sequence of variables {Xn}n∈N>0 and {Bn}n∈N>0 form

a betting system. If we denote by Fn the total quantity of money that we have

at the end of the n-th round, we get

Fn = Fn−1 + BnXn for n ≥ 1 , (2.8)

that by iteration becomes

Fn = F0 +
n∑

i=1
BiXi , (2.9)

where F0 represents the determinisic quantity of money that we have at the

beginning. It makes sense to assume that we cannot bet more than what we

have at each round, that is Bn ≤ Fn−1 for n ≥ 1. We are interested in studying

the sequence {Fn}n∈N with respect to the filtration {Xn}n∈N>0. We assume that

Xi assumes a finite quantity of values to assure that E[|Xi|] < ∞. We have the

following result that establishes the relation between (super/sub)fair games and

(sub/super)martingales.

Proposition 2.4.1. Let {Xn}n∈N>0 be a sequence of i.i.d. random variables with

E[|Xi|] < ∞ and let {Bn}n∈N>0 be a sequence of random variables that satisfies

(2.7). If we define the sequence {Fn}n∈N as in (2.9, we have

• if E[X1] = 0, then {Fn}n∈N is a martingale with respect to the filtration

{Xn}n∈N>0 ;

• if E[X1] ≤ 0, then {Fn}n∈N is a supermartingale with respect to the filtration

{Xn}n∈N>0 ;

• if E[X1] ≥ 0, then {Fn}n∈N is a submartingale with respect to the filtration

{Xn}n∈N>0 .
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Proof. We have to prove initially that

(i) E[|Fn|] < ∞ for any fixed n ;

(ii) {Fn}n∈N is adapted to {Xn}n∈N>0 (we know the value of Fn when we know

X1, ..., Xn) .

Lastly we have to understand the relation between E[Fn+1|X1, ..., Xn] and Fn. Let

us start by proving (i). Note that by triangular inequality

E[|Fn|] = E
[
|F0 +

n∑
i=1

BiXi|
]

≤ E
[
|F0| +

n∑
i=1

|BiXi|
]

=

= |F0| +
n∑

i=1
E[|Bi| · |Xi|] = |F0| +

n∑
i=1

E[|Bi|] · E[|Xi|] ,

(2.10)

where we exploited the fact that F0 is a constant and that, being

Bi = gi(X1, ..., Xi−1), then Bi is independent on Xi and hence

E[|Bi| · |Xi|] = E[|Bi|] ·E[|Xi|]. Note that, since Xi assumes only a finite number of

values (say k values), we have that also the vector (X1, ..., Xi−1) assumes a finite

number of values (ki−1). So also gi(X1, ..., Xi−1) assumes a finite number of values

(at most ki−1) and then Bi is smaller than some constant Ki < ∞. Therefore

E[|Fn|] ≤ |F0| + E[|X1|]
n∑

i=1
Ki ≤ |F0| + E[|X1|] · n max

1≤i≤n
Ki ≤ ∞ ,

where the last inequality is due to the fact that F0 and E[|X1|] are fixed numbers,

while K1, ..., Kn are n finite numbers and hence their maximum is finite. This

proves (i). Let us prove (ii). Recall the definition of Fn in (2.9). Note that, since

Bi = gi(X1, ..., Xi−1), to know Bi it is sufficient to know X1, ..., Xi−1. Hence to

know B1, ..., Bn it is enough to know X1, ..., Xn−1. Consequently, by (2.9), we get

that to know Fn it is sufficient to know the value of X1, ..., Xn; this proves that

the process {Fn}n∈N is adapted to the filtration {Xn}n∈N>0, that is (ii). We now

have to compute E[Fn+1|X1, ..., Xn]. Recall that Bi = gi(X1, ..., Xi−1). So

E[Bi|X1, ..., Xn] = Bi for i = 1, ..., n + 1 ,

E[Xi|X1, ..., Xn] = Xi for i = 1, ..., n .
(2.11)
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As a consequence, we get

E[BiXi|X1, ..., Xn] = BiXi for i = 1, ..., n . (2.12)

So:

E[Fn+1|X1, ..., Xn] = E
[
F0 +

n+1∑
i=1

BiXi|X1, ..., Xn

]
=

=
(2.12)

F0 +
n∑

i=1
BiXi + E[Bn+1Xn+1|X1, ..., Xn] =

= Fn + E[Bn+1Xn+1|X1, ...Xn] =

=
(2.11)

Fn + Bn+1E[Xn+1|X1, ..., Xn] .

(2.13)

Since {Xn}n∈N>0 is a sequence of independent random variables, we have that

E[Xn+1|X1, ..., Xn] = E[Xn+1] =
id. distrib.

E[X1] .

Hence

E[Fn+1|X1, ..., Xn] = Fn + Bn+1E[X1] .

Since Bn+1 ≥ 0, we have that

• E[Fn+1|X1, ..., Xn] = Fn if E[X1] = 0 ;

• E[Fn+1|X1, ..., Xn] ≥ Fn if E[X1] ≥ 0 ;

• E[Fn+1|X1, ..., Xn] ≤ Fn if E[X1] ≤ 0 .

This proves the thesis.

2.4.1 Martingale System

Suppose to repeat the same bet many times. Assume that the quantity of

money won for unit bet at round i is

Xi =


1, if we win the i-th round,

−1, if we lose the i-th round
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and that

P(Xi = 1) = p ∈
(

0,
1
2

)
, P(Xi = −1) = 1 − p .

In this system, the gambler doubles his bet size each time that they lose and stop

betting after the first win. We define the stopping round τ (with respect to the

filtration {Xn}n∈N>0) as the first winning round, we have that

{τ = k} = {X1 = −1, ..., Xk−1 = −1, Xk = 1} .

Fixed an initial bet B1 > 0 and an initial capital F0 > 0, and denoting by Bi the

amount of money bet at round i and by Fi our total capital at the end of round i,

we have

F1 =


F0 + B1 , if X1 = 1 (τ = 1) ,

F0 − B1 , if X1 = −1 (τ > 1) .

In general if we have lost the first n − 1 rounds (τ > n − 1) we have

Fn =


F0 − B1 − ... − Bn−1 + Bn , if X1 = −1, ..., Xn−1 = −1, Xn = 1 (τ = n) ,

F0 − B1 − ... − Bn , if X1 = −1, X2 = −1, ..., Xn = −1 (τ > n) .

Note that, if τ ≥ n, since each time we lose we double the bet size, we have

Bn = 2Bn−1

and by iteration of this formula we get

Bn = 2Bn−1 =
Bn−1=2Bn−2

22Bn−2 = 23Bn−3 = ... = 2n−1B1 .

So Fn can be rewritten as

Fn =


F0 − B1 − 2B1 − 22B1 − ... − 2n−2B1 + 2n−1B1 , if τ = n ,

F0 − B1 − 2B1 − 22B1 − ... − 2n−2B1 − 2n−1B1 , if τ > n ,
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that we ca rewrite as

Fn =


F0 − B1(1 + 2 + 22 + ... + 2n−2) + 2n−1B1 , if τ = n ,

F0 − B1(1 + 2 + 22 + ... + 2n−1) , if τ > n ,

that is

Fn =


F0 − B1 ·∑n−2

i=1 2i + 2n−1B1 , if τ = n ,

F0 − B1 ·∑n−1
i=1 2i , if τ > n .

Recall that for any a ∈ R \ {1}
n∑

i=0
ai = an+1 − 1

a − 1 .

If we apply the above formula to write Fn. we have

Fn =


F0 − B1 · 2n−1−1

2−1 + 2n−1B1 = F0 − 2n−1B1 + B1 + 2n−1B1 , if τ = n ,

F0 − B1 · 2n−1
2−1 = F0 − 2nB1 + B1 , if τ > n .

that implies

Fn =


F0 + B1 , if τ = n,

F0 + B1(1 − 2n) , if τ > n.

So we deduce that

P(Fτ = F0 + B1) = 1 ,

meaning that, when we stop, we have recovered all the capital bet and we have

won our initial bet B1 with probability 1. Moreover, if τ > n, we can quantify

the amount of money that we are losing, that is to say B1(1 − 2n), which is an

exponentially decreasing quantity. Moreover, since P(Fτ = F0 + B1) = 1, we have

E[Fτ ] = E[F0 + B1] ≥
B1>0

E[F0] .

This is exactly the opposite conclusion of the Optional Stopping Theorem for

supermartingales (E[Fτ ] ≤ E[F0]). Indeed, the capital {Fn}n∈N>0 is a
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supermartingale with respect to the filtration {Xn}n∈N>0 because

P(Xi = 1) = p < 1
2 and P(Xi = −1) = 1 − p. However, this is not a contradiction

of the Optional Stopping Theorem for supermartingales as the hypotheses of the

theorem are not satisfied. Indeed, being τ the first round in which we win and

being the single bets i.i.d., we have that τ ∼ Geom (p) and hence ∄C > 0 such that

P(τ < C) = 1. Moreover it is also impossible to find C > 0 (independent on n)

such that P(|Fn| < C) = 1 since, while we are losing rounds, our capital decreases

exponentially fast and hence |Fn| increases exponentially fast. Note that, while

we are losing rounds, also the increments of {Fn}n∈N>0 increase exponentially fast.

Indeed

|Fn+1 − Fn| = |F0 + B1 − 2n+1B1 − (F0 + B1 − 2nB1)| = |B1(2n − 2n+1)| =

= B1 · 2n · |1 − 2| = 2nB1 .

So it is impossible to find a constant C > 0 independent on n such that

P(|Fn+1 − Fn| ≤ C) = 1. Finally, fixed a value for F0, the process does not

satisfy Fn ≥ 0 for all n ∈ N. Hence all the hypotheses of the Optional Stopping

Theorem fail and therefore this betting strategy allows to have E[Fτ ] > E[F0] even

if {Fn}n∈N is a supermartingale with respect to the filtration {Xn}n∈N>0. As far as

the application of the martingale system, it is usually applied to contexts in which

the probability p of winning is smaller than 1
2 but actually not so smaller, as the bet

on even or odd (equivalently red or black) at the roulette; indeed, when we bet on

even numbers at the European roulette, the winning probability is p = 18
37 ≈ 0.49.

Note that, being τ ∼ Geom(p), we have

P(τ > k) = (1 − p)k,

since τ > k is we have lost for k rounds (this occurs independently each time with

probability 1 − p). So if we bet on even numbers at the European roulette, we
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have

P(τ > k) =
(19

37

)k

.

So if, for example, we own a quantity F0 that guarantees to not be ruined before

round 6, we have a 98% probability of winning the initial bet B1, given that

P(τ > 6) =
(

19
37

)6
≈ 0.02 .

2.4.2 Optimal Proportional System: the Kelly System

The Kelly Criterion is an allocation technique used by both investors and

gamblers to manage money effectively: it helps gamblers in optimizing the size

of their bets, while investors can exploit it to decide how much of their portfolio

should be assigned to each investment.2

The Kelly Criterion was invented by John Kelly, a researcher at Bell Labs who

originally developed the formula to test long-distance telephone signal noise, and

his method was published as “A New Interpretation of Information Rate” in 1956.3

Then the gambling community noticed its potential as an efficient betting system

in horse racing, as it allowed them to maximize the size of their bankroll over the

long run.

Suppose to repeat many times the same bet and define Xi the quantity of

money won or lost for unit bet in the i-th round. Assume the following conditions

on Xi:

• Xi assumes a finite number of values in [−1, +∞) ,

• Xi assumes the value −1 with positive probability, that is P(Xi = −1) > 0 ;

• the single bet is superfair, that is E[Xi] > 0 .

2CFI Education, “Kelly Criterion”, https://corporatefinanceinstitute.com/resources/data-

science/kelly-criterion/
3Princeton University, “A New Interpretation of Information Rate”, Pages 920-925.
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A classical example of Xi is given by

Xi =



a , with probability p ,

0 , with probability r ,

−1 , with probability q

where a, p, q > 0, r ≥ 0, p + q + r = 1 and E[Xi] = ap − q > 0. If a gambler

starts with a capital F0 and Fn is their total capital at round n, by (2.8) we have

Fn = Fn−1 + BnXn ,

where Bn is the quantity of money that we bet at the n-th round that depends

only on the outcomes of the bets of the previous rounds (X1, ..., Xn−1). Since the

bet is superfair, the gambler may think that is convenient to bet each time the

entire capital; actually, this is not a smart strategy since it will lead to ruin with

probability 1. Indeed, if the gambler bets the entire capital at each round, we have

Bn = Fn−1 and hence

Fn = Fn−1 + BnXn = Fn = Fn−1 + Fn−1Xn = Fn−1(1 + Xn) .

If we iterate the above expression, we get

Fn = Fn−1(1 + Xn) = Fn−2(1 + Xn−1)(1 + Xn) = ... = F0 ·
n∏

i=1
(1 + Xi) .

So

P(Fn = 0)

= P(∃i ∈ {1, ..., n} such that 1 + Xi = 0) =

= P(∃i ∈ {1, ..., n} such that Xi = −1) =

= 1 − P(X1 ̸= −1, X2 ̸= −1, ..., Xn ̸= −1) =

=
{Xi}iindep

1 −
n∏

i=1
P(Xi = −1) =

=
{Xi}iid. distrib.

1 − [P(Xi = −1)]n.
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Hence as n → +∞ , since [P(Xi = −1)]n → 0 being P(Xi = −1) < 1, we have

P(Fn = 0) → 0 as n → ∞ ,

that is, the gambler is ruined with probability 1 in the long run. A smarter idea

is to bet a fraction f of the entire capital at each round, that is Bn = f · Fn−1.

Hence (2.8) becomes

Fn = Fn−1 + BnXn = Fn−1 + f · Fn−1Xn = Fn−1(1 + f · Xn) .

Iterating the above expression, we get

Fn = Fn−1(1 + f · Xn) = Fn−2(1 + f · Xn−1)(1 + f · Xn) = ... = F0 ·
n∏

i=1
(1 + f · Xi) .

So we have

Fn(f) = F0 ·
n∏

i=1
(1 + f · Xi) ,

where we have written Fn(f) instead of Fn to highlight its dependence on f. To

understand the behavior of Fn when n → ∞ we would need to use some limit

theorem such as the Law of Large Numbers4 or the Central Limit Theorem.5

However, these theorems work with sums of random variables and not with

products, so we use the logarithmic function to transform the product in sum.

Hence we have

Fn(f) = F0 ·
n∏

i=1
(1 + f · Xi) ⇒

Fn(f)

F0
=

n∏
i=1

(1 + f · Xi) ⇒

⇒ ln Fn(f)

F0
= ln

(
n∏

i=1
(1 + f · Xi)

)
=

n∑
i=1

ln(1 + f · Xi)

where we have used the fact that for any a, b > 0 we have ln(ab) = ln(a) + ln(b).

Define the random variable Yi = ln(1 + f · Xi) for i ∈ N>0. So we can write

ln
(

Fn(f)

F0

)
=

n∑
i=1

ln(1 + f · Xi) = n ·
∑n

i=1 Yi

n
⇒ 1

n
ln
(

Fn(f)

F0

)
=
∑n

i=1 Yi

n
.

4See Prop A.4 in Appendix for reference.
5See Prop A.5 in Appendix for reference.

39



Since {Xn}n∈N>0 are i.i.d., also the random variables {Yn}n∈N>0 are i.i.d. and

hence by the Law of Large Numbers we have

1
n

ln
(

Fn(f)

F0

)
=
∑n

i=1 Yi

n
→

n→+∞
E[Y1] = E[ln(1 + f · X1)] ,

where the convergence is almost surely (that is with probability 1). So

rn(f) := 1
n

ln
(

Fn(f)

F0

)
→

n→+∞
µ(f) a.s.,

where

µ(f) := E[ln(1 + f · X1)] ,

and the symbol “:=” means is defined “as”. The function rn(f) is the rate of

growth of the gambler’s capital over the first n rounds, while µ(f) is the

long-term rate of growth of the gambler‘s capital. These definitions are

justified by the expression of Fn(f) in terms of rn(f) for fixed n and in terms of

µ(f) in the long run. Indeed

rn(f) := 1
n

ln
(

Fn(f)

F0

)
⇒ ln

(
Fn(f)

F0

)
= n · rn(f) ⇒

Fn(f)

F0
= en·rn(f),

from which we deduce

Fn(f) = F0 · en·rn(f).

When n is large this expression leads to

Fn(f) ∼ F0 · en·µ(f), (2.14)

where the symbol “∼” in this context means “behaves as”. From (2.14) we see that

in order to maximize the gambler‘s capital, we need to maximize µ(f). For this

reason in the following result we investigate the behavior of the function µ(f).

Proposition 2.4.2. Suppose that

• X assumes a finite number of values in [−1, +∞) ;
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• P(X = −1) > 0 ;

• E[X] > 0 .

Then the function µ(f) = E[ln(1 + f · X)] satisfies the following properties:

(i) µ(f) is defined for f ∈ [0, 1) ;

(ii) µ(f) is strictly concave in [0, 1) ;

(iii) there exists a unique f ∗ ∈ (0, 1) such that µ(f) achieves its maximum at

f = f ∗ that is

µ(f ∗) = max
f∈[0,1)

µ(f)

Such a point f ∗ is the solution of the equation µ′(f ∗) = 0 , where

µ′(f ∗) = E
[

d

df
ln(1 + f · X)

]
= E

[
X

1 + f · X

]

The fraction f ∗ is called Kelly’s fraction of the bet.

(iv) there exists a unique f0 ∈ (0, 1) such that µ(f0) = 0. Moreover

• f0 > f ∗ ;

• µ(f) > 0 for f ∈ (0, f0) ;

• µ(f) < 0 for f ∈ (f0, 1) .

Proof. Note that

µ′(f ∗) = E
[

d

df
ln(1 + f · X)

]
= E

[
X

1 + f · X

]
,

µ′′(f ∗) = d

df
µ′(f ∗) = d

df
E
[

X

1 + f · X

]
=

= E
[

d

df

X

1 + f · X

]
= −E

[
X2

(1 + f · X)2

]
< 0 ∀f ∈ [0, 1) .
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Since µ′′(f) < 0, then µ(f) is strictly concave. Moreover µ′(0) = E[X] > 0. Since

X = −1 with positive probability,

lim
f→1−

µ(f) = E[ln(1 + X)] =
∑

k

ln(1 + k) · P(X = k) =

= −∞ · P(X = −1) +
∑

k ̸=−1
ln(1 + k) · P(X = k) = −∞ ,

lim
f→1−

µ′(f) = E
[

X

1 + X

]
=
∑

k

k

1 + k
· P(X = k) =

= −∞ · P(X = −1) +
∑

k ̸=−1

k

1 + k
· P(X = k) = −∞ .

The summations in blue are finite numbers since X can assume only finitely many

values. So, since µ′(0) > 0 and limf→1− µ′(f) < 0, we have that there exists

f ∗ ∈ (0, 1) such that µ′(f ∗) = 0. Moreover, since µ′′(f) < 0, we have that f ∗

is a global point of maximum. Since µ(0) = 0 and µ′(0) > 0, then for small f

we have µ(f) > 0. Since f ∗ is a point of global maximum, we have µ(f ∗) > 0.

Moreover, since limf→1− µ(f) = −∞, we have that there exists f0 ∈ (f ∗, 1) such

that µ(f0) = 0. Note also that µ(f) > 0 if f ∈ (0, f0) and µ(f) < 0 if f ∈ (f0, 1).

Since µ(f) is strictly concave, f0 and f ∗ are unique and, to maximize Fn(f) in the

long run, the gambler needs to bet each time the fraction f ∗ of his capital. The

betting system in which Bn = f ∗ ·Fn−1 for all n ∈ N>0 is called Kelly System. If

the gambler uses a fraction
∼
f = f ∗, then if

∼
f ∈ (0, f0) we have µ(

∼
f) > 0 and hence

Fn(
∼
f) goes to ∞ in the long run by (2.14) (we have an exponential with a positive

exponent going to +∞), while if
∼
f ∈ (f0, f) we have µ(

∼
f) < 0 and hence Fn(

∼
f)

goes to zero in the long run by (2.14) (we have an exponential with a negative

exponent going to −∞). Hence we have the following result.

Proposition 2.4.3. Suppose that

• X assumes a finite number of values in [−1, +∞) ;
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• P(X = −1) > 0 ;

• E[X] > 0 .

Then

(i) fixed f ∈ [0, 1), we have

lim
n→+∞

(
Fn

F0

) 1
n

= eµ(f) a.s.;

(ii) if µ(f) > 0 , then

lim
n→+∞

Fn(f) = +∞ a.s.;

(iii) if µ(f) < 0 , then

lim
n→+∞

Fn(f) = 0 a.s.;

(iv) if f ∈ [0, 1) with
∼
f ̸= f ∗, then

lim
n→+∞

Fn(
∼
f)

Fn(f)

 = +∞ a.s.;

(v) if σ2(f) := Var (ln(1 + f · X)) > 0, then
√

n

σ(f)

(
1
n

ln
(

Fn(f)
F0

)
− µ(f)

)
d→ N (0, 1) .

Proof. Item (i) has already been proved in (2.14), while for items (ii) and (iii)

it is enough to compute the limit for n → ∞ in (2.14). As far as item (iii), by

(2.14) we haveFn(
∼
f)

Fn(f)

 ∼
(

F0e
nµ(f∗)

F0enµ(f)

)
= en(µ(f∗)−µ(f)) →

n→+∞
+∞ ,

since µ(f ∗) > µ(f) for all f ∈ [0, 1) \ {f ∗} (being µ(f ∗) the maximum of µ(f) in

[0, 1)). Finally, item (iv) is an application of the Central Limit Theorem.

Proposition 2.4.2 and Proposition 2.4.3 form the so called Kelly Criterion.
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Remark 2. If µ(f) = 0, it is possible to prove that Fn(f) has no almost sure limit.

Moreover from item (v), defining Z ∼ N (0, 1), we have that for n large
√

n

σ(f)

(
1
n

ln
(

Fn(f)
F0

)
− µ(f)

)
d≈ Z ,

where the symbol d≈ means “is approximated in distribution by”. By inverting such

a relation we get that for n large

Fn(f) d≈ F0e
nµ(f)+σ(f)

√
nZ .

This relation allows us to construct a confidence interval for Fn(f). Indeed, if we

set α > 0, we can define z1−α ∈ R as the (1 − α)−quantile of the standard normal

distribution, that is the value such that

P(Z ≤ z1−α) = Φ(z1−α) = 1 − α .

Then, defining

Ln(f, α) := F0 · eµ(f)n−z1−ασ(f)
√

n, Un(f, α) := F0 · eµ(f)n+z1−ασ(f)
√

n,

we have that

lim
n→+∞

P
(

Fn(f) ∈
[
Ln

(
f,

α

2

)
, Un

(
f,

α

2

)])
= 1 − α .

Then for n large Fn(f) belongs to the interval
[
Ln

(
f, α

2

)
, Un

(
f, α

2

)]
with

probability approximately 1 − α, which is the 100 · (1 − α)% prediction interval

for Fn(f).

Example 2.5. Let us consider a bet in which gambler’s profit for unit bet is

X =



2 , with probability 1
6 ,

1 , with probability 1
4 ,

0 , with probability 1
3 ,

−1 , with probability 1
4 .
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Note that X assumes a finite number of values (Im(X) contains only 4 values),

P(X = −1) > 0 and E[X] = 13 > 0. Suppose to repeat the same bet many times:

by Proposition 2.4.2, we know that there exists an optimal fraction f ∗ ∈ (0, 1) (the

Kelly’s fraction of the bet) such that the gambler’s total capital Fn(f) is maximized

in the long run if the gambler bets exactly a portion f ∗ of their capital at each

round. To find its value, we have to solve µ′(f) = 0. So we have

µ(f) = E[ln(1 + fx)] = 1
6 ln(1 + 2f) + 1

4 ln(1 + f) + 1
3 ln 1 + 1

4 ln(1 − f) =

= 1
6 ln (1 + 2f) + 1

4 ln (1 + f) + 1
4 ln (1 − f) .

Therefore

µ′(f) = 1
6 · 2

1 + 2f
+ 1

4 · 1
1 + f

− 1
4 · 1

1 − f
=

= 4(1 − f)(1 + f) + 3(1 − f)(1 + 2f) − 3(1 + f)(1 + 2f)
12(1 + 2f)(1 + f)(1 − f) =

= 4 − 4f 2 + 3(1 + f − 2f 2) − 3(1 + 3f + 2f 2)
12(1 + 2f)(1 + f)(1 − f) =

= −16f 2 − 6f + 4
12(1 + 2f)(1 + f)(1 − f) .

We have to solve µ′(f) = 0, so we have

µ′(f) = −16f 2 − 6f + 4
12(1 + 2f)(1 + f)(1 − f) = 0 ⇒ −16f 2 − 6f + 4 = 0 ⇒

⇒ 8f 2 + 3f − 2 = 0 ⇒ f1,2 = −3 ±
√

73
16 .

Recall that f ∗ ∈ (0, 1) and hence we can take only the positive solution, that is

f ∗ = −3 +
√

73
16 ≈ 0.35 .

So the gambler should bet around 35% of their total capital at each round to

optimize their total capital in the long run.
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Kelly Criterion for Bets with Three Outcomes: Win, Loss and Tie

Let the probabilities of a win, loss and tie be respectively p > 0, q > 0 and

r ≥ 0, with p + q + r = 1. Suppose that a win pays a to 1, where a > 0. Then

P(X = a) = p , P(X = −1) = q , P (X = 0) = r .

Assume that E[X] = ap − q > 0. By Proposition 2.4.2 we know that there exists

the Kelly fraction of the bet. Let us compute µ(f)

µ(f) = E[ln (1 + f · X)] = ln (1 + f · a) · p + ln (1 − f) · q .

To compute f ∗ we need to solve µ′(f) = 0. Note that

µ′(f) = ap

1 + f · a
− q

1 − f
= ap − apf − q − qaf

(1 + af)(1 − f) = 0 ⇒ f = ap − q

a · (p + q) .

Therefore

f ∗ = ap − q

a · (p + q) = E[X]
a · P(X ̸= 0) = E[X1{X ̸=0}] + E[X1{X=0}]

a · P(X ̸= 0) =

= E[X1{X ̸=0}] + 0
a · P(X ̸= 0) = E[X1{X ̸=0}]

a · P(X ̸= 0) = E[X|X ̸= 0]
a

.

(2.15)

We can also compute σ2(f) = Var(ln (1 + f · X)). We need to calculate E[(ln (1 + f · X))2] :

E[(ln (1 + f · X))2] = (ln (1 + f · a))2 · p + (ln (1 − f))2 · q .

Hence we have

σ2(f) = Var(ln (1 + f · X)) =

= E[(ln (1 + f · X))2] − E[ln (1 + f · X)]2 =

= (ln (1 + f · a))2 · p + (ln (1 − f))2 · q − (ln (1 + f · a) · p + ln (1 − f) · q)2 =

= (ln (1 + f · a))2 · (p − p2) + (ln (1 − f))2 · (q − q2) − 2pq ln (1 + f · a) ln (1 − f) =

= p(1 − p)(ln (1 + f · a))2 + q(1 − q)(ln (1 − f))2 − 2pq ln (1 + f · a) ln (1 − f) .
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If r = 0, the expression of σ2(f) simplifies. Indeed, since q = 1 − p, we have

σ2(f) = p(1 − p)(ln (1 + f · a))2 + q(1 − q)(ln (1 − f))2 − 2pq ln (1 + f · a) ln (1 − f) q=1−p=
q=1−p= p(1 − p)[(ln (1 + f · a))2 + (ln (1 − f))2] − 2p(1 − p) ln (1 + f · a) ln (1 − f) =

= p(1 − p)[ln (1 + f · a) − ln (1 − f)]2 =

= p(1 − p)
[
ln (1 + f · a)

1 − f

]2

.

Kelly Criterion in Sports Betting

Suppose that team A and team B are playing a match and the possible

outcomes are three: team A wins, team B wins or there is a tie. When you bet

on this match you bet on its outcome, for example team A wins: in such a case,

winning the bet means that team A wins, while losing it means that team A loses

or there is a tie. If you win your bet, you will be awarded with a quantity of money,

called odds, established by the bookmaker. Odds are usually given for unit bet, so

if you bet 1 and the odds are V, then your gain is V − 1 (you have to subtract the

amount of money that you have bet). Hence the outcome of the bet is modeled by

X =


V − 1 , with probability p ,

−1 , with probability 1 − p ,

where p = P(team A wins). Kelly criterion is used in this context as a strategy to

find the optimal fraction of capital to bet. Since this is a bet with outcomes win

or loss, we can use (2.15) to compute f ∗ (r = 0 and q = 1 − p). So we have

f ∗ = (V − 1)p − (1 − p)
(V − 1)(p + 1 − p) = V p − 1

V − 1 .

The value of p is given by the gambler’s perception of the probability of the outcome

of the match on which he is betting. For example suppose that the odds for “team

A wins” are 3.5 and that you expect that team A wins with probability 0.5. Then
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the optimal fraction of capital to bet is

f ∗ = 3.5 · 0.5 − 1
3.5 − 1 = 0.3 .

So if our capital is 100, then we should bet 30.

The idea used in sports betting is to apply this method in sequence to many bets.

So we start with a capital F0 and we bet on the first match computing the optimal

fraction; then our capital will be F1 and we bet on the second match (in general

different from the first one) computing the optimal fraction (that may differ from

the first one). Then our capital will be F2 and we continue this procedure until

we want to stop. This method is safe since we will never go broke as the optimal

fraction is always smaller than 1.

Remark 3. The above method has meaning if p > 1
V

, otherwise we have f ∗ ≤ 0 .

Kelly Criterion in Investing

The Kelly Criterion applied to investing features two main components: the first

one is the win probability, or the odds that the trade will have a positive return,

while the second one is the win/loss ratio (the number of positive trades over the

number of negative trades). These two coefficients are then placed into Kelly’s

equation, which is:

f ∗ = w − (1 − w)
R

where:

• f ∗ is the Kelly fraction;

• w is the probability of winning;

• R is the win/loss ratio.

Investors can calculate the Kelly’s fraction by following these simple steps:
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1. Access your last 50/60 trades, assuming that your trading habits are the

same as they were in the past.

2. Calculate the probability of winning w by dividing the number of trades that

returned a positive amount by your total number of trades. This value gets

better as it gets closer to 1 but any number above 0.50 is fine.

3. Calculate the win/loss ratio R by dividing the average gain of the positive

trades by the average loss of the negative trades. You will get a number

bigger than 1 if your average gains are larger than your average losses but

a result smaller than 1 is treatable until the number of losing trades stays

small.

4. Input these figures into Kelly’s equation.

5. Register the Kelly percentage that the equation returns.6

Interpretation of the Results

The percentage produced by the equation is a number smaller than 1 representing

the size of the positions you should be taking, to let you know how much you

should diversify. For instance, if the Kelly’s fraction is 0.18 you should take a

18% position in every equity in your portfolio. However, this system requires

some common sense: you have to keep in mind that, regardless of what the Kelly

percentage is, you should never commit more than 25% of your capital to one

single equity as allocating any more than that involves way more investment risk

than you should be bearing.7

6Justin Kuepper, “Using the Kelly Criterion for Asset Alloca-

tion and Money Management”, Investopedia.com, November 30th 2023,

https://www.investopedia.com/articles/trading/04/091504.asp.
7To manage investment risk, the FINRA suggests: “Don’t put all your eggs in one basket.”,

https://www.finra.org/investors/investing/investing-basics/asset-allocation-diversification.
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An Application to the U.S. Stock Market

Investing in the stock market may be seen as a continuous gambling game with

a positive, one-year expected return equal to the average of the historical annual

returns over a sufficiently long time span, implying that only stationary processes

are involved. To a reasonable first approximation, evidence suggests that changes

in the price level in speculative markets behave like i.i.d random variables with

finite variances. From the Central Limit Theorem, it would then follow that price

changes in U.S. stocks are approximately normal; the lognormal distribution would

be a better fit but the computations would be much more onerous to discuss.

To an investor, what constitutes a profit over an extended period of time is

complicated by the time-changing purchasing power of money and other factors

such as brokerage commissions, taxes and the perceived risk of the transaction.

Since time is very important, an actual annual percentage return has little meaning

unless compared to the inflation rate or some proxy such as T-bill rates. Historical

annual excess returns8 have been found to be relatively stable and thus the normal

distribution is a reasonable approximation.

Let us consider a period of n years, where the distribution of annual excess total

returns on some stocks has a defined mean µ and standard deviation σ. Each

return in the calculation is expressed as the natural logarithm of one plus the

annual excess return ERi. In formulas we have:

µ = 1
n

n∑
i=1

log(1 + ERi) = log
[

n∏
i=1

(1 + ERi)
] 1

n

; (2.16)

σ2 =
∑n

i=1 [log(1 + ERi) − µ]
n − 1 . (2.17)

Various interesting probability calculations are possible if annual excess returns

are assumed to be independently distributed. It would entail, for example, that

the mean and standard deviation of an n-year forecast of annual excess returns
8Annual total returns on common stock in excess of Treasury bill returns.
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would be x = µ and sn = σ/
√

n. With a fixed amount invested in stocks over an

n-year period, the probability for a negative excess return would be

P
(

t <
0 − x

σ/
√

n

)
.

Estimating the Kelly’s fraction for a Long-term Investment in

S&P 500 Stocks

Suppose we have an initial amount of investment capital F0 and we want to

determine the optimal wager-fraction f ∗ to invest each year in S&P 500 stocks,

knowing that µ = 0.058 and σ = 0.2160. Using an unaltered normal curve for our

probability distribution is inadequate for two reasons: first, the normal distribution

allows for infinitely large annual excess percentage declines/advances in stocks

(unrealistic on both sides); secondly, the Kelly criterion will not yield a meaningful

f ∗ > 0 if the probability distribution F (x) suggests a negatively infinite lower limit

of the integral ∫ ∞

a
log(1 + fx) dF (x) .

Therefore, in order for the excess return variable x to be meaningful on the interval

A ≤ x ≤ B, where A = µ + 3σ = −0.590 and B = µ − 3σ = 0.706, we estimate

it using a quasi-normal probability distribution.

N(x) =



h + 1√
2πα2 e− (x−µ)2

2α2 , A ≤ x ≤ B

0 , x < A

0 , x > B.

(2.18)

Calculations were done using a microcomputer and integrations were approximated

with Simpson’s Rule9 using n = 1000 and π = 3.1415926535.

The value of h had to be chosen so that
∫ B

A N(x) dx = 1 and we found that

h = (1−0.997006378)/(B−A) is the correction term needed to delimit the standard
9See Proposition A.7 in Appendix for reference.
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normal curve. At the same time, we also wanted the probability distribution model

in 2.18 to have a standard deviation of σ = 0.2160, where σ2 =
∫ B

A x2N(x) dx−µ2.

To achieve this, the value of α must be α = 0.2183. With these adjustments,

the distribution N(x) has a mean of 0.058 and a standard deviation of 0.2160 as

required. We now need to find the value of f , where 0 < f < −1/A, so that the

following integral is a maximum:

G(f) =
∫ B

A
log(1 + fx) dN(x) =

=
∫ B

A
(log(1 + fx))

[
h + 1√

2πα2
e− (x−µ)2

2α2

]
dx.

(2.19)

The integration needed to set G′′(f) = 0 cannot be computed explicitly. If we

use a microcomputer to calculate it we find that the maximum of G(f) is found

when f ∗ = 1.17 and the growth coefficient is G(f) = 0.0350471. The mean of the

distribution is positive and if we differentiate G(f) with respect to f and observe

the terms in the integrand, we get that

lim
f→(−1/A)−

G′(f) = −∞ ;

and we can state that the uniqueness of f ∗ is guaranteed by the following theorem:

Theorem 2.4.4. If the mean µ =
∫∞

a x dF (x) > 0, then the function

G(f) =
∫ ∞

a
log(1 + fx) dF (x)

attains a unique maximum value G(f ∗) where f ∗ ∈ (0, −1/a) if

lim
f→(−1/a)−

G′(f) < 0 ,

with −∞ < a < 0 and defined as a = sup{x : F (−∞, x) = 0}.

Proof. First note that if 1 + fa > 0, the integral G(f) =
∫∞

a log(1 + fx) dF (x)

is defined. Plus,

G′′(f) =
∫ ∞

a

−fx

(1 + fx)2 dF (x) < 0
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so that

G′(f) =
∫ ∞

a

x

1 + fx
dF (x)

is monotone strictly decreasing on [0, −1/a). Notice that G(0) = 0 and we have

that G′(0) =
∫∞

a x dF (x) = µ > 0 and limf→(−1/a)− G′(f) < 0 by hypothesis. From

the monotonicity and continuity of G′(f) on [0, −1/a) it follows that G′(f) takes

on all values on the interval [G(′0), limf→(−1/a)− G′(f)) exactly once and thus G(f)

has a unique maximum at f = f ∗, where 0 < f ∗ < −1/a.

Remark 4. Observe that if a → −∞, then f ∗ → 0 so that the Kelly criterion

applied to continuous distribution models will yield non-trivial results only if the

lower limit of the integral
∫∞

a log(1 + fx) dF (x) is finite.

Considering the time value of money (disregarding taxes and transaction fees)

each year the Kelly-optimal investor should be willing to invest up to 100% of their

resources in a diversified portfolio of S&P 500 stocks if no margin is permitted.

However, maximal average real growth will occur (if the margin at the T-bill rate

is available) if they invest 117% of their current resources. Hence the long-term

investor should invest all their capital plus borrow an additional 17% to invest if

they aim to achieve the maximal average growth relative to T-bills.10

We would like to know if G(f) = 0 is in the interval (0, −1/A) in order to have

some information about the chaotic run point fc.11

We cannot examine the limit

L = lim
f→(−1/A)−

∫ B

A
log(1 + fx)N(x) d(x)

10In real life margin costs exceed T-bill rates and, if computed including the extra costs, this

percentage would be smaller.
11The point beyond which margin become excessive and leads to the investor’s ruin (probability

of loss relative to T-bills equal to 1).
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directly but we can get its upper bound:

M = max(N(x)) = h + 1√
2πα2

on [A, B] ,

so

L ≤ lim
f→(−1/A)−

∫ B

A
log(1 + fx)M d(x) =

= M lim
f→(−1/A)−

[(
x + 1

f

)
(log(1 + fx) − x)

]B

A

=

= M
[
A − B + (B − A) log

(
1 − B

A

)]
= − 0.51 < 0 .

Therefore G(f) = 0 has a unique solution fc ∈ (0, −1/A). Since the slope of

G(f) is very steep close to the point f = −1/A, locating fc very accurately gets

extremely difficult; computer runs estimate its value to be very close to −1/A,

more precisely fc = 1.69+. Hence, if a hypothetically immortal investor costantly

wagers an amount greater than 1.7 times their current resources, ruin is certain.

Before investing all their capital in stocks, there are some caveats that investors

should keep in mind, namely possible losses relative to T-bills in the short run.

Lastly, it can be discussed that the artificially built probability distribution N(x)

might not fully consider:

(i) recently expanded stock market volatility caused by program trading and

the internationalization of financial markets;

(ii) some catastrophic exogenous events that may possibly happen (a heavy

global recession or an earthquake).

Keep in mind that the numerical results obtained must be interpreted keeping in

mind the constraints featuring any probabilistic model.[14]
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Is the Kelly Criterion Effective?

This system is built on pure mathematics. However, you may question if this

math, originally thought for telephones, is applicable to gambling scenarios and

stock investing. Actually, this system can be proven effective by displaying the

simulated growth of a specific account through the use of an equity chart, assuming

the two variables are properly plugged in and that the investor is able to sustain

such performance.12

Nevertheless, there is no such thing as a perfect money management system; the

Kelly criterion can assist you to achieve an efficient portfolio diversification but it

has its limits, as it can not select winning stocks or predict sudden market crashes.

Therefore, some luck and randomness will always be present in the markets and can

alter investment returns. Furthermore, scholars suggests that the Kelly Criterion

may be risky in the short run because it can advise placing a significant share of

capital as first investment.13

2.5 Gambler’s Ruin

In this setting we are interested in finding the probability that, in an indepen-

dent sequence of identical bets with even-money payoffs, the gambler loses L > 0

or more euro before the opponent wins W > 0 euro. By the bet pays even-money

we mean that in each bet the quantity of money that the gambler can win equals

the quantity of money that the gambler can lose.

Assume that in each round the gambler can win/lose 1 euro and define Xi as the

12Justin Kuepper, “Using the Kelly Criterion for Asset Alloca-

tion and Money Management”, Investopedia.com, November 30th 2023,

https://www.investopedia.com/articles/trading/04/091504.asp.
13University of California, Berkeley, “Good and Bad Properties of the Kelly Criterion”, Page

1, January 1st 2010.
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quantity of money that the gambler wins in the i-th bet. So

P(Xi = 1) = p , P(Xi = −1) = q , P(Xi = 0) = r ,

where p, q > 0, r ≥ 0 and p + q + r = 1. Denote by Sn the total quantity of money

that the gambler wins in the first n bets, that is

Sn = X1 + ... + Xn .

Assume S0 = 0, fix W, L positive integers and assume that the gambler stops

betting as soon as he wins W euro or lose L euro. Define

N(−L, W ) := min{n ≥ 1|Sn = −L or Sn = W}

the index of the last round in which the gambler bets (we assume min:= +∞).

Note that N(−L, W ) is a stopping time since to establish the occurrence of the

event {N(−L, W ) = k} we need to know the values of Xk, ..., Xk. It is possible to

prove the following result:

Proposition 2.5.1.

P(N(−L, W ) < ∞) = 1 .

Since N(−L, W ) < ∞, we can try to study SN(−L,W ) using the Optional Stopping

Theorem. In particular we have this result, known as Gambler’s Ruin.

Theorem 2.5.2. If p ̸= q we have

P(SN(−L,W ) = W ) = (q/p)L − 1
(q/p)W +L − 1 = 1 − P(SN(−L,W ) = −L) . (2.20)

If p = q we get

P(SN(−L,W ) = W ) = L

L + W
= 1 − P(SN(−L,W ) = −L) . (2.21)
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Proof. We divide the proof into two parts: the first one devoted to the case

p ̸= q, while the second one considers the case p = q. Let us start considering

p ̸= q. In Example 2.3 we have proved that the stochastic process {Kn}n∈N>0 with

Kn =
(

q

p

)X1+...+Xn

· K0 =
(

q

p

)Sn

· K0 ,

is a martingale with respect to the filtration {Xn}n∈N>0. If K0 = 1, then

E[Kn] = E[K0] = 1 .

Since by Proposition 2.5.1 P(N(−L, W ) < ∞) = 1 and Kn ≥ 0 for all n ∈ N>0,

the fourth hypothesis of the Optional Stopping Theorem (Proposition 2.3.2) is

verified and hence we can conclude that

E[KN(−L,W )] = E[K0] = 1 . (2.22)

Since

KN(−L,W ) =
(

q

p

)SN(−L,W )

and since N(−L, W ) assumes only the values W and −L by definition we have

= E[KN(−L,W )] = E
[
(q/p)SN(−L,W )

]
=

= (q/p)−LP(SN(−L,W ) = −L) + (q/p)WP(SN(−L,W ) = W ) =

= (q/p)−L(1 − P(SN(−L,W ) = W )) + (q/p)WP(SN(−L,W ) = W ) =

= (q/p)−L +
[
(q/p)W − (q/p)−L

]
P(SN(−L,W ) = W ) .

Since E[KN(−L,W )] = 1 by (2.22), by the above identity we have

1 = (q/p)−L +
[
(q/p)W − (q/p)−L

]
P(SN(−L,W ) = W ) ,

from which we get

P(SN(−L,W ) = W ) = 1 − (q/p)−L

(q/p)W − (q/p)−L
= (q/p)L − 1

(q/p)W +L − 1 ,
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where in the last identity we have multiplied both numerator and denominator by

(q/p)L. So we have proved the statement when p ̸= q.

Let us consider now the case p = q. We cannot use again the process {Kn}n∈N>0

since, when p = q, Kn = 1 for all n ∈ N>0. In this case we consider Sn = ∑n
i=1 Xi.

Since {Xn}n∈N>0 is a sequence of identically distributed random variables and

N(−L, W ) is a random variable independent on {Xn}n∈N>0, where E[X1] < ∞

and E[N(−L, W )] < ∞, then

E[SN(−L,W )] = E[N(−L, W )]E[X1] = 0 , (2.23)

where we have used the fact that E[X1] = 0. Since SN(−L,W ) assumes only the

values −L and W by definition, we have that

E[SN(−L,W )] = WP(SN(−L,W ) = W ) − LP(SN(−L,W ) = −L) =

= WP(SN(−L,W ) = W ) − L(1 − P(SN(−L,W ) = W )) =

= −L + (W + L)P(SN(−L,W ) = W ) .

By (2.23), the above identity implies

−L + (W + L)P(SN(−L,W ) = W ) = 0 ,

that is

P(SN(−L,W ) = W ) = L

W + L
.

Therefore we have proved the statement when p = q. Let us apply Theorem 2.5.2

to the European Roulette. Suppose to bet 1 euro on even numbers, so p = 18
37 and

q = 19
37 . So, by Theorem 2.5.2, the probability of winning W euro before losing L

euro is given by (
19
18

)L
− 1(

19
18

)W +L
− 1

.
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So if we consider the probability of winning 5 before losing 4, we get(
19
18

)4
− 1(

19
18

)9
− 1

≈ 0.39 .

So with a probability around 0.39 the gambler wins 5 before losing 4, while with

a probability around 1 − 0.39 = 0.61 the gambler loses 4 before winning 5.

In the next chapter we cover in detail the concept of house advantage, which we

have mentioned also in Chapter 1, and understand its application in many different

gambling scenarios. Furthermore, we define some very useful tools to measure the

convenience of a bet based on its variance, namely the volatility of a wager and

the expected loss per standard deviation.
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Chapter 3

House Advantage

In this chapter we will develop instruments applicable only to games in which

we deal with theoretical probabilities (like roulette), while games dealing with

experimental or subjective probabilities (such as sport games) are not considered

here. These instruments will be useful to evaluate the “quality of a game”, meaning

we will be able quantify how favorable a game is.

3.1 House Advantage in a Single Wager

A wager (or bet) is described by a pair (B, X), where:

• B, X are jointly distributed random variables;

• B denotes the amount bet;

• X denotes the gambler’s profit (positive, negative or zero).

We impose that the gambler cannot lose more than one bet and we assume that:

• E[B] < ∞ ;

• E[B1{X ̸=0}] = E[B|X ̸= 0] · P(X ̸= 0) > 0 ;
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• E[|X|] < ∞ .

Definition 3.1. There are two accepted definitions of house advantage (or

equivalently house edge) of the wager (B, X). The first one is

H0(B, X) := −E[X]
E[B] = −E[X]

E[B|X ̸= 0] · P(X ̸= 0) + E[B|X = 0] · P(X = 0)

while the second one is

H(B, X) := −E[X]
E[B1{X=0}]

.

Notice that

• E[X] is the gambler’s expected profit. Since in casino games it is usually

negative, then −E[X] represents the gambler’s expected loss;

• E[B] is the gambler’s expected amount bet;

• E[B1{X=0}] = E[B|X ̸= 0] · P(X ̸= 0) > 0 is the gambler’s expected

amount of action, meaning the gambler’s expected amount bet except in

case of a push, which provides no action.

Proposition 3.1.1. If X is directly proportional to B, that is ∃c ∈ R such that

X = c · B, we have that for any a ∈ R \ {0}

H0(B, X) = H0(a · B, X) , H(B, X) = H(a · B, X) .

Proof. Since X = c · B for some c ∈ R

H0(B, X) = H0(B, c · B) , H(B, X) = H(B, c · B) .

For any a ∈ R \ {0} we get

H0(aB, X) = H0(aB, c · aB) = −E[c · aB]
E[aB] =

= −aE[cB]
aE[B] = −E[cB]

E[B] = H0(B, X) .
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Moreover

H(aB, X) = H(aB, c · aB) = −E[c · aB]
E[aB1{c·aB ̸=0}]

= −aE[c · B]
aE[B1{c·aB ̸=0}]

= −aE[c · B]
aE[B1{c·B ̸=0}]

=

= −E[c · B]
E[B1{c·B ̸=0}]

= H(B, X) .

The house advantage is a numerical index of the unfavorability of a wager.

Indeed, since in casino games E[X] < 0 , the house advantage is a nonnegative

number. So a casino game is less unfavorable if it has a small house advantage and

we can conclude that the less unfavorable game has the smaller house advantage.

3.2 Sequence of Wagers

Suppose to repeat the same wager many times. Let (B1, X1), ..., (Bn, Xn) be

i.i.d. random vectors whose common distribution is one of (B, X), representing

the results of the independent repetitions of the original wager. Then

−(X1 + ... + Xn)
B1 + ... + Bn

represents the ratio of the gambler’s cumulative loss after n such wagers to his

total amount bet, while

−(X1 + ... + Xn)
B11{X1 ̸=0} + ... + Bn1{Xn ̸=0}

represents the ratio of the gambler’s cumulative loss after n such wagers to his

total amount of action. By the Law of Large Numbers we have

−(X1 + ... + Xn)
B1 + ... + Bn

=
−(X1+...+Xn)

n
B1+...+Bn

n

=−→
n→∞

−E[X]
E[B] = H0(B, X) a.s.

and

−(X1 + ... + Xn)
B11{X1 ̸=0} + ... + Bn1{Xn ̸=0}

=
−(X1+...+Xn)

n
B11{X1 ̸=0}+...+Bn1{Xn ̸=0}

n

−→
n→∞

−E[X]
E[B1{X=0}]

= H(B, X) a.s.
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So we have the following interpretation of house advantage:

• H0(B, X) is the long-term ratio of the gambler’s cumulative loss to his total

amount bet;

• H(B, X) is the long-term ratio of the gambler’s cumulative loss to his total

amount of action.

Let us now consider the first round in which the outcome is not a tie. That is, let

us define

N = min{n ≥ 1|Xn ̸= 0} .

As we have seen when dealing with stopping times, being the single wagers

independent, this random time is a geometric random variable of parameter

P(X ̸= 0). Indeed given k ∈ N we have

P(N = k) = P(X1 = X2 = ... = Xk−1 = 0, Xk ̸= 0) indep.=

indep.= P(Xk ̸= 0) ·
k−1∏
i=1

P(Xi = 0) id.distrib.=

id.distrib.= P(X ̸= 0)P(X = 0)k−1 = (1 − P(X ̸= 0))k−1P(X ̸= 0) .

So N ∼ Geom(P(X ̸= 0)). We are now interested in computing the house

advantage of the sequence of wagers considered up to time N , that is up to the

first round in which the outcome is not a tie and we have the following result:

Proposition 3.2.1. Consider the definitions of N and {(Bi, Xi)}i that we have

given before. We have

H0(B1 + ... + BN , X1 + ... + XN) = H0(B, X)

H0(BN , XN) = H(B, X) .
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Proof. Since N ∼ Geom(P(X ̸= 0)), we have P(N < ∞) = 1 and hence it

has meaning to consider the random vector (BN , XN). By the Law of conditional

expectation we have

H0(B1 + ... + BN , X1 + ... + XN) = H0

(
N∑

i=1
Bi,

N∑
i=1

Xi

)
=

=
−E

[∑N
i=1 Bi

]
E
[∑N

i=1 Xi

] = −E[N ]E[X]
E[N ]E[B] = −E[X]

E[B] = H0(B, X) .

Note that {N = i} = {X1 = ... = Xi−1 = 0, Xi ̸= 0} and

E
[
1{X1=...=Xi−1=0}

]
= 1 · P(X1 = ... = Xi−1 = 0) i.i.d.= P(X = 0)i−1.

Consider now a function f(b, x). We have

E[f(BN , XN)] =
∞∑
i

E
[
f(Bi, Xi)1{N=i}

]
=

=
∞∑
i

E
[
f(Bi, Xi)1{X1=...=Xi−1=0,Xi ̸=0}

]
indep.=

indep.=
∞∑
i

E
[
f(Bi, Xi)1{Xi ̸=0}

]
E
[
1{X1=...=Xi−1=0}

]
=

=
∞∑
i

E
[
f(Bi, Xi)1{Xi ̸=0}

]
P(X = 0)i−1 id.distrib.=

id.distrib.=
∞∑
i

E
[
f(B, X)1{X ̸=0}

]
P(X = 0)i−1 .

Since for a ∈ (0, 1)
∞∑

j=0
aj = 1

1 − a
,

we have

∞∑
i=1

P(X = 0)i−1 j=i−1=
∞∑

j=0
P(X = 0)j = 1

1 − P(X = 0) = 1
P(X ̸= 0) .
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So

E[f(BN , XN)] =
∞∑
i

E
[
f(B, X)1{X ̸=0}

]
P(X = 0)i−1 =

= E
[
f(B, X)1{X ̸=0}

] ∞∑
i

P(X = 0)i−1 =

= E
[
f(B, X)1{X ̸=0}

]
· 1
P(X ̸= 0) =

=
E
[
f(B, X)1{X ̸=0}

]
P(X ̸= 0) = E[f(B, X)|X ̸= 0] .

Therefore we have obtained

E[f(BN , XN)] = E[f(B, X)|X ̸= 0] .

If we take as f the function f(b, x) = x we have

E[XN ] = E[f(BN , XN)] = E[f(B, X)|X ̸= 0] = E[X|X ̸= 0] =

=
E
[
X · 1{X=0}

]
P(X ̸= 0) =

E
[
X · 1{X ̸=0}

]
+ E

[
0 · 1{X=0}

]
P(X ̸= 0) =

=
E
[
X · 1{X ̸=0}

]
+ E

[
X · 1{X=0}

]
P(X ̸= 0) =

=
E
[
X ·

(
1{X ̸=0} + 1{X=0}

)]
P(X ̸= 0) = E[X]

P(X ̸= 0) = E[X] · (P(X ̸= 0))−1 .

While if we take as f the function f(b, x) = b we have

E[BN ] = E[f(BN , XN)] = E[f(B, X)|X ̸= 0] =

= E[B|X ̸= 0] =
E
[
B · 1{X=0}

]
P(X ̸= 0) = E[B] · (P(X ̸= 0))−1 .

Hence

H0(BN , XN) = −E[XN ]
E[BN ] = −E[X] · (P(X ̸= 0))−1

E
[
B · 1{X=0}

]
· (P(X = 0))−1

=

= −E[X]
E
[
B · 1{X=0}

] = H(B, X) .
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From this proposition we deduce the following considerations:

• if a push is considered as a conclusive outcome of the bet, then B1 + ... + BN

units have been bet by time N and H0 is the appropriate definition of house

advantage. We describe H0 as house advantage with pushes included.

• if a push is considered as a mere delay in the eventual resolution of the

bet, then only BN units have been bet by time N and H is the appropriate

definition of house advantage. We describe it as house advantage with

pushes excluded.

How should a push be regarded? That depends on the game.

Remark 5. Note that if the bet has not the push as outcome, we have

H(B, X) = H0(B, X) .

Example 3.1. Let us consider two wagers (B1, X1) and (B2, X2) such that

B1 = B2 = b, where b > 0 is a fixed value, while

X1 =


2b , with probability 1

4 ,

−b , with probability 3
4

X2 =


3b , with probability 1

6 ,

−b , with probability 5
6

Let us compare the two wagers using the house advantage. Note that

E[X1] = 2b · 1
4 − b · 3

4 = − b

4 ,

E[X2] = 3b · 1
6 − b · 5

6 = − b

3 .

67



Since X1 and X2 do not assume the value zero, then H0(B1, X1) = H(B1, X1) and

H0(B2, X2) = H(B2, X2). So

H0(B1, X1) = −E[X1]
E[B1]

=
b
4
b

= 1
4 ,

H0(B2, X2) = −E[X2]
E[B2]

=
b
3
b

= 1
3 .

Given that H0(B2, X2) > H0(B1, X1), the wager (B1, X1) is more convenient.

3.3 Wagers with Three Possible Outcomes: Win,

Loss or Push

Let

• p > 0 be the probability of a win,

• q > 0 be the probability of a loss,

• r ≥ 0 be the probability of a push,

where p + q + r = 1. Suppose that a win pays a to 1, where a > 0. Suppose that

b > 0 is the bet size. So P(B = b) = 1 and

P(X = ab) = p , P(X = −b) = q , P(X = 0) = r .

So

E[X] = abp − qb = b · (ap − q) ,

E[B] = b · 1 = b ,

E
[
B · 1{X=0}

]
= E

[
b · 1{X=0}

]
= b · E

[
1{X=0}

]
= b · P(X ̸= 0) = b · (p + q) .
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3.3.1 Roulette: the m-Numbers Bet

Let us consider a wheel with z = 1 or z = 2 zeros. A bet on a subset of size m

of the set of 36 + z numbers is available for m = 1, 2, 3, 4, 6, 12, 18 and pays 36
m

− 1

to 1 if a number in that subset appears. There is no possibility of a push. Suppose

that b > 0 is the bet size. Then

P(B = b) = 1 ⇒ E[B] = b .

If we denote by X the gambler’s profit we have

X =


b ·
(

36
m

− 1
)

with probability m
36+z

,

−b with probability 1 − m
36+z

(3.1)

and so

E[X] = b ·
(36

m
− 1

)
· m

36 + z
− b ·

(
1 − m

36 + z

)
=

= b ·
[ 36
36 + z

− m

36 + z
− 1 + m

36 + z

]
= b · −z

36 + z
.

Therefore

H0(B, X) = −E[X]
E[B] =

b · −z
36+z

b
= z

36 + z
=


1\37 ≈ 0.03, if z = 1 ;

1\19 ≈ 0.05, if z = 2 .

So it is more convenient to play at the European Roulette (z = 1) instead of playing

at the American Roulette (z = 2). Note that the house advantage is independent

on the quantity of numbers on which we bet m. Just like probabilities, house

advantages are often stated in percentage terms

H0(B, X) ≈


0.03, if z = 1 ;

0.05, if z = 2 .

Since there is no possibility of ties we have

H0(B, X) = H(B, X) .
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3.4 Volatility of a Wager

Before studying the volatility of a wager we need the following result:

Proposition 3.4.1. Let X and Y be jointly distributed discrete random variables

with finite second moments and with P(Y ≥ 0) = 1 ,P(Y > 0) > 0. Let {(Xi, Y i)}i≥1

be a sequence of i.i.d. random vectors distributed as (X, Y ). Then, defining

Z ∼ N (0, 1),

σ2 =
E
[(

X − E[X]
E[Y ] Y

)2
]

E[Y ]2 , Wn =
√

n

σ
·
∣∣∣∣∣
∑n

i=1 Xi∑n
i=1 Yi

− E[X]
E[Y ]

∣∣∣∣∣ ,

we have Wn
d→ Z as n → ∞ , that is

P(Wn ≤ t) →
n→∞

P(Z ≤ t) .

Proof. We can rewrite Wn as

√
n

σ
·
∣∣∣∣∣
∑n

i=1 Xi∑n
i=1 Yi

− E[X]
E[Y ]

∣∣∣∣∣ =
√

nE[Y ]∑n
i=1 Yi

·

∣∣∣∣∣∣∣∣∣∣
∑n

i=1(Xi − E[X]
E[Y ] Yi)√

E
[(

X − E[X]
E[Y ] Y

)2
]
∣∣∣∣∣∣∣∣∣∣
=

=
√

nE[Y ]∑n
i=1 Yi

·

∣∣∣∣∣∣∣∣∣∣
∑n

i=1(Xi − E[X]
E[Y ] Yi)√

E
[(

X − E[X]
E[Y ] Y

)2
]
∣∣∣∣∣∣∣∣∣∣
= Un · Vn .

Since by the Central Limit Theorem Vn
d−→ N (0, 1) as n → ∞ and by the Strong

Law of Large Numbers Un
a.s−→ 1 as n → ∞, we have

Un · Vn
d−→ N (0, 1) as n → ∞ .

If in Proposition 3.4.1 we take Yi = Bi and we substitute Xi with −Xi we have

the following:
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Proposition 3.4.2.
√

n

σ0
·
∣∣∣∣∣−(X1 + ... + Xn)

B1 + ... + Bn

− H0(B, X)
∣∣∣∣∣ d−→ N (0, 1),

where

σ2
0 = E[(X + H0(B, X)B)2]

E[B]2

and σ0 describes the volatility of the bet.

If in Proposition 3.4.1 we take Yi = Bi · 1{Xi ̸=0} and we substitute Xi with −Xi

we get the following:

Proposition 3.4.3.
√

n

σ0
·
∣∣∣∣∣ −(X1 + ... + Xn)
B1 · 1{Xi ̸=0} + ... + Bn · 1{Xi ̸=0}

− H(B, X)
∣∣∣∣∣ d−→ N (0, 1),

where

σ2 =
E
[(

X + H(B, X)B · 1{X ̸=0}
)2
]

E
[
B · 1{X ̸=0}

]2
and σ describes the volatility of the bet.

3.4.1 Volatility in the Roulette: m-Number Bet

Consider a roulette with 36+z numbers, where z ∈ {1, 2} and suppose to make

a bet on m numbers, with m = 1, 2, 3, 4, 6, 12, 18, 35. Pushes are not allowed, so

H0(B, X) = H(B, X). We have seen that, if the size bet is B = 1 > 0 (and so

E[B] = 1), then H0(B, X) = z
36+z

. By Proposition 3.4.1
√

n

σ0
·
∣∣∣∣∣−(X1 + ... + Xn)

B1 + ... + Bn

− z

36 + z

∣∣∣∣∣ d−→ N (0, 1) ,

where

σ2
0 = E[(X + H0(B, X)B)2]

E[B]2 = E[(X + H0(B, X))2] =

= E[X2 + 2H0(B, X) · X + (H0(B, X))2] =

= E[X2] + 2H0(B, X)E[X] + (H0(B, X))2 .
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Recall that

X =


36
m

− 1 , with probability m
36+z

,

−1 , with probability 1 − m
36+z

.

Hence

E[X] =
(36

m
− 1

)
· m

36 + z
− 1 ·

(
1 − m

36 + z

)
= −z

36 + z
,

E[X2] =
(36

m
− 1

)2
· m

36 + z
+ (−1)2 ·

(
1 − m

36 + z

)
=

=
(

362

m
− 72

)
· 1

36 + z
+ 1 .

Therefore

σ2
0 = E[X2] + 2H0(B, X)E[X] + (H0(B, X))2 =

=
(

362

m
− 72

)
· 1

36 + z
+ 1 − 2 ·

(
z

36 + z

)2
+
(

z

36 + z

)2
=

=
(

362

m
− 72

)
· 1

36 + z
+ 1 −

(
z

36 + z

)2
.

Note that σ2
0 decreases as m increases, so there is greater volatility from a bet on

fewer numbers.

3.5 Expected Loss per Standard Deviation

A reasonable criterion to discuss the convenience of a wager is to choose the one

that maximizes P(Sn ≥ 0), where Sn = ∑n
i=1 Xi. If E[Xi] = µ and Var(Xi) = σ2

for all i = 1, ..., n, we have for n large

P(Sn ≥ 0) = P
(

Sn − n · µ√
nσ

≥ nµ√
nσ

)
=

= 1 − P
(

Sn − n · µ√
nσ

<
nµ√
nσ

)
CLT≈ 1 − Φ

(
−nµ√

nσ

)
=

= 1 − Φ
(

−µ

σ
·
√

n
)

.
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So to increase P(Sn ≥ 0) we have to decrease Φ
(
−µ

σ
·
√

n
)
. Since Φ is an increasing

function, we have that to decrease Φ
(
−µ

σ
·
√

n
)

we need to decrease −µ
σ
. This

suggests the following criterion:

Definition 3.2. We define the expected loss per standard deviation as

J(X) = −E[X]√
V ar(X)

So a reasonable criterion to discuss the convenience of a wager is to choose the

wager that minimizes J(X). The function J(X) has the following property:

J(b · X) = −E[b · X]√
V ar(b · X)

= −bE[X]√
b2V ar(X)

=

= −bE[X]
|b|
√

V ar(X)
=


J(X) , if b > 0 ;

−J(X) , if b < 0 .

Usually in our application b > 0 and hence

J(b · X) = J(X) .

3.5.1 Roulette: the m-Numbers Bet

Let us now consider the expected loss per standard deviation

J(X) = −E[X]√
V ar(X)

Notice that

V ar(X) = E[X2] − E[X]2 =
(

362

m
− 72

)
· 1

36 + z
+ 1 −

(
z

36 + z

)2
.

So

J(X) =
z

36+z√(
362

m
− 72

)
· 1

36+z
+ 1 −

(
z

36+z

)2
.

Note that J(X) is increasing in m, so it is better to bet on fewer numbers.
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Conclusions

C.1 Is Gambling a clever way to earn money?

Statistically, we cannot say gambling is a wise way to make money as the

odds are against the gambler, with the house having a built-in mathematical

advantage growing over time. Even if someone may win a consistent reward or

mitigate risk by playing based on research and odds, most of them will end up

losing.

Gambling can furnish players with an exhilarating rush, especially when there is a

big jackpot at stake. Most of them confide in the hope of hitting a winning streak

but the odds are seldom on their side; in fact, the house at a casino wins most of

the time, resulting in an almost certain loss.

As a matter of fact, players have extremely slim chances when it comes to winning

but, if they manage to walk away after even a small win, this will enable them to

limit their losses.

C.2 Why is Investing better than Gambling?

While both involve minimizing risk to maximize profits, an investor’s odds are

generally better over the long run than a gambler’s: that is because with gambling,

the house advantage over the gambler grows as they keep playing. A gambler
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can still win, even though it is more likely that they will ultimately lose, while

an investor tends to profit in the long run: investing can bear great losses itself,

but the stock market usually appreciates over time, meaning that if you are well

diversified, the odds are generally favorable, certainly more than those for getting

a positive return by playing in a casino.

C.2.1 Loss Mitigation

A key difference between gambling and investing is loss mitigation, as betting

on a pure gambling activity implies that you cannot rely on any loss-mitigation

strategies to lessen potential damages.

Nevertheless, recent innovations to online sportsbooks can be exploited as a remedy

to mitigate risks when betting on games, such as in-play betting: also known as

live betting or run betting, this term refers to gambling that occurs after a game

has started. It allows gamblers to place bets throughout the game rather than only

before its start, causing the odds to change in response to what is happening during

the game.1 Partial cash-out options instead allow the redemption of a portion of

your bet if the outcome seems to be heading towards the wrong direction.2

On the other hand, stock investors and traders have access to a wide selection of

options to avert the total loss of risked capital, as setting stop losses on their

stock to avoid undue risk: if their stock drops 15% below its purchase price, they

are entitled to sell that stock to other traders and still hold 85% of their risk

capital.

1Daniel Thomas Mollenkamp, “Live Betting: What It Is and How It Works”, Investope-

dia.com, February 5th 2023, https://www.investopedia.com/live-betting-definition-5217206.
2Stephan A. Abraham, “Going All-in: Investing vs. Gambling”, Investopedia.com, October

21th 2023, https://www.investopedia.com/articles/basics/09/compare-investing-gambling.asp.
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C.2.2 The Time Factor

Another crucial difference between the two actions concerns the notion of time:

gambling is a time-bound deed and once the game, race or hand comes to an end,

you either have won or lost your cash.

Stock investing instead can last many years and is usually time-rewarding, as

buying shares in companies that pay dividends entitles you to a compensation

for risking your capital, as long as you hold onto your stock. Sensible investors

understand that returns from dividends are a pivotal component to profit from

stocks over the long run.

C.2.3 Gathering Information

Information is a precious good in gambling as well as in investing because both

investors and gamblers investigate what happened in the past by going through

historical performance and current behavior to have better chances of making a

winning move. However, there is a definitive difference between the two for what

concerns the availability of information.

Information about company earnings, financial ratios and management team is

easily accessible to the public since it can be researched and then studied (either

directly or researching analyst reports) before pledging your money.

Conversely, if you are seated at a table in a casino you have no concrete information

about what happened just before your arrival at that same table; someone may say

your table is either “hot” or “cold”, but that kind of information is not quantifiable

and hence not so useful.3

3Stephan A. Abraham, “Going All-in: Investing vs. Gambling”, Investopedia.com, October

21th 2023, https://www.investopedia.com/articles/basics/09/compare-investing-gambling.asp.
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C.3 Why Do People Gamble?

Both in gambling and investing, you are putting your wealth at the mercy of

a potential loss. However, people frequently opt for gambling because of several

reasons:

(i) it usually requires a small deal of upfront capital, like in case of a 2 euro

lottery ticket;

(ii) gambling provokes an adrenaline rush, especially when the prize at stake is

enticing;

(iii) gambling does not imply a lot of predictions, special strategies and research

like investing does (reading reports or analyzing charts).

C.4 The Bottom Line

Gambling tendencies are way more deep-rooted than we can imagine, even

beyond what standard definitions suggest. Gambling can be shaped as the need to

prove one’s self to society or act in a certain way to be acknowledged by the latter,

which can often press people to step into a field without sufficient knowledge.

Gambling during market transactions is usually noticeable in individuals doing

it mainly for the emotional high they get from the excitement trading gives rise

to. Indeed, leaning on emotions or a must-win attitude to build profits rather

than sticking to a methodical plan of action points out that you are gambling and

unlikely to succeed over the long term.4

4Steven Nickolas, “Speculation vs. Gambling: What’s the Difference?”, Investo-

pedia.com, December 11th 2023, https://www.investopedia.com/ask/answers/042715/what-

difference-between-speculation-and-gambling.asp.
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An investor stakes money onto quality assets which are likely to generate stable

and consistent returns, a speculator puts money into volatile assets hoping those

assets will spike in value in order to profit, while a gambler is playing against bad

odds since the house always has an advantage. Investors can tailor their approach

to help them reach their financial goals at a future period in time and they also

enjoy the benefit of what has been referred to as the “eighth wonder of the world”:

compounding.5

With gambling, there is a chance to get lucky and strike it rich, but the most

probable outcome is to lose money (potentially a ton of it) because, as we have

seen in Chapter 3, the house has a mathematical advantage and the odds of losing

increase the longer a person plays. Going to a casino will only get you one quick

win every now and then enough for a short-term thrill, but definitely not suitable

to contribute to your long-term financial goals. With investing instead, having a

long-term and systemic approach usually tends to pay off.

Financial markets provide all kinds of opportunities to make profits, as long as

participants are prone to pursue well-defined edges and come up with sensible risk

and money management rules. Instead, placing binary bets on a market outcome,

supposing it will pay off randomly like a casino, ignores market structure and

actuality, leading straight to failure and bankruptcy.

Money management cannot always guarantee astonishing returns, but it may allow

you to limit losses and maximize returns through efficient diversification and, as

we have shown in Chapter 2, the Kelly Criterion is a model that can help you

diversify your portfolio in order to maximize your gain.

5Bella Caridade-Ferreira, “Why investing and gambling are different”, Compare+Invest,

March 29th 2021, https://compareandinvest.co.uk/guide/why-investing-and-gambling-are-

different/.
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Appendix

This appendix reports basic results used to discuss the thesis.

Proposition A.1 (Triangular Inequality). Given a, b ∈ R we have

|a ± b| ≤ |a| + |b| .

Proposition A.2. Let Ω be the sample space of an experiment and let X and Y

be two random variables defined on this experiment. If X(ω) ≤ Y (ω) for every

ω ∈ Ω, then E[X] ≤ E[Y ].

Proposition A.3 (Law of conditional expectation). Let X, Y be two jointly dis-

tributed random variables. Then

E[E[X | Y ]] = E[X] .

Proposition A.4 (Law of large numbers). Let X1, X2, . . . be a sequence of i.i.d.

random variables, each of them having finite mean µ. Hence

P
(

lim
n→∞

X1 + . . . + Xn

n
→ µ

)
= 1 ,

o equivalently, almost surely

lim
n→∞

X1 + . . . + Xn

n
= µ .
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Proposition A.5 (Central Limit Theorem). Let X1, X2, . . . be a sequence of i.i.d.

random variables with mean µ < ∞ e variance σ2 < ∞. Defined Sn = ∑
i = 1nXi

and Zn = Sn−nµ
σ

√
n

as its normalization, we have that for every t ∈ R

FZn(t) := P(Zn ≤ t) a.s.−→ P(Z ≤ t) for n → ∞ ,

where Z ∼ N (0, 1). Equivalently, Zn converges to Z ∼ N (0, 1) in distribution for

n → ∞.

Proposition A.6 (Weierstrass theorem). Let f : D ⊂ Rn → R be a continous

function and let D ⊂ Rn be a closed and bounded set. Then f has a minimum and

a maximum and a global maximum in D.

Proposition A.7 (Simpson’s Rule). Let f be a continuous function on [a, b] and

let n be an even integer. Simpson’s Rule for approximating
∫ b

a f(x) dx is
∫ b

a
f(x) dx ≈ b − a

3n
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + ... + 4f(xn−1) + f(xn)] .

Moreover, as n → ∞, the right-hand side approaches
∫ b

a f(x) dx.
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